
MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

MSX2 TECHNICAL HANDBOOK

Published by ASCII CORPORATION Japan in 1987

Adapted to text files by Nestor Soriano (Konami Man) in 1997

-=

This disk contains the whole MSX2 Technical Handbook (except appendix 7 and
appendix 9) plus Turbo-BASIC compiler manual, all in 9 text files with the
following format:

- File format: ASCII MS(X)-DOS.

- Line width: 78 characters.

- Carriage return marks at the end of each line.

- Standard tabulation marks are used (in columns with a number multiply of 8)

Format compatibility warranty: all files have been generated with a MSX
computer.

ASCII character 92 is used as the inverse bar; therefore, viewing the files
in a MSX2+ or Turbo-R computer with the original character set will cause
some figures to appear slightly distortionated. Anyway, they will still
perfectly readable.

Files list:

TH-1 PMA 8192 bytes Chapter 1 - MSX System Overview
 Decompressed: 24930 bytes
TH-2 TXT 117450 bytes Chapter 2 - BASIC
TH-3 TXT 108270 bytes Chapter 3 - MSX-DOS
TH-4A TXT 131604 bytes Chapter 4 - VDP and Display Screen (1-5)
TH-4B TXT 92922 bytes Chapter 5 - VDP and Display Screen (6)
TH-5A TXT 97157 bytes Chapter 5 - Access to Peripherals Through BIOS
 (1-6)
TH-5B TXT 46762 bytes Chapter 6 - Access to Peripherals Through BIOS
 (7)
TH-AP TXT 106609 bytes Appendix 1 - BIOS listing
 Appendix 2 - MATH-PACK
 Appendix 3 - Bit Block Transfer
 Appendix 4 - Work Area Listing
 Appendix 5 - VRAM Map
 Appendix 6 - I/O Map
 Appendix 8 - Control Codes
 Appendix 10- Escape Sequences

KUNBASIC TXT 7379 bytes MSX BASIC-KUN Compiler

** NOT AVAILABLE ** Appendix 7 - Cartridge Hardware
 Appendix 9 - Character Set

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

Files are not compressed, then you can use this disk directly with any text
editor/viewer. Problem: there is not enough room in 713K to afford all the
files. Because of this, TH-1 (the less important chapter) is compressed.

This manual was reproduced without the consent of the original authors, that
is, ASCII staff. I think that this people forgot the MSX system a long time
ago; anyway, for any complaint contact with me in <konamiman@geocities.com>.

Arigatos to Ramon Serna and Javi Lavandeira for lending to me theirs
"original" THs in march and october, respectively.

MSX2 TECHNICAL HANDBOOK

Edited by: ASCII Systems Division
Published by: ASCII Coprporation - JAPAN
First edition: March 1987

Text files typed by: Nestor Soriano (Konami Man) - SPAIN
 March 1997

Changes from the original:

none

-=-

CHAPTER 1 - MSX SYSTEM OVERVIEW

The MSX2 was designed to be fully compatible with the MSX1, but there are
many enhanced features in the MSX2. Chapter 1 introduces the enhanced
features of the MSX2, and shows block figures and standard tables. This
information is conceptual, but will be needed to understand dexcriptions in
volume 2 and later.

1. FROM MSX1 TO MSX2

To begin with, let us took back to the original purpose or intention of MSX
and then sum up the transition from MSX1 to MSX2.

1.1 What is MSX?

MSX was announced as a new 8-bit computer standard in the autumn of 1983. In
early days the word "compatibility" was not understood correctly and there
were misunderstandings that MSX could execute programs from other computers.
Since MSX can execute programs only for MSX, it was said that were was no
difference from the PC series (NEC) or FM series (Fujitsu) personal
computers, which could only execute programs using their format.

Several years passed before personal computers became popular. In the early
days only dedicated enthousiasts bought computers, which were difficult to
use, and, needless to say, incompatible. They were satisfied to tinker with
the computer and study it. But now computer use has expanded to include
several classes of users. In other words, the personal computer is becoming a
commodity item such as televisions or radio cassette recorders. Therefore,

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

"compatibility" is coming to be a problem. If each TV station needs a
different television set or if each radio cassette recorder needs a different
tape, do you suppose they would be popular? Software or programs of the
computer as a home electric product must be compatible.

The design team for MSX considered these problems. Since a computer is most
powerful when left flexible and easy to expand, a "final" standard format was
not practical. There are too many matters to define and hardware in
constantly improving. Therefore MSX started with fixing format of the most
fundamental harware and software such as DOS and BASIC, and the hardware bus
which is the basis for expansion. Since the computer is used by itself and
does not interact with other computers, the problem is small. But formats
must be fixed if the computer is to be connected to "peripherals" and handle
or accumulate various data. Fortunately MSX had the approval of many home
appliance electric companies and an MSX format was established early. This
allowed the system to be well known so that several manufacturers could make
compatible peripherals for the MSX standard.

Some of the useful features included in the MSX system include the use of
double precision BCD for normal BASIC arithmetic and the same file format as
MS-DOS. The real capabilities of the MSX machine will come to light as it is
used across several fields.

1.2 Environment of the MSX

Over one million MSX machines had been sold by December 1985 and are used
mainly as game machines or primers by primary and junior high school
students. But MSX use has gradually spread to include such uses as
communication terminals, Japanese word processing, factory automation, and
audio visual control. For improving its capabilities, a disk system and
MSX-DOS have been prepared, and languages such as C, FORTH, and LOGO are
available. BIOS, which is the collection of input/output routines in BASIC
ROM, and BDOS, which resides in the disk interface ROM and has compatibility
with CP/M system calls have both been improved. So an excellent programming
environment is now available. Chinese Character input, light pen and mouse
input, and the RS-232C interface have been standardised, and stantardisation
of other peripherals is proceeding. The keyboard and character set are
consistent with international standards, and there are minor variations to
satisfy the needs of individual countries.

Several new peripherals have been developed. Standard devices include
printers, disk drives, and mice; audio/visual devices include laser drives,
VTRs, synthesizer controllers, and video acquisition systems. Factory
Automation devices include robot controllers, room temperature controllers,
various adaptors for modem and telephone lines, and a health controller
combined with a hemadynamometer has been developed. So you can see that the
potential uses for MSX computers has really grown.

Many applications other than games are now supplied on disks and are becoming
more practical. There are now Japanese word processors capable of clause
transformation, data bases which can exchange data with higher-level systems,
and CAI and CAD systems.

1.3 Extended Contents of MSX2

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

MSX2 was announced in May 1985 as a system having upgraded compatibility with
MSX. Programs created under the MSX environment can be executed on MSX2
without any modifications, even at the assembly language level. Data and
programs stored on cassette tapes or disks can be used without modification.
Features added by the MSX2 system are improved screen display, higher
resolution, more colours available, and higher graphics speed. A
battery-powered clock and RAMDISK feature have also been added. In this
manual the name MSX2 refers to the computer made along the MSX2 standard and
the name MSX1 refers to the computer made along the previous MSX standard.

System configuration is shown in Figures 1.1 and 1.2 and Table 1.1 and
indicate the differences between MSX1 and MSX2. The differences are described
as follows:

 Table 1.1 MSX2/MSX1 standard comparison

 MSX2 | MSX1
 -------------------------------+---------------------------
CPU | Z80A or equivalent (clock 3.579545 MHz +- 1%) |
 |------------------------------+--------------------------|
 | 48K (MSX-BASIC version 2.0) | 32K (MSX-BASIC ver 1.0) |
 ROM | MAIN-ROM 32K | MAIN-ROM 32K |
 | SUB-ROM 16K | |
MEMORY RAM | 64K or more | 8K or more |
 VRAM | 64K or 128K | 16K |
 |------------------------------+--------------------------|
LSI for VDP | V-9938 (MSX-VIDEO) | TMS9918 or equivalent |
 |---|
CMT | FSK 1200/2400 baud |
 |---|
PSG | 8 octaves tri-chord output (AY-3-8910 compatible) |
 |---|
Keyboard | Alphanumeric | Alphanumeric |
 | Graphic symbols | Graphic symbols |
 |---|
Floppy disk (*) | Based on MS-DOS format |
 |---|
Printer | 8-bit parallel | (*) |
 |---|
ROM cartridge | I/O bus |
 | with slot for game cartridge and expansion bus |
 |---|
Joystick | 2 | 1 or 2 (*) |
 |------------------------------+--------------------------|
CLOCK-IC | Standard | (*) |
 |------------------------------+--------------------------|
RAM disk | Standard | Different for |
feature | | each maker |

 (*) Optional

 Figure 1.1 MSX2 system configuration

1. Minimum configuration

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

Sound I/O <--+ Video I/O Printer I/O Cartridge Slot x 1
 | ^ ^ |
 | | | |
 | -----------------------------+---------
 | | | |
 +-- | Z80A V |
 | ---- |
 | ROM 48K | | |
 | | | |
Joystick x 2 --> | RAM 64K | | |
 | | | |
 | VDP(V9938) VRAM 64K ---- |
 | |
 | PPI PSG |
 | |
------------ | ---------------- |
| Cassette | --> | | Keyboard | |
------------ ---------------------------------------

2. Software support range +-- Lightpen, Superimpose, Video
 | digitize
Sound I/O <--+ Video I/O Printer I/O | Cartridge Slot x 3
 | ^ ^ | |
 | | | | |
 | -----------------------------+---------
 | | +----+----+ |
 +-- | Z80A V V V |:::::::::::::::::::::
 | ---- ---- ---- +:---- ---- ---- ----:
 | ROM 48K | | | | | | | | | | | | | | |:
 | | | | | | | | | | | | | | | |:
Joystick x 2 --> | RAM 64K | | | | | | | | | | | | | | |:
 | | | | | | | | | | | | | | | |:
Trackball, | VDP(V9938) VRAM 128K ---- ---- ---- +:---- ---- ---- ----:
mouse, etc | |:::::::::::::::::::::
 | PPI PSG |
 | | Extended Cartridge
------------ | ---------------- | Slot x 4
| Cassette | --> | | Keyboard | |
------------ ---------------------------------------

 Figure 1.2 MSX1 system configuration

1. Minimum configuration

Sound I/O <--+ Video I/O Cartridge Slot x 1
 | ^ |
 | | |
 | -----------------------------+---------
 | | | |
 +-- | Z80A V |
 | ---- |
 | ROM 32K | | |
 | | | |
Joystick x 1 --> | RAM 8K | | |
 | | | |

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 | VDP(TMS9918) VRAM 16K ---- |
 | |
 | PPI PSG |
 | |
------------ | ---------------- |
| Cassette | --> | | Keyboard | |
------------ ---------------------------------------

2. Software support range

Sound I/O <--+ Video I/O Printer I/O Cartridge Slot x 3
 | ^ ^ |
 | | | |
 | -----------------------------+---------
 | | +----+----+ |
 +-- | Z80A V V V |:::::::::::::::::::::
 | ---- ---- ---- +:---- ---- ---- ----:
 | ROM 32K | | | | | | | | | | | | | | |:
 | | | | | | | | | | | | | | | |:
Joystick x 2 --> | RAM 64K | | | | | | | | | | | | | | |:
 | | | | | | | | | | | | | | | |:
Trackball, | VDP(TMS9918)VRAM 16K ---- ---- ---- +:---- ---- ---- ----:
mouse, etc | |:::::::::::::::::::::
 | PPI PSG |
 | | Extended Cartridge
------------ | ---------------- | Slot x 4
| Cassette | --> | | Keyboard | |
------------ ---------------------------------------

* MSX-BASIC

BASIC has also been extended from version 1.0 to version 2.0 in order to
support a new VDP, backup RAM, CLOCK-IC, and so on. Compatibility with MSX1
is maintained. When using the newly extended screen mode, be careful when
specifiyng range, since ranges are slightly different in MSX2.

MSX2 has three types of memory, ROM, RAM, VRAM, which are described below.

ROM

Standard ROM size is 48K bytes. The MSX ROM uses only 32K bytes. The extra
16K bytes portion of the MSX2 contains routines supporting the extended
features.

The "MAIN-ROM" consists of 32K bytes and contains the BASIC interpreter, and
the "extended ROM" or "SUB-ROM" consists of 16K bytes and contains routines
for the extended features.

RAM

Standard RAM size is 64K bytes, which is large enough so that MSX-DOS can be
executed. The RAM size of MSX1 varied from 8K to 64K bytes, so in some cases
large programs could not be executed without expanding RAM. MSX2 does not

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

have this problem.

VRAM

A minimum of 64K bytes are required for VRAM in order to execute the added
features of the screen display. VRAM is thus four times larger than in MSX1,
which had only 16 K bytes VRAM. But many machines actually use a VRAM size of
128K bytes, which is eight times larger. Machines with 128K bytes VRAM can
display 256 colours at the same time.

MSX machines which have 64K bytes VRAM but cannot be expanded to 128K bytes
are marked "VRAM64K" on their catalogue or packaging.

* VDP

The MSX series computers use a video display processor (VDP) type LSI chip
for controlling the screen output. The VDP used for MSX1 was the TMS9918, but
the MSX2 uses the V9938 (MSX-VIDEO), which has upper and full compatibility
with the TMS9918 and can execute software for TMS9918 without any
modification.

Table 1.2 shows the VDP standard and Table 1.3 shows each screen mode. V9938
is an excellent LSI chip with digitising, superimposing, and hardware
scrolling features. Chapter 4 of this manual describes it in detail.

 Table 1.2 VDP specifications

 V9938 | TMS9918
 ----------------------------+----------------------
Screen mode | 10 (see table 1.3) | 4 |
 |---------------------------+---------------------|
Number of dots | 512 x 212 maximum | |
(horizontal x | 424 dots for vertical | 256 x 192 maximum |
vertical) | can be achieved by | |
 | interlace feature | |
 |---------------------------+---------------------|
 Number of | | |
 colours to | 512 maximum | 16 maximum |
 specify | | |
Colour |---------------------------+---------------------|
 Number of | | |
 colours to | 256 maximum | 16 maximum |
 display at | | |
 the same time | | |
 |---|
Character set | alphanumeric + graphic symbols |
 | 256 characters 8 x 8 dots |
 |---|
Sprite colour | 16 maximum per sprite | 1 per sprite |
 |---------------------------+---------------------|
Palette feature | Yes | No |

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 Table 1.3 V9938 screen mode

Mode Number of Dots Colours Palette Sprite
 characters

* Text 1 | 40 x 24 | | 2 from 512 | Yes | No
 Text 2 | 80 x 24 | | 4 from 512 | Yes | No
* Multi-colour| | 64 x 48 | 16 from 512 | Yes | Mode 1
* Graphic 1 | 32 x 24 | | 16 from 512 | Yes | Mode 1
* Graphic 2 | | 256 x 192 | 16 from 512 | Yes | Mode 1
 Graphic 3 | | 256 x 192 | 16 from 512 | Yes | Mode 2
 Graphic 4 | | 256 x 212 | 16 from 512 | Yes | Mode 2
 Graphic 5 | | 512 x 212 | 4 from 512 | Yes | Mode 2
 Graphic 6 | | 512 x 212 | 16 from 512 | Yes | Mode 2
 Graphic 7 | | 256 x 212 | 256 from 256 | No | Mode 2

(*) Feature modes available from TMS9918 (however, palette feature only from
V9938).

* Battery-powered Clock-IC

Battery-powered RAM is connected to the I/O port and is used for storage of
setup information and for keeping track of the date and time. Setup
information specifies the screen colour and mode at reset. This allows the
user to set up the desired environment when the system is booted.

The CLOCK-IC works independently of the main power supply. After being set
once new time settings are no longer required.

* RAM Disk Feature

When using BASIC on MSX1 machines which had 64K bytes RAM, only 32K bytes of
RAM were used; the other 32K bytes were unused since the BASIC interpreter
occupied the address space. On MSX2 machines this unused RAM can be used as a
RAMDISK. For users who do not have a disk drive, this feature is very useful
when loading or saving BASIC programs temporarily.

2. MSX2 SYSTEM OVERVIEW

This section gives a simple overview of the MSX2 software and hardware
systems. To help you understand the concepts, diagrams which would be useful
when developping softwarem, such as VRAM map, the I/O map, and the interface
standard, are found in the APPENDIX of this manual.

2.1 Hardware overview

First of all, look at the block diagram in Figure 1.3 to understand the
hardware configuration of the MSX2 as a whole.

 Figure 1.3 MSX2 block diagram

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

CPU Z80A
 |
 | ----- -------------------------------
 +--| |--| ROM 48K (MSX-BASIC ver 2.0) |
 | | | -------------------------------
 | | S | ----------------
 | | |--| MAIN RAM 64K |
 | | L | ----------------
 | | | ::::::::::::::::: :::::::::::::::::
 | | O |::: MEMORY MAPPER :::: RAM 64K to 4M :
 | | | ::::::::::::::::: :::::::::::::::::
 | | T | :::::::::::::
 | | |::: CARTRIDGE : I/O Cartridge (Disk, RS-232C)
 | | | ::::::::::::: RAM Cartridge
 | ----- ROM Cartridge (Game, Application)
 | Slot Expansion Box, Etc.
 |
 | ----------------- --- Joystick Input
 +--| PSG AY-3 8910 |---|
 | ----------------- --- Audio Output
 |
 | :::::::::::::::::::::::: ::::::::::::::::::::::::::::::::
 |::: MSX-AUDIO (FM sound) :::: Audio Memory Maximum of 256K :
 | :::::::::::::::::::::::: ::::::::::::::::::::::::::::::::
 |
 | ----------------------
 +--| CASSETTE INTERFACE |::::: Cassette
 | ----------------------
 |
 | ---------------------
 +--| PRINTER INTERFACE |:::::: Printer
 | ---------------------
 |
 | ---------------------------------
 +--| BATTERY BACKUP RAM + CLOCK IC |
 | ---------------------------------
 |
 | ------------- ------------
 +--| PPI 8255A |--------+-----| Keyboard |
 | ------------- | ------------
 | | ---------------
 | +-----| Slot Holder |
 | ---------------

| MSX-VIDEO |----------------------- RGB/Video/RF Output

 |
 | ------------:::::::::::::::::::::::::::
 +--| VRAM 64K | VRAM 64K : Expansion RAM :
 | ------------:::::::::::::::::::::::::::
 |
 | ::::::::::::::::
 |--: SUMPERIMPOSE :--------+--- Video Input
 | :::::::::::::::: |
 | |

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 | :::::::::::: |
 +--: DIGITISE :------------+
 ::::::::::::

Note: The dotted lines represent optional features.

2.1.1 Address map

* Memory map

The MSX2 has three kinds of memory: MAIN-ROM, SUB-ROM, and RAM. Each memory
resides in an independent 64K address space and is allocated as shown in
Figure 1.4 (1) (each 64K space is called a "slot", which consists of four 16K
areas called "pages"). Figures 1.3 (2) and (3) show memory usage when using
BASIC and MSX-DOS, respectively.

For each class of memory, Figure 1.5 shows the memory map of Figure 1.4
(1)(a), Figure 1.6 for Figure 1.4 (1)(b), and Figure 1.7 for Figure 1.4
(1)(c). There is also a VRAM map and I/O map whose standards are defined.
They are found in the APPENDIX.

 Figure 1.4 MSX2 standard memory

(1) Physical allocation of standard memories

 (a) (b) (c)
0000H ------------- ------------- -------------
Page 0 | (1) | | (3) | | (4) |
 | MAIN-ROM | | SUB-ROM | | RAM |
4000H | - - - - - | |-----------| | - - - - - |
Page 1 | (2) | | not | | (5) |
 | MAIN-ROM | | used | | RAM |
8000H |-----------| | - - - - - | | - - - - - |
Page 2 | not | | not | | (6) |
 | used | | used | | RAM |
C000H | - - - - - | | - - - - - | | - - - - - |
Page 3 | not | | not | | (7) |
 | used | | used | | RAM |
 ------------- ------------- -------------
 MAIN-ROM SUB-ROM 64K-RAM
 SLOT SLOT SLOT

(2) CPU memory space when using BASIC (3) CPU memory space
 when using MSX-DOS
0000H ------------- ------------- -------------
Page 0 | (1) | | (3) | | (4) |
 | MAIN-ROM | | SUB-ROM | | RAM |
4000H | - - - - - | ------------- | - - - - - |
Page 1 | (2) | 1 and 3 are | (5) |
 | MAIN-ROM | switched | RAM |
8000H |-----------| under certain | - - - - - |
Page 2 | (6) | circumstances | (6) |
 | RAM | | RAM |
C000H | - - - - - | | - - - - - |
Page 3 | (6) | | (7) |

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 | RAM | | RAM |
 ------------- -------------

Note: Four pages (4 to 7) of 64K RAM are not always in the same slot.

 Figure 1.5 MAIN-ROM memory map

0000H --------------
 | BIOS |
 | Entry |
015CH |------------|
 | Additional |
 | BIOS Entry |
017AH |------------|
 | Empty |
01B6H |------------|
 | BASIC |
 | Interpreter|
7FFDH |------------|
 | BDOS |
7FFFH | Entry |
8000H |------------|
 | |

 Figure 1.6 SUB-ROM memory map

0000h --------------
 | BIOS |
 | Entry |
01FDH |------------|
 | SLOT |
 | Management |
 | Control |
0336H |------------|
 | BASIC |
 | Interpreter|
3FFFH | and BIOS |

 Figure 1.7 MAIN-RAM memory map

0000H -------------
 | |
 | RAM Disk |
 | |
 | Area |
 | |
8000H |-----------|
 | |
 | User |
 | Area |
 | |
F380H |-----------|
 | System |

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 | Work Area |
FD9AH |-----------|
 | RAM Hook |
 | Area |
FFCAH |-----------|
 | Expanded |
 | BIOS call |
 | Entry |
FFCFH |-----------|
 | Interrupt |
 | Control |--> Note: Used for the disk
 | Hook Area | and RS-232 interface
FFD9H |-----------|
 | Interrupt |
 | Control |--> Note: Used for the RS-232
 | Program | interface
 | Area |
FFE7H |-----------|
 | New VDP |
 | Register |
 | Subroutine|
 | Area |
FFF7H |-----------|
 | Main ROM |
 | Slot |
 | Address |
FFF8H |-----------|
 | Reserved |
FFFCH |-----------|
 | Slot |
 | Selection |
FFFFH | Register |

2.1.2 Interfacing with peripherals

MSX2 interfacing with peripherals is standarised in detail.

The following is a list of standarised interfaces:

- Display interface
- Audio interface
- Cassette interface
- General-purpose input/output interface
- Printer interface

The printer interface was optional on the MSX1 but is standard on the MSX2.

The disk drive interface is still an option but may be considered part of the
standard specification because the MSX2 has 64K bytes of RAM.

For detailed information about the cartridge specifications, see the
appendix.

2.2 Software Overview

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

The MSX has two software environments: BASIC mode and DOS mode. BASIC mode
enables easy development and execution of MSX-BASIC program and is the mode
most often used by most users. A major reason why the use of personal
computers has grown is that BASIC is easy to use.

The DOS mode enables various languages, utilities, and applications using
MSX-DOS. Most programs in DOS can be executed on different machines. The
computers automatically compensate for any differences in hardware. This
allows the user to use accumulated software resources efficiently. MSX-DOS
uses the same disk format as MS-DOS, which is popular on 16-bit machines. You
should also note that software for CP/M, which has a great deal of
applications available for 8-bit machines, can be executed only by doing file
conversions.

A remarkable point is that BASIC and DOS use the same disk format in the MSX
machines. This enables the sharing of resources. Both are, as shown in figure
1.8, on the united software environment which has BIOS (Basic I/O System) as
a common basis. BDOS (Basic Disk Operating System), which is the basis of the
disk operation, is also constructed on this BIOS. MSX offers the same
programming environment to BASIC and DOS through common BDOS and BIOS.

 Figure 1.8 Software hierarchy of MSX1 and MSX2

| o | |
| | | |
| BASIC | DISK-BASIC | MSX-DOS |----+
| | | | |
| | | | |
| | ------------------| | Interslot Call
| | | BDOS | |
|----------------------------------| |
| BIOS |<---+
|/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\|
Hardware

MSX2 TECHNICAL HANDBOOK

Edited by: ASCII Systems Division
Published by: ASCII Coprporation - JAPAN
First edition: March 1987

Text files typed by: Nestor Soriano (Konami Man) - SPAIN
 March 1997

Changes from the original:

- In description of REM statement, [<comment>] field has been added.

- In description of SGN function, "Examines the sign and returns..." has been
substitued for "Examines the sign of <expression> and returns..."

- Descriptions for MSX DISK-BASIC statements DSKI$ and DSKO$ have been added.

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

- Descriptions for new commands on MSX DISK-BASIC version 2 have been added.

- In Table 2.20 (List of intermediate codes), the code "FC" is shown as
assigned to "\" as it is actually, and not to "$" as in the original text.

- In List 2.3 (Changing error handling routine), the third line of "command
initialize", which is "LD HL,CMDHDAT" in the original, is corrected and
substitued by "LD HL,HDAT".

- In section 5, "Notes on Software Development", subsection "BASIC version
number", the part "and so on" has been added in point 1.

- In error code list, description of errors 72 to 75 have been added.

-=-

CHAPTER 2 - BASIC

The BASIC of MSX2 has been upgraded: the new version is called MSX BASIC
version 2.0. And, when using a disk system, MSX DISK-BASIC can be used, which
consists of MSX BASIC version 2.0 and additional instructions for disk
operations. The following sections describe these two versions of BASIC.

1. LIST OF INSTRUCTIONS

First of all, the sentence and function for each instruction of BASIC are
listed. Each instruction is listed in the format shown in Figure 2.1.

 Figure 2.1 Instruction list format

| Instruction format |
| - |
| Instruction type | Function or action of instruction |

(a) Syntax of instructions

If there is an "*" followed by a keyword, it indicates that the syntax or
function of the instruction has just been modified after version 1.0, or that
the instruction has been added to version 2.0.

Descriptions of sentences use the following notational conventions.

 * [item] the item is optional
 * [, item ...] more items having the same form may appear
 * [item1 | item2] choose item1 or item2

And <filename>, which is used in the sentence, is a string specifying I/O
devices or files for input/output in the format listed below. <Filename> for
a cassette files is a string consisting of any combination of up to 6
characters. <filename> for disk or RAM disk is a string, whose form is
"<filename (up to 8 characters)> + <filename extension (up to 3

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

characters)>". <drive> is one of characters from A to H (depending on the
number of drives connected).

 "CAS: <filename>" Cassette file
 "MEM: <filename>" RAM disk
 "CRT:" Text screen
 "GRP:" Graphic screen
 "LPT:" Printer
 "<drive>:<filename>" .. Disk file

(b) Instruction type

There are four types of instructions:

 * Function Returns a certain value depending on the
 given parameter(s).
 * System variable Variables available from BASIC. Generally,
 assignment is allowed.
 * Statement Takes a certain action.
 * Command Gives an instruction to BASIC interpreter
 itself.

(c) Function or action of instruction

The following list gives a brief description of the action for each
instruction. More detailed descriptions about instructions which have been
modified or added at version 2.0 are given in section 2.

1.1 Instructions of MSX BASIC version 2.0

--- A ---

ABS (<expression>)
Function Returns absolute value of <expression>.

ASC (<string>)
Function Returns the code of the first character of <string>.

ATN (<expression>)
Function Returns arc tangent of <expression> in radians.

AUTO [<linenumber>[, <increment>]]
Command Produces line numbers automatically.

--- B ---

* BASE (<expression>)
System variable Contains the table address of the screen assigned
 on VRAM.

BEEP
Statement Produces beep to the audio terminal.

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

BIN$ (<expression>)
Function Converts the value of <expression> to a string of
 binary expression, then returns its result.

BLOAD "<filename>"[,R[,offset]]
Command Loads an assembly language program.

BSAVE "<filename>",<start address>,<end address>[,<execution address>]
Command Saves an assembly language program.

--- C ---

CALL <extended statement name>[(<argument>[,<argument>...])]
Statement Calls the extended statements by inserting
 various cartridges.

* CALL MEMINI [(<upper limitation of RAM disk>)]
Statement Specifies the upper limit of memory for Ram disk.

* CALL MFILES
Statement Lists file names in RAM disk.

* CALL MKILL ("<filename>")
Statement Deletes a file in RAM disk.

* CALL MNAME ("<old filename>" AS "<new filename>")
Statement Renames a file in RAM disk.

CDBL (<expression>)
Function Converts the value of <expression> to a double
 precission real value and returns its result.

CHR$ (<expression>) Returns a character which has the code of
Function <expression> value.

CINT (<expression>)
Function Converts the value of <expression> to an integer
 value and returns its result.

* CIRCLE {(X,Y) | STEP(X,Y)},<radius>[, <colour>[, <start angle>[, <end
 angle>[, <proportion>]]]]
Statement Draws a circle whose center is at (X,Y) and whose
 size depends on <radius>.

CLEAR [<size of string area>[, <upper limitation of memory>]]
Statement Initialises variables and sets the size of
 memory area.

CLOAD ["<filename>"]
Command Loads a program from cassette.

CLOAD? ["<filename>"]
Command Compares a program on cassette with the one in
 memory.

CLOSE [[#]<filenumber>[, [#]<filenumber>...]]

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

Command Closes a file represented by <filenumber>.

CLS
Statement Clears screen.

* COLOR [<foreground colour>[, <background colour>[, <border colour>]]]
Statement Specifies the colours of each part of the screen.

* COLOR [=NEW]
Statement Initialises the palette.

* COLOR = (<palette number>, <red brightness>, <green brightness>, <blue
 brightness>)
Statement Sets the palette colour.

* COLOR = RESTORE
Statement Puts the contents of the colour palette storage table
 into the palette register.

* COLOR SPRITE (<sprite plane number>)=<colour>
Statement Sets the colour to the sprite of <sprite plane
 number> to the specified colour.

* COLOR SPRITE$ (<sprite plane number>)=<string expression>
Statement Sets the colour of each horizontal line of the
 sprite using <string expression>.

CONT
Command Resumes the execution of the program which has
 been stopped.

* COPY <source> TO <destination>
Statement Transfers the screen data among the screen, array,
 and disk file.

* COPY SCREEN [<mode>]
Statement Writes colour bus data into VRAM (optional).

COS (<expression>)
Function Returns the cosine value of <expression (in
 radians)>.

CSAVE "<filename>"[, <baud rate>]
Command Saves a program to cassette.

CSGN (<expression>)
Function Converts the value of <expression> to a single
 precision real value, and returns its result.

CSRLIN
System variable Contains the vertical screen location of the cursor.
 No assignment is allowed.

--- D ---

DATA <constant>[, <constant>...]

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

Statement Prepares data to be read by READ statement.

DEF FN <name> [(<argument>[, <argument>...])]=<function-definitive
 expression>
Statement Defines a user-defined function.

DEFINT <character range>[, <character range>...]
Statement Declares the specified variable(s) as integer type.

DEFSNG <character range>[, <character range>...]
Statement Declares the specified variable(s) as single
 precision real type.

DEFDBL <character range>[, <character range>...]
Statement Declares the specified variable(s) as double
 precision real type.

DEFSTR <character range>[, <character range>...]
Statement Declares the specified variable(s) as character type.

DEF USR [<number>]=<start address>
Statement Defines the starting address for the execution of
 assembly language routine, called by USR function.

DELETE {[<start linenumber>-<end linenumber>] | <linenumber> | -<end
 linenumber>}
Command Deletes the specified portion of the program.

DIM <variable name> (<maximum subscript value>[, <maximum subscript
 value>...])
Statement Defines an array variable and allocates it into
 memory.

DRAW <string expression>
Statement Draws a line or lines on the screen according to
 <string expression (DRAW macro)>.

--- E ---

END
Statement Ens the program, close all files, and returns to
 the command level.

EOF (<filenumber>)
Function Checks if the file is finished and returns -1 if at
 the end of file.

ERASE <array variable name>[, <array variable name>...]
Statement Deletes the array variable(s).

ERL
System variable Contains the error code for the preceding error.
 No assignment is allowed.

ERR
System variable Contains the line number of the previous error.

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 No assignment is allowed.

ERROR <error code>
Statement Puts the program into the error condition.

EXP (<expression>)
Function Returns the exponent (power) of the natural
 exponential form of <expression>.

--- F ---

FIX (<expression>)
Function Returns the value of <expression>, without any
 decimal fractions.

FOR <variable name> = <initial value> TO <end value> [STEP <increment>]
Statement Repeats the execution from FOR statement to NEXT
 statement for the specified times.

FRE ({<expression> | <string expression>})
Function Returns the size of unused user's area or unused
 character area.

--- G ---

* GET DATE <string variable name>[, A]
Statement Assigns date into a string variable.

* GET TIME <string variable name>[, A]
Statement Assigns time into a string variable.

GOSUB <linenumber>
Statement Calls the subroutine at <linenumber>.

GOTO <linenumber>
Statement Jumps to <linenumber>.

--- H ---

HEX$ (<expression>)
Function Converts the value of <expression> to a string of
 hexadecimal expression, then returns its result.

--- I ---

IF <condition> THEN {<statement> | <linenumber>} [ELSE {<statement> |
 <linenumber>}]
Statement Judges the condition. If <condition> is not zero,
 it is true.

IF <condition> GOTO <linenumber> [ELSE {<statement> | <linenumber>}]
Statement Judges the condition. If <condition> is not zero,
 it is true.

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

INKEY$
Function Returns a character when a key is being pressed,
 or when not, returns null string.

INP (<port number>)
Function Reads the port specified by <port number> and
 returns its result.

INPUT ["<prompt statement>";]<variable name>[, <variable name>...]
Statement Assigns data input from keyboard into the specified
 variable(s).

INPUT #<filenumber>, <variable name>[, <variable name>...]
Statement Reads data from the file and assigns the data into
 the specified variable(s).

INPUT$ (<number of characters>[, [#]<filenumber>])
Function Reads the specified size of string from the keyboard
 or file.

INSTR ([<expression>,]<string expression 1>,<string expression 2>)
Function Searches <string expression 2> from the left of
 <string expression 1>, and returns its location if
 found, otherwise zero. <Expression> is the character
 location to start searching.

INT (<expression>)
Function Returns the largest integer less than <expression>.

INTERVAL {ON | OFF | STOP}
Statement Allows, suppresses, or suspends the timer interrupt.

--- K ---

KEY <key number>,<string>
Command Redefines a function key.

KEY LIST
Command Displays the contents of function keys.

KEY (<key number>){ON | OFF | STOP}
Statement Allows, supresses, os suspends the function key
 interrupt.

KEY {ON | OFF}
Statement Specifies whethter to display the contents of
 function keys at the bottom of the screen.

--- L ---

LEFT$ (<string expression>,<expression>)
function Gets <expression> characters from the left of
 <string expression>.

LEN (<string expression>)
Function Returns the number of characters of <string

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 expression>.

[LET] <variable name> = <expression>
Statement Assigns the value of <expression> to the variable.

* LINE [{(X1,Y1) | STEP(X1,Y1)}] - {(X2,Y2) | STEP(X2,Y2)}[, <colour>
 [, {B|BF}[, <logical operation>]]]
Statement Draws a line or a rectangle on the screen.

LINE INPUT ["<prompt statement>";]<string variable name>
Statement Assigns a whole line of string data from the
 keyboard into the string variable.

LINE INPUT# <filenumber>, <string variable name>
Statement Reads data in lines from the file and assigns the
 data into the string variable.

LIST [[<linenumber>] - [<linenumber>]]
Command Displays the program in memory on the screen.

LLIST [[<linenumber>] - [<linenumber>]]
Command Sends the program in memory to the printer.

LOAD "<filename>" [,R]
Command Loads a program saved in ASCII format.

* LOCATE [<X-coordinate>[, <Y-coordinate>[, <cursor switch>]]]
Statement Locates the cursor on the text screen.

LOG (<expression>)
Function Returns the natural logarithm of <expression>.

LPOS (<expression>)
System variable Contains the location of the printer head.
 No assignment is allowed.

LPRINT [<expression>[{; | ,}<express]ion>...]
Statement Outputs characters or numerical values to the
 printer.

LPRINT USING <form>; <expression>[{; | ,}<expression>...]
Statement Outputs characters or numerical values through the
 printer according to <form>.

--- M ---

MAXFILES = <number of files>
Statement Sets the number of files to be opened.

MERGE "<filename>"
Command Merges the program in memory with the program saved
 in ASCII format (in external storage device).

MID$ (<string expression>, <expression 1>[, <expression 2>])
Function Returns <expression 2> character(s) starting from
 the <expression 1>th position of <string expression>.

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

MID$ (<string variable name>, <expression 1>[, <expression 2>])
 = <string expression>
Statement Defines <string expression> using <expression 2>
 character(s) from the <expression 1>th position
 of <string variable name>.

MOTOR [{ON | OFF}]
Statement Turns the motor of cassette ON and OFF.

--- N ---

NEW
Command Deletes the program in meory and clears variables.

NEXT [<variable name>[, <variable name>...]]
Statement Indicates the end of FOR statement.

--- O ---

OCT$ (<expression>)
Function Converts the value of <expression> to the string of
 octal expression and returns its result.

ON ERROR GOTO <linenumber>
Statement Defines the line to begin the error handling routine.

ON <expression> GOSUB <linenumber>[, <linenumber>...]
Statement Executes the subroutine at <linenumber> according to
 <expression>.

ON <expression> GOTO <linenumber>[, <linenumber>...]
Statement Jumps to <linenumber> according to <expression>.

ON INTERVAL = <time> GOSUB <linenumber>
Statement Defines the timer interrupt interval and the line to
 begin the interrupt handling routine.

ON KEY GOSUB <linenumber>[, <linenumber>...]
Statament Defines the line to begin the function key interrupt
 handling routine.

ON SPRITE GOSUB <linenumber>
Statement Defines the line to begin the piled-sprite interrupt
 handling routine.

ON STOP GOSUB <linenumber>
Statament Defines the line to begin the CTRL+STOP key interrupt
 handling routine.

ON STRING GOSUB <linenumber>[, <linenumber>...]
Statement Defines the line to begin the trigger button
 interrupt handling routine.

OPEN "<filename>" [FOR <mode>] AS #<filenumber>
Statement Opens the file in the specified mode.

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

OUT <port number>,<expression>
Statement Sends data to the output port specified by <port
 number>.

--- P ---

* PAD (<expression>)
Function Examines the state of tablet, mouse, light pen, or
 track ball specified by <expression>, then returns
 its result.

* PAINT {(X,Y) | STEP(X,Y)}[, <colour>[, <border colour>]]
Statement Paints the area surrounded by specified <border
 colour> using <colour>.

PDL (<paddle number>)
Function Returns the state of the paddle which has the
 specified number.

PEEK (<address>)
Function Returns the contents of one byte of the memory
 specified by <address>.

PLAY <string expression 1>[, <string expression 2>[, <string expression 3>]]
Statement Plays the music by <string expression (music macro)>.

PLAY (<voice channel>)
Function Examines whethter the music is being played and
 returns its result (if in play, -1 is returned).

POINT (X,Y)
Function Returns the colour of the dot specified by
 coordinate (X,Y).

POKE <address>,<data>
Statement Writes one byte of <data> into the memory specified
 by <address>.

POS (<expression>)
System variable Contains the horizontal location of the cursor on the
 text screen. No assignment is allowed.

* PRESET {(X,Y) | STEP(X,Y)}[, <colour>[, <logical operation>]]
Statement Erases the dot specified by coordinate (X,Y) on the
 graphic screen

PRINT [<expression [{; | ,}<expression>...]
Statement Displays characters of numbers on the screen.

PRINT USING <form>; <expression>[{; | ,}<expression>...]
Statement Displays characters or numbers on the screen
 according to <form>.

PRINT #<filenumber>, [<expression>[{; | ,}<expression>...]]
Statement Writes characters or numbers to the file specified
 by <file number>.

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

PRINT #<filenumber>, USING <form>; <expression>[{; | ,}<expression>...]
Statement Writes characters or numbers to the file specified
 by <file number> according to <form>.

PSET {(X,Y) | STEP(X,Y)}[, <colour>[, <logical operation>]]
Statement Draws the dot in the coordinate specified by (X,Y)
 on the graphic screen.

* PUT KANJI [(X,Y)],<JIS kanji code>[, <colour>[, <logical operation>
 [, <mode>]]]
Statement Displays the kanji on the screen (KANJI ROM is
 required).

* PUT SPRITE <sprite plane number>[, {(X,Y) | STEP(X,Y)}[, <colour>[, <sprite
 pattern number>]]]
Statement Displays the sprite pattern.

--- R ---

READ <variable name>[, <variable name>...]
Statement Reads data from DATA statement(s) and assigns the
 data to the variable(s).

REM [<comment>]
Statement Puts the comment in the program.

RENUM [<new linenumber>[, <old linenumber>[, <increment>]]]
Command Renumbers the line numbers.

RESTORE [<linenumber>]
Statement Specifies the line to begin reading DATA by READ
 statement.

RESUME {[0] | NEXT | <linenumber>}
Statement Ends the error recovery routine and resumes execution
 of the program.

RETURN [<linenumber>]
Statement Returns from a subroutine.

RIGHT$ (<string expression>, <expression>)
Function Gets <expression> characters from the right of
 <string expression>.

RND [(<expression>)]
Function Returns a random number between 0 and 1.

RUN [<linenumber>]
Command Executes the program from <linenumber>.

--- S ---

SAVE "<filename>"
Command Saves the program in ASCII format.

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

* SCREEN <screen mode>[, <sprite size>[, <key click switch>[, <cassette baud
 rate>[, <printer option>[, <interlace mode>]]]]]
Statement Sets the screen mode and so on.

* SET ADJUST (<X-coordinate offset>, <Y-coordinate offset>)
statement Changes the display location of the screen. Ranges
 from -7 to 8.

* SET BEEP <timbre>, <volume>
Statement Selects the BEEP tone. Ranges from 1 to 4.

* SET DATE <strign expression>[, A]
Statement Sets a date. "A" is the specification of alarm.

* SET PAGE <display page>, <active page>
Statement Specifies the page to display and the page to read
 and write data to.

* SET PASSWORD <string expression>
Statement Sets a password.

* SET PROMPT <string expression>
Statement Sets a prompt (up to 8 characters).

* SET SCREEN
Statement Reserves the parameters of the current settings of
 SCREEN statement.

* SET TIME <string expression>[, A]
Statement Sets time. "A" is the alarm specification.

* SET VIDEO [<mode>[, <Ym>[, <CB>[, <sync>[, <voice>[, <video input>[, <AV
 control>]]]]]]]
Statement Sets superimposing and other modes (optional).

SGN (<expression>)
Function Examines the sign of <expression> and returns its
 result (positive=1, zero=0, negative=-1).

SIN (<expression>)
Function Returns the sine of <expression> in radians.

SOUND <register number>,<data>
Statement Writes data to the register of PSG.

SPACE$ (<expression>)
Function Returns a string containing <expression> spaces.

SPC (<expression>)
Function Produces <expression> spaces; used in the
 instructions of PRINT family.

SPRITE {ON | OFF | STOP}
Statement Allows, supresses, or suspends the piled-sprite
 interrupt.

SPRITE$ (<sprite pattern number>)

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

System variable Contains the sprite pattern.

SQR (<expression>)
Function Returns the square root of <expression>.

STICK (<joystick number>)
Function Examines the direction of the joystick and returns
 its result.

STOP
Statement Stops the execution of the program.

STRIG (<joystick number>)
Function Examines the state of the trigger button and returns
 its result.

STRIG (<joystick number>) {ON | OFF | STOP}
Statement Allows, supresses, or suspends interrupts from the
 trigger button.

STR$ (<expression>)
Function Converts the value of <expression> to a string
 decimal expression and returns its result.

STRING$ (<expression 1>, {<string expression> | <expression 2>}
Function Converts the leading character of <string expression>
 or the character containing the code <expression 2>
 to a string whose length is <expression 1>, and
 returns the string.

SWAP <variable name>, <variable name>
Statement Exchanges the value of two variables.

--- T ---

TAB (<expression>)
Function Produces the specified spaces in PRINT instructions.

TAN (<expression>)
Function Returns the tangent of <expression> in radians.

TIME
System variable Contains the value of the interval timer.

TRON
Command Keeps displaying the line numbers of the program
 currently being executed.

TROFF
Command Cancels TRON and stops displaying the line numbers.

--- U ---

USR [<number](<argument>)
Function Calls the assembly language routine.

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

--- V ---

VAL (<string expression>)
Function Converts <string expression> to a numerical value
 and returns its result.

VARPTR (<variable name>)
Function Returns the address containing the variable.

VARPTR (#<filenumber>)
Function Returns the starting address of the file control
 block.

* VDP (<register number>)
System variable Writes/reads data to/from the VDP registers.

* VPEEK (<address>)
Function Reads data from <address> in VRAM.

* VPOKE (<address>)
Statement Writes data to <address> in VRAM.

--- W ---

WAIT <port number>, <expression 1>[, <expression 2>]
Statement Stops the execution until data of the input port
 grows to the specified value.

* WIDTH <number>
Statement Specifies the number of characters per line in the
 display screen.

1.2 Instructions of MSX DISK-BASIC

Note: Instructions marked with "**" have been added to version 2 of MSX
DISK-BASIC and are not available in version 1.

--- B ---

* BLOAD "<filename>"[{[, R] | [, S]}[, <offset>]]
Command Loads the assembly language program or screen data
 from a file.

* BSAVE "<filename>", <start address>, <end address>[, {<execution address>
 | S}]
Command Saves the assembly language program or screen data
 in a file.

--- C ---

CLOSE [[#]<filenumber>[, [#]<filenumber>...]]
Statement Closes the file specified by <filenumber>.

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

** CALL CHDRV ("<drive name>:")
Command Sets the drive specified by <drive name> as the
 default drive.

** CALL CHDIR ("<directory path>")
Command Changes to the directory specified by <directory
 path>.

CALL FORMAT
Command Formats the floppy disk.

** CALL MKDIR ("<directory name>")
Command Creates the directory with the name specified
 in <directory name> in the current directory.

** CALL RAMDISK (<size in kilobytes>[, <variable name>])
Command Tries to crate the DOS 2 RAM disk of the specified
 size, and returns in the variable (if specified) the
 actual size of the RAM disk created.

** CALL RMDIR ("<directory name>")
Command Deletes the directory specified in <directory name>.
 If the directory is not empty, "File already exists"
 error will be returned.

CALL SYSTEM
Command Returns to MSX-DOS.

** CALL SYSTEM [("<filename>")]
Command Returns to MSX-DOS and executes the DOS command
 <filename> if it is specified.

COPY "<filename 1>"[TO "<filename 2>"]
Command Copies the contents of <filename 1> to the file
 specified by <filename 2>.

CVD (<8-byte string>)
Function Converts the string to the double precision real
 value and returns its result.

CVI (<2-byte string>)
Function Converts the string to the integer value and returns
 its result.

CVS (<4-byte string>)
Function Converts the string to the single precision real
 value and returns its result.

--- D ---

DSKF (<drive number>)
Function Returns the unused portions of the disk in clusters.

DSKI$ (<drive number>, <sector number>)
Function Reads the specified sector of the specified drive
 to the memory area indicated by address &HF351, and

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 returns a null string.

DSKO$ (<drive number>, <sector number>)
Statement Writes 512 bytes starting from address indicated by
 &HF351 to the specified sector of the specified
 drive.

--- E ---

EOF (<filenumber>)
Function Checks if the file has ended and returns -1 if at the
 end of file.

--- F ---

FIELD [#]<filenumber>, <field width> AS <string variable name>[, <field
 width> AS <string variable name>...]
Statement Assigns the string variable name to the random
 input/output buffer.

FILES ["<filename>"]
Command Displays the name of the file matched with <filename>
 on the screen.

** FILES ["<filename>"][,L]
Command Displays the name of the file matched with <filename>
 on the screen, and also the attributes and the size
 of the file if "L" is specified.

--- G ---

GET[#]<filenumber>[, <record number>]
Statement Reads one record from the random file to the random
 input/output buffer.

--- I ---

INPUT #<filenumber>, <variable name>[, <variable name>...]
Statement Reads data from the file.

INPUT$ (<the number of characters>[, [#]<filenumber>])
Function Gets the string of the specified length from the
 file.

--- K ---

KILL "<filename>"
Command Delets the file specified by <filename>.

--- L ---

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

LFILES ["<filename>"]
Command Sends the name of the file matched with <filename>
 to the printer.

** LFILES ["<filename>"][,L]
Command Sends the name of the file matched with <filename>
 to the printer, and also the attributes and the size
 of the file if "L" is specified.

LINE INPUT #<file number>, <string variable name>
Statement Reads lines of data from the file to the string
 variable.

LOAD "<filename>"[, R]
Command Loads the program into memory.

LOC (<filenumber>)
Function Returns the record number of the most recently
 accessed location of the file.

LOF (<filenumber>)
Function Returns the size of the specified file in bytes.

LSET <string variable name>=<string expression>
Statement Stores data padded on the left in the random
 input/output buffer.

--- M ---

MAXFILES = <the number of files>
Statement Declares the maximum number of files that can be
 opened.

MERGE "<filename>"
Command Merges the program in memory with the program saved
 in ASCII format.

MKD$ (<double precision real value>)
Function Converts the double precision real value to the
 character code corresponding to the internal
 expression.

MKI$ (<integer value>)
Function Converts the integer value to the character code
 corresponding to the internal expression.

MKS$ (<single precision real value>)
Function Converts the single precision real value to the
 character code corresponding to the internal
 expression.

--- N ---

NAME "<filename 1>" AS "<filename 2>"
Command Renames the name of a file.

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

--- O ---

OPEN "<filename>"[FOR <mode>] AS #<filenumber>[LEN = <record length>]
Statement Opens the file.

--- P ---

PRINT #<filenumber>, [<expression>[{; | ,}<expression>...]]
Statement Sends data to the sequential file.

PRINT #<filenumber>, USING <form>; <expression>[{; | ,}<expression>...]]
Statement Sends data to the sequential file according to the
 form.

PUT [#]<filenumber>[, <record number>]
Statement Sends data of the random input/output buffer to the
 random file.

--- R ---

RSET <string varibale name>=<string expression>
Statement Stores data padded on the right in the random
 input/output buffer.

RUN "<filename>"[, R]
Command Loads a program from the disk and executes it.

--- S ---

SAVE "<filename>"[, A]
Command Saves a program. The program is saved in ASCII format
 when "A" is specified.

--- V ---

VARPTR (#<filenumber>)
Function Returns the starting address of the file control
 block.

2. DIFFERENCES IN MSX BASIC VERSION 2.0

A great deal of functions in MSX BASIC version 2.0 have been added or
modified when compared with MSX BASIC version 1.0. They are either the
functions that are added or modified with the version-up of VDP (Video
Display Processor) or the functions that are added or modified because of the
various hardware features such as RAM disk, clock, or memory switch;
especially, the alternation of VDP affects, most of the statement for the
screen display.

This section picks up these statements and indicates the additions or the
modifications. In the following descriptions, "MSX1" means MSX BASIC version

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

1.0 and "MSX2" for MSX BASIC version 2.0.

2.1 Additions or Modifications to Screen Mode

* SCREEN <screen mode>[, <sprite size>[, <key click switch>[, <cassette baud
 rate>[, <printer option>[, <interlace mode>]]]]]

<Screen mode> and <interlace mode> have been modified.

<Screen mode> may be specified from 0 to 8. Modes from 0 to 3 are the same as
MSX1 and the rest have been added. When specifying a screen mode, in BASIC it
is called "SCREEN MODE", which is somewhat different from "screen mode" which
is used by VDP internally. Table 2.1 shows these correspondences and
meanings. The difference between screen modes 2 and 4 is only in the sprite
display functions.

 Table 2.1 Correspondances of BASIC screen (SCREEN) modes and
 VDP screen modess

		Meaning		
BASIC	VDP	--		
mode	mode	Dots or	Display colours	Screen
		characters	at a time	format
--------------+-------------+----------------+-----------------+-----------				
SCREEN 0 (1)	TEXT 1	40 x 24 chars	2 from 512	Text
--------------+-------------+----------------+-----------------+-----------				
SCREEN 0 (2)	TEXT 2	80 x 24 chars	2 from 512	Text
--------------+-------------+----------------+-----------------+-----------				
SCREEN 1	GRAPHIC 1	32 x 24 chars	16 from 512	Text
--------------+-------------+----------------+-----------------+-----------				
SCREEN 2	GRAPHIC 2	256 x 192 dots	16 from 512	High res.
				graphics
--------------+-------------+----------------+-----------------+-----------				
SCREEN 3	MULTICOLOUR	64 x 48 dots	16 from 512	Low res.
				graphics
--------------+-------------+----------------+-----------------+-----------				
SCREEN 4	GRAPHIC 3	256 x 192 dots	16 from 512	High res.
				graphics
--------------+-------------+----------------+-----------------+-----------				
SCREEN 5	GRAPHIC 4	256 x 212 dots	16 from 512	Bit map
				graphics
--------------+-------------+----------------+-----------------+-----------				
SCREEN 6	GRAPHIC 5	512 x 212 dots	4 from 512	Bit map
				graphics
--------------+-------------+----------------+-----------------+-----------				
SCREEN 7	GRAPHIC 6	512 x 212 dots	16 from 512	Bit map
				graphics
--------------+-------------+----------------+-----------------+-----------				
SCREEN 8	GRAPHIC 7	256 x 212 dots	256	Bit map
				graphics

Specifying <interlace mode> enables to set the interlace functions of VDP

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

(see Table 2.2). In the alternate screen display mode, the display page
specified in "SET PAGE" must be odd. In this case the display page and the
page of which the number is smaller by one is displayed alternately.

 Table 2.2 Differences of display function in the interlace mode

| Interlace mode | Display function |
|------------------+--|
0	Normal non-interlaced display (default)
1	Interlaced display
2	Non interlaced, Even/Odd alternate display
3	Interlaced, Even/Odd alternate display

* SET PAGE <display page>, <active page>

This statement is new. It allows users to set the page to display and the
page to read and write data to. This is valid when the screen mode is between
5 and 8, and the value specified depends on the VRAM capacity and the screen
mode (see Table 2.3).

 Table 2.3 Page values to be specified depending on the screen mode
 and the VRAM capacity

--
| Screen mode | VRAM 64K | VRAM 128K |
|-------------+------------+-------------|
SCREEN 5	0 to 1	0 to 3
SCREEN 6	0 to 1	0 to 3
SCREEN 7	Unusable	0 to 1
SCREEN 8	Unusable	0 to 1
--

See the VRAM map in the APPENDIX for the page assignment on VRAM.

2.2 Additions or Modifications for the Colour Specification

* COLOR [<foreground colour>[, <background colour>[, <border colour>]]]

In MSX2, with its colour palette feature, the ranges and meanings of values
specifying colours in the screen mode are different (see Table 2.4). The
<background colour> except that of the text display changes when the CLS
statement is executed. If the display mode is 0, specification of a <border
colour> is ignored.

The "border colour" in screen mode 6 has special meanings. Figure 2.2 shows
the bitwise meanings of <border colour> in the mode. In this mode, by
changing the flag (bit 4), the colour of vertical lines at odd X-coordinates
and the colour of those at even coordinates can be specified differently.

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

When the flag is 0 (the value of border colour is one of the values from 0 to
15), different colours cannot be specified and the border colour is set as
the colour of vertical odd lines. When the flag is 1 (the value of border
colour is one of the values from 16 to 31), the border colours are set as the
colour of vertical odd lines and that of vertical even lines; when these two
colours are different, the screen shows a vertically-striped pattern.

 Figure 2.2 Bitwise meanings for the border colour on screen mode 6

 4 3 2 1 0

| flag | colour of even lines | colour of odd lines |

Bits 7 to 5 are unused

* COLOR = (<palette number>, <red brightness>, <green brightness>, <blue
 brightness>)

This statement sets the colour of the specified palette. See Table 2.4 for
the specification of <palette number>. Note that nothing happens and no error
occurs wwhen the screen mode is 8, which has no palette feature. Though
palette number 0 is ordinally fixed to a transparent colour (that is, border
space is seen transparently), it can be dealt in the same way as other
palettes by changing the register of VDP:

 VDP(9)=VDP(9) OR &H20 (when dealing as with other palettes)
 VDP(9)=VDP(9) AND &HDF (when fixing it to a transparent colour)

 Table 2.4 Colour specifications for the screen mode.

--
| Screen mode | Colour specification | Range of number |
|-------------+----------------------+-----------------|
SCREEN 0	Palette number	0 to 15
SCREEN 1	Palette number	0 to 15
SCREEN 2	Palette number	0 to 15
SCREEN 3	Palette number	0 to 15
SCREEN 4	Palette number	0 to 15
SCREEN 5	Palette number	0 to 15
SCREEN 6	Palette number	0 to 3
SCREEN 7	Palette number	0 to 15
SCREEN 8	Colour number	0 to 255
--

Brightness of each colour can be set to one of eight steps from 0 to 7 and
combinig them enables to display 512 colours; 8 (red) x 8 (green) x 8 (blue).

* COLOR=RESTORE

This statement resets the colour palette register according to the contents
of the colour palette storage table (see APPENDIX VRAM MAP). For example, if
image data written under unusual colour palette settings is BSAVEd, the

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

original images cannot be reproduced because BLOADing the data does not
change the colour palettes. Therefore, the image data should be BSAVEd with
the colour palette storage table. To obtain the colours of the original
images, BLOAD the data and reset the palettes with the COLOR=RESTORE
instruction.

* COLOR [=NEW]

This statement initialises the colour palette to the same state as when the
power of the computer is turned on (see Table 2.5). It is a good idea to
place this statement at the beginning and the end of the program.

 Table 2.5 Initial colours of colour palettes and palette setting values

--
| Palette | Colour | Brightness | Brightness | Brightness |
| number | | of red | of blue | of green |
|---------+---------------+------------+------------+------------|
0	transparent	0	0	0
1	black	0	0	0
2	bright green	1	1	6
3	light green	3	3	7
4	deep blue	1	7	1
5	bright blue	2	7	3
6	deep red	5	1	1
7	light blue	2	7	6
8	bright red	7	1	1
9	light red	7	3	3
10	bright yellow	6	1	6
11	pale yellow	6	3	6
12	deep green	1	1	4
13	purple	6	5	2
14	grey	5	5	5
15	white	7	7	7
--

2.3 Additions or Modifications for the Character Display

* LOCATE [<X-coordinate>[, <Y-coordinate>[, <cursor switch>]]]

This statement specifies the location to display a character in the text
display screen.

Since an 80-character display feature has been added to the screen mode 0,
the X-coordinate value can be specified up to 79.

2.4 Additions or Modifications for the Graphics Display

* LINE [{(X1,Y1) | STEP(X1,Y1)}] - {(X2,Y2) | STEP(X2,Y2)}[, <colour>
 [, {B|BF}[, <logical operation>]]]
* PSET {(X,Y) | STEP(X,Y)}[, <colour>[, <logical operation>]]

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

* PRESET {(X,Y) | STEP(X,Y)}[, <colour>[, <logical operation>]]

The specifiable coordinate range of these statements varies according to the
screen mode (see Table 2.6).

 Table 2.6 Range of coordinates for each screen mode

| Screen mode | X-coordinate | Y-coordinate |
|-------------+----------------+----------------|
SCREEN 2	0 to 255	0 to 191
SCREEN 3	0 to 255	0 to 191
SCREEN 4	0 to 255	0 to 191
SCREEN 5	0 to 255	0 to 211
SCREEN 6	0 to 511	0 to 211
SCREEN 7	0 to 511	0 to 211
SCREEN 8	0 to 255	0 to 211

The logical operation feature is new. When <logical operation> is specified,
a logical operation is done between the specified <colour> and the original
colour, and the colour of its result will be used to draw. Logical operation
types are listed in Table 2.7. <Colour> is specified by the palette number,
except for screen mode 8.

 Table 2.7 Logical operation

| Logical operation | Function to draw |
|-------------------------+---|
PSET (default) ,TPSET	Use "specified colour"
PRESET ,TPRESET	Use "NOT (specified colour)"
XOR ,TXOR	Use "(background colour) XOR (specified colour)"
OR ,TOR	Use "(background colour) OR (specified colour)"
AND ,AND	Use "(background colour) AND (specified colour)"

Note: The list above assumes that <colour> is (specified colour) and that the
original colour of the place to be drawn is (background colour). Specifying a
logical operation preceded by "T" causes nothing to be done when <colour> is
transparent (colour 0).

* CIRCLE {(X,Y) | STEP(X,Y)},<radius>[, <colour>[, <start angle>[, <end
 angle>[, <proportion>]]]]

The coordinate range to be specified depends on the screen mode (see Table
2.6). <colour> is specified by the palette number, except for screen mode 8.

* PAINT {(X,Y) | STEP(X,Y)}[, <colour>[, <border colour>]]

The coordinate range to be specified depends on the screen mode (see Table
2.6). <Colour> is specified by the palette number, except for screen mode 8.

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

The specification of <border color> is invalid in screen modes 2 and 4.

2.5 Additions or modifications for VDP access

* BASE (<expression>)

This system variable contains the starting address of each table assigned to
VRAM. The contents of <expression> and the screen mode tables correspond as
listed in Table 2.8.

The starting address of the table can be read for each <expression>, but can
be written only when <expression> is a value from 0 to 19 (that is, from
screen mode 0 to screen mode 3).

Note that the table of screen mode 4 changes as you change the table address
of screen mode 2.

Address returned for screen mode from 5 to 8 is the offset value from the
starting address of the active page.

 Table 2.8 Correspondences between BASE set values and VRAM table

--
| Expression | Screen mode | Table |
|------------+-------------+-------------------------|
0	0	Pattern name table
1	0	N/A
2	0	Pattern generator table
3	0	N/A
4	0	N/A
5	1	Pattern name table
6	1	Colour table
7	1	Pattern generator table
8	1	Sprite attribute table
9	1	Sprite generator table
10	2	Pattern name table
11	2	Colour table
12	2	Pattern generator table
.	.	.
 . . .
 . . .
43	8	Sprite attribute table
44	8	Sprite generator table
--

* VDP (<n>)

This allows the value of VDP register to be read and written. <n> is slightly
different from the actual VDP register number. Their correspondances are
listed in Table 2.9.

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 Table 2.9 Correspondances with VDP register

| n | VDP register number | Access mode |
|----------+------------------------+-------------|
0 to 7	0 to 7 (same as MSX1)	Read/write
8	Status register 0	Read only
9 to 24	8 to 23	Read/write
33 to 47	32 to 46	Write only
-1 to -9	Status register 1 to 9	Read only

* VPEEK (<address>)
* VPOKE <address>, <data>

When the screen mode is from 5 to 8, the offset value from the starting
address of the active page should be set for <address>. Valid range for the
<address> value is from 0 to 65535 and the valid range for the data value is
from 0 to 255.

* BSAVE <filename>, <start address>, <end address>, S
* BLOAD <filename> ,S

These are statements of DISK BASIC, used to save/load the contents of VRAM
to/from disk files. Both can be used in any screen mode, note, however, that
only the active pages are valid when the screen mode is from 5 to 8. No
cassette tapes can be used. Valid value range of <address> is from -32768 to
-2, or from 0 to 65534 (&HFFFE).

* COPY (X1,Y1) - (X2,Y2)[, <source page>] TO (X3,Y3)[, <destination page>
 [, <logical operation>]]
* COPY (X1,Y1) - (X2,Y2)[, <source page>] TO {<array variable name> |
 <filename>}
* COPY {<array variable name> | <filename>}[, <direction>] TO (X3,Y3)
 [, <destination page>[, <logical operation>]]
* COPY <filename> TO <array variable name>
* COPY <array variable name> TO <filename>

The COPY statements transfer screen data and are valid when the screen mode
is from 5 to 8. VRAM, array variables, and disk files can be used with these
statements, and data can be transferred among these at will.

(X1,Y1) - (X2,Y2) means that the rectangular area, with a diagonal formed by
these two coordinates is to be transferred. <Source page> and <destination
page> indicate the page to be transferred from and the page to be transferred
to, respectively, and if these pages are omitted, the active pages are
assumed. <Direction> indicates the direction for writing the screen data to
the screen, and is specified by a number from 0 to 3 (see Figure 2.3).

 Figure 2.3 Directions for writing the screen data

Original Screen Direction = 0 Direction = 1

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 ----- ----- -----
 | O | ---> | O | | O |
 ----- ----- -----
 | | |

 Direction = 2 Direction = 3

 | |
 ----- -----
 | O | | O |
 ----- -----

<Array variable> is of the integer type, or single precision real type, or
double precision real type. It should be prepared with enough area to get the
screen data. Its size can be calculated by expression 1 as shown below.
<Pixel size> is the number of bits to be used to express one dot on the
screen. It is 4 when the screen mode is 5 or 7, 2 for mode 6, and 8 for mode
8. Screen data is stored in the format shown in figure 2.4.

 Expression 1

 INT ((<pixel size>*(ABS(X2-X1)+1)*(ABS(Y2-Y1)+1)+7)/8)+4 bytes

 Figure 2.4 Screen data format

| horizontal width low-order byte | 0
|----------------------------------|
| horizontal width high-order byte | 1
|----------------------------------|
| vertical height low-order byte | 2
|----------------------------------|
| vertical height high-order byte | 3
|----------------------------------|
| | 4
| | .
| screen data (*) | .
| | .
| | n bytes

(*) If the length of data cannot be divided by byte, excess bits are to be 0.

<Logical operation> specifies a logical operation between the data which
resides on the destination and the data to be transferred. See table 2.7 for
the parameters to specify.

When operations preceded by "T" are specified, the transparent portions of
the source will not be transferred.

2.7 Additions or Modifications for Sprite

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

The sprites used in screen mode 4-8 of MSX2 are called sprite mode 2, which
has upgraded a great deal as compared with MSX1. On MSX1, for example, one
sprite could treat only one colour, while in this mode of MSX2 different
colours can be specified for each horizontal line and so multi-coloured
characters can be realised with one sprite. Additionally, it is a good idea
to combine two sprites as though they were one sprite to paint each dot with
different colours. And, on MSX1, when more than five sprites are arrayed on
a horizontal line, the sprites after the fifth one were not displayed, but on
MSX2 up to eight sprites can be displayed, so a higher flexibility is
offered.

Colours which can be specified for sprites are shown in Table 2.4 (colour
statement) except for screen mode 8. The sprite in screen mode 8, not capable
of using the palette, uses the colour number for the specification, and only
16 colours can be used (see Table 2.10).

 Table 2.10 Sprite colours in screen mode 8

| 0: Black | 1: Deep Blue | 2: Deep Red | 3: Deep Purple |
|-----------------+-----------------+-----------------+-----------------|
| 4: Deep Green | 5: Turquoise | 6: Olive | 7: Grey |
|-----------------+-----------------+-----------------+-----------------|
| 8: Light Orange | 9: Blue | 10: Red | 11: Purple |
|-----------------+-----------------+-----------------+-----------------|
| 12: Green | 13: Light Blue | 14: Yellow | 15: White |

* PUT SPRITE <sprite plane number>[, {(X,Y) | STEP(X,Y)}[, <colour>[, <sprite
 pattern number>]]]

In screen modes 1 through 3, Y-coordinate was 209 for erasing the display of
the specified sprite and was 208 for erasing the displays of the specified
sprite and all sprites following it, but in screen modes 4 through 8, where
the limit of Y-coordinate has been increased to 212 dots, the values to be
specified are now 217 and 216, respectively.

* COLOR SPRITE$ (<sprite plane number>) = <string expression>

This statement specifies a colour for each horizontal line (see Figure 2.5).

<String expression> consists of one to sixteen characters. Bits 0 throgh 3 of
the character's ASCII code are used for the colour specification, and bits 4
throgh 7 are used to specify each function of the sprite (see Table 2.11).
These specifications are valid only for screen modes 4 through 8.

COLOR SPRITE$ = CHR$ (colour of the first line) + CHR$ (colour of the second
line) + + CHR$ (colour of the eight line)

 Figure 2.5 Relation of the sprite and <string expression>

Line 1 --> | * | | | * | * | | | * |

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 |---+---+---+---+---+---+---+---|
Line 2 --> | * | * | | | | | * | * |
 |---+---+---+---+---+---+---+---|
 | | | | | | | | |
 |---+---+---+---+---+---+---+---|
 | * | * | | | | | * | * |
 |---+---+---+---+---+---+---+---|
 | | | * | | | * | | |
 |---+---+---+---+---+---+---+---|
 | * | | | * | * | | | * |
 |---+---+---+---+---+---+---+---|
 | * | * | | | | | * | * |
 |---+---+---+---+---+---+---+---|
Line 8 --> | | | * | * | * | * | | | The colour for each line
 --------------------------------- can be set.

 Table 2.11 Bitwise meanings of string expression

| b7 | If 1, move the sprite to left by 32 dots. |
|----------+--|
	If 1, move the sprites of the successive planes together.
b6	The priority and conflict of sprites are ignored, and when
	sprites are piled up, they are displayed in the colour
	which is OR-ed with their colour numbers. *
----------+--	
b5	If 1, the conflict of sprites are ignored.
----------+--	
b4	Unused.
----------+--	
b0 to b3	Palette number.

* For example, assuming that bit 6 of sprite plane 1 is "0" and bit 6 of
sprite plane 2 is "1", only by moving sprite plane 1, will sprite plane 2 be
displayed displayed to be piled at the same location.

* COLOR SPRITE (<sprite plane number>) = <expression>

This statement sets the whole sprite of the specified plane to the
<expression>, this uses <expression> for colour specification. The format of
the colour specification is the same as shown in Table 2.11, but the
specification for b7 is disabled. These are valid for screen modes 4 through
8.

2.8 Additions for Optional Features

* SET VIDEO [<mode>[, <Ym>[, <CB>[, <sync>[, <voice>[, <video input>[, <AV
 control>]]]]]]]

This statement is for the superimposer or the digitiser which are optional,
so it can be used only for machines which have these features.

<Mode> sets the superimposing mode and can be set to the value listed in

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

Table 2.12.

When <Ym> is 1, the brightness of the television is halved.

When <CB> is 1, the colour bus of VDP is prepared for input, and, when 0, it
is prepared for output.

When <sync> is 1, "external sync" is selected, and, when 0, "internal sync"
is selected.

<Voice> specifies whether to mix external signal for output, and values are
listed in Table 2.13.

<Video input> is used to alternate the input of external video signals. When
it is 0, the RGB multiconnector is selected; when it is 1, external video
signal connector is selected.

<AV control> specifies AV control terminal output of the RGB multiconnector.
When it is 0, the output is OFF; when it is 1, the output is ON.

 Table 2.12 Input values for SET VIDEO <mode>.

--
| Mode | S1 | S2 | TP | Display screen |
|------+----+----+----+----------------|
0	0	0	0	Computer
1	0	1	1	Computer
2	0	1	0	Superimpose
3	1	0	0	Television
--

Note: In the case of mode 0, external sync cannot be used. In other modes the
compoalte output of VDP is not available. S1, S0, and TP are the names of
flags in the VDP register.

 Table 2.13 Input values for SET VIDEO <voice>

--
| Voice | Function for external voice signal |
|-------+------------------------------------|
0	No mixing
1	Right channel mixed
2	Left channel mixed
3	Both channels mixed
--

* COPY SCREEN [<mode>]

This statement is used for writing data from the colour bus to VRAM, for
example, after digitising. This is valid for screen modes 5 to 8.

In mode 0, one field of signals is digitised and written to the display page;
in mode 1, two successive fields (that is, one frame) of signals are written
to (display page - 1)th page and the display page, so the display page should

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

be an odd page when the mode is 1. The default mode is 0.

2.9 Additions for Timer Features

* GET DATE <string variable name> [,A]

This statement is for reading the date from the timer and assigning it to the
string variable. The format of date to be read is as follows:

YY/MM/DD (YY = lower two digits of year, MM = month, DD = day)

e.g.) 85/03/23 (March 23, 1985)

When option A is specified, the alarm date is read.

* SET DATE <string expression>[, A]

This statement sets date to timer. The form of parameter and option is the
same as "GET DATE"

e.g.) SET DATE "85/03/23"

* GET TIME <string variable>[, A]

This statement is for reading time from the timer and assigning it to a
string variable. The form of time to be read is as follows:

HH:MM:SS (HH = hour, MM = minute, SS = second)

e.g.) 22:15:00 (22 hours 15 minutes 0 seconds)

When A is specified, the time for the alarm is read.

* SET TIME <string expression>[, A]

This statement sets the time to the timer. The form of parameter and option
is the same as "GET TIME".

e.g.) SET TIME "22:15:00"

* The Alarm

Since the alarm feature is optional, the action taken at the specified time
depends on the machine (ordinarily nothing happens).

When the alarm is to be set in both "SET DATE" and "SET TIME", "SET TIME"
should be done first (when "SET TIME" is done, date of the alarm set by "SET
DATE" will be erased).

The minimum setting for alarm is in minutes (setting in seconds is ignored).

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

2.10 Additions for Memory Switch

Using "SET" instructions, various settings described below can be stored to
the battery-powered RAM in CLOCK-IC. Settings based on these are done
automatically at system startup (when the system is powered or reset). "SET
TITLE", "SET PROMPT", and "SET PASSWORD" use the same RAM, so only the most
recent instruction is valid.

* SET ADJUST (<X-coordinate offset>, <Y-coordinate offset>)

This statement sets the location to display on the screen. The coordinate
offset is from -7 to 8.

* SET BEEP <timbre>, <volume>

This statement sets BEEP sound. <Timbre> and <volume> are from 1 to 4.

Table 2.14 shows the correspondance of <timbre> and to the actual sound.

 Table 2.14 Input values for <timbre> of SET BEEP

--
| Timbre | Sound |
|--------+-------------------------------|
1	High tone beep (same as MSX1)
2	Low tone beep
3	2 - tone beep
4	3 - tone beep
--

* SET TITLE <string expression>[, <title colour>]

This statement specifies the title and the colour of the initial screen at
system startup. <Title> is set by a string of up to 6 characters and <colour>
is one of the values on Table 2.15. When <title> is 6 characters, keyboard
input is awaited just after the title screen is displayed.

 Table 2.15 Available colours in SET TITLE

| Color | 1 | 2 | 3 | 4 |
|---------------+--------+--------+--------+--------|
| Screen color | Blue | Green | Red | Orange |

* SET PROMPT <prompt>

This statement sets the prompt. <Prompt> can have up to 6 characters.

* SET PASSWORD <password>

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

This statement sets a system password. <Password> is a string expression up
to 255 characters. Once this statement is done, input of the password is
requested for invoking the system. When the correct password is given, the
system is normally invoked; otherwise, correct password input is requested.
When the system is invoked by pressing both graphic key and stop key, no
password input is requested (in this case, the password setting has been done
by the key cartridge; however, password input is always required for system
startup). The password is disabled by specifying a null character in SET
TITLE.

* SET SCREEN

This statement records the current parameters of the "SCREEN" statement. At
the system startup, they are automatically set. Items to be recorded are the
following:

Screen number of text mode Key click switch
Screen width of text mode Printer option
Foreground, background, and border colours Cassette baud rate
Function key switch Display mode

2.11 Additions for RAM Disk

On MSX1 RAM from 0000H to 7FFFH was used only by DOS. On MSX2, however, this
portion can be used as a RAM disk of up to 32K bytes. The format of the file
name for RAM disk is described below, where <filename> is a string which
consists of 1 to 8 characters and <extension> is one which consists of 1 to
3 characters. Note that ";" (colon), "." (period), control characters of
character codes 00H-1FH, and graphic symbols consisting of two bytes cannot
be used.

 MEM: <filename>[.<extension>]

The following are executable operations for the RAM disk:

 1. Load/save a BASIC program (always saved in ASCII format)
 SAVE, LOAD, RUN, MERGE

When any of the above commands is executed from the program, control returns
to the command level.

 2. Read/write a sequential file
 OPEN, CLOSE
 PRINT #, PRINT USING #
 INPUT #, LINE INPUT #, INPUT$
 EOF, LOC, LOF

The RAM disk does not support the following instructions:

 1. Random file Read/Write
 2. BLOAD, BSAVE
 3. COPY

* CALL MEMINI [(<size>)]

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

This statement specifies the amount of memory to be used as a RAM disk,
initialises the RAM disk, and deletes all files. When the RAM disk is to be
used, this statement should always be executed.

<Size> is "the amount of memory to be used as RAM disk minus 1". By default,
the maximum size is allocated for RAM disk. "CALL MEMINI(0)" causes the RAM
disk feature to be disabled.

* CALL MFILES

This statement displays file names on the RAM disk.

* CALL MKILL ("<filename>")

This statement deletes the specified file.

* CALL MNAME ("<old filename>" AS "<new filename>")

This statement renames the specified file.

2.12 Other Additions

* PAD (<expression>)

This function returns status to touch pad (touch panel), light pen, mouse, or
track ball.

When <expression> is 0 to 7, it returns the status to touch pad as on MSX1,
and, when <expression> is 8 to 11, it returns the status to light pen. Since
the coordinates and the value of the switch are read when "PAD(8)" is
executed, other data should be read after confirming that the value of PAD(8)
is -1 (see Table 2.16).

 Table 2.16 <Expression> returning status to light pen

| Expression | The value returned |
|------------+--|
8	-1 when data of light open is valid; otherwise, 0
9	X - coordinate of light pen
10	Y - coordinate of light pen
11	-1 when switch of light pen is pressed; otherwise, 0

This statement returns the status of the mouse or the track ball connected to
port 1 when <expression> is 12 to 15 or connected to port 2 when it is 16 to
19 (see Table 2.17). The mouse and track ball are automatically
distinguished from each other.

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 Table 2.17 <Expression> returning status to mouse or track ball

| Expression | The value returned |
|------------+------------------------|
12, 16	- 1; for input request
13, 17	X - coordinate
14, 18	Y - coordinate
15, 19	0 (unused)

Coordinate data is read when PAD(12) or PAD(16) is examined. Coordinate data
should be obtained after examining these. The STRIG function is used with the
joystick to input the status of the trigger button.

3. INTERNAL STRUCTURE OF BASIC

Knowledge of how the BASIC interpreter controls and executes programs is
necessary for more advanced use of BASIC. The internal structure of BASIC is
discussed next.

3.1 User's Area

The lowest address of the user's area was different in the MSX1 machine whose
amount of RAM was 8K, 16K, 32K, or 64K; in MSX2, it is always 8000H, because
MSX2 machines have at least 64K of RAM. It can be obtained from the content
of BOTTOM (FC48H).

The highest address of the user's area when no disk drives are connected is
F380H; when disk drives are connected (using DISK-BASIC), it depends on the
number of disk drives or on the disk capacity. It can be obtained from the
content of HIMEM (FC4AH) after reset and before executing CLEAR statement.

Figure 2.6 shows the state of memory when MSX is invoked.

 Figure 2.6 State of memory for BASIC mode

0000 --------------------
 | |
 | BASIC |
 | Interpreter |
 | |
8000 |------------------| <-- (BOTTOM) --+
 | | | |
 | User area | --+ |
 | | | |
 |------------------| <-- (HIMEM) | |32K
 | Disk work area | --+ |16K |
F380 |------------------| | 8K | |
 | System work area | | | |
FFFF -------------------- --+ --+ --+

Note: Though the machine has more than 32K bytes of RAM, only 32K bytes are

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

used for BASIC. On MSX2, however, another 32K bytes can be used as a RAM disk
by BASIC.

When developping a program on MSX2, we recommend you create it at addresses
8000H to DE3FH as if to install a 2DD-2 drive whose highest address of the
user's area is the lowest. The work area of the disk can grow even larger,
therefore, HIMEM of the application program should be checked to prevent
disasters even in the worst situation. The following are ways to prevent
this:

1. Make the work area relocatable
2. Get the work area from BOTTOM
3. Stop after instructing to reduce the number of drives

On MSX, even when disks are mounted, they can be cut off by resetting while
pressing the SHIFT key. When only one drive is mounted, the normal invocation
causes the work area for two drives to be allocated (mainly for 2 drive
simulator): in such a case, invoking the works area for only one drive is
possible by resetting while pressing the CTRL key. If these steps are taken,
more user's area can be allocated.

3.2 Detailed View of the User's Area

Figure 2.7 shows how the user's area will be used in BASIC, and Table 2.18
shows the work area with information about where these areas start. This work
area is read-only (the initialising routine sets it when reset), so actions
when it is changed are not guaranteed.

 Figure 2.7 State of the user's area

BOTTOM --> ---------------------- The lowest of the user's area
 | | (8000H on MSX2)
TXTTAB --> |--------------------|
 | | |
 | BASIC V |
 | program area |
 | |
VARTAB --> |--------------------| Depends on the amount of text
 | Simple variable | |
 | area V |
ARYTAB --> |--------------------|
 | Array variable | |
 | area V |
STREND --> |--------------------| Depends on the number of variables
 | | |
 | V |
 | Free area |
 | ^ |
 | | |
SP --> |--------------------| Area pointed by SP register
 | Stack ^ |
 | area | |
STKTOP --> |--------------------| --+
 | String ^ | | Set by 1st parameter
 | area | | | of CLEAR

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

MEMSIZ --> |--------------------| --+
 | File ^ |
 | control block | |
HIMEM --> |--------------------| Set by 2nd parameter of CLEAR
 | |
 | Assembly language |
 | area |
 | |
 ---------------------- The highest of the user's area
 (depends on the presence of disks)

 Table 2.18 Work areas with start and end addresses of each area

Area name Start address End address
--
User's area | [BOTTOM (FC48H)] | ([HIMEM (FC4AH)] when reset) - 1
Program area | [TXTTAB (F676H)] | [VARTAB (F6C2H)] - 1
Simple variable area | [VARTAB (F6C2H)] | [ARYTAB (F6C4H)] - 1
Array variable area | [ARYTAB (F6C4H)] | [STREND (F6C6H)] - 1
Free area | [STREND (F6C6H)] | [SP register] - 1
Stack area | [SP register] | [STKTOP (F674H)] - 1
String area | [STKTOP (F674H)] | [MEMSIZ (F672H)] - 1
(start of unused area) | [FRETOP (F69BH)] |
File control block | [MEMSIZ (F672H)] | [HIMEM (FC4AH)] - 1
Assembly language area | [HIMEM (FC4AH)] | to the end of the user's area
--

Roles of each user's area are described below.

* BASIC program area

A program written in BASIC is stored from the lowest address (8000H on MSX2)
of the user's area and its size depends on the amount of the program.

* Variable area

The variable area is located just after the BASIC program area. It is secured
to store the name and the value of the variables used when executing the
program. The variables storage formats are shown in Figure 2.8 (simple
variables) and Figure 2.9 (array variables). Using array variables without
declaring in the DIM statement causes the area to be allocated as an array
with ten indexes. However, arrays which are more than four dimensional must
be declared.

 Figure 2.8 Storage format of simple variables

 ------ ------------- -------------
Integer variable | 02 | | | | | | |
 ------ ------------- -------------
 Name of Integer
 variable

 ------ ------------- -------------------------

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

Single precision | 04 | | | | | | | | |
real variable ------ ------------- -------------------------
 Name of Single precision
 variable real number

 ------ ------------- -------------------------
Double precision | 08 | | | | | | | | |
real variable ------ ------------- -------------------------
 Name of | | | | |
 variable -------------------------
 Double precision
 real number

 ------ ------------- ------ -------------
String variable | 03 | | | | | | | | |
 ------ ------------- ------ -------------
 Name of Number Address for
 variable of string
 characters storage

 ^ ^
 | |
 Variable Address returned
 type by VARPTR function

 Figure 2.9 Storage format of array variables

------ ------------- -------------
| | | | | | | |
------ ------------- -------------
variable variable length
type name of data
(1 byte) (2 bytes) (2 bytes)

+---------------------------- data ----------------------------+
| |

------ ---------- ---------- ---------- -----------
| | | | . . . | | | | . . . | |
------ ---------- ---------- ---------- -----------
number (largest index for each variable data
of dimension) + 1
dimension (number of dimensions)
(1 byte) x 2 bytes

e.g.) DEFINT A : DIM AA (2,3)

 +---------------------- (*) -----------------------+
 | |
 02 41 41 1D 00 02 04 00 03 00 00 00 00 00 00 00
| | | | | | | | | ... | |
--- ---------
Inte- Varia- Number 2 di- (index (index AA(0,0) AA(1,0) AA(2,3)
ger ble of men- of 2nd of 1st | |
type name bytes sion dimen- dimen- +------ Variable data--------+

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 "AA" of (*) array sion)+1 sion)+1

Note: variable data format is the same as the storage format of simple
variables. The lower of the 2-byte value is stored first, and the higher byte
last.

* Free area

If the program area or the variable area grows too large or a lot of data is
stacked and the free area runs out, an "OUT OF MEMORY" error occurs. The
amount of free area can be checked by examining PRINT FRE(0) using the FRE
function in BASIC.

* Stack area

This is the stack area used by BASIC. It is used in order from high-order
address when executing GOSUB or FOR.

* String area

This area is used to reserve the contents of string variables and used from
high-order address. The space in this area can be specified by the first
parameter of the CLEAR statement in BASIC. The default is 200 bytes.
Exhausting the space in this area causes a "OUT OF STRING SPACE" error. The
amount of unused area can be checked by examining PRINT FRE("") using the FRE
function in BASIC

* File control block

File information is stored in this area with 10BH (267) bytes allocated for
each file. The amount of space for files can be specified by the MAXFILES
statement of BASIC. At reset, the area for one file (MAXFILES = 1) is
allocated. Another space is always allocated for SAVE and LOAD instructions,
so actually area for two files is allocated. Table 2.19 shows the format of
file control block.

 Table 2.19 File control block (FCB) format

 Offset Label Meaning
--
+ 0	FL.MOD	Mode of the file opened
+ 1	FL.FCA	Pointer (low) to FCB for BDOS
+ 2	FL.LCA	Pointer (high) to FCB for BDOS
+ 3	FL.LSA	Backup character
+ 4	FL.DSK	Device number
+ 5	FL.SLB	Internal use for the interpreter
+ 6	FL.BPS	FL.BUF location
+ 7	FL.FLG	Flag containing various information
+ 8	FL.OPS	Virtual head information
+ 9...	FL.BUF	File buffer (256 bytes)
--

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

* Assembly language area

Use this area to write programs in assembly language or to operate from
memory directly. To do these, this area should be reserved by CLEAR
statement.

* Work area for disk

Figure 2.10 shows the work area allocated when a disk is mounted. Note that
this area does not exist when no disk is mounted. Labels to the right of this
figure shows the address information which resides there.

 Figure 2.10 Work area for disk

 : User's :
 : area :
BLDCHK + 1 (F377H + 1) --> |------------------------| --+
 | BLOAD, BSAVE routine | |
 | (19H bytes) | |
 FCBBASE (F353H) --> |------------------------| | Reserved when a
 | FCB entry | | disk is mounted
 | (25H * (FILMAX) bytes) | |
 HIMSAV (F349H) --> |------------------------| |
 | Disk interface | |
 | work area | |
 F380H --> |------------------------| --+
 : System :
 : work area :

3.3 Storage format of BASIC programs

Programs are stored in memory as shown in Figure 2.11 and the meaning of its
contents are described below.

 Figure 2.11 Text storage format

 Text start code (8000H)

00
 Code for the
 Link pointer Line number Text end of line (EOL)
 ----------- ----------- -------------- --------- ------
 | XX | XX | | XX | XX | | XX | XX | . . . | XX | | 00 |
 ----------- ----------- -------------- --------- ------
 | List of the first line number
+-------+
|
| ----------- ----------- --------- --------- ------
+->| XX | XX | | XX | XX | | XX | . . . | XX | | 00 |
 ----------- ----------- --------- --------- ------
 |
+-------+

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

|
| . . .
+-> . . .
 . . . Line number
 . . .
 . . .

 |
+-------+
|
| ----------- ----------- --------- --------- ------
+->| XX | XX | | XX | XX | | XX | . . . | XX | | 00 |
 ----------- ----------- --------- --------- ------
 | List of the last line number
+-------+
|
| -----------
+->| 00 | 00 | Code for the end of text (EOT)

Note: Link pointers and line numbers are stored with their low bytes first
and high bytes last.

* Link pointer

The text pointer to the next line is given in the form of an absolute
address.

* Line number

This stores the line number of the program, normally the values from 0 to
65529 (from 0000H to FFF9H). It is possible to make line numbers of 65530 or
more, but LIST command does not list them.

* Text

The program body is stored here in the intermediate code format. Reserved
words (keywords), operators, numeric values are converted to the intermediate
codes, and others (such as variable names or string constantes) are stored as
character codes. Table 2.20 lists the intermediate codes and Figure 2.12
shows the numeric formats in text.

See the appendix at the end of this book for character codes. Graphic
characters are stored in 2 bytes (2 characters) of "CHR$(1) + (graphic
character code + 64)", so be careful when defining graphic characters.

 Table 2.20 List of intermediate codes

------------------- ------------------- -------------------
>	EE		ERR	E2		PAINT	BF
=	EF		ERROR	A6		PDL	FF A4
<	F0		EXP	FF 8B		PEEK	FF 97
+	F1		FIELD	B1		PLAY	C1

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

-	F2		FILES	B7		POINT	ED
*	F3		FIX	FF A1		POKE	98
/	F4		FN	DE		POS	FF 91
^	F5		FOR	82		PRESET	C3
\	FC		FPOS	FF A7		PRINT	91
ABS	FF 86		FRE	FF 8F		PSET	C2
AND	F6		GET	B2		PUT	B3
ASC	FF 95		GOSUB	8D		READ	87
ATN	FF 8E		GOTO	89		REM	3A 8F
ATTR$	E9		HEX$	FF 9B		RENUM	AA
AUTO	A9		IF	8B		RESTORE	8C
BASE	C9		IMP	FA		RESUME	A7
BEEP	C0		INKEY$	EC		RETURN	8E
BIN$	FF 9D		INP	FF 90		RIGHT$	FF 82
BLOAD	CF		INPUT	85		RND	FF 88
BSAVE	D0		INSTR	E5		RSET	B9
CALL	CA		INT	FF 85		RUN	8A
CDBL	FF A0		IPL	D5		SAVE	BA
CHR$	FF 96		KEY	CC		SCREEN	C5
CINT	FF 9E		KILL	D4		SET	D2
CIRCLE	BC		LEFT$	FF 81		SGN	FF 84
CLEAR	92		LEN	FF 92		SIN	FF 89
CLOAD	9B		LET	88		SOUND	C4
CLOSE	B4		LFILES	BB		SPACE$	FF 99
CLS	9F		LINE	AF		SPC(DF
CMD	D7		LIST	93		SPRITE	C7
COLOR	BD		LLIST	9E		SQR	FF 87
CONT	99		LOAD	B5		STEP	DC
COPY	D6		LOC	FF AC		STICK	FF A2
COS	FF 8C		LOCATE	D8		STOP	90
CSAVE	9A		LOF	FF AD		STR$	FF 93
CSNG	FF 9F		LOG	FF 8A		STRIG	FF A3
CSRLIN	E8		LPOS	FF 9C		STRING$	E3
CVD	FF AA		LPRINT	9D		SWAP	A4
CVI	FF A8		LSET	B8		TAB(DB
CVS	FF A9		MAX	CD		TAN	FF 8D
DATA	84		MERGE	B6		THEN	DA
DEF	97		MID$	FF 83		TIME	CB
DEFDBL	AE		MKD$	FF B0		TO	D9
DEFINT	AC		MKI$	FF AE		TROFF	A3
DEFSNG	AD		MKS$	FF AF		TRON	A2
DEFSTR	AB		MOD	FB		USING	E4
DELETE	A8		MOTOR	CE		USR	DD
DIM	86		NAME	D3		VAL	FF 94
DRAW	BE		NEW	94		VARPTR	E7
DSKF	FF A6		NEXT	83		VDP	C8
DSKI$	EA		NOT	E0		VPEEK	FF 98
DSKO$	D1		OCT$	FF 9A		VPOKE	C6
ELSE	3A A1		OFF	EB		WAIT	96
END	81		ON	95		WIDTH	A0
EOF	FF AB		OPEN	B0		XOR	F8
EQV	F9		OR	F7	-------------------		
ERASE	A5		OUT	9C			
ERL	E1		PAD	FF A5			
------------------- -------------------

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 Figure 2.12 Numeral formats in text

 Octal number (&O) | 0B | XX : XX |

 Hexadecimal number (&H) | 0C | XX : XX |

 ---------------- Absolute address of the
 Line number (after RUN) | 0D | XX : XX | destination line for the
 ---------------- branch instruction
 in memory.

 Destination line number
 ---------------- for the branch instruction.
 Line number (before RUN) | 0E | XX : XX | After RUN, identification
 ---------------- code is made 0DH and the
 line number is changed to
 the absoulte address.

 Integer from 10 to 255 (%) | 0F : XX |

 Integer from 0 to 9 (%) | | 11 to 1A

Integer from 256 to 32767 (%) | 1C | XX : XX |

 Single precision real (!) | 1D | XX : XX : XX : XX |

 Double precision real (#) | 1F | XX : XX : XX : XX :

 : XX : XX : XX : XX |

 Binary (&B) | "&"| "B"| . . . Characters of "0" or "1"
 ------------------ following "&B"

Numbers called "identification codes" are assigned numeric values to
distinguish them from reserved words and variable names, and by referring to
them the following values can be recognised.

The high and low bytes of a 2-byte numeric value are stored in reverse.
Signed numeric values have only the intermediate codes + or - preceding the
identifying codes, numeral values themselves are always stored as positive
values. Floating-point notations are almost the same as the descriptions of
Math-Pack (Mathematical Package) in the APPENDIX, note that numerical values
are always stored as positive. Binary numbers (&B) do not have identifying
codes and are stored as ASCII codes.

4. LINKING WITH ASSEMBLY LANGUAGE PROGRAMS

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

As described so far, MSX BASIC version 2.0 has powerful features, but, if you
wish to save execution time even more or to make full use of MSX2 hardware,
you should use assembly language. The following sections show how to call
assembly language programs from BASIC and gives the information you will
need.

4.1 USR Function

To call the assembly language routine from BASIC, follow the steps described
below. The value in parenthesis of the USR function is passed to the assembly
language routine as an argument. The argument may be either an expression or
a string expression.

1. Specify the starting address of the assembly language program for the
execution, using DEF USR statement.
2. Call the assembly language program by USR function.
3. Execute RET (C9H) when returning from the assembly language routine to
BASIC.

e.g.) To call the assembly language program whose starting address is C000H:

 DEFUSR=&HC000
 A=USR(0)

4.2 Data Exchange by the Argument and Return Value of USR Function

When the argument is passed from BASIC to the assembly language program, its
type can be checked by examining the contents of register A in the assembly
language program (see Table 2.21). Since the object value is stored in the
form as shown in Figure 2.13 according to the argument type, you can get the
value according to the format. As an example, List 2.1 shows a program which
receives an argument of the string type.

 Table 2.21 Argument types assigned to register A

2	2-byte integer type
3	String type
4	Single precision real type
8	Double precision real type

 Figure 2.13 How values are passed as arguments

2-byte integer type + 0 + 1 + 2 + 3
 Address pointed at by HL register --> -----------------------------
 | XX | XX | Low | High |

 Note: "XX" may be anything

Single precision real type + 0 + 1 + 2 + 3
 Address pointed by HL register --> -----------------------------
 |Expo- |Man- |Man- |Man- |
 |nent |tissa |tissa |tissa |

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

Double precision real type + 0 + 1 + 7
 Address pointed by HL register --> --------------- --------
 |Expo- |Man- | . . . |Man- |
 |nent |tissa | . . . |tissa |
 --------------- --------

String type + 0 + 1 + 2 These three
 Address pointed by DE register --> ---------------------- bytes are
 | | Low | High | called the
 ---------------------- string
 ^ | | descriptor.
 Number of characters --+ +-------------+
 Points to the address
 of the string

List 2.1 Example of the argument of string type
===

;**
; List 2.1 print string with USR function
; to use, do DEF USR=&HB000 : A$=USR("STRING")
;**
;
CHPUT EQU 00A2H ;character output

 ORG 0B000H

RDARG: CP 3
 RET NZ ;parameter is not string

 PUSH DE
 POP IX ;IX := string descriptor
 LD A,(IX+0) ;get string length
 LD L,(IX+1) ;get string pointer (low)
 LD H,(IX+2) ;get string pointer (high)
 OR A
 RET Z ;if length = 0

RD1: PUSH AF
 LD A,(HL) ;get a characetr
 CALL CHPUT ;put a character
 POP AF
 DEC A
 RET Z
 INC HL
 JR RD1

 END

===

On the other hand, these values passed as arguments can be passed to BASIC as
USR function values by changing them in the assembly language program. In

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

this case the type of return value can alse be changed to types other that of
the argument from BASIC by changing VALTYP (F663H). Note that the amount of
characters for a string cannot be changed.

4.3 Making New Commands

In MSX the reserved words "CMD" and "IPL" are currently unused and by
changing the pointers to these words (FE0DH and FE03H) to jump to your own
assembly language routine, new commands can be built. List 2.2 shows a simple
example.

List 2.2 Making CMD command
===

;***
; List 2.2 make CMD command (turn on/off the CAPS LOCK)
; to initialize command: DEF USR=&HB000 : A=USR(0)
; to use command: CMD
;***
;
CHGCAP EQU 0132H ;CAPS LAMP on/off
CAPST EQU 0FCABH ;CAPS LOCK status
HCMD EQU 0FE9DH ;CMD HOOK

 ORG 0B000H

;----- CMD initialize ----- Note: Executing this section adds the
 CMD command

 LD BC,5 ;NEW HOOK SET
 LD DE,HCMD
 LD HL,HDAT
 LDIR
 RET

;----- new HOOK data ----- Note: 5-byte data to be written into
 hook (FE0DH)

HDAT: POP AF
 JP CAPKEY
 NOP

;----- executed by CMD ----- Note: Actual CMD command

CAPKEY: CALL CHGCAP
 LD A,(CAPST)
 CPL
 LD (CAPST),A
 RET

 END

===

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

The first "POP AF" written to the pointer in this case, discards the error
handling addresses stacked at "CMD" execution. Without this, the "RET"
command would jump to the error handling routine isntead of returning to
BASIC. It is a way to use this address for printing errors inside of user
routine.

These pointers are reserved for future expansion, so should not be used with
application programs on the market.

4.4 Expansion of CMD command

For more sophisticated expansions of statements it is useful if arguments can
be passed to the CMD command. As the HL register points to the next location
after "CMD" in the BASIC text when the assembly language routine is called,
it can be done by appreciating the successive string. The following is a list
of internal routines, useful for these.

* CHRGTR (4666H/MAIN) ---- Extract one character from text (see Figure 2.14)
Input: HL <-- Address pointing to text
Output: HL <-- Address of the extracted character
 A <-- Extracted character
 Z flag <-- ON at the end of line (: or 00H)
 CY flag <-- ON if 0 to 9
Purpose: Extract one character from the text at (HL + 1). Spaces are skipped.

 Figure 2.14 Input/output state of CHRGTR

| Input |
| |
| --- BASIC text |
| . . . | A | | = | 0 | : | | B | = | 0 | . . . (in intermediate code |
| --- format, actually) |
| ^ |
| | |
HL
First execution

+-> A

. . .

^
HL

Second execution
----- -----
+-> A
--- CY flag is ON
. . .

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

| --- |
| ^ |
| | |
HL
Third execution
----- -----
+-> A
--- Z flag is ON
. . .
--- the end of line
^
HL

* FRMEVL (4C64/MAIN) ---- Evaluate an expression in text (see Figure 2.15)
Input: HL <-- Starting address of the expression in text
Output: HL <-- Address after the expression
 [VALTYP (F663H)] <-- Value 2, 3, 4 or 8 according to the expression
 [DAC (F7F6H)] <-- Result of the evaluation of the expression
Purpose: Evaluate an expression and make output according to its type.

 Figure 2.15 Input/output state of FRMEVL

| Input |
...

^
HL

Output

...

+---------------------------------------+

DAC

----- The case of double precision
VALTYP

* FRMQNT (542F/MAIN) ---- Evaluate an expression un 2-byte integer type.

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

Input: HL <-- Starting address of the expression in text
Output: HL <-- Address after the expression
 DE <-- Result of evaluation of the expression
Purpose: Evaluate an expression and make output in integer type (INT). When
the result is beyond the range of 2-byte integer type, an "Ovwrflow" error
occurs and the system returns to the BASIC command level.

* GETBYT (521C/MAIN) ---- Evaluate an expression in 1-byte integer type.
Input: HL <-- Starting address of the expression in text
Output: HL <-- Next address of expression
 A, E <-- Result of expression evaluation
 (A and E contains the same value.)
Purpose: Evaluate an expression and make 1-byte integer output. When the
result is beyond the range of 1-byte integer type, an "Illegal function call"
error occurs and the execution returns to BASIC command level.

* FRESTR (67D0/MAIN) ---- Register a string.
Input: [VALTYP (F663H)] <-- Type (if not string type, an error occurs)
 [DAC (F7F6H)] <-- Pointer to string descriptor
Output: HL <-- Pointer to string descriptor
Purpose: Register the result of the string type obtained by FRMEVL and obtain
its string descriptor. When evaluating a string, this is generally combined
with FRMEVL described above to use as follows:

 .
 .
 .
CALL FRMEVL
PUSH HL
CALL FRESTR
EX DE,HL
POP HL
LD A,(DE)
 .
 .
 .

* PTRGET (5EA4/MAIN) ---- Obtain the address for the storage of a variable
 (see Figure 2.16).
Input: HL <-- Starting address of the variable name in text
 [SUBFLG (F6A5H)] <-- 0: Simple variable,
 other than 0: array variable
Output: HL <-- Address after the variable name
 DE <-- Address where the contents of the objective variable
 is stored
Purpose: Obtain the address for the storage of a variable (or an array
variable). Allocation of the area is also done when the area for the
objective variable has not been allocated. When the value of [SUBFLG] is set
to other than 0, the starting address of the array is obtained, other than
individual elements of the array.

 Figure 2.16 Input/output state of PTRGET

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

| Input --------------------------------- |
| . . . | A | A | = | B | B | . . . |
| --------------------------------- |
| ^ |
| | |
HL
SUBFLG

Output ---------------------------------
. . .

^
HL
----------- address where the contents
DE

| Input --- |
| . . . | A | A | (| 3 |) | = | B | B | . . . |
| --- |
| ^ |
| | |
HL
SUBFLG

Output ---
. . .

^
HL
----------- address where the contents
DE

| Input --- |
| . . . | A | A | (| 3 |) | = | B | B | . . . |
| --- |
| ^ |
| | |
HL
SUBFLG

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

| Output --- |
| . . . | A | A | (| 3 |) | = | B | B | . . . |
| --- |
| ^ |
| | |
| HL |
| |
| ----------- starting address of |
| DE | XX | XX | array variable AA(n) |

* NEWSTT (4601H/MAIN) ---- Execute a text
Input: HL <-- Address of the text to be executed
Output: ----
Purpose: Execute a text. The state of the text is necessary to be as same as
shown in Figure 2.17.

 Figure 2.17 Memory setting for NEWSTT

Intermediate codes of BASIC are contained here.
 +-----------------+
 | |
 3AH 94H 00H

 | : | NEW | | . . .

 ^ word
 | stop
 HL

Since these internal routines are for BASIC texts, the same error handling as
BASIC is done when an error occurs. In this case, by changing H.ERROR
(FFB1H), the user can handle the error (the E register contains the error
number) (see List 2.3).

List 2.3 Changing error handling routine
===

;**
; List 2.3 Your own error
; To use, do DEF USR=&HB000 : A=USR(0)
;**
;
HERR EQU 0FFB1H ;error hook
SYNERR EQU 2 ;syntax error code
CHPUT EQU 0A2H ;character output
NEWSTT EQU 4601H ;run
READYR EQU 409BH

 ORG 0B000H
 Note:
;----- command initialize ----- When this portion is executed, the error

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 handling routine is changed.

 LD BC,5 ;SET NEW HOOK
 LD DE,HERR
 LD HL,HDAT
 LDIR
 RET

HDAT: JP ERROR
 NOP
 NOP
 Note:
;----- error routine ----- Error handling body

ERROR: LD A,E ;when in error, E holds error code
 CP SYNERR ;syntax error ?
 RET NZ ;no

 LD HL,DATA1 ;yes
LOOP: LD A,(HL) ;put new error message
 CP "$"
 JR Z,EXIT
 PUSH HL
 CALL CHPUT
 POP HL
 INC HL
 JR LOOP

EXIT: JP READYR ;BASIC hot start

DATA1: DEFM OOHPS!! ;new error message
 DB 07H,07H,07H,"$"

 END

===

4.5 Interrupt usage

The Z80 CPU has INT and NMI interrupt terminals. The MSX, however, uses only
INT. The INT terminal gets 60 [Hz] signals, so timer interrupts are executed
60 times per 1 second. As the interrupt mode of Z80 is set to 1, 38H is
called when an interrupt occurs and then the system control jumps to the
timer interrupt routine, where various operations such as key input are done.

The timer interrupt routine jumps to hook H.TIMI (FD9FH) in mid course. Using
this hook enables the user to add a function to this timer interrupt routine.
Thogh there is ordinarily only a RET command, be careful when peripherals
such as disks are connected and this hook is already in use. In this case,
careless modifications causes peripherals to be disabled, so prearrangement
is necessary to make machines to execute that normally. List 2.4 is an
example of this handling and the interrupt usage.

List 2.4 Correct usage of timer interrupt hook
===

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

;***
; List 2.4 How to use HOOK safety
; This routine uses TIMER INTERRUPT HOOK
; and turn on/off CAPS LOCK
; To start, do DEF USR=&HB000 : A=USR(0)
; To end, do DEF USR=&HB030 : A=USR(0)
;***
;
CHGCAP EQU 0132H ;CAPS LAMP on/off
CAPST EQU 0FCABH ;CAPS LOCK status
TIMI EQU 0FD9FH ;timer interrupt hook
JPCODE EQU 0C3H
TIMER EQU 020H

 ORG 0B000H

;----- interrupt on ----- Note: restore the former hook
 when changing the hook

INTON: DI
 LD HL,TIMI ;OLD HOOK SAVE
 LD DE,HKSAVE
 LD BC,5
 LDIR

 LD A,JPCODE ;NEW HOOK SET
 LD (TIMI),A
 LD HL,INT
 LD (TIMI+1),HL
 EI
 RET

 ORG 0B030H

;----- interrupt off ----- Note: restore the reserved hook and exit

INTOFF: DI
 LD HL,HKSAVE
 LD DE,TIMI
 LD BC,5
 LDIR
 EI
 RET

;----- interrupt routine -----

INT: PUSH AF
 LD A,(CAPST)
 OR A
 JR Z,CAPON

CAPOFF: LD A,(COUNT1)
 DEC A
 LD (COUNT1),A
 JR NZ,FIN
 LD A,TIMER
 LD (COUNT1),A

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 XOR A
 LD (CAPST),A
 LD A,0FFH
 CALL CHGCAP
 JR FIN

CAPON: LD A,(COUNT2)
 DEC A
 LD (COUNT2),A
 JR NZ,FIN
 LD A,TIMER
 LD (COUNT2),A
 LD A,0FFH
 LD (CAPST),A
 XOR A
 CALL CHGCAP

FIN: POP AF
 CALL HKSAVE ;old HOOK call

 RET

COUNT1: DEFB TIMER
COUNT2: DEFB TIMER

HKSAVE: NOP ;old HOOK save area
 NOP
 NOP
 NOP
 RET

 END

===

5. NOTES ON SOFTWARE DEVELOPMENT

There are some matters, when developing the software for MSX, that should be
followed so as to make the software work without any problems on any MSX
machines. The following describes these matters and introduces information
that will help you develop software.

* BIOS

The purpose of BIOS is to separate the hardware and the software and to make
the software still valid if the hardware changes. Applications for sale which
manage input and output should use BIOS (except for VDP).

BIOS is called through the jump table which begins at 0000H of MAIN-ROM.
Though MSX2 has a jump table on SUB-ROM, it is used for calling the extended
functions. The branch destination of the jump table or, the contents of BIOS
may be modified for the hardware modification or the extension of the
function, so applications should not call them directly. Thogh this book has
some examples that call addresses other than the BIOS jump table, you should
consider them for information only (see BIOS list in APPENDIX). Applications

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

can call Math-Pack and internal routines for the extended statements
described above. These will not be changed in the future.

* Work area

F380H to FFFFH of MAIN-RAM cannot be used, as it is a work area for BIOS and
BASIC interpreter. Free space in the work area cannot be used, because it is
reserved for the future use. See "3.1 User's area" for the work area of the
disk.

* Initialisation of RAM and stack pointer

The contents of RAM are unpredictable when the machine is powered and areas
other than system work are are not initialised. Applications should
initialise the work area. There was once an application which expected the
contents of RAM to be 00H and was unusable.

The value of the stack pointer when the INIT routine (see Section 7 of
Chapter 5) in the ROM cartridge is called is unpredictable and the value when
disk interface has been initialised is smaller than when not. For these
reasons some programs which did not initialise the stack pointer had
unpredictable results. Programs which are invoked by the INIT routine and
continue processing (that is, programs which do not need to use peripherals
such as disks or BASIC interpreter) should initialise the stack pointer.

* Work area of extended BIOS

When using extended BIOS calls, a stack should be placed above C000H so that
CPU can refer to the work area even if the slot is switched over. For the
same reason, FCB of RS-232C should be above 8000H.

* Work area of device drivers, etc.

Special attention should be paid for the allocation of the work area of
programs which reside in memory with another program at the same time,
programs such as the device driver or a subroutine called from BASIC.

The INIT routine of the cartridge changes BOTTOM (FC48H), reserves the area
between the old BOTTOM and new BOTTOM as its work area, and records the
address of the work area to 2-byte area SLTWRK (FD09H) allocated for each
slot. For more details, see Section 7 of Chapter 5.

* Hook

When using the RS-232C cartridge, change the hook for an interrupt. For
example, if another cartridge uses an interrupt hook, the RS-232C cartridge
cannot use the same hook. To prevent this, the previous contents of the hook
(inter-slot call command for the interrupt handling routine of RS-232C
cartridge, in the example above) should be copied to another location, and,
when called by the hook, it should be called so that all cartridges intending
to use the hook can receive control (see Figure 2.18). For more details, see
Section 7 of Chapter 5.

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 Figure 2.18 Initialisation of the hook

Initialisation of the hook of program 1

------------- -------> -------------
| Hook | <---+ | Program 1 |
------------- +--- -------------

Initialisation of the hook of program 2

------------- -------> ------------- +---> -------------
| Hook | <---+ | Program 2 | ---+ | Program 1 |
------------- +--- ------------- <------- -------------

* VRAM capacity

The capacity of VRAM can be found by evaluating bits 1 and 2 of MODE (FAFCH)
(see Table 2.22).

 Table 2.22 Getting the information about the VRAM capacity

[FAFCH]		
---------------	VRAM Capacity	
Bit 2	Bit 1	
-------+-------+----------------		
0	0	16K (MSX1)
0	1	64K (MSX2)
1	0	128K (MSX2)

* BASIC version number

The following methods can be used for applications to find out the version
number of BASIC.

1. Read the contents of 2DH of MAIN-ROM (00H = version 1.0, 01H = version
2.0, and so on).
2. In version 2.0 or later versions, EXBRSA (FAF8H) contains the slot address
of SUB-ROM. When it has none (00H), the version is version 1.0.

* International MSX

There are different kinds of MSX for various countries. The following items
are different by country:

- Keyboard arrangement, character set, PRINT USING format
- Timer interrupt frequency

The version of machine can be found by reading the ID byte information in ROM
(see Figure 2.19) and the correspondence for MSX of each country will be

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

accomplished (see Table 2.23).

 Figure 2.19 Contents of ID byte

| 2BH | b0 --+
------- | character generator
 b1 |
 | 0: Japan 1: United States, etc.
 b2 | 2: USSR
 |
 b3 --+

 b4 --+
 | date format
 b5 |
 | 0:Y/M/D 1:M/D/Y 2:D/M/Y
 b6 --+

 b7 interrupt period (VSYNC)
 0:60Hz 1:50Hz

| 2CH | b0 --+
------- | keyboard
 b1 |
 | 0:Japan 1:United States, etc.
 b2 | 2:France 3:United Kingdom
 | 4:Germany 5:USSR 6:Spain
 b3 --+

 b4 --+
 |
 b5 | information about PRINT USING
 | or others
 b6 |
 |
 b7 --+

 Table 2.23 MSX format for each country

			PRINT USING			
		Date	-------------------------------------			
Country	TV set		Initial	String	Re-	Curren-
		format	screen	length	place	cy
			mode	specif.	char.	symbol
-----------+--------------+----------+----------+--------+-------+---------						
Japan	NTSC (60Hz)	YY/MM/DD	Screen 1	&	@	(yen)
UK	PAL (50Hz)	DD/MM/YY	Screen 0	\	&	(pound)
Internat.	PAL (50Hz)	MM/DD/YY	Screen 0	\	&	$(dollar)
US	NTSC (60Hz)	MM/DD/YY	Screen 0	\	&	$(dollar)
France	SECAM (50Hz)	DD/MM/YY	Screen 0	\	&	$(dollar)
Germany	PAL (50Hz)	DD/MM/YY	Screen 0	\	&	$(dollar)

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

| USSR | NTSC (60Hz) | MM/DD/YY | Screen 0 | \ | & |$(dollar)|
| Spain | PAL (50Hz) | MM/DD/YY | Screen 0 | \ | & |$(dollar)|

* Escape sequence

MSX has the escape sequence feature (see Appendix), which can be used in the
PRINT statement of BASIC, and in console output of BIOS or BDOS call
(MSX-DOS). The escape sequence feature is a subset of DEC VT52 terminal and
Heathkit H19 terminal.

* Returning to BASIC

- Warm start

After selecting a slot of MAIN-ROM, jump to 409BH of MAIN-ROM. If the work
area of BASIC has not been destroyed, the BASIC prompt will be displayed. The
contents of register and stack at the jump are ignored.

Another way is to execute the next command in internal routine NEWSTT (see
4.4 of Chapter 4) (see Figure 2.20)

 Figure 2.20 Input setting of NEWSTT for the warm start

 3AH 81H 00H

| : | END | | = (:END)

 ^ word
 | stop
 HL

* Auto start

In the case of simple game cartridges which do not use the BIOS or BASIC work
areas, the program can be invoked by writing a starting address for the
program to "INIT" in ROM header. But using this method prevents the initial
settings of another cartridge, so disk drives cannot be used.

To prevent this, the hook "H.STKE" is at FEDAH; write the inter-slot call
command in the program to be invoked at the execution on "INIT" routine of
the cartridge, and return to the system by RET command. Then after
initialising all cartridges and after preparing the DISK BASIC environment if
there is a disk, the hook is called, so the objective program can be invoked.
This method is also effective when there is no disk (see APPENDIX).

Error code list

1. NEXT without FOR There is no FOR statement corresponding with
 the NEXT statement.

2. Syntax error There is an error in syntax.

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

3. RETURN without GOSUB The RETURN statement does not correspond to
 the GOSUB statement.

4. Out of DATA There is no data to be READ by the READ
 statement.

5. Illegal function call There is an error in the function or numeric
 value specification.

6. Overflow The numeric value has overflow.

7. Out of memory The free area has been exhausted.

8. Undefined line number There is no such a line number in the
 program.

9. Subscript out of range The subscript value of the array variable
 exceeds the declared range.

10. Redimensioned array The array is declared twice.

11. Division by zero The attempt to divide by zero is made. The
 negative exponent of zero is done.

12. Illegal direct The statement which cannot be executed in the
 direct mode is carried out directly.

13. Type mismatch There is a conflict in the data types.

14. Out of string space The string space is exhausted.

15. String too long The length of the string is longer than 255
 characters.

16. String formula too complex The specified string is too complex.

17. Can't CONTINUE The CONT command cannot be executed.

18. Undefined user function An attempt was made to use the user-defined
 function which has not been defined by
 DEF FN statement.

19. Device I/O error An error occurred in input/output of device.

20. Verify error The program on cassette and the one in memory
 are not the same.

21. No RESUME There is no RESUME statement in the error
 handling routine.

22. RESUME without error The RESUME statement is used other than in
 the error handling routine.

23. Undefined.

24. Missing operand Necessary parameters are not specified.

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

25. Line buffer overflow There are too many characters for the input
 data.

26 to 49. Undefined.

50. FIELD overflow The field size defined in FIELD statement
 exceeds 256 bytes.

51. Internal error An error occurred inside BASIC.

52. Bad file number File number which has not been OPENed is
 specified. The specified file number exceeds
 the number specified in MAXFILES statement.

53. File not found The specified file is not found.

54. File already open The file has already been OPENed.

55. Input past end The attempt to read the file is made after
 reading the end of it.

56. Bad file name There is an error in the specification of the
 file name.

57. Direct statement Data other than the program is found while
 loading the ASCII format program.

58. Sequential I/O only Random access to the sequential file is made.

59. File not OPEN The specified file has not been OPENed yet.

60. Bad FAT Unusual disk format.

61. Bad file mode An incorrect input/output operation is made
 in the OPENed mode.

62. Bad drive name There is an error in the drive name
 specification.

63. Bad sector number There is an error in the sector number.

64. File still open The file has not been closed.

65. File already exists The file name specified in NAME statement
 already exists on the disk.

66. Disk full The free area of the disk has been exhausted.

67. Too many files The number of files exceeds 112 (the
 directory space has been exhausted).

68. Disk write protected The disk is protected from writing.

69. Disk I/O error Some trouble occurred in the disk
 input/output.

70. Disk offline The diskette is not in.

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

71. Rename accross disk NAME statement is done across different
 disks.

72. File write protected The file has the read-only attribute set.

73. Directory already exists The directory name specified in CALL MKDIR
 statement already exists.

74. Directory not found The specified directory is not found.

75. RAM disk already exists Attempt to create the DOS 2 RAM disk when
 it already exists is made.

76 to 255. Undefined.

* Note: Errors with codes 72 to 75 are added from version 2 of MSX
DISK-BASIC. In version 1 they are undefined.

Use larger numbers first for user error definition.

MSX2 TECHNICAL HANDBOOK

Edited by: ASCII Systems Division
Published by: ASCII Coprporation - JAPAN
First edition: March 1987

Text files typed by: Nestor Soriano (Konami Man) - SPAIN
 March 1997

Changes from the original:

- Remarks (1) and (2) about the FCB format in version 2 of MSX-DOS have been
added.

- Description of function call 06H is modified. The name of this function in
the original text is "String output", and the setup description is "E
register <-- starting address of string to send to the console. When 0FF is
specified, the character will be sent to the console as character code."

- In description of function calls 13H (Deleting files) and 23H (File size
acquisition), the original text has "DE register <-- starting address of
opened FCB" in setup field. Instead of this, the correct setup explanation is
set.

- In description of function 26H (Random writing to the disk 2), the correct
term "FCB" is set instead of "DMA" in DE register setup explanation.

- In description of function 27H (Random readout 2), the phrase "When this
number is almost one, the data which has been read is set in the area
indicated by DMA" has been added.

-=-

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

CHAPTER 3 - MSX-DOS

Large capacity storage devices with high-speed access are necessary for
business applications. That is why a disk operating system was added to the
MSX machine. The DOS (disk operating system) is also required to handle the
large amount of data on the disk effectively. MSX-DOS is derived from MS-DOS
which is used widely on 16-bit machines. Thus, it represents the most
powerful DOS environment for Z-80 based machines. Chapter 3 describes the
basic operations of MSX-DOS and the use of the system calls.

1. OVERVIEW

What kind of software is MSX-DOS? What does it offer to users? The following
sections describe and introduce the features, functions, and software
configurations of MSX-DOS.

1.1 Features of MSX-DOS

* Consolidation of disk operating environment

MSX-DOS is the disk operating system for MSX computers. It works with any
version of MSX and can be operated on both the MSX1 and MSX2 without any
problem. Disk operation on MSX is always done via MSX-DOS. This is also true
concerning MSX DISK-BASIC, which uses BDOS calls for disk input/output.
MSX-DOS and DISK-BASIC use the same disk format so that file conversion
between BASIC and DOS is not necessary. This greatly increases operating
efficiency and allows more effective use of file resources when MSX-DOS is
used as the software development environment.

* Compatibility with MS-DOS

MSX-DOS, created on the basis of MSX-DOS (ver 1.25) which is a disk operating
system for 16-bit personal computers, uses the same file format as MS-DOS. It
is compatible with MS-DOS at the file level so that MSX-DOS can read and
write files written on MS-DOS disks. In turn MS-DOS can read and write files
created by MSX-DOS. Both disk operating systems use similar commands, so
users who are familiar with MSX-DOS can easily use MS-DOS when upgrading to
16-bit machines.

* Using CP/M applications

MSX-DOS has system call compatibility with CP/M and can execute most programs
created on CP/M without any modification. Most CP/M applications can thus be
easily used with MSX-DOS. This opens up a large library of existing software
which can be run on the MSX machines.

1.2 MSX-DOS Environment

* System requirements

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

To use MSX-DOS, a minimum configuration of 64K bytes RAM, a CRT, one disk
drive, and a disk interface ROM is required. If less than 64K bytes RAM is
installed, MSX-DOS cannot be used. MSX computers can only use MSX-DOS if they
have 64K bytes RAM or more. Since MSX2 computers always have 64K bytes or
more of RAM, they can always run MSX-DOS. A limited disk basic is used on
those machines with less than 64K bytes RAM. Disk interface ROM is always
supplied with the disk drive, and, on MSX machines with an internal disk
drive, it resides inside the machine. For those machines using disk
cartridges, it is in the cartridge.

* System supported

MSX-DOS supports up to eight disk drives. On a one-drive system, it has a
2-drive simulation feature (it uses one drive as two drives by replacing
diskettes temporarily). It supports keyboard input, screen output, and
printer output.

* Media supported

MSX-DOS, which has a flexible file manager that does not depend on the
physical structure of the disk, supports various media and uses 3.5 inch
double density disks as standard. Either a one-sided disk called 1DD or
two-sided disk called 2DD is used. Each of them uses either an 8-sector track
format so four kinds of media can be used. The Microsoft formats for these
four types are shown below.

 Table 3.1 Media supported by MSX-DOS

--
| | 1DD, 9 | 2DD, 9 | 1DD, 8 | 2DD, 8 |
| | sectors | sectors | sectors | sectors |
|----------------------------+---------+---------+---------+---------|
media ID	0F8H	0F9H	0FAH	0FBH
number of sides	1	2	1	2
tracks per side	80	80	80	80
sectors per track	9	9	8	8
bytes per sector	512	512	512	512
cluster size (in sectors)	2	2	2	2
FAT size (in sectors)	2	3	1	2
number of FATs	2	2	2	2
number of recordable files	112	112	112	112
--

Note: See chapter 3 for the meanings of the above words.

1.3 MSX-DOS System Resources

* Memory map

MSX-DOS consists of the following modules: COMMAND.COM, MSXDOS.SYS, and a
disk interface ROM. It resides in memory as shown in Figure 3.1 when MSX-DOS
is active. COMMAND.COM and MSXDOS.SYS are disk files until MSX-DOS is booted

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

and then read into RAM after that. Disk interface ROM includes a disk driver,
DOS kernel, and DISK-BASIC interpreter.

 Figure 3.1 MSX-DOS memory map

0000H -----------------------
 | system scratch area |
0100H |---------------------| --- 4000H ---------------------
	^	disk driver	
			DOS kernel
			DISK BASIC
			interpreter
	TPA 7FFFH ---------------------		
		disk interface ROM	

COMMAND.COM	V		
(0006H)	---------------------	---	
MSXDOS.SYS			

work area			
FFFFH -----------------------

The area 00H to FFH of RAM is called the system scratch area, which is used
by MSX-DOS for exchanging data with other programs. This area is important
when using system calls, which are described later. The area which begins at
0100H and ends where the contents of 0006H of RAM indicates is calles the TPA
(Transient Program Area). This area is accessible by the user. MSXDOS.SYS
always resides at a higher address than TPA (when destroyed, the result is
unpredictable), and COMMAND.COM is placed in TPA.

* COMMAND.COM

The main operation of MSX-DOS is to accept typing commands from the keyboard
and execute them. In this case the program COMMAND.COM is responsible for the
process from getting a string to interpreting and executing it, or accepting
commands from the user interface. Programs executed by COMMAND.COM consists
of internal commands, batch commands, and external commands.

Internal commands are inside COMMAND.COM and on RAM. Typing an internal
acommand causes COMMAND.COM to call and execute it immediately.

For the external command, COMMAND.COM loads the routine from disk to TPA and
executes it (the execution of external commands always begins at 100H). In
this case COMMAND.COM frees its own area for the external command. That is,
COMMAND.COM might erase itself and writes the external command onto it, when
the external command is small enough and does not use the high-end of TPA,
COMMAND.COM would not be destroyed. When the external command ends with
"RET", MSXDOS.SYS examines whether COMMAND.COM has been destroyed (by using
checksum) and, if so, re-loads COMMAND.COM onto RAM and passes the control to
COMMAND.COM.

Batch commands are carried out by getting command line input from a batch
file instead of from the keyboard. Each step of the batch file can execute

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

any internal command or external command. It is possible that the batch
command executes another batch command, but the control will not return to
the caller after the called batch command is done.

* MSXDOS.SYS

MSXDOS.SYS, core of MSX-DOS, controls disk access and communications with
peripherals. These MSXDOS.SYS functions are opened as "BDOS (Basic Disk
Operating System)" so that the user can use them. Each routine opened is
called a "system call", which is useful in developping software for managing
the disk (see chapter 4). Each execution is, however, not done by MSXDOS.SYS
itself but DOS kernel. MSXDOS.SYS is an intermediation which arranges
input/output requests from COMMAND.COM or external commands and passes them
to the DOS kernel.

MSXDOS.SYS includes a portion called BIOS other than BDOS, as shown in Figure
3.2. BIOS, which has been prepared to be compatible with CP/M, is not
normally used.

 Figure 3.2 MSXDOS.SYS

-------------- --+
| BDOS | |
|------------| | MSXDOS.SYS
| BIOS | |
-------------- --+

* DOS kernel

The DOS kernel is the fundamental input/output routine which resides in the
disk interface ROM and executes BDOS functions of MSXDOS.SYS. Actually, any
system call function can be executed using the DOS kernel. DISK-BASIC
executes system calls by calling the DOS kernel directly.

* Procedure for invoking MSX-DOS

MSX-DOS is invoked by the following procedure:

1. Resetting MSX causes all the slots to be examined first, and when two
bytes, 41H and 42H, are written in the top of the examined slot, the slot is
interpreted as connected to a certain ROM. When connected with ROM, the INIT
(initialize) routine whose address is set to the header portion of ROM is
carried out. In the case of the INIT routine of the disk interface ROM, the
work area for the drive connected to the interface is allocated first.

2. When all slots have been examined, FEDAH (H.STKE) is then referred to.
Unless the contents of this address is C9H (unless a certain routine is set
to the hook of H.STKE during INIT routine), the environment for DISK-BASIC is
prepared and execution jumps to H.STKE.

3. When the contents of H.STKE is C9H in the examination above, the cartridge
with TEXT entry is searched in each slot and, if found, the environment for
DISK-BASIC is prepared, and then the BASIC program at the cartridge is

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

carried out.

4. Then, the contents of the boot sector (logical sector #0) is transferred
to C000H to C0FFH. At this time, when "DRIVE NOT READY" or "READ ERROR"
occurs, or when the top of the transferred sector is neither EBH nor E9H,
DISK-BASIC is invoked.

5. The routine at C01EH is called with CY flag reset. Normally, since code
"RET NC" is written to this address, nothing is carried and the execution
returns. Any boot program written here in assembly language is invoked
automatically.

6. RAM capacity is examined (contents of RAM will not be destroyed). Less
than 64K bytes causes DISK-BASIC to be invoked.

7. The environment for MSX-DOS is prepared and C01EH is called with a CY flag
set. MSXDOS.SYS is loaded from 100H, and the execution jumps to 100H. After
this, MSX-DOS transfers itself to a high order address. If MSXDOS.SYS does
not exist, DISK-BASIC is invoked.

8. MSXDOS.SYS loads COMMAND.COM from 100H and jumps to its start address.
COMMAND.COM also transfers itself to a high order address and then begins
to execute. If COMMAND.COM does not exist, the message "INSERT A DISKETTE"
appears and the execution waits for the correct diskette to be inserted in
the drive.

9. At the first boot for MSX-DOS, when a file named "AUTOEXEC.BAT" exists, it
is carried out as a batch file. When MSX-DOS is not invoked and DISK-BASIC
starts, if a BASIC program named "AUTOEXEC.BAS" exists, it will be carried
out.

2. OPERATION

This section describes how to type command line input from the keyboard. This
is the basis of MSX-DOS operations. Several examples of actual use and their
explanations will be given for the commands used in MSX-DOS.

2.1 Basic Operations

* Message at startup

When MSX-DOS is invoked, the following message appears on the screen:

 Figure 3.3 Screen at atartup

| |
| MSX-DOS version 1.03 |
| Copyright 1984 by Microsoft |
| |
| COMMAND version 1.11 |

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

The upper two lines show the version of MSXDOS.SYS and its copyright. The
last line shows the version of COMMAND.COM.

* Prompt

Then, a prompt (input request symbol) appears under the version description.
The prompt for MSX-DOS consists of two characters: the default drive name
plus ">".

* Default drive

The term "default drive" as the first character of the prompt is the drive to
be accessed automatically when the drive name is omitted. When the default
drive is A, for example, referring to a file "BEE" on drive "B" needs to be
typed as "B:BEE". A file "ACE" on drive A, however, can be typed simply as
"ACE" omitting the drive name.

 ex.1) A>DIR B:BEE (<-- referring to "BEE" on drive B)
 ex.2) A>DIR ACE (<-- referring to "ACE" on drive A)

* Changing default drive

When using systems with more than one drive, typing "B" causes the default
drive to be changed to B. When changing the default drive to C to H, "C" or
the appropiate letter is needed. Specfification of a drive which does not
exist causes an error.

 ex.1) A>B:
 B> (<-- Default drive has been changed to B)

 ex.2) A>K:
 Invalid Drive Specification
 A> (<-- Drive K does not exist.
 Default drive is not changed.)

* Command input

When a prompt is displayed it indicates that MSX-DOS requests a command to
be input. By typing in a command, MSX-DOS can get an instruction.

Three forms of commands exist as shown in Table 3.2. The COMMAND.COM program
interprets and executes these commands. MSX-DOS operations are repeats of the
actions "give a command - make COMMAND.COM execute it".

 Table 3.2 Three forms of commands

| (1) Internal | Command inside COMMAND.COM. Assembly routine on RAM. |
| command | Thirten commands are prepared as described later. |
|--------------+--|
| (2) External | Assembly routine on disk. It is loaded from disk at |
| command | execution. Its file name has an extension "COM". |

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

|--------------+--|
(3) Batch	Text file containing one or more commands. Commands
command	are executed orderly (batch operation). File names
	have the extension "BAT".

* File name convention

Files handled by MSX-DOS are expressed by a "file spec" which is described
below:

(1) File spec is expressed in the form "<drive>:<file name>".

(2) <drive> is a character from A to H. When specifying the default drive, it
can be omitted as well as the colon ":" following it.

(3) <file name> is expressed in the form of "<filename>.<extension>".

(4) <filename> is a string containing one or more (up to 8) characters. When
more than 8 characters are sepcified, the ninth and subsequent characters are
ignored.

(5) <extension> is a string containing up to 3 (including zero) characters.
When more than 3 characters are specified, 4th and subsequent chartacters are
ignored.

(6) <extension> can be omitted as well a preceding period ".".

(7) Characters which are available in <filename> and <extension> are shown in
Table 3.3.

(8) Cases are not sensitive. Capital letters and small letters have the same
meaning.

 Table 3.3 Available characters for file name

| Available | A to Z 0 to 9 $ & # % () - @ ^ { } ' ` ! |
| characters | characters corresponding to character codes 80H to FEH |
|-------------+---|
Unavailable	~ * + , . / : ; = ? []
characters	characters corresponding to character codes 00H to 20H
	and 7FH, FFH

* Wildcards

Using a special character called a "wildcard" in the description of
<filename> and <extension> of the file specification causes files with common
characters to be specified. Wildcards are "?" and "*".

(1) "?" is a substitution for one character.
 ex) "TEXT", "TEST", "TENT" <-- "TE?T"
 "F1-2.COM", "F2-6.COM" <-- "F?-?.COM"

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

(2) "*" is a substitution for a string with any length.
 ex) "A", "AB", "ABC" <-- "A*"
 "files with an extension .COM" <-- "*.COM"
 "all files" <-- "*.*"

When comparing existing file names and file names with wildcards, the portion
less than 8 characters of <filename> and the portion less than 3 characters
of <extension> are considered to be padded with spaces (" "). Thus, a
specification "A???.??" is not expanded to "ABCDE.123" but to "AZ.9", as
shown in Figure 3.4.

 Figure 3.4 Wildcard expansion

 --------------------------------- -------------
ABCDE.123 --> | A | B | C | D | E | | | | | 1 | 2 | 3 |
 --------------------------------- -------------
 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^
 | | | | | | | | | | |
 O O O O X O O O O O X
 | | | | | | | | | | |
 V V V V V V V V V V V
 --------------------------------- -------------
 A???.?? --> | A | ? | ? | ? | | | | | | ? | ? | |
 --------------------------------- -------------
 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^
 | | | | | | | | | | |
 O O O O O O O O O O O
 | | | | | | | | | | |
 V V V V V V V V V V V
 --------------------------------- -------------
 AZ.9 --> | A | Z | | | | | | | | 9 | | |
 --------------------------------- -------------

An asterisk (*) is interpreted as either 8 question marks or 3 question marks
(?) depending on if it is in the file name position or file extension
position. For example, a file name "A*B" is not interpreted as "any strings
which begin with A and end with B". It is interpreted as "any strings which
begin with A", as shown below.

 A*B ("*" is expanded to 8 "?"s)
 |
 V
 A????????B (Characters after 8th are deleted)
 |
 V
 A???????

* Device name

MSX-DOS does not need special commands for data input/output with
peripherals. This means that it considers each objective device as a certain
file (device file) and input/output actions are done by reading or writing to
or from this file. This enables MSX-DOS users to treat input/output devices
in the same way as files on a disk. Five devices are supported as standard by

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

MSX-DOS as shown in Table 3.4 and are specified with proper names. For this
reason, these names can not be used to specify disk files. These device names
with drive specifications or extensions are also treated as simple device
names.

 Table 3.4 Device names

--
| Device name | Input/output device to be specified |
|-------------+--|
	Reserved name for input/output expansion
AUX	which normally has the same effect as NUL
-------------+--	
CON	Console (keyboard for input, screen for OUTPUT)
-------------+--	
LST	Printer (ouput only; cannot be used for input)
-------------+--	
PRN	Printer (same as LST)
-------------+--	
	Special device used as a dummy when the result is not
NUL	desired to be displayed on the screen or put in a file.
	When used for input, always EOF.
--

* Input functions using a template

A "template" is a character buffer area and can be used for command input.
The template contains the previous command line most recently entered. It is
possible to use the template for easier command entry. By taking advantage of
this template feature, it is easy to execute previous commands again or to
execute the command partially modified. The keys listed in Table 3.6 are used
for the template operation.

* Other special keys

In addition to the template operation keys, the following control keys are
also available. These special key functions also support some other system
calls described later.

 Table 3.5 Special key functions

| | Function |
|-------+---|
| ^C | stops command currently executed |
| ^S | pauses screen output until any key is pressed |

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

^P	send characters to the printer at the same time
	they appear on the secreen
^N	resets ^P and send characters only to the secreen
^J	feeds a line on the screen and continue input

 Table 3.6 Template functions

| Name | Keys used | Functions |
|----------+--------------+---|
| COPY1 | RIGHT, ^\ | Gets one character from the template and |
| | | displays it in the command line |
|----------+--------------+---|
		Gets characters before the character to be
COPYUP	SELECT, ^X	typed next (by keyboard) from the template
		and displays them on the command line
----------+--------------+---		
		Gets all characters from the location which
COPYALL	DOWN, ^_	the template is currently referring to the
		end of the line and displays them on the
		command line
----------+--------------+---		
SKIP1	DEL	Skips one character of the template
----------+--------------+---		
SKIPUP	CLS, ^L	Skips template characters before the
		character to be typed next (by keyboard)
----------+--------------+---		
VOID	UP, ESC, ^^,	Discards current line input not changing
	^U, ^[the template
----------+--------------+---		
		Discards one character input and returns
BS	LEFT, BS,	the location referred by the template
	^H, ^]	by one character
----------+--------------+---		
		Switches insert mode/normal input mode,
INSERT	INS, ^R	in insert mode, displays keyboard input
		on the command line with fixing the
		location referred by the template
----------+--------------+---		
NEWLINE	HOME, ^K	Transfers the contents of current command
		line to the template
-------------------------+---		
	Feeds a line on screen but continues	
Return	getting input. Transfers the contents of	
key	current command line to the template	
	and executes it	
-------------------------+---		
Keys other	Displays a character corresponding to the	
than above	key on the command line and skips one	
	character of the template	

 Table 3.7 Template operation examples

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

		Contents of template ("-"
Keyboard input	Command line display	indicates location currently
		referred to)
-------------------+----------------------+------------------------------		
DIR ABCDE	A>DIR ABCDE	---------
RETURN	A>	DIR ABCDE
		-
DOWN	A>DIR ABCDE	DIR ABCDE
		-
LEFT LEFT LEFT	A>DIR AB	DIR ABCDE
		-
INS XYZ	A>DIR ABXYZ	DIR ABCDE
		-
RIGHT RIGHT RIGHT	A>DIR ABXYZCDE	DIR ABCDE
		-
UP	A>	DIR ABCDE
		-
DOWN	A>DIR ABCDE	DIR ABCDE
		-
UP	A>	DIR ABCDE
		-
XXX	A>XXX	DIR ABCDE
		-
DOWN	A>XXX ABCDE	DIR ABCDE
		-
HOME	A>XXX ABCDE	XXX ABCDE
		-

* Disk errors

When an error occurs during disk access, MSX-DOS retries sometimes. Still
more errors cause MSX-DOS to display the following message and inquire what
to do with them. Press one of the keys A, R, or I.

 Figure 3.5 Error display

| |
| <error type> error <action> drive <drive name> |
| ------------ -------- ------------ |
| | | | |
| ----------------- ----------- ---------- |
| | Write protect | | Reading | | A to H | |
| | Not ready | | Writing | ---------- |
| | Disk | ----------- |
| ----------------- |
| |
| Abort, Retry, Ignore? |
Abort: stops the disk access and ends the command execution

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

| Retry: tries again |
| Ignore: stops the disk access and continues the command execution |

The following error might occur other than listed above. It indicates that
the pointer in FAT is pointing to a cluster which does not exist. When this
error occurs, the diskette will be unusable.

 Bad FAT

2.2 Internal commands

Internal commands are assembly language programs grouped together in
COMMAND.COM. It is not necessary to read them from the disk so they are
executed fast. Following are 13 internal commands. This section describes
their use.

 BASIC jumps to MSX DISK-BASIC
 COPY copies a file
 DATE displays or modifies date
 DEL deletes a files
 DIR displays a list of files
 FORMAT formats a disk
 MODE modifies number of characters to be displayed
 in one line
 PAUSE pauses a batch command operation
 REM puts a comment line in a batch command
 REN renames a file name
 TIME displays or modifies time
 TYPE prints the contents of a file
 VERIFY turns on/off the verify mode

* BASIC

form: BASIC [<file spec>]

Starts DISK-BASIC. This is not done by loading BASIC onto RAM but by
selecting BASIC-ROM in 0000H to 7FFFH by switching the slot, so it starts
immediately. When <file spec> is specified, the corresponding BASIC program
is automatically read and executed. To return to the MSX-DOS environment from
BASIC, execute "CALL SYSTEM".

* COPY

This command copies the contents of one file to another. Specifying
parameters enables various options.

(1) File duplication

form COPY <file spec 1> <file spec 2>

Duplicates the file specified by <file spec 1> into a file specified by <file

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

spec 2>. Files having the same names cannot be created on the same disk. On
different disks, specifying the same names is possible.

examples:

 A>COPY ABC XYZ <-- copies file "ABC" and makes a file "XYZ".

 A>COPY B:ABC XYZ <-- copies a file "ABC" on drive B and makes
 a file "XYZ".

 A>COPY B:ABC C:XYZ <-- copies a file "ABC" on drive B and makes
 a file "XYZ" on drive C.

When copying files, either ASCII or binary mode may be selected. The "/A"
swith specifies ASCII mode and the "/B" switch specifies binary mode. If no
mode is specified, binary mode is selected by default (except when combining
files, described in (4) below, when ASCII is the default mode). Table 3.8
shows the differences between the ASCII and the binary modes.

 Table 3.8 ASCII mode and binary mode

| | Read from source file | Write to destination file |
|-----------+-----------------------------------+---------------------------|
|ASCII mode | ignore after 1AH (file end mark) | add one byte 1AH to end |
|Binary mode| read as long as physical file size| write without modification|

examples:

 A>COPY/A ABC XYZ <-- ABC to XYZ (both files are in ASCII mode)

 A>COPY ABC/A XYZ/B <-- reads ABC in ASCII mode and writes it to XYZ
 in binary mode

(2) File duplication to another disk drive

form COPY <file spec> [<destination drive>:]

Copies a file specified by <file spec> to <destination drive> under the same
file name. When <destination drive> is omitted, it is copied to the default
drive. The drive name included in the <file spec> must not be the same as the
<destination drive>.

More than one file can be copied by using wildcards in the <file spec>. In
this case, the file name is displayed on the screen each time the file is
copied.

examples:

 A>COPY *.COM B: <-- copies any files with extension "COM"
 on default drive to drive B

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 A>COPY B:ABC <-- copies a file ABC to default drive

(3) Simultaneous duplication of many files

form COPY <file spec 1> <file spec 2>
 ------------- -------------
 | |
 wildcard description wildcard description

When <file spec 2>, the destination, is described using wildcards, the
portions corresponding to wildcards are replaced with corresponding
characters in <file spec 1>. For example, when

 COPY AB-07.021 FL?X*.V??

is executed, it is interpreted as shown in figure 3.6 and a file "FL-X7.V21"
is created.

 Figure 3.6 Wildcard specification of destination file

--------------------------------- -------------
| F | L | ? | X | ? | ? | ? | ? | | V | ? | ? | <file spec 2>
--------------------------------- -------------
 | | | |
 V V V V
--------------------------------- ------------- Only wildcard portion
| F | L | - | X | 7 | | | | | V | 2 | 1 | is replaced with
--------------------------------- ------------- <file spec 1>
 ^ ^ ^ ^ ^ ^ ^
 | | | | | | |
--------------------------------- -------------
| A | B | - | 0 | 7 | | | | | 0 | 2 | 1 | <file spec 1>
--------------------------------- -------------

Using wildcards in the specification of <file spec 1> enables the duplication
of many files at the same time.

examples:

 A>COPY *.ASM *.MAC <-- makes files with extension "MAC" from
 any files with extension "ASM"

 A>COPY A*.* B:Z*.* <-- Any files beginning with the character
 A are copied to files beginning with
 the character Z on drive B

(4) File concatenation

form COPY <multiple file spec> <file name>

 |
 wildcard specification, or
 multiple file spec connected by "+"

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

When one destination file receives more than one source file, the contents of
all source files are concatenated and stored to the specified destination
file. When specifying more than one source file, wildcards are available, and
file specs can also be copied by using the plus sign.

When files are concatenated, ASCII mode is selected by default and 1AH is
considered the file end mark. Thus, concatenating binary files including data
1AH by the COPY command causes data after 1AH to be discarded. To prevent
this, specify /B switch and use COPY command in binary mode.

If more than one wildcard appears in the specification of source files, the
second wildcard and after are expanded referring to original file names, as
in paragraph (3) above. This permits concatenation of similar files at the
same time.

examples:

 A>COPY X+Y+Z XYZ <-- concatenates X, Y, AND Z and stores
 in a file XYZ

 A>COPY *.LST ALL <-- concatenates any files with extension
 "LST" and stores in a file ALL

 A>COPY /B *.DAT ALL <-- concatenates any ".DAT" files in
 binary mode

 A>COPY ASC/A+BIN/B AB/B <-- concatenates an ASCII file ASC and a
 binary file BIN and stores in a
 file AB

 A>COPY *.LST+*.REF *.PRN <-- concatenates files named same with
 extension "LST" and extension "REF"
 and makes a file with extension "PRN"

* DATE

form DATE [<month>-<day>-<year>]
 - -
 | |

 |
 "/" and "." are also allowed.

Sets the date in the internal CLOCK-IC. For MSX machines without a CLOCK-IC,
it is written to the specific work area. Creations or modifications of files
on MSX-DOS cause this date information to be recorded for each file.

When the DATE command is executed without specifying <month>/<day>/<year>,
the date currently set is displayed with a request for a new date as shown
below. Pressing only the RETURN key here leaves the date unchanged.

 Current date is <day of week> <month>-<day>-<year>
 Enter new date:

The format of the date to be set by the DATE command has three fields:
<year>, <month>, and <day>. Each field is separated by "-", "/", or ".". Each

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

field can have the following numerical values:

 <year>: 1980 to 2079
 0 to 79 (considered as 2000 to 2079)
 80 to 99 (considered as 1980 to 1999)
 <month>: 1 to 12
 <day>: 1 to 31

Foreign versions of MSX-DOS have different date formats: <month>-<day>-<year>
or <day>-<month>-<year>.

* DEL

form DEL <file spec>
 ERASE is also allowed

Deletes the specified file. Wildcards can be used to specify more than one
files.

Since "DEL *.*" causes all files on the diskette to be deleted, in this case,
an acknowledgement is required.

 A>DEL *.*
 Are you sure (Y/N)?

Pressing "Y" or "y" causes all files to be deleted.

"ERASE" may be used the same way as the DEL command.

* DIR

form DIR [<file spec>] [/W] [/P]

The following information about the specified at <file spec> is listed from
the left side in one line.

 <file name> <file size> <date> <time>

The fields <date> and <time> show when the file was created or last
modified. When this information is longer than one line, items displayed near
the right side are omitted.

In addition to the usual wildcards, the following abbreviations for <file
spec> can be used.

 Abbreviation Formal notation

 DIR = DIR *.*
 DIR <drive>: = DIR <drive>:*.*
 DIR <filename> = DIR <filename>.*
 DIR .<extension> = DIR *.<extension>

When the /W switch is specified, only <filename>s are padded to one line.
When the /P switch is specified, the listing is stopped after each display
page to wait for any key input.

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

examples:

 A>DIR <-- displays information for all files on drive A

 A>DIR B: <-- displays information for all files on drive B

 A>DIR TEST <-- displays information for all files
 having <filename> "TEST"

 A>DIR /W <-- displays all file names of drive A

* FORMAT

form FORMAT

Formats a diskette in MSX-DOS format. In other words, directories and FAT are
initialised and any files are erased. Since MSX-DOS has the same disk format
as MS-DOS, the formatted diskette is also read or written by MS-DOS.

When executing the FORMAT command, an inquiry

 Drive name? (A,B) (<-- Depends on number of drives)

is made for the name of the drive containing a disk to be formatted.
Answering "A" or "B" causes the menu to be displayed when a drive that can
select one-sided and two-sided formats is being used. After specifying the
type of format,

 Strike a key when ready

is displayed to wait for a key input. Pressing any key starts formatting. See
the disk drive manual for the format menu.

* MODE

form MODE <characters per line>

Sets the number of characters to be displayed in one line on the screen.
<characters per line> can have a value from 1 to 80 and the screen mode
depends on that value:

<characters per line> Screen mode
 1 to 32 GRAPHIC 1 (SCREEN 1)
 33 to 40 TEXT 1 (SCREEN 0:WIDTH 40)
 41 to 80 TEXT 2 (SCREEN 0:WIDTH 80)

* PAUSE

form PAUSE [<comment>]

MSX-DOS has a "batch operation" feature which automatically executes a series
of commands written in a text file. During the batch operation, you may want
to stop command execution temporarily. One example would be for the user to
exchange disks. PAUSE can be used in such cases.

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

When this command is executed,

 Strike a key when ready...

is displayed and a key input is expected. Pressing any key other than Ctrl-C
here ends the PAUSE command and proceeds to the next one. Pressing CTRL-C
abandons the batch operation. Any kind of comments can follow "PAUSE". This
makes it possible to display the purpose of the request for the key input.

* REM

form REM [<comment>]

REM is used to write a comment in the batch command. It does nothing as a
command. A space between "REM" and <comment> is required.

* REN

form REN <file spec> <file name>
 RENAME is also allowed

REN changes the file name specified by <file spec>. Wildcards can be used in
both <file spec> and <file name>. Specifying wildcards for <file name> causes
these wildcards to be replaced with corresponding characters of the <file
spec> (see COPY command).

Any attempt to change a file name to a name already in use will cause an
error.

examples:

 A>REN ABC XYZ <-- changes the file name "ABC" to "XYZ"

 A>REN B:ABC XYZ <-- changes the file name "ABC" on drive B to "XYZ"

 A>REN *.BIN *.COM <-- changes any files with the extension "BIN" to "COM"

* TIME

form TIME [<hour>[:<minute>[:<second>]]]

TIME sets the time for the internal CLOCK-IC. Nothing happens to machines
that do not have a CLOCK-IC. When a file is created on MSX-DOS, time
information set here is recorded for each file.

Executing the TIME command without specifying the time causes the current
time setting to be displayed as shown below. Then there is an input request
for a new time. Pressing only the RETURN key does not change the time.

 Current time is <hour>:<minute>:<second>:<second/100><p or a>
 Enter new time:

The punctuation mark ":" separates the three TIME command fields of <hour>,
<minute>, and <second>. Fields after <minute> or <second> may be omitted or

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

considered to be 0. Each field can have the following values:

 <hour>: 0 to 23
 12A (represents midnight)
 0A to 11A (represents midnight to 11 o'clock
 in the morning)
 12P (represents noon)
 1P to 11P (represents 1 o'clock to 11 o'clock
 in the evening)
 <minute>: 0 to 59
 <second>: 0 to 59

examples:

 A>TIME 12 <-- sets time to 12:00:00

 A>TIME 1:16P <-- sets time to 13:16:00

* TYPE

form TYPE <file spec>

The command TYPE displays the contents of a file specified by <file spec>.
Using wildcards in <file spec> causes the first of the corresponding files to
be displayed. This command is for ASCII files, and displaying binary files
causes unreadable control characters to be sent to the screen.

* VERIFY

form VERIFY [ON|OFF]

VERIFY sets/resets the verify mode. When the verify mode is turned ON, after
data is written to the disk, it is always read to ensure that it was written
correctly. This is why disk access takes longer. "VERIFY OFF" is set by
default.

2.3 Batch Command Usage

MSX-DOS has a batch feature that allows a series of commands listed in the
order of operation to be executed automatically. The file containing this
procedureis called a "batch file" and the series of operations defined by a
batch file is called a "batch command".

A batch file uses the extension ".BAT". Typing only the file name (the
extension ".bat" is not typed) at the command line prompt causes MSX-DOS to
execute the commands in the file line by line.

For example, let us consider the following operation:

1. Copy all files on drive A with the extension ".COM" onto drive B.
2. List all "COM" files on drive B.
3. Delete all "COM" files on drive A.

This operation could be achieved by issuing the following commands to

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

MSX-DOS:

A>COPY A:*.COM B:
A>DIR B:*.COM /W
A>DEL A:*.COM

If these three lines are combined into a batch file called "MV.BAT", the
command line input "MV" will automatically execute the operation shown above.
The following list illustrates this.

A>COPY CON MV.BAT -+
COPY A:*.COM B: | creates "MV.BAT"
DIR B:*.COM /W |
DEL A:*.COM -+
^Z Ctrl-Z + RETURN key input

A>TYPE MV.BAT -+
COPY A:*.COM B: | to confirm the contents of "MV.BAT"
DIR B:*.COM /W |
DEL A:*.COM -+

A>MV invokes the batch command "MV"
A>COPY A:*.COM B: reads the first line automatically and executes it
 .
 .
 .
A>DIR B:*.COM /W reads the second line automatically and executes it
 .
 .
 .
A>DEL A:*.COM reads the third line automatically and executes it
 .
 .
 .

A batch operation may be interrupted by pressing Ctrl-C. When Ctrl-C is
entered during batch operations, the request shown in Figure 3.7 is displayed
on the screen.

 Figure 3.7 Interrupt of the batch operation

| |
| Terminate batch file (Y/N)? |

Selecting "Y" here terminates the batch command and returns to MSX-DOS.
Selecting "N" reads the next line of the batch file and continues the
execution of the batch command.

* Batch variables

For more flexible use of the batch command, any string can be passed as
parameters from the command line to the batch command. Parameters passed are

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

referred to with the symbols "%n" where n is any number from 0 to 9. These
"%n" symbols are called batch variables.

Batch variables %1, %2, ... correspond to parameters specified in the command
line from left to right, and %0 is for the name of the batch command itself.

 Figure 3.8 Examples for batch variables usage

| |
| A>COPY CON TEST.BAT creates a batch command |
| REM %0 %1 %2 %3 |
| ^Z |
| 1 file copied |
| A>TYPE TEST.BAT |
| REM %0 %1 %2 %3 a batch command to display 3 arguments |
| |
| A>TEST ONE TWO THREE FOUR executes the batch command, |
| A>REM TEST ONE TWO THREE giving arguments to it |
| A> |

* AUTOEXEC.BAT

The batch file named "AUTOEXEC.BAT" is used as a special autostart program at
MSX-DOS startup. When MSX-DOS is invoked, COMMAND.COM examines whether
AUTOEXEC.BAT exists and, if so, executes it.

2.4 External Commands

External commands exist on the diskette as files with the extension ".COM",
and typing the external command name (except for the extension) causes the
command to be executed in the following manner.

1. loads an external command after 100H
2. calls 100H

* Developing external commands

Assembly language routines created to work in memory at location 100H and
saved under file names with the extension ".COM" are called external commands
and can be executed from MSX-DOS.

For example, consider a program to produce a control code "0CH" by using
one-character output routine (see system calls) and clear the screen. This is
an 8-byte program as shown below.

List 3.1 Contents of CLS.COM
===

1E 0C LD E,0CH ; E := control-code of CLS

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

0F 02 LD C,02H ; C := function No. of CONSOLE OUTPUT
CD 05 00 CALL 0005H ; call BDOS
C9 RET

===

Writing these 8 bytes to a file named CLS.COM produces the external command
"CLS" to clear the screen. The following sample program uses the sequential
file access feature of BASIC to make this command. After this program is run,
the CLS command is created on the diskette. Confirm that the command actually
works after returning to MSX-DOS.

List 3.2 Creating CLS.COM

===

100 '***** This program makes "CLS.COM" *****
110 '
120 OPEN "CLS.COM" FOR OUTPUT AS #1
130 '
140 FOR I=1 TO 8
150 READ D$
160 PRINT #1,CHR$(VAL("&H"+D$));
170 NEXT
180 '
190 DATA 1E,0C,0E,02,CD,05,00,C9

===

* Passing arguments to an external command

When creating an external command, there are two ways to pass arguments from
the command line to the external command. First, when passing the file names
to the command line as arguments, use 5CH and 6CH in the system scratch area.
COMMAND.COM, which always considers the first and second parameters as file
names when external commands are executed, expands them to a drive number (1
byte) + file name (8 bytes) + extension (3 bytes) and stores them in 5CH and
6CH. These are in the same format as the first 12 bytes of FCB, so setting
these address as first addresses of FCB permits various operatuons.

However, since in this method only 16 bytes differ from the starting
addresses of two FCBs, either 5CH or 6CH (only) can be used as a complete
FCB. Next, when passing arguments other than file names (numbers, for
instance) or creating an external command handling more than three file
names, COMMAND.COM stores the whole command line, which invoked the external
command, except for the command line itself in the form of number of bytes (1
byte) + command line body, so it can be used by interpreting it in the
external command properly. See list 3.3 of section 4 for an example of
passing arguments using this DMA area.

3. STRUCTURE OF DISK FILES

Information about the structure of data on the disk and how it is controlled

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

is important when acessing the disk using system calls. This section begins
with a description about "logical sectors" which are the basic units for
exchanging data with the disk on MSX-DOS, and proceeds to the method of
handling data with "files" which is more familiar to programmers.

3.1 Data units on the disk

* Sectors

MSX-DOS can access most types of disk drives including th 3.5 inch 2DD and
hard disks. For handling different media in the same way, the system call
consider "logical sector" as the basic units of data on the disk. A logical
sector is specified by numbers starting from 0.

* Clusters

As long as system calls are used, a sector may be considered the basic unit
of data as considered above. In fact, however, data on the disk is controlled
in units of "clusters" which consists of multiple sectors. As described later
in the FAT section, a cluster is specified by a serial number from 2 and the
top of the data area corresponds to the location of cluster #2. For getting
information about how many sectors a cluster has, use the system call
function 1BH (acquiring disk information).

* Conversion from clusters to sectors

In a part of the directory or FCB, described later, the data location on the
disk is indicated by the cluster. To use system calls to access data
indicated by cluster, the relation of the correspondence between the cluster
and the sector needs to be calculated. Since cluster #2 and the top sector of
the data area reside in the same location, this can be done as follows:

1. Assume the given cluster number is C.
2. Examine the top sector of the data area (by reading DPB) and assume it is
S0.
3. Examine the number of sectors equivalent to one cluster (using function
1BH) and assume it is n.
4. Use the formula S = S0 + (C-2) * n to calculate sector numbers.

In MSX-DOS, sectors in the disk are divided into four areas, as shown in
Table 3.9. The file data body written to the disk is recorded in the "data
area" portion. Information for handling data is written in three areas.
Figure 3.9 shows the relation of the locations of these areas. The boot
sector is always in sector #0, but the top sectors (FAT, directory, and data
area) differ by media, so DPB should be referred to.

 Table 3.9 Disk contents

--
boot sector	MSX-DOS startup program and information proper to the disk
FAT	physical control information of data on the disk
directory	control information of files on the disk
data area	actual file data

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

--

 Figure 3.9 Relation of locations of elements in the disk

 +- ----------------------- <-- sector #0
 | | boot sector |
 | |---------------------| <-- sector #? -+
 | | FAT | | Top sectors of these data
whole |---------------------| <-- sector #? | areas can be acquired by
of a | directory | | referring to DPB.
disk |---------------------| <-- sector #? -+
	data area
 +- ----------------------- <-- last sector

* DPB (drive parameter block) and boot sector

On MSX-DOS, the area "DPB" is allocated in the work area of memory for each
connected drive, and information proper to each drive is recorded there.
MSX-DOS can handle most types of disk drives, because the differences between
media can be compensated for by the process corresponding to each drive.

Information written on DPB, which is originally on the boot sector (sector
#0) of the disk, is read at MSX-DOS startup. Note that the differences
between the contents of the boot sector and DPB, as shown in Figures 3.10 and
3.11. Data is arranged differently in the boot sector and the DPB.

 Figure 3.10 Information of the boot sector

 | |
 |---------------| -+
0B | | |-- 1 sector size (in bytes)
0C | | |
 |---------------| -+
0D | | ---- 1 cluster size (in sectors)
 |---------------| -+
0E | | |-- Number of unused sectors by MSX-DOS
0F | | |
 |---------------| -+
10 | | ---- Number of FATs
 |---------------| -+
11 | | |-- Number of directory entries
12 | | | (How many files can be created)
 |---------------| -+
13 | | |-- Number of sectors per disk
14 | | |
 |---------------| -+
15 | | ---- Media ID
 |---------------| -+
16 | | |-- Size of FAT (in sectors)
17 | | |
 |---------------| -+
18 | | |-- Number of tracks per sector

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

19 | | |
 |---------------| -+
1A | | |-- Number of sides used
1B | | | (either one or two)
 |---------------| -+
1C | | |-- Number of hidden sectors
1D | | |
 |---------------| -+
 | |

 Figure 3.11 DPB structure

BASE -> | | ---- drive number
 |---------------|
+1 | | ---- media ID
 |---------------| -+
+2 | | |-- sector size
+3 | | |
 |---------------| -+
+4 | | ---- directory mask
 |---------------|
+5 | | ---- directory shift
 |---------------|
+6 | | ---- cluster mask
 |---------------|
+7 | | ---- cluster shift
 |---------------| -+
+8 | | |-- top sector of FAT
+9 | | |
 |---------------| -+
+10 | | ---- number of FATs
 |---------------|
+11 | | ---- number of directory entries
 |---------------| -+
+12 | | |-- top sector of data area
+13 | | |
 |---------------| -+
+14 | | |-- amount of cluster + 1
+15 | | |
 |---------------| -+
+16 | | ---- number of sectors required for one FAT
 |---------------| -+
+17 | | |-- top sector of directory area
+18 | | |
 |---------------| -+
+19 | | |-- FAT address in memory
+20 | | |
 ----------------- -+

Use the system call Function 1BH (disk information acquisition) to access the
DPB. This system call returns the DPB address in memory and other information
for each drive written on the boot sector (see section 4 "System call usage"
for the detailed usage).

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

* FAT (file allocation table)

In MSX-DOS, a "cluster" is the data unit for writing to the disk. Files
larger than a cluster are written across multiple clusters. But in this case
adjacent clusters are not always used. In particular, after creating and
deleting files many times, clusters which are no longer used are scattered at
random across the disk. When a large file is created for such cases, the file
is broken down into several clusters and these clusters are stored where
space is available. The linkage information is kept at the beginning so that
the file can be recreated. This is the main function of the FAT.

When a bad cluster is found, FAT is also used to record that location, so
access will not be made there any more. Linkage information of clusters and
information concerning bad clusters is necessary for managing disk files.
Without this information, the whole disk will be unusable. For this reason,
more than one FAT is always prepared in case of accidental erasure.

Figure 3.2 shows an example of a FAT. The first byte is called the "FAT ID"
which contains the value indicating the type of media (the same value as
media ID in Table 3.2). The next two bytes contains meaningless dummy values.
From the fourth byte (start address + 3), actual linkage information is
recorded in an irregular format of 12 bits per cluster. Each 12-bit area
containing linkage information is called a FAT entry. Note that the FAT entry
begins with number 2. The number of the FAT entry is also the number of the
cluster corresponding to it. Read the 12-bit linkage information recorded in
the FAT entry in the way shown in Figure 3.13.

 Figure 3.12 FAT example

 |4 bits |4 bits |
 FAT -----------------
start address ->| F B | ----- FAT ID
 |---------------|
 +1 | F F | --+
 |---------------| |-- dummy
 +2 | F F | |
 |---------------| --+
 +3 | 0 3 |
 |---------------| FAT entry 2 : link = 003H ---+
 +4 | 4 | 0 | +------------------------+
 |---------------| V
 +5 | 0 0 | FAT entry 3 : link = 004H ---+
 |---------------| +------------------------+
 +6 | F F | V
 |---------------| FAT entry 4 : link = FFFH (end)
 +7 | 6 | F |
 |---------------|
 +8 | 0 0 | FAT entry 5 : link = 006H ---+
 |---------------| +------------------------+
 +9 | F F | V
 |---------------| FAT entry 6 : link = FFFH (end)
 +10 | | F |

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

The linkage information is the value indicating the next cluster number. FFFH
means that the file ends with that cluster. The example of Figure 3.12 shows
a file of three clusters, (cluster #2 -> cluster #3 -> cluster #4), and a
file of two clusters, (cluster #5 -> cluster #6). The linkage from the
cluster with the smaller number is only for easy comprehension. In actual
practice, numbers are not necessarily ordered.

 Figure 3.13 Reading FAT

2 1

4

6 5

.
 .
 .

* Directory

The FAT as described above, relates the physical location of data on the disk
and does not include information about the contents of data written there.
Thus, an information resource other than FAT is required to know what kind of
data is in a file. This resource is called a "directory". A directory entry
is composed of 32 bytes and records file names, file attributes, date
created, time created, number of the top cluster of the file, and file size,
as shown in Figure 3.14.

"File attributes" in the directory are used for specifying the invisibility
attribute in a file. Specifying "1" in the second bit from the lowest of this
byte prevents files specified in the directory from being accessed by the
system call (see Figure 3.15). MS-DOS also has a file attribute byte which
permits a write-prohibit attribute using another bit, but MSX-DOS does not
support this feature.

The date and time are recorded so that two bytes of each are divided into
three bitfields, as shown in Figure 3.16 and Figure 3.17. Since only 5 bits
are prepared for the "time" bitfield, the minimum unit for time is two
seconds. The year (1980 to 2079) is specified by using 0 to 99 in 7 bits.

 Figure 3.14 Directory construction

Directory ----------------- -+
header --> | . | |
 . |-- filename (8 characters)
 . |
 +7 | | |
 |---------------| -+
 +8 | | |
 +9 | | |-- extension (3 characters)
 +10 | | |

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 |---------------| -+
 +11 | | ---- file attribute
 |---------------| -+
 . | . | |
 . . |-- space for compatibility with MS-DOS
 . . | (not used by MSX-DOS)
 | | |
 |---------------| -+
 +22 | | |-- time created
 +23 | | |
 |---------------| -+
 +24 | | |-- date created
 +25 | | |
 |---------------| -+
 +26 | | |-- top cluster of the file
 +27 | | |
 |---------------| -+
 +28 | | |
 +29 | | |-- file size
 +30 | | |
 +31 | | |
 ----------------- -+

 Figure 3.15 Invisibility attribute of the file

 (11th byte of the directory)

 | . | . | . | . | . | . | X | . |

 |
 | 0 : enables normal acess
 +----->
 1 : disables access

 Figure 3.16 Bitfield representing time

 (23rd byte of the directory) (22nd byte of the directory)
--------------------------------- ---------------------------------
| h4| h3| h2| h1| h0| m5| m4| m3| | m2| m1| m0| s4| s3| s2| s1| s0|
--------------------------------- ---------------------------------
| | | |
+-------------------+-----------------------------+-------------------+
 hour (0 to 23) minute (0 to 59) second /2 (0 to 29)
 |
 "second" value when multiplied by 2 --+

 Figure 3.17 Bitfield representing date

 (25th byte of the directory) (24th byte of the directory)
--------------------------------- ---------------------------------
| y6| y5| y4| y3| y2| y1| y0| m3| | m2| m1| m0| d4| d3| d2| d1| d0|
--------------------------------- ---------------------------------
| | | |
+---------------------------+---------------------+-------------------+

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 year (0 to 99) month (1 to 12) day (1 to 31)
 |
 +-- corresponds to 1980 to 2079

The place where this directory information is actually recorded is the
directory area on the disk (see Figure 3.9). The location (top sector) is
recorded in the DPB. Directory entries (locations of directory storage) are
arranged every 32 bytes in the driectory area, as shown in Figure 3.18. When
a file is created, the directory is created at the lowest value of unused
directory entries. Deleting a file causes E5H to be written to the first byte
of the corresponding directory entry, which is empty. After all direcotry
entries are exhausted, new files cannot be created even if there is a lot of
unused space on the disk. The number of directory entries, that is, the
number of files which can be created on one disk is also recorded in the DPB.

 Figure 3.18 Organisation of directory area

------ 32 bytes -------
BASE ->

 +32 | COMMAND.COM |
 |-----------------------|
 +64 | E5H | | <-- The directory entry whose first
 |-----------------------| byte is E5H is currently unused
 +96 | TEST |
 |-----------------------|
 | . |
 . |
 .
+32 * n

3.2 File Access

* FCB (file control block)

Using information recorded in the directory area allows data to be treated as
a "file". The advantage of this method is that the data location is not
represented by an absolute number such as sector number or cluster number;
instead, the file can be specified with a "name". The programmer need only
specify the file name and the system will do all the work concerned with
accessing the requested file. In other words, the programmer need not
understand the details of which sectors the file occupies. In this case, FCB
plays an important role for directories.

FCB is the area for storing information needed to handle files using system
calls. Handling one file requires 37 bytes of memory each, as shown in Figure
3.19. Although the FCB can be located anywhere in memory, the address 005CH
is normally used to utilize MSX-DOS features.

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 Figure 3.19 Organization of FCB

FCB ------
bytes | 0 | drive number
from |----|
top | 1 | file name
 | | | filename 8 bytes
 V | 11 | extension 3 bytes
 |----|
 | 12 | current block
 | 13 | number of blocks from the top of the file to the
 |----| current block
 | 14 | record size
 | 15 | 1 to 65535
 |----|
 | 16 | file size
 | | 1 to 4294967296
 | 19 |
 +-- |----|
 | | 20 | date
 | | 21 | same form as directory
 (1) |----|
 | | 22 | time
 | | 23 | same form as directory
 +-- |----|
 | | 24 | device ID
 | |----|
 | | 25 | directory location
 | |----|
 | | 26 | top cluster number of the file
 (2) | 27 |
 | |----|
 | | 28 | last cluster number accessed
 | | 29 |
 | |----|
 | | 30 | relative location from top cluster of the file
 | | 31 | number of clusters from top of the file
 +-- |----| to the last cluster accessed
 | 32 | current record
 |----|
 | 33 | random record
 | | record order from the top of the file
 | 36 | usually stores the last record made random access

Notes: FCB usages differ, depending on whether they use CP/M compatible
system calls or additional system calls. See the decription below for
details.

(1) When using version 2 of MSX-DOS, here is stored the volume-id of the
disk, and should not be modified by the program.
(2) When using version 2 of MSX-DOS, here is stored internal information
relative to the physical location of the file on the disk. The format of this
information is different from shown in figure 3.19, and should not be
modified by the program.

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

* drive number (00H)
Indicates the disk drive containing the file.
(0 -> default drive, 1 -> A:, 2 -> B:...)

* filename (01H to 08H)
A filename can have up to 8 characters. When it has less than 8, the rest are
filled in by spaces (20H).

* extension (09H to 0BH)
A extension can have up to 8 characters. When it has less than 3, the rest
are filled in by spaces (20H).

* current block (0CH to 0DH)
Indicates the block number currently being referred to by sequential access
(see function 14H, 15H in section 4).

* record size (0EH to 0FH)
Specifies the size of data unit (record) to be read or written at one access,
in bytes (see function 14H, 15H, 21H, 27H, 28H).

* file size (10H to 13H)
Indicates the size of the file in bytes.

* date (14H to 15H)
Indicates date when a file was last written. The format is the same as the
one recorded in the directory.

* time (16H to 17H)
Indicates time when a file was last written. The format is the same as the
one recorded in the directory.

* device ID (18H)
When a peripheral is opened as a file, the value shown in Table 3.10 is
specified for this device ID field. For normal disk files, the value of this
field is 40H + drive number. For example, the device ID for drive A is 40H
(for future expansion, application programs should not use the ID byte).

 Table 3.10 Device ID

| Device name | Device ID |
|--------------------+-----------|
CON (Console)	0FFH
PRN (Printer)	0FBH
LST (List=Printer)	0FCH
AUX (Auxiliary)	0FEH
NUL (Null)	0FDH

* directory location (19H)
Indicates the order of the directory entries of a file in the directory area.

* top cluster (1AH to 1BH)
Indicates the top cluster of the file in the disk.

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

* last cluster accessed (1C to 1DH)
Indicates the last cluster accessed.

* relative location from top cluster of last cluster accessed (1EH to 1FH)
Indicates the relative location from the top cluster of the last cluster
accessed.

* current record (20H)
Indicates the record currently being referred to by sequential access (see
function 14H, 15H).

* random record (21H to 24H)
Specifies a record to be accessed by random access or random block access.
Specifying a value from 1 to 63 for the record size field described above
causes all four bytes from 21H to 24H to be used, where only three bytes from
21H to 23H have meaning when the record size is greater than 63 (see function
14H, 15H, 21H, 22H, 27H, 28H).

* Opening a file

A special procedure is required to open a file when using FCB. "Opening a
file" means, at the system call level, transforming the incomplete FCB whose
file name field is only defined for the complete FCB, by using information
written in the directory area. Figure 3.20 shows the differences between
"unopened FCB" and "opened FCB".

 Figure 3.20 Before/after opening FCB

before the open after the opem

 ----- -----
 0 | S | drive number 0 | S | default drive (00H) is converted
 1 | S | ----- 1 | S | to real drive (01H to 06H)
 2 | S | ^ 2 | S |
 3 | S | | 3 | S |
 4 | S | | 4 | S |
 5 | S | | 5 | S |
 6 | S | file name 6 | S |
 7 | S | | 7 | S |
 8 | S | | 8 | S |
 9 | S | | 9 | S |
10 | S | V 10 | S |
11 | S | ----- 11 | S |
12 | | 12 | | \ current block
13 | | 13 | | /
14 | | 14 | | \ record size
15 | | 15 | | /
16 | | 16 | S | --+
17 | | 17 | S | | file
18 | | 18 | S | | size
19 | | 19 | S | --+
20 | | 20 | S | \ date
21 | | 21 | S | /
22 | | 22 | S | \ time
23 | | 23 | S | /

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

24 | | 24 | S | device ID
25 | | 25 | S | directory location
26 | | 26 | S | \ top cluster number number of the file
27 | | 27 | S | /
28 | | 28 | S | \ last cluster number accessed
29 | | 29 | S | /
30 | | 30 | S | \ relative location from top
31 | | 31 | S | / cluster of the file
32 | | 32 | | current record
33 | | 33 | | --+
34 | | 34 | | | random
35 | | 35 | | | record
36 | | 36 | | --+
 ----- -----

* Closing a file

When a file is opened and written to, the contents of each field of FCB, such
as size, is also modified. Unless the updated FCB information is returned to
the directory area, directory information and the actual contents of the file
might be different at the next file access. This operation to return the
updated FCB information to the directory corresponds to closing a file at the
system call level.

* Random block access (file management by records)

MSX-DOS has two system calls dealing with random access, "RANDOM BLOCK READ"
and "RANDOM BLOCK WRITE". With these system calls, a file can be divided into
data units of any size, which can be handled by numbers, such as 0, 1, 2,
..., from the top. This data unit is called a "record". Record size can be
any value of more than one byte. So, treating a whole file as one record
(extreme sequential access), treating data with one byte as one record
(extreme random access), or treating 128 bytes as one record (the CP/M way)
are all possible.

In this case, the FCB fields, "record size" and "random record" are used to
specify the record. The value of the record size field is the number of bytes
in one record. Random record fields can have any record number to be accessed
(for more detailed usage, see descriptions of each system call).

 Figure 3.21 File and record

 +-- +- ----------------
 | record size | | record #0 |
 | +- |--------------| -----------------
 | | record #1 | <--- | random record |
 | |--------------| -----------------
 | | record #2 | point to the
 whole |--------------| record currently
 file | . | accessed
 | .
 | .
 | | |
 | |--------------|

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 | | record #n |
 +-- ----------------

* Sequential access (file management by fixed-length record + current record
+ current block)

MSX-DOS can also access files the same way as CP/M for purposes of
compatibility. One way is the sequential file which is managed by "current
record" and "current block". This uses a 128-byte fixed-length record as the
basic unit of data. File access is always done from the top sequentially and
the number of records which was accessed is counted at the current record
field of FCB. The value of the current record field is reset to 0 when it
reaches 128, and the carry is counted in the current block field.

* Random access (file management by fixed-length record + random record)

A second method included to keept compatibility with CP/M is a random access
method using random record fields. It can access the record of any location
but the record size is fixed at 128 bytes.

4. SYSTEM CALL USAGE

The system calls are a collection of general-purpose subroutines which handle
the basic input/output operations of MSX-DOS. Having these system calls
gathered into BIOS in a predefined manner permits the basic functions of the
MSX disk system to be easily accessed.

There are two purposes of system calls; first, to reduce programming time by
preprogramming basic functions; second, to increase portability by the fact
that all programs share the same basic functions. Utilizing system calls
shortens program development time and makes the developed program highly
portable.

To execute a system call, enter the defined function number in the C register
of the Z80 CPU and call one of the following addresses:

 0005H MSX-DOS
 F37DH (&HF37D) MSX DISK-BASIC

For example, when the function number is 01FH and the system call requires
00H to be set in the A register, the following assembler code can be used
with MSX-DOS:

 LD A,00H
 LD C,01FH
 CALL 0005H
 .
 .
 .

The CALL statement is also used in operations that return values or restore
registers from memory. System calls can also be used from DISK-BASIC by using
the entry address of F37DH. For this case, store the machine codes in the
area allocated by the CLEAR statement and call its start address using the

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

USR function.

* System call format

This section introduces system call usages in the following notation:

--
| Function: function number |
| Setup: value needed to be set in register or memory by programmer |
Return value: value set in register by system call

Function:

The function number is used to identify the system call. When using a system
call, set the function number in the C register.

Setup:

In this section, "setup:" indicates the value to be set in the named register
or memory location before executing system calls.

Return value:

The result obtained by a system call is normally set in a register or memory
location. This is called output in this section and "return value:" indicates
where and how this output is set.

Is important to note that when using system calls, the contents of registers
other than those specified are sometimes destroyed. So, before using system
calls, store the contents of registers whose value you do not want to change
in an appropriate place (stack, for example) before executing system calls.

There are forty-two MSX system calls. These are listed in Table 3.11, and are
described in this section. There are four categories:

 * Peripheral I/O
 * Environment setting
 * Absolute READ/WRITE (direct access to sector)
 * File access using FCB

 Table 3.11 List of System Calls

Function no. Function

 00H system reset
 01H get one character from console (input wait,
 echo back, control code check)
 02H send one character to console
 03H get one character from auxiliary device
 04H send one character to auxiliary device
 05H send one character to printer

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 06H get one character from console (no input wait,
 no echo back, no control code check)/ one character
 output
 07H get one character from console (input wait,
 no echo back, no control code check)
 08H get one character from console (input wait,
 no echo back, control code check)
 09H send string
 0AH get string
 0BH check input from console
 0CH get version number
 0DH disk reset
 0EH select default drive
 0FH open file
 10H close file
 11H search the first file matched with wildcard
 12H search the second and after the second file
 matched wildcard
 13H delete file
 14H read sequential file
 15H write sequential file
 16H create file
 17H rename file
 18H get login vector
 19H get default drive name
 1AH set DMA address
 1BH get disk information
 1CH-20H no function
 21H write random file
 22H read random file
 23H get file size
 24H set random record field
 25H no function
 26H write random block
 27H read random block
 28H write random file (00H is set to unused portion)
 29H no function
 2AH get date
 2BH set date
 2CH get time
 2DH set time
 2EH set verify flag
 2FH read logical sector
 30H write logical sector

* Note

System call function numbers are from 00H to 30H; the following seven numbers
are blank:

 1CH to 20H, 25H, 29H

Calling these blank funtion system calls do nothing except setting 00H in the
A register. System calls after function 31H are undefined. Using them may
cause unpredictable results (not advisable).

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

List 3.3 Utility routines
===

;**
;
; List 3.3 utility.mac
;
; these routines are used in other programs
;
; GETARG, STOHEX, PUTHEX, PUTCHR, DUMP8B
;
;**
;
 PUBLIC GETARG Note: Five utility routines included in
 PUBLIC STOHEX this program list will be used in
 PUBLIC PUTHEX sample programs later.
 PUBLIC PUTCHR
 PUBLIC DUMP8B

BDOS: EQU 0005H
DMA: EQU 0080H

;----- DE := address of arg(A)'s copy -----

GETARG: PUSH AF Note: Nth parameter (N is specified by
 PUSH BC A register) of the command line
 PUSH HL stored in default DMA area
 (0080H to) is loaded in memory and
 LD C,A its starting address is returned in
 LD HL,DMA DE register.
 LD B,(HL)
 INC HL
 INC B

SKPARG: DEC B
 JR NZ,NOARG
SKP1: LD A,(HL)
 INC HL
 CALL TERMCHK
 JR NZ,SKP1
SKP2: LD A,(HL)
 INC HL
 CALL TRMCHK
 JR Z,SKP2
 DEC HL
 DEC C
 JR NZ,SKPARG

CPYARG: LD DE,BUFMEM
CPY1: LD A,(HL)
 LD (DE),A
 INC HL
 INC DE
 CALL TRMCHK
 JR NZ,CPY1

 DEC DE

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 LD A,"$"
 LD (DE),A
 LD DE,BUFMEM
 JR EXIT

NOARG: LD DE,BUFMEM
 LD A,"$"
 LD (DE),A

EXIT: POP HL
 POP BC
 POP AF
 RET

TRMCHK: CP 09H
 RET Z
 CP 0DH
 RET Z
 CP " "
 RET Z
 CP ";"
 RET

;----- HL := hexadecimal value of [DE] -----

SOTHEX: PUSH AF Note: Hexadecimal string indicated by
 PUSH DE DE register is converted into
 LD HL,0000H two-byte integer and stored in
 CALL STOH1 HL register.
 POP DE
 POP AF
 RET

STOH1: LD A,(DE)
 INC DE
 SUB "0"
 RET C
 CP 10
 JR C,STOH2
 SUB "A"-"0"
 RET C
 CP 6
 RET NC
 ADD A,10

STOH2: ADD HL,HL
 ADD HL,HL
 ADD HL,HL
 ADD HL,HL
 OR L
 LD L,A
 JR STOH1

;----- print A-reg, in hexadecimal form (00-FF) -----

PUTHEX: PUSH AF Note: Contents of A register is displayed
 RR A using two hexadecimal digits.

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 RR A
 RR A
 RR A
 CALL PUTHX1
 POP AF
PUTHX1: PUSH AF
 AND 0FH
 CP 10
 JR C,PUTHX2
 ADD A,"A"-10-"0"
PUTHX2: ADD A,"0"
 CALL PUTCHR
 POP AF
 RET

;----- put character -----

PUTCHR: PUSH AF
 PUSH BC
 PUSH DE
 PUSH HL
 LD E,A
 LD C,02H
 CALL BDOS
 POP HL
 POP DE
 POP BC
 POP AF
 RET

;----- dumps 8bytes of [HL] to [HL+7] in hexa & ASCII form -----

DUMP8B: PUSH HL Note: Contents of eight bytes after the
 LD B,8 address indicated in HL register
DUMP1: LD A,(HL) are dumped in both hexadecimal
 INC HL and character codes.
 CALL PUTHEX
 LD A," "
 CALL PUTCHR
 DJNZ DUMP1
 POP HL
 LD B,8
DUMP2: LD A,(HL)
 INC HL
 CP 20H
 JR C,DUMP3
 CP 7FH
 JR NZ,DUMP4
DUMP3: LD A,"."
DUMP4: CALL PUTCHR
 DJNZ DUMP2
 LD A,0DH
 CALL PUTCHR
 LD A,0AH
 CALL PUTCHR
 RET

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

;----- work area -----

BUFMEM: DS 256

 END

===

4.1 Peripheral I/O

The following system calls are intended for input/output operations. Some
examples include console I/O (screen/keyboard), auxiliary I/O (external
input/output), and printer I/O. Since subroutines such as getting information
from the keyboard or controlling printers are necessary for most programs,
you will find the system calls described in this section useful for general
programming.

* Console input

Function: 01H
Setup: none
Return value: A register <-- one character from console

When there is no input (no key pressed and input buffer empty), an input is
wait for. Input characters are echoed back to the console. The following
control character input is allowed: Ctrl-C causes program execution to be
halted and a return to the MSX-DOS command level; Ctrl-P causes any sucessive
input to also echoed to the printer until Ctrl-N is accepted; Ctrl-S causes
the display to stop until any key is pressed.

 Ctrl-C system reset
 Ctrl-P printer echo
 Ctrl-N halt printer echo
 Ctrl-S pause display

* Console output

Function: 02H
Setup: E register <-- character code to be sent out
Return value: none

This system call displays the character specified by the E register on the
screen. It also checks the four control characters, listed above.

* External input

Function: 03H
Setup: none
Return value: A register <-- one character from AUX device

This system call checks four control characters.

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

* External output

Function: 04H
Setup: E register <-- character code to send to AUX device
Return value: none

This system call checks four control characters.

* Printer output

Function: 05H
Setup: A register <-- one character from console

This system call does not echo back. It treats control characters in the same
way as function 01H.

* Direct console input/output

Function: 06H
Setup: E register <-- character code to be send to the console
 When 0FFH is specified, the character will be input
 from the console.
Return value: When the E register is set to 0FFH (input), the result of
 input is in the A register. The value set in the A register
 is the character code of the key, if it was pressed;
 otherwise, the value is 00H. When the E register is set to
 a value other than 0FFH (output), there is no return value.

This system call does not support control characters and does not echo back
input. This system call checks four control characters.

* Direct console input - 1

Function: 07H
Setup: none
Return value: A register <-- one character from console

This system call does not support control characters, nor echo back.

* Direct console input - 2

Function: 08H
Setup: none
Return value: A register <-- one character from console

This system call does not echo back. It treats control characters in the same
way as function 01H.

* String output

Function: 09H
Setup: DE register <-- starting address of string, prepared on

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 memory, to be sent to the console.
Return value: none

24H ("$") is appended to the end of the string as the end symbol. This system
call checks and performs four control character functions, as listed
previously.

* String input

Function: 0AH
Setup: The address of memory where the maximum number of input
 characters (1 to 0FFH) is set should be set in the DE
 register.
Return value: Number of characters actually sent from console is set in the
 address, one added to the address indicated by the DE
 register; string sent from console is set in the area from
 the address, two added to the address indicated by the DE
 register.

Return key input is considered as the end of console input. However, when the
number of input characters exceeds the specified number of characters
(contents indicated by DE register, 1 to 255), characters within the
specified number of characters will be treated as an input string and set in
memory, and the operation ends. The rest of characters including the return
key are ignored. Editing with the template is available to string input using
this system call. This system call checks and performs four control character
function, as listed previously.

* Console status check

Function: 0BH
Setup: none
Return value: 0FFH is set in the A register when the keyboard is being
 pressed; otherwise, 00H is set.

This system call checks and performs four control character function, as
listed previously.

4.2 Environment Setting and Readout

The following system calls set the MSX system environment; for example,
changing the default drive, or setting various default values of the system

* System reset

Function: 00H
Setup: none
Return value: none

When this is called in MSX-DOS, the system is reset by jumping to 0000H. When
MSX DISK-BASIC call this, it is "warm started". That is, it returns to BASIC
command level without destroying programs currently loaded.

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

* Version number acquisition

Function: 0CH
Setup: none
Return value: HL register <-- 0022H

This system call is for acquiring various CP/M version numbers, on MSX-DOS,
however, 0022H is always returned.

* Disk reset

Function: 0DH
Setup: none
Return value: none

If there is a sector which has been changed but not written to the disk, this
system call writes it to the disk, then it sets the default drive to drive A
and sets DMA to 0080H.

* Default drive setting

Funtion: 0EH
Setup: E register <-- default drive number (A = 00H, B = 01H, ...)
Return value: none

Disk access by the system calls are made to the drive indicated by the
default drive number, unless otherwise specified. Note that, when the drive
number, which is set in the FCB specified upon calling the system call, is
other than 00H, the default drive setting made by this system call is
ignored.

* Login vector acquisition

Function: 18H
Setup: none
Return value: HL register <-- online drive information

The online drive is the drive connected to MSX normally when the disk system
is booted up. Executing this system call causes each drive to be examined
whether it is online, and the result is returned in the HL register as shown
in Figure 3.22. When the bit is "1", the corresponding drive is online;
otherwise it is not.

 Figure 3.22 Login vector

--
| register name | H | L |
|----------------+--------------------------+--------------------------|
| bit number | 7 6 5 4 3 2 1 0 | 7 6 5 4 3 2 1 0 |
|----------------+--------------------------+--------------------------|
| drive name | meaningless on MSX-DOS | H: G: F: E: D: C: B: A: |
|----------------+---|
| online/offline | 1 is set for online and 0 for offline in each bit |

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

--

* Default drive acquisition

Function: 19H
Setup: none
Return value: A register <-- defaut drive number (A = 00H, B = 01H, ...)

* Setting of address to be transferred to

Function: 1AH
Setup: DE register <-- address setting to be transferred to
 (DMA address)
Return value: none

Though DMA address is initialized to 0080H at system reset, it can be reset
to any address by using this system call.

* Disk information acquisition

Function: 1BH
Setup: E register <-- number of the objective drive
 (default drive = 00H, A = 01H, B = 02H, ...)
Return value: A register <-- number of logical sectors per one cluster
 (FFH if E register is set inappropriate)
 BC register <-- logical sector size
 DE register <-- amount of clusters
 IX register <-- DPB starting address
 IY register <-- FAT starting address on memory

This system call gets the information about the disk in the specified drive.
Specifying 00H for the drive number specifies the default drive. For other
than that, specify 01H for drive A, 02H for drive B, and so on.

This system call has been created for MSX-DOS and is not compatible with
CP/M.

* Date acquisition

Function: 2AH
Setup: none
Return value: HL register <-- year
 D register <-- month
 E register <-- day of month
 A register <-- day of week

This system call has been created for MSX-DOS and is not compatible with
CP/M.

* Date setting

Function: 2BH

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

Setup: HL register <-- year
 D register <-- month
 E register <-- day of month
Return value: A indicates whether the system call has done succesfully. If
 successful, the A register is set to 00H; otherwise, 0FFH.

This system call has been created for MSX-DOS and is not compatible with
CP/M.

* Time acquisition

Function: 2CH
Setup: none
Return value: H register <-- hour
 L register <-- minute
 D register <-- second
 E register <-- 1/100 second

This system call has been created for MSX-DOS and is not compatible with
CP/M.

* Time setting

Function: 2DH
Setup: H register <-- hour
 L register <-- minute
 D register <-- second
 E register <-- 1/100 second
Return value: If successful, the A register is set to 00H; otherwise, 0FFH

This system call has been created for MSX-DOS and is not compatible with
CP/M.

* Verify flag setting

Function: 2EH
Setup: E register <-- 00H, when resetting verify flag
 E register <-- value other than 00H, when setting
 the verify flag
Return value: none

Setting the verify flag causes successive writing to the disk to be done in
mode "verify on". That is, by reading the contents written on the disk, the
check is made to compare them with the contents to be written.

This system call has been created for MSX-DOS and is not compatible with
CP/M.

4.3 Absolute READ/WRITE (direct access to sectors)

MSX manages the disk with the "logical sector" as a minimum unit. The logical
sector is defined independent of the physical secotrs of the disk, and is
numbered from 0 to the maximum logical sector (maximum number depends on the

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

kind of the disks).

Logical sectors enable users of MSX-DOS or MSX DISK-BASIC to access the disk
without being concerned about the number of physical sectors per track, where
that number depends on the media type of the disk. In fact, by utilizing
system calls which use FCB (file control block), the file can be easily
handled in detail even without considering logical sectors, so the user does
not even need to use logical sectors. But for some purposes, access using
logical sectors is desirable, so MSX-DOS ans MSX DISK-BASIC offer system
calls which can access logical sectors.

This section describes the system calls which access the disk by use of
logical sectors.

* Reading from the disk using logical sectors

Function: 2FH
Setup: The logical sector number to be read from (for more than
 one logical sector, the starting logical sector number)
 should be set in the DE register. The number of logical
 sectors to be read should be set in the H register, and
 the drive number (00H for drive A, 01H for drive B, and
 so on. The same follows for function 30H below) to be used
 to read should be set in the L register.
Return value: The contents read are set in the DMA buffer.

This system call reads out a specified number of continuous logical sectors
from the specified logical sector of the specified drive and stores the
contents in memory after DMA. It then stores the contents of what it has read
in memory after DMA. Function 1AH (which specifies the address it is to be
transferred to) assures that there is enough available space in memory.

This system call has been created for MSX-DOS and is not compatible with
CP/M.

* Writing to the disk using logocal sectors

Function: 30H
Setup: Contents to be written should be set in memory area after
 the address indicated by DMA. The logical sector number from
 where the writing begins should be set in the DE register.
 The number of logical sectors to be written should be set
 in the H register. The drive number to be written to should
 be set in the L register.
Return value: none

This system call has been created for MSX-DOS and is not compatible with
CP/M.

List 3.4 Cluster dump
===

;***
;

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

; List 3.4 cluster dump
;
; this program must link List 3.3
;
;***
;
 EXTRN GETARG Note: The first 128 bytes of an arbitrary
 EXTRN STOHEX cluster specified in the command
 EXTRN PUTHEX line are dumped.
 EXTRN PUTCHR
 EXTRN DUMP8B

BDOS EQU 0005H

;----- program start -----

 LD A,1
 CALL GETARG ;[DE] := 1st argument of command line
 CALL STOHEX ;HL := evaluate [DE] as hexadecimal
 ; this is the target cluster No.
 PUSH HL
 LD E,00H ;requests the default drive
 LD C,1BH ;get disk information
 CALL BDOS
 POP HL
 CP 0FFH ;fail ?
 JR NZ,L2 ;if not fail, A := sector/cluster and goto L2

 LD DE,ERMSG1 ;[DE] := 'Cannot get Disk information'
 LD C,09H ;string putput function
 CALL BDOS
 RET ;error return

L2: LD E,(IX+12) ;DE := 1st sector of data area
 LD D,(IX+13)
 DEC HL
 DEC HL ;HL := Cluster No. - 2
 LD B,H
 LD C,L ;BC := Cluster No. - 2
LOOP: DEC A ;Count N times
 JR Z,RESULT
 ADD HL,BC
 JR LOOP
RESULT: ADD HL,DE ;HL := sector of target cluster
 PUSH HL ;save target sector
 LD DE,NEWDMA ;we reserved 1024 bytes area for DMA
 LD C,1AH ;Set DMA address function
 CALL BDOS
 LD C,19H
 CALL BDOS ;default drive ?
 LD L,A
 POP DE ;DE := target sector
 LD H,1 ;H := 1 (read 1 sector only)
 LD C,2FH ;absolute read function
 CALL BDOS ;data will be set into DMA

DUMP: LD HL,NEWDMA ;HL := DMA address

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 LD DE,0000H ;DE := relative address from cluster top
 LD B,16 ;dump 16 lines
DLOOP: PUSH BC
 LD A,D
 CALL PUTHEX
 LD A,E
 CALL PUTHEX
 LD A," "
 CALL PUTCHR
 PUSH HL
 LD HL,8
 ADD HL,DE
 EX DE,HL ;DE := DE+8
 POP HL
 CALL DUMP8B ;8 bytes dump subroutine (in another file)
 POP BC
 DJNZ DLOOP
 RET ;all work have done.

;----- work area -----

NEWDMA: DS 1024 ;Private DMA area
ADRS: DS 2

ERMSG1: DB "Cannot get Disk information.$"
ERMSG2: DB "Cannot read that cluster.$"

 END

===

4.4 File Access Using FCB

Since accessing a file is difficult when using the system calls described in
the previous section (which read and write logical sectors directly), system
calls using FCB are needed to easier access the disk by specifying files.

There are three categories of system calls using FCB. First is sequential
file access and second is random file access, both are offered to maintain
CP/M compatibility. The third is what gives MSX-DOS its power: random block
access. This method is not available in CP/M. Random block access has the
following features:

 * Any record size can be specified
 * Random access can be made to multiple records
 * File size can be controlled in bytes

This section describes system calls for file access using FCB, including
random block access. Note that the following three functions do not work
correctly when FCB is in the address range 4000H to 7FFFH:

 1. Function call 11H
 2. Function call 12H
 3. Input/output for devices (CON, PRN, NUL, AUX)

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

* Opening files

Function: 0FH
Setup: DE register <-- starting address of FCB which is not opened
Return value: 00H is set in the A register when a file is opened
 succeessfully; otherwise 0FFH is set. When a file is opened
 successfully, each field of the FCB is set.

When 00H is specified for a drive number, the default drive set by function
0EH (default drive setting) is used. To open a file on another drive, specify
01H for drive A, 02H for drive B and so on.

When a file is opened by this system call, all FCB fields except record size,
current block, current record, and random record are set using information
from the directory area on the disk. Fields which are not set should be set
by the user after executing this system call, if needed. The state that each
field of FCB is set is "the state that file is opened" when using system
calls using FCB, and, in this case, system calls which access the file using
FCB, described below, can be used.

* Closing files

Function: 10H
Setup: DE register <-- starting address of opened FCB
Return value: 00H is set in the A register when file is closed
 scuccessfully; otherwise, 0FFH is set.

By writing the current contents of FCB in memory to the corresponding
directory area on the disk, file information can be kept current. When the
file is only read, it does not need to be closed by using this system call.

* File search - 1

Function: 11H
Setup: DE register <-- starting address of FCB which is not opened
Return value: 00H is set in the A register when the file is found;
 otherwise 0FFH is set. When the file is found, the directory
 entry (32 bytes) of the file on the disk is set in the area
 indicated by DMA, and FCB drive number is set (thus, 33 bytes
 are used).

Wildcard characters can be used in the name of the file. For example, a
specification "????????.c" causes any file name with an extension of "c" to
be searched for, and the directory information of the file first found is
written in after DMA. To find all matching files or to see whether there is
only one matching file, use function 12H described below.

* File search - 2

Function: 12H
Setup: none
Return value: 00H is set in the A register when the file is found;
 otherwise 0FFH is set. When the file is found, the directory
 entry (32 bytes) of the file on the disk is set in the area

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 indicated by DMA, and the FCB drive number is set
 (thus, 33 bytes are used).

This system call should be used to search for multiple files meeting the file
name specification by wildcard characters in function 11H. So this function
should not be used by itself.

This system call allows the directory information of files meeting the
specifications in function 11H to be listed in order, one by one.

* Deleting files

Function: 13H
Setup: DE register <-- starting address of FCB which is not opened
Return value: 00H is set in the A register when file is successfully
 deleted., otherwise 0FFH is set.

Using wildcard characters for the file name may cause more than one file to
be deleted. Exercise caution when using wildcards to delete files.

* Sequential readout

Function: 14H
Setup: DE register <-- starting address of opened FCB
 FCB current block <-- starting block for readout
 FCB current record <-- starting record for readout
Return value: 00H is set in the A register when readout is successful;
 otherwise 01H is set. When successful, one record which has
 been read is set in the area indicated by DMA.

The FCB current block and record will be updated automatically after the
readout. That is, in successive readouts, the current block and record do not
need to be set. The record size for readout is fixed at 128 bytes.

* Sequential writing to the disk

Function: 15H
Setup: DE register <-- starting address of opened FCB
 FCB current block <-- starting block for writing
 FCB current record <-- starting record for writing
 128 bytes starting from DMA <-- data to be written
Return value: 00H is set in the A register when writing is successful;
 otherwise 01H is set.

The FCB current block and record will be updated automatically after the
readout.

* Creating files

Function: 16H
Setup: DE register <-- starting address of FCB which is not opened
Retu4rn value: 00H is set in the A register when the file is created
 successfully; otherwise 0FFH is set.

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

The record size, current block and record, and the random record of the FCB
should be set after executing this system call.

* Renaming files

Function: 17H
Setup: New file name should be set within 11 bytes after the
 18th byte of the FCB (2nd byte of file size field
 of FCB = 16 bytes after old file name) corresponding to
 old file name (that is, it should be set in 18th to 28th
 byte), the FCB address should be set in the DE register.
Return value: 00H is set in the A register when the file name is renamed
 successfully; otherwise 0FFH is set.

Wildcard characters can be used for both the new and old file names. For
example, specifying "????????.o" for the old file name and "????????.obj" for
the new file name causes the extension of all files having ".o" to be changed
to ".obj".

* Random reading from the disk

Function: 21H
Setup: DE register <-- starting address of opened FCB
 random record in FCB <-- record for readout
Return value: 00H is set in the A register when readout is successful;
 otherwise 01H is set. When successful, the contents of one
 record which has been read are set in the area indicated
 by DMA.

The lenght of the record is fixed to 128 bytes.

* Random writing to the disk

Function: 22H
Setup: DE register <-- starting address of opened FCB
 random record in FCB <-- record to be written to
 128 bytes starting from DMA <-- data to be written
Return value: 00H is set in the A register when writing is successful;
 otherwise 01H is set.

The lenght of the record is fixed to 128 bytes.

* File size acquisition

Function: 23H
Setup: DE register <-- starting address of FCB which is not opened
Return value: 00H is set in the A register when the function is successful;
 otherwise 00H is set. When successful, the size of the
 specified file is set in increments of 128 bytes, in the
 first three bytes of the random record field.

The file size is calculated in increments of 128 bytes. That is, 2 would be
set for files ranging in size from 129 bytes to 256 bytes. Thus a file with

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

257 bytes would return a value of 3.

* Random record field setting

Function: 24H
Setup: DE register <-- starting address of opened FCB
 FCB current block <-- objective block
 FCB current record <-- objective record
Return value: Current record position, calculated from the current block
 and record fields of specified FCB, is set in the random
 record field.

* Random writing to the disk - 2 (random block access)

Function: 26H
Setup: DE register <-- the starting address from the FCB
 FCB record size <-- size of record to be written
 FCB random record <-- the record ID number
 HL register <-- the number of records to be written
 DMA memory buffer <-- the data to be written
Return value: 00H is set in the A register when writing is successful;
 otherwise 01H is set.

After writing to the disk, the value of the random record field is
automatically updated and points to the next record. The size of one record
can be set to any value from 1 byte to 65535 bytes by setting the desired
value in the FCB record size field. When 0 records are to be written, the
file lenght is calculated at the record size multiplied by the record number.
The rest is discarded.

This system call has been created for MSX-DOS and is not compatible with
CP/M.

* Random readout - 2 (random block access)

Function: 27H
Setup: DE register <-- starting address of opened FCB
 FCB record size <-- record size to be read
 FCB random record <-- record to start reading
 HL register <-- number of records to be read
Return value: 00H is set in the A register when data is read successfully;
 otherwise 01H is read. The number of records actually read
 is set back in the HL register. When this number is almost
 one, the data which has been read is set in the area
 indicated by DMA.

After readout, the random record field is automatically updated. After
executing this system call, the total number of records actually read is set
in the HL register. That is, if the end of file is reached before the
specified number of records have been read, the actual number of records read
will be returned in the HL register.

This system call has been created for MSX-DOS and is not compatible with
CP/M.

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

* Random writing - 3

Function: 28H
Setup: DE register <-- starting address of opened FCB
 FCB random record <-- record to be written
 128 bytes in DMA buffer <-- data to be written
Return value: 00H is set in the A register when writing is successful;
 otherwise, 01H is set.

The lenght of records is fixed at 128 bytes.

This system call is the same as 22H except for one point. When the file
becomes large, 00H is written to the added records coming before the
specified record.

List 3.5 File dump
===

;**
;
; List 3.5 file dump
;
; this program must link List 3.3
;
;**
;
 EXTRN GETARG Note: gets the dump list of the file
 EXTRN STOHEX specified at the command line
 EXTRN PUTCHR
 EXTRN PUTHEX
 EXTRN DUMP8B

BDOS: EQU 0005H Note: The file name specified as the first
FCB: EQU 005CH parameter of the command line is
 stored in the default FCB area
 from (005CH)

;----- program start -----

 LD DE,FCB ;DE := default FCB address
 LD C,0FH ;open file function
 CALL BDOS
 OR A ;success ?
 JR Z,READ ;if so, goto READ

 LD DE,ERMSG1 ;[DE] := 'Cannot open that file'
 LD C,09H ;string output function
 CALL BDOS
 RET ;error return

READ: LD A,2
 CALL GETARG ;get 2nd argument of command line
 CALL STOHEX ;HL := value of the argument
 LD (ADRS),HL ;set address counter

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 LD DE,NEWDMA
 LD C,1AH ;set DMA address function
 CALL BDOS

 LD HL,8
 LD (FCB+14),HL ;record size := 8

 LD HL,0
 LD (FCB+33),HL
 LD (FCB+35),HL ;random record := 0

RD1: LD HL,NEWDMA ;clear DMA area
 LD B,8
RD2: LD (HL)," "
 INC HL
 DJNZ RD2

 LD HL,1 ;read 1 record
 LD DE,FCB
 LD C,27H ;random block read function
 CALL BDOS
 OR A ;success ?
 JR Z,DUMP ;if so, goto DUMP

 LD DE,ERMSG2 ;[DE] := 'Ok.'
 LD C,09H ;string output function
 CALL BDOS
 RET

DUMP: LD HL,(ADRS)
 LD A,H
 CALL PUTHEX
 LD A,L
 CALL PUTHEX
 LD A," "
 CALL PUTCHR
 LD DE,8
 ADD HL,DE
 LD (ADRS),HL

 LD HL,NEWDMA
 CALL DUMP8B ;dump 8 bytes

 JR RD1

;----- work area -----

ADRS: DS 2
NEWDMA: DS 8

;----- error message -----

ERMSG1: DB "Cannot open that file.$"
ERMSG2: DB "Ok.$"

 END

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

===

MSX2 TECHNICAL HANDBOOK

Edited by: ASCII Systems Division
Published by: ASCII Coprporation - JAPAN
First edition: March 1987

Text files typed by: Nestor Soriano (Konami Man) - SPAIN
 March 1997

Changes from the original:

- In Figure 4.3, "Port#17" indication is corrected to "R#17".

- In Figure 4.4, "00" field in R#17 is corrected to "10".

- In section 3.2.2, subsection "Pattern name table", text "12 low order bits
o the address (A9 to A0)" is corrected to "12 low order bits of the address
(A11 to A0)"

- In Figure 4.17, the numerations of the two last rows in the Screen
correspondence table, originally "22" and "23", are corrected to "25" and
"26" respectively.

- In section 3.2.2, subsection "Blink table", the text "the 9 low order bits
of the address (A9 to A0)" is corrected to "the 8 low order bits of the
address (A8 to A0)".

- In Figure 4.25, indication "Specifies the value of the screen (0 to 15)" is
changed to "Specifies the border colour (0-15)".

- In Figure 4.34, in the screen correspondance table, the three stages of the
screen are named "Upper stage of screen" in the original. This is corrected,
and the stages are named "Upper", "Middle" and "Lower".

- The title of section 3.6.3 is "Screen colour mode specification" in the
original. The word "mode" is erased.

- In section 3.8.2, the text "by writing the 2 high order bits" is corrected
to "by writing the high order bit".

- The title of Figure 4.63 is "Judging the conflict (sprite mode 2)" in the
original. This is corrected to "Judging the conflict (sprite mode 1)".

- In Figure 4.68, indication "Color code = 8 or 4 or 12" is changed to "Color
code = 8 or 4 = 12".

-=-

CHAPTER 4 - VDP AND DISPLAY SCREEN (Parts 1 to 5)

The MSX2 machines uses an advanced VDP (video display processor) for its
display screen, the V9938 (MSX-VIDEO). This LSI chip allows for several new
graphics features to be accessed by the MSX2 video display. It is also fully

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

compatible with the TMS9918A used in the MSX1.

Chapter 4 describes how to use this video display processor. It describes
functions not accessible by BASIC. For mode details (e.g. hardware
specifications, see V9938 MSX-VIDEO Technical Data Book (ASCII)).

1. MSX-VIDEO CONFIGURATION

The following features of the MSX-VIDEO give it a better display capabilities
than the TMS9918A:

* 512 colours with a 9-bit colour palette
* Max. 512 x 424 dot resolution (when using the interlace)
* Max. 256 colours at the same time
* Full bitmap mode which makes graphic operations easy
* Text display mode of 80 characters per line
* LINE, SEARCH, AREA-MOVE executable by hardware
* Up to 8 sprites on the same horizontal line
* Different colours can be specified for each line in a sprite
* Video signal digitizing feature built-in
* Superimpose feature built-in

1.1 Registers

MSX-VIDEO uses 49 internal registers for its screen operations. These
registers are referred to as "VDP registers" in this book. VDP registers are
classified by function into three groups as described below. The control
register group and status register group can be referred to using VDP(n)
system variables from BASIC.

(1) Control register group (R#0 to R#23, R#32 to R#46)

This is a read-only 8-bit register group controlling MSX-VIDEO actions.
Registers are expressed using the notation R#n. R#0 to R#23 are used to set
the screen mode. R#32 to R#46 are used to execute VDP commands. These VDP
commands will be described in detail in section 5. Control registers R#24 to
R#31 do not exist. The roles of the different control registers are listed in
Table 4.1.

 Table 4.1 Control register list

	Corres-	
R#n	ponding	Function
	VDP(n)	
------+---------+--		
R#0	VDP(0)	mode register #0
R#1	VDP(1)	mode register #1
R#2	VDP(2)	pattern name table
R#3	VDP(3)	colour table (LOW)
R#4	VDP(4)	pattern generator table
R#5	VDP(5)	sprite attribute table (LOW)
R#6	VDP(6)	sprite pattern generator table

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

R#7	VDP(7)	border colour/character colour at text mode
R#8	VDP(9)	mode register #2
R#9	VDP(10)	mode register #3
R#10	VDP(11)	colour table (HIGH)
R#11	VDP(12)	sprite attribute table (HIGH)
R#12	VDP(13)	character colour at text blinks
R#13	VDP(14)	blinking period
R#14	VDP(15)	VRAM access address (HIGH)
R#15	VDP(16)	indirect specification of S#n
R#16	VDP(17)	indirect specification of P#n
R#17	VDP(18)	indirect specification of R#n
R#18	VDP(19)	screen location adjustment (ADJUST)
R#19	VDP(20)	scanning line number when the interrupt occurs
R#20	VDP(21)	colour burst signal 1
R#21	VDP(22)	colour burst signal 2
R#22	VDP(23)	colour burst signal 3
R#23	VDP(24)	screen hard scroll
R#32	VDP(33)	SX: X-coordinate to be transferred (LOW)
R#33	VDP(34)	SX: X-coordinate to be transferred (HIGH)
R#34	VDP(35)	SY: Y-coordinate to be transferred (LOW)
R#35	VDP(36)	SY: Y-coordinate to be transferred (HIGH)
R#36	VDP(37)	DX: X-coordinate to be transferred to (LOW)
R#37	VDP(38)	DX: X-coordinate to be transferred to (HIGH)
R#38	VDP(39)	DY: Y-coordinate to be transferred to (LOW)
R#39	VDP(40)	DY: Y-coordinate to be transferred to (HIGH)
R#40	VDP(41)	NX: num. of dots to be transferred in X direction (LOW)
R#41	VDP(42)	NX: num. of dots to be transferred in X direction (HIGH)
R#42	VDP(43)	NY: num. of dots to be transferred in Y direction (LOW)
R#43	VDP(44)	NY: num. of dots to be transferred in Y direction (HIGH)
R#44	VDP(45)	CLR: for transferring data to CPU
R#45	VDP(46)	ARG: bank switching between VRAM and expanded VRAM
R#46	VDP(47)	CMR: send VDP command

(2) Status register (S#0 to S#9)

This is a read-only 8-bit register group which reads data from MSX-VIDEO.
Registers are expressed using the notation S#n. The functions of the
registers are listed in Table 4.2.

 Table 4.2 Status register list

	Corres-	
S#n	ponding	Function
	VDP(n)	
------+---------+--		
S#0	VDP(8)	interrupt information
S#1	VDP(-1)	interrupt information
S#2	VDP(-2)	DP command control information/etc.
S#3	VDP(-3)	coordinate detected (LOW)
S#4	VDP(-4)	coordinate detected (HIGH)
S#5	VDP(-5)	coordinate detected (LOW)
S#6	VDP(-6)	coordinate detected (HIGH)

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

S#7	VDP(-7)	data obtained by VDP command
S#8	VDP(-8)	X-coordinate obtained by search command (LOW)
S#9	VDP(-9)	X-coordinate obtained by search command (HIGH)

(3) Colour palette register group (P#0 to P#15)

These registers are used to set the colour palette. Registers are expressed
using the notation P#n where 'n' is the palette number which represents one
of 512 colours. Each palette register has 9 bits allowing three bits to be
used for each RGB colour (red, green, and blue).

1.2 VRAM

MSX-VIDEO can be connected with 128K bytes VRAM (Video RAM) and 64K bytes
expanded RAM. MSX-VIDEO has a 17-bit counter for accessing this 128K bytes
address area. Note that this memory is controlled by MSX-VIDEO and cannot be
directly accessed by the CPU.

Expanded RAM memory cannot be directly displayed to the screen as can that of
VRAM. However, it can be manipulated the same as VRAM when using the video
processor commands. This large work area is very useful when processing
screen data. Note that the MSX standard does not include instructions
regarding expanded RAM, so taking advantage of this in program design could
result in compatibility problems with other MSX machines.

 Figure 4.1 VRAM and expanded RAM

 Address counter

 ----------------- 00000H -----------------
---------------	0FFFFH -----------------		
		RAM	
		(data use)	
 ----------------- 1FFFFH
 VRAM
 (screen use)

1.3 I/O ports

MSX-VIDEO has four I/O ports that send data back and forth the CPU. The
functions of these ports are listed in Table 4.3. The ports are accessed by
the CPU through its I/O addresses in the table below, addresses expressed as
n, n' are stored at address locations 6 and 7 in MAIN-ROM. Although n = n' =
98H normally, this can be different on some machines, so port addresses
should be obtained from these addresses for reliable results.

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

It is generally recommended that BIOS be used for I/O operations for purposes
of compatibility. However, the screen display often requires high speed, so
these I/O ports are capable of accessing MSX-VIDEO directly.

 Table 4.3 MSX-VIDEO ports

--
| Port | Address | Function |
|-----------------+---------+--|
port #0 (READ)	n	read data from VRAM
port #0 (WRITE)	n'	write data to VRAM
port #1 (READ)	n + 1	read status register
port #1 (WRITE)	n'+ 1	write to control register
port #2 (WRITE)	n'+ 2	write to palette register
port #3 (WRITE)	n'+ 3	write to indirectly specified register
--

Note: The value of n should be obtained by referring to address 6 in MAIN-ROM
 The value of n'should be obtained by referring to address 7 in MAIN-ROM

2. ACCESS TO MSX-VIDEO

MSX-VIDEO can be accessed directly through the I/O ports without going
through BIOS. This chapter describes how to do this.

2.1 Access to Registers

2.1.1 Writing data to control registers

The control registers are write-only registers. As described above, the
partial contents of control registers (R#0 to R#23) can be obtained by
referring to VDP(n) from BASIC. This only reads the value which has been
written in the work area of RAM (F3DFH to F3E6H, FFE7H to FFF6H) used for
writing to registers.

There are three ways, described below, to write data to control registers.
Since MSX accesses MSX-VIDEO inside the timer interrupt routine to examine
the occurrence of sprite conflicts, note that access procedure will not
inhibiting the interrupt when the registers are accessed in the proper way as
described below.

(1) Direct access

The first way is to directly specify the data and where it is to be written
to. Figure 4.2 illustrates the procedure. The data is first written to port#1
and then the destination register number is written to port#1 using the five
least significant bits. The most significant bit is set to 1 and the second
bit is set to 0. Thus the value would be 10XXXXXB in binary notation where
XXXXX is the destination register number.

 Figure 4.2 Direct access to R#n

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 MSB 7 6 5 4 3 2 1 0 LSB

Port #1 | : : : Data : : : | 1.Puts data to port #1.

Port #1 | 1 | 0 | R5 | R4 | R3 | R2 | R1 | R0 | 2. Then puts register
 --- number with two
 | | | high bits set to
 +---------+-----------------------------+ "10" to port #1.
 fixed register number (0 to 46)
 at "10"

Port#1 is also used to set VRAM addresses and is described in section 2.2.
The most significant bit of the second byte sent to this port is the
address/register flag and determines the operation to take place. When the
bit is set to "1", writing data to a control register as described here will
take place.

(2) Indirect Access (non-autoincrement mode)

The second way is to write data to the register specified as the objective
register (R#17 contains the objective pointer). To begin with, store the
register number to be accessed in R#17 by direct access. The most significant
bit is set to 1 and the second bit to 0. Thus the value would be 10XXXXXB in
binary notation where XXXXX is the objective register number. After this is
done, data can be written to the objective register by sending data to
port#3. This method is used for sending data to the same register
continuously. An example would be for the execution of VDP commands.

 Figure 4.3 Indirect access to R#n (non-autoincrement mode)

First byte

 MSB 7 6 5 4 3 2 1 0 LSB

R#17 | 1 | 0 | R5 | R4 | R3 | R2 | R1 | R0 | 1.Set register number n
 --- to R#17, with two high
 | | | order bits set to "10".
 +---------+-----------------------------+
 fixed n (0 to 46)
 at "10"

Port#3 | : : : Data : : : | 2.Send data to port#3.
 --- The data is stored
 in register R#n.

Following bytes

Port#3 | : : : Data : : : | 3.After these are done,
 --- data can be written to
 register R#n only by

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 sending to port #3.

(3) Indirect Access (autoincrement mode)

The third way is to write date to the register indicated by R#17. R#17 is
incremented each time data is sent to port#3. To begin with, store the
beginning register number to be accessed in R#17 by direct access. The two
most significant bits are set to 0. Thus the value would be 00XXXXXB in
binary notation where XXXXX is the beginning register number.

Since this method allows writing data to continuous control registers
effectively, it is useful when several continuous registers are to be changed
at once. One example would be when the screen mode is changed.

 Figure 4.4 Indirect access to R#n (autoincrement mode)

 MSB 7 6 5 4 3 2 1 0 LSB

R#17 | 0 | 0 | R5 | R4 | R3 | R2 | R1 | R0 | 1.Set register number n
 --- to R#17, with two high
 | | | order bits set to "00".
 +---------+-----------------------------+
 fixed n (0 to 46)
 at "00"

Port#3 | : : : Data : : : | 2.Send data to port#3.
 --- The data is stored
 in register R#n.

Port#3 | : : : Data : : : | 3.Data sent to next
 --- port#3 is stored to
 register R#(n+1).
 . .
 . .
 . .

2.1.2 Setting a palette

To set data in the MSX-VIDEO palette registers (P#0 to P#15), specify the
palette register number in the four lowest significant bits of R#16 (color
palette pointer), and then send the data to port#2. Since palette registers
have a length of 9 bits, data must be sent twice; red brightness and blue
brightness first, then green brightness. Brightness is specified in the lower
three bits of a four bit segment. Refer to Figure 4.5 for details.

After data is sent to port#2 twice, R#16 is automatically incremented. This
feature makes it easy to initialize all the palettes.

 Figure 4.5 Setting a colour palette register

 MSB 7 6 5 4 3 2 1 0 LSB

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

R#16 | 0 | 0 | 0 | 0 | R3 | R2 | R1 | R0 | 1.Set palette number n
 --- to R#16, with four
 | | | high order bits set
 +---------------------------------------+ to "0000".
 fixed at "0000" n (0 to 15)

Port#2 | | Red bright. | | Blue bright. | 2.Send red and blue
 --- brightness to port#2.
 | | | |
 +--------------+ +--------------+
 0 to 7 0 to 7

Port#2 | | | | | | Green bright.| 2.Send green brightness
 --- to port#2. (*)
 | |
 +--------------+
 0 to 7

(*) Since R#16 is incremented at this point, setting next palette can be done
 by sending data to port#2 continuously.

2.1.3 Reading status registers

Status registers are read-only registers. Their contents can be read from
port#1 by setting the status register number in the least significant four
bits of R#15 (status register pointer) as shown in Figure 4.6. The four most
significant bits are set to 0. Thus the value would be 0000XXXXB in binary
notation where XXXX is the status register number. Interrupts should be
inhibited before the status register is accessed. After the desired task is
completed, R#15 should be set to 0 and the interrupts released.

 Figure 4.6 Acessing status registers

 MSB 7 6 5 4 3 2 1 0 LSB

R#15 | 0 | 0 | 0 | 0 | R3 | R2 | R1 | R0 | 1.Set register number n
 --- to R#15, with four
 | | | high order bits set
 +-------------------+-------------------+ to "0000".
 fixed at "0000" n (0 to 9)

Port#1 | : : : Data : : : | 2.Read data from port#1.

2.2 VRAM Access From the CPU

When a VRAM address is to be accessed from the CPU, follow the procedure
described below.

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

(1) Bank switching

The first 64K bytes of VRAM (00000H to 0FFFFH) and the 64K bytes of expanded
RAM both reside at the same address space as viewed by MSX-VIDEO. Bank
switching is used so that they can both be online at the same time. Since
MSX2 does not to use expanded VRAM, always select the VRAM bank. Bank
switching is controlled by bit 6 of R#45.

 Figure 4.7 VRAM/expanded RAM bank switching

 MSB 7 6 5 4 3 2 1 0 LSB

R#45 | . | X | . | . | . | . | . | . | When bit 6 of R#45 is "0"
 --- VRAM is selected; when it
 | 0:VRAM is 1, expanded RAM is
 +--> selected.
 1:Expanded RAM

(2) Setting the VRAM page (three high order bits)

The 17-bit address for accessing the 128K bytes of VRAM is set in the address
counter (A16 to A0). R#14 contains the three high order bits (A16 to A14). So
this register can be viewed as switching between eight 16K byte pages of
VRAM.

 Figure 4.8 Setting the VRAM page (3 high order bits)

 MSB 7 6 5 4 3 2 1 0 LSB

R#14 | 0 | 0 | 0 | 0 | 0 | A16| A15| A14| Set 3 high order bits of
 --- address counter in the
 field from bit 2 to bit 0
 on R#14.

(3) Setting the VRAM address (14 low order bits)

The 14 low order bits of the address should be sent to port#1 in two bytes.
Figure 4.9 shows the details. Make sure that the most significant bit of the
second byte sent is set to 0. This sets the address/register flag to address
mode. The second most significant bit sets the read/write flag. 1 signifies
writing to VRAM and 2 signifies reading from VRAM.

 Figure 4.9 Setting 14 low order bits

 MSB 7 6 5 4 3 2 1 0 LSB

Port#1 | A7 | A6 | A5 | A4 | A3 | A2 | A1 | A0 | 1.Send A7 to A0 to
 --- port#1.

Port#1 | 0 | | A13| A12| A11| A10| A9 | A8 | 2.Send A13 to A8 to
 --- port#1, continuously.

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 | | 0:reading VRAM Bit 7 must be set to
 "0" +--> "0". Bit 6 determines
 1:writing VRAM reading/writing data.

(4) Reading/writing VRAM

After setting the value in the address counter, read or write data through
port#0. The read/write flag is set the same time as A13 to A8 of the address
counter, as described above.

The address counter is automatically incremented each time a byte of data is
read or written to port #0. This feature allows for easy access of continuous
memory in VRAM.

 Figure 4.10 Access to VRAM through port#0

 MSB 7 6 5 4 3 2 1 0 LSB

Port#0 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | Access to VRAM is done
 --- through port#0. Address
 counter is automatically
 incremented.

3. SCREEN MODES OF THE MSX2

The MSX2 has ten different modes as shown in Table 4.4. Six screen modes
marked with "*" in the table below (TEXT 2 and GRAPHIC 3 to GRAPHIC 7) have
been introduced for the MSX2. The other modes have been improved due to the
change from TMS9918A to MSX-VIDEO. Fetures of these ten screen modes and how
to use them are described below.

 Table 4.4 Screen modes listing of MSX2

--
| Mode Name | SCREEN mode | Description |
|-------------+-------------+--|
| TEXT 1 | SCREEN 0 | 40 characters per line of text, one colour |
| | (width=40) | for each character |
|-------------+-------------+--|
| * TEXT 2 | SCREEN 0 | 80 characters per line of text, |
| | (width=80) | character blinkable selection |
|-------------+-------------+--|
| MULTI-COLOR | SCREEN 3 | pseudo-graphic, one character |
| | | divided into four block |
|-------------+-------------+--|
| GRAPHIC 1 | SCREEN 1 | 32 characters per one line of |
| | | text, the COLOURed character available |
|-------------+-------------+--|
| GRAPHIC 2 | SCREEN 2 | 256 x 192, the colour is |
| | | specififed for each 8 dots |
|-------------+-------------+--|
| * GRAPHIC 3 | SCREEN 4 | GRAPHIC 2 which can use sprite |
| | | mode 2 |

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

|-------------+-------------+--|
| * GRAPHIC 4 | SCREEN 5 | 256 x 212; 16 colours are |
| | | available for each dot |
|-------------+-------------+--|
| * GRAPHIC 5 | SCREEN 6 | 512 x 212; 4 colours are |
| | | available for each dot |
|-------------+-------------+--|
| * GRAPHIC 6 | SCREEN 7 | 512 x 212; 16 colours are |
| | | available for each dot |
|-------------+-------------+--|
| * GRAPHIC 7 | SCREEN 8 | 256 x 212; 256 colours are |
| | | available for each dot |
--

3.1 TEXT 1 Mode

TEXT 1 screen mode has the following features:

--
| |
| screen: 40 (horizontal) x 24 (vertical) |
| background/character colours can be selected from |
| 512 colours |
| character: 256 characters available |
| character size: 6 (horizontal) x 8 (vertical) |
| memory requirements: for character font ... 2048 bytes |
| (8 bytes x 256 characters) |
| for display 960 bytes |
| (40 characters x 24 lines) |
| BASIC: compatible with SCREEN 0 (WIDTH 40) |

3.1.1 Setting TEXT 1 mode

MSX-VIDEO screen modes are set by using 5 bits of R#0 and R#1. Figure 4.11
shows the details. The 3-bit mask in R#0 is 000B and the 2-bit mask in R#1 is
10B when using the TEXT 1 mode.

 Figure 4.11 Setting TEXT1 mode

 MSB 7 6 5 4 3 2 1 0 LSB

R#0 | . | . | . | . | 0 | 0 | 0 | . |

R#1 | . | . | . | 1 | 0 | . | . | . |

3.1.2 Screen structure of TEXT 1 mode

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

* Pattern generator table

The area in which character fonts are stored is called the pattern generator
table. This table is located in VRAM, and, although the font is defined by
using 8 bytes for each character from the top of the table, the 2 low order
bits of each byte representing the right two columns are not displayed on the
screen. Thus, the size of one character is 6 x 8 pixels. Each character font
set contains 256 different characters numbered from 0 to 255. Use this code
to specify which character should be displayed on the screen.

Specify the location of the pattern generator table in R#4. Note that the 6
high order bits of the address (A16 to A11) are specified and the 11 low
order bits of the address (A10 to A0) are always 0 ("00000000000B"). So the
address in which the pattern generator table can be set always begins at a
multiple of 2K bytes from 00000H. This address can be found using the system
variable BASE(2) from BASIC. Figure 4.12 shows the structure of the pattern
generator table.

 Figure 4.12 Structure of the pattern generator table

 MSB 7 6 5 4 3 2 1 0 LSB

R#4 | 0 | 0 | A16| A15| A14| A13| A12| A11| ---+
 --- |
 |
 +--+
 |
 | MSB 7 6 5 4 3 2 1 0 LSB
 | --- --+
 +---> 0 | | | # | | | | | | |
 |----+----+----+----+----+----+----+----| |
 1 | | # | | # | | | | | |
 |----+----+----+----+----+----+----+----| |
 2 | # | | | | # | | | | |
 |----+----+----+----+----+----+----+----| |
 3 | # | | | | # | | | | | Pattern #0
 |----+----+----+----+----+----+----+----| |
 4 | # | # | # | # | # | | | | |
 |----+----+----+----+----+----+----+----| |
 5 | # | | | | # | | | | |
 |----+----+----+----+----+----+----+----| | ------
 6 | # | | | | # | | | | | | | = 0
 |----+----+----+----+----+----+----+----| | ------
 7 | | | | | | | | | |
 |----+----+----+----+----+----+----+----| --+
 8 | # | # | # | # | | | | | |
 |----+----+----+----+----+----+----+----| | ------
 9 | # | | | | # | | | | | | # | = 1
 |----+----+----+----+----+----+----+----| | ------
 10 | # | | | | # | | | | |
 |----+----+----+----+----+----+----+----| |
 11 | # | # | # | # | | | | | |
 |----+----+----+----+----+----+----+----| | Pattern #1
 12 | # | | | | # | | | | |
 |----+----+----+----+----+----+----+----| |
 13 | # | | | | # | | | | |

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 |----+----+----+----+----+----+----+----| |
 14 | # | # | # | # | | | | | |
 |----+----+----+----+----+----+----+----| |
 15 | | | | | | | | | |
 --- --+
 . .
 . .
 . .
 --- --+
 2040 | # | | # | | # | | | | |
 |----+----+----+----+----+----+----+----| |
 2041 | | # | | # | | # | | | |
 |----+----+----+----+----+----+----+----| |
 2042 | # | | # | | # | | | | |
 |----+----+----+----+----+----+----+----| |
 2043 | | # | | # | | # | | | |
 |----+----+----+----+----+----+----+----| | Pattern #255
 2044 | # | | # | | # | | | | |
 |----+----+----+----+----+----+----+----| |
 2045 | | # | | # | | # | | | |
 |----+----+----+----+----+----+----+----| |
 2046 | # | | # | | # | | | | |
 |----+----+----+----+----+----+----+----| |
 2047 | | # | | # | | # | | | |
 --- --+
 | |
 +---------+
 2 low order bits are not displayed

 Pattern generator table

* Pattern name table

The pattern name table stores the characters to be displayed at each position
on the screen. One byte of memory is used for each character to be displayed.
Figure 4.13 shows the correspondence between memory location and screen
location.

Specify the location of the pattern generator table in R#2. Note that the 7
high order bits of the address (A16 to A10) are specified and that the 10 low
order bits of the address (A9 to A0) are always 0 ("0000000000B"). So the
address in which the name table can be set always begins at a multiple of 1K
bytes from 00000H. This address can be found by using the system variable
BASE(0) from BASIC. Figure 4.13 shows the structure of the pattern generator
table.

 Figure 4.13 Structure of TEXT1 pattern name table

 MSB 7 6 5 4 3 2 1 0 LSB

R#2 | 0 | A16| A15| A14| A13| A12| A11| A10| ---+
 --- |
 |
 +--+
 |

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 | | |
 | -----------
 +---> 0 | (0,0) | 0 1 2 3 39 X
 |---------| ---------------------- -------
 1 | (1,0) | 0 | 0 | 1 | 2 | 3 | . . . | 39 |
 |---------| |----+----+----+----+- -+----|
 2 | (2,0) | 1 | 40 | 41 | 42 | 43 | . . . | 79 |
 |---------| |----+----+----+----+- -+----|
 . | . | | | | | | . . . | |

 | | . . .
 |---------| | | | | |
 39 | (39,0) | ------------ -------
 |---------| 22 | 880| 881| | 919|
 40 | (0,1) | |----+----+- -+----|
 |---------| 23 | 920| 921| | 959|
 . | . | ------------ -------
 . . Y
 . .
 | | Screen correspondence table
 |---------|
 959 | (39,23) |
 |---------|
 | |

 Pattern Name Table

3.1.3 Specifying screen colour

The screen colour is specified by R#7. The background colour is the palette
specified by the 4 low-order bits of R#7; the 4 high-order bits specify the
foreground colour (see Figure 4.14). A "0" in the font pattern is displayed
in the background colour and a "1" is displayed in the foreground colour.
Note that in TEXT 1 the border colour of the screen cannot be set and it is
the same as the background colour.

 Figure 4.14 Colour specification in TEXT 1

 MSB 7 6 5 4 3 2 1 0 LSB

R#7 | : : : | : : : |

 | | |
 +-------------------+-------------------+
Specifies the colour of "1" Specifies the colour of "0" of the pattern
of the pattern (0 to 15) and of the background colour (0 to 15)

3.2 TEXT 2 Mode

The screen mode TEXT 2 has the following features:

--

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

| |
| screen: 80 (horizontal) x 24 (vertical) or 26.5 (vertical) |
| background colour/character colour can be selected |
| from 512 colours |
| character: 256 characters available |
| character size: 6 (horizontal) x 8 (vertical) |
| each character blinkable |
| memory requirements: 24 lines |
| for character font ... 2048 bytes |
| (8 bytes x 256 characters) |
| for display 1920 bytes |
| (80 characters x 24 lines) |
| for blinking 240 bytes (= 1920 bits) |
| 26.5 lines |
| for character font ... 2048 bytes |
| (8 bytes x 256 characters) |
| for display 2160 bytes |
| (80 characters x 27 lines) |
| for blinking 270 bytes (= 2160 bits) |
| BASIC: compatible with SCREEN 0 (WIDTH 80) |

3.2.1 Setting TEXT 2 mode

Set TEXT2 mode as shown in Figure 4.15.

 Figure 4.15 Setting TEXT2 mode

 MSB 7 6 5 4 3 2 1 0 LSB

R#0 | . | . | . | . | 0 | 1 | 0 | . |

R#1 | . | . | . | 1 | 0 | . | . | . |

* Setting number of lines (24 lines/26.5 lines)

TEXT2 mode can switch the screen to 24 lines or 26.5 lines depending on the
value of bit 7 in R#9. Note that, when the screen is set to 26.5 lines, only
the upper half of the characters at the bottom of the screen are displayed.
This mode is not supported by BASIC.

 Figure 4.16 Switching number of lines

 MSB 7 6 5 4 3 2 1 0 LSB

R#9 | LN | . | . | . | . | . | . | . |

 | 0:24 lines
 +-->

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 1:26.5 lines

3.2.2 Screen structure of TEXT 2

* Pattern generator table

The pattern generator table has the same structure and function as the one of
TEXT1. See the descriptions for TEXT1.

* Pattern name table

Since the number of characters to be displayed in the screen has been
increased to 2160 (80 x 27) characters maximum, the maximum area occupied by
the pattern name table is 2160 bytes.

Specify the location of the pattern name table in R#2. The 5 high order bits
of the address (A16 to A12) are specified and the 12 low order bits of the
address (A11 to A0) are always 0 ("000000000000B"). So the address in which
the pattern name table can be set always begins at a multiple of 4K bytes
from 00000H.

 Figure 4.17 Structure of TEXT2 pattern name table

 MSB 7 6 5 4 3 2 1 0 LSB

R#2 | 0 | A16| A15| A14| A13| A12| 1 | 1 | ---+
 --- |
 |
 +--+
 |
 | | |
 | -----------
 +---> 0 | (0,0) | 0 1 2 3 79 X
 |---------| ---------------------- -------
 1 | (1,0) | 0 | 0 | 1 | 2 | 3 | . . . | 79 |
 |---------| |----+----+----+----+- -+----|
 2 | (2,0) | 1 | 80 | 81 | 82 | 83 | . . . | 159|
 |---------| |----+----+----+----+- -+----|
 . | . | | | | | | . . . | |

 | | . . .
 |---------| | | | | |
 79 | (79,0) | |----+----+- -+----|
 |---------| 25 |2000|2001| |2079|
 80 | (0,1) | |----+----+- -+----|
 |---------| 26 |2080|2081| |2159|
 . | . | ------------ -------
 . . Y
 . .
 | | Screen correspondence table
 |---------|
 2159 | (79,26) |

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 |---------|
 | |

 Pattern Name Table

* Blink table

In TEXT2 mode, it is possible to set the blink attribute for each character.
The blink table stores the information of the screen location of the
characters blinked. One bit of the blink table corresponds to one character
on the screen (that is, on the pattern name table). When the bit is set to
"1" blinking is enabled for the corresponding character; when the bit is "0"
blinking is disabled.

 Figure 4.18 Blink table structure of TEXT2

 MSB 7 6 5 4 3 2 1 0 LSB
 --- --+
R#3 | A13| A12| A11| A10| A9 | 1 | 1 | 1 | |
 --- |
 +--+
 --- | |
R#10 | 0 | 0 | 0 | 0 | 0 | A16| A15| A14| | |
 --- --+ |
 |
+--+
|
MSB 7 6 5 4 3 2 1 0 LSB
+---> 0
-------+-------+-------+-------+-------+-------+-------+-------
 1 | (8,0) | (9,0) |(10,0) |(11,0) |(12,0) |(13,0) |(14,0) |(15,0) |
 |-------+-------+-------+-------+-------+-------+-------+-------|
 | . | . | . | . | . | . | . | . |

 | | | | | | | | |
 |-------+-------+-------+-------+-------+-------+-------+-------|
 269 |(72,26)|(73,26)|(74,26)|(75,26)|(76,26)|(77,26)|(78,26)|(79,26)|

 Blink table

Specify the starting address of the blink table by setting the 8 high order
bits (A16 to A9) in R#3 and R#10. The location of the blink table is set by
writing the 8 high order bits of the address (A16 to A9) in R#3 and R#10. The
9 low order bits of the address (A8 to A0) are always 0 ("000000000B"). So
the address in which the blink table can be set always begins at a multiple
of 512 bytes from 00000H.

3.2.3 Screen colour and character blink specification

The foreground colour is specified by the 4 high order bits of R#7 and the

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

background colour by the 4 low order bits of R#7. Characters with a blink
attribute of 1 defined by the blink table alternate between the blink colour
and the colour specified in R#12.

 Figure 4.19 Setting screen colour and blink colour

 MSB 7 6 5 4 3 2 1 0 LSB

R#7 | : : : | : : : | <-- original character
 --- colour
 | | |
 +-------------------+-------------------+
 Specifies the colour Specifies the colour of "0" of the pattern
 of "1" of the pattern and of the background colour

R#12 | : : : | : : : | <-- character colour
 --- when blinking
 | | |
 +-------------------+-------------------+
Specifies the colour of "1" Specifies the colour of "0" of
of the pattern when blinking the pattern when blinking

The blinking rate is set in R#13. The 4 high order bits define the display
time in the original colour, and the 4 low order bits define the display time
in the blink colour. The period of time is defined in units of 1/6 seconds.

 Figure 4.20 Setting blink rate

 MSB 7 6 5 4 3 2 1 0 LSB

R#13 | : T1 : | : T0 : |

 | | |
 +-------------------+-------------------+
time to display the colour time to display the colour
specified by R#12 specified by R#7

 -------------------- -------- colour specified
 |<- T0/6 seconds ->|<- T1/6 seconds -> | in R#7
--------- --------------------- colour specified
 normal colour blinking colour in R#12

List 4.1 Blink example
===

1000 '***
1010 ' LIST 4.1 BLINK SAMPLE
1020 '***
1030 '
1040 SCREEN 0 : WIDTH 80 'TEXT 2 mode
1050 ADR=BASE(1) 'TAKE COLOR TABLE ADDRESS
1060 '

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

1070 FOR I=0 TO 2048/8
1080 VPOKE ADR+I,0 'reset blink mode
1090 NEXT
1100 '
1110 VDP(7) =&HF1 'text color=15, back color=1
1120 VDP(13)=&H1F 'text color=1, back color=15
1130 VDP(14)=&H22 'set interval and start blink
1140 '
1150 PRINT "Input any character : ";
1160 '
1170 K$=INPUT$(1)
1180 IF K$<CHR$(28) THEN 1230
1190 IF K$>" " THEN GOSUB 1280
1200 PRINT K$;
1210 GOTO 1170
1220 '
1230 VDP(14)=0 'stop blink
1240 END
1250 '
1260 '----- set blink mode -----
1270 '
1280 X=POS(0) : Y=CSRLIN
1290 A=(Y*80+X)\8
1300 B=X MOD 8
1310 M=VAL("&B"+MID$("000000010000000",8-B,8))
1320 VPOKE ADR+A,VPEEK(ADR+A) XOR M
1330 RETURN
===

3.3 MULTI COLOUR Mode

The MULTI COLOUR mode is described below:

--
| |
| screen: 64 (horizontal) x 48 (vertical) blocks |
| 16 colours from 512 colours can be displayed |
| at the same time |
| block: block size is 4 (horizontal) x 4 (vertical) dots |
| colour can be specified to each block |
| memory requirements: for setting colours 2048 bytes |
| for specifying locations 768 bytes |
| sprite: sprite mode 1 |
| BASIC: compatible to SCREEN 3 |

3.3.1 Setting MULTI COLOUR mode

Set MULTI COLOUR mode as shown in Figure 4.21.

 Figure 4.21 Setting MULTI COLOUR mode

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 MSB 7 6 5 4 3 2 1 0 LSB

R#0 | . | . | . | . | 0 | 0 | 0 | . |

R#1 | . | . | . | 0 | 1 | . | . | . |

* Pattern generator table

In this mode, patterns are constructed as 2 x 2 blocks and one pattern name
corresponds to four patterns. The starting address on this table is specified
in R#4. Since only the 6 high order bits (A16 to A11) of the address is
specified, the pattern generator table can be located at intervals of 2K
bytes from 00000H (see Figure 4.22).

 Figure 4.22 Pattern generator table structure of MULTI COLOUR

 2 blocks
<-(8 dots) -> MSB 7 6 5 4 3 2 1 0 LSB
------------- ^ ^ ---
A	B		2 blocks		"A" colour code	"B" colour code
-----+-----		(8 dots) 2 bytes	-------------------+-------------------			
C	D				"C" colour code	"D" colour code
------------- V V ---

 MSB 7 6 5 4 3 2 1 0 LSB

R#4 | 0 | 0 | A16| A15| A14| A13| A12| A11| -----+
 --- |
 |
+--+
|
| MSB 7 6 5 4 3 2 1 0 LSB
| | | --------- ---------------------------------
+---> |-----------------| 0 | A | B | | "A" col. code | "B" col. code |
 | Pattern name #0 | |---+---| |---------------+---------------|(1)
 | (8 bytes) | | C | D | | "C" col. code | "D" col. code |
 |-----------------| 8 --------- ---------------------------------
 | Pattern name #1 |
 | (8 bytes) | --------- ---------------------------------
 |-----------------| 16 | E | F | | "E" col. code | "F" col. code |
 | . | |---+---| |---------------+---------------|(2)
 . | G | H | | "G" col. code | "H" col. code |
 . --------- ---------------------------------
 | |
 |-----------------| 2040 --------- ---------------------------------
 | Pattern name#255| | I | J | | "I" col. code | "J" col. code |
 | (8 bytes) | |---+---| |---------------+---------------|(3)
 |-----------------| 2048 | K | L | | "K" col. code | "L" col. code |
 | | --------- ---------------------------------

 Pattern generator table --------- ---------------------------------
 | M | N | | "M" col. code | "N" col. code |

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 |---+---| |---------------+---------------|(4)
 | O | P | | "O" col. code | "P" col. code |
 --------- ---------------------------------

(1) This table is in effect when Y is 0, 4, 8, 12, 16, or 20
(2) This table is in effect when Y is 1, 5, 9, 13, 17, or 21
(3) This table is in effect when Y is 2, 8, 10, 14, 18, or 22
(4) This table is in effect when Y is 3, 7, 11, 15, 19, or 23

* Pattern name table

This is the table for displaying specified patterns at desired locations on
the screen. One of four patterns in a pattern name is displayed at its
Y-coordinate value. BASIC sets the contents of this table as shown in Figure
4.23. The starting address of the pattern name table is specified by R#2.
Since only the 7 high order bits of the address (A16 to A10) are specified,
the address at which this table can be set is at increments of 1K bytes from
00000H (see Figure 4.24).

 Figure 4.23 Setting BASIC pattern name table

Pattern 0
 X 0 1 2 3 4 5 . . . 26 27 28 29 30 31
--------- Y -------------------------- --------------------------
		0	0	1	2	3	4	5	. . .	26	27	28	29	30	31
---+---		---+---+---+---+---+---+- -+---+---+---+---+---+---													
		1	0	1	2	3	4		27	28	29	30	31		
---+---	---->	---+---+---+---+---+- -+---+---+---+---+---													
		2	0	1	2	3		28	29	30	31				
---+---		---+---+---+---+- -+---+---+---+---													
		3	0	1	2	3	28	29	30	31				
---+---		---+---+---+---+- -+---+---+---+---													
		4	32	33	34	35		60	61	62	63				
---+---		---+---+---+---+- -+---+---+---+---													
		5	32	33	. .	62	63								
---+---		---+---+-. .-+--------													
		6	32	. .	63										
---+---		---+- . . -+---													
		7	32	. .	63										
--------- |---+- . . -+---|
 8 | 64| . (64 x 64 blocks) . | 95|
Pattern 0 |---+- . . -+---|
appears . | 64| . . | 95|
here as a . |---+- . . -+---|
result
 . . --------- . .
 . . | | | 1 data unit . .
 . ----+- . |---+---| corresponds . -+----
 . |128| . | | | to a 2 x 2 block . |159|
 |---+- . --------- . -+---|
 20 |160| . . |191|
 |---+---+-. .-+---+---|
 21 |160|161| . . |190|191|
 |---+---+---+---+- -+---+---+---+---|
 22 |160|161|162|163| |188|189|190|191|

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 |---+---+---+---+---+---+- -+---+---+---+---+---+---|
 23 |160|161|162|163|164|165| . . . |186|187|188|189|190|191|
 -------------------------- --------------------------

 Figure 4.24 Pattern name table structure of MULTI COLOUR mode

 MSB 7 6 5 4 3 2 1 0 LSB

R#2 | 0 | A16| A15| A14| A13| A12| A11| A10| ---+
 --- |
 |
 +--+
 |
 | | |
 | |----------
 +---> 0 | (0,0) | 0 1 2 3 31 X
 |---------| ---------------------- -------
 1 | (1,0) | 0 | 0 | 1 | 2 | 3 | . . . | 31 |
 |---------| |----+----+----+----+- -+----|
 2 | (2,0) | 1 | 32 | 33 | 34 | 35 | . . . | 63 |
 |---------| |----+----+----+----+- -+----|
 . | . | | | | | | . . . | |

 | | . . .
 |---------| | | | | |
 31 | (31,0) | |----+----+- -+----|
 |---------| 22 | 704| 705| | 735|
 32 | (0,1) | |----+----+- -+----|
 |---------| 23 | 736| 737| | 767|
 . | . | ------------ -------
 . . Y
 . .
 | | Screen correspondence table
 |---------|
 767 | (31,23) |
 |---------|
 | |

 Pattern Name Table

3.3.3 Specifying the screen colour in MULTI COLOUR mode

The border colour of the screen can be specified by R#7 (see Figure 4.25).

 Figure 4.25 Border colour specification

 MSB 7 6 5 4 3 2 1 0 LSB

R#7 | : : : | : : : |

 | | |
 +-------------------+-------------------+
 invalid specifies the border colour

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 of the screen (0 to 15)

3.4 GRAPHIC 1 Mode

GRAPHIC 1 Mode is the screen mode as shown below:

--
| |
| screen: 32 (horizontal) x 24 (vertical) patterns |
| 16 from 512 colours can be displayed |
| at the same time |
| pattern: 256 kinds of patterns are available |
| pattern size is 8 (horizontal) x 8 (vertical) dots |
| any Figure can be defined for each pattern |
| different colour for each 8 pattern can be set |
| memory requirements: for pattern font 2048 bytes |
| for colour tbale 32 bytes |
| sprite: sprite mode 1 |
BASIC: compatible with SCREEN 1

3.4.1 Setting GRAPHIC 1 mode

GRAPHIC 1 mode can be set as shown in Figure 4.26.

 Figure 4.26 Setting GRAPHIC 1 mode

 MSB 7 6 5 4 3 2 1 0 LSB

R#0 | . | . | . | . | 0 | 0 | 0 | . |

R#1 | . | . | . | 0 | 0 | . | . | . |

3.4.2 Screen structure of GRAPHIC 1 mode

* Pattern generator table

In this mode, 256 kinds of patterns, corresponding to codes 0 to 255, can be
displayed on the screen. Fonts of each pattern are defined in the pattern
generator table (see Figure 4.27). The starting address of the pattern
generator table is specified by R#4. Note that only the 6 high order bits of
the address (A16 to A11) are specified.

 Figure 4.27 Pattern generator table of GRAPHIC 1 mode

 MSB 7 6 5 4 3 2 1 0 LSB

R#4 | 0 | 0 | A16| A15| A14| A13| A12| A11| ---+

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 --- |
 |
 +--+
 |
 | MSB 7 6 5 4 3 2 1 0 LSB
 | --- --+
 +---> 0 | | | # | | | | | | |
 |----+----+----+----+----+----+----+----| |
 1 | | # | | # | | | | | |
 |----+----+----+----+----+----+----+----| |
 2 | # | | | | # | | | | |
 |----+----+----+----+----+----+----+----| |
 3 | # | | | | # | | | | | Pattern #0
 |----+----+----+----+----+----+----+----| |
 4 | # | # | # | # | # | | | | |
 |----+----+----+----+----+----+----+----| |
 5 | # | | | | # | | | | |
 |----+----+----+----+----+----+----+----| | ------
 6 | # | | | | # | | | | | | | = 0
 |----+----+----+----+----+----+----+----| | ------
 7 | | | | | | | | | |
 |----+----+----+----+----+----+----+----| --+
 8 | # | # | # | # | | | | | |
 |----+----+----+----+----+----+----+----| | ------
 9 | # | | | | # | | | | | | # | = 1
 |----+----+----+----+----+----+----+----| | ------
 10 | # | | | | # | | | | |
 |----+----+----+----+----+----+----+----| |
 11 | # | # | # | # | | | | | |
 |----+----+----+----+----+----+----+----| | Pattern #1
 12 | # | | | | # | | | | |
 |----+----+----+----+----+----+----+----| |
 13 | # | | | | # | | | | |
 |----+----+----+----+----+----+----+----| |
 14 | # | # | # | # | | | | | |
 |----+----+----+----+----+----+----+----| |
 15 | | | | | | | | | |
 --- --+
 . .
 . .
 . .
 --- --+
 2040 | # | | # | | # | | | | |
 |----+----+----+----+----+----+----+----| |
 2041 | | # | | # | | # | | | |
 |----+----+----+----+----+----+----+----| |
 2042 | # | | # | | # | | | | |
 |----+----+----+----+----+----+----+----| |
 2043 | | # | | # | | # | | | |
 |----+----+----+----+----+----+----+----| | Pattern #255
 2044 | # | | # | | # | | | | |
 |----+----+----+----+----+----+----+----| |
 2045 | | # | | # | | # | | | |
 |----+----+----+----+----+----+----+----| |
 2046 | # | | # | | # | | | | |
 |----+----+----+----+----+----+----+----| |
 2047 | | # | | # | | # | | | |

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 --- --+

 Pattern generator table

* Colour table

The colour specification for each of the 8 patterns are done by the colour
table. Colours for "0" and "1" of the bit of each pattern can be specified
(see Figure 4.28). The starting address of the colour table is specified by
R#3 and R#10. Note that only the 11 high order bits of the address (A16 to
A6) are specified.

 Figure 4.28 Colour table structure of GRAPHIC 1 mode

 MSB 7 6 5 4 3 2 1 0 LSB
 --- --+
R#3 | A13| A12| A11| A10| A9 | A8 | A7 | A6 | |
 --- |
 +--+
 --- | |
R#10 | 0 | 0 | 0 | 0 | 0 | A16| A15| A14| | |
 --- --+ |
 |
+--+
|
| Pattern "1" colour code Pattern "0" colour code
| +-----------------------+-----------------------+
| | | |
MSB 7 6 5 4 3 2 1 0 LSB Pattern number
+---> 0
-----+-----+-----+-----+-----+-----+-----+-----+
 1 | FC3 | FC2 | FC1 | FC0 | BC3 | BC2 | BC1 | BC0 | 8 to 15
 |-----+-----+-----+-----+-----+-----+-----+-----+
 | . | . | . | . | . | . | . | . |

 | | | | | | | | |
 |-----+-----+-----+-----+-----+-----+-----+-----+
 31 | FC3 | FC2 | FC1 | FC0 | BC3 | BC2 | BC1 | BC0 | 248 to 255

 Colour table

* Pattern name table

The size of the pattern name table is 768 bytes and the table corresponds to
the pattern on the screen, one by one (see Figure 4.29). The starting address
of the pattern name table is specified by R#2. Note that only the 7 high
order bits of the address (A16 to A10) are specified.

 Figure 4.29 Pattern name table structure of GRAPHIC 1 mode

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 MSB 7 6 5 4 3 2 1 0 LSB

R#2 | 0 | A16| A15| A14| A13| A12| A11| A10| ---+
 --- |
 |
 +--+
 |
 | | |
 | -----------
 +---> 0 | (0,0) | 0 1 2 3 31 X
 |---------| ---------------------- -------
 1 | (1,0) | 0 | 0 | 1 | 2 | 3 | . . . | 31 |
 |---------| |----+----+----+----+- -+----|
 2 | (2,0) | 1 | 32 | 33 | 34 | 35 | . . . | 63 |
 |---------| |----+----+----+----+- -+----|
 . | . | | | | | | . . . | |

 | | . . .
 |---------| | | | | |
 31 | (31,0) | |----+----+- -+----|
 |---------| 22 | 704| 705| | 735|
 32 | (0,1) | |----+----+- -+----|
 |---------| 23 | 736| 737| | 767|
 . | . | ------------ -------
 . . Y
 . .
 | | Screen correspondence table
 |---------|
 767 | (31,23) |
 |---------|
 | |

 Pattern Name Table

3.4.3 Specifying the screen colour

The border colour of the screen can be specified by R#7 (see Figure 4.30).

 Figure 4.30 Screen colour specification of GRAPHIC 1 mode

 MSB 7 6 5 4 3 2 1 0 LSB

R#7 | : : : | : : : |

 | | |
 +-------------------+-------------------+
 invalid specifies the border colour
 of the screen (0 to 15)

3.5 GRAPHIC 2, GRAPHIC 3 modes

GRAPHIC 2 and GRAPHIC 3 modes are the screen modes as described below:

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

--
| |
| screen: 32 (horizontal) x 24 (vertical) patterns |
| 16 from 512 colours can be displayed |
| at the same time |
| pattern: 768 kinds of patterns are available |
| pattern size is 8 (horizontal) x 8 (vertical) dots |
| any Figure can be defined for each pattern |
| only two colours can be used in horizontal 8 dots |
| memory requirements: for pattern font 6144 bytes |
| for colour tbale 6144 bytes |
| sprite: sprite mode 1 for GRAPHIC 2 |
| sprite mode 2 for GRAPHIC 3 |
| BASIC: compatible to SCREEN 2 for GRAPHIC 2 |
compatible to SCREEN 4 for GRAPHIC 3

3.5.1 Setting GRAPHIC 2, GRAPHIC 3 modes

GRAPHIC 2, and GRAPHIC 3 modes are set as Figure 4.3.1.

 Figure 4.3.1 Setting GRAPHIC 2, GRAPHIC 3 modes

GRAPHIC 2 mode setting

 MSB 7 6 5 4 3 2 1 0 LSB

R#0 | . | . | . | . | 0 | 0 | 1 | . |

R#1 | . | . | . | 0 | 0 | . | . | . |

GRAPHIC 3 mode setting

 MSB 7 6 5 4 3 2 1 0 LSB

R#0 | . | . | . | . | 0 | 1 | 0 | . |

R#1 | . | . | . | 0 | 0 | . | . | . |

3.5.2 Screen structure of GRAPHIC 2, GRAPHIC 3 modes

* Pattern generator table

In this mode, there are three pattern generator tables which are compatible
with GRAPHIC 1 and 768 patterns can be displayed. It cannot display patterns
which are overlapped on the screen, and operating the pattern generator table
in this case causes the 256 x 192 dot graphics display to be simulated. The

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

starting address of the pattern generator table is specified by R#4. Note
that only 4 bits of the address (A16 to A13) are specdified, so the address
which can be set is located at interval steps of 8K bytes from 00000H (see
Figure 4.32).

 Figure 4.32 Pattern generator table structure of GRAPHIC 2, GRAPHIC 3

 MSB 7 6 5 4 3 2 1 0 LSB

R#4 | 0 | 0 | A16| A15| A14| A13| 1 | 1 | ---+
 --- |
 |
 +--+
 |
 | MSB 7 6 5 4 3 2 1 0 LSB
 | --------------- ------------------- -+
 +---> | Pattern 0 | 0 | # # # | 0 |
 |-------------| | # # | 1 |
 | Pattern 1 | 1 | # # | 2 |
 |-------------| | # # | 3 | Pattern
Pattern | . | . | # # # # # # # | 4 | 0
generator . . | # # | 5 |
table . . | # # | 6 |
for block 1 | | | | 7 |
 |-------------| | # # # # # # | 8 -+
 | Pattern 254 | | # # | 9 |
 |-------------| | # # | 10 |
 | Pattern 255 | 255 | # # # # # # | 11 | Pattern
 --------------- | # # | 12 | 1
 | # # | 13 |
 --------------- | # # # # # # | 14 |
 | Pattern 0 | 256 | | 15-+
 |-------------| .
 | Pattern 1 | .
 |-------------- .
Pattern | . | | # # # # | 2040 -+
generator . | # # # # | 2041 |
table . | # # # # | 2042 |
for block 2 | | | # # # # | 2043 | Pat.
 |-------------| | # # # # | 2044 | 255
 | Pattern 254 | | # # # # | 2045 |
 |-------------| | # # # # | 2046 |
 | Pattern 255 | 511 | # # # # | 2047 |
 --------------- ------------------- -+

 --------------- ------------------------------
 | Pattern 0 | 512 | | | |
 |-------------| | ------------------------ |
 | Pattern 1 | | | | |
 |-------------| | | Block 1 | |
Pattern | . | . | | | |
generator . . | |----------------------| |
table . . | | | |
for block 3 | | | | Block 2 | |
 |-------------| | | | |
 | Pattern 254 | | |----------------------| |

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 |-------------| | | | |
 | Pattern 255 | 767 pattern | | Block 3 | |
 --------------- | | | |
 | ------------------------ |
 Pattern generator table | |

 Screen

* Colour table

The size of the colour table is the same as that of the pattern generator
table and colours for "0" and "1" bits of each horizontal line of each
pattern can be specified (see Figure 4.33). The starting address of the
colour table is specified by R#3 and R#10. Note that only the 4 high order
bits of the address (A16 to A13) is specified.

 Figure 4.33 Colour table structure of GRAPHIC 2, GRAPHIC 3 modes

 MSB 7 6 5 4 3 2 1 0 LSB
 --- ---+
R#3 | A13| 1 | 1 | 1 | 1 | 1 | 1 | 1 | |
 --- |
 |---+
 --- | |
R#10 | 0 | 0 | 0 | 0 | 0 | A16| A15| A14| | |
 --- ---+ |
 |
 +--+
 |
 | MSB 7 6 5 4 3 2 1 0 LSB
 | --------------- ------------------- -+
 +---> | Pattern 0 | 0 | Pattern|Pattern | 0 |
 |-------------- | "0" | "1" | 1 |
 | Pattern 1 | 1 | colour | colour | 2 |
 |-------------- | (0 to 15) | 3 | Pattern
 | . | . | | | 4 | 0
Colour . . | | | 5 |
table . . | | | 6 |
for block 1 | | | | | 7 |
 |-------------- | | | 8 -+
 | Pattern 254 | | | | 9 |
 |-------------| | | | 10 |
 | Pattern 255 | 255 | | | 11 | Pattern
 --------------- | | | 12 | 1
 | | | 13 |
 --------------- | | | 14 |
 | Pattern 0 | 256 | | | 15-+
 |-------------| .
 | Pattern 1 | .
 |-------------| .
 | . | | | | 2040 -+
Colour . | | | 2041 |
table . | | | 2042 |
for block 2 | | | | | 2043 | Pat.

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 |-------------| | | | 2044 | 255
 | Pattern 254 | | | | 2045 |
 |-------------| | | | 2046 |
 | Pattern 255 | 511 | | | 2047 |
 --------------- ------------------- -+

 --------------- ------------------------------
 | Pattern 0 | 512 | | | |
 |-------------| | ------------------------ |
 | Pattern 1 | | | | |
 |-------------| | | Block 1 | |
 | . | . | | | |
Colour . . | |----------------------| |
table . . | | | |
for block 3 | | | | Block 2 | |
 |-------------| | | | |
 | Pattern 254 | | |----------------------| |
 |-------------| | | | |
 | Pattern 255 | 767 pattern | | Block 3 | |
 --------------- | | | |
 | ------------------------ |
 Colour table | |

 Screen

* Pattern name table

The pattern name table is divided into three stages - upper, middle, and
lower; each displays the pattern by referring to 256 bytes of the pattern
generator (see Figure 4.34). This method enables each of 768 bytes on the
pattern name table to display a different pattern font.

 Figure 4.34 Pattern name table for GRAPHIC modes 2 and 3

 MSB 7 6 5 4 3 2 1 0 LSB

R#2 | 0 | A16| A15| A14| A13| A12| A11| A10| ---+
 --- |
 |
 +--+
 |
 | Pattern name table
 | | |
 | ----------- ----+ ------------------------------------
 +---> 0 | (0,0) | 0 | | (0,0) (31,0) |
 |---------| | | |
 1 | (1,0) | 1 | +-> | Upper stage of screen |
 |---------| | | | pattern display area (256 bytes) |
 . | . | . | | | |
 . . . |---+ | (0,7) (31,7) |
 . . . | |----------------------------------|
 | | | | (0,8) (31,8) |
 |---------| | | |
 31 | (31,7) | 255 | +-> | Middle stage of screen |

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 |---------| ----+ | | pattern display area (256 bytes) |
 32 | (0,8) | 256 | | | |
 |---------| | | | (0,15) (31,15) |
 . | . | . | | |----------------------------------|
 . . . |---+ | (0,16) (31,16) |
 . . . | | |
 | | | +-> | Lower stage of screen |
 |---------| | | | pattern display area (256 bytes) |
 767 | (31,15) | 511 | | | |
 |---------| ----+ | | (0,23) (31,23) |
 32 | (0,16) | 512 | | ------------------------------------
 |---------| | |
 . | . | | | Screen correspondence table
 . . |---+
 . . |
 | | |
 |---------| |
 767 | (31,15) | 767 bytes
 |---------| ----+
 | |

Actual contents of fixed pattern name table

 X axis
 0 8 16 240 248 255
 ----------------------- -----------------------
Y axis 0 | &H0 | &H8 | | &HF0 | &HF8 |
 | &H1 | &H9 | | &HF1 | &HF9 |
 | &H2 | &HA | | &HF2 | &HFA |
 | &H3 | &HB | | &HF3 | &HFB |
 | &H4 | &HC | | &HF4 | &HFC |
 | &H5 | &HD | | &HF5 | &HFD |
 | &H6 | &HE | | &HF6 | &HFE |
 | &H7 | &HF | | &HF7 | &HFF |
 |----------+----------| |----------+----------|
 8 | &H100 | &H108 | | &H1F0 | &H1F8 |
 | &H101 | &H109 | | &H1F1 | &H1F9 |
 | &H102 | &H10A | | &H1F2 | &H1FA |
 | &H103 | &H10B | | &H1F3 | &H1FB |
 | &H104 | &H10C | | &H1F4 | &H1FC |
 | &H105 | &H10D | | &H1F5 | &H1FD |
 | &H106 | &H10E | | &H1F6 | &H1FE |
 | &H107 | &H10F | | &H1F7 | &H1FF |
 ----------------------- -----------------------
 16 | |

 . . . (256 x 192 dots) . .

 | |
 ----------------------- -----------------------
 184 | &H1700 | &H1708 | | &H17F0 | &H17F8 |
 | &H1701 | &H1709 | | &H17F1 | &H17F9 |
 | &H1702 | &H170A | | &H17F2 | &H17FA |
 | &H1703 | &H170B | | &H17F3 | &H17FB |
 | &H1704 | &H170C | | &H17F4 | &H17FC |
 | &H1705 | &H170D | | &H17F5 | &H17FD |

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 | &H1706 | &H170E | | &H17F6 | &H17FE |
 191 | &H1707 | &H170F | | &H17F7 | &H17FF |
 ----------------------- -----------------------

Note: The values are offset from the base address of the pattern generator
table.

3.5.3 Screen colour specification

The border colour of the screen can be specified by R#7 (see Figure 4.35).

 Figure 4.35 Screen colour specification of GRAPHIC 2, GRAPHIC 3 modes

 MSB 7 6 5 4 3 2 1 0 LSB

R#7 | : : : | : : : |

 | | |
 +-------------------+-------------------+
 invalid specifies the border colour
 of the screen (0 to 15)

3.6 GRAPHIC 4 Mode

GRAPHIC 4 mode is described below:

--
| |
| screen: 256 (horizontal) x 212 (vertical) dots |
| (or, 192 vertical) |
| 16 colours can be displayed at the same time |
| each of 16 colours can be selected from 512 colours|
| command: high speed graphic by VDP command available |
| sprite: mode 2 sprite function available |
| memory requirements: for 192 dots |
| bitmap screen 24K bytes (6000H bytes) |
| (4 bits x 256 x 192) |
| for 212 dots |
| bitmap screen 26.5K bytes (6A00H bytes) |
| (4 bits x 256 x 212) |
BASIC: compatible to SCREEN 5

3.6.1 Setting GRAPHIC 4 mode

Set GRAPHIC 4 mode as shown in Figure 4.36.

 Figure 4.36 GRAPHIC 4 mode setting

 MSB 7 6 5 4 3 2 1 0 LSB

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

R#0 | . | . | . | . | 0 | 1 | 1 | . |

R#1 | . | . | . | 0 | 0 | . | . | . |

3.6.2 Screen structure of GRAPHIC 4 mode

* Pattern name table

In GRAPHIC 4 mode, one byte of the pattern name table corresponds with 2 dots
on the screen. The colour information of each dot is represented by 4 bits
and 16 colours can be specified (see Figure 4.37). The starting address of
the pattern name table is specified by R#2. Only the 2 high order bits of the
address (A16 to A15) are specified and the 15 low order bits are considered
as "0". Thus, the four addresses at which the pattern name can be set are
00000H, 08000H, 10000H, and 18000H.

 Figure 4.37 Pattern name table structure of GRAPHIC 4 mode

 MSB 7 6 5 4 3 2 1 0 LSB

R#2 | 0 | A16| A15| 1 | 1 | 1 | 1 | 1 | --+
 --- |
 |
+---+
|
| Pattern name table
|
MSB 7 6 5 4 3 2 1 0 LSB
+---> 0 | : (0,0) : | : (1,0) : |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 1 | : (2,0) : | : (3,0) : |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 . | |
 .
 . | |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 127 | : (254,0) : | : (255,0) : |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 128 | : (0,1) : | : (1,1) : |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 . | |
 .
 . | |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 27134 | : (252,211) : | : (253,211) : |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 27135 | : (254,211) : | : (255,211) : |

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

This table shows how colour codes are set for each dot. (0 to 15)

+---------> X
|
| ---------------------- ----------------------
| | 0,0 | 1,0 | | 254,0 | 255,0 |
V |---------+---------+ +---------+---------|
 | 0,1 | | 255,1 |
Y |---------+ +---------|
 | . ----------- . |
 . | X,Y | .
 . ----------- .
 | |
 |---------+ +---------|
 | 0,191 | LN = 0 | 255,191 |
 ------------ ------------

 | |
 ----------+ +----------
 | 0,211 | LN = 1 | 255,211 |
 ------------ ------------

 Screen correspondence table

The dot at (X,Y) coordinate on the screen can be accessed by using Expression
4.1. The program of List 4.2 illustrates the use of Expression 4.1.

 Expression 4.1 The expression for accessing the dot at (X,Y) coordinate

 --
ADR = X/2 + Y * 128 + base address

(The colour of the dot is represented by 4 high order bits in the case that X
is even and by 4 low order bits in the case that X is odd.)

List 4.2 PSET for GRAPHIC 4 mode written in BASIC
===

100 '***
110 ' LIST 4.2 dot access of GRAPHIC 4 mode
120 '***
130 '
140 SCREEN 5
150 BA=0
160 FOR I=0 TO 255
170 X=I:Y=I\2
180 COL=15
190 GOSUB 1000
200 NEXT
210 END
220 '
1000 '**
1010 ' PSET (X,Y),COL

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

1020 ' COL:color BA:graphics Base Address
1030 '**
1040 '
1050 ADR=X\2+Y*128+BA
1060 IF X AND 1 THEN BIT=&HF0:C=COL ELSE BIT=&HF:C=COL*16
1070 D=VPEEK(ADR)
1080 D=(D AND BIT) OR C
1090 VPOKE ADR,D
1100 RETURN

===

3.6.3 Screen colour specification

The border colour of the screen can be specified by R#7 (see Figure 4.38).

 Figure 4.38 Screen colour specification in GRAPHIC 4 mode

 MSB 7 6 5 4 3 2 1 0 LSB

R#7 | : : : | : : : |

 | | |
 +-------------------+-------------------+
 invalid specifies the border colour
 of the screen (0 to 15)

3.7 GRAPHIC 5 Mode

GRAPHIC 5 mode is described as follows:

--
| |
| screen: 512 (horizontal) x 212 (vertical) dots |
| (or, 192 vertical) |
| 4 colours can be displayed at the same time |
| each of 4 colours can be selected from 512 colours |
| command: graphic command by hardware available |
| sprite: mode 2 sprite function available |
| memory requirements: for 192 dots |
| bitmap screen 24K bytes (6000H bytes) |
| (2 bits x 512 x 192) |
| for 212 dots |
| bitmap screen 26.5K bytes (6A00H bytes) |
| (2 bits x 512 x 212) |
BASIC: compatible to SCREEN 6

3.7.1 Setting GRAPHIC 5 mode

Set GRAPHIC 5 mode as shown in Figure 4.39.

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 Figure 4.39 GRAPHIC 5 mode setting

 MSB 7 6 5 4 3 2 1 0 LSB

R#0 | . | . | . | . | 1 | 0 | 0 | . |

R#1 | . | . | . | 0 | 0 | . | . | . |

3.7.2 Pattern name table

In GRAPHIC 5 mode, one byte of the pattern name table corresponds with 4 dots
on the screen. The colour information of each dot is represented by 2 bits
and 4 colours can be specified. As with GRAPHIC 4 mode, the pattern name
table is set by writing 2 high order bits of the address in R#2. The
addresses can be set at either 00000H, 08000H, 10000H, or 18000H (see Figure
4.40).

 Figure 4.40 Pattern name table structure of GRAPHIC 5 mode

 MSB 7 6 5 4 3 2 1 0 LSB

R#2 | 0 | A16| A15| 1 | 1 | 1 | 1 | 1 | --+
 --- |
 |
+---+
|
| Pattern name table
|
MSB 7 6 5 4 3 2 1 0 LSB
+---> 0
-----+-----+-----+-----+-----+-----+-----+-----+
 1 | (4,0) | (5,0) | (6,0) | (7,0) |
 |-----+-----+-----+-----+-----+-----+-----+-----+
 . | |
 .
 . | |
 |-----+-----+-----+-----+-----+-----+-----+-----+
 127 | (508,0) | (509,0) | (510,0) | (511,0) |
 |-----+-----+-----+-----+-----+-----+-----+-----+
 128 | (0,1) | (1,1) | (2,1) | (3,1) |
 |-----+-----+-----+-----+-----+-----+-----+-----+
 . | |
 .
 . | |
 |-----+-----+-----+-----+-----+-----+-----+-----+
 27135 | (508,211) | (509,211) | (510,211) | (511,211) |

This table shows how colour codes are set for each dot. (0 to 3)

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

+---------> X
|
| ---------------------- ----------------------
| | 0,0 | 1,0 | | 510,0 | 511,0 |
V |---------+---------+ +---------+---------|
 | 0,1 | | 511,1 |
Y |---------+ +---------|
 | . ----------- . |
 . | X,Y | .
 . ----------- .
 | |
 |---------+ +---------|
 | 0,191 | LN = 0 | 511,191 |
 ------------ ------------

 | |
 ----------+ +----------
 | 0,211 | LN = 1 | 511,211 |
 ------------ ------------

 Screen correspondence table

The dot at (X,Y) coordinate on the screen can be accessed by using Expression
4.2. The program of List 4.3 confirms Expression 4.2.

 Expression 4.2 The expression for accessing the dot at (X,Y) coordinate

 --
ADR = X/4 + Y * 128 + base address

(The colour of the dot is represented by bit 7 and 6, or 5 and 4, or 3 and 2,
or 1 and 0, when X MOD 4 is 0, or 1, or 2, or 3, respectively.)

List 4.3 PSET for GRAPHIC 5 mode written in BASIC
===

100 '***
110 ' LIST 4.3 dot access of GRAPHIC 5 mode
120 '***
130 '
140 SCREEN 6
150 BA=0
160 FOR I=0 TO 511
170 X=I : Y=I\2
180 COL=3
190 GOSUB 1000
200 NEXT
210 END
220 '
1000 '***
1010 ' PSET(X,Y)
1020 ' COL:colour BA:graphic Base Address
1030 '***

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

1040 '
1050 ADR=X\4+Y*128+BA
1060 LP=X MOD 4
1070 IF LP=0 THEN BIT=&H3F:C=COL*&H40
1080 IF LP=1 THEN BIT=&HCF:C=COL*&H10
1090 IF LP=2 THEN BIT=&HF3:C=COL*&H4
1100 IF LP=3 THEN BIT=&HFC:C=COL
1110 D=VPEEK(ADR)
1120 D=(D AND BIT) OR C
1130 VPOKE ADR,D
1140 RETURN

===

3.7.3 Setting the screen colour

In GRAPHIC 5 mode, hardware tiling is done for the border colour of the
screen and sprites. As with the other modes, these colours are specified by 4
bits; 2 high order bits of 4 bits represents the dot colour at even
locations, and 2 low order bits for the dot colour at odd locations (see
Figure 4.41).

 Figure 4.41 Screen colour specification in GRAPHIC 5 mode

 MSB 7 6 5 4 3 2 1 0 LSB

R#7 | : : : | : | : |

 | | | |
 +-------------------+---------+---------+
 invalid | border colour (0 to 3) at even dots
 |
 +----> border colour (0 to 3) at odd dots

 +--> even dots (0,2,...,510)
 |
 | odd dots (1,3,...,511)

 | | | <-- graphic 2 dots

 | | <-- sprite 1 dot at another mode

 | | | <-- sprite 1 dot is automatically done by
 ------------- tiling function
 | |
 +-------+-------+
 | | |

MSB | : | : | LSB sprite colour specification (4 bits)

 right left

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 side side
 colour colour
 (0 to 3) (0 to 3)

3.8 GRAPHIC 6 Mode

GRAPHIC 6 mode is described as follows:

--
| |
| screen: 512 (horizontal) x 212 (vertical) dots |
| (or, 192 vertical) |
| 16 colours can be displayed at the same time |
| each of 16 colours can be selected from 512 colours|
| command: graphic command by hardware available |
| sprite: mode 2 sprite function available |
| memory requirements: for 192 dots |
| bitmap screen 48K bytes (C000H bytes) |
| (4 bits x 512 x 192) |
| for 212 dots |
| bitmap screen 53K bytes (D400H bytes) |
| (4 bits x 512 x 212) |
| Note that this mode cannot be used at all with |
| 64K byte VRAM because of the hardware |
BASIC: compatible to SCREEN 7

3.8.1 Setting GRAPHIC 6 mode

Set GRAPHIC 6 mode as shown in Figure 4.42.

 Figure 4.42 GRAPHIC 6 mode setting

 MSB 7 6 5 4 3 2 1 0 LSB

R#0 | . | . | . | . | 1 | 0 | 1 | . |

R#1 | . | . | . | 0 | 0 | . | . | . |

3.8.2 Pattern name table

In GRAPHIC 6 mode, one byte of the pattern name table corresponds with 2 dots
on the screen. The colour information of each dot is represented by 4 bits
and 16 colours can be specified (see Figure 4.43). The starting address of
the pattern name table is set by writing the high order bit of the
address in R#2. The two addresses at which the pattern name table can be set
ae either 00000H or 10000H. The dot at (X,Y) coordinate on the screen can be
accessed by using Expression 4.3. The program of List 4.4 illustrates this.

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 Figure 4.43 Pattern name table structure of GRAPHIC 6 mode

 MSB 7 6 5 4 3 2 1 0 LSB

R#2 | 0 | 0 | A16| 1 | 1 | 1 | 1 | 1 | ------------------------+
 --- |
 ^ |
 | |
This bit is used to specify a page to be displayed on the screen. |
The bit position of A16 is different only in the GRAPHIC 6 and 7 modes. |
 |
 |
+---+
|
| Pattern name table
|
MSB 7 6 5 4 3 2 1 0 LSB
+---> 0
-----+-----+-----+-----+-----+-----+-----+-----+
 1 | : (2,0) : | : (3,0) : |
 |-----+-----+-----+-----+-----+-----+-----+-----+
 . | |
 .
 . | |
 |-----+-----+-----+-----+-----+-----+-----+-----+
 255 | : (510,0) : | : (511,0) : |
 |-----+-----+-----+-----+-----+-----+-----+-----+
 256 | : (0,1) : | : (1,1) : |
 |-----+-----+-----+-----+-----+-----+-----+-----+
 . | |
 .
 . | |
 |-----+-----+-----+-----+-----+-----+-----+-----+
 54270 | : (508,211) : | : (509,211) : |
 |-----+-----+-----+-----+-----+-----+-----+-----+
 54271 | : (510,211) : | : (511,211) : |

This table shows how colour codes are set for each dot. (0 to 15)

+---------> X
|
| ---------------------- ----------------------
| | 0,0 | 1,0 | | 510,0 | 511,0 |
V |---------+---------+ +---------+---------|
 | 0,1 | | 511,1 |
Y |---------+ +---------|
 | . ----------- . |
 . | X,Y | .
 . ----------- .
 | |
 |---------+ +---------|
 | 0,191 | LN = 0 | 511,191 |
 ------------ ------------

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 | |
 |---------+ +---------|
 | 0,211 | LN = 1 | 511,211 |
 ------------ ------------

 Screen correspondence table

The dot at (X,Y) coordinate on the screen can be accessed by using Expression
4.1. The program of List 4.2 illustrates the use of Expression 4.1.

 Expression 4.3 The expression for the access to the dot
 at (X,Y) coordinate

 --
ADR = X/2 + Y * 256 + base address

(The colour of the dot is represented by 4 high order bits in the case that X
is even and by 4 low order bits in the case that X is odd.)

List 4.4 PSET for GRAPHIC 6 mode written in BASIC
===

100 '***
110 ' LIST 4.4 dot access of GRAPHIC 6 mode
120 '***
130 '
140 SCREEN 7
150 BA=0
160 FOR I=0 TO 511
170 X=I: Y=I\2: COL=15: GOSUB 1000
180 NEXT
190 END
200 '
1000 '***
1010 ' PSET (X,Y)
1020 ' COL:color BA:graphic Base Address
1030 '***
1040 '
1050 ADR=X\2+Y*256+BA
1060 IF X AND 1 THEN BIT=&HF: C=COL ELSE BIT=&HF0: C=COL*16
1070 VPOKE ADR,(VPEEK(ADR) AND BIT) OR COL
1080 RETURN

===

3.8.3 Setting screen colour

The border colour of the screen can be specified by R#7 (see Figure 4.44).

 Figure 4.44 Screen colour specification in GRAPHIC 6 mode

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 MSB 7 6 5 4 3 2 1 0 LSB

R#7 | : : : | : : : |

 | | |
 +-------------------+-------------------+
 invalid specifies the border colour
 of the screen (0 to 15)

3.9 GRAPHIC 7 Mode Use

GRAPHIC 7 mode is described as follows:

--
| |
| screen: 256 (horizontal) x 212 (vertical) dots |
| (or, 192 vertical) |
| 256 colours can be displayed at the same time |
| command: graphic command by hardware available |
| sprite: mode 2 sprite function available |
| memory requirements: for 192 dots |
| bitmap screen 48K bytes (C000H bytes) |
| (8 bits x 256 x 192) |
| for 212 dots |
| bitmap screen 53K bytes (D400H bytes) |
| (8 bits x 256 x 212) |
| Note that this mode cannot be used with 64K byte |
| VRAM machines, as in the case of GRAPHIC 6 |
BASIC: compatible to SCREEN 8

3.9.1 Setting GRAPHIC 7 mode

Set GRAPHIC 7 mode as shown in Figure 4.45.

 Figure 4.45 GRAPHIC 4 mode setting

 MSB 7 6 5 4 3 2 1 0 LSB

R#0 | . | . | . | . | 1 | 1 | 1 | . |

R#1 | . | . | . | 0 | 0 | . | . | . |

3.9.2 Pattern name table

Configuration of GRAPHIC 7 mode is the simplest of all modes; one dot on the
screen corresponds with one byte in the pattern name table. The value of one
byte written in the table represents 256 kinds of colours. The starting
address of the pattern name table is set by R#2. The two addresses at which

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

the pattern name table can be set are either 00000H or 10000H (see Figure
4.46).

One byte of data represents the intensity of 3 bits for green, 3 bits for
red, and 2 bits for blue, as shown in Figure 4.47. The dot at (X,Y)
coordinate on the screen can be accessed by using Expression 4.4.

 Figure 4.46 Pattern name table structure of GRAPHIC 7 mode

 MSB 7 6 5 4 3 2 1 0 LSB

R#2 | 0 | 0 | A16| 1 | 1 | 1 | 1 | 1 | ------------------------+
 --- |
 ^ |
 | |
This bit is used to specify a page to be displayed on the screen. |
The bit position of A16 is different only in the GRAPHIC 6 and 7 modes. |
 |
 |
+---+
|
|
| Pattern name table
|
MSB 7 6 5 4 3 2 1 0 LSB
+---> 0
-----+-----+-----+-----+-----+-----+-----+-----
 1 | : : : (1,0) : : : |
 |-----+-----+-----+-----+-----+-----+-----+-----|
 . | |
 .
 . | |
 |---|
 | Green level | Red level | Blue level|
 |---|
 . | |
 .
 . | |
 |-----+-----+-----+-----+-----+-----+-----+-----|
 255 | : : : (255,0) : : : |
 |-----+-----+-----+-----+-----+-----+-----+-----|
 256 | : : : (0,1) : : : |
 |-----+-----+-----+-----+-----+-----+-----+-----|
 . | |
 .
 . | |
 |-----+-----+-----+-----+-----+-----+-----+-----|
 54270 | : : : (254,211) : : : |
 |-----+-----+-----+-----+-----+-----+-----+-----|
 54271 | : : : (255,211) : : : |

This table shows how colour codes are set for each dot. (0 to 255)

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

+---------> X
|
| ---------------------- ----------------------
| | 0,0 | 1,0 | | 254,0 | 255,0 |
V |---------+---------+ +---------+---------|
 | 0,1 | | 255,1 |
Y |---------+ +---------|
 | . ----------- . |
 . | X,Y | .
 . ----------- .
 | |
 |---------+ +---------|
 | 0,191 | LN = 0 | 255,191 |
 ------------ ------------

 | |
 |---------+ +---------|
 | 0,211 | LN = 1 | 255,211 |
 ------------ ------------

 Screen correspondence table

 Figure 4.47 RGB brightness information

 MSB 7 6 5 4 3 2 1 0 LSB

R#2 | GREEN : RED : BLUE |

 | | | |
 +--------------+--------------+---------+
 | | Blue level (0 to 3)
 | |
 | +-------> Red level (0 to 7)
 |
 +-----------------------> Green level (0 to 7)

 Expression 4.4 The expression for accessing to the dot
 at (X,Y) coordinate

ADR = X + Y * 256 + base address

3.9.3 Setting the screen colour

The border colour of the screen can be specified by R#7 (see Figure 4.48).

 Figure 4.48 Screen colour specification in GRAPHIC 7 mode

 MSB 7 6 5 4 3 2 1 0 LSB

R#7 | : : : : : : : |

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 | |
 +---------------------------------------+
 specifies the border colour of the screen (0 to 255)

4. MISCELLANEOUS FUNCTIONS FOR THE SCREEN DISPLAY

Detailed settings for the screen display are available in MSX-VIDEO. These
include screen ON/OFF and specification of the display location. These
MSX-VIDEO functions are described in this function.

* Screen ON/OFF

The screen ON/OFF function is controlled by bit 6 of R#1 (see Figure 4.49).
When set OFF, the entire screen changes to the colour specified by the 4 low
order bits of R#7 (8 bits in GRAPHIC 7 mode). Drawing with the VDP commands
is faster when the screen is set OFF.

 Figure 4.49 Screen ON/OFF

 MSB 7 6 5 4 3 2 1 0 LSB

R#1 | . | X | . | . | . | . | . | . |

 |
 | 0: Screen OFF
 +--->
 1: Screen ON

BASIC program lines:
 VDP(1)=VDP(1) AND &B10111111 <-- Screen OFF
 VDP(1)=VDP(1) OR &B01000000 <-- Screen ON

* Adjustment of the display location on the screen

R#18 is used for adjusting the display location on the screen (see Figure
4.50). This corresponds with the "SET ADJUST" instruction of BASIC.

 Figure 4.50 Adjustment of the screen display

 MSB 7 6 5 4 3 2 1 0 LSB

R#18 | v3 | v2 | v1 | v0 | h3 | h2 | h1 | h0 |

 | | |
 +-------------------+-------------------+
 vertical adjustment horizontal adjustment
 (-8 to +7) (-8 to +7)

 -- V=7
 | ^ | ^
 | | | |
 | -- | |

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

<--	Display screen	-->	
--			
V	V		
 -- V=8
 H=7 <--> H=8

* Switching the number of pixels in the Y direction

The number of dots displayed in the Y direction on the screen can be switched
to either 192 dots or 212 dots by setting bit 7 of R#9 to 0 or 1. This
function is only valid for five screen modes, TEXT 2, and GRAPHIC 4 to
GRAPHIC 7 modes. When 212 dots are set in TEXT 2 mode, the number of text
lines is 26.5 (=212/8) and on the 27th line only the upper halves of
characters are displayed.

 Figure 4.51 Switching the number of dots in the vertical direction

 MSB 7 6 5 4 3 2 1 0 LSB

R#9 | X | . | . | . | . | . | . | . |

 |
 | 0: 192 dots
 +--->
 1: 212 dots

BASIC program lines:
 VDP(10)=VDP(10) AND &B01111111 <-- 192 dots
 VDP(10)=VDP(10) OR &B10000000 <-- 212 dots

* Switching the display page

In GRAPHIC modes 4 to 7, the display pages can be easily switched by setting
the starting address of the pattern name table using R#2. In fact, the second
parameter of the "SET PAGE" BASIC instruction switches the display page this
way.

 Figure 4.52 Switching pages

 * GRAPHIC modes 4 and 5

 MSB 7 6 5 4 3 2 1 0 LSB VRAM
 --- ---------------- 00000H

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

R#2 | 0 | X | X | 1 | 1 | 1 | 1 | 1 | | page 0 |
 --- |--------------| 08000H
 | | | page 1 |
 +---------+ |--------------| 10000H
 | 00: page 0 | page 2 |
 +---> 01: page 1 |--------------| 18000H
 10: page 2 | page 3 |
 11: page 3 ----------------

 * GRAPHIC modes 6 and 7

 MSB 7 6 5 4 3 2 1 0 LSB VRAM
 --- ---------------- 00000H
R#2 | 0 | 0 | X | 1 | 1 | 1 | 1 | 1 | | |
 --- | page 0 |
 | | |
 | |--------------| 10000H
 | 0: page 0 | |
 +---> | page 1 |
 1: page 1 | |

* Automatic alternate screen display

In GRAPHIC modes 4 to 7, two pages can be displayed alternately by using the
following method. Either page 0 and page 1, or page 2 and page 3 can be
displayed alternately.

To begin the alternate display, select the odd-numbered page (1 or 3) using
R#2 and set the screen alternation rate in R#13. The 4 high order bits of
R#13 represent the time for displaying the even page and the 4 low order bits
represent the time for displaying the odd page. The time is set in 1/6
seconds interval. Setting 0 for both time periods causes only the odd page to
be displayed.

 Figure 4.53 Setting the rate of the screen alternation

R#13 | : EVEN : | : ODD : | setting the cycle

 ---------------------- --------
 | even numbered page | odd numbered page |
--------- ----------------------
 |<- EVEN/6 seconds ->|<- ODD/6 seconds ->|

* Setting the interlaced mode

The interlaced mode allows an apparent screen resolution in the Y direction
of double the normal mode. A resolution of up to 424 dots in the Y direction
can be achieved using this mode. This is done by alternating at high speed
the normal screen and a screen whose scanning lines are offset vertically by
half a line. In MSX-VIDEO the interlaced mode is specified by setting bit 3

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

of R#9 ro "1". The two screens are switched 60 times a second.

When the odd page is selected in GRAPHIC 4 to GRAPHIC 7 screen modes and the
alternate screen display mode is selected, the screen is normally switched at
slow rates specified in units of 1/6 seconds. However, combinig this function
and the interlaced function can make the number of the vertical dots of the
display screen seem double.

 Figure 4.54 Setting the interlaced mode

 MSB 7 6 5 4 3 2 1 0 LSB

R#9 | . | . | . | . | X | X | . | . |

 | | 0: one screen is displayed
 | +-->
 | 1: two screens are displayed
 | alternately
 |
 | 0: non-interlace mode (normal mode)
 +---->
 1: interlace mode

 First screen
 +-- -------------------
 | | --------------- |
 | | |
212 | --------------- |
dots | |
 | | --------------- | ------------------- ---
 | | | | -------------- | ^
 | | --------------- | | | |
 +-- ------------------- ------> | -------------- | | Apparent
 | | | 424 dots
 Second screen | -------------- | | resolution
 +-- ------------------- ------> | | |
 | | | | -------------- | |
 | | | | | V
212 | | ------------------- ---
dots | | interlace mode table
 | | | (The first and second screens are
 | | | displayed alternately at 1/60 seconds
 | | | each cycle.)
 +-- -------------------

List 4.5 Interlaced mode example
===

1000 '***
1010 ' List 4.5 interlace mode
1020 '***
1030 '
1040 COLOR 15,0,0 : SCREEN 5,,,,,0 'noninterlace mode
1050 '

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

1060 SET PAGE 0,0 : CLS
1070 LINE (32,0)-(64,120),15,BF
1080 SET PAGE 1,1 : CLS
1090 LINE (192,91)-(224,211),15,BF
1100 '
1110 VDP(10)=VDP(10) OR &B00001100 'interlace mode!!!
1120 '
1130 FOR I=32 TO 192
1140 SET PAGE 1,0
1150 LINE (I,0)-STEP(0,120),0
1160 LINE (I+33),0)-STEP(0,120),15
1170 SET PAGE 1,1
1180 LINE (256-I,91)-STEP(0,120),0
1190 LINE (221-I,91)-STEP(0,120),15
1200 NEXT I
1210 '
1220 VDP(10)=VDP(10) AND &B11110011 'interlace off

===

* Vertical scroll of the screen

R#23 is used to set the line at which display begins on the screen. Changing
this register enables vertical scrolling of the screen. Note that, since the
scroll is done every 256 lines, the sprite tables should be moved to another
page. List 4.6 shows an example.

List 4.6 Vertical scroll example
===

1000 '**
1010 ' List 4.6 Hardware scroll
1020 '**
1030 '
1040 SCREEN 5,2: COLOR 15,0,0: CLS
1050 COPY (0,0)-(255,43) TO (0,212),,PSET 'erase (212,0)-(255,255)
1060 '
1070 FOR I=1 TO 8: D(I)=VAL(MID$("00022220",I,1))-1: NEXT
1080 '
1090 OPEN "GRP:" AS #1
1100 FOR I=0 TO 3
1110 PRESET (64,I*64): PRINT #1,"Hit CURSOR Key"
1120 NEXT
1130 '
1140 J=STICK(0)
1150 P=(P+D(J)) AND &HFF
1160 VDP(24)=P
1170 GOTO 1140

===

* Specifying the colour code 0 function

Among the 16 colour codes, only code 0 can be made as a "transparent" colour

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

(the border colour of the screen can be set transparently), the colour set in
palette P#0. Setting bit 5 of R#8 to "1" disables thsi function and the
colour code 0 changes to the colour defined by the palette P#0.

 Figure 4.55 Colour code 0 function

 MSB 7 6 5 4 3 2 1 0 LSB

R#8 | . | . | X | . | . | . | . | . |

 | 0: Colour code 0 transparent function is enabled
 +-->
 1: Colour code 0 function disabled

- When the TB bit is "0", colour code 0 becomes transparent.
- When the TB bit is "1", colour code 0 changes to the colour defined by
palette P#0.

* Generating interrupts by the scanning line location

In MSX-VIDEO an interrupt can be generated just after the CRT finishes
displaying a specific scanning line. Set in R#19 the number of the scanning
line at which the interrupt should be generated, and set bit 4 of R#0 to "1"
(see Figure 4.56).

 Figure 4.56 Generating the scanning line interrupt

 MSB 7 6 5 4 3 2 1 0 LSB

R#0 | . | . | . | E1 | . | . | . | . | Mode register 0

 | 0: Normal condition
 +-->
 1: Interrupt at specific line mode

 MSB 7 6 5 4 3 2 1 0 LSB

R#19 | IL7| IL6| IL5| IL4| IL3| IL2| IL1| IL0| Interrupt line register

5. SPRITES

Sprites are used to display movable character patterns of 8 x 8 or 16 x 16
dots on the screen. This function is especially useful in the programming of
games.

The parameters specified are the X and Y coordinates, the character number,
and the colour code. The sprite is displayed by writing this data to the
preset sprite attribute table.

There are two modes for MSX2 sprites. Mode 1 is compatible to the TMS9918
used in the MSX1 machines. Mode 2 includes several improved functions and has

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

been implemented on the MSX2. This section summarises the sprite function and
describes the two modes.

5.1 Sprite Function

Up to 32 sprites can be displayed on one screen at a time.

Sprites have two sizes, 8 x 8 and 16 x 16 dots. Only one size can be
displayed on the screen at a time. The size of one dot of the sprite is
usually the same as one pixel, but in the case of GRPAHIC5 and 6 modes (for
both, the resolution is 512 x 212) the horizontal size is two pixels, that
is, the absolute size of the sprite is the same in any mode.

The Sprite mode automatically selected is determined by the screen mode in
use. Shown below are the default settings:

Sprite mode 1 selected: GRAPHIC 1 (SCREEN 1)
 GRAPHIC 2 (SCREEN 2)
 MULTI colour (SCREEN 3)

Sprite mode 2 selected: GRAPHIC 3 (SCREEN 4)
 GRAPHIC 4 (SCREEN 5)
 GRAPHIC 5 (SCREEN 6)
 GRAPHIC 6 (SCREEN 7)
 GRAPHIC 7 (SCREEN 8)

5.2 Sprite mode 1

Sprite mode 1 has the same functions as the sprite mode of MSX1 machines.
Thus programs using this mode can also be run on the MSX1

5.2.1 Number of sprites to be displayed

There are 32 sprites numbered from 0 to 31. Sprites with the smallest numbers
have the highest priority. When sprites are placed on the same horizontal
line of the screen, up to 4 sprites are placed in their order priority, and
the portions of the 5th sprite or higher which conflict with the existing
four sprites on a given line are not displayed.

 Figure 4.57 Number of sprites to be displayed (sprite mode 1)

| |
| -------- -------- -------- |
--------	#2		#3	--------	#5			
	#1						#4	: : ::::::::
		-------- --------		:::::::: : #6 :				
| -------- -------- | | |
| -------- |
| |
| |

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

5.2.2 Sprite display settings

The following descriptions are settings to display the sprite.

* Setting the size of the sprite

8 x 8 dots or 16 x 16 dots can be set (see Figure 4.58). By default, 8 x 8
dots is selected.

 Figure 4.58 Setting the size of the sprite

 MSB 7 6 5 4 3 2 1 0 LSB

R#1 | . | . | . | . | . | . | X | . |

 | 0: 8 x 8 dots
 +-->
 1: 16 x 16 dots

 8 x 8 dots 16 x 16 dots
-------------- - ------------------------------ -
| | ^ | | ^
	8 dots			
	V			
-------------- -		16 dots		
<- 8 dots ->				
 | | |
 | | |
 | | |
 | | V
 ------------------------------ -
 |<--- 16 x 16 dots --->|

* Expanding the sprite

Figure 4.59 shows how to select whether one dot of the sprite corresponds to
one dot of the screen or whether it is expanded double in both the horizontal
and vertical directions. By default, the one dot to one dot size is selected.

 Figure 4.59 Expanding the sprite

 MSB 7 6 5 4 3 2 1 0 LSB

R#1 | . | . | . | . | . | . | . | X |

 | 0: normal mode
 +-->
 1: expansion mode (2X)

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

* Setting the sprite pattern generator table

Sprite patterns are defined in the sprite pattern generator table in VRAM. Up
to 256 sprites can be defined in the case of 8 x 8 dots, and up to 64 for 16
x 16 dots. Each pattern is numbered from 0 to 255 and is allocated in VRAM as
shown in Figure 4.60. For 16 x 16 dots, four 8 x 8 patterns are used from the
top of the table. In this case, using any number of these four patterns
causes the same sprite to be specified. R#6 is used to set the address in the
sprite pattern generator table as shown in Figure 4.60.

 Figure 4.60 Structure of the sprite pattern generator table
 (sprite mode 1)

 VRAM

 |<-- 1 byte -->|
 - ----------------- ---+ <--- R#6
 ^ | | | ---
 | | | | | 0 | 0 | A16| A15| A14| A13| A12| A11|
 | | | | ---
 8 | | Pattern
bytes | | #0
 | | | |
 | | | |
 V | | |
 - |---------------| ---+
 | | |
 | | |
 | | |
 | | Pattern
 | | #1
 | | |
 | | |
 | | |
 |---------------| ---+
 | . |
 .
 .
 | |
 |---------------| Pattern #255
 | |

* Setting the sprite attribute table

Each sprite is displayed in one of 32 "sprite planes" exclusively, and the
sprite status for each sprite plane is recorded using 4 bytes. The area
having the information for each sprite plane is called the sprite attribute
table. The starting address in VRAM for this table is set in R#5 and R#11 as
shown in Figure 4.61.

The four bytes in the attribute table ocntain the following information:

| |
| Y-coordinate: specifies Y-coordinate of the sprite. Note that |

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

| the top line of the screen is not 0 but 255. |
| Setting this value in 208 (D0H) causes sprites |
| after this plane not to be displayed. |
| X-coordinate: specifies X-coordinate of the sprite. |
| pattern number: specifies the character in the sprite pattern |
| generator table to be displayed. |
| colour code: specifies the colour (palette number) of the |
| portion where the bit of the sprite pattern |
| is "1". |
| EC: Setting "1" to this bit causes the sprite to be |
| shifted for 32 bits to the left. Using this |
| function enables the dot of the sprite to be |
| displayed one by one from the left edge of the |
| screen. |

 Figure 4.61 Structure of the sprite attribute table (sprite mode 1)

 MSB 7 6 5 4 3 2 1 0 LSB
 - --- --+ <--- (*)
 ^ | : Y coordinate (0 to 255) : | |
 | |----+----+----+----+----+----+----+----| |
 | | : X coordinate (0 to 255) : | |
4 bytes |----+----+----+----+----+----+----+----| Sprite #0 attribute area
 | | : Pattern number (0 to 255) : | |
 | |----+----+----+----+----+----+----+----| |
 V | EC | 0 | 0 | 0 | Colour code | |
 - |----+----+----+----+----+----+----+----| --+
 | | |
 | | | Sprite #1 attrib. area
 . .
 . .
 . .

 | | | Sprite #31 attrib. area
 | | |
 --- --+

(*) R#5 | A14| A13| A12| A11| A10| 1 | 1 | 1 |

 R#11 | 0 | 0 | 0 | 0 | 0 | 0 | A16| A15|

 | |
 | --------------------------------- |
 | | | |
 | | | ###|: |
 | | | | |
 | | | ##|:: |
 | | | | | EC bit = "0"
 | | V #|::: |

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 | | | |
 | |#### | |
 | | ^ | |
 | ---+----------------------------- |
 | | |
 --------+----------------------------------
 |
The sprite will display from here (X coordinate = 0)

 | |
 | --------------------------------- |
 | | | |
 | :::|# | | |
 | | | | |
 | ::|## | | |
 | | | | | EC bit = "1"
 | :|### V | |
 | | | |
 | |#### ####| |
 | | ^ | |
 | -----------------------------+--- |
 | | |
 ----------------------------------+--------
 |
The sprite will display until here (X coordinate = 255)

5.2.3 Judging the sprite conflicts

When two sprites conflict, bit 5 of S#0 becomes "1" to inform of the
conflict. A "conflict" means that bits "1" in the sprite pattern whose colour
is not "transparent" occupy the same coordinate (see Figure 4.62)

 Figure 4.62 Conflict of sprites (sprite mode 1)

 MSB 7 6 5 4 3 2 1 0 LSB

S#0 | . | . | X | . | . | . | . | . |

 | 0: Normal
 +-->
 1: A sprite conflict exists

 +-- --------------------- ---------------------
 | | \\\\\\\ | | | \\\\\\\ | |
 | | \\\\\\\ | | <--- Sprite 1 ---> | \\ -----+---------+-----
8 or 16 | \\\\\\\ | | | \\ | xx | // | | |
 dots |---------+---------+---------- |----+----- // | | |
 | | | /////// | | | | /////// | | |
 | | | /////// | | | |---------- | |
 | | | /////// | | | | | |
 +-- ----------+---------- | -----+--------------- |
 | | <- Sprite 2 -> | |

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 | | ---------------------
 | |

 These two sprites do not conflict These two sprites conflict

------ ------
| \\ | | // | --> This pattern bit has one part
------ ------

When more than 5 sprites are placed on the same line, bit 6 of S#0 becomes
"1" and the identifying number of the 5th sprite (the portion which cannot be
displayed) is set in the 5 low order bits of S#0.

 Figure 4.63 Judging the conflict (sprite mode 1)

 MSB 7 6 5 4 3 2 1 0 LSB

S#0 | . | X | . | X | X | X | X | X |

 | | |
 | +------------------------+
 | Identification number of fifth sprite on a single line
 |
 | 0: Normal
 +-->
 1: More than 4 sprites are occupying a single line

5.3 Sprite Mode 2

Sprite mode 2 is the newly added mode for MSX-VIDEO. It is not compatible
with TMS9918 and cannot be used with MSX1 machines.

5.3.1 Number of sprites to be displayed

The number of sprites which can be displayed on one screen is also 32, but up
to eight sprites can be displayed on a given horizontal line of the screen.
The priorities are the same as in mode 1 with the lower numbers having
highest priority.

 Figure 4.64 Number of sprites to be displayed (sprite mode 2)

--
| |
| |
| ------- ------------- ------- ------- |
	#0	-------	#2	#4		#5		#8	
			#1			---			--- ------- : : :::::::
-------		-------	--- -------		#7	::::::: : #9 :			
-------	#3		#6						
------- ------- ------- -------									

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

5.3.2 Sprite display settings

* Sprite size same as sprite mode 1

* Expanding sprite same as sprite mode 1

* Sprite display ON/OFF

In sprite mode 2, the sprite display can be turned ON/OFF by bit 1 of R#8.
When this bit is set to 1, no sprites will appear on the screen.

 Figure 4.65 Sprite display specification

 MSB 7 6 5 4 3 2 1 0 LSB

R#8 | . | . | . | . | . | . | X | . |

 | 0: Sprite mode on
 +-->
 1: Sprite mode off

* Setting the pattern generator table same as sprite mode 1

* Sprite attribute table

In sprite mode 2, since different colours can be set for each horizontal line
of the sprite, the colour information is stored in a sprite colour table as
described below, which is independent of the sprite attribute table. Three
kinds of information are stored in the sprite attribute table (see Figure
4.66).

| |
| Y-coordinate: setting this value to 216 (D8H) causes sprites |
| after this sprite plane not to be displayed. |
| Except for this, it is the same as the sprite |
| mode 1. |
| X-coordinate: same as sprite mode 1. |
| pattern number: same as sprite mode 1. |

 Figure 4.66 Structure of the sprite attribute table (sprite mode 2)

 MSB 7 6 5 4 3 2 1 0 LSB

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 - --- --+ <--- (*)
 ^ | : Y coordinate (0 to 255) : | |
 | |----+----+----+----+----+----+----+----| |
 | | : X coordinate (0 to 255) : | |
4 bytes |----+----+----+----+----+----+----+----| Sprite #0 attribute area
 | | : Pattern number (0 to 255) : | |
 | |----+----+----+----+----+----+----+----| |
 V | : : : unused : : : | |
 - |----+----+----+----+----+----+----+----| --+
 | | |
 | | | Sprite #1 attrib. area
 . .
 . .
 . .

 | | | Sprite #31 attrib. area
 | | |
 --- --+

(*) R#5 | A14| A13| A12| A11| A10| 1 | 1 | 1 |

 R#11 | 0 | 0 | 0 | 0 | 0 | 0 | A16| A15|

* Sprite colour table

The colour table is automatically set at the address 512 bytes before the
starting address of the sprite attribute table. 16 bytes are allocated for
each sprite plane and the following settings are made for each line of the
sprite.

| |
| colour code: colour can be specified for each line. |
| EC: the same as EC bit of the attribute table of |
| sprite mode one. When "1", the sprite display |
| location is shifted 32 bits to the left. |
| This also can be specified for each line. |
| CC: when CC bit is "1", it can have the same |
| priority as the sprite "that has the higher |
| priority than this sprite and whose CC bit is |
| "0" and that is nearest to this sprite plane". |
| When sprites having the same priority are |
| overlapped, the colour for which OR (logical |
| or) of both colour codes are displayed. In this |
| case, the overlapping does not cause a conflict |
| (see Figure 4.68). |
| IC: (one line of) the sprite with this bit "1" |
| does not conflict with other sprites. |

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 Figure 4.67 Structure of the sprite colour table (sprite mode 2)

 MSB 7 6 5 4 3 2 1 0 LSB
 --- --+ <-- starting
 0 | EC | CC | IC | 0 | Color code | 1st line | address
 |----+----+----+----+----+----+----+----| | of the
 1 | EC | CC | IC | 0 | Color code | 2nd line | sprite
 |----+----+----+----+----+----+----+----| | colour
 | . | | table
 . |
 . | Sprite #0
 | | | colour table
 |----+----+----+----+----+----+----+----| |
 15 | EC | CC | IC | 0 | Color code | 16th line |
 |----+----+----+----+----+----+----+----| --+
 | . | .
 . .
 . .
 | |
 |----+----+----+----+----+----+----+----| --+
 496 | EC | CC | IC | 0 | Color code | 1th line |
 |----+----+----+----+----+----+----+----| |
 497 | EC | CC | IC | 0 | Color code | 2nd line | Sprite #31
 |----+----+----+----+----+----+----+----| | colour table
 | . | |
 . | starting
 . | address
 | | | of the
 |----+----+----+----+----+----+----+----| | sprite
 511 | EC | CC | IC | 0 | Color code | 16th line | attribute
 --- --+ <-- table
 | | | | |
 | | | +-------------------+
 | | | Specify the colour code (0 to 15)
 | | | for the sprite by each line
 | | | 1 = no
 | | +-------------------> detect conflict: 0 = yed
 | |
 | +------------------------> priority: 0 = yes
 | 1 = no
 |
 +-----------------------------> 32 dot left shifted display: 1 = yes
 0 = no

 Figure 4.68 CC bit detection

 Sprite 1 Sprite 2 Sprite 1,2 (overlapped)
------------------- ------------------- -------------------
//////////			\\			xx	/////	
//////////			\\			xx	/////	
//////////			\\ -------------		xx --------+----			
//////////			\\\\\\\\\\\\\\\	+--	xxxxxxxxxx	\\		
//////////			\\\\\\\\\\\\\\\			xxxxxxxxxx	\\	
------------------- ------------------- V -------------------
 CC = 0 CC = 1 Color code = 8 or 4 = 12

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

------ ------ ------
| // | Color code = 8 | \\ | Color code = 4 | xx | Color code=12
------ ------ ------

Note: 1) Conflicts are not detected when the pattern of the sprite whose
 CC is "1" is piled on the portion CC=0 of the sprite which has
 a smaller number and is nearest to it.
 2) To display the sprite whose CC is "1", CC bit of the sprite which
 has smaller number should be set to 0.

5.3.3 Judging sprite conflicts

A "conflict" in sprite mode 2 occurs when the display colour of a sprite is
not transparent and "1" bits on the line whose CC bit is 0 overlap each
other. When two sprites conflict, bit 5 of S#0 becomes "1" and the conflict
can be detected (see Figure 4.69). In this case, different from the sprite
mode 1, the coordinate where the conflict occurred can be detected by S#3 to
S#6 as shown in Figure 4.70. Note that the coordinate which can be obtained
by these registers is not the coordinate where the conflict actually
occurred. To get this, use Expression 4.5. S#3 to S#6 are reset when S#5 is
read out.

 Figure 4.69 Conflict of the sprite (sprite mode 2)

 MSB 7 6 5 4 3 2 1 0 LSB

S#0 | . | . | X | . | . | . | . | . |

 | 0: normal
 +-->
 1: conflict occurred

 - | \\\\\\\ | \ -----+----+-------- - -------------------------
 +-- | | \\\\\\\ | \ | xx | // | ///// | | --> | | 0| 0| : : : : |
 | - ----------+---+----- // | ///// | - -------------------------
 | | | | /////// | ///// | | | |
 | -------------+---+---------- ///// | | +-----+
 | | | /////////////// | | CC and IC bits are both "0"
 | the attribute | ------------------- |
 | of this line | |
 | | |
 | --------------------------
 V

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

| | 0| 0| : : : : |

 | |
 +-----+
CC and IC bits are both "0"

 Figure 4.70 Readout of the conflict coordinate

 MSB 7 6 5 4 3 2 1 0 LSB
 --- --+
S#3 | X7 | X6 | X5 | X4 | X3 | X2 | X1 | X0 | |
 --- | X-coordinate where the
 | conflict occurred
 --- |
S#4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | X8 | |
 --- --+

 --- --+
S#5 | Y7 | Y6 | Y5 | Y4 | Y3 | Y2 | Y1 | Y0 | |
 --- | Y-coordinate where the
 | conflict occurred
 --- |
S#6 | 1 | 1 | 1 | 1 | 1 | 1 | Y9 | Y8 | |
 --- --+

 Expression 4.5 Calculating the actual conflict coordinate

| |
| (X-coordinate where the conflict occurred) = |
| (X-coordinate of S#3 and S#4) - 12 |
| |
| (Y-coordinate where the conflict occurred) = |
| (Y-coordinate of S#5 and S#6) - 8 |

When more than nine sprites are placed on the same horizontal line, bit 6 of
S#0 becomes "1" and the number of the sprite plane whose order of priority is
9 is entered to the 5 low order bits of S#0 (see Figure 4.71).

 Figure 4.71 Conflict of the sprite (sprite mode 2)

 MSB 7 6 5 4 3 2 1 0 LSB

S#0 | . | X | . | X | X | X | X | X |

 | | |
 | +------------------------+
 | contains the 9th sprite number
 |
 | 0: normal
 +-->

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 1: more than 9 sprites are occupying the same line

 MSX2 TECHNICAL HANDBOOK

Edited by: ASCII Systems Division
Published by: ASCII Coprporation - JAPAN
First edition: March 1987

Text file typed by: Nestor Soriano (Konami Man) - SPAIN
 March 1997

Changes from the original:

- In Figure 4.72, last "10000H" is corrected to "1FFFFH".

- In Table 4.6, in TEOR line, "else DC+..." is corrected to "else DC=..."

- In Figure 4.76, in R#45 figure, DIX and DIY bits have been placed
correctly (they were inverted in the original).

- In Figure 4.79, in R#42 and R#43 explanation, "NY -> of dots..." has been
changed to "NY -> number of dots..."

- In List 4.9, in the line with the comment "YMMM command", 11010000 bitfield
has been corrected to 11100000.

- In Figure 4.84, "*" mark removed from the explanation of NX.

- In Figure 4.85, in R#45 explanation, "select source memory" text has been
corrected to "select destination memory".

- In List 4.13, labels beginning with "LMMC" have been corrected to "LMCM".

- In List 4.15, in the line with the comment "NY", the "OUT (C),H"
instruction has been corrected to "OUT (C),L".

- In section 6.5.9, the explanation of usage of the LINE command were mixed
wih other text. It has been corrected.

- In Figure 4.94, a line explaining the meaning of R#44 has been added.

- In Figure 4.97, BX9 bit has been supressed in S#9 figure.

- In Figure 4.99, a line explaining the meaning of R#44 has been added.

- In Table 4.7, "CLR L" has been corrected to "CMR L".

-=-

CHAPTER 4 - VDP AND DISPLAY SCREEN (Part 6)

6. VDP COMMAND USAGE

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

MSX-VIDEO can execute basic graphic operations, which are called VDP
commands. These are done by accessing special harware and are available in
the GRAPHIC 4 to GRAPHIC 7 modes. These graphic commands have been made easy
to implement, requiring only that the necessary parameters be set in the
proper registers before invoking them. This section describes these VDP
commands.

6.1 Coordinate System of VDP Commands

When VDP commands are executed, the location of the source and destination
points are represented as (X, Y) coordinates as shown in Figure 4.72. When
commands are executed, there is no page division and the entire 128K bytes
VRAM is placed in a large coordinate system.

 Figure 4.72 Coordinate system of VRAM

 GRAPHIC 4 (SCREEN 5) GRAPHIC 5 (SCREEN 6)
------------------------------ 00000H ------------------------------
(0,0) (255,0)			(0,0) (511,0)
Page 0			Page 0
(0,255) (255,255)			(0,255) (511,255)
----------------------------	08000H	----------------------------	
(0,256) (255,256)			(0,256) (511,256)
Page 1			Page 1
(0,511) (255,511)			(0,511) (511,511)
----------------------------	10000H	----------------------------	
(0,512) (255,512)			(0,512) (511,512)
Page 2			Page 2
(0,767) (255,767)			(0,767) (511,767)
----------------------------	18000H	----------------------------	
(0,768) (255,768)			(0,768) (511,768)
Page 3			Page 3
(0,1023) (255,1023)			(0,1023) (511,1023)
------------------------------ 1FFFFH ------------------------------

 GRAPHIC 7 (SCREEN 8) GRAPHIC 6 (SCREEN 7)
------------------------------ 00000H ------------------------------
(0,0) (255,0)			(0,0) (511,0)
Page 0			Page 0
(0,255) (255,255)			(0,255) (511,255)
----------------------------	10000H	----------------------------	
(0,256) (255,256)			(0,256) (511,256)
Page 1			Page 1
(0,511) (255,511)			(0,511) (511,511)
------------------------------ 1FFFFH ------------------------------

6.2 VDP Commands

There are 12 types of VDP commands which can be executed by MSX-VIDEO. These
are shown in Table 4.5.

 Table 4.5 List of VDP commands

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

--
| Command name | Destination | Source | Units | Mnemonic | R#46 (4 hi ord) |
|--------------+-------------+--------+-------+----------+-----------------|
	VRAM	CPU	bytes	HMMC	1 1 1 1
High speed	VRAM	VRAM	bytes	YMMM	1 1 1 0
move	VRAM	VRAM	bytes	HMMM	1 1 0 1
	VRAM	VDP	bytes	HMMV	1 1 0 0
--------------+-------------+--------+-------+----------+-----------------					
	VRAM	CPU	dots	LMMC	1 0 1 1
Logical	CPU	VRAM	dots	LMCM	1 0 1 0
move	VRAM	VRAM	dots	LMMM	1 0 0 1
	VRAM	VDP	dots	LMMV	1 0 0 0
--------------+-------------+--------+-------+----------+-----------------					
Line	VRAM	VDP	dots	LINE	0 1 1 1
--------------+-------------+--------+-------+----------+-----------------					
Search	VRAM	VDP	dots	SRCH	0 1 1 0
--------------+-------------+--------+-------+----------+-----------------					
Pset	VRAM	VDP	dots	PSET	0 1 0 1
--------------+-------------+--------+-------+----------+-----------------					
Point	VDP	VRAM	dots	POINT	0 1 0 0
--------------+-------------+--------+-------+----------+-----------------					
	----	----	-----	----	0 0 1 1
Reserved	----	----	-----	----	0 0 1 0
	----	----	-----	----	0 0 0 1
--------------+-------------+--------+-------+----------+-----------------					
Stop	----	----	-----	----	0 0 0 0
--

* When data is written in R#46 (Command register), MSX-VIDEO begins to
execute the command after setting 1 to bit 0 (CE/Command Execute) of the
status register S#2. Necessary parameters should be set in register R#32 to
R#45 before the command is executed.

* When the execution of the command ends, CE becomes 0.

* To stop the execution of the command, execute STOP command.

* Actions of the commands are guaranteed only in the bitmap modes (GRAPHIC 4
to GRAPHIC 7).

6.3 Logical Operations

When commands are executed, various logical operations can be done between
data in VRAM and the specified data. Each operation will be done according to
the rules listed in Table 4.6.

In the table, SC represents the source color and DC represents the
destination colour. IMP, AND, OR, EOR and NOT write the result of each
operation to the destination. In operations whose names are preceded by "T",
dots which correspond with SC=0 are not the objects of the operations and
remains as DC. Using these operations enables only colour portions of two
figures to be overlapped, so they are especially effective for animations.

List 4.7 shows an example of these operations.

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 Table 4.6 List of logical operations

| Logical name | |L03 L02 L01 L00|
|--------------+--+---------------|
IMP	DC=SC	0 0 0 0
AND	DC=SCxDC	0 0 0 1
OR	DC=SC+DC	0 0 1 0
	__ __	
EOR	DC=SCxDC+SCxDC	0 0 1 1
	__	
NOT	DC=SC	0 1 0 0
----		0 1 0 1
----		0 1 1 0
----		0 1 1 1
--------------+--+---------------		
TIMP	if SC=0 then DC=DC else DC=SC	1 0 0 0
TAND	if SC=0 then DC=DC else DC=SCxDC	1 0 0 1
TOR	if SC=0 then DC=DC else DC=SC+DC	1 0 1 0
	__ __	
TEOR	if SC=0 then DC=DC else DC=SCxDC+SCxDC	1 0 1 1
	__	
TNOT	if SC=0 then DC=DC else DC=SC	1 1 0 0
----		1 1 0 1
----		1 1 1 0
----		1 1 1 1

* SC = Source colour code
* DC = Destination colour code
* EOR = Exclusive OR

List 4.7 Example of the logical operation with T
===

1000 '***
1010 ' List 4.7 logical operation with T
1020 '***
1030 '
1040 SCREEN8 : COLOR 15,0,0 : CLS
1050 DIM A%(3587)
1060 '

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

1070 LINE (50,50)-(60,100),48,8 : PAINT (51,51),156,48
1080 CIRCLE (55,30),30,255 : PAINT (55,30),240,255
1090 COPY(20,0)-(90,100) TO A%
1100 CLS
1110 '
1120 R=RND(-TIME)
1130 FOR Y=0 TO 100 STEP 3
1140 X=INT(RND(1)*186)
1150 COPY A% TO (X,Y),,TPSET
1160 NEXT
1170 '
1180 GOTO 1180

===

6.4 Area Specification

AREA-MOVE commands are for transferring screen data inside areas surrounded
by a rectangle. The area to be transferred is specified by one vertex and the
length of each side of the rectangle as shown in Figure 4.73. SX and SY
represent the basic point of the rectangle to be transferred and NX and NY
represent the lengt of each side in dots. The two bits, DIX and DIY, are for
the direction of transferring data (the meaning of DIX and DIY depends on the
type of command). The point where the area is to be transferred is specified
in DX and DY.

 Figure 4.73 Area specification

--
| |
| (SX,SY) |
| x----------------- --> |
		DIX
------------------ --+		
	DIY	
V		
	(DX,DY)	
+-> x-----------------		
| | | |
| ------------------ |

6.5 Use of Each Command

Commands are clasified into three types, high-speed transfer commands,
logical transfer commands, and drawing commands. This section describes the
commands and their use.

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

6.5.1 HMMC (CPU -> VRAM high-speed transfer)

Data is transferred into the specified area of VRAM from the CPU (see Figure
4.74). Logical operations cannot be specified. Data is transferred in bytes
in high-speed transfer commands such as HMMC. Note that the low order bit of
the X-coordinate is not referred to in GRAPHIC 4, or 6 modes. The two low
order bits are not referred to in GRAPHIC 5 mode (see Figure 4.75).

Set the parameters as shown in Figure 4.76 to the appropriate registers. At
this point, write only the first byte of data to be transferred from the CPU
in R#44. Writing the command code F0H in R#46 causes the command to be
executed, and UMSX-VIDEO receives data from R#44 and writes it to VRAM, then
waits for data from the CPU.

The CPU writes data after the second byte in R#44. Note that data should be
transferred after MSX-VIDEO can receive data (in the case that TR bit is
"1"), referring to TR bit of S#2. When the CE bit of S#2 is "0", this means
that all data has been transferred (see figure 4.77). List 4.8 shows an
example of using HMMC.

 Figure 4.74 Action of HMMC command

 VRAM or expansion RAM

| | MSX-VIDEO CPU
| | ------- -------
(DX,DY)						
x------------------------ --> DIX						
	NX					
	NY	<----------------+----		-----		

	DIY					
V						
	------- -------					

MXD: select the destination memory 0 = VRAM, 1 = expansion RAM

NX: number of dots to be transferred in X direction (0 to 511)*
NY: number of dots to be transferred in Y direction (0 to 1023)

DIX: direction of NX from the origin 0 = right, 1 = left
DIY: direction of NY from the origin 0 = below, 1 = above

DX: destination origin X-coordinate (0 to 511)*
DY: destination origin Y-coordinate (0 to 1023)

CLR (R#44:Colour register): 1st byte of data to be transferred

* The one low-order bit for GRAPHIC 4 and 6 modes, or two low-order bits for
GRAPHIC 5 mode of the DX and NX registers are ignored.

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 Figure 4.75 Dots not to be referred to

 MSB 7 6 5 4 3 2 1 0 LSB

GRAPHIC 4 | : : : | : : : |

 (1) (2)
Since 1 VRAM byte represents 2 dots, 1 low order bit of X-coordinate is not
referred to.

 MSB 7 6 5 4 3 2 1 0 LSB

GRAPHIC 5 | : | : | : | : |

 (1) (2) (3) (4)
Since 1 VRAM byte represents 4 dots, 2 low order bits of X-coordinate are not
referred to.

 MSB 7 6 5 4 3 2 1 0 LSB

GRAPHIC 6 | : : : | : : : |

 (1) (2)
Since 1 VRAM byte represents 2 dots, 1 low order bit of X-coordinate is not
referred to.

 Figure 4.76 Register settings of HMMC command

> HMMC register setup

 MSB 7 6 5 4 3 2 1 0 LSB

R#36 | DX7| DX6| DX5| DX4| DX3| DX2| DX1| DX0|
 --- DX ---+
R#37 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | DX8| |
 --- |
 | destination origin
 --- |
R#38 | DY7| DY6| DY5| DY4| DY3| DY2| DY1| DY0| |
 --- DY ---+
R#39 | 0 | 0 | 0 | 0 | 0 | 0 | DY9| DY8|

R#40 | NX7| NX6| NX5| NX4| NX3| NX2| NX1| NX0| Number of dots in
 --- NX ---> X direction to be
R#41 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | NX8| transferred

R#42 | NY7| NY6| NY5| NY4| NY3| NY2| NY1| NY0| Number of dots in
 --- NY ---> Y direction to be
R#43 | 0 | 0 | 0 | 0 | 0 | 0 | NY9| NY8| transferred

 --- --+d

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

R#44 | CR7| CR6| CR5| CR4| CR3| CR2| CR1| CR0| CLR (GRAPHIC 4,6) |a
 --- |t
 | | | |a
 +-------------------+-------------------+ |
 X=2N X=2N+1 (N=0, 1, ..., 127) |t
 |o
 --- |
 | CR7| CR6| CR5| CR4| CR3| CR2| CR1| CR0| CLR (GRAPHIC 5) |b
 --- |e
 | | | | | |
 +---------+---------+---------+---------+ |t
 X=4N X=4N+1 X=4N+2 X=4N+3 (N=0, 1, ..., 127) |r
 |a
 --- |n
 | CR7| CR6| CR5| CR4| CR3| CR2| CR1| CR0| CLR (GRAPHIC 7) |s
 --- --+f.
 1 byte per dot

R#45 | 0 | -- | MXD| -- | DIY| DIX| -- | -- | ARG (Argument register)

 | | direction (X)
 | |
 | +-> direction (Y)
 |
 +-----------> select destination memory

> HMMC command execution

 MSB 7 6 5 4 3 2 1 0 LSB

R#46 | 1 | 1 | 1 | 1 | -- | -- | -- | -- | CMR

 Figure 4.77 HMMC command execution flow chart

 /-------------------\
 | HMMC start |
 \-------------------/
 |

register setup
 |

command execution
 |
+---------------->|

//////////+\\\\\\\\\\ Yes (CE bit = 0)

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

| \\\\\\\\\\+////////// |
| | No (CE bit = 1) |
| //////////+\\\\\\\\\\ |
|<------| transfer? | |
| No \\\\\\\\\\+////////// |
(TR bit=0)	Yes (TR bit = 1)	
	transfer data	

+-----------------+ |
 |
 +-----------------------------+
 |
 V
 /--------------------\
 | HMMC end |
 \--------------------/

List 4.8 Example of HMMC command execution
===

;**
; List 4.8 HMMC sample
; to use, set H, L, D, E, IX and go
; RAM (IX) ---> VRAM (H,L)-(D,E)
;**
;
RDVDP: EQU 0006H
WRVDP: EQU 0007H

;----- program start -----

HMMC: DI ;disable interrupt
 CALL WAIT.VDP ;wait end of command

 LD A,(WRVDP)
 LD C,A
 INC C ;C := PORT#1's address
 LD A,36
 OUT (C),A
 LD A,17+80H
 OUT (C),A ;R#17 := 36

 INC C
 INC C ;C := PORT#3's address
 XOR A
 OUT (C),H ;DX
 OUT (C),A
 OUT (C),L ;DY
 OUT (C),A

 LD A,H ;make NX and DIX
 SUB A
 LD D,00000100B
 JR NC,HMMC1

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 LD D,00000000B
 NEG
HMMC1: LD H,A ;H := NX , D := DIX

 LD A,L
 SUB A
 LD E,00001000B
 JR NC,HMMC2
 LD E,00000000B
 NEG
HMMC2: LD L,A ;L := NY , E := DIY

 XOR A
 OUT (C),H ;NX
 OUT (C),A
 OUT (C),L ;NY
 OUT (C),A
 LD H,(IX+0)
 OUT (C),H ;first DATA
 LD A,D
 OR E
 OUT (C),A ;DIX and DIY
 LD A,0F0H
 OUT (C),A ;HMMC command

 LD A,(WRVDP)
 LD C,A ;C := PORT#1's address
 INC C
 LD A,44+80H
 OUT (C),A
 LD A,17+80H
 OUT (C),A
 INC C
 INC C

LOOP: LD A,2
 CALL GET.STATUS
 BIT 0,A ;check CE bit
 JR Z,EXIT
 BIT 7,A ;check TR bit
 JR Z,LOOP
 INC IX
 LD A,(IX+0)
 OUT (C),A
 JR LOOP

EXIT: LD A,0
 CALL GET.STATUS ;when exit, you must select S#0
 EI
 RET

GET.STATUS: ;read status register specified by A
 PUSH BC
 LD BC,(WRVDP)
 INC C
 OUT (C),A
 LD A,8FH

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 OUT (C),A
 LD BC,(RDVDP)
 INC C
 IN A,(C)
 POP BC
 RET

WAIT.VDP: ;wait VDP ready
 LD A,2
 CALL GET.STATUS
 AND 1
 JR NZ,WAIT.VDP
 XOR A
 CALL GET.STATUS
 RET

 END

===

6.5.2 YMMM (high-speed transfer between VRAM in Y direction)

Data from a specified VRAM area is transferred into another area in VRAM.
Note that transfers using this command can only be done in the Y direction
(see Figure 4.78).

After setting the data as shown in Figure 4.79 in the proper registers,
writing command code E0H in R#46 causes the command to be executed. When the
CE bit of S#2 is "1", it indicates that the command is currently being
executed. List 4.9 shows an example of using YMMM.

 Figure 4.78 Actions of YMMM command

 VRAM or expansion RAM

| |
| (DX,DY) |
| x------------------------|
| | |
| | |
| | |
| -------------------------|
| ^ |
| | |
| | |
| (DX,SY) |
| x------------------------| --> DIX
| | |
| | NY |
| | |
| -------------------------|
| | DIY |
V

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

MXD: select the destination memory 0 = VRAM, 1 = expansion RAM

SY: source origin Y-coordinate (0 to 1023)

NY: number of dots to be transferred in Y direction (0 to 1023)

DIX: set which to be transferred, to te right end or to the left end of the
 screen from the source origin 0 = right, 1 = left
DIY: direction of NY from the origin 0 = below, 1 = above

DX: destination origin X-coordinate (0 to 511)*
DY: destination origin Y-coordinate (0 to 1023)

* The one low-order bit for GRAPHIC 4 and 6 modes, or two low-order bits for
GRAPHIC 5 mode of the DX register are ignored.

 Figure 4.79 Register settings of YMMM command

> YMMM register setup

 MSB 7 6 5 4 3 2 1 0 LSB

R#34 | SY7| SY6| SY5| SY4| SY3| SY2| SY1| SY0|
 --- SY --> source origin
R#35 | 0 | 0 | 0 | 0 | 0 | 0 | SY9| SY8|

R#36 | DX7| DX6| DX5| DX4| DX3| DX2| DX1| DX0|
 --- DX --> destination and
R#37 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | DX8| source origin

R#38 | DY7| DY6| DY5| DY4| DY3| DY2| DY1| DY0|
 --- DY --> destination origin
R#39 | 0 | 0 | 0 | 0 | 0 | 0 | DY9| DY8|

R#42 | NY7| NY6| NY5| NY4| NY3| NY2| NY1| NY0| number of dots to
 --- NY ---> be transferred in
R#43 | 0 | 0 | 0 | 0 | 0 | 0 | NY9| NY8| Y direction

R#45 | 0 | -- | MXD| -- | DIY| DIX| -- | -- | ARG (Argument register)

 | | direction (X)
 | |
 | +-> direction (Y)
 |
 +-----------> select destination memory

> YMMM command execution

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 MSB 7 6 5 4 3 2 1 0 LSB

R#46 | 1 | 1 | 1 | 0 | -- | -- | -- | -- | CMR

List 4.9 Example of YMMM command execution
===

;**
; List 4.9 YMMM sample
; to use, set L, E, B, C, D(bit 2) and go
; VRAM (B,L)-(*,E) ---> VRAM (B,C)
; DIX must be set in D(bit 2)
;**
;
RDVDP: EQU 0006H
WRVDP: EQU 0007H

;----- program start -----

YMMM: DI ;disable interrupt
 PUSH BC ;save destination
 CALL WAIT.VDP ;wait end of command

 LD A,(WRVDP)
 LD C,A
 INC C ;C := PORT#1's address
 LD A,34
 OUT (C),A
 LD A,17+80H
 OUT (C),A ;R#17 := 34

 INC C
 INC C ;C := PORT#3's address
 XOR A
 OUT (C),L ;SY
 OUT (C),A

 LD A,L ;make NY and DIY
 SUB A
 LD E,00001000B
 JP NC,YMMM1
 LD E,00000000B
 NEG
YMMM1: LD L,A ;L := NY , D := DIY

 LD A,D
 OR E

 POP DE ;restore DX,DY
 PUSH AF ;save DIX,DIY
 XOR A
 OUT (C),D ;DX
 OUT (C),A
 OUT (C),E ;DY
 OUT (C),A

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 OUT (C),A ;dummy
 OUT (C),A ;dummy
 OUT (C),L ;NY
 OUT (C),A
 OUT (C),A ;dummy
 POP AF
 OUT (C),A ;DIX and DIY
 LD A,11100000B ;YMMM command
 OUT (C),A

 EI
 RET

GET.STATUS:
 PUSH BC
 LD BC,(WRVDP)
 INC C
 OUT (C),A
 LD A,8FH
 OUT (C),A
 LD BC,(RDVDP)
 INC C
 IN A,(C)
 POP BC
 RET

WAIT.VDP:
 LD A,2
 CALL GET.STATUS
 AND 1
 JP NZ,WAIT.VDP
 XOR A
 CALL GET.STATUS
 RET

 END

===

6.5.3 HMMM (high-speed transfer between VRAM)

Data of specified VRAM area is transferred into another area in VRAM (see
Figure 4.80).

After setting the parameters as shown in Figure 4.81, writing D0H in R#46
causes the command to be executed. While the command is being executed, CE
bit of S#2 is "1". List 4.10 shows an example of using HMMM.

 Figure 4.80 Actions of HMMM command

 VRAM or expansion RAM
--
| |
| (SX,SY) |
| ------------------ --> |

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

	NX	DIX
	NY	
------------------ --+		
	DIY	
V		
	(DX,DY)	
+-> ------------------		
| | | |
| ------------------ |

MXS: select the source memory 0 = VRAM, 1 = expansion RAM
MXD: select the destination memory 0 = VRAM, 1 = expansion RAM

SX: source origin X-coordinate (0 to 511)*
SY: source origin Y-coordinate (0 to 1023)

NX: number of dots to be transferred in X direction (0 to 511)*
NY: number of dots to be transferred in Y direction (0 to 1023)

DIX: direction of NX from the origin 0 = right, 1 = left
DIY: direction of NY from the origin 0 = below, 1 = above

DX: destination origin X-coordinate (0 to 511)*
DY: destination origin Y-coordinate (0 to 1023)

* The one low-order bit for GRAPHIC 4 and 6 modes, or two low-order bits for
GRAPHIC 5 mode of the SX, DX, and NX register are ignored.

 Figure 4.81 Register settings of HMMM command

> HMMM register setup

 MSB 7 6 5 4 3 2 1 0 LSB

R#32 | SX7| SX6| SX5| SX4| SX3| SX2| SX1| SX0|
 |----+----+----+----+----+----+----+----| SX ---+
R#33 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | SX8| |
 --- |
 | source origin
 --- |
R#34 | SY7| SY6| SY5| SY4| SY3| SY2| SY1| SY0| |
 |----+----+----+----+----+----+----+----| SY ---+
R#35 | 0 | 0 | 0 | 0 | 0 | 0 | SY9| SY8|

R#36 | DX7| DX6| DX5| DX4| DX3| DX2| DX1| DX0|
 |----+----+----+----+----+----+----+----| DX ---+
R#37 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | DX8| |

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 --- |
 | destination origin
 --- |
R#38 | DY7| DY6| DY5| DY4| DY3| DY2| DY1| DY0| |
 |----+----+----+----+----+----+----+----| DY ---+
R#39 | 0 | 0 | 0 | 0 | 0 | 0 | DY9| DY8|

R#40 | NX7| NX6| NX5| NX4| NX3| NX2| NX1| NX0| Number of dots in
 |----+----+----+----+----+----+----+----| NX ---> X direction to be
R#41 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | NX8| transferred

R#42 | NY7| NY6| NY5| NY4| NY3| NY2| NY1| NY0| Number of dots in
 |----+----+----+----+----+----+----+----| NY ---> Y direction to be
R#43 | 0 | 0 | 0 | 0 | 0 | 0 | NY9| NY8| transferred

R#45 | 0 | -- | MXD| MXS| DIY| DIX| -- | -- | ARG (Argument register)

 | | | direction (X)
 | | |
 | | +-> direction (Y)
 | |
 | +------> select source memory
 |
 +-----------> select destination memory

> HMMM command execution

 MSB 7 6 5 4 3 2 1 0 LSB

R#46 | 1 | 1 | 0 | 1 | -- | -- | -- | -- | CMR

List 4.10 Example of HMMM command execution
===

;**
; List 4.10 HMMM sample
; to use, set H, L, D, E, B, C and go
; VRAM (H,L)-(D,E) ---> VRAM (B,C)
; DIX must be set in D(bit 2)
;**
;
RDVDP: EQU 0006H
WRVDP: EQU 0007H

;----- program start -----

HMMM: DI ;disable interrupt
 PUSH BC ;save destination
 CALL WAIT.VDP ;wait end of command

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 LD A,(WRVDP)
 LD C,A
 INC C ;C := PORT#1's address
 LD A,32
 OUT (C),A
 LD A,80H+17
 OUT (C),A ;R#17 := 32

 INC C
 INC C ;C := PORT#3's address
 XOR A
 OUT (C),H ;SX
 OUT (C),A
 OUT (C),L ;SY
 OUT (C),A

 LD A,H ;make NX and DIX
 SUB A
 LD D,00000100B
 JP NC,HMMM1
 LD D,00000000B
 NEG
HMMM1: LD H,A ;H := NX , D := DIX

 LD A,L ;make NY and DIY
 SUB A
 LD E,00001000B
 JP NC,HMMM2
 LD E,00000000B
 NEG
HMMM2: LD L,A ;L := NY , E := DIY

 LD A,D
 OR E
 POP DE ;restore DX,DY
 PUSH AF ;save DIX,DIY
 XOR A
 OUT (C),D ;DX
 OUT (C),A
 OUT (C),E ;DY
 OUT (C),A
 OUT (C),H ;NX
 OUT (C),A
 OUT (C),L ;NY
 OUT (C),A
 OUT (C),A ;dummy
 POP AF
 OUT (C),A ;DIX and DIY

 LD A,11010000B ;HMMM command
 OUT (C),A

 EI
 RET

GET.STATUS:
 PUSH BC

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 LD BC,(WRVDP)
 INC C
 OUT (C),A
 LD A,8FH
 OUT (C),A
 LD BC,(RDVDP)
 INC C
 IN A,(C)
 POP BC
 RET

WAIT.VDP:
 LD A,2
 CALL GET.STATUS
 AND 1
 JP NZ,WAIT.VDP
 XOR A
 CALL GET.STATUS
 RET

 END

===

6.5.4 HMMV (painting the rectangle in high speed)

Each byte of data in the specified VRAM area is painted by the specified
colour code (see Figure 4.82)

After setting the parameters as shown in Figure 4.83, writing C0H in R#46
causes the command to be executed. While the command is being executed, the
CE bit of S#2 is 1. List 4.11 shows an example of using HMMV.

 Figure 4.82 Actions of HMMC command

 VRAM or expansion RAM

| | MSX-VIDEO
| | -------
(DX,DY)				
x------------------------ --> DIX				
	NX			
	NY	<----------------+----		

	DIY			
V				

MXD: select memory 0 = VRAM, 1 = expansion RAM

NX: number of dots to be painted in X direction (0 to 511)*

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

NY: number of dots to be painted in Y direction (0 to 1023)

DIX: direction of NX from the origin 0 = right, 1 = left
DIY: direction of NY from the origin 0 = below, 1 = above

DX: origin X-coordinate (0 to 511)*
DY: origin Y-coordinate (0 to 1023)

CLR (R#44:Colour register): Painted data

* The one low-order bit for GRAPHIC 4 and 6 modes, or two low-order bits for
GRAPHIC 5 mode of the DX and NX registers are ignored.

 Figure 4.83 Register settings of HMMV command

> HMMV register setup

 MSB 7 6 5 4 3 2 1 0 LSB

R#36 | DX7| DX6| DX5| DX4| DX3| DX2| DX1| DX0|
 |----+----+----+----+----+----+----+----| DX ---+
R#37 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | DX8| |
 --- |
 | origin
 --- |
R#38 | DY7| DY6| DY5| DY4| DY3| DY2| DY1| DY0| |
 |----+----+----+----+----+----+----+----| DY ---+
R#39 | 0 | 0 | 0 | 0 | 0 | 0 | DY9| DY8|

R#40 | NX7| NX6| NX5| NX4| NX3| NX2| NX1| NX0| number of dots in
 |----+----+----+----+----+----+----+----| NX ---> X direction to
R#41 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | NX8| be painted

R#42 | NY7| NY6| NY5| NY4| NY3| NY2| NY1| NY0| number of dots in
 |----+----+----+----+----+----+----+----| NY ---> Y direction to
R#43 | 0 | 0 | 0 | 0 | 0 | 0 | NY9| NY8| be painted

 --- --+d
R#44 | CR7| CR6| CR5| CR4| CR3| CR2| CR1| CR0| CLR (GRAPHIC 4,6) |a
 --- |t
 | | | |a
 +-------------------+-------------------+ |
 X=2N X=2N+1 (N=0, 1, ..., 127) |t
 |o
 --- |
 | CR7| CR6| CR5| CR4| CR3| CR2| CR1| CR0| CLR (GRAPHIC 5) |b
 --- |e
 | | | | | |
 +---------+---------+---------+---------+ |p
 X=4N X=4N+1 X=4N+2 X=4N+3 (N=0, 1, ..., 127) |a
 |i

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 --- |n
 | CR7| CR6| CR5| CR4| CR3| CR2| CR1| CR0| CLR (GRAPHIC 7) |t
 --- --+e
 1 byte / dot d

R#45 | 0 | -- | MXD| -- | DIY| DIX| -- | -- | ARG (Argument register)

 | | painting direction (X)
 | |
 | +-> painting direction (Y)
 |
 +-----------> memory selection

> HMMV command execution

 MSB 7 6 5 4 3 2 1 0 LSB

R#46 | 1 | 1 | 0 | 0 | -- | -- | -- | -- | CMR

List 4.11 Example of HMMV command execution
===

;**
; List 4.11 HMMV sample
; to use, set H, L, D, E, B and go
; B ---> VRAM (H,L)-(D,E) fill
;**
;
RDVDP: EQU 0006H
WRVDP: EQU 0007H

;----- program start -----

HMMV: DI ;disable interrupt
 CALL WAIT.VDP ;wait end of command

 LD A,(WRVDP)
 LD C,A
 INC C ;C := PORT#1's address
 LD A,36
 OUT (C),A
 LD A,80H+17
 OUT (C),A ;R#17 := 36

 INC C
 INC C ;C := PORT#3's address
 XOR A
 OUT (C),H ;DX
 OUT (C),A
 OUT (C),L ;DY
 OUT (C),A

 LD A,H ;make NX and DIX
 SUB A

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 LD D,00000100B
 JP NC,HMMV1
 LD D,00000000B
 NEG
HMMV1: LD H,A ;H := NX

 LD A,L ;make NY and DIY
 SUB A
 LD E,00001000B
 JP NC,HMMV2
 LD E,00000000B
 NEG
HMMV2: OUT (C),H
 LD H,A ;H := NY

 XOR A
 OUT (C),A
 OUT (C),H
 OUT (C),A
 OUT (C),B ;fill data
 XOR A
 OR D
 OR E
 OUT (C),A ;DIX and DIY

 LD A,11000000B ;HMMV command
 OUT (C),A

 EI
 RET

GET.STATUS:
 PUSH BC
 LD BC,(WRVDP)
 INC C
 OUT (C),A
 LD A,8FH
 OUT (C),A
 LD BC,(RDVDP)
 INC C
 IN A,(C)
 POP BC
 RET

WAIT.VDP:
 LD A,2
 CALL GET.STATUS
 AND 1
 JP NZ,WAIT.VDP
 XOR A
 CALL GET.STATUS
 RET

 END

===

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

6.5.5 LMMC (CPU -> VRAM logical transfer)

Data is transferred from the CPU to thespecified VRAM area in dots (see
Figure 4.84). Logical operations with the source can be specified. In the
logical transfer commands, such as LMMC, data is transfered in dots and one
byte is required for the information of one pixel in all screen modes.

After setting the data as shown in Figure 4.85, write command code B0H in
R#46. At this point, logical operations can be specified by using the 4 low
order bits of the command register. Data is transferred with reference to the
TR and CE bit of S#2, as in HMMC (see Figure 4.86). List 4.12 shows an
example of using LMMC.

 Figure 4.84 Action of LMMC command

 VRAM or expansion RAM

| | MSX-VIDEO CPU
| | ------- -------
(DX,DY)						
x------------------------ --> DIX						
	NX					
	NY	<----------------+----		-----		

	DIY					
V						
	------- -------					

MXD: select destination memory 0 = VRAM, 1 = expansion RAM

NX: number of dots to be transferred in X direction (0 to 511)
NY: number of dots to be transferred in Y direction (0 to 1023)

DIX: direction of NX from the origin 0 = right, 1 = left
DIY: direction of NY from the origin 0 = below, 1 = above

DX: destination origin X-coordinate (0 to 511)
DY: destination origin Y-coordinate (0 to 1023)

CLR (R#44:Colour register): 1st byte of data to be transferred

 Figure 4.85 Register settings of LMMC command

> LMMC register setup

 MSB 7 6 5 4 3 2 1 0 LSB

R#36 | DX7| DX6| DX5| DX4| DX3| DX2| DX1| DX0|
 |----+----+----+----+----+----+----+----| DX ---+
R#37 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | DX8| |
 --- |
 | destination origin

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 --- |
R#38 | DY7| DY6| DY5| DY4| DY3| DY2| DY1| DY0| |
 |----+----+----+----+----+----+----+----| DY ---+
R#39 | 0 | 0 | 0 | 0 | 0 | 0 | DY9| DY8|

R#40 | NX7| NX6| NX5| NX4| NX3| NX2| NX1| NX0| Number of dots in
 |----+----+----+----+----+----+----+----| NX ---> X direction to be
R#41 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | NX8| transferred

R#42 | NY7| NY6| NY5| NY4| NY3| NY2| NY1| NY0| Number of dots in
 |----+----+----+----+----+----+----+----| NY ---> Y direction to be
R#43 | 0 | 0 | 0 | 0 | 0 | 0 | NY9| NY8| transferred

 --- --+
R#44 | -- | -- | -- | -- | CR3| CR2| CR1| CR0| CLR (GRAPHIC 4,6) |
 --- |
 | data
 --- | to be
 | -- | -- | -- | -- | -- | -- | CR1| CR0| CLR (GRAPHIC 5) | trans-
 --- | ferred
 |
 --- |
 | CR7| CR6| CR5| CR4| CR3| CR2| CR1| CR0| CLR (GRAPHIC 7) |
 --- --+

R#45 | 0 | -- | MXD| -- | DIY| DIX| -- | -- | ARG (Argument register)

 | | direction (X)
 | |
 | +-> direction (Y)
 |
 +-----------> select destination memory

> LMMC command execution

 MSB 7 6 5 4 3 2 1 0 LSB

R#46 | 1 | 0 | 1 | 1 | L03| L02| L01| L00| CMR

 | |
 +-------------------+
 Logical operation

 Figure 4.86 LMMC command execution flow chart

 /-------------------\
 | LMMC start |
 \-------------------/
 |

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

register setup
 |

command execution
 |
+---------------->|

//////////+\\\\\\\\\\ Yes (CE bit = 0)
\\\\\\\\\\+//////////
//////////+\\\\\\\\\\
<------
No \\\\\\\\\\+//////////
(TR bit=0)

+-----------------+ |
 |
 +-----------------------------+
 |
 V
 /--------------------\
 | LMMC end |
 \--------------------/

List 4.12 Example of LMMC command execution
===

;**
; List 4.12 LMMC sample
; to use, set H, L, D, E, IX, A and go
; RAM (IX) ---> VRAM (H,L)-(D,E) (logi-OP : A)
;**
;
RDVDP: EQU 0006H
WRVDP: EQU 0007H

;----- program start -----

LMMC: DI ;disable interrupt
 LD B,A ;B := LOGICAL OPERATION
 CALL WAIT.VDP ;wait end of command

 LD A,(WRVDP)
 LD C,A
 INC C ;C := PORT#1's address
 LD A,36

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 OUT (C),A
 LD A,80H+17
 OUT (C),A ;R#17 := 36

 INC C
 INC C ;C := PORT#3's address
 XOR A
 OUT (C),H ;DX
 OUT (C),A
 OUT (C),L ;DY
 OUT (C),A

 LD A,H ;make NX and DIX
 SUB A
 LD D,00000100B
 JR NC,LMMC1
 LD D,00000000B
 NEG
LMMC1: LD H,A ;H := NX , D := DIX

 LD A,L
 SUB A
 LD E,00001000B
 JR NC,LMMC2
 LD E,00000000B
 NEG
LMMC2: LD L,A ;L := NY , E := DIY

 XOR A
 OUT (C),H ;NX
 OUT (C),A
 OUT (C),L ;NY
 OUT (C),A
 LD A,(IX+0)
 OUT (C),A ;first DATA
 LD A,D
 OR E
 OUT (C),A ;DIX and DIY

 LD A,B ;A := LOGICAL OPERATION
 OR 10110000B ;LMMC command
 OUT (C),A

 DEC C
 DEC C

LOOP: LD A,2
 CALL GET.STATUS
 BIT 0,A ;check CE bit
 JP Z,EXIT
 BIT 7,A ;check TR bit
 JP Z,LOOP
 INC IX
 LD A,(IX+0)
 OUT (C),A
 JR LOOP

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

EXIT: LD A,0
 CALL GET.STATUS

 EI
 RET

GET.STATUS:
 PUSH BC
 LD BC,(WRVDP)
 INC C
 OUT (C),A
 LD A,8FH
 OUT (C),A
 LD BC,(RDVDP)
 INC C
 IN A,(C)
 POP BC
 RET

WAIT.VDP:
 LD A,2
 CALL GET.STATUS
 AND 1
 JR NZ,WAIT.VDP
 XOR A
 CALL GET.STATUS
 RET

 END

===

6.5.6 LMCM (VRAM - CPU logical transfer)

Data is transferred from the specified VRAM area to CPU in dots (see Figure
4.87)

After setting the parameters as shown in Figure 4.88, writing command code
A0H in R#46 causes the command to be executed and data to be transferred from
MSX-VIDEO. The CPU refers to the TR bit of S#2 and, since data of MSX-VIDEO
has been prepared if this bit is "1", the CPU reads data from S#7. When CE
bit of S#2 is "0", data comes to the end (see Figure 4.89). List 4.13 shows
an example of using LMCM.

 Figure 4.87 Action of LMCM command

 VRAM or expansion RAM

| | MSX-VIDEO CPU
| | ------- -------
(SX,SY)						
x------------------------ --> DIX						
	NX					
	NY	-----------------+--->		---->		

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

	DIY				
V					
	------- -------				

MXS: select source memory 0 = VRAM, 1 = expansion RAM

SX: source origin X-coordinate (0 to 511)
SY: source origin Y-coordinate (0 to 1023)

NX: number of dots to be transferred in X direction (0 to 511)
NY: number of dots to be transferred in Y direction (0 to 1023)

DIX: direction of NX from the origin 0 = right, 1 = left
DIY: direction of NY from the origin 0 = below, 1 = above

 Figure 4.88 Register settings of LMCM command

> LMCM register setup

 MSB 7 6 5 4 3 2 1 0 LSB

R#32 | SX7| SX6| SX5| SX4| SX3| SX2| SX1| SX0|
 |----+----+----+----+----+----+----+----| SX ---+
R#33 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | SX8| |
 --- |
 | source origin
 --- |
R#34 | SY7| SY6| SY5| SY4| SY3| SY2| SY1| SY0| |
 |----+----+----+----+----+----+----+----| SY ---+
R#35 | 0 | 0 | 0 | 0 | 0 | 0 | SY9| SY8|

R#40 | NX7| NX6| NX5| NX4| NX3| NX2| NX1| NX0| Number of dots in
 |----+----+----+----+----+----+----+----| NX ---> X direction to be
R#41 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | NX8| transferred

R#42 | NY7| NY6| NY5| NY4| NY3| NY2| NY1| NY0| Number of dots in
 |----+----+----+----+----+----+----+----| NY ---> Y direction to be
R#43 | 0 | 0 | 0 | 0 | 0 | 0 | NY9| NY8| transferred

R#45 | 0 | -- | -- | MXS| DIY| DIX| -- | -- | ARG (Argument register)

 | | direction (X)
 | |
 | +-> direction (Y)
 |
 +------> select source memory

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

> LMCM command execution

 MSB 7 6 5 4 3 2 1 0 LSB

R#46 | 1 | 0 | 1 | 0 | -- | -- | -- | -- | CMR

S#7 | 0 | 0 | 0 | 0 | C3 | C2 | C1 | C0 | status register(GRAPHIC4,6)

S#7 | 0 | 0 | 0 | 0 | 0 | 0 | C1 | C0 | status register (GRAPHIC 5)

S#7 | C7 | C6 | C5 | C4 | C3 | C2 | C1 | C0 | status register (GRAPHIC 7)

 Figure 4.89 LMCM command execution flow chart

 /-------------------\
 | LMCM start |
 \-------------------/
 |

register setup
 |

command execution
 |
+---------------->|

//////////+\\\\\\\\\\ No (TR bit = 0)
\\\\\\\\\\+//////////

//////////+\\\\\\\\\\
+-------| command end? |
 No \\\\\\\\\\+//////////
 (CE bit=1) | Yes (CE bit = 0)
 |
 V

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 /--------------------\
 | LMCM end |
 \--------------------/

* Note 1: Read status register #7 in "register setup", since TR bit should be
reset before the command execution.

* Note 2: Though last data was set in register #7 and TR bit was 1, the
command would end inside of the MSX-VIDEO and CE would be zero.

List 4.13 Example of LMCM command execution
===

;**
; List 4.13 LMCM sample
; to use, set H, L, D, E, IX, A and go
; VRAM (H,L)-(D,E) ---> RAM (IX)
;**
;
RDVDP: EQU 0006H
WRVDP: EQU 0007H

;----- program start -----

LMCM: DI ;disable interrupt
 LD B,A ;B := LOGICAL OPERATION
 CALL WAIT.VDP ;wait end of command

 LD A,(WRVDP)
 LD C,A
 INC C ;C := PORT#1's address
 LD A,32
 OUT (C),A
 LD A,80H+17
 OUT (C),A ;R#17 := 32
 INC C
 INC C ;C := PORT#3's address
 XOR A
 OUT (C),H ;SX
 OUT (C),A
 OUT (C),L ;SY
 OUT (C),A
 OUT (C),A ;dummy
 OUT (C),A ;dummy
 OUT (C),A ;dummy
 OUT (C),A ;dummy
 LD A,H ;make NX and DIX
 SUB A
 LD D,00000100B
 JR NC,LMCM1
 LD D,00000000B
 NEG
LMCM1: LD H,A ;H := NX , D := DIX

 LD A,L
 SUB A

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 LD E,00001000B
 JR NC,LMCM2
 LD E,00000000B
 NEG
LMCM2: LD L,A ;L := NY , E := DIY

 XOR A
 OUT (C),H ;NX
 OUT (C),A
 OUT (C),L ;NY
 OUT (C),A
 LD A,(IX+0)
 OUT (C),A ;dummy
 LD A,D
 OR E
 OUT (C),A ;DIX and DIY
 LD A,7
 CALL GET.STATUS
 LD A,B ;A := LOGICAL OPERATION
 OR 10100000B ;LMCM command
 OUT (C),A
 LD A,(RDVDP)
 LD C,A ;C := PORT#1's address
LOOP: LD A,2
 CALL GET.STATUS
 BIT 0,A ;check CE bit
 JP Z,EXIT
 BIT 7,A ;check TR bit
 JP Z,LOOP
 LD A,7
 CALL GET.STATUS
 LD (IX+0),A
 INC IX
 JR LOOP

EXIT: LD A,0
 CALL GET.STATUS
 EI
 RET

GET.STATUS:
 PUSH BC
 LD BC,(WRVDP)
 INC C
 OUT (C),A
 LD A,8FH
 OUT (C),A
 LD BC,(RDVDP)
 INC C
 IN A,(C)
 POP BC
 RET

WAIT.VDP:
 LD A,2
 CALL GET.STATUS
 AND 1

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 JR NZ,WAIT.VDP
 XOR A
 CALL GET.STATUS
 RET

 END

===

6.5.7. LMMM (VRAM->VRAM logical transfer)

Data of the specified VRAM area is transferred into another VRAM area in
dots (see figure 4.9)

After setting the parameters as shown in Figure 4.91, writing command code
9XH (X means a logical operation) in R#46 causes the command to be executed.
While the CE bit of S#2 is "1", the command is being executed. List 4.14
shows an example of using LMMM.

 Figure 4.90 Actions of LMMM command

 VRAM or expansion RAM
--
| |
| (SX,SY) |
| ------------------ --> |
	NX	DIX
	NY	
------------------ --+		
	DIY	
V		
	(DX,DY)	
+-> ------------------		
| | | |
| ------------------ |

MXS: select the source memory 0 = VRAM, 1 = expansion RAM
MXD: select the destination memory 0 = VRAM, 1 = expansion RAM

SX: source origin X-coordinate (0 to 511)
SY: source origin Y-coordinate (0 to 1023)

NX: number of dots to be transferred in X direction (0 to 511)
NY: number of dots to be transferred in Y direction (0 to 1023)

DIX: direction of NX from the origin 0 = right, 1 = left
DIY: direction of NY from the origin 0 = below, 1 = above

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

DX: destination origin X-coordinate (0 to 511)
DY: destination origin Y-coordinate (0 to 1023)

 Figure 4.91 Register settings of LMMM command

> LMMM register setup

 MSB 7 6 5 4 3 2 1 0 LSB

R#32 | SX7| SX6| SX5| SX4| SX3| SX2| SX1| SX0|
 |----+----+----+----+----+----+----+----| SX ---+
R#33 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | SX8| |
 --- |
 | source origin
 --- |
R#34 | SY7| SY6| SY5| SY4| SY3| SY2| SY1| SY0| |
 |----+----+----+----+----+----+----+----| SY ---+
R#35 | 0 | 0 | 0 | 0 | 0 | 0 | SY9| SY8|

R#36 | DX7| DX6| DX5| DX4| DX3| DX2| DX1| DX0|
 |----+----+----+----+----+----+----+----| DX ---+
R#37 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | DX8| |
 --- |
 | destination origin
 --- |
R#38 | DY7| DY6| DY5| DY4| DY3| DY2| DY1| DY0| |
 |----+----+----+----+----+----+----+----| DY ---+
R#39 | 0 | 0 | 0 | 0 | 0 | 0 | DY9| DY8|

R#40 | NX7| NX6| NX5| NX4| NX3| NX2| NX1| NX0| Number of dots in
 |----+----+----+----+----+----+----+----| NX ---> X direction to be
R#41 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | NX8| transferred

R#42 | NY7| NY6| NY5| NY4| NY3| NY2| NY1| NY0| Number of dots in
 |----+----+----+----+----+----+----+----| NY ---> Y direction to be
R#43 | 0 | 0 | 0 | 0 | 0 | 0 | NY9| NY8| transferred

R#45 | 0 | -- | MXD| MXS| DIY| DIX| -- | -- | ARG (Argument register)

 | | | direction (X)
 | | |
 | | +-> direction (Y)
 | |
 | +------> select source memory
 |
 +-----------> select destination memory

> LMMM command execution

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 MSB 7 6 5 4 3 2 1 0 LSB

R#46 | 1 | 0 | 0 | 1 | L03| L02| L01| L00| CMR

 | |
 +-------------------+
 Logical operation

List 4.14 Example of LMMM command execution
===

;**
; List 4.14 LMMM sample
; to use, set H, L, D, E, B, C, A and go
; VRAM (H,L)-(D,E) ---> VRAM (B,C) (logi-OP : A)
;**
;
RDVDP: EQU 0006H
WRVDP: EQU 0007H

;----- program start -----

LMMM: DI ;disable interrupt
 PUSH AF]save LOGICAL OPERATION
 PUSH BC ;save DESTINATION
 CALL WAIT.VDP ;wait end of command

 LD A,(WRVDP)
 LD C,A
 INC C ;C := PORT#1's address
 LD A,32
 OUT (C),A
 LD A,80H+17
 OUT (C),A ;R#17 := 32

 INC C
 INC C ;C := PORT#3's address
 XOR A
 OUT (C),H ;SX
 OUT (C),A
 OUT (C),L ;SY
 OUT (C),A

 LD A,H ;make NX and DIX
 SUB A
 LD D,00000100B
 JP NC,LMMM1
 LD D,00000000B
 NEG
LMMM1: LD H,A ;H := NX , D := DIX

 LD A,L ;make NY and DIY
 SUB A
 LD E,00001000B
 JP NC,LMMM2
 LD E,00000000B

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 NEG
LMMM2: LD L,A ;L := NY , E := DIY

 LD A,D
 OR E
 POP DE ;restore DX,DY
 PUSH AF ;save DIX,DIY
 XOR A
 OUT (C),D ;DX
 OUT (C),A
 OUT (C),E ;DY
 OUT (C),A
 OUT (C),H ;NX
 OUT (C),A
 OUT (C),L ;NY
 OUT (C),A
 OUT (C),A ;dummy
 POP AF
 OUT (C),A ;DIX and DIY

 POP AF ;A := LOGICAL OPERATION
 OR 10010000B ;LMMM command
 OUT (C),A

 EI
 RET

GET.STATUS:
. PUSH BC
 LD BC,(WRVDP)
 INC C
 OUT (C),A
 LD A,8FH
 OUT (C),A
 LD BC,(RDVDP)
 INC C
 IN A,(C)
 POP BC
 RET

WAIT.VDP:
 LD A,2
 CALL GET.STATUS
 AND 1
 JP NZ,WAIT.VDP
 XOR A
 CALL GET.STATUS
 RET

 END

===

6.5.8 LMMV (VRAM logical paint)

The specified VRAM area is painted by the colour code in dots (see Figure

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

4.92). Logical operations between data in VRAM and the specified data are
allowed.

After setting the parameters as shown in Figure 4.93, writing command code
8Xh (X means a logical operation) in R#46 causes the command to be executed.
While the CE bit of S#2 is "1", the command is being executed. List 4.15
shows an example of using LMMV.

 Figure 4.92 Actions of LMMV command

 VRAM or expansion RAM

| | MSX-VIDEO
| | -------
(DX,DY)				
x------------------------ --> DIX				
	NX			
	NY	<----------------+----		

	DIY			
V				

MXD: select memory 0 = VRAM, 1 = expansion RAM

NX: number of dots to be painted in X direction (0 to 511)
NY: number of dots to be painted in Y direction (0 to 1023)

DIX: direction of NX from the origin 0 = right, 1 = left
DIY: direction of NY from the origin 0 = below, 1 = above

DX: origin X-coordinate (0 to 511)
DY: origin Y-coordinate (0 to 1023)

CLR (R#44:Colour register): Painted data

 Figure 4.93 Register settings of LMMV command

> LMMV register setup

 MSB 7 6 5 4 3 2 1 0 LSB

R#36 | DX7| DX6| DX5| DX4| DX3| DX2| DX1| DX0|
 |----+----+----+----+----+----+----+----| DX ---+
R#37 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | DX8| |
 --- |
 | origin
 --- |
R#38 | DY7| DY6| DY5| DY4| DY3| DY2| DY1| DY0| |
 |----+----+----+----+----+----+----+----| DY ---+
R#39 | 0 | 0 | 0 | 0 | 0 | 0 | DY9| DY8|

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

R#40 | NX7| NX6| NX5| NX4| NX3| NX2| NX1| NX0| number of dots in
 |----+----+----+----+----+----+----+----| NX ---> X direction to
R#41 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | NX8| be painted

R#42 | NY7| NY6| NY5| NY4| NY3| NY2| NY1| NY0| number of dots in
 |----+----+----+----+----+----+----+----| NY ---> Y direction to
R#43 | 0 | 0 | 0 | 0 | 0 | 0 | NY9| NY8| be painted

 --- --+
R#44 | 0 | 0 | 0 | 0 | CR3| CR2| CR1| CR0| CLR (GRAPHIC 4,6) |data
 --- |
 |to
 --- |
 | 0 | 0 | 0 | 0 | 0 | 0 | CR1| CR0| CLR (GRAPHIC 5) |be
 --- |
 |tran
 --- |sfe
 | CR7| CR6| CR5| CR4| CR3| CR2| CR1| CR0| CLR (GRAPHIC 7) |rred
 --- --+

R#45 | 0 | -- | MXD| -- | DIY| DIX| -- | -- | ARG (Argument register)

 | | painting direction (X)
 | |
 | +-> painting direction (Y)
 |
 +-----------> memory selection

> LMMV command execution

 MSB 7 6 5 4 3 2 1 0 LSB

R#46 | 1 | 0 | 0 | 0 | L03| L03| L01| L00| CMR

 | |
 +-------------------+
 Logical operation

List 4.15 Example of LMMV command execution
===

;**
; List 4.15 LMMV sample
; to use, set H, L, D, E, B, A and go
; data B ---> fill VRAM (H,L)-(D,E) (logi-op : A)
;**
;
RDVDP: EQU 0006H
WRVDP: EQU 0007H

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

;----- program start -----

LMMV: DI ;disable interrupt
 PUSH AF ;save LOGICAL OPERATION
 PUSH BC ;save FILL DATA
 CALL WAIT.VDP ;wait end of command

 LD A,(WRVDP)
 LD C,A
 INC C ;C := PORT#1's address
 LD A,36
 OUT (C),A
 LD A,80H+17
 OUT (C),A ;R#17 := 36

 INC C
 INC C ;C := PORT#3's address
 XOR A
 OUT (C),H ;DX
 OUT (C),A
 OUT (C),L ;DY
 OUT (C),A

 LD A,H ;make NX and DIX
 SUB A
 LD D,00000100B
 JP NC,LMMV1
 LD D,00000000B
 NEG
LMMV1: LD H,A ;H := NX , D := DIX

 LD A,L ;make NY and DIY
 SUB A
 LD E,00001000B
 JP NC,LMMV2
 LD E,00000000B
 NEG
LMMV2: LD L,A ;L := NY , E := DIY

 XOR A
 OUT (C),H ;NX
 OUT (C),A
 OUT (C),L ;NY
 OUT (C),A
 POP AF
 OUT (C),A ;FILL DATA
 LD A,D
 OR E
 OUT (C),A ;DIX and DIY

 POP AF ;restore LOGICAL OPERATION
 OR A,10000000B ;LMMV command
 OUT (C),A

 EI
 RET

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

GET.STATUS:
 PUSH BC
 LD BC,(WRVDP)
 INC C
 OUT (C),A
 LD A,8FH
 OUT (C),A
 LD BC,(RDVDP)
 INC C
 IN A,(C)
 POP BC
 RET

WAIT.VDP:
 LD A,2
 CALL GET.STATUS
 AND 1
 JP NZ,WAIT.VDP
 XOR A
 CALL GET.STATUS
 RET

 END

===

6.5.9 LINE (drawing a line)

Lines can be drawn between any coordinates in VRAM. The parameters to be
specified include the (X,Y) coordinates of the starting point and the X and Y
lengths in units to the ending point (see Figure 4.94). Logical operations
between data in VRAM and the specified data are allowed.

After setting the parameters as shown in Figure 4.94, writing command code
7XH (X means a logical operation) in R#46 causes the command to be executed.
While the CE bit of S#2 is "1", the command is being executed. List 4.16
shows an example of using LINE.

 Figure 4.94 Actions of LINE command

 VRAM or expansion RAM

| |
| / : ^ |
| / : | |
| / : DIY |
| / : |
| / Min : |
| / : |
| / : |
| / Maj : |
| x................. -> DIX |
| (DX,DY) |
| |

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

MXD: select memory 0 = VRAM, 1 = expansion RAM

Maj: number of dots of major side (0 to 1023)
Maj: number of dots of minor side (0 to 512)

MAJ: 0 = The major side is parallel to X axis
MAJ: 1 = The major side is parallel to Y axis,
 or the major side = the minor side

DIX: direction of the end from the origin 0 = right, 1 = left
DIY: direction of the end from the origin 0 = below, 1 = above

DX: origin X-coordinate (0 to 511)
DY: origin Y-coordinate (0 to 1023)

CLR (R#44:Colour register): Line colour data

 Figure 4.95 Register settings of LINE command

> LINE register setup

 MSB 7 6 5 4 3 2 1 0 LSB

R#36 | DX7| DX6| DX5| DX4| DX3| DX2| DX1| DX0|
 |----+----+----+----+----+----+----+----| DX ---+
R#37 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | DX8| |
 --- |
 | origin
 --- |
R#38 | DY7| DY6| DY5| DY4| DY3| DY2| DY1| DY0| |
 |----+----+----+----+----+----+----+----| DY ---+
R#39 | 0 | 0 | 0 | 0 | 0 | 0 | DY9| DY8|

R#40 | NX7| NX6| NX5| NX4| NX3| NX2| NX1| NX0| number of dots
 |----+----+----+----+----+----+----+----| Maj (NX) -> of the major
R#41 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | NX8| side

R#42 | NY7| NY6| NY5| NY4| NY3| NY2| NY1| NY0| number of dots
 |----+----+----+----+----+----+----+----| Min (NY) -> of the minor
R#43 | 0 | 0 | 0 | 0 | 0 | 0 | NY9| NY8| side

 --- --+
R#44 | 0 | 0 | 0 | 0 | CR3| CR2| CR1| CR0| CLR (GRAPHIC 4,6) |
 --- |co-
 |lour
 --- |
 | 0 | 0 | 0 | 0 | 0 | 0 | CR1| CR0| CLR (GRAPHIC 5) |code
 --- |
 |data

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 --- |
 | CR7| CR6| CR5| CR4| CR3| CR2| CR1| CR0| CLR (GRAPHIC 7) |
 --- --+

R#45 | 0 | -- | MXD| -- | DIY| DIX| -- | MAJ| ARG (Argument register)

 | | | major side selection
 | | V
 | | direction to the end (X)
 | |
 | +-> direction to the end (Y)
 |
 +-----------> memory selection

> LINE command execution

 MSB 7 6 5 4 3 2 1 0 LSB

R#46 | 0 | 1 | 1 | 1 | L03| L03| L01| L00| CMR

 | |
 +-------------------+
 Logical operation

List 4.16 Example of LINE command execution
===

;**
; List 4.16 LINE sample
; to use, set H, L, D, E, B, A and go
; draw LINE (H,L)-(D,E) with color B, log-op A
;**
;
RDVDP: EQU 0006H
WRVDP: EQU 0007H

;----- program start -----

LINE: DI ;disable interrupt
 PUSH AF ;save LOGICAL OPERATION
 PUSH BC ;save COLOR
 CALL WAIT.VDP ;wait end of command
 LD A,(WRVDP)
 LD C,A
 INC C ;C := PORT#1's address
 LD A,36
 OUT (C),A
 LD A,80H+17
 OUT (C),A ;R#17 := 36

 INC C
 INC C ;C := PORT#3's address
 XOR A
 OUT (C),H ;DX
 OUT (C),A

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 OUT (C),L ;DY
 OUT (C),A

 LD A,H ;make DX and DIX
 SUB D
 LD D,00000100B
 JP NC,LINE1
 LD D,00000000B
 NEG
LINE1: LD H,A ;H := DX , D := DIX

 LD A,L ;make DY and DIY
 SUB E
 LD E,00001000B
 JP NC,LINE2
 LD E,00000000B
 NEG
LINE2: LD L,A ;L := DY , E := DIY

 CP H ;make Maj and Min
 JP C,LINE3
 XOR A
 OUT (C),L ;long side
 OUT (C),A
 OUT (C),H ;short side
 OUT (C),A
 LD A,00000001B ;MAJ := 1
 JP LINE4

LINE3: XOR A
 OUT (C),H ;NX
 OUT (C),A
 OUT (C),L ;NY
 OUT (C),A
 LD A,00000000B ;MAJ := 0

LINE4: OR D
 OR E ;A := DIX , DIY , MAJ
 POP HL ;H := COLOR
 OUT (C),H
 OUT (C),A
 POP AF ;A := LOGICAL OPERATION
 OR 01110000B
 OUT (C),A
 LD A,8FH
 OUT (C),A
 EI
 RET

GET.STATUS:
 PUSH BC
 LD BC,(WRVDP)
 INC C
 OUT (C),A
 LD A,8FH
 OUT (C),A
 LD BC,(RDVDP)

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 INC C
 IN A,(C)
 POP BC
 RET

WAIT.VDP:
 LD A,2
 CALL GET.STATUS
 AND 1
 JP NZ,WAIT.VDP
 XOR A
 CALL GET.STATUS
 RET

 END

===

6.5.10 SRCH (colour code search)

SRCH searches for the existence of the specified colour from any coordinate
on VRAM to the right or the left (see figure 4.96). This is very useful for
paint routines.

After setting the parameters as shown in Figure 4.97, writing 60H in R#46
causes the command to be executed. The command terminates when the objective
colour is found or when it cannot be found after searching for it to the
screen edge. While the CE bit of S#2 is "1", the command is being executed
(see Figure 4.98).

After the command ends, the objective colour code is stored in S#8 and S#9.
List 4.17 shows an example of using SRCH.

 Figure 4.96 Actions of SRCH command

 VRAM or expansion RAM

| |
| |
| |
| |
| (SX,SY) DIX |
| x......................>x |
| Border |
| colour |
| point |
| |
| |

MXD: memory selection for the seacrh 0 = VRAM, 1 = expansion RAM

SX: search origin X-coordinate (0 to 511)

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

SY: search origin Y-coordinate (0 to 1023)

DIX: direction for the search from the origin 0 = right, 1 = left

EQ: 0 = ends the execution when the border colour is found
 1 = ends the execution when the colour is found other than the
 border colour

CLR (R#44:Colour register): border colour

 Figure 4.97 Register settings of SRCH command

> SRCH register setup

 MSB 7 6 5 4 3 2 1 0 LSB

R#32 | SX7| SX6| SX5| SX4| SX3| SX2| SX1| SX0|
 |----+----+----+----+----+----+----+----| SX ---+
R#33 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | SX8| |
 --- |
 | search origin
 --- |
R#34 | SY7| SY6| SY5| SY4| SY3| SY2| SY1| SY0| |
 |----+----+----+----+----+----+----+----| SY ---+
R#35 | 0 | 0 | 0 | 0 | 0 | 0 | SY9| SY8|

 b
 --- --+o
R#44 | 0 | 0 | 0 | 0 | CR3| CR2| CR1| CR0| CLR (GRAPHIC 4,6) |r
 --- |d
 |e
 --- |r
 | 0 | 0 | 0 | 0 | 0 | 0 | CR1| CR0| CLR (GRAPHIC 5) |
 --- |c
 |o
 --- |l
 | CR7| CR6| CR5| CR4| CR3| CR2| CR1| CR0| CLR (GRAPHIC 7) |o
 --- --+u
 r

R#45 | -- | -- | MXD| -- | -- | DIX| EQ | -- | ARG (Argument register)

 | | the condition for terminating
 | | the execution
 | V
 | search direction (X)
 |
 +-----------> memory selection for the search

> SRCH command execution

 MSB 7 6 5 4 3 2 1 0 LSB

R#46 | 0 | 1 | 1 | 0 | -- | -- | -- | -- | CMR

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

S#2 | -- | -- | -- | BO | -- | -- | -- | CE | CMR

 | when the command ends : 0
 |
 +-------> when the border colour is found : 1

S#8 | BX7| BX6| BX5| BX4| BX3| BX2| BX1| BX0| X-coordinate when the
 --- border colour is found
S#9 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | BX8|

 Figure 4.98 SRCH command execution flowchart

 /-------------------\
 | SRCH start |
 \-------------------/
 |

register setup
 |

command execution
 |
+---------------->|

//////////+\\\\\\\\\\
+-------| command end? |
 No \\\\\\\\\\+//////////
(CE bit = 1) |
 | Yes (CE bit = 0)
 |
 /////////////+\\\\\\\\\\\\\
+----| Is border colour found? |
| \\\\\\\\\\\\\+/////////////
| No |
| (BO bit = 0) | Yes (BO bit = 1)

+---------------->|
 |
 V

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 /--------------------\
 | SRCH end |
 \--------------------/

List 4.17 Example of SRCH command execution
===

;**
; List 4.17 SRCH sample
; to use, set H, L, E, A as follows
; srch (x:H, y:L, color:E, arg(reg#45) : A)
; returns: Z (not found)
; NZ (A := X)
;**
;
RDVDP: EQU 0006H
WRVDP: EQU 0007H

;----- program start -----

SRCH: DI ;disable interrupt
 PUSH AF ;save arg
 CALL WAIT.VDP

 LD A,(WRVDP)
 LD C,A
 INC C ;C := PORT#1's address

 LD D,0
 LD A,32+80H
 OUT (C),H
 OUT (C),A ;R#32 := H
 INC A
 OUT (C),D
 OUT (C),A ;R#33 := 0
 INC A
 OUT (C),L
 OUT (C),A ;R#34 := L
 INC A
 OUT (C),D
 OUT (C),A ;R#35 := 0
 LD A,44+80H
 OUT (C),E
 OUT (C),A ;R#44 := E
 INC A
 LD E,A
 POP AF ;A := ARG
 OUT (C),A
 OUT (C),E ;R#45 := A

 LD A,01100000B
 OUT (C),A
 INC E
 OUT (C),E ;R#46 := SRCH command

LOOP: LD A,2

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 CALL GET.STATUS
 BIT 0,A
 JP NZ,LOOP
 LD E,A
 LD A,8
 CALL GET.STATUS
 LD D,A
 LD A,9
 CALL GET.STATUS
 LD A,D
 BIT 4,E

 EI
 RET

GET.STATUS:
 PUSH BC
 LD BC,(WRVDP)
 INC C
 OUT (C),A
 LD A,8FH
 OUT (C),A
 LD BC,(RDVDP)
 INC C
 IN A,(C)
 POP BC
 RET

WAIT.VDP:
 LD A,2
 CALL GET.STATUS
 AND 1
 JP NZ,WAIT.VDP
 XOR A
 CALL GET.STATUS
 RET

 END

===

List 4.18 Simple PAINT routine using SRCH and LINE
===

;**
; List 4.18 SRCH and LINE sample
; search color to right and left,
; then draw line between the two points
;**
;
 EXTRN SRCH
 EXTRN LINE

Y EQU 0A800H
X EQU 0A801H
COL EQU 0A802H

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

ARG EQU 0A803H
PCOL EQU 0A804H

;----- program start -----

MAIN: LD (STK),SP
 LD SP,AREA
 LD HL,(Y)
 LD A,(COL)
 LD E,A
 LD A,(ARG)
 PUSH HL
 PUSH DE
 SET 2,A
 CALL SRCH
 POP DE
 POP HL
 JP NZ,S1
 LD A,(X)
 DEC A
S1: INC A
 PUSH AF
 LD A,(ARG)
 RES 2,A
 CALL SRCH
 JP NZ,S2
 LD A,(X)
 INC A
S2: DEC A
 LD D,A
 POP AF
 LD H,A
 LD A,(Y)
 LD L,A
 LD E,A
 LD A,(PCOL)
 LD B,A
 LD A,0 ;PSET
 CALL LINE
 LD SP,(STK)
 RET

;----- work area -----

STK: DS 2
 DS 200
AREA: $

 END

===

List 4.19 Example of the use of simple PAINT routine
===

1000 '***

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

1010 ' list 4.19 SRCH and LINE sample
1020 ' Operate cursor while holding down the space bar.
1030 '***
1040 '
1050 SCREEN 5
1060 FOR I=0 TO 50:LINE -(RND(1)*255,RND(1)*211),15:NEXT
1070 I=&HA000 :DEF USR=I
1080 READ A$
1090 IF A$="END" THEN 1130
1100 POKE I,VAL("&H"+A$):I=I+1
1110 READ A$
1120 GOTO 1090
1130 X=128:Y=100:COL=15:PCOL=2:ARG=0
1140 CURS=0
1150 A=STICK(0)
1160 CURS=(CURS+1) AND 1
1170 LINE (X-5,I)-(X+5,I),15,,XOR
1180 LINE (X,Y-5)-(X,Y+5),15,,XOR
1190 IF CURS=1 THEN 1290
1200 IF A=1 THEN Y=Y-1
1210 IF A=2 THEN Y=Y-1:X=X+1
1220 IF A=3 THEN X=X+1
1230 IF A=4 THEN X=X+1:Y=Y+1
1240 IF A=5 THEN Y=Y+1
1250 IF A=6 THEN Y=Y+1:X=X-1
1260 IF A=7 THEN X=X-1
1270 IF A=8 THEN X=X-1:Y=Y-1
1280 IF STRIG(9) THEN GOSUB 1300
1290 GOTO 1150
1300 POKE &HA800,Y
1310 POKE &HA801,X
1320 POKE &HA802,COL
1330 POKE &HA803,ARG
1340 POKE &HA804,PCOL
1350 A=USR(0)
1360 RETURN
1370 DATA ED,73,80,A8,31,4A,A9,2A,00,A8,3A,02
1380 DATA A8,5F,3A,03,A8,E5,D5,CB,D7,CD,AD
1390 DATA A0,D1,E1,C2,21,A0,3A,01,A8
1400 DATA 3D,3C,F5,3A,03,A8,CB,97,CD,AD,A0,C2
1410 DATA 32,A0,3A,01,AB,3C,3D,57,F1,67,3A
1420 DATA 00,A8,6F,5F,3A,04,A8,47,3E
1430 DATA 00,CD,49,A0,ED,7B,80,A8,C9,F3,F5,CD
1440 DATA 0D,A1,C5,3A,06,00,4F,0C,3E,24,ED
1450 DATA 79,3E,91,ED,79,0C,0C,AF,ED
1460 DATA 61,ED,79,ED,69,ED,79,7C,92,16,04,D2
1470 DATA 72,A0,16,00,ED,44,67,7D,93,1E,08
1480 DATA D2,7E,A0,1E,00,ED,44,BC,DA
1490 DATA 90,A0,ED,79,AF,ED,79,ED,61,ED,79,26
1500 DATA 01,C3,9C,A0,ED,61,67,AF,ED,79,ED
1510 DATA 61,ED,79,26,00,7C,B2,B3,E1
1520 DATA ED,61,ED,79,F1,E6,0F,F6,70,ED,79,FB
1530 DATA C9,F5,F3,CD,0D,A1,ED,4B,06,00,0C
1540 DATA 3E,A0,16,00,ED,61,ED,79,3C
1550 DATA ED,51,ED,79,3C,ED,69,ED,79,3C,ED,51
1560 DATA ED,79,3E,AC,ED,59,ED,79,3C,5F,F1
1570 DATA ED,79,ED,59,3E,60,ED,79,1C

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

1580 DATA ED,59,3E,02,CD,FD,A0,CB,47,C2,E2,A0
1590 DATA 5F,3E,08,CD,FD,A0,57,3E,00,CD,FD
1600 DATA A0,7A,CB,63,FB,C9,C5,ED,4B
1610 DATA 06,00,0C,ED,79,3E,8F,ED,79,ED,78,C1
1620 DATA C9,3E,02,CD,FD,A0,E6,01,C2,0D,A1
1630 DATA AF,CD,FD,A0,C9,END

===

6.5.11 PSET (drawing a point)

A point is drawn at any coordinate in VRAM (see figure 4.99).

After setting the parameters as shown in Figure 4.100, writing 5XH (X means a
logical operation) in R#46 causes the command to be executed. While the CE
bit of S#2 is "1", the command is being executed. List 4.20 shows an example
of using PSET.

 Figure 4.99 Actions of PSET command

 VRAM or expansion RAM

| |
| |
| |
| |
| (DX,DY) |
| x |
| |
| |
| |
| |
| |

MXD: memory selection 0 = VRAM, 1 = expansion RAM

DX: origin X-coordinate (0 to 511)
DY: origin Y-coordinate (0 to 1023)

CLR (R#44:Colour register): point colour

 Figure 4.100 Register settings of PSET command

> PSET register setup

 MSB 7 6 5 4 3 2 1 0 LSB

R#36 | DX7| DX6| DX5| DX4| DX3| DX2| DX1| DX0|
 |----+----+----+----+----+----+----+----| DX ---+
R#37 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | DX8| |
 --- |

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 | origin
 --- |
R#38 | DY7| DY6| DY5| DY4| DY3| DY2| DY1| DY0| |
 |----+----+----+----+----+----+----+----| DY ---+
R#39 | 0 | 0 | 0 | 0 | 0 | 0 | DY9| DY8|

 --- --+
R#44 | 0 | 0 | 0 | 0 | CR3| CR2| CR1| CR0| CLR (GRAPHIC 4,6) |
 --- |co-
 |lour
 --- |
 | 0 | 0 | 0 | 0 | 0 | 0 | CR1| CR0| CLR (GRAPHIC 5) |code
 --- |
 |data
 --- |
 | CR7| CR6| CR5| CR4| CR3| CR2| CR1| CR0| CLR (GRAPHIC 7) |
 --- --+

R#45 | 0 | -- | MXD| -- | -- | -- | -- | -- | ARG (Argument register)

 |
 +-----------> memory selection

> PSET command execution

 MSB 7 6 5 4 3 2 1 0 LSB

R#46 | 0 | 1 | 0 | 1 | L03| L02| L01| L00| CMR

 | |
 +-------------------+
 Logical operation

List 4.20 Example of PSET command execution
===

;**
; List 4.20 PSET sample
; to use, set H, L, E, A as follows
; pset (x:H, y:L), color:E, logi-OP:A
;**
;
 PUBLIC PSET

RDVDP: EQU 0006H
WRVDP: EQU 0007H

;----- program start -----

PSET: DI
 PUSH AF
 CALL WAIT.VDP
 LD BC,(WRVDP)

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 INC C
 LD A,36
 OUT (C),A
 LD A,80H+17
 OUT (C),A

 PUSH BC
 INC C
 INC C
 XOR A
 OUT (C),H
 OUT (C),A
 OUT (C),L
 OUT (C),A
 POP BC

 LD A,44
 OUT (C),A
 LD A,80H+17
 OUT (C),A

 INC C
 INC C
 OUT (C),E
 XOR A
 OUT (C),A

 LD E,01010000B
 POP AF
 OR E
 OUT (C),A

 EI
 RET

GET.STATUS:
 PUSH BC
 LD BC,(WRVDP)
 INC C
 OUT (C),A
 LD A,8FH
 OUT (C),A
 LD BC,(RDVDP)
 INC C
 IN A,(C)
 POP BC
 RET

WAIT.VDP:
 LD A,2
 CALL GET.STATUS
 AND 1
 JP NZ,WAIT.VDP
 XOR A
 CALL GET.STATUS
 RET

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 END

===

6.5.12 POINT (reading a colour code)

POINT reads the colour code in any coordinate of VRAM (see Figure 4.101).

After setting the parameters as shown in Figure 4.102, writing 40H in R#46
causes the command to be executed. While the CE bit of S#2 is "1", the
command is being executed. After the command terminates, the colour code of
the specified coordinate is set in S#7. List 4.21 shows an example of using
POINT.

 Figure 4.101 Actions of POINT command

 VRAM or expansion RAM

| |
| |
| |
| |
| (SX,SY) |
| x |
| |
| |
| |
| |
| |

MXD: memory selection 0 = VRAM, 1 = expansion RAM

SX: origin X-coordinate (0 to 511)
SY: origin Y-coordinate (0 to 1023)

 Figure 4.102 Register settings of POINT command

> POINT register setup

 MSB 7 6 5 4 3 2 1 0 LSB

R#32 | SX7| SX6| SX5| SX4| SX3| SX2| SX1| SX0|
 |----+----+----+----+----+----+----+----| SX ---+
R#33 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | SX8| |
 --- |
 | origin
 --- |
R#34 | SY7| SY6| SY5| SY4| SY3| SY2| SY1| SY0| |
 |----+----+----+----+----+----+----+----| SY ---+
R#35 | 0 | 0 | 0 | 0 | 0 | 0 | SY9| SY8|

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

R#45 | -- | -- | -- | MXS| -- | -- | -- | -- | ARG (Argument register)

 |
 +-----------> memory selection

> POINT command execution

 MSB 7 6 5 4 3 2 1 0 LSB

R#46 | 0 | 1 | 0 | 0 | -- | -- | -- | -- | CMR

S#2 | -- | -- | -- | -- | -- | -- | -- | CE | CMR

 when the command ends : 0

 --- --+
S#7 | 0 | 0 | 0 | 0 | C3 | C2 | C1 | C0 | CL (GRAPHIC 4,6) |
 --- |co-
 |lour
 --- |
 | 0 | 0 | 0 | 0 | 0 | 0 | C1 | C0 | CL (GRAPHIC 5) |code
 --- |
 |data
 --- |
 | C7 | C6 | C5 | C4 | C3 | C2 | C1 | C0 | CL (GRAPHIC 7) |
 --- --+

List 4.21 Example of POINT command execution
===

;**
; List 4.21 POINT sample
; to use, set H, L as follows
; POINT (x:H, y:L)
; returns: A := COLOR CODE
;**
;
 PUBLIC POINT

RDVDP: EQU 0006H
WRVDP: EQU 0007H

;----- program start -----

POINT: DI
 CALL WAIT.VDP

 LD A,(WRVDP)
 LD C,A

 INC C
 LD A,32
 OUT (C),A

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 LD A,80H+17
 OUT (C),A

 INC C
 INC C
 XOR A
 OUT (C),H
 OUT (C),A
 OUT (C),L
 OUT (C),A

 DEC C
 DEC C
 OUT (C),A
 LD A,80H+45
 OUT (C),A
 LD A,01000000B
 OUT (C),A
 LD A,80H+46
 OUT (C),A
 CALL WAIT.VDP
 LD A,7
 CALL GET.STATUS
 PUSH AF
 XOR A
 CALL GET.STATUS
 POP AF

 EI
 RET

GET.STATUS:
 PUSH BC
 LD BC,(WRVDP)
 INC C
 OUT (C),A
 LD A,8FH
 OUT (C),A
 LD BC,(RDVDP)
 INC C
 IN A,(C)
 POP BC
 RET

WAIT.VDP:
 LD A,2
 CALL GET.STATUS
 AND 1
 JP NZ,WAIT.VDP
 XOR A
 CALL GET.STATUS
 RET

 END

===

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

List 4.22 PAINT routine using PSET and POINT
===

;**
; List 4.22 paint routine using PSET and POINT
; ENTRY: X:H, Y:L, BORDER COLOR:D, PAINT COLOR:E
;**
;
 EXTRN PSET
 EXTRN POINT

Q.LENGTH EQU 256*2*2
MAX.Y EQU 211

;----- paint main routine -----

PAINT: CALL POINT
 CP D
 RET Z
 CALL INIT.Q
 LD (COL),DE
 CALL PUT.Q
 LD A,(COL)
 LD E,A
 XOR A ;logi-OP : PSET
 CALL PSET
PAINT0: CALL GET.Q
 RET C
 INC H
 CALL NZ,PAINT.SUB
 DEC H
 JP Z,PAINT1
 DEC H
 CALL PAINT.SUB
 INC H
PAINT1: DEC L
 LD A,-1
 CP L
 CALL NZ,PAINT.SUB
 INC L
 INC L
 LD A,MAX.Y
 CP L
 CALL NC,PAINT.SUB
 JP PAINT0

;----- check point and pset -----

PAINT.SUB:
 CALL POINT
 LD D,A
 LD A,(BORD)
 CP D
 RET Z
 LD A,(COL)
 CP D
 RET Z

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 LD E,A
 XOR A
 CALL PSET
 CALL PUT.Q
 RET

;----- init Q.BUFFER pointer -----

INIT.Q:
 PUSH HL
 LD HL,Q.BUF
 LD (Q.TOP),HL
 LD (Q.BTM),HL
 POP HL
 RET

;----- put point to Q.BUF (X:H , Y:L) -----

PUT.Q:
 EX DE,HL
 LD HL,(Q.TOP)
 LD BC,Q.BUF+Q.LENGTH+1
 OR A ;clear CARRY
 PUSH HL
 SBC HL,BC
 POP HL
 JP C,PUT.Q1
 LD HL,Q.BUF
PUT.Q1:
 LD (HL),D
 INC HL
 LD (HL),E
 INC HL
 LD (Q.TOP),HL
 EX DE,HL
 RET

;----- take point data to D, E -----
; returns: NC H:x, L:y
; C buffer empty

GET.Q: LD HL,(Q.BTM)
 LD BC,(Q.TOP)
 OR A
 SBC HL,BC
 JP NZ,GET.Q0
 SCF
 RET

GET.Q0: LD HL,(Q.BTM)
 LD BC,Q.BUF+Q.LENGTH+1
 OR A
 PUSH HL
 SBC HL,BC
 POP HL
 JP C,GET.Q1
 LD HL,Q.BUF

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

GET.Q1: LD D,(HL)
 INC HL
 LD E,(HL)
 INC HL
 LD (Q.BTM),HL
 OR A
 EX DE,HL
 RET

;----- work area -----

COL DS 1
BORD DS 1
Q.TOP DS 2
Q.BTM DS 2
Q.BUF DS Q.LENGTH

 END

===

List 4.23 Example of using the PAINT routine
===

1000 '***
1010 ' list 4.23 paint routine using POINT and PSET
1020 ' Position cursor at beginnig of paint area and press the space bar.
1030 '***
1040 '
1050 SCREEN 5
1060 FOR I=0 TO 50
1070 LINE -(RND(1)*255,RND(1)*211),15
1080 NEXT
1090 I=&HA000 :DEF USR=I
1100 READ A$
1110 IF A$="END" THEN 1150
1120 POKE I,VAL("&H"+A$):I=I+1
1130 READ A$
1140 GOTO 1110
1150 X=128:Y=100:COL=15:PCOL=2
1160 CURS=0
1170 A=STICK(0)
1180 CURS=(CURS+1) AND 1
1190 LINE (X-5,I)-(X+5,I),15,,XOR
1200 LINE (X,Y-5)-(X,Y+5),15,,XOR
1210 IF CURS=1 THEN 1310
1220 IF A=1 THEN Y=Y-1
1230 IF A=2 THEN Y=Y-1:X=X+1
1240 IF A=3 THEN X=X+1
1250 IF A=4 THEN X=X+1:Y=Y+1
1260 IF A=5 THEN Y=Y+1
1270 IF A=6 THEN Y=Y+1:X=X-1
1280 IF A=7 THEN X=X-1
1290 IF A=8 THEN X=X-1:Y=Y-1
1300 IF STRIG(9) THEN GOSUB 1320
1310 GOTO 1170

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

1320 POKE &HA8CA,Y
1330 POKE &HA8CB,X
1340 POKE &HA8CD,COL
1350 POKE &HA8CC,PCOL
1360 A=USR(0)
1370 RETURN
1380 DATA ED,73,00,A8,31,CA,A8,2A,CA,A8,ED,5B,CC,A8,CD,67
1390 DATA A0,ED,7B,00,A8,C9,E5,21,D4,A8,22,D0,A8,22,D2,A8
1400 DATA E1,C9,EB,2A,D0,A8,01,D5,AC,B7,E5,ED,42,E1,DA,34
1410 DATA A0,21,D4,A8,72,23,73,23,22,D0,A8,EB,C9,2A,D2,A8
1420 DATA ED,4B,D0,A8,B7,ED,42,C2,4C,A0,37,C9,2A,D2,A8,01
1430 DATA D5,AC,B7,E5,ED,42,E1,DA,5D,A0,21,D4,A8,56,23,5E
1440 DATA 23,22,D2,A8,B7,EB,C9,CD,B8,A0,BA,C8,CD,16,A0,ED
1450 DATA 53,CE,A8,CD,22,A0,3A,CE,A8,5F,AF,CD,F4,A0,CD,3D
1460 DATA A0,D8,24,C4,A1,A0,25,CA,8F,A0,25,CD,A1,A0,24,2D
1470 DATA 3E,FF,BD,C4,A1,A0,2C,2C,3E,D3,BD,D4,A1,A0,C3,7E
1480 DATA A0,CD,B8,A0,57,3A,CF,A8,BA,C8,3A,CE,A8,BA,C8,5F
1490 DATA AF,CD,F4,A0,CD,22,A0,C9,F3,CD,3A,A1,ED,4B,06,00
1500 DATA 0C,3E,20,ED,79,3E,91,ED,79,0C,0C,AF,ED,61,ED,79
1510 DATA ED,69,ED,79,0D,0D,ED,79,3E,AD,ED,79,3E,40,ED,79
1520 DATA 3E,AE,ED,79,CD,3A,A1,3E,07,CD,2A,A1,F5,AF,CD,2A
1530 DATA A1,F1,FB,C9,F3,F5,CD,3A,A1,ED,4B,06,00,0C,3E,24
1540 DATA ED,79,3E,91,ED,79,C5,0C,0C,AF,ED,61,ED,79,ED,69
1550 DATA ED,79,C1,3E,2C,ED,79,3E,91,ED,79,0C,0C,ED,59,AF
1560 DATA ED,79,1E,50,F1,B3,ED,79,FB,C9,C5,ED,4B,06,00,0C
1570 DATA ED,79,3E,8F,ED,79,ED,78,C1,C9,3E,02,CD,2A,A1,E6
1580 DATA 01,C2,3A,A1,AF,CD,2A,A1,C9
1590 DATA END

===

6.6 Speeding Up Commands

MSX-VIDEO performs various screen management duties in addition to executing
the specified commands. Sometimes the command execution speed seems to be a
bit slow because of this. Thus, by discarding these operations, the speed of
the command executions can be made faster. This can be done using the
following method.

1. Sprite display inhibition

This method is useful since speedup can be realised while the screen remains
displayed. Set "1" to bit 1 of R#8.

2. Screen display inhibition

This method cannot be used frequently except in the case of initialising the
screen, since the screen fades out in this mode. Set "1" to bit 6 of R#1.

6.7 Register Status at Command Termination

Table 4.7 shows the register status at the command termination for each
command.

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

When the number of dots to be executed in Y direction assumes N, the values
of SY*, DY*, and NYB can be calculated as follows:

 SY*=SY+N, DY*=DY+N when DIY bit is 0
 SY*=SY-N, DY*=DY-N when DIY bit is 1
 NYB=NY-N

 Note: when MAJ bit is 0 in LINE, N = N - 1.

 Table 4.7 Register status at command termination

--
| command name | SX | SY | DX | DY | NX | NY | CLR |CMR H|CMR L| ARG |
|--------------+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----|
| HMMC | --- | --- | --- | . | --- | # | --- | 0 | --- | --- |
|--------------+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----|
| YMMM | --- | . | --- | . | --- | # | --- | 0 | --- | --- |
|--------------+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----|
| HMMM | --- | . | --- | . | --- | # | --- | 0 | --- | --- |
|--------------+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----|
| HMMV | --- | --- | --- | . | --- | # | --- | 0 | --- | --- |
--
--
| LMMC | --- | --- | --- | . | --- | # | --- | 0 | --- | --- |
|--------------+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----|
| LMCM | --- | . | --- | --- | --- | # | . | 0 | --- | --- |
|--------------+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----|
| LMMM | --- | . | --- | . | --- | # | --- | 0 | --- | --- |
|--------------+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----|
| LMMV | --- | --- | --- | . | --- | # | --- | 0 | --- | --- |
--
--
| LINE | --- | --- | --- | . | --- | --- | --- | 0 | --- | --- |
|--------------+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----|
| SRCH | --- | --- | --- | --- | --- | --- | --- | 0 | --- | --- |
|--------------+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----|
| PSET | --- | --- | --- | --- | --- | --- | --- | 0 | --- | --- |
|--------------+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----|
| POINT | --- | --- | --- | --- | --- | --- | . | 0 | --- | --- |
--

--- : no change
 . : coordinate (SY*, DY*) and the colour code at the command termination
 # : the number of counts (NYB), when the screen edge is fetched

 MSX2 TECHNICAL HANDBOOK

Edited by: ASCII Systems Division
Published by: ASCII Coprporation - JAPAN
First edition: March 1987

Text file typed by: Nestor Soriano (Konami Man) - SPAIN
 October 1997

Changes from the original:

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

- In Figure 5.2, unused bits are marked as "x", and inverted signals are
marked with "*", for easiest readability.

- Figure 5.17B was added.

- In List 5.4, the last line before the work area, "JR START", has been
corrected to "JR SCAN".

- In Figure 5.18, the addresses for GETPNT y PUTPNT were swapped. They have
been corrected.

- In description of BIOS routines PINLIN and INLIN, "BUF" address has been
corrected from F55DH to F55EH.

- In Figure 5.22 (B), "Arabaic mode display" has been changed to "Arabic or
kana mode display".

- In description of BIOS routine GTTRIG, the input needed for reading B
buttons has been added in the "Input" field.

- In Table 5.5, in the Note 4, "the trigger button of the mouse or the
trigger button" has been changed to "the trigger button of the mouse or the
trigger button of the track ball".

- In Figure 5.29, "1200 or 2400 hours" indication has been corrected to "12
or 24 hours".

- In Figure 5.32, "Register 3 #11" indication has been corrected to "Register
#11".

- In Figure 5.33, "Adjust Y (8 to +7)" has been corrected to "Adjust Y (-8 to
+7)".

- In description of BIOS routine WRTCLK, the input needed in the A register
has been added in the "Input" field.

-=-

CHAPTER 5 - ACCESS TO PERIPHERALS THROUGH BIOS (Parts 1 to 6)

The basic philosophy of MSX is to have a standard interface, independent of
machines or versions, to access peripherals through BIOS. Thus, the user
should get to know about using BIOS first. In chapter 5, accessing
peripherals using BIOS and the structure used for each peripheral are
described.

1. PSG AND SOUND OUTPUT

MSX has the following three kinds of sound output functions, but function (3)
is not installed in the standard MSX, so it is not described in this manual.
This section describes functions (1) and (2).

(1) PSG sound output (3 channels, 8 octaves)

(2) Sound output by 1 bit I/O port

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

(3) Sound output by MSX-AUDIO (FM sound generator) not described
 in this manual

1.1. PSG functions

An AY-3-8910 compatible LSI is used for the MSX music play function and for
BEEP tone generation. This LSI is referred to as the PSG (Programmable Sound
Generator), and can generate complex music and varios tones. It has the
following features:

* There are three tone generators, each of which can independently specify
4096 scales (equivalent to 8 octaves) and 16 volume levels.

* It can generate piano and organ tones by using envelope patterns. Note
that, since there is only one envelope generator, the tone of only one
channel can be modified fundamentally.

* With the noise generator inside, tones such as the wind or waves can easily
be generated. Note that since there is only one noise generator, only one
channel can generate the noise.

* Any necessary frequency, such as the tone or the envelope, is obtained by
dividing the input clock (in MSX, it is defined that fc = 1.7897725 MHz). So
there is no unsteady pitch or rythm.

 Figure 5.1 PSG block diagram

 R0, R1 R7 R8
-------------------- ------------- ------------------------------
| Tone generator A | --> | | ------> | Volume control amplifier A |
-------------------- | | +--> ---------------------------+--
 | | | Channel A output <--+
 R2, R3 | Three | | R9
-------------------- | | | ------------------------------
| Tone generator B | --> | Channel | ---:--> | Volume control amplifier B |
-------------------- | | +--> ---------------------------+--
 | Mixer | | Channel B output <--+
 R4, R5 | | | R9
-------------------- | | | ------------------------------
| Tone generator C | --> | | ---:--> | Volume control amplifier C |
-------------------- ------------- +--> ---------------------------+--
 ^ | Channel C output <--+
 | |
 R6 | | R11, R12, R13
 --------------------- ------------------------
 | Noise generator | | Envelope generator |
 --------------------- ------------------------

The PSG has two additional I/O (input/output) ports used for other than tone
generating functions, which are omitted in the block diagram above. MSX uses
them as general-purpose I/O ports to connect to I/O devices such as joystick,
a touch pad, a paddle, or a mouse. These general-purpose I/O ports are
described in section 5.

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

* PSG registers

Since the PSG generates tones, the CPU simply notifies PSG when the tone is
to be changed. This is done by writing values in 16 8-bit registers inside
the PSG as shown in Figure 5.2.

Roles and uses of these registers are described below.

* Setting the tone frequency (R0 to R5)

Each tone frequency of channel A, B, and C is set by R0 to R5. The input
clock frequency (fc = 1.7897725 MHz) is divided by 16 and the result is the
standard frequency. Each channel divides the standard frequency by the 12-bit
data assigned for each, and the objective pitch is obtained. The following
relation exists between 12-bit data (TP) and the tone frequency to be
generated (ft).

 ft = fc/(16 * TP)
 = 0.11186078125/TP [MHz]
 = 111860.78125/TP [Hz]

A 12-bit data TP is specified for each channel by 4 high order bit coarse
tune CT and 8 low order bit fine tune value FT, as shown in Figure 5.3. Table
5.1 shows the register settings to make the scales.

 Figure 5.2 PSG register structure

Bit								
	B7	B6	B5	B4	B3	B2	B1	B0
Register								
---------------------------+---								
R0	Channel A note	8 low order bits						
----------		---						
R1	Dividing rate	x x x x	4 high order bits					
----------+----------------+---								
R2	Channel B note	8 low order bits						
----------		---						
R3	Dividing rate	x x x x	4 high order bits					
----------+----------------+---								
R4	Channel C note	8 low order bits						
----------		---						
R5	Dividing rate	x x x x	4 high order bits					
----------+----------------+---								
R6	Noise div. rate	x x x						
----------+----------------+---								
		IN*/OUT	NOISE*	TONE*				
R7	Enable*	-----------+-----------------+-----------------						
		IOB	IOA	C	B	A	C	B
----------+----------------+-----------------+-----+-----------------------								
R8	Chan. A volume	x x x	M					
----------+----------------+-----------------+-----+-----------------------								
R9	Chan. B volume	x x x	M					
----------+----------------+-----------------+-----+-----------------------								
R10	Chan. C volume	x x x	M					

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

|----------+----------------+---|
R11		8 low order bits
----------	Envelope Cycle	---
R12		8 high order bits
----------+----------------+---		
R13	Env. wave shape	x x x x
----------+----------------+---		
R14	I/O port A	
----------+----------------+---		
R15	I/O port B	

NOTE: x = unused bit
 * = inverted signal

 Figure 5.3 Setting the pitch

R0, R2, R4 | 8 bits | --+

R0, R2, R4 | x x x x | 4 bits | |
 --- |
 | |
 --+ |
 | |
 V V

| Coarse Tune (CT) | Fine Tune (FT) |

| |
+-------------------------------- TP ---------------------------------+

 [Channel A - R0, R1]
 [Channel B - R2, R3]
 [Channel C - R4, R5]

 Table 5.1 Setting the tone frequency (scale data)

--
Octave								
	1	2	3	4	5	6	7	8
Note								
--------------+-----+-----+-----+-----+-----+-----+-----+-----								
C	D5D	6AF	357	1AC	D6	6B	35	1B
--------------+-----+-----+-----+-----+-----+-----+-----+-----								
C#	C9C	64E	327	194	CA	65	32	19
--------------+-----+-----+-----+-----+-----+-----+-----+-----								
D	BE7	5F4	2FA	17D	BE	5F	30	18
--------------+-----+-----+-----+-----+-----+-----+-----+-----								
D#	B3C	59E	2CF	168	84	5A	2D	16
--------------+-----+-----+-----+-----+-----+-----+-----+-----								
E	A9B	54E	2A7	153	AA	55	2A	15
--------------+-----+-----+-----+-----+-----+-----+-----+-----								
F	A02	501	281	140	A0	50	28	14

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

|--------------+-----+-----+-----+-----+-----+-----+-----+-----|
| F# | 973 | 4BA | 25D | 12E | 97 | 4C | 26 | 13 |
|--------------+-----+-----+-----+-----+-----+-----+-----+-----|
| G | 8EB | 476 | 23B | 11D | 8F | 47 | 24 | 12 |
|--------------+-----+-----+-----+-----+-----+-----+-----+-----|
| G# | 88B | 436 | 21B | 10D | 87 | 43 | 22 | 11 |
|--------------+-----+-----+-----+-----+-----+-----+-----+-----|
| A | 7F2 | 3F9 | 1FD | FE | 7F | 40 | 20 | 10 |
|--------------+-----+-----+-----+-----+-----+-----+-----+-----|
| A# | 780 | 3C0 | 1E0 | F0 | 78 | 3C | 1E | F |
|--------------+-----+-----+-----+-----+-----+-----+-----+-----|
| B | 714 | 38A | 1C5 | E3 | 71 | 39 | 1C | E |
--

* Setting the noise frequency (R6)

The noise generator is used for synthesizing explosion sounds or wave sounds.
The PSG can send the noise output by the noise generator to channels A to C.
Since there is only one noise generator, the same noise is sent to all
channels. By changing the average frequency, various noise effects can be
obtained and this is done by R6 register settings. The 5 low order bit data
(NP) of this register is divides into the standard frequency (fc/16) and this
determines the average frequency of the noise (fn).

 Figure 5.4 Setting the noise frequency

R6 | x x x | |

 | |
 +------------- NP ------------+

The following relation exists between NP and fn.

 fn = fc/(16 * NP)
 = 0.11186078125/NP [MHz]
 = 111860.78125/NP [Hz]

Since the value of NP is from 1 to 31, the average frequency of the noise can
be set from 3.6kHz to 111.9kHz.

* Mixing the sound (R7)

R7 is used to select the output of the tone and noise generator, or a mixture
of both. As shown in Figure 5.5, the 3 low order bits (B0 to B2) of R7
control the tone output and the next 3 bits (B3 to B5) control the noise
output. In both cases, when the corresponding bit is 0, the output is ON and,
when 1, it is OFF.

 Figure 5.5 Output selection for each channel

R7 | B7 | B6 | B5 | B4 | B3 | B2 | B1 | B0 |

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 |
 |
 V

 B7 B6 B5 B4 B3 B2 B1 B0
----------------- ------------------------- -------------------------
Input enable*		Noise enable*		Tone enable*					
---------------		-----------------------		-----------------------					
B	A		C	B	A		C	B	A
----------------- ------------------------- -------------------------
 I/O port Noise output Tone output
 Input - 0 ON - 0 ON - 0
 Output - 1 OFF - 1 OFF - 1

The 2 high order bits of R7 do not affect sound output. These are used to
determine the direction of the data of two I/O ports which PSG has. When the
corresponding bit is 0, the input mode is selected and, when 0, the output
mode is selected. In MSX, port A is used for the input and port B for the
output, so it should always be set so that bit 6 = "0" and bit 7 = "1".

* Setting the volume (R8 to R10)

R8 to R10 are used to specify the volume of each channel. Two ways can be
selected by these registers: specifying the fixed volume by 4-bit data (0 to
15) and generating sound effects such as vibrato or fade-out by using the
envelope.

 Figure 5.6 Setting the volume

R8, R9, R10 | x x x | B4 | B3 | B2 | B1 | B0 |

 | | |
 | +---------- L ----------+
 |
 V
 Use envelope:
 No - 0 (set volume by the value of L)
 Yes - 1 (ignore the value of L)

When bit 4 of these registers is "0", the envelope is not used and the 4 low
order bit value L (0 to 15) of the registers specify the volume. When bit 4
is "1", the volume depends on the envelope signals and the value L is
ignored.

* Setting the envelope cycle (R11, R12)

R11 and R12 specify the envelope cycle in 16-bit data. The 8 high order bits
are set in R12 and the 8 low order bits are set in R11.

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 Figure 5.7 Setting the envelope cycle

R11 | | --+
 --- |
 --- |
R12 | | |
 --- |
 | |
 ---------------------------------+ |
 | |
 V V

| Coarse Tune (CT) | Fine Tune (FT) |

| |
+----------------------------------- EP ------------------------------------+

The following relation exists between the envelope cycle T and 16-bit data
EP.

 T = (256 * EP) / fc
 = (256 * EP) / 1.787725 [MHz]
 = 143.03493 * EP [micro second]

* Setting the envelope pattern (R13)

R13 sets the envelope pattern by the 4 low order bit data as shown in Figure
5.8. The intervals of T specified in the figure correspond to the envelope
cycle specified by R11 and R12.

 Figure 5.8 Setting the wave forms of the envelopes

R13 | x x x x | B3 | B2 | B1 | B0 |

 |
 ------------------------------------+
 |
 V

	:\
0 0 x x	__: ______________________
	/:
0 1 x x	__/ :______________________
	:\ :\ :\ :\ :\ :\ :\
1 0 0 0	__: \: \: \: \: \: \:_
	:\
1 0 0 1	__: ______________________
	:\ / \ / \ / \

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

1 0 1 0	__: \ / \ / \ /

	:\ :
1 0 1 1	__: \:
	/: /: /: /: /: /:
1 1 0 0	__/ :/ :/ :/ :/ :/ :/

	/
1 1 0 1	__/
	/ \ / \ / \
1 1 1 0	__/ \ / \ / \ /
	/:
1 1 1 1	__/ :______________________

 | |
 +---+
 T

* I/O port (R14, R15)

R14 and R15 are the ports to send and receive 8-bit data in parallel. MSX
uses these as the general-purpose I/O interface. For more information, see
section 5.

1.2 Access to the PSG

For access the PSG from assembly language programs, several BIOS routines
described below are available.

* GICINI (0090H/MAIN) PSG initialization

Input: ---
Output: ---
Function: initializes PSG registers and does the initial settings of
 the work area in which PLAY statement of BASIC is executed.
 Each register of PSG is set to the value as shown in
 Figure 5.9.

 Figure 5.9 Initial values of PSG registers

Bit								
	7	6	5	4	3	2	1	0
Register								
---------------------------+---								
R0	Channel A	0 1 0 1 0 1 0 1						
----------		---						
R1	frequency	0 0 0 0 0 0 0 0						
----------+----------------+---								

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

R2	Channel B	0 0 0 0 0 0 0 0
----------		---
R3	frequency	0 0 0 0 0 0 0 0
----------+----------------+---		
R4	Channel C	0 0 0 0 0 0 0 0
----------		---
R5	frequency	0 0 0 0 0 0 0 0
----------+----------------+---		
R6	Noise frequency	0 0 0 0 0 0 0 0
----------+----------------+---		
R7	Channel setting	1 0 1 1 1 0 0 0
----------+----------------+---		
R8	Chan. A volume	0 0 0 0 0 0 0 0
----------+----------------+---		
R9	Chan. B volume	0 0 0 0 0 0 0 0
----------+----------------+---		
R10	Chan. C volume	0 0 0 0 0 0 0 0
----------+----------------+---		
R11		0 0 0 0 1 0 1 1
----------	Envelope Cycle	---
R12		0 0 0 0 0 0 0 0
----------+----------------+---		
R13	Env. pattern	0 0 0 0 0 0 0 0
----------+----------------+---		
R14	I/O port A	
----------+----------------+---		
R15	I/O port B	

* WRTPSG (0093H/MAIN) writing data in PSG registers

Input: A <-- PSG register number
 E <-- data to be written
Output: ---
Function: writes the contents of the E register in the PSG register
 whose number is specified by the A register.

* RDPSG (0096H/MAIN) reading PSG register data

Input: A <-- PSG register number
Output: A <-- contents of the specified register
Function: reads the contents of PSG register whose number is specified
 by the A register and stores the value in the A register.

* STRTMS (0099H/MAIN) starting the music

Input: (QUEUE) <-- MML which is translated into the intermediate
 language
Output: ---
Function: examines whether the music is played as the background task,
 and plays the music which is set in the queue, if the music
 has not yet been played.

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

List 5.1 Single tone generation
===

;**
;
; List 5.1 440 Hz tone
;
;**
;
WRTPSG EQU 0093H

 ORG 0B000H

;----- program start -----

 LD A,7 ;Select Channel
 LD E,00111110B ;Channel A Tone := On
 CALL WRTPSG

 LD A,8 ;Set Volume
 LD E,10
 CALL WRTPSG

 LD A,0 ;Set Fine Tune Channel A
 LD E,0FEH ;Data 0FEH
 CALL WRTPSG

 LD A,1 ;Set Coarse Tune Channel A
 LD E,0 ;Data 0H
 CALL WRTPSG

 RET

 END

===

1.3 Tone Generation by 1-bit Sound Port

MSX has another sound generator in addition to the PSG. This is a simple one
that generates sound by turning ON/OFF the 1-bit I/O port output repeatedly
using software.

 Figure 5.10 1-bit sound port

 bit 7 6 5 4 3 2 1 0

 | . | | | | | | | |
 --+--------------------------------------
 | PPI port C (I/O address 0AAH)
 |
 |
:::::::::::: V
: PSG : ---------
: output :::::::>| MIX |

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

:::::::::::: ---------
 |
 V

 / \ Speaker

 / : \

1.4 Access to 1-bit Sound Port

To access to the 1-bit sound port, the following BIOS routine is offered.

* CHGSND (0135H/MAIN)

Input: A <-- specification of ON/OFF (0 = OFF, others = ON)
Output:
Function: calling this routine with setting 0 in the A register turns
 the bit of the sound port OFF; calling it with another value
 turns it ON.

List 5.2 Reading from cassette tape
===

;**
;
; List 5.2 Read from cassette tape
;
; Set music tape into tape-recorder
; and run this program.
; Then your MSX will replay it.
;
;**
;
CHGSNG EQU 0135H
STMOTR EQU 00F3H
RDPSG EQU 0096H
BREAKX EQU 00B7H

 ORG 0B000H

;----- program start ----- Note: Play tape using 1-bit sound port.

START: LD A,1 ;motor on
 CALL STMOTR

LBL01: LD A,14 ;register 14
 CALL RDPSG ;read PSG

 AND 80H ;check CSAR
 CALL CHGSNG ;change SOUND PORT

 CALL BREAKX ;check Ctrl-STOP
 JR NC,LBL01

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 XOR A ;stop cassette motor
 CALL STMOTR
 RET

 END

===

2. CASSETTE INTERFACE

Cassette tape recorders are the least expensive external storage devices
available for the MSX. Knowledge of the cassette interface is required to
treat information in cassette tapes within assembly language programs. This
section offers the necessary information.

2.1 Baud Rate

The following two baud rates can be used by the MSX cassette interface (see
Table 5.2). When BASIC is invoked, 1200bps is set by default.

 Table 5.2 MSX baud rate

--
| Baud rate | Characteristics |
|-------------+--------------------------------|
| 1200 bps | Low speed / high reliability |
|-------------+--------------------------------|
| 2400 bps | High speed / low reliability |
--

The baud rate is specified by the fourth parameter of the SCREEN instruction
or the second parameter of the CSAVE instruction. Once the baud rate is set,
it stays at that value.

SCREEN ,,,<baud rate>
CSAVE "filename",<baud rate>
 (<baud rate> is 1 for 1200bps, 2 for 2400 bps)

2.2 One bit composition

One bit data, the basis of I/O, is recorded as shown in Figure 5.11. The
pulse width is determined by counting the T-STATE of the CPU, so, while the
cassette interface is active, any interrupt is inhibited.

The bit data from the cassette can be read through the seventh bit of port B
of the general-purpose I/O interface (register 15 of the PSG). This function
was used in the program example of List 5.3, section 1 of chapter 5.

 Figure 5.11 One bit composition

--

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

| Baud rate | Bit | Wave form |
|-----------+-------+--|
		: -----------				
	0	:		(1200Hz x 1)		
1200		:_________				
	-------+--:-------------------------------------					
baud		: ------ ------				
	1	:				(2400Hz x 2)
		:____		____		
-----------+-------+--:-------------------------------------						
		: ------ :				
	0	:		: (2400Hz x 1)		
2400		:____		:		
	-------+--:-------------------:-----------------					
baud		: --- --- :				
	1	:				: (4800Hz x 2)
		:__		__		:
-----------------------:--:-:----:---------:------------------
 | : : : | 2963 T-states (833 micro-sec)
 +--:-:----:---------+
 | : : | 1491 T-states (417 micro-sec)
 +--:-:----+
 | : | 746 T-states (208 micro-sec)
 +--:-+
 | | 373 T-states (104 micro-sec)
 +--+

2.3 One byte composition

One byte data is recorded in the array of bits as shown in Figure 5.12. There
is one "0" bit as the start bit, followed by the 8-bit data body from LSB to
MSX and by two "1" bit as the stop bits, so 11 bits are used.

 Figure 5.12 One byte composition

 LSB MSB

 | 0 | X | X | X | X | X | X | X | X | 1 : 1 |

 | | | |
 +-----+---+-----------+
 Start bit Data Stop bit

2.4 Header Composition

The header is the portion where the signal of the specific frequency is
recorded on the tape for a certain period. This allows the cassette tape
speed to stabilize after it is started, or divides two files. There is a
long header and a short header. The long header is used to wait until the
motor is stabilized. The baud rate at reading the tape is determined by
reading the long header. The short header is used to divide file bodies.
Table 5.3 shows the compositions of both.

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 Table 5.3 Header composition

--
| Baud rate | Header | Header composition |
|-------------+--------------+-----------------------------------|
	Long header	2400 Hz x 16000 (about 6.7 sec)
1200 baud	--------------+-----------------------------------	
	Short header	2400 Hz x 4000 (about 1.7 sec)
-------------+--------------+-----------------------------------		
	Long header	4800 Hz x 32000 (about 6.7 sec)
2400 baud	--------------+-----------------------------------	
	Short header	4800 Hz x 8000 (about 1.7 sec)
--

2.5 File Formats

MSX BASIC supports the following three kinds of cassette format files.

(1) BASIC text file

BASIC programs saved with the CSAVE command are recorded in this format. The
file is divided into the preceding file header and the succeeding the body.

 Figure 5.13 Binary file format

 6.7 sec 10 bytes 6 bytes

 | | | |
 | Long header | 0D3H x 10 | File name |
 | | | |

 | |
 +----------+ +------------------------------------+

 | |
 +-------------------------------+ +------+
 | |
 -------------------------------------\ \--------------------------------
 | Short | / / | |
 | header | BASIC program \ \ | 00H x 7 |
 | | / / | |
 -------------------------------------\ \--------------------------------
 1.7 sec Any length 7 bytes

In the file header, ten bytes each of the value 0D3H follow after the long
header and six bytes containing the file name are placed after them. In the
file body, program body follows the short header and the end of the file is
indicated by seven bytes of 00H.

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

(2) ASCII text file

BASIC programs saved in ASCII format by the SAVE command and data files
created by the OPEN command are recorded in this format.

 Figure 5.14 ASCII file format

 6.7 sec 10 bytes 6 bytes

 | | | |
 | Long header | 0EAH x 10 | File name |
 | | | |

 | |
 +----------+ +------------------------------------+

 | |
 +-------------------------------+ +------+
 | |
 ---\ \----------------------
 | | | | / / | Last |
 | Block 1 | Block 2 | Block 3 | \ \ | block |
 | | | | / / | . |
 ---\ \------------+---------
 | | |
 +-----------+ +-----------+ CTRL+Z (EOF)
 | | is included in data
 --
 | Short | |
 | header | Data |
 | | |
 --
 1.7 sec 256 bytes

(3) Machine code file

Machine code files saved by the BSAVE command are recorded in the following
format. In the file header, 10 bytes each of the value 0D0H follow after the
long header and 6 bytes containing the file name are placed after them.

In the file body, the starting address, the end address, and the entry
address are recorded in order after the short header, and the machine codes
follow after them. Since the amount of data can be calculated from the
starting and ending addresses, there is no special mark for the end of the
file. The entry address is the address where the program is executed when the
R option of the BLOAD command is used.

 Figure 5.15 Machine code file format

 6.7 sec 10 bytes 6 bytes

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 | | | |
 | Long header | 0D0H x 10 | File name |
 | | | |

 | |
 +----------+ +------------------------------------+

 | |
 +-------------------------------+ +------+
 | |

 | Short | Top | End | Starting | |
 | header | address | address | address | Program body |
 | | | | | |

 1.7 sec 2 bytes 2 bytes 2 bytes

2.6 Access to cassette files

The following BIOS routines are offered to access cassette files.

* TAPION (00E1H/MAIN) OPEN for read

Input: ---
Output: CY flag = ON at abnormal terminations
Function: starts the motor of the tape recorder and reads the long
 header or the short headet. At the same time, the baud rate
 in which the file is recorded is detected and the work area
 is set according to it. Interrupts are inhibited.

* TAPIN (00E4H/MAIN) read one byte

Input: ---
Output: A <-- data which has been read
 CY flag = ON at abnormal terminations
Function: reads one byte of data from the tape and stores it in the A
 register.

* TAPIOF (00E7H/MAIN) CLOSE for read

Input: ---
Output: ---
Function: ends reading from the tape. At this point, interrupts are
 allowed.

* TAPOON (00EAH/MAIN) OPEN for write

Input: A <-- type of header (0 = short header, others = long header)
Output: CY flag = ON at abnormal terminations

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

Function: starts the motor of the tape recorder and writes the header
 of the type specified in the A register to the tape.
 Interrupts are inhibited.

* TAPOUT (00EDH/MAIN) write one byte

Input: A <-- data to be written
Output: CY flag = ON at abnormal terminations
Function: writes the contents of the A register to the tape.

* TAPOOF (00F0H/MAIN) CLOSE writing

Input: ---
Output: ---
Function: ends writing the tape. At this point, interrupts are allowed.

* STMOTR (00F3/MAIN) specify the actions of the motor

Input: A <-- action (0 = stop, 1 = start, 255 = reverse the current
 status)
Output: ---
Function: sets the status of the motor according to the value specified
 in the A register.

When READ/WRITE routines for the cassette files are created using these BIOS
calls, only READ or WRITE, without any other action, should be done. For
example, reading data from the tape and displaying it on the CRT might cause
a READ error.

List 5.3 is a sample program which uses BIOS routines.

List 5.3 Listing names of files saved in the cassette
===

;**
;
; List 5.3 Cassette files
;
; Set cassette tape into recorder and run this program.
; Then all the names and attributes of the programs
; in that tape will be listed.
;
;**
;
CHPUT EQU 00A2H
TAPION EQU 00E1H
TAPIN EQU 00E4H
TAPIOF EQU 00E7H

 ORG 0C000H

;----- program start ----- Note: View program names on cassette tape.

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

START: CALL TAPION ;motor on and read header

 LD B,16
 LD HL,WORK ;work area address
LBL01: PUSH HL
 PUSH BC
 CALL TAPIN ;read a byte of data from tape
 POP BC
 POP HL
 JR C,ERROR ;set carry flag if read error
 LD (HL),A
 INC HL
 DJNZ LBL01

 LD HL,FILNAM ;write file name
 CALL PUTSTR
 LD HL,WORK+10
 CALL PUTSTR
 CALL CRLF

 LD A,(WORK) ;check file attributes

 LD HL,BINFIL
 CP 0D3H ;check binary file
 JR Z,LBL03

 LD HL,ASCFIL
 CP 0EAH ;check ascii file
 JR Z,LBL03

 LD HL,MACFIL
 CP 0D0H ;check machine code file
 JR Z,LBL03

ERROR: LD HL,ERRSTR

LBL03: CALL PUTSTR
 CALL TAPIOF
 RET

;----- put CRLF -----

CRLF: LD HL,STCRLF
 CALL PUTSTR
 RET

;----- put string -----

PUTSTR: LD A,(HL) ;get a character from strings
 CP '$' ;check end of strings
 RET Z
 CALL CHPUT ;write a character to CRT
 INC HL
 JR PUTSTR

;----- strings data -----

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

FILNAM: DB 'FILE NAME :$'
ASCFIL: DB 'ASCII FILE',0DH,0AH,'$'
BINFIL: DB 'BINARY FILE',0DH,0Ah,'$'
MACFIL: DB 'BSAVE FILE',0DH,0AH,'$'
ERRSTR: DB 'TAPE READ ERROR',0DH,0AH,'$'
STCRLF: DB 0DH,0AH,'$'

;----- WORK AREA -----

WORK: DS 16,0
 DB '$' ;end of strings

 END

===

3. KEYBOARD INTERFACE

Altough the MSX2 keyboard has the same design as that of the MSX1, it is more
convenient to use because of the Romand-to-kana translation available for
kana input. This chapter describes the keyboard interface of the MSX2.

Descriptions of the key aarangement are based on the Japanese keyboard
standard; note that data is slightly different for the international MSX
versions.

3.1 Key Scanning

MSX uses the key matrices as shown in Figure 5.16, Figure 5.17 and Figure
5.17B. The key status can be obtained in real time by examining this key
matrix and is available for reading input.

Scanning the key matrix is done by the following BIOS routine.

* SNSMAT (0141H/MAIN) reads the specified line of the
 key matrix

Input: A <-- key matrix line to be read (0 to 10)
Output: A <-- status of the specified line of the key matrix
 (when pressed, the bit of the key is 0)
Function: specifies a line of the key matrix shown in Figure 5.16,
 Figure 5.17 or Figure 5.17B and stores its status in the
 A register. The bit corresponding with the key being pressed
 is "0", and "1" for the key not being pressed.

 Figure 5.16 MSX USA version key matrix

MSB LSB
 7 6 5 4 3 2 1 0

 0 | B | L | | / | 1 | S | X | , |
 |-------+-------+-------+-------+-------+-------+-------+-------|
 1 | V | J | = | ` | Q | A | C | N |

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 |-------+-------+-------+-------+-------+-------+-------+-------|
 2 | G | 8 | 0 |] | W | F | Z | M |
 |-------+-------+-------+-------+-------+-------+-------+-------|
 3 | T | I | ~ | ; | 2 | D | U | \ |
 |-------+-------+-------+-------+-------+-------+-------+-------|
 4 | 6 | K | P | ' | 3 | R | 7 | H |
 |-------+-------+-------+-------+-------+-------+-------+-------|
 5 | 5 | 0 | 9 | [| 4 | E | Y | . |
 |-------+-------+-------+-------+-------+-------+-------+-------|
 6 | F3 | F2 | F1 | CODE | CAPS | GRAPH | CTRL | SHIFT |
 |-------+-------+-------+-------+-------+-------+-------+-------|
 7 | RETURN| SELECT| BS | STOP | TAB | ESC | F5 | F4 |
 |-------+-------+-------+-------+-------+-------+-------+-------|
 8 | RIGHT | DOWN | UP | LEFT | DEL | INS | HOME | SPACE |

 [TEN KEY]

 9 | 4 | 3 | 2 | 1 | 0 | option| option| option|
 |-------+-------+-------+-------+-------+-------+-------+-------|
10 | . | , | - | 9 | 8 | 7 | 6 | 5 |

 Figure 5.17 MSX International version key matrix

MSB LSB
 7 6 5 4 3 2 1 0

 0 | B | L |deadkey| / | 1 | S | X | , |
 |-------+-------+-------+-------+-------+-------+-------+-------|
 1 | V | J | ^ |] | Q | A | C | N |
 |-------+-------+-------+-------+-------+-------+-------+-------|
 2 | G | 8 | 0 | [| W | F | Z | M |
 |-------+-------+-------+-------+-------+-------+-------+-------|
 3 | T | I | ~ | ; | 2 | D | U | \ |
 |-------+-------+-------+-------+-------+-------+-------+-------|
 4 | 6 | K | P | : | 3 | R | 7 | H |
 |-------+-------+-------+-------+-------+-------+-------+-------|
 5 | 5 | 0 | 9 | @ | 4 | E | Y | . |
 |-------+-------+-------+-------+-------+-------+-------+-------|
 6 | F3 | F2 | F1 | CODE | CAPS | GRAPH | CTRL | SHIFT |
 |-------+-------+-------+-------+-------+-------+-------+-------|
 7 | RETURN| SELECT| BS | STOP | TAB | ESC | F5 | F4 |
 |-------+-------+-------+-------+-------+-------+-------+-------|
 8 | RIGHT | DOWN | UP | LEFT | DEL | INS | HOME | SPACE |

 [TEN KEY]

 9 | 4 | 3 | 2 | 1 | 0 | option| option| option|
 |-------+-------+-------+-------+-------+-------+-------+-------|
10 | . | , | - | 9 | 8 | 7 | 6 | 5 |

 Figure 5.17B MSX European version key matrix

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

MSB LSB
 7 6 5 4 3 2 1 0

 0 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
 |-------+-------+-------+-------+-------+-------+-------+-------|
 1 | ; |] | [| \ | = | - | 9 | 8 |
 |-------+-------+-------+-------+-------+-------+-------+-------|
 2 | B | A | accent| / | . | , | ` | ' |
 |-------+-------+-------+-------+-------+-------+-------+-------|
 3 | J | I | H | G | F | E | D | C |
 |-------+-------+-------+-------+-------+-------+-------+-------|
 4 | R | Q | P | O | N | M | L | K |
 |-------+-------+-------+-------+-------+-------+-------+-------|
 5 | Z | Y | X | W | V | U | T | S |
 |-------+-------+-------+-------+-------+-------+-------+-------|
 6 | F3 | F2 | F1 | CODE | CAPS | GRAPH | CTRL | SHIFT |
 |-------+-------+-------+-------+-------+-------+-------+-------|
 7 | RETURN| SELECT| BS | STOP | TAB | ESC | F5 | F4 |
 |-------+-------+-------+-------+-------+-------+-------+-------|
 8 | RIGHT | DOWN | UP | LEFT | DEL | INS | HOME | SPACE |

 [TEN KEY]

 9 | 4 | 3 | 2 | 1 | 0 | option| option| option|
 |-------+-------+-------+-------+-------+-------+-------+-------|
10 | . | , | - | 9 | 8 | 7 | 6 | 5 |

List 5.4 Use of the key scanning routine
===

;**
;
; List 5.4 scan key-matrix and display it
;
;**
;
CHPUT EQU 00A2H
BREAKX EQU 00B7H
POSIT EQU 00C6H
SNSMAT EQU 0141H

 ORG 0B000H

;----- program start ----- Note: read key matrix and display key
 pattern.

SCAN: LD C,0 ;C := line of key matrix

SC1: LD A,C
 CALL SNSMAT ;Read key matrix

 LD B,8
 LD HL,BUF ;HL : = buffer address
SC2: LD D,'.'

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 RLA ;Check bit
 JR C,SC3
 LD D,'#'

SC3: LD (HL),D ;store '.' or '#' to buffer
 INC HL
 DJNZ SC2

 LD H,05H ;x := 5
 LD L,C ;y := C+1
 INC L
 CALL POSIT ;set cursor position

 LD B,8 ;put out bit patterns to CRT
 LD HL,BUF
SC4: LD A,(HL)
 CALL CHPUT
 INC HL
 DJNZ SC4

 CALL BREAKX ;check Ctrl-STOP
 RET C

 INC C ;line No. increment
 LD A,C
 CP 09
 JR NZ,SC1
 JR SCAN

;----- work area -----

BUF: DS 8

 END

===

3.2 Character Input

MSX scans the key matrix every 1/60 second using the timer interrupt and,
when a key is pressed, stores the character code in the keyboard buffer as
shown in Figure 5.18. Key input to MSX is generally done by reading this
keyboard buffer.

 Figure 5.18 Keyboard ring buffer

+----------------------------------<--+
| KEYBUF (FBF0H, 40) |
| --------------------------------------/ /-------------------------------- |
+>| D | E | F | G | | | \ \ | | | A | B | C |-+
 --------------------------------------/ /--------------------------------
 ^ ^
 | |
 [PUTPNT] [GETPNT]

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

GETPNT (F3FAH, 2) points to the next character to be obtained in CHGET
routine.

PUTPNT (F3F8H, 2) points to the next location for the character to be put
when the keyboard is pressed next time.

BIOS routines having functions for key input using this keyboard buffer and
functions related to it are described below. Inhibiting the timer interrupt
renders them useless, of course.

* CHSNS (009CH/MAIN) checks the keyboard buffer

Input: ---
Output: Z flag = ON when the buffer is empty
Function: examines whether any characters remain in the keyboard buffer
 and sets the Z flag when the buffer is empty.

* CHGET (009FH/MAIN) one character input from the keyboard
 buffer

Input: ---
Output: A <-- character code
Function: reads one character from the keyboard buffer and stores it in
 the A register. When the buffer is empty, it displays the
 cursor and waits for a key input. While a key input is waited
 for, the CAP lock, KANA lock, and Roman-to-kana translation
 lock are valid. The related work area is listed below. In the
 list, since SCNCNT and REPCNT are initialised after the
 execution of CHGET routine, this area should be set at each
 CHGET call to change the interval of the auto-repeat.

Work area
 CLIKSW (F3DBH, 1) key click sound (0 = OFF, others = ON)
 SCNCNT (F3F6H, 1) key scanning interval (1, normally)
 REPCNT (F3F7H, 1) delay until beginning auto-repeat
 (50, normally)
 CSTYLE (FCAAH, 1) figure of the cursor
 (0 = block, others = underline)
 CAPST (FCABH, 1) CAPS lock (0 = OFF, others = ON)
 DEADST (FCACH, 1) dead key lock
 0 = on preceding dead key
 1 = dead key
 2 = shifted dead key
 3 = code dead key
 4 = code shift dead key

* KILBUF (0156H/MAIN) empty the keyboard buffer

Input: ---
Output: ---
Function: empties the keyboard buffer.

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

List 5.5 Use of one character input routine
===

;**
;
; List 5.5 get key code
;
; this routine doesn't wait for key hit
;
;**
;
CHSNS EQU 009CH ;check keyboard buffer
CHGET EQU 009FH ;get a character from buffer
CHPUT EQU 00A2H ;put a character to screen
BREAKX EQU 00B7H ;check Ctrl-STOP
KILBUF EQU 0156H ;clear keyboard buffer
REPCNT EQU 0F3F7H ;time interval until key-repeat
KEYBUF EQU 0FBF0H ;keyboard buffer address

 ORG 0B000H

;----- prgram start ----- Note: Real-time input using CHGET

KEY: CALL CHSNS ;check keyboard buffer
 JR C,KEY1

 LD A,1
 LD (REPCNT),A ;not to wait until repeat
 CALL CHGET ;get a character (if exists)
 JR KEY2

KEY1: LD A,'-' ;A := '-'

KEY2: CALL CHPUT ;put the character
 CALL KILBUF ;clear keyboard buffer
 CALL BREAKX ;check Ctrl-STOP
 JR NC,KEY

 END

===

* CNVRCHR (00AB/MAIN) graphic character operation

Input: A <-- character code
Output: A <-- translated graphic character
 (normal characters are not translated)
 CY flag = OFF (input was the graphic header byte 01H)
 CY flag = ON, Z flag = ON (input was the graphic character
 and was translated)
 CY flag = ON, Z flag = OFF (input was the normal character
 and was not translated)
Function: executing CNVCHR after CHGET causes the graphic character
 to be translated to one byte code as shown in Figure 5.19
 and causes other character not to be translated and to be
 returned. Since the graphic character is represented by

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 irregular 2-byte code with the graphic header byte (01H),
 annoying procedures are required for the character
 operations; this routine makes it somewhat easy.

 Figure 5.19 Graphic character translation chart

| Before | After | Before | After |
| conversion | conversion | conversion | conversion |
|-----------------------------+-----------------------------|
	0150H --> 50H
0141H --> 41H	0151H --> 51H
0142H --> 42H	0152H --> 52H
0143H --> 43H	0153H --> 53H
0144H --> 44H	0154H --> 54H
0145H --> 45H	0155H --> 55H
0146H --> 46H	0156H --> 56H
0147H --> 47H	0157H --> 57H
0148H --> 48H	0158H --> 58H
0149H --> 49H	0159H --> 59H
014AH --> 4AH	015AH --> 5AH
014BH --> 4BH	015BH --> 5BH
014CH --> 4CH	015CH --> 5CH
014DH --> 4DH	015DH --> 5DH
014EH --> 4EH	015EH --> 5EH
014FH --> 4FH	015FH --> 5FH

* PINLIN (00AEH/MAIN) one line input

Input: ---
Output: HL <-- F55DH
 [F55EH] <-- input string (the end of te line is represented
 by 00H)
 CY flag <-- terminated by STOP=ON, terminated by RETURN=OFF
function: stores input string in the line buffer BUF (F55EH). All
 functions of the screen editing are available at the string
 input. Pressing RETURN or STOP causes the input to be
 finished. The work area is listed below.

Work area
 BUF (F55EH, 258) the line buffer where the string is stored
 LINTTB (FBB2H, 24) 00H when the one physiscal line is the
 succession of the line above

* INLIN (00B1H/MAIN) one line input (prompt available)

Input: ---
Output: same as PINLIN
Function: stores input string in the line buffer BUF (F55EH), as
 PINLIN routine. Note that the portion before the cursor
 location at the time when the routine begins to execute is
 not received. List 5.6 shows the difference between PINLIN
 and INLIN.

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

List 5.6 Difference between INLIN and PINLIN
===

;**
;
; List 5.6 INLIN and PINLIN
;
;**
;
CHPUT EQU 00A2H
INLIN EQU 00B1H
PINLIN EQU 00AEH
KILBUF EQU 0156H

BUF EQU F55EH

 ORG 0B000H

;----- program start -----

 LD HL,PRMPT1
 CALL PUTMSG ;put prompt message
 CALL INLIN ;use INLIN routine
 LD HL,BUF
 CALL PUTMSG

 LD HL,PRMPT2
 CALL PUTMSG ;put prompt message
 CALL PINLIN ;use PINLIN routine
 LD HL,BUF
 CALL PUTMSG

 RET

;----- put a string -----

PUTMSG: LD A,(HL)
 CP '$'
 RET Z
 CALL CHPUT
 INC HL
 JR PUTMSG

;----- string data -----

PRMPT1: DB 0DH,0AH,'INLIN:$'
PRMPT2: DB 0DH,0AH,'PINLIN:$'

 END

===

3.3 Function Keys

MSX has ten function keys, which can be defined by the user at will. A 16

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

byte work area is allocated for the definition of each key. The following
list shows their addresses.

 FNKSTR (F87FH, 16) F1 key definition address
 + 10H (F88FH, 16) F2 key definition address
 + 20H (F89FH, 16) F3 key definition address
 + 30H (F8AFH, 16) F4 key definition address
 + 40H (F8BFH, 16) F5 key definition address
 + 50H (F8CFH, 16) F6 key definition address
 + 60H (F8DFH, 16) F7 key definition address
 + 70H (F8EFH, 16) F8 key definition address
 + 80H (F8FFH, 16) F9 key definition address
 + 90H (F90FH, 16) F10 key definition address

Pressing a function key causes the string defined in that key to be stored in
[KEYBUF]. The end of the string is indicated by 00H and a maximum of 15
keystrokes can be defined for one function key (definitions longer than 16
keystrokes are defined over more than one function key definition area). To
restore the initial settings of the function keys, use the following BIOS
routine.

* INIFNK (003EH/MAIN) initialize function keys

Input: ---
Output: ---
Function: restores the function key definition to the setting when
 BASIC starts.

3.4 STOP Key During Interrupts

CHGET, the one-character input routine described in 3.3, determines the
pressed key in the timer interrupt routine. Thus, when the timer interrupt is
inhibited, such as during cassette data I/O, pressed keys cannot be detected.
By using the BIOS routine described below, the CTRL key + STOP key
combination can be detected even when interrupts are inhibited.

* BREAKX (00B7H/MAIN) CTRL + STOP detection

Input: ---
Output: CY flag = ON, when CTRL + STOP is pressed
Function: scans keys and decides whether CTRL key and STOP key are
 pressed at the same time. When both are pressed, this routine
 sets "1" to the CY flag and returns. Otherwise, it resets "0"
 to the CY flag and returns. This routine is available while
 interrupts are inhibited.

4. PRINTER INTERFACE

This section describes how to access the MSX printer interface from assembly
language. The information described here is helpful if the printer is going
to be used to print bit image graphics.

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

4.1 Print Interface Overview

The printer interface is supported by BIOS and BASIC. MSX drives the printer
through an 8-bit parallel output port and uses a handshaking method with BUSY
and STROBE signals. The standard connector is also defined (Amphenol 14-pin,
female side to the machine). Figure 5.20 shows the signal lines.

 Figure 5.20 Printer interface

 Printer interface pin connections

 \ --- /
 \ | (7) | (6) | (5) | (4) | (3) | (2) | (1) | /
 \ --- /
 \ | | /
 \ --- /
 \ | (14)| (13)| (12)| (11)| (11)| (10)| (9) | /
 \ --- /

(1) STROBE*
(2) to (9) Data (b0 to b7)
(11) BUSY
(14) BGND

I/O port (91H) | X | X | X | X | X | X | X | X |

 Data

I/O port (90H; at WRITE) | . | . | . | . | . | . | . | X |

 ^
 |
 STROBE* (send data when "0") ----+

I/O port (90H; at READ) | . | . | . | . | . | . | X | . |

 ^
 0: Printer READY |
 ---+
 1: Printer BUSY

4.2 Output to the MSX Standard Printer

If data is sent from MSX to the printer, the action depends on whether the
printer receiving the data is of the MSX standard. The use of MSX standard
printers is described in this section. Descriptions about other printers are
in the next section.

An MSX standard printer can print any character that can be displayed on the
screen. Special graphic characters corresponding to character codes n = 01H

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

to 1FH can be also printed by sending the code 40H + n after the graphic
character header (01H). In addition to these, the control codes shown in
Table 5.4 can be used with MSX standard printers (see the manual of the
printer for controlling a printer which has other functions such as printing
Chinese characters).

To feed lines in MSX standard printers, send 0DH and 0AH successively. To
print the bit image, send nnnn bytes data, where nnnn means four decimal
figures, after the escape sequence ESC + "Snnnn". Note that, MSX has a
function to transform the tab code (09H) to the adequate number of space
codes (20H) for printers not having a tab function. This transformation is
normally done. To print a bit image which includes the value 09H correctly,
change the following work area.

* RAWPRT (F418H, 1) replaces a tab by spaces when the
 contents are 00H, othereise not.

 Table 5.4 Control codes of the printer

| code | function |
|-----------------+---|
| 0AH | line feed |
|-----------------+---|
| 0CH | form feed |
|-----------------+---|
| 0DH | carriage return |
|-----------------+---|
| ESC + "A" | normal line spacing |
| | (spaces between lines; characters are read easily) |
|-----------------+---|
| ESC + "B" | line spacing for graphics (no space between lines) |
|-----------------+---|
| ESC + "Snnnn" | bit image printing |

4.3 Access to the printer

To send output to the printer, the following BIOS routines are offered.

* LPTOUT (00A5H/MAIN)

Input: A register <-- character code
Output: CY flag = ON at abnormal termination
Function: sends a character specified by the A register to the printer.

* LPTSTT (00A8/MAIN)

Input: ---
Output: A register <-- printer status
Function: examines the current printer status. After calling this
 routine, the printer can be used when the A register is 255

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 and the Z flag is 0; when the A register is 0 and the Z flag
 is 1, the printer cannot be used.

* OUTDLP (014DH,MAIN)

Input: A register <-- character code
Output: CY flag = ON at abnormal termination
Function: sends a character specified by the A register to the printer.
 Differences between this routine and LPTOUT routine is as
 following:
 * prints corresponding number of spaces for TAB code
 * transforms hiragana to katakana for printers other than
 MSX standard
 * returns Device I/O error at abnormal termination

5. UNIVERSAL I/O INTERFACE

As described in section 1, the PSG used by MSX has two 8-bit I/O ports, port
A and port B, in addition to the sound output function. In MSX, these two
ports are connected to the universal I/O interface (joystick port) and are
used to exchange data with the joystick or the paddle (see Figure 5.21).
Various devices to be connected to this universal I/O interface have the
necessary BIOS routine in ROM, so they are easily accessbile.

In this section, the funtion of each I/O device and the method for accessing
with BIOS routines are described.

 Figure 5.21 Universal I/O interface

 Universal input/output interface -1

| |
| (1) (2) (3) (4) (5) -+- +5V Switching signal <---+
| | (6) | (7) | (8) | (9) -----+- GND (to port B:b6) |
| | | | | | | | | |
----:---:---:---:---:---:---:------------ |
 | | | | | | | | |
 | | | | | +---:--> To port B:b4 ------------------------- |
 | | | | | | | | |
 +---+---+---+---+-------+--------------------| | |
 | Switcher |--+
 +---+---+---+---+-------+--------------------| |
 | | | | | | | |
 | | | | | +---:--> To port B:b5 -------------------------
 | | | | | | | | | | | | |
----:---:---:---:---:---:---:------------ (1) (2) (3) (4) (6) (7)
| | | | | | | | | | | | | | | | |
| (1) (2) (3) (4) (5) -+- +5V +-------------------------+
| (6) (7) (8) (9) -----+- GND |
| | V
--- To port A:b0 to b5
 Universal input/output interface -2

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

5.1 Functions of the Ports

Two I/O ports of PSG are used as shown in Figure 5.22.

 Figure 5.22 (A) Functions of PSG port A

Port A (PSG#14)

| b7 | . | b5 : b4 : b3 : b2 : b1 : b0 |

 | | | | | | | --+
 | | | | | | +--> 1st terminal | connected
 | | | | | +--------> 2nd terminal | to
 | | | | +--------------> 3rd terminal | universal
 | | | +--------------------> 4th terminal | I/O
 | | +--------------------------> 6th terminal | interface
 | +--------------------------------> 7th terminal |
 | --+
 +-----------------------------------> Data input from the cassette tape

 Figure 5.22 (B) Functions of PSG port B

Port B (PSG#15)

| b7 | b6 | b5 | b4 | b3 | b2 | b1 | b0 |

 | | | | | | | |
 | | | | +-----+-----+-----+--> Unused
 | | | |
 | | | +---> Connected to 8th terminal of univ. I/O interface 1
 | | +---------> Connected to 8th terminal of univ. I/O interface 2
 | |
 | +---> 0: b0-b5 of port A to be connected to univ. I/O interface 1
 | 1: b0-b5 of port A to be connected to univ. I/O interface 2
 |
 +---------> 0: Arabic or kana mode display lamp on
 1: Arabic or kana mode display lamp off

5.2 Joystick Use

Figure 5.23 shows the joystick circuit. As the circuit shows, sending "0" to
the 8th terminal and reading the 1st to 4th and 6th to 7th terminals enable
information about the stick and the trigger buttons to be obtained. However,
it is advisable to use BIOS for accessing the joystick, in order to give
portability to the program.

 figure 5.23 Joystick circuit

 \
(1) O---------------o o------------+ Front
 |
 \ |
(2) O---------------o o------------+ Back

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 |
 \ |
(3) O---------------o o------------+ Left
 |
 \ |
(4) O---------------o o------------+ Right
 |
 |
 \ |
(6) O---------------o o------------+ Trigger A
 |
 \ |
(7) O---------------o o------------+ Trigger B
 |
 |
(8) O-------------------------------+

The following BIOS routines are offered for accessing the joystick. These
routines have similar functions to the STICK function and STRIG function of
BASIC. The status of the cursor keys or the space bar, in addition to the
joystick, can be read in real time.

* GTSTCK (00D5H/MAIN) read joystick

Input: A <-- joystick number (0 = cursor key, 1 and 2 = joystick)
Output: A <-- direction of joystick or cursor key
Function: returns the current status of the joystick or the cursor keys
 in the A register. The value is the same as the STICK
 function in BASIC.

* GTTRIG (00D8H/MAIN) read trigger button

Input: A <-- trigger button number (0 = space bar,
 1 and 2 = trigger button A, 3 and 4 = trigger button B)
Output: A <-- status of trigger button or space bar
 (0FFH = pressed, 00H = released)
Function: returns the current status of the trigger buttons or the
 space bar in the A register. The value is 0FFH when the
 trigger is pressed, otherwise it is 0.

List 5.7 Joystick use
===

;**
;
; List 5.7 Joystick and trigger access
;
;**
;
CHPUT EQU 00A2H
BREAKX EQU 00B7H
GTSTCK EQU 00D5H
GTTRIG EQU 00D8H

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 ORG 0D00H

;----- program start ----- Note: display joystick status

STICK: LD A,1 ;choose joystick 1
 CALL GTSTCK ;read joystick status
 LD (WK1),A
 LD A,1 ;choose joystick 1
 CALL GTTRIG ;read trigger status

 OR A
 JR Z,STCK1
 LD HL,WDON ;trigger ON
 JR STCK2
STCK1: LD HL,WDOFF ;trigger OFF
STCK2: CALL PUTSTR
 LD A,(WK1)
 OR A
 JR Z,BRKCH0 ;do not use joystick
 LD C,0
STCK3: DEC A
 JR NZ,STCK4
 INC C
 JR STCK3

STCK4: SLA C ;C := C*16
 SLA C
 SLA C
 SLA C
 LD B,0 ;Accounting Strings data address
 LD HL,WDSTK
 ADD HL,BC
 CALL PUTSTR

BRKCH0: LD A,0DH ;put carriage return
 CALL CHPUT ;code := 0DH

BRKCHK: CALL BREAKX ;break check
 RET C
 JR STICK

;----- put strings to screen -----

PUTSTR: LD A,(HL)
 CP '$'
 RET Z
 INC HL
 CALL CHPUT
 JR PUTSTR

;----- string area -----

WDON: DB 'Trigger ON: $'
WDOFF: DB 'Trigger OFF: $'
WDSTK: DB 'UP only ',0DH,0AH,'$'
 DB 'Up and Right ',0DH,0AH,'$'
 DB 'Right only ',0DH,0AH,'$'

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 DB 'Right & Down ',0DH,0AH,'$'
 DB 'Down only ',0DH,0AH,'$'
 DB 'Down and Left',0DH,0AH,'$'
 DB 'Left only ',0DH,0AH,'$'
 DB 'Left and Up ',0DH,0AH,'$'

WK1: DW 0

 END

===

5.3 Paddle Use

Figure 5.24 shows the paddle circuit. Sending a pulse to the 8th terminal
causes the single stable multi-vibrator to generate a pulse with a specified
interval. This interval depends on the value of the variable register which
can range from 10 to 3000 microseconds (0.01 to 3.00 ms). Measuring the pulse
length enables the value in the variable register and the turning angle to be
obtained.

 Figure 5.24 Paddle circuit

 --+--
 |
 <_
 _> 150KOhm Variable Resistor
 <
 |
 0.04 uF |
 +--| |---+
 | |
 ---+--------+---
 | |
 |\ | |
 | \ | |
(8) -----| >O----O| A Q |------------- (1) (For 2, 3, 4, 6, or 7,
 | / | | a similar circuit
 |/ | | would apply)
 | |
 | |
 +----------| B |
 | | |
 | | | (One-shot trigger IC, LS123 compatible)
 | | |
 +5V | ----------------
 --+-- | O
 | | |
 +-----+-----------------+

 : :
Input to 8 ________: :_____________________________________

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 : :
Output to 1 ________: :________
 |<------- 10 us to 3 ms ------->|

BIOS routines for accessing the paddle are described below.

* GTPDL (00DEH/MAIN) read paddle information

Input: A <-- paddle number (1 to 12)
Output: A <-- turning angle (0 to 255)
Function: examines the status of the paddle specified in the A register
 and returns the result in the A register.

5.4 Use of Touch Panel, Light Pen, Mouse, and Track Ball

The touch panel, light pen, mouse, and track ball (cat) are accessible using
the same BIOS routine. This routine is described below.

* GTPAD (00DBH/MAIN) access to various I/O devices

Input: A <-- device ID (0 to 19)
Output: A <-- objective information
Function: obtains various information as shown in Table 5.5 according
 to the value specified in the A register. This is the same
 as the PAD function of BASIC. "XXX1" in the table means the
 "XXX" device connected to the universal I/O interface 1;
 "XXX2" means the one connected to the universal I/O interface
 #2.

 Table 5.5 GTPAD BIOS Function

--
| Device ID | Device specified | Information returned |
--------------+--------------------+-------------------------------------|
0		0FFH when touching panel surface,
		00H when not
-------------		-------------------------------------
1		X-coordinate (0 to 255)
-------------	Touch panel 1	-------------------------------------
2		Y-coordinate (0 to 255)
-------------		-------------------------------------
3		0FFH when button is pressed,
		00H when not
-------------+--------------------+-------------------------------------		
4		

5		
-------------	Touch panel 2	Same as above
6		

7		
-------------+--------------------+-------------------------------------		

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

8		0FFH: valid data,
		00H: invalid data
-------------		-------------------------------------
9		X-coordinate (0 to 255)
-------------	Light pen	-------------------------------------
10		Y-coordinate (0 to 255)
-------------		-------------------------------------
11		0FFH when switch is pressed,
		00H when not
-------------+--------------------+-------------------------------------		
12		Always 0FFH
		(used to request for input)
-------------		-------------------------------------
13	Mouse 1 or	X-coordinate (0 to 255)
-------------	track ball 1	-------------------------------------
14		Y-coordinate (0 to 255)
-------------		-------------------------------------
15		Always 00H
		(no meaning)
-------------+--------------------+-------------------------------------		
16		

17	Mouse 2 or	
-------------	track ball 2	Same as above
18		

19		
--

Note 1: Though information of the coordinate of the light pen (A = 9, 10) and
 the switch (A = 11) are read at the same time when BIOS is called
 with A = 8, other values are valid only when the result is 0FFH.
 In the case that the result of BIOS which is called with A = 8 is
 00H, the coordinate values and the status of the switch contained
 after that are meaningless.
Note 2: Mouse and track ball are automatically distinguished.
Note 3: To obtain the coordinate value of the mouse or the track ball, do the
 input request call (A = 12 or A = 16), then execute the call to
 obtain the coordinate value actually. In this case, the interval of
 these two calls must be minimized as possible. Too much interval
 between the input request and the coordinate input causes the
 obtained data to be unreliable.
Note 4: To obtain the status of the trigger button of the mouse or the
 trigger button of the track ball, use GTTRIG (00D8H/MAIN), not GTPAD
 routine.

List 5.8 Touch panel use
===

;**
;
; List 5.8 touch pad access
;
;**
;
BREAKX EQU 00B7H

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

GTPAD EQU 00D8H
WRTVRM EQU 004DH

 ORG 0B000H

;----- program start ----- Note: Displays "*" at position specified
 by touch pad.

PAD: XOR A ;check sense
 CALL GTPAD
 OR A
 JR NZ,PAD1
 LD A,3
 CALL GTPAD ;break check
 OR A
 RET NZ
 JR PAD

PAD1: LD A,1 ;get X axis
 CALL GTPAD
 SRL A ;A := A/8
 SRL A
 SRL A
 LD (WORK),A ;reserve X axis
 LD A,2 ;get Y axis
 CALL GTPAD
 LD L,A ;HL := Y data (0-255)
 LD H,0
 LD C,A
 LD B,0
 ADD HL,BC ;HL := HL*3 (HL := 0-767)
 ADD HL,BC
 LD A,L
 AND 11100000B
 LD L,A
 LD A,(WORK)
 ADD A,L
 LD L,A
 LD BC,1800H ;VRAM start address
 ADD HL,BC
 LD A,2AH
 CALL WRTVRM ;write VRAM
 LD A,3
 CALL GTPAD ;break check
 OR A
 RET NZ
 JR PAD

;----- work area -----

WORK: DW 0 ;work

 END

===

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

List 5.9 Mouse and track ball use
===

;**
;
; List 5.9 mouse and track ball access
;
;**
;
GTPAD EQU 00DBH
WRTVRM EQU 004DH
RDVRM EQU 004AH
BREAKX EQU 00B7H

 ORG 0D000H

;----- program start ----- Note: Displays "*" at position specified
 by mouse or track ball.

TEST: CALL VADR ;Put old data
 LD A,(WKOLD)
 CALL WRTVRM
 LD A,12
 CALL GTPAD ;Request mouse/track ball data
 LD A,13
 CALL GTPAD ;Read X val.
 LD (WKXVAL),A
 LD A,14
 CALL GTPAD ;Read Y val.
 LD (WKYVAL),A

 LD A,(WKX)
 LD B,A
 LD A,(WKXVAL)
 ADD A,B
 CP 245 ;X<0?
 JR C,TEST01
 XOR A ;X=0
 JR TEST02

TEST01: CP 32 ;X>31?
 JR C,TEST02
 LD A,31

TEST02: LD (WKX),A

 LD A,(WKY)
 LD B,A
 LD A,(WKYVAL)
 ADD A,B
 CP 245 ;Y<0?
 JR C,TEST03
 XOR A ;Y=0
 JR TEST04

TEST03: CP 24 ;Y>23?
 JR C,TEST04

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 LD A,23

TEST04: LD (WKY),A

 CALL VADR
 CALL RDVRM ;Read old data
 LD (WKOLD),A

 CALL VADR
 LD A,2AH
 CALL WRTVRM ;Put cursor ("*").

 CALL BREAKX ;Break check
 RET C

 CALL WAIT

 JR TEST

VADR: LD A,(WKY) ;Make SCREEN Address:
 LD H,A ; From X,Y axis on WORK AREA
 LD L,0 ; To Hl reg.
 SRL H
 RR L
 SRL H
 RR L
 SRL H
 RR L
 LD A,(WKX)
 ADD A,L ; Y=32+X
 LD L,A
 LD BC,1800H ; VRAM start address
 ADD HL,BC
 RET

WAIT: LD A,0 ;WAIT routine
WLP1: INC A
 LD B,(IX+0)
 LD B,(IX+0)
 LD B,(IX+0)
 JR NZ,WLP1
 RET

;----- data -----

WKX: DB 10 ;X axis
WKY: DB 10 ;Y axis
WKOLD: DB 0 ;Character code on (X,Y)
WKXVAL: DB 0 ;X variable
WKYVAL: DB 0 ;Y variable

 END

===

6. CLOCK AND BATTERY-POWERED MEMORY

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

MSX2 uses a CLOCK-IC to for its timer function. Since this IC is
battery-powered, it remains active even after MSX2 is turned off. MSX2 uses a
small amount of RAM inside to set the PASSWORD or to set the screen mode at
startup automatically, in addition to the CLOCK functions.

6.1 CLOCK-IC Functions

This IC has the following three functions:

* CLOCK function

 - set/read the settings of "year, month, day, day of week, hour,
 minute, second"
 - for the expression of time, 24-hour clock/12-hour clock available
 - for months, months of 31 days and of 30 days are distinguished
 (leap years are also recognised)

* Alarm function

 - when the time for alarm is set, CLOCK generates signals
 at that time.
 - the time for alarm is set as "XXday XXhour XXminute".

* Battery-powered memory function

 - has 26 sets of 4-bit memory, and can be battery-powered.
 - MSX2 stores the following data in this memory:

 1. adjustment value of CRT display width and height
 2. initial values of SCREEN, WIDTH, colour
 3. BEEP tone and volume
 4. title screen colour
 5. country code
 6. password --+
 7. BASIC prompt | (one of 6 to 8)
 8. title caption --+

6.2 Structure of the CLOCK-IC

The CLOCK-IC has four blocks inside as shown in Figure 5.25. Each block
consists of 13 sets of 4-bit registers, which are specified by addresses from
0 to 12. In addition, it has three 4-bit registers for selecting the block or
controlling functions; they are specified by the addresses from 13 to 15.

The registers inside the block (#0 to #12) and the MODE register (#13) can be
read from and written to. The TEST register (#14) and RESET register (#15)
can only be written to.

 Figure 5.25 Clock IC structure

 BLOCK 0 BLOCK 1 BLOCK 2 BLOCK 2

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 (CLOCK) (ALARM) (RAM-1) (RAM-2)
 ---------------- ---------------- ---------------- ----------------
 | Seconds (the | | | | | | |
 0 | 1st decimal | | ________ | | | | |
place)						
--------------		--------------		- -		- -
Seconds (the						
1	2nd decimal		________			
place)						
--------------		--------------		- -		- -
.	.		.		Any data	
.	.		.			
.	.		.			
.	.		.			
.	.		.			
--------------		--------------		- -		- -
Year (the						
12	2nd decimal		________			
place)						
 ---------------- ---------------- ---------------- ----------------
 :<-- 4 bits -->: :<-- 4 bits -->: :<-- 4 bits -->: :<-- 4 bits -->:

13 | MODE |
 |--------------| --+
14 | TEST | |
 |--------------| |-- Write only
15 | RESET | |
 ---------------- --+
 :<-- 4 bits -->:

6.3 MODE Register Functions

The MODE register has the following 3 functions:

* Selecting block

To read from or write to registers from #0 to #12, select the block to be
used and then access the objective address. The 2 low order bits of the MODE
register are used to select the block.

Registers from #13 to #15 are accessible whichever block is selected.

* Alarm output ON/OFF

To switch the alarm input ON/OFF, use bit 2 of the MODE register. Since the
standard MSX2 does not support the alarm, modifying this bit causes nothing
to happen in general.

* Terminating CLOCK count

By writing "0" in bit 3 of the MODE register, the count in seconds is stopped

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

(the stages before the seconds are not stopped) and the clock function is
terminated. By writing "1" in bit 3, the count is resumed.

 Figure 5.26 MODE register functions

 B3 B2 B1 B0

| TE | AE | M1 : M0 | MODE register (#13)

 | | | 00: select block 0
 | | | 01: select block 1
 | | +----> 10: select block 2
 | | 11: select block 3
 | |
 | +------------> 0: alarm output OFF
 | 1: alarm output ON
 |
 +-----------------> 0: CLOCK count stop (in seconds)
 1: CLOCK count start

6.4 TEST Register functions

The TEST register (#14) is used to increment the upper counter quickly and to
confirm that date and time carries are done correctly. Setting "1" in each
bit of the register, the pulse of 2^14 (=16384)[Hz] is directly set in day,
hour, minute, and second counters.

 Figure 5.27 TEST register functions

 B3 B2 B1 B0

| T3 | T2 | T1 | T0 | TEST register (#14)

 | | | |
 | Hours | Seconds the location for the pulse to be placed
 Day Minutes

6.5 RESET Register Functions

The RESET register (#15) has the following functions:

* Resetting the alarm

Setting "1" in bit 0 causes all alarm registers to be reset to 0.

* Setting the seconds

Setting "1" in bit 1 causes the stage before the seconds to be reset. Use
this function to set the seconds correctly.

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

* Clock pulse ON/OFF

Setting "1" in bit 2 turns the 16Hz clock pulse output ON, and setting "0" in
bit 3 turns the 1Hz clock pulse output ON. Note that both are not supported
by the MSX2 standard.

 Figure 5.28 RESET register function

 B3 B2 B1 B0

| C1 | C16| CR | AR | RESET register (#15)

 | | | |
 | | | +--> When "1", all alarm registers are reset
 | | +-------> When "1", fractions smaller than a second are reset
 | +------------> When "0", 16[Hz] clock pulse is ON
 +-----------------> When "0", 1[Hz] clock pulse is ON

6.6 Setting the Clock and Alarm

* Setting date and time

Block 0 is used to set the clock. Selecting block 0 in the MODE register
and writing data in the objective register causes the date and the time to be
set. The current time is acquired by reading the contents of the register.
See Figure 5.29 for the meaning of the register and its address.

Block 1 is used to set the alarm. Note that the time of the alarm can be set
only in days, hours, and minutes. Nothing happens, in general, when the time
of the clock meets the time of the alarm.

In the clock, the year is represented by 2 digits (registers #11 and #12). In
MSX-BASIC, the 2 low order digits of the year is represented by adding the
offset 80 to this value. For example, after setting register #11 to 0 and
register #12 to 0, the year would be 80, as "80/XX/XX", when the date is read
by using the GET DATE instruction of BASIC.

The day of the week is represented by 0 to 6. This is only a mod 7 counter
which is renewed alomg with the date, and the correspondence between the
actual day of the week and the number value 0 to 6 is not defined.

 Figure 5.29 Setting the CLOCK and ALARM

 block 0 : CLOCK

 | | B3 | B2 | B1 | B0 |
 |---------------------------+---------------------------|
 0 | Seconds | |
 | (the 1st decimal place) | X X X X |
 |---------------------------+---------------------------|
 1 | Seconds | |
 | (the 2nd decimal place) | . X X X |
 |---------------------------+---------------------------|
 2 | Minutes | |

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 | (the 1st decimal place) | X X X X |
 |---------------------------+---------------------------|
 3 | Minutes | |
 | (the 2nd decimal place) | . X X X |
 |---------------------------+---------------------------|
 4 | Hours | |
 | (the 1st decimal place) | X X X X |
 |---------------------------+---------------------------|
 5 | Hours | |
 | (the 2nd decimal place) | . . X X |
 |---------------------------+---------------------------|
 6 | Day of | |
 | the week | . X X X |
 |---------------------------+---------------------------|
 7 | Day | |
 | (the 1st decimal place) | X X X X |
 |---------------------------+---------------------------|
 8 | Day | |
 | (the 2nd decimal place) | . . X X |
 |---------------------------+---------------------------|
 9 | Month | |
 | (the 1st decimal place) | X X X X |
 |---------------------------+---------------------------|
10 | Month | |
 | (the 2nd decimal place) | . . . X |
 |---------------------------+---------------------------|
11 | Year | |
 | (the 1st decimal place) | X X X X |
 |---------------------------+---------------------------|
12 | Year | |
 | (the 2nd decimal place) | X X X X |

 block 1 : ALARM

 | | B3 | B2 | B1 | B0 |
 |---------------------------+---------------------------|
 0 | _________________ | |
 | | |
 |---------------------------+---------------------------|
 1 | _________________ | |
 | | |
 |---------------------------+---------------------------|
 2 | Minutes | |
 | (the 1st decimal place) | X X X X |
 |---------------------------+---------------------------|
 3 | Minutes | |
 | (the 2nd decimal place) | . X X X |
 |---------------------------+---------------------------|
 4 | Hours | |
 | (the 1st decimal place) | X X X X |
 |---------------------------+---------------------------|
 5 | Hours | |
 | (the 2nd decimal place) | . . X X |
 |---------------------------+---------------------------|
 6 | Day of | |
 | the week | . X X X |

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 |---------------------------+---------------------------|
 7 | Day | |
 | (the 1st decimal place) | X X X X |
 |---------------------------+---------------------------|
 8 | Day | |
 | (the 2nd decimal place) | . . X X |
 |---------------------------+---------------------------|
 9 | _________________ | |
 | | |
 |---------------------------+---------------------------|
10 | 12 or | |
 | 24 hours | . . . X |
 |---------------------------+---------------------------|
11 | Leap year | |
 | counter | . . X X |
 |---------------------------+---------------------------|
12 | _________________ | |
 | | |

 Bits indicated by an "." are always 0 and cannot be modified.

* Selecting 12-hour clock/24-hour clock

Two clocks can be selected; one is a 24-hour clock which represents one
o'clock in the afternoon as 13 o'clock, and the other is a 12-hour clock
which represents it as 1 p.m. Register #10 is used to select between them. As
shown in Figure 5.30, the 12-hour clock is selected when B0 is "0" and the
24-hour clock when B0 is "1".

 Figure 5.30 Selecting 12-hour clock/24-hour clock

 B3 B2 B1 B0

| . | . | . | B0 | Register #10 (block 1)

 |
 +--> 0: 12-hour clock
 1: 24-hour clock

 Figure 5.31 Morning/afternoon flag for 12-hour clock

 B3 B2 B1 B0

| . | . | B1 | X | register #5 (block 0)

 |
 +-------> 0: before noon
 1: after noon

* Leap year counter

Register #11 of block 1 is a mod 4 counter which is renewed along with the

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

count of the year. When the 2 low order bits of this register are 00H, that
is considered as a leap year and 29 days are counted in February.

 Figure 5.32 Leap year determination

 B3 B2 B1 B0

| . | . | B1 | B0 | Register #11 (block 1)

 | |
 +----+--> Both bits 0 represents leap year.

6.7 Contents of the Battery-powered Memory

Blocks 2 and 3 of the CLOCK-IC are used as the battery-powered 4-bit x 13
memory blocks. MSX2 uses this area as shown below.

* Contents of block 2

 Figure 5.33 Contents of block 2

 | B3 | B2 | B1 | B0 |
 |---|
 0 | ID |
 |---|
 1 | Adjust X (-8 to +7) |
 |---|
 2 | Adjust Y (-8 to +7) |
 |---|
 3 | __________ | __________ | Interlace mode | Screen mode |
 |---|
 4 | WIDTH value (Lo) |
 |---|
 5 | WIDTH value (Hi) |
 |---|
 6 | Foreground color |
 |---|
 7 | Background color |
 |---|
 8 | Border color |
 |---|
 9 | Cassette speed | Printer mode | Key click | Key ON/OFF |
 |---------------------------------+---------------------------------|
10 | BEEP tone | BEEP volume |
 |---------------------------------+---------------------------------|
11 | __________ | __________ | Title colour |
 |---|
12 | Native code |

* Contents of block 3

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

Block 3 has three functions, depending on the contents of the ID value
(register #0). Figure 5.34 shows the functions.

 Figure 5.34 Contents of block 3

ID=0: displays the title (within 6 characters) on the initial screen
 --
 0 | 0 |
 |--| --+
 1 | Lo 1 --+--- 1st character of the title | |
 | | | |
 2 | Hi 1 --+ | |
 |--| |
 . | . | |
 . | . | | 6 characters
 . | . | |
 |--| |
11 | Lo 6 --+--- 6th character of the title | |
 | | | |
12 | Hi 6 --+ | |
 -- --+

ID=1: sets the password
 --
 0 | 1 |
 |--|
 1 | Usage ID=1 |
 | |
 2 | Usage ID=2 |
 | |
 3 | Usage ID=3 |
 |--|
 4 | Password --+ |
 | | |
 5 | Password | Password data is stored |
 | |-- compressed in 4bits x 4 bits |
 6 | Password | |
 | | |
 7 | Password --+ |
 |--|
 8 | Key cartridge flag |
 |--|
 9 | Key cartridge value |
 | |
10 | Key cartridge value |
 | |
11 | Key cartridge value |
 | |
12 | Key cartridge value |
 --

ID=2: sets the prompt on BASIC
 --
 0 | 2 |
 |--| --+
 1 | Lo 1 --+--- 1st character of the prompt | |

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 | | | |
 2 | Hi 1 --+ | |
 |--| |
 . | . | |
 . | . | | 6 characters
 . | . | |
 |--| |
11 | Lo 6 --+--- 6th character of the prompt | |
 | | | |
12 | Hi 6 --+ | |
 -- --+

6.8 Access to the CLOCK-IC

The following BIOS routines are offered to access the clock and the
battery-powered memory. Since these routines reside in SUB-ROM, they are
called by using the inter-slot call.

* REDCLK (015FH/SUB) read CLOCK-IC data

Input: C <-- CLOCK-IC address (see Figure 5.35)
Output: A <-- data obtained (only 4 low order bits valid)
Function: reads CLOCK-IC register in the address specified by the
 C register and stores in the A register. Since the address
 specification includes the block selection information as
 shown in Figure 5.35, it is not necessary to set the MODE
 register and then read the objective register.

 Figure 5.35 CLOCK-IC register specification method

C register | . | . | M1 : M0 | A3 : A2 : A1 : A0 |

 | | |
 +---------+-------------------+
 Block to be Register
 selected address

* WRTCLK (01F9H/SUB) write CLOCK-IC data

Input: C <-- CLOCK-IC address (see Figure 5.35)
 A <-- data to be written (4 low order bits)
Output: ---
Function: write the contents of the A register in the CLOCK-IC at the
 address specified by the C register. The address is specified
 in the format shown in Figure 5.35 as REDCLK.

List 5.10 shows an example of this BIOS routine.

List 5.10 Setting the prompt
===

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

;**
;
; List 5.10 set prompt message
;
;**
;
WRTCLK: EQU 01F9H
EXTROM: EQU 015FH

 ORG 0B000H

;----- program start ----- ;Note: Set prompt message for BASIC.

START: LD C,00110000B ;address data
 LD A,2 ;ID := prompt mode
 CALL WRTRAM ;write to back-up RAM

 LD B,6 ;loop counter
 LD HL,STRING ;prompt data
L01: LD A,(HL) ;read string data
 AND 0FH ;A := hi 4 bit
 INC C ;increment address
 CALL WRTRAM ;write data to back-up RAM
 LD A,(HL)
 RRCA
 RRCA
 RRCA
 RRCA
 AND 0FH
 INC C ;increment address
 CALL WRTRAM ;write low 4 bits
 INC HL
 DJNZ L01
 RET

;----- write data to back-up RAM -----

WRTRAM: PUSH HL
 PUSH BC
 LD IX,WRTCLK
 CALL EXTROM ;use interslot call
 POP BC
 POP HL
 RET

;----- string data -----

STRING: DB 'Ready?'

 END

===

MSX2 TECHNICAL HANDBOOK

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

Edited by: ASCII Systems Division
Published by: ASCII Coprporation - JAPAN
First edition: March 1987

Text file typed by: Nestor Soriano (Konami Man) - SPAIN
 October 1997

Changes from the original:

- In description of SUBROM routine, comment "see page 352" has been changed
to "see appendix 2..."

- In description of SLTATR and SLTWRK work areas, expressions for calculate
the concrete work area for a given slot and page have been added.

- In the first line after beginning of section 7.2.3, "The following
routines..." has been corrected to "The following addresses..."

- In Figure 5.52, indication of F380H address was placed in the middle of the
user's area. It has been moved to the beginning of system work.

-=-

CHAPTER 5 - ACCESS TO PERIPHERALS THROUGH BIOS (Part 7)

7. SLOTS AND CARTRIDGES

The CPU (Z80) used in the MSX can access an address space of only 64K bytes
(0000H to FFFFH). MSX is set up to access an effective space of 1M bytes.
This is accomplished by using "slots", which allocate more than one memory
byte or device to the same address.

This chapter introduces the use of the slot and information necessary to
connect the cartridge software or the new device to MSX via the slot.

7.1 Slots

A slot is an interface to effectively use a large address space, and to
interface any memory or devices connected to the MSX address bus installed
via the slot. The BASIC ROM inside the machine or RAM at MSX-DOS mode are not
exceptions. The place at which the cartridge software is installed is also
one of the slots. The following descriptions introduce how the software and
the devices are connected to the slot.

7.1.1 Basic slot and expansion slot

The slot is either a basic slot or a expansion slot. A "basic slot" is a slot
directly connected to the CPU address bus, as shown in Figure 5.36. The
standard MSX machine can have up to four basic slots. The basic slot can be
expanded up to four slots by connecting a slot expansion box (in some cases,
the expansion is already done inside the machine), and is called "expansion
slots". When each of four basic slots is expanded to four expansion slots,
the maximum number of slots is 16. If you multiply 16 slots x 64K bytes you

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

will get 1M bytes of accessible address space.

Note that the system itself cannot be started when expansion slot boxes are
connected to the expansion slot. So the user should only connect expansion
slot boxes to the basic slots. (Though the slot for the standard MSX
cartridge is always a basic slot, in some cases the connector for the
optional hardware of each machine might be connected to the expansion slot).

 Figure 5.36 Basic slot and expansion slot

 | |
 | CPU |
 | |
 | |

 |
 O
 \
 \
 \
 \
 O O O O
 | | | |
 --------- --------- --------- ---------
 | | | | | | | |
Basic slot | | | | | | | |
 | | | | | | | |
 | | | | | | | |
 --------- --------- --------- ---------
 Slot #0 O Slot #2 Slot #3
 /
 /
 /
 O O O O
 | | | |
 --------- --------- --------- ---------
 | | | | | | | |
Expansion | | | | | | | |
slot | | | | | | | |
 | | | | | | | |
 --------- --------- --------- ---------
 Slot #1-0 Slot #1-1 Slot #1-2 Slot #1-3

Each slot has 64K bytes from 0000H to FFFFH of address space and MSX manages
it by dividing it into four "pages" of 16K bytes each. The CPU can select and
access any slot for each page, and, as shown in Figure 5.37, it is possible
to select and combine portions of several slots. Note that a pages with a
given page number cannot be assigned to a page with a different page number
(that is, page n of each slot is also page n to the CPU).

 Figure 5.37 Example of the page selection

 ------- ------- ------- ------- -------

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

Page 0 | A | | E | | I | | M | <----------> | A |
 |-----| |-----| |-----| |-----| |-----|
Page 1 | B | | F | | J | | N | <----------> | J |
 |-----| |-----| |-----| |-----| |-----|
Page 2 | C | | G | | K | | O | <----------> | G |
 |-----| |-----| |-----| |-----| |-----|
Page 3 | D | | H | | L | | P | <----------> | H |
 ------- ------- ------- ------- -------
 Slot 0 Slot 1 Slot 2 Slot 3 CPU address
 space

7.1.2 Selecting slots

Selecting slots is different for the basic slot than for the expansion slot.
For basic slots, it is done through the I/O port at A8H (see Figure 5.38),
and for expansion slots, it is done through the "expansion slot selection
register (FFFFH)" of the installed expansion slot (see Figure 5.39). It is
not recommended to change them directly, so the user should not switch the
slots without careful planning. When the program switches the slot of the
page in which it resides, the action is not always predictable. To call the
program in another slot, use the inter-slot call described in the next
section.

 Figure 5.38 Selecting the basic slot

 I/O port (A8H)

| : | : | : | : |

| | | | |
+---------+---------+---------+---------+
 | | | |
 | | | +---> Basic slot number of page 0 (0 to 3)
 | | +-------------> Basic slot number of page 1 (0 to 3)
 | +-----------------------> Basic slot number of page 2 (0 to 3)
 +---------------------------------> Basic slot number of page 3 (0 to 3)

 Figure 5.39 Selecting the expansion slot

Expansion slot selection (FFFFH in expansion slot)

| : | : | : | : |

| | | | |
+---------+---------+---------+---------+
 | | | |
 | | | +---> Expn. slot number of page 0 (0 to 3)
 | | +-------------> Expn. slot number of page 1 (0 to 3)
 | +-----------------------> Expn. slot number of page 2 (0 to 3)
 +---------------------------------> Expn. slot number of page 3 (0 to 3)

Note: to identify the kind of slot, in the case of the expansion slot, the
 value written is read as the reversed value. The value of this register
 is the same inside the basic slot.

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

The slot where MAIN-ROM or RAM is installed and the slot number of the slot
for the cartridge depend on the machine. Refer to the appropriate manual to
see how slots are used on your MSX. But the MSX standard guarantees the
normal operation no matter what is in the slots, so it is not necessary to
worry about the slot use, as long as you are following the standard.

In some cases, however, it is required to know the slot number of the
specified software. For example, in the previous version, BASIC MAIN-ROM was
placed in basic slot #0 or in expansion slot #0-0 when basic slot #0 was
expanded. So when MSX1 is upgraded to have the MSX2 functions by installing
MSX-VIDEO and BASIC ver 2.0 ROM, the MAIN ROM should be placed somewhere
other than slot #0 or slot #0-0. The slot where MSX2 SUB-ROM resides depends
on the machine, but the information about the slot where BASIC interpreter
ROM resides can be obtained by referring to the work area described below
(the slot information can be obtained in the format shown in Figure 5.40).
When calling BIOS from DOS, examine the slot of MAIN-ROM in this way.

* EXPTBL (FCC1H, 1) the slot of MAIN-ROM
* EXBRSA (FAF8H, 1) the slot of SUB-ROM (0 for MSX1)

 Figure 5.40 Format for the slot

MSB LSB
 7 6 5 4 3 2 1 0

| | : : | : | : |

| | | | |
+----+--------------+---------+---------+
 | Unused | |
 | | +---> Basic slot number (0 to 3)
 | +-------------> Expansion slot number (0 to 3)
 |
 +------------------------------------> "1" if expansion slot

When a given routine resides over page 1 and page 2 (4000H to BFFFH), the
same slot for page 2 as the one for page 1 should be selected when the jump
from page 1 to page 2 occurs within this routine. To do this, you need to
examine the slot, in page 1, where the program resides and then to switch
page 2 to that slot. To obtain information about the slot where the program
currently is, execute the program shown in List 5.11.

List 5.11 Program to know the current slot
===

;**
; List 5.11 to know where you are
;**
; Suppose your program cartridge is 32K bytes
; long (4000h..0BFFFH). You set the ID at 4000H
; and 4001H and the execution start address within
; page 1 (4000h..7FFFH), MSX passes control
; to this address so the part which resides in
; page 2 is not yet enabled at this point. You

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

; have to know where you are (in what primary
; slot, in what secondary slot) and enable the
; part at page 2. Below is the sample program
; to do this.
;
ENASLT EQU 0024H ;enable slot
RSLREG EQU 0138H ;read primary slot select register
EXPTBL EQU 0FCC1H ;slot is expanded or not

;----- program start -----

ENAP2:
 CALL RSLREG ;read primary slot #
 RRCA ;move it to bit 0,1 of [Acc]
 RRCA
 AND 00000011B
 LD C,A
 LD B,0
 LD HL,EXPTBL ;see if this slot is expanded or not
 ADD HL,BC
 LD C,A ;save primary slot #
 LD A,(HL) ;See if the slot is expanded or not
 AND 80H
 OR C ;set MSB if so
 LD C,A ;save it to [C]
 INC HL ;Point to SLTTBL entry
 INC HL
 INC HL
 INC HL
 LD A,(HL) ;Get what is currently output
 ;to expansion slot register
 AND 00001100B
 OR C ;Finally form slot address
 LD H,80H
 JP ENASLT ;enable page 2

 END

===

7.2 Inter-slot Calls (calls between slots)

As described above, programs reside in different slots, so a program not in
the current slot might be needed in some cases. The most common cases are
listed below:

 (1) calling BIOS in MAIN-ROM from MSX-DOS level
 (2) calling BIOS in SUB-ROM from BASIC level (only the case of MSX2)
 (3) calling BIOS in MAIN-ROM or SUB-ROM from cartridge software

In doing such calls, to switch slots easily and safely, there is a group of
BIOS routines called the inter-slot calls, which can be called from the
routine in any slot. This section describes the use of the inter-slot calls.

7.2.1 Inter-slot call operation

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

When calling BIOS in MAIN-ROM from MSX-DOS, the state of slots changes as
described below.

(1) Since, in the initial MSX-DOS mode, RAM is selected all over 64K address
 space, BASIC-ROM cannot be accessible in this state (see Figure 5.41-a).

(2) To call BIOS in ROM, switch page 0 to MAIN-ROM or BASIC to access. Then,
 call BIOS (see Figure 5.41-b).

(3) Restore the original status after BIOS operations and return to the
 initial address.

 Figure 5.41 Inter-slot call

a) When using MSX-DOS

 MSX-DOS BASIC-ROM MSX-DOS BASIC-ROM
 ------- ------- ------- -------
Page 0 | RAM | | ROM | Page 0 | RAM | | ROM | BIOS is
 |-----| |-----| |-----| |-----| called
Page 1 | RAM | | ROM | Page 1 | RAM | | ROM |
 |-----| |-----| <----------> |-----| |-----|
Page 2 | RAM | | ___ | Page 2 | RAM | | ___ |
 |-----| |-----| |-----| |-----|
Page 3 | RAM | | ___ | Page 3 | RAM | | ___ |
 ------- ------- ------- -------
 Slot 3 Slot 0 Slot 3 Slot 0

This is easily done when the program resides in other than page 0, but there
can be some problem when the calling program resides in page 0 which is the
same page as BIOS of the called program. Care is needed to prevent the
program from disappearing itself and generating unpredictable results when it
is switched to page 0. The inter-slot call settles this problem by jumping to
page 3 temporarily and then switching slots.

7.2.2 Inter-slot call use

There are several ways to execute inter-slot calls, as described below. They
are included in MAIN-ROM as BIOS calls. Some of them are offered in MSX-DOS,
so inter-slot calls can be executed under MSX-DOS.

(1) Inter-slot call routines in BIOS

* RDSLT (000CH/MAIN) read value at specified address of
 specified slot

Input: A register <-- slot specification
 HL register <-- address to be read at
Output: A register <-- value which has been read out
Use: AF, BC, DE
Function: reads the value at the specified address of the specified
 slot and stores it in the A register. The slot specification
 is done using the A register in the form shown in Figure

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 5.40. At this point, when the objective slot is the basic
 slot, set "0" to the 6 high order bits and define the slot
 #0 to #3 using the 2 low order bits. When specifying the
 expansion slot, specify the basic slot by bit 0 and bit 1 and
 the expansion slot by bit 2 and bit 3 and set bit 7 to "1".

* WRSLT (0014H/MAIN) write value at specified address of
 specified slot

Input: A register <-- slot specification (same format as in
 Figure 5.40)
 HL register <-- address to be written in
 E register <-- data to be written
Output: ---
Use: AF, BC, D
Function: writes E register value in the address specified by HL
 register of the slot specified by the A register (the
 specification format is the same as in Figure 5.40).

* CALSLT (001CH/MAIN) call specified address of specified
 slot

Input: 8 high order bits of IY register <-- slot
 (same format as in Figure 5.40)
 IX register <-- address to be called
Output: depends on the result of the called program
Use: depends on the result of the called program
Function: calls the routine at the address specified by IX register
 of the slot specified by the 8 high order bits of IY register
 (the specification format is the same as in Figure 5.40).

* ENASLT (0024H/MAIN) swicth slots

Input: A register <-- slot (same format as in Figure 5.40)
 HL register <-- specifies the page to switch the slot by
 2 high order bits
Output: ---
Use: all
Function: switches the page specified by the 2 high order bits of the
 HL register to the slot specified by the A register.

* CALLF (0030H/MAIN) call specified address of specified
 slot

Input: specifies the slot and the address in the inline parameter
 format
Output: depends on the result of the called program
Use: depends on the result of the called program
Function: calls the specified address of the specified slot, but,
 different from CALSLT described above, the slot and the
 address is specified in the inline parameter format, as
 described below. That is, parameters are passet by one byte
 (same format as RDSLT) to specify that the slot is placed

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 just after the instruction which calls CALLF and the next
 two bytes to specify the address are placed. "CALL 0030H"
 may be replaced by the RST (restart) instruction, "RST 30H".
 In this case, the inter-slot call is done in 4 bytes.

 Figure 5.42 Example of the inter-slot call execution

| |
| RST 30H ;interslot call |
| DB 00000000B ;select slot#0 |
| DW 006CH ;call address = 006CH |

* RSLREG (0138H/MAIN) read the basic slot selection
 register

Input: ---
Output: A register <-- value which has been read
Use: ---
Function: reads the contents of the basic slot selection register and
 stores it in the A register.

* WSLREG (013BH/MAIN) write in the basic slot selection
 register

Input: A register <-- value to be written
Output: ---
Use: ---
Function: writes the A register value in the basic slot selection
 register and selects the slot.

* SUBROM (015CH/MAIN) call specified address in SUB-ROM

Input: IX register <-- address to be called, PUSH IX
 (see Appendix 2, SUB-ROM list)
Output: depends on the result of the called program
Use: background register and IX, IY registers are reserved
Function: This is the routine to call BASIC SUB-ROM especially. The
 slot where SUB-ROM resides is automatically examined.
 Normally, EXTROM, described below, is used.

* EXTROM (015FH/MAIN) call specified address in SUB-ROM

Input: IX register <-- address to be called
Output: depends on the result of the called program
Use: background register and IY register are reserved
Function: This is the routine to call BASIC SUB-ROM. The difference
 between this and SUB-ROM above is the point whether the
 IX register value is pushed.

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

(2) Inter-slot call in MSX-DOS

In MSX-DOS, five kinds of inter-slot calls are offered and their entry
addresses are defined at jump vectors of MSX-DOS. These are the same as ones
in BIOS, so refer to BIOS above for their functions or use. Note that these
routines should not be used when calling routines in SUB-ROM from MSX-DOS.

* RDSLT (000CH) read value at specified address of specified slot
* WRSLT (0014H) write value at specified address of specified slot
* CALSLT (001CH) call specified address of specified slot
* ENASLT (0024H) make specified slot available
* CALLF (0030H) call specified address of specified slot

List 5.12 Calling BIOS from MSX-DOS
===

;**
; List 5.12 How to use BIOS from MSX-DOS.
;**
;
CALSLT EQU 001CH ;Inter slot call
EXBRSA EQU 0FAF0H ;Slot address of BIOS (main) ROM
EXPTBL EQU 0FCC1H ;Slot address of extended ROM
;
; LD IY,(EXPTBL-1) ;Load slot address of the BIOS ROM
; ;in high byte of IY
; LD IX,address of the BIOS jump table
; CALL CALSLT
;
;----- Sample program to set text mode -----

INITXT EQU 006CH
LINL40 EQU 0F3AEH
;
TOTEXT: LD B,40
 LD A,(EXBRSA) ;slot address of SUB-ROM
 OR A ;0 if MSX1
 JR Z,TO40
 LD B,80

TO40: LD (LINL40),B ;set width into work area
 LD IX,INITXT
 LD IY,(EXPTBL-1) ;get expanded slot status to IYH
 CALL CALSLT ;perform an inter-slot call
 EI ;because CALSLT do DI
 RET

 END

===

7.2.3 Work area to obtain the slot status

The following addresses involve the slot work area.

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

* EXBRSA (FAF8H, 1) SUB-ROM slot

 Figure 5.43 SUB-ROM slot

MSB LSB
 7 6 5 4 3 2 1 0

| | : : | : | : |

| | | | |
+----+--------------+---------+---------+
 | Unused | |
 | | +---> Basic slot number (0 to 3)
 | +-------------> Expansion slot number (0 to 3)
 |
 +------------------------------------> "1" if expansion slot

* EXPTBL (FCC1H, 4) whether the basic slot is expanded or not

 Figure 5.44 Selecting the basic slot

 MSB LSB
 7 6 5 4 3 2 1 0

[FCC1H] | | : : | : | : | MAIN-ROM slot

[FCC2H] | | Unused | Slot #1

[FCC3H] | | Unused | Slot #2

[FCC4H] | | Unused | Slot #3

 |
 +--> 0: slot is not expanded
 1: slot is expanded

* SLTTBL (FCC5H, 4) preservation area for the expansion
 slot selection register value

 Figure 5.45 Selecting the expansion slot

 MSB LSB
 7 6 5 4 3 2 1 0
 --- expansion slot selection
[FCC5H] | : | : | : | : | register value of slot #0

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 --- expansion slot selection
[FCC6H] | : | : | : | : | register value of slot #1

 --- expansion slot selection
[FCC7H] | : | : | : | : | register value of slot #2

 --- expansion slot selection
[FCC8H] | : | : | : | : | register value of slot #3

 | | | | |
 +---------+---------+---------+---------+
 | | | |
 | | | +----> exp. slot num. for page 0
 | | +--------------> exp. slot num. for page 1
 | +------------------------> exp. slot num. for page 2
 +----------------------------------> exp. slot num. for page 3

* SLTATR (FCC9H, 64) test for existance of application in each
 slot/page

 Figure 5.46 Test for existence of application

[FCC9H] | | | | Unused | Slot #0-0, page 0
 |----+----+----+------------------------|
[FCCAH] | | | | Unused | Slot #0-0, page 1
 |----+----+----+------------------------|
 | | | | |

 | | | | |
 |----+----+----+------------------------|
[FD08H] | | | | Unused | Slot #3-3, page 3

 | | |
 | | +--> Routine to process expanded statements 1:yes 0:no
 | +-------> Routine to process expansion device 1:yes 0:no
 +------------> BASIC text 1:yes 0:no

The concrete work area for a given slot and page can be obtained with the
following expression:

 SLTATR address = FCC9H + 16*basic slot + 4*expansion slot + page

* SLTWRK (FD09H, 128) work area for application

 Figure 5.47 Work area for application

 --- Work area for

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

[FD09H] | | slot 0-0 page 0
 |---------------------------------------|
[FD0BH] | | Work area for
 |---------------------------------------| slot 0-0 page 1
 | |
 . . .
 . . .
 . . .
 | |
 |---------------------------------------| Work area for
[FD87H] | | slot 3-3 page 3

The concrete work area for a given slot and page can be obtained with the
following expression:

 SLTWRK address = FD09H + 32*basic slot + 8*expansion slot + 2*page

7.3 Developing Cartridge Software

MSX machines usually have at least one external slot and the hardware to be
put there is called a "cartridge". There are cartridges such as the ROM
cartridges for application programs or games, input-output device cartridges
for a disk or RS-232 interface, RAM expansion cartridges for expanding RAM,
and slot expansion cartridges for expanding slots. These cartridges make the
MSX easy to upgrade. BASIC and assembly language programs can also be stored
in ROM cartridge easily. This section describes how to develop cartridge
software.

7.3.1 Catridge header

MSX cartridges have a 16-bye common header and, when the system is reset, the
cartridge is initialised by the information written in this header. For ROM
cartridges of BASIC or assembly language programs, they can be automatically
started by using the information written in the header. Figure 5.48 shows the
cartridge header configuration.

 Figure 5.48 Program cartridge header

 ------------------- 4000H or 8000H
+0000H | ID |
 |-----------------|
+0002H | INIT |
 |-----------------|
+0004H | STATEMENT |
 |-----------------|
+0006H | DEVICE |
 |-----------------|
+0008H | TEXT |
 |-----------------|
+000AH | |
 | |
 | Reserved | Note: Reserved area should

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 | | be filled with 00H.
 | |
+0010H -------------------

* ID

In the case of ROM cartridges, these two bytes have codes "AB" (41H, 42H).
For SUB-ROM cartridges, the ID is "CD".

* INIT

When the cartridge is made to initialise the work area or I/O, these two
bytes are the addresses for the initialization routine; otherwise 0000H is
assumed. After instructions such as getting the work area in the
initialization routine are placed, end with "RET". All registers except the
SP register may be destroyed. For assembly language programs, such as games,
which loop within the cartridge, it is possible to execute the object program
from here.

* STATEMENT

When the cartridge is made to expand the CALL statement, these two bytes are
the address for the statement expansion routine; otherwise 0000H is assumed.
If so, the statement expansion routine should reside at 4000H to 7FFFH.

The CALL statement is described in the following format:

CALL <expression statement name> [(<argument>[, <argument>...])]

The expression statement name can have up to 15 characters. As an
abbreviation for CALL, "_" (underscore) is available.

When the BASIC interpreter finds a CALL statement, it puts the expansion
statement name in PROCNM (FD89H, 16) in the work area and passes the control
to cartridges, whose contents of STATEMENT of the header is other than 0, in
the order from the one with the smaller slot number. The HL register points
to the text address next to the expansion statement name at this point (see
Figure 5.49a).

 Figure 5.49 Input-output of the operation routine of the expansion
 statement

 | |
a) | Input setup when the interpreter calls routines to process |
 | expanded statements |
 | |
 | CALL ABCDE(0,0,0):A=0 |
 | ^ |
 | | |
 | HL |
 | |
 | CY flag = 1 +---- End of the name |

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 | | of the expanded |
 | ------------------------------------- statement |
 | PROCNM | A | B | C | D | E | 00H | |
 | ------------------------------------- |
 | |
 |---|
 | |
b) | Output setup when the expanded statement was not processed |
 | |
 | CALL ABCDE(0,0,0):A=0 |
 | ^ |
 | | |
 | HL |
 | |
 | CY flag = 1 |
 | |
 |---|
 | |
c) | Output setup when the expanded statement was processed |
 | |
 | CALL ABCDE(0,0,0):A=0 |
 | ^ |
 | | |
 | HL |
 | |
 | CY flag = 0 |
 | |

To develop the statement expansion routine, recognise the name of the
expansion statement written in PROCNM first, then return with setting "1" to
the carry flag without modifying the HL register if the statement is not to
be handled (see Figure 5.49b); otherwise, handle it properly and set the HL
register (text pointer) to the next handled statement (where 00H or 3AH is
placed usually), then return after setting "0" to the carry flag (see Figure
5.49c).

The BASIC interpreter determines the status of the carry flag whether a CALL
statement has been executed, and, if not, calls the next cartridge. When all
cartridges have not executed the statement (when the carry flag has been "1"
all the time), it displays "SYNTAX ERROR". To test arguments of the
statement, it is convenient to use "internal routines for the statement
expansion" in section 4.4 of chapter 2.

* DEVICE

These two bytes are the addresses of the device expansion routine, when the
cartridge does the device expansion (the input-output device expansion);
otherwise 0000H is used. When doing the device expansion, the device
expansion routine should be in 4000H-7FFFH. One cartridge can have up to 4
devices. The name of the expansion device should be less than 16 characters.

When the BASIC interpreter finds an undefined device, it stores that in
PROCNM (FD89H, 16) and put FFH in the A register and passes control to the
cartridge whose contents is not 0 in the order from the one with the smaller

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

slot number (see Figure 5.50a).

When creating device expansion routines, identify the file descriptor of
PROCNM first, and, when it is not for the device to be processed, return with
setting 1 to the carry flag (see Figure 5.50b). Otherwise, process it and set
the device ID (0-3) in the A register, then return with setting 0 to the
carry flag (see Figure 5.50c).

The BASIC interpreter determines by the status of the carry flag whether or
not it is processed, and, if not, call the next cartridge. When all
cartridges were not processed (that is, when the carry flag was "1" all the
time), "Bad file name ERROR" is displayed.

When the actual input-output operations are done, the BASIC interpreter sets
the device ID (0-3) in DEVICE (FD99H) and sets the request to the device in
the A register (see Table 5.6), then calls the device expansion routine. The
device expansion routine should refer to it to handle the request.

 Figure 5.50 Input-output to the device expansion routine

 | |
a) | Input setup when the interpreter calls routines to process |
 | the expanded device |
 | |
 | OPEN "ABC:"... |
 | |
 | A register = FFH |
 | CY flag = 1 +---- End of the file descriptor |
 | | | | | | |
|---|---|---|---|---|---|
 | PROCNM | A | B | C | 00H | |
 | ------------------------- |
 | |
 |---|
 | |
b) | Output setup when the expanded device was not processed |
 | |
 | CY flag = 1 |
 | |
 |---|
 | |
c) | Output setup when the expanded device was processed |
 | |
 | A register = device ID (0 to 3) |
 | CY flag = 0 |
 | |

 Table 5.6 Requests to the device

| Register A | Request |
|--------------+---------------------|
| 0 | OPEN |

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

|--------------+---------------------|
| 2 | CLOSE |
|--------------+---------------------|
| 4 | Random access |
|--------------+---------------------|
| 6 | Sequential output |
|--------------+---------------------|
| 8 | Sequential input |
|--------------+---------------------|
| 10 | LOC function |
|--------------+---------------------|
| 12 | LOF function |
|--------------+---------------------|
| 14 | EOF function |
|--------------+---------------------|
| 16 | FPOS function |
|--------------+---------------------|
| 18 | Backup character |

* TEXT

These two bytes are text pointers of the BASIC program, when the BASIC
program in the cartridge would be auto-started (executed at reset); otherwise
they are 0000H. The size of the program must be under 16K bytes, 8000H to
BFFFH.

The BASIC interpreter examines the contents of TEXT of the header after the
initialization (INIT) and after the system is started. When they are not
0000H, it begins the execution from the address as BASIC text pointer (see
Figure 5.51). BASIC programs should be stored in the form of the intermediate
code and the beginning of it (the address pointed by TEXT) must be 00H, which
indicates the beginning of the program.

The execution speed of the program will be improved when the objective line
number of statements such as GOTO is the absolute address of the objective
text pointer.

 Figure 5.51 Executing BASIC program cartridge

| | 8000H
|-------------------|
| TEXT |----+

-------------------	<---+
BASIC program	The first byte must be 00H

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

--------------------- BFFFH

* How to place BASIC programs in ROM

1. Change the starting address of BASIC text to 8021H.

 POKE &HF676,&H21 : POKE &HF677,&H80 : POKE &H8020,0 : NEW

 Note: these statements must be in one line

2. Load the objective BASIC program.

 LOAD "PROGRAM"

3. Create ID.

 AD = &H8000
 FOR I = 0 TO 31 ----+
 POKE AD + I, 0 | clears ID area
 NEXT I ----+
 POKE &H8000,ASC("A")
 POKE &H8001,ASC("B")
 POKE &H8008,&H20
 POKE &H8009,&H80

4. Put 8000H to BFFFH in ROM.

7.3.2 notes on the creation of the cartridge software

In programs not requiring software from other cartridges (stand-alone
software such as games), the portion with the smaller address than the work
area used by BIOS (F380H) can be used freely.

But in programs which are executed by using BASIC interpreter functions, the
same area cannot be shared as the work area. To do this, there are three
methods:

(1) Place RAM on the cartridge itself (the safest and most reliable method).

(2) When one or two bytes are needed for the work area, use two bytes
 corresponding to itself in SLTWRK (FD09H to ...) as the work area.

(3) When more than three bytes are needed for the work area, allocates it
 from RAM used by BASIC. To do this, put the contents of BOTTOM (FC48H)
 to the area corresponding to SLTWRK (FD09H to ...), and increase the
 value of BOTTOM by the needed work area, then allocate it for the
 work area (see figure 5.52).

 Figure 5.52 Allocating the work area

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

8000H ----------------- <-- (BOTTOM) ----------------- <-- (SLTWRK)
 | | | Work area |
 | | |---------------| <-- (BOTTOM)
User's area		
	--->	User's area
F380H	---------------	
System work		System work
FFFFH ----------------- -----------------

See the following list for the reference of (2) and (3).

List 5.13 Example of allocating the work area
===

;**
; List 5.13 subroutines to support slot
; for ROM in 1 page
;**

RSLGREG EQU 0138H
EXPTBL EQU 0FCC1H
BOTTOM EQU 0FC48H
HIMEM EQU 0FC4AH
SLTWRK EQU 0FD09H

;--
;
; GTSL1 Get slot number of designated page
; Entry None
; Return A Slot address as follows
; Modify Flags
;
; FxxxSSPP
; | ||||
; | ||++-- primary slot # (0-3)
; | ++---- secondary slot # (0-3)
; | 00 if not expanded
; +--------- 1 if secondary slot # specified
;
; This value can later be used as an input parameter
; for the RDSLT, WRSLT, CALSLT, ENASLT and 'RST 10H'
;
 PUBLIC GTSL10
GETSL10:
 PUSH HL ;Save registers
 PUSH DE

 CALL RSLREG ;read primary slot #
 RRCA
 RRCA
 AND 11B ;[A]=000000PP
 LD E,A
 LD D,0 ;[DE]=000000PP
 LD HL,EXPTBL

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 ADD HL,DE :[HL]=EXPTBL+000000PP
 LD E,A ;[E]=000000PP
 LD A,(HL) ;A=(EXPTBL+000000PP)
 AND 80H ;Use only MSB
 JR Z,GTSL1NOEXP
 OR E ;[A]=F00000PP
 LD E,A ;save primary slot number
 INC HL ;point to SLTTBL entry
 INC HL
 INC HL
 INC HL
 LD A,(HL) ;get current expansion slot register
 RRCA
 RRCA
 AND 11B ;[A] = 000000SS
 RLCA
 RLCA ;[A] = 0000SS00
 OR E ;[A] = F000SSPP
;
GTSL1END:
 POP DE
 POP HL
 RET
GTSL1NOEXP:
 LD A,E ;[A] = 000000PP
 JR GTSL1END

;--
;
; ASLW1 Get address of slot work
; Entry None
; Return HL address of slot work
; Modify None
;
 PUBLIC ASLW10
ASLW10:
 PUSH DE
 PUSH AF
 CALL GTSL10 ;[A] = F000SSPP, SS = 00 if not expanded
 AND 00001111B ;[A] = 0000SSPP
 LD L,A :[A] = 0000SSPP
 RLCA
 RLCA
 RLCA
 RLCA ;[A] = SSPP0000
 AND 00110000B ;[A] = 00PP0000
 OR L ;[A] = 00PPSSPP
 AND 00111100B ;[A] = 00PPSS00
 OR 01B ;[A] = 00PPSSBB
;
; Now, we have the sequence number for this cartridge
; as follows.
;
; 00PPSSBB
; ||||||
; ||||++-- higher 2 bits of memory address (1)

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

; ||++---- seconday slot # (0..3)
; ++------ primary slot # (0..3)
;
 RLCA ;*=2
 LD E,A
 LD D,0 ;[DE] = 0PPSSBB0
 LD HL,SLTWRK
 ADD HL,DE
 POP AF
 POP DE
 RET

;--
;
; RSLW1 Read slot work
; Entry None
; Return HL Content of slot work
; Modify None
;
 PUBLIC RSLW10
RSLW10:
 PUSH DE
 CALL ASLW10 ;[HL] = address of slot work
 LD E,(HL)
 INC HL
 LD D,(HL) ;[DE] = (slot work)
 EX DE,HL ;[HL] = (slot work)
 POP DE
 RET

;--
;
; WSLW1 Write slot work
; Entry HL Data to write
; Return None
; Modify None
;
 PUBLIC WSLW10
WSLW10:
 PUSH DE
 EX DE,HL ;[DE] = data to write
 CALL ASLW10 ;[HL] = address of slot work
 LD (HL),E
 INC HL
 LD (HL),D
 EX DE,HL ;[HL] = data tow write
 POP DE
 RET

;--
;
; How to allocate work area for cartridges
; If the work area is greater than 2 bytes, make the SLTWRK point
; to the system variable BOTTOM (0FC48H), then update it by the

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

; amount of memory required. BOTTOM is set up by the initizalization
; code to point to the bottom of equipped RAM.
;
; Ex, if the program is at 4000H..7FFFH.
;
; WORKB allocate work area from BOTTOM
; (my slot work) <- (old BOTTOM)
; Entry HL required memory size
; Return HL start address of my work area = old BOTTOM
; 0 if cannot allocate
; Modify None
;
 PUBLIC WORKB0
WORKB0:
 PUSH DE
 PUSH BC
 PUSH AF

 EX DE,HL ;[DE] = Size
 LD HL,(BOTTOM) ;Get current RAM bottom
 CALL WSLW10 ;Save BOTTOM to slot work
 PUSH HL ;Save old BOTTOM
 ADD HL,DE ;[HL] = (BOTTOM) + SIZE
 LD A,H ;Beyond 0DFFFH?
 CP 0E0H
 JR NC,NOROOM ;Yes, cannot allocate this much
 LD (BOTTOM),HL ;Updtae (BOTTOM)
 POP HL ;[HL] = old BOTTOM
WORKBEND:
 POP AF
 POP BC
 POP DE
 RET
;
; BOTTOM became greater than 0DFFFH, there is
; no RAM to be allocated.
;
NOROOM:
 LD HL,0
 CALL WSLW10 ;Clear slot work
 JR WORKBEND ;Return 0 in [HL]

 END

===

* Hook

The area called "hook" is used for expanding BASIC functions in FD9AH to
FFC9H of the work area used by MSX-BASIC. One hook has five bytes, which are
normally "RET".

When MSX-BASIC does a certain operation (such as the one in the description
about the hook of the work area), it calls this hook from there once. When
the hook is "RET", the control returns immediately; but the function of BASIC
can be expanded, when these five bytes were re-written to do the inter-slot

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

call to the program inside the cartridge by the initialization routine (INIT)
(see Figure 5.53).

List 5.14 shows an example of the program that the cartridge uses to hook
H.KEYI for the timer interrupt ptocess.

 Figure 5.53 Setting the hook

BASIC internal routine HOOK -----------------
 . +-----> | RET |
 . | +--- |---------------|
 . | | | RET |
 CALL HOOK ------+ | |---------------|
 . <--------+ | RET |
 . |---------------|
 . | RET |
 |---------------|
 | RET |

 |
 V
 Interslot call
BASIC internal routine HOOK ----------------- -----> .
 . +-----> | RST 30H | .
 . | |---------------| .
 . | | Slot number | Expanded process
 CALL HOOK ------+ |---------------| .
 . <-----+ | Branch | .
 . | |- address -| .
 . | | | .
 | |---------------| .
 +------ | RET | <---- RET

List 5.14 Using the hook
===

;**
; List 5.14 Sample program to use HOOK
;**
;
; Start-up initialize entry
; This program will be called when system initializing.
;
H.KEYI EQU 0FD9AH ; interrupt hook
EXPTBL EQU 0FCC1H ; slots expanded or not
PSLTRG EQU 0A8H ; I/O port address of primary slot register
EXT MYINT

INIT:
; <<< Please insert other initialization routine here, if you need. >>>

; Set interrupt entry

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 DI ; start of critical region

; Get old interrupt entry inter-slot call hook

 LD DE,OLDINT ; get address of old int. hook saved area
 LD HL,H.KEYI ; get address of interrupt entry hook
 LD BC,5 ; lenght of hook is 5 bytes
 LDIR ; transfer

; Which slot address is this cartridge placed?

 CALL GETMSLT ; get my slot address

; Set new inter-slot call of interrupt entry

 LD (H.KEYI+1),A ; set slot address
 LD A,0F7H ; 'RST 30H' inter-slot call operation code
 LD (H.KEYI),A ; set new hook op-code
 LD HL,INTENT ; get our interrupt entry point
 LD (H.KEYI+2),HL ; set new interrupt entry point
 LD A,0C9H ; 'RET' operation code
 LD (H.KEYI+4),A ; set operation code of 'RET'
 EI ; end of critical region
 RET

;--
; Which slot address is the cartridge placed?
; Entry: No
; Action: Compute my slot address
; Return: A = slot address
; Modify: Flag

GTMSLT:
 PUSH BC ; save environment
 PUSH HL
 IN A,(PSLTRG) ; read primary slot register
 RRCA ; move it to bit 0,1 of A
 RRCA
 AND 00000011B ; get bit 1,0
 LD C,A ; set primary slot No.
 LD B,0
 LD HL,EXPTBL ; see if the slot is expanded or not
 ADD HL,BC
 OR (HL) ; set MSB if so
 LD C,A
 INC HL ; point to SLTTBL entry
 INC HL
 INC HL
 INC HL
 LD A,(HL) ; get what is currently output to
 ; expansion slot register

 AND 00001100B ; get bits 3,2
 OR C ; finally form slot address

 POP HL ; restore environment

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 POP BC
 RET ; return to main

;----- Interrupt entry -----

INTENT:
 CALL MYINT ; call interrupt handler
 JP OLDINT ; go to old interrupt handler

;----- HOOK save area -----

OLDINT: DS 5

 END

===

* Stack pointer initialisation

When MSX has an internal disk, sometimes the disk interface ROM does the
initialisation before the cartridge does, depending on the slot location, and
pushes down the stack pointer in the direction of the low order address to
allocate the work area. In this case, software not using the disk should set
the stack pointer again after the cartridge received control; otherwise, the
stack area might be exhausted and a system crash might occur. Remember to
initialise the stack pointer at the beginning of the program.

* Testing the preformance of the expansion slot

When general software in the market is put in the expansion slot or when RAM
resides in the expansion slot, sometimes the application program do not work.
Since most MSX2 machines use the expansion slot inside, problems may sometime
result. Software to be sold in the market should be thoroughly tested in both
cases that it is put in the expansion slot and that RAM resides in expansion
slot.

Since the expansion slot register is placed in FFFFH, do not use it as if it
were RAM. For example, setting the stack in FFFFH using "LD SP, 0" in the
program causes machines using the expansion slot to go out of control.

* Notes on CALSLT use

Executing the inter-slot call in CALSLT and CALLF destroys the contents of
IX, IY, and the background processing register. When returning from this
routine, in MSX1 the interrupt is inhibited, but in MSX2 the state before the
call is restored.

When using CALSLT or CALLF to execute the inter-slot call, the interrupt is
always inhibited when calling the object program (see 2 in the figure below)
and when returning to the calling program (see 6 below).

 Caller Interslot call Called

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

LD IY,SLOT (3)
 +-----------------> CALLME:
LD IX,CALLME | .
 (1) |(2) .
CALL CALSLT ------------------+ .
 (4) .
 +------------------ RET
 (6) |(5)
 <-----------------+

In MSX2, the state of the interrupt is reserved before and after the
inter-slot call. That is, 3 in the figure is in the same state as 1, and 6 is
in the same state as 4. Note when the called program executes "EI" or "DI".

MSX2 TECHNICAL HANDBOOK

Edited by: ASCII Systems Division
Published by: ASCII Coprporation - JAPAN
First edition: March 1987

Text file typed by: Nestor Soriano (Konami Man) - SPAIN
 October 1997

Changes from the original in APPENDIX 1:

- In description of ENASLT, the needed input in HL has been added.

- In description of GETYPR, the Input field has been added.

- In description of INITXT (MAIN), the reference to "INIPLOT" has been
corrected to "INIPLT".

- In description of SUBROM routine, the mark "*1" has been erased.

- In description of INITXT (SUB), the needed input in LINL40 has been added.

- Description of PHYDIO routine has been added.
Changes from the original in APPENDIX 2:

- In the explanation before Figure A.3, the indication about the excess 64
method has been added.

- In Figure A.3, in the third byte, "63rd power of 10" has been corrected to
"-63rd power of 10".

- In the explanation before Figure A.3, the indication about the excess 64
method has been added.

- In Figure A.3, in the third byte, "63rd power of 10" has been corrected to
"-63rd power of 10".

-=-

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

APPENDIX 1 - BIOS LISTING

This section lists the 126 BIOS entries available to the user.

There are two kinds of BIOS routines, the ones in MAIN-ROM and the ones in
SUB-ROM. They each have different calling sequences which will be described
later. The following is the entry notation.

Label name (address) *n
 Function: descriptions and notes about the function
 Input: parameters used by call
 Output: parameters returned by call
 Registers: registers which will be used (original contentes are lost)

The value of *n has the following meanings.

 *1 ... same as MSX1
 *2 ... call SUB-ROM internally in screen modes 5 to 8
 *3 ... always call SUB-ROM
 *4 ... do not call SUB-ROM while screen modes 4 to 8 are changed

Routines without "*n" are appended for MSX2.

MAIN-ROM

To call routines in MAIN-ROM, the CALL or RTS instruction is used as an
ordinary subroutine call.

* RSTs

Among the following RSTs, RST 00H to RST 28H are used by the BASIC
interpreter. RST 30H is used for inter-slot calls and RST 38H is used for
hardware interrupts.

CHKRAM (0000H) *1
 Function: tests RAM and sets RAM slot for the system
 Input: none
 Output: none
 Registers: all

SYNCHR (0008H) *1
 Funtcion: tests whether the character of [HL] is the specified
 character. If not, it generates SYNTAX ERROR, otherwise it
 goes to CHRGTR (0010H).
 Input: set the character to be tested in [HL] and the character to
 be compared next to RST instruction which calls this routine
 (inline parameter).

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 Example: LD HL,LETTER
 RST 08H
 DB "A"
 .
 .
 .
 LETTER: DB "B"

 Output: HL is increased by one and A receives [HL]. When the tested
 character is numerical, the CY flag is set; the end of the
 statement (00H or 3AH) causes the Z flag to be set.
 Registers: AF, HL

RDSLT (000CH) *1
 Function: selects the slot corresponding to the value of A and reads
 one byte from the memory of the slot. When this routine is
 called, the interrupt is inhibited and remains inhibited
 even after execution ends.
 Input: A for the slot number.

 F000EEPP
 - ----
 | ||++-------------- Basic slot number (0 to 3)
 | ++---------------- Expansion slot number (0 to 3)
 +--------------------- "1" when using expansion slot

 HL for the address of memory to be read
 Output: the value of memory which has been read in A
 Registers: AF, BC, DE

CHRGTR (0010H) *1
 Function: gets a character (or a token) from BASIC text
 Input: [HL] for the character to be read
 Output: HL is incremented by one and A receives [HL]. When the
 character is numerical, the CY flag is set; the end of the
 statement causes the Z flag to be set.
 Registers: AF, HL

WRSLT (0014H) *1
 Function: selects the slot corresponding to the value of A and writes
 one byte to the memory of the slot. When this routine is
 called, interrupts are inhibited and remain so even after
 execution ends.
 Input: specifies a slot with A (same as RDSLT)
 Output: none
 Registers: AF, BC, D

OUTDO (0018H) *2
 Funtion: sends the value to current device
 Input: A for the value to be sent
 sends output to the printer when PTRFLG (F416H) is other
 than 0
 sends output to the file specified by PTRFIL (F864H) when

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 PTRFIL is other than 0
 Output: none
 Registers: none

CALSLT (001CH) *1
 Function: calls the routine in another slot (inter-slot call)
 Input: specify the slot in the 8 high order buts of the IY register
 (same as RDSLT). IX is for the address to be called.
 Output: depends on the calling routine
 Registers: depends on the calling routine

DCOMPR (0020H) *1
 Function: compares the contents of HL and DE
 Input: HL, DE
 Output: sets the Z flag for HL = DE, CY flag for HL < DE
 Registers: AF

ENASLT (0024H) *1
 Function: selects the slot corresponding to the value of A and enables
 the slot to be used. When this routine is called, interrupts
 are inhibited and remain so even after execution ends.
 Input: specify the slot by A (same as RDSLT)
 specify the page to switch the slot by 2 high order bits
 of HL
 Output: none
 Registers: all

GETYPR (0028H) *1
 Function: returns the type of DAC (decimal accumulator)
 Input: none
 Output: S, Z, P/V flags are changed depending on the type of DAC:

 integer type single precision real type
 C = 1 C = 1
 S = 1 * S = 0
 Z = 0 Z = 0
 P/V = 1 P/V = 0 *

 string type double precision real type
 C = 1 C = 0 *
 S = 0 S = 0
 Z = 1 * Z = 0
 P/V = 1 P/V = 1

 Types can be recognised by the flag marked by "*".
 Registers: AF

CALLF (0030H) *1
 Function: calls the routine in another slot. The following is the
 calling sequence:

 RST 30H

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 DB n ;n is the slot number (same as RDSLT)
 DW nn ;nn is the called address

 Input: In the method described above
 Output: depends on the calling routine
 Registers: AF, and other registers depending on the calling routine

KEYINT (0038H) *1
 Function: executes the timer interrupt process routine
 Input: none
 Output: none
 Register: none

* I/O initialisation

INITIO (003BH) *1
 Function: initialises the device
 Input: none
 Output: none
 Registers: all

INIFNK (003EH) *1
 Function: initialises the contents of function keys
 Input: none
 Output: none
 Registers: all

* VDP access

DISSCR (0041H) *1
 Function: inhibits the screen display
 Input: none
 Output: none
 Registers: AF, BC

ENASCR (0044H) *1
 Function: displays the screen
 Input: none
 Output: none
 Registers: all

WRTVDP (0047H) *2
 Function: writes data in the VDP register
 Input: C for the register number, B for data; the register number
 is 0 to 23 and 32 to 46
 Output: none
 Registers: AF, BC

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

RDVRM (004AH) *1
 Function: reads the contents of VRAM. This is for TMS9918, so only the
 14 low order bits of the VRAM address are valid. To use all
 bits, call NRDVRM.
 Input: HL for VRAM address to be read
 Output: A for the value which was read
 Registers: AF

WRTVRM (004DH) *1
 Function: writes data in VRAM. This is for TMS9918, so only the 14 low
 order bits of the VRAM address are valid. To use all bits,
 call NWRVRM.
 Input: HL for VRAM address, A for data
 Output: none
 Registers: AF

SETRD (0050H) *1
 Function: sets VRAM address to VDP and enables it to be read. This is
 used to read data from the sequential VRAM area by using the
 address auto-increment function of VDP. This enables faster
 readout than using RDVRM in a loop. This is for TMS9918, so
 only the 14 low order bits of VRAM address are valid. To use
 all bits, call NSETRD.
 Input: HL for VRAM address
 Output: none
 Registers: AF

SETWRT (0053H) *1
 Function: sets VRAM address to VDP and enables it to be written. The
 purpose is the same as SETRD. This is for TMS9918, so only
 the 14 low order bits of VRAM address are valid. To use all
 bits, call NSETRD.
 Input: HL for VRAM address
 Output: none
 Registers: AF

FILVRM (0056H) *4
 Function: fills the specified VRAM area with the same data. This is for
 TMS9918, so only the 14 low order bits of the VRAM address
 are valid. To use all bits, see BIGFIL.
 Input: HL for VRAM address to begin writing, BC for the length of
 the area to be written, A for data.
 Output: none
 Registers: AF, BC

LDIRMV (0059H) *4
 Function: block transfer from VRAM to memory
 Input: HL for source address (VRAM), DE for destination address
 (memory), BC for the length. All bits of the VRAM address
 are valid.
 Output: none

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 Registers: all

LDIRVM (005CH) *4
 Function: block transfer from memory to VRAM
 Input: HL for source address (memory), DE for destination address
 (VRAM), BC for the length. All bits of the VRAM address are
 valid.
 Output: none
 Registers: all

CHGMOD (005FH) *3
 Function: changes the screen mode. The palette is not initialised. To
 initialise it, see CHGMDP in SUB-ROM.
 Input: A for the screen mode (0 to 8)
 Output: none
 Registers: all

CHGCLR (0062H) *1
 Function: changes the screen colour
 Input: A for the mode
 FORCLR (F3E9H) for foreground color
 BAKCLR (F3EAH) for background color
 BDRCLR (F3EBH) for border colour
 Output: none
 Registers: all

NMI (0066H) *1
 Function: executes NMI (Non-Maskable Interrupt) handling routine
 Input: none
 Output: none
 Registers: none

CLRSPR (0069H) *3
 Function: initialises all sprites. The sprite pattern is cleared to
 null, the sprite number to the sprite plane number, the
 sprite colour to the foregtound colour. The vertical location
 of the sprite is set to 209 (mode 0 to 3) or 217
 (mode 4 to 8).
 Input: SCRMOD (FCAFH) for the screen mode
 Output: none
 Registers: all

INITXT (006CH) *3
 Function: initialises the screen to TEXT1 mode (40 x 24). In this
 routine, the palette is not initialised. To initialise the
 palette, call INIPLT in SUB-ROM after this call.
 Input: TXTNAM (F3B3H) for the pattern name table
 TXTCGP (F3B7H) for the pattern generator table
 LINL40 (F3AEH) for the length of one line
 Output: none
 Registers: all

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

INIT32 (006FH) *3
 Function: initialises the screen to GRAPHIC1 mode (32x24). In this
 routine, the palette is not initialised.
 Input: T32NAM (F3BDH) for the pattern name table
 T32COL (F3BFH) for the colour table
 T32CGP (F3C1H) for the pattern generator table
 T32ATR (F3C3H) for the sprite attribute table
 T32PAT (F3C5H) for the sprite generator table
 Output: none
 Registers: all

INIGRP (0072H) *3
 Function: initialises the screen to the high-resolution graphics mode.
 In this routine, the palette is not initialised.
 Input: GRPNAM (F3C7H) for the pattern name table
 GRPCOL (F3C9H) for the colour table
 GRPCGP (F3CBH) for the pattern generator table
 GRPATR (F3CDH) for the sprite attribute table
 GRPPAT (F3CFH) for the sprite generator table
 Output: none
 Registers: all

INIMLT (0075H) *3
 Function: initialises the screen to MULTI colour mode. In this routine,
 the palette is not initialised.
 Input: MLTNAM (F3D1H) for the pattern name table
 MLTCOL (F3D3H) for the colour table
 MLTCGP (F3D5H) for the pattern generator table
 MLTATR (F3D7H) for the sprite attribute table
 MLTPAT (F3D9H) for the sprite generator table
 Output: none
 Registers: all

SETTXT (0078H) *3
 Function: set only VDP in TEXT1 mode (40x24)
 Input: same as INITXT
 Output: none
 Registers: all

SETT32 (007BH) *3
 Function: set only VDP in GRAPHIC1 mode (32x24)
 Input: same as INIT32
 Output: none
 Registers: all

SETGRP (007EH) *3
 Function: set only VDP in GRAPHIC2 mode
 Input: same as INIGRP
 Output: none
 Registers: all

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

SETMLT (0081H) *3
 Function: set only VDP in MULTI colour mode
 Input: same as INIMLT
 Output: none
 Registers: all

CALPAT (0084H) *1
 Funtion: returns the address of the sprite generator table
 Input: A for the sprite number
 Output: HL for the address
 Registers: AF, DE, HL

CALATR (0087H) *1
 Function: returns the address of the sprite attribute table
 Input: A for the sprite number
 Output: HL for the address
 Registers: AF, DE, HL

GSPSIZ (008AH) *1
 Function: returns the current sprite size
 Input: none
 Output: A for the sprite size (in bytes). Only when the size is
 16 x 16, the CY flag is set; otherwise the CY flag is reset.
 Registers: AF

GRPPRT (008DH) *2
 Function: displays a character on the graphic screen
 Input: A for the character code. When the screen mode is 0 to 8,
 set the logical operation code in LOGOPR (FB02H).
 Output: none
 Registers: none

* PSG

GICINI (0090H) *1
 Function: initialises PSG and sets the initial value for the PLAY
 statement
 Input: none
 Output: none
 Registers: all

WRTPSG (0093H) *1
 Function: writes data in the PSG register
 Input: A for PSG register number, E for data
 Output: none
 Registers: none

RDPSG (0096H) *1

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 Function: reads the PSG register value
 Input: A for PSG register number
 Output: A for the value which was read
 Registers: none

STRTMS (0099H) *1
 Function: tests whether the PLAY statement is being executed as a
 background task. If not, begins to execute the PLAY statement
 Input: none
 Output: none
 Registers: all

* Keyboard, CRT, printer input-output

CHSNS (009CH) *1
 Function: tests the status of the keyboard buffer
 Input: none
 Output: the Z flag is set when the buffer is empty, otherwise the
 Z flag is reset
 Registers: AF

CHGET (009FH) *1
 Function: one character input (waiting)
 Input: none
 Output: A for the code of the input character
 Registers: AF

CHPUT (00A2H) *1
 Function: displays the character
 Input: A for the character code to be displayed
 Output: none
 Registers: none

LPTOUT (00A5H) *1
 Function: sends one character to the printer
 Input: A for the character code to be sent
 Output: if failed, the CY flag is set
 Registers: F

LPTSTT (00A8H) *1
 Function: tests the printer status
 Input: none
 Output: when A is 255 and the Z flag is reset, the printer is READY.
 when A is 0 and the Z flag is set, the printer is NOT READY.
 Registers: AF

CNVCHR (00ABH) *1
 Function: test for the graphic header and transforms the code

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 Input: A for the character code
 Output: the CY flag is reset to not the graphic header
 the CY flag and the Z flag are set to the transformed code
 is set in A
 the CY flag is set and the CY flag is reset to the
 untransformed code is set in A
 Registers: AF

PINLIN (00AEH) *1
 Function: stores in the specified buffer the character codes input
 until the return key or STOP key is pressed.
 Input: none
 Output: HL for the starting address of the buffer minus 1, the CY
 flag is set only when it ends with the STOP key.
 Registers: all

INLIN (00B1H) *1
 Function: same as PINLIN except that AUTFLG (F6AAH) is set
 Input: none
 Output: HL for the starting address of the buffer minus 1, the CY
 flag is set only when it ends with the STOP key.
 Registers: all

QINLIN (00B4H) *1
 Function: executes INLIN with displaying "?" and one space
 Input: none
 Output: HL for the starting address of the buffer minus 1, the CY
 flag is set only when it ends with the STOP key.
 Registers: all

BREAKX (00B7H) *1
 Function: tests Ctrl-STOP key. In this routine, interrupts are
 inhibited.
 Input: none
 Output: the CY flag is set when pressed
 Registers: AF

BEEP (00C0H) *3
 Function: generates BEEP
 Input: none
 Output: none
 Registers: all

CLS (00C3H) *3
 Function: clears the screen
 Input: set zero flag
 Output: none
 Registers: AF, BC, DE

POSIT (00C6H) *1

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 Function: moves the cursor
 Input: H for the X-coordinate of the cursor, L for the Y-coordinate
 Output: none
 Registers: AF

FNKSB (00C9H) *1
 Function: tests whether the function key display is active (FNKFLG).
 If so, displays them, otherwise erases them.
 Input: FNKFLG (FBCEH)
 Output: none
 Registers: all

ERAFNK (00CCH) *1
 Function: erases the function key display
 Input: none
 Output: none
 Registers: all

DSPFNK (00CFH) *2
 Function: displays the function keys
 Input: none
 Output: none
 Registers: all

TOTEXT (00D2H) *1
 Function: forces the screen to be in the text mode
 Input: none
 Output: none
 Registers: all

* Game I/O access

GTSTCK (00D5H) *1
 Function: returns the joystick status
 Input: A for the joystick number to be tested
 Output: A for the joystick direction
 Registers: all

GTTRIG (00D8H) *1
 Function: returns the trigger button status
 Input: A for the trigger button number to be tested
 Output: When A is 0, the trigger button is not being pressed.
 When A is FFH, the trigger button is being pressed.
 Registers: AF

GTPAD (00DBH) *1
 Function: returns the touch pad status
 Input: A for the touch pad number to be tested

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 Output: A for the value
 Registers: all

GTPDL (00DEH) *2
 Function: returns the paddle value
 Input: A for the paddle number
 Output: A for the value
 Registers: all

* Cassette input-output routine

TAPION (00E1H) *1
 Function: reads the header block after turning the cassette motor ON.
 Input: none
 Output: if failed, the CY flag is set
 Registers: all

TAPIN (00E4H) *1
 Function: reads data from the tape
 Input: none
 Output: A for data. If failed, the CY flag is set.
 Registers: all

TAPIOF (00E7H) *1
 Function: stops reading the tape
 Input: none
 Output: none
 Registers: none

TAPOON (00EAH) *1
 Function: writes the header block after turning the cassette motor ON
 Input: A = 0, short header; A <> 0, long header
 Output: if failed, the CY flag is set
 Registers: all

TAPOUT (00EDH) *1
 Function: writes data on the tape
 Input: A for data
 Output: if failed, the CY flag is set
 Registers: all

TAPOOF (00F0H) *1
 Function: stops writing to the tape
 Input: A for data
 Output: if failed, the CY flag is set
 Registers: all

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

STMOTR (00F3H) *1
 Function: sets the cassette motor action
 Input: A = 0 -> stop
 A = 1 -> start
 A = 0FFH -> reverse the current action
 Output: none
 Registers: AF

* Miscellaneous

CHGCAP (0132H) *1
 Function: alternates the CAP lamp status
 Input: A = 0 -> lamp off
 A <>0 -> lamp on
 Output: none
 Registers: AF

CHGSND (0135H) *1
 Function: alternates the 1-bit sound port status
 Input: A = 0 -> OFF
 A <>0 -> ON
 Output: none
 Registers: AF

RSLREG (0138H) *1
 Function: reads the contents of current output to the basic slot
 register
 Input: none
 Output: A for the value which was read
 Registers: A

WSLREG (013BH) *1
 Function: writes to the primary slot register
 Input: A for the value to be written
 Output: none
 Registers: none

RDVDP (013EH) *1
 Function: reads VDP status register
 Input: none
 Output: A for the value which was read
 Registers: A

SNSMAT (0141H) *1
 Function: reads the value of the specified line from the keyboard
 matrix
 Input: A for the specified line
 Output: A for data (the bit corresponding to the pressed key will
 be 0)

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 Registers: AF, C

PHYDIO (0144H)
 Function: Physical input/output for disk devices
 Input: A for the drive number (0 = A:, 1 = B:,...)
 B for the number of sector to be read from or written to
 C for the media ID
 DE for the first sector number to be read rom or written to
 HL for the startinga address of the RAM buffer to be
 read from or written to specified sectors
 CY set for sector writing; reset for sector reading
 Output: CY set if failed
 B for the number of sectors actually read or written
 A for the error code (only if CY set):
 0 = Write protected
 2 = Not ready
 4 = Data error
 6 = Seek error
 8 = Record not found
 10 = Write error
 12 = Bad parameter
 14 = Out of memory
 16 = Other error
 Registers: all

ISFLIO (014AH) *1
 Function: tests whether the device is active
 Input: none
 Output: A = 0 -> active
 A <>0 -> inactive
 Registers: AF

OUTDLP (014DH) *1
 Function: printer output.Different from LPTOUT in the following points:
 1. TAB is expanded to spaces
 2. For non-MSX printers, hiragana is transformed to
 katakana and graphic characters are transformed to
 1-byte characters.
 3. If failed, device I/O error occurs.
 Input: A for data
 Output: none
 Registers: F

KILBUF (0156H) *1
 Function: clears the keyboard buffer
 Input: none
 Output: none
 Registers: HL

CALBAS (0159H) *1
 Function: executes inter-slot call to the routine in BASIC interpreter
 Input: IX for the calling address

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 Output: depends on the called routine
 Registers: depends on the called routine

* Entries appended for MSX2

SUBROM (015CH)
 Function: executes inter-slot call to SUB-ROM
 Input: IX for the calling address and, at the same time, pushes IX
 on the stack
 Output: depends on the called routine
 Registers: background registers and IY are reserved

EXTROM (015FH)
 Function: executes inter-slot call to SUB-ROM
 Input: IX for the calling address
 Output: depends on the called routine
 Registers: background registers and IY are reserved

EOL (0168H)
 Function: deletes to the end of the line
 Input: H for X-coordinate of the cursor, L for Y-coordinate
 Output: none
 Registers: all

BIGFIL (016BH)
 Function: same function as FILVRM. Differences are as follows:
 In FILVRM, it is tested whether the screen mode is 0 to 3.
 If so, it treats VDP as the one which has only 16K bytes
 VRAM (for the compatibility with MSX1). In BIGFIL, the
 mode is not tested and actions are carried out by the
 given parameters.
 Input: same as FILVRM
 Output: same as FILVRM
 Registers: same as FILVRM

NSETRD (016EH)
 Function: enables VRAM to be read by setting the address
 Input: HL for VRAM address
 Output: none
 Registers: AF

NSTWRT (0171H)
 Function: enables VRAM to be written by setting the address
 Input: HL for VRAM address
 Output: none
 Registers: AF

NRDVRM (0174H)

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 Function: reads the contents of VRAM
 Input: HL for VRAM address to be read
 Output: A for the value which was read
 Registers: F

NWRVRM (0177H)
 Function: writes data in VRAM
 Input: HL for VRAM address, A for data
 Output: none
 Registers: AF

SUB-ROM

The calling sequence of SUB-ROM is as follows:

 .
 .
 .
 LD IX, INIPLT
 ; Set BIOS entry address
 CALL EXTROM
 ; Returns here
 .
 .
 .

When the contents of IX should not be destroyed, use the call as shown below.

 .
 .
 .
INIPAL: PUSH IX
 ; Save IX
 LD IX, INIPLT
 ; Set BIOS entry address
 JP SUBROM
 ;Returns caller of INIPAL
 .
 .
 .

GRPRT (0089H)
 Function: one character output to the graphic screen (active only in
 screen modes 5 to 8)
 Input: A for the character code
 Output: none
 Registers: none

NVBXLN (00C9H)
 Function: draws a box
 Input: start point: BC for X-coordinate, DE for Y-coordinate

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 end point: GXPOS (FCB3H) for X-coordinate
 GYPOS (FCB5H) for Y-coordinate
 colour: ATRBYT (F3F3H) for the attribute
 logical operation code: LOGOPR (FB02H)
 Output: none
 Registers: all

NVBXFL (00CDH)
 Function: draws a painted box
 Input: start point: BC for X-coordinate, DE for Y-coordinate
 end point: GXPOS (FCB3H) for X-coordinate
 GYPOS (FCB5H) for Y-coordinate
 colour: ATRBYT (F3F3H) for the attribute
 logical operation code: LOGOPR (FB02H)
 Output: none
 Registers: all

CHGMOD (00D1H)
 Function: changes the screen mode
 Input: A for the screen mode (0 to 8)
 Output: none
 Registers: all

INITXT (00D5H)
 Function: initialises the screen to TEXT1 mode (40 x 24)
 Input: TXTNAM (F3B3H) for the pattern name table
 TXTCGP (F3B7H) for the pattern generator table
 LINL40 (F3AEH) for the length of one line
 Output: none
 Registers: all

INIT32 (00D9H)
 Function: initialises the screen to GRAPHIC1 mode (32x24)
 Input: T32NAM (F3BDH) for the pattern name table
 T32COL (F3BFH) for the colour table
 T32CGP (F3C1H) for the pattern generator table
 T32ATR (F3C3H) for the sprite attribute table
 T32PAT (F3C5H) for the sprite generator table
 Output: none
 Registers: all

INIGRP (00DDH)
 Function: initialises the screen to the high-resolution graphics mode
 Input: GRPNAM (F3C7H) for the pattern name table
 GRPCOL (F3C9H) for the colour table
 GRPCGP (F3CBH) for the pattern generator table
 GRPATR (F3CDH) for the sprite attribute table
 GRPPAT (F3CFH) for the sprite generator table
 Output: none
 Registers: all

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

INIMLT (00E1H)
 Function: initialises the screen to MULTI colour mode
 Input: MLTNAM (F3D1H) for the pattern name table
 MLTCOL (F3D3H) for the colour table
 MLTCGP (F3D5H) for the pattern generator table
 MLTATR (F3D7H) for the sprite attribute table
 MLTPAT (F3D9H) for the sprite generator table
 Output: none
 Registers: all

SETTXT (00E5H)
 Function: sets VDP in the text mode (40x24)
 Input: same as INITXT
 Output: none
 Registers: all

SETT32 (00E9H)
 Function: ses VDP in the text mode (32x24)
 Input: same as INIT32
 Output: none
 Registers: all

SETGRP (00EDH)
 Function: sets VDP in the high-resolution mode
 Input: same as INIGRP
 Output: none
 Registers: all

SETMLT (00F1H)
 Function: sets VDP in MULTI COLOUR mode
 Input: same as INIMLT
 Output: none
 Registers: all

CLRSPR (00F5H)
 Function: initialises all sprites. The sprite pattern is set to null,
 sprite number to sprite plane number, and sprite colour to
 the foregtound colour. The vertical location of the sprite
 is set to 217.
 Input: SCRMOD (FCAFH) for the screen mode
 Output: none
 Registers: all

CALPAT (00F9H)
 Funtion: returns the address of the sprite generator table
 (this routine is the same as CALPAT in MAIN-ROM)
 Input: A for the sprite number
 Output: HL for the address
 Registers: AF, DE, HL

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

CALATR (00FDH)
 Function: returns the address of the sprite attribute table
 (this routine is the same as CALATR in MAIN-ROM)
 Input: A for the sprite number
 Output: HL for the address
 Registers: AF, DE, HL

GSPSIZ (0101H)
 Function: returns the current sprite size
 (this routine is the same as GSPSIZ in MAIN-ROM)
 Input: none
 Output: A for the sprite size. The CY flag is set only for the size
 16 x 16.
 Registers: AF

GETPAT (0105H)
 Function: returns the character pattern
 Input: A for the character code
 Output: PATWRK (FC40H) for the character pattern
 Registers: all

WRTVRM (0109H)
 Function: writes data in VRAM
 Input: HL for VRAM address (0 TO FFFFH), A for data
 Output: none
 Registers: AF

RDVRM (010DH)
 Function: reads the contents of VRAM
 Input: HL for VRAM address (0 TO FFFFH) to be read
 Output: A for the value which was read
 Registers: AF

CHGCLR (0111H)
 Function: changes the screen colour
 Input: A for the mode
 FORCLR (F3E9H) for the foreground color
 BAKCLR (F3EAH) for the background color
 BDRCLR (F3EBH) for the border colour
 Output: none
 Registers: all

CLSSUB (0115H)
 Function: clears the screen
 Input: none
 Output: none
 Registers: all

DSPFNK (011DH)
 Function: displays the function keys

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 Input: none
 Output: none
 Registers: all

WRTVDP (012DH)
 Function: writes data in the VDP register
 Input: C for the register number, B for data
 Output: none
 Registers: AF, BC

VDPSTA (0131H)
 Function: reads the VDP register
 Input: A for the register number (0 to 9)
 Output: A for data
 Registers: F

SETPAG (013DH)
 Function: switches the page
 Input: DPPAGE (FAF5H) for the display page number
 ACPAGE (FAF6H) for the active page number
 Output: none
 Registers: AF

INIPLT (0141H)
 Function: initialises the palette(the current palette is saved in VRAM)
 Input: none
 Output: none
 Registers: AF, BC, DE

RSTPLT (0145H)
 Function: restores the palette from VRAM
 Input: none
 Output: none
 Registers: AF, BC, DE

GETPLT (0149H)
 Function: obtains the colour code from the palette
 Input: D for the palette number (0 to 15)
 Output: 4 high order bits of B for red code
 4 low order bits of B for blue code
 4 low order bits of C for green code
 Registers: AF, DE

SETPLT (014DH)
 Function: sets the colour code to the palette
 Input: D for the palette number (0 to 15)
 4 high order bits of A for red code
 4 low order bits of A for blue code
 4 low order bits of E for green code
 Output: none

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 Registers: AF

BEEP (017DH)
 Function: generates BEEP
 Input: none
 Output: none
 Registers: all

PROMPT (0181H)
 Function: displays the prompt
 Input: none
 Output: none
 Registers: all

NEWPAD (01ADH)
 Function: reads the status of mouse or light pen
 Input: call with setting the following data in A;
 descriptions in parenthesis are return values.
 8 light pen check (valid at 0FFH)
 9 returns X-coordinate
 10 returns Y-coordinate
 11 returns the light pen switch status
 (0FFH, when pressed)
 12 whether the mouse is connected to the
 port 1 (valid at 0FFH)
 13 returns the offset in X direction
 14 returns the offset in Y direction
 15 (always 0)
 16 whether the mouse is connected to the
 port 2 (valid at 0FFH)
 17 returns the offset in X direction
 18 returns the offset in Y direction
 19 (always 0)
 Output: A
 Registers: all

CHGMDP (01B5H)
 Function: changes VDP mode. The palette is initialised.
 Input: A for the screen mode (0 to 8)
 Output: none
 Registers: all

KNJPRT (01BDH)
 Function: sends a kanki to the graphic screen (modes 5 to 8)
 Input: BC for JIS kanji code, A for the display mode. The display
 mode has the following meaning, similar to the PUT KANJI
 command of BASIC.
 0 display in 16 x 16 dot
 1 display even dots
 2 display odd dots

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

REDCLK (01F5H)
 Function: reads the clock data
 Input: C for RAM address of the clock

 00MMAAAA

 ||++++--- Address (0 to 15)
 ++------- Mode (0 to 3)
 Output: A for the data which were read (only 4 low order bits are
 valid)
 Registers: F

WRTCLK (01F9H)
 Function: writes the clock data
 Input: A for the data to be written, C for RAM address of the clock
 Output: none
 Registers: F

===

Changes from the original in APPENDIX 2:

- In the explanation before Figure A.3, the indication about the excess 64
method has been added.

- In Figure A.3, in the third byte, "63rd power of 10" has been corrected to
"-63rd power of 10".

- In the explanation before Figure A.3, the indication about the excess 64
method has been added.

- In Figure A.3, in the third byte, "63rd power of 10" has been corrected to
"-63rd power of 10".

-=-

APPENDIX 2 - MATH-PACK

The Math-Pack is the core for the mathematical routines of MSX-BASIC and, by
calling these routines from an assembly language program, floating-point
operations and trigonometrical functions are available.

Any operations involving real numbers in Math-Pack are done in BCD (Binary
Coded Decimal). There are two ways of expressing a real number, "single
precision" and "double precision"; a single precision real number (6 digits)
is expressed by 4 bytes and a double precision real number (14 digits) by 8
bytes (see Figure A.1 and Figure A.2).

 Figure A.1 BCD format for expressing real numbers

 MSB 7 6 5 4 3 2 1 0 LSB
 --- --- ---
 ^ ^ |sign | exponent | 0

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 | | ---
 | | ---
 | | | mantissa 1st place | mantissa 2nd place | 1
 | single ---
 | precision ---
 | | | mantissa 3rd place | mantissa 4th place | 2
 | | ---
 | | ---
 | V | mantissa 5th place | mantissa 6th place | 3
 double --- ---
precision ---
 | | mantissa 7th place | mantissa 8th place | 4

 V | mantissa 13th place | mantissa 14th place | 7
 --- ---

 Figure A.2 Examples of expressions for real numbers

 Example of the single precision expression

 123456 --> 0.123456 E+6

 1 2 3 4

 DAC | 46 | 12 | 34 | 56 |

 Example of the double precision expression

 123456.78901234 --> 0.12345678901234 E+6

 1 2 3 4 5 6 7 8

 DAC | 46 | 12 | 34 | 56 | 78 | 90 | 12 | 34 |

A real number consists of a sign, an exponent, and a mantissa. The sign
represents the sign of the mantissa; 0 for positive, 1 for negative. The
exponent is a binary expression and can be expressed as a power from +63 to
-63, with an excess of 64 (see Figure A.3). Figure A.4 shows the valid range
of double precision real numbers.

 Figure A.3 Exponent format

|sign |<--------------- exponent -------------->| meaning

| 0 | 0 0 0 0 0 0 0 | 0

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

| 1 | 0 0 0 0 0 0 0 | undefined (-0?)

| x | 0 0 0 0 0 0 1 | -63rd power of 10

| x | 1 0 0 0 0 0 0 | 0th power of 10

| x | 1 1 1 1 1 1 1 | +63rd power of 10

 Note: "x" is 1 or 0, both of which are allowed.

 Figure A.4 Valid range for double precision real numbers

 7 6 5 4 3 2 1 0 (byte)

DAC | FF | 99 | 99 | 99 | 99 | 99 | 99 | 99 | -0.99999999999999 E+63

 .
 .
 .

 | 81 | 10 | 00 | 00 | 00 | 00 | 00 | 00 | -0.10000000000000 E-63

 | 00 | x | x | x | x | x | x | x | 0

 | 01 | 10 | 00 | 00 | 00 | 00 | 00 | 00 | +0.10000000000000 E-63

 .
 .
 .

 | 7F | 99 | 99 | 99 | 99 | 99 | 99 | 99 | +0.99999999999999 E+63

In Math-Pack, the memory is predefined for operation. This memory area is
called "DAC (Decimal ACumulator (F7F6H)" and the area which reserves the
numerical value to be operated is called "ARG (F847H)". For example, in
multiplication, the product of the numbers in DAC and ARG is calculated and
the result is returned in the DAC.

In the DAC, single precision real numbers, double precision real numbers, and
two-byte integers can be stored. In order to distinguish them, "VALTYP
(F663H)" is used and its value is 4 for single precision real numbers, 8 for
double precision real numbers, and 2 for two-byte integers.

Single and double precision numbers must be stored from the top of the DAC.
For two-byte integers, the low and high bytes should be stored in DAC + 2 and
DAC + 3.

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

Since Math-Pack is an internal routine of BASIC, when an error occurs (such
as division by 0 or overflow), control automatically jumps to the
corresponding error routine, then returns to BASIC command level. To prevent
this, change H.ERRO (FFB1H).

* Math-Pack work area

| Label | Address | Size | Meaning |
|-----------+-----------+--------+--|
VALTYP	F663H	1	format of the number in DAC
DAC	F7F6H	16	floating point accumulator in BCD format
ARG	F847H	16	argument of DAC

* Math-Pack entry

Basic operation

| Label | Address | Function |
|-----------+-----------+-----------------------|
DECSUB	268CH	DAC <-- DAC - ARG
DECADD	269AH	DAC <-- DAC + ARG
DECNRM	26FAH	normalises DAC (*1)
DECROU	273CH	rounds DAC
DECMUL	27E6H	DAC <-- DAC * ARG
DECDIV	289FH	DAC <-- DAC / ARG

Note: These operations treat numbers in DAC and ARG as the double precision
 number. Registers are not preserved.
*1 Excessive zeros in mantissa are removed. (0.00123 --> 0.123 E-2)

Function 1

--
| Label | Address | Function | Register modified |
|-----------+-----------+----------------------+---------------------|
COS	2993H	DAC <-- COS(DAC)	all
SIN	29ACH	DAC <-- SIN(DAC)	all
TAN	29FBH	DAC <-- TAN(DAC)	all
ATN	2A14H	DAC <-- ATN(DAC)	all
LOG	2A72H	DAC <-- LOG(DAC)	all
SQR	2AFFH	DAC <-- SQR(DAC)	all
EXP	2B4AH	DAC <-- EXP(DAC)	all
RND	2BDFH	DAC <-- RND(DAC)	all
--

Note: These processing routines all have the same function names as those in
 BASIC. "All" registers are A, B, C, D, E, H, and L.

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

Function 2

--
| Label | Address | Function | Register modified |
|-----------+-----------+----------------------+---------------------|
SIGN	2E71H	A <-- sign of DAC	A
ABSFN	2E82H	DAC <-- ABS(DAC)	all
NEG	2E8DH	DAC <-- NEG(DAC)	A,HL
SGN	2E97H	DAC <-- SGN(DAC)	A,HL
--

Note: Except for SIGN, these processing routines all have the same function
 names as those in BASIC. Registers are A, B, C, D, E, H, and L.
 Note that for SGN, the result is represented as a 2-byte integer.

Movement

--
| Label | Address | Function | Object | Reg. mod. |
|-----------+-----------+---------------------+--------------+-------------|
MAF	2C4DH	ARG <-- DAC	double prec.	A,B,D,E,H,L
MAM	2C50H	ARG <-- (HL)	double prec.	A,B,D,E,H,L
MOV8DH	2C53H	(DE) <-- (HL)	double prec.	A,B,D,E,H,L
MFA	2C59H	DAC <-- ARG	double prec.	A,B,D,E,H,L
MFM	2C5CH	DAC <-- (HL)	double prec.	A,B,D,E,H,L
MMF	2C67H	(HL) <-- DAC	double prec.	A,B,D,E,H,L
MOV8HD	2C6AH	(HL) <-- (DE)	double prec.	A,B,D,E,H,L
XTF	2C6FH	(SP) <--> DAC	double prec.	A,B,D,E,H,L
PHA	2CC7H	ARG <-- (SP)	double prec.	A,B,D,E,H,L
PHF	2CCCH	DAC <-- (SP)	double prec.	A,B,D,E,H,L
PPA	2CDCH	(SP) <-- ARG	double prec.	A,B,D,E,H,L
PPF	2CE1H	(SP) <-- DAC	double prec.	A,B,D,E,H,L
PUSHF	2EB1H	DAC <-- (SP)	single prec.	D,E
MOVFM	2EBEH	DAC <-- (HL)	single prec.	B,C,D,E,H,L
MOVFR	2EC1H	DAC <-- (CBED)	single prec.	D,E
MOVRF	2ECCH	(CBED) <-- DAC	single prec.	B,C,D,E,H,L
MOVRMI	2ED6H	(CBED) <-- (HL)	single prec.	B,C,D,E,H,L
MOVRM	2EDFH	(BCDE) <-- (HL)	single prec.	B,C,D,E,H,L
MOVMF	2EE8H	(HL) <-- DAC	single prec.	A,B,D,E,H,L
MOVE	2EEBH	(HL) <-- (DE)	single prec.	B,C,D,E,H,L
VMOVAM	2EEFH	ARG <-- (HL)	VALTYP	B,C,D,E,H,L
MOVVFM	2EF2H	(DE) <-- (HL)	VALTYP	B,C,D,E,H,L
VMOVE	2EF3H	(HL) <-- (DE)	VALTYP	B,C,D,E,H,L
VMOVFA	2F05H	DAC <-- ARG	VALTYP	B,C,D,E,H,L
VMOVFM	2F08H	DAC <-- (HL)	VALTYP	B,C,D,E,H,L
VMOVAF	2F0DH	ARG <-- DAC	VALTYP	B,C,D,E,H,L
VMOVMF	2F10H	(HL) <-- DAC	VALTYP	B,C,D,E,H,L
--

Note: (HL), (DE) means the values in memory pointed to by HL or DE. Four
 register names in the parentheses are the single precision real numbers
 which indicate (sign + exponent), (mantissa 1st and 2nd places),
 (mantissa 3th and 4th places), (mantissa 5th and 6th places) from left
 to right. Where the object is VALTYP, the movement (2, 4, 8 bytes) is
 according to the type indicated in VALTYP (F663H).

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

Comparison

| Label | Address | Object | Left | Right |Reg. mod.|
|-----------+-----------+--------------------------+------+-------+---------|
FCOMP	2F21H	single prec. real number	CBED	DAC	HL
ICOMP	2F4DH	2-byte integer	DE	HL	HL
XDCOMP	2F5CH	double prec. real number	ARG	DAC	all

Note: Results will be in A register. Meanings of A register are:

 A = 1 --> left < right
 A = 0 --> left = right
 A = -1 --> left > right

 In the comparison of single precision real numbers, CBED means that
 each register has single precision (sign + exponent),
 (mantissa 1st and 2nd places), (mantissa 3th and 4th places), and
 (mantissa 5th and 6th places).

Floating-point input/output

| Label | Address | Function |
|-----------+-----------+---|
| FIN | 3299H | Stores a string representing the floating-point |
| | | number in DAC, converting it in real. |
|---|
| Entry condition HL <-- Starting address of the string |
| A <-- First character of the string |
| Return condition DAC <-- Real number |
| C <-- FFH: without a decimal point |
| 0: with a decimal point |
| B <-- Number of places after the decimal point |
D <-- Number of digits

| Label | Address | Function |
|-----------+-----------+---|
FOUT	3425H	Converts the real number in DAC to the string
		(unformatted)
PUFOUT	3426H	Converts the real number in DAC to the string
| | | (formatted) |
|---|
| Entry condition A <-- format |
| bit 7 0: unformatted 1: formatted |
| bit 6 0: without commas 1: with commas every three digits |
| bit 5 0: meaningless 1: leading spaces are padded with "." |
| bit 4 0: meaningless 1: "$" is added before the numerical value |
| bit 3 0: meaningless 1: "+" is added even for positive values |
| bit 2 0: meaningless 1: the sign comes after the value |
| bit 1 unused |
| bit 0: 0: fixed point 1: floating-point |
| B <-- number of digits before and not including the decimal point |

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

| C <-- number of digits after and including the decimal point |
Return condition HL <-- starting address of the string

| Label | Address | Function |
|-----------+-----------+---|
FOUTB	371AH	Converts 2-byte integer in DAC+2, 3 to a
		binary expression string.
FOUTO	371EH	Converts 2-byte integer in DAC+2, 3 to an
		octal expression string.
FOUTH	3722H	Converts 2-byte integer in DAC+2, 3 to a
| | | hexadecimal expression string. |
|---|
| Entry condition DAC + 2 <-- 2-byte integer |
| VALTYP <-- 2 |
Return condition HL <-- starting address of the string

Note: no strings are reserved. The starting address of the string in the
 output routine is normally in FBUFFR (from F7C5H). In some cases it
 may differ slightly. For the integer in DAC + 2, VALTYP (F663H) must
 be 2, even in cases other than FOUTB, FOUTO and FOUTH.

Type conversion

| Label | Address | Function |
|-----------+-----------+---|
FRCINT	2F8AH	Converts DAC to a 2-byte integer (DAC + 2, 3)
FRCSNG	2FB2H	Converts DAC to a single precision real number
FRCDBL	303AH	Converts DAC to a double precision real number
FIXER	30BEH	DAC <-- SGN(DAC) * INT(ABS(DAC))

Note: after execution, VALTYP (F663H) will contain the number (2, 4 or 8)
 representing DAC type. No registers are reserved.

Integer operation

| Label | Address | Function | Registers modified |
|-----------+-----------+----------------------+----------------------|
UMULT	314AH	DE <-- BC * DE	A, B, C, D, E
ISUB	3167H	HL <-- DE - HL	all
IADD	3172H	HL <-- DE + HL	all
IMULT	3193H	HL <-- DE * HL	all
IDIV	31E6H	HL <-- DE / HL	all
IMOD	323AH	HL <-- DE mod HL	alle
		(DE <-- DE/HL)	

Power

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

| Label | Address | Function | Base | Exp. | Result |
|-----------+-----------+----------------------------+------+------+--------|
SGNEXP	37C8H	power of single-prec. real	DAC	ARG	DAC
DBLEXP	37D7H	power of double-prec. real	DAC	ARG	DAC
INTEXP	383FH	power of 2-byte integer	DE	HL	DAC

Note: No registers are reserved.

===

Changes from the original in APPENDIX 3:

none

-=-

APPENDIX 3 - BIT BLOCK TRANSFER

The bit block transfer corresponds to the COPY command in BASIC and is used
to transfer data from RAM, VRAM, and the disk. It is easily executed by the
routine in expansion ROM and available from the assembly language program.
Since it is in expansion ROM, use SUBROM or EXTROM of BIOS for this routine.

1. Transferring in VRAM

* BLTVV (0191H/SUB)

 Function: transfers data in VRAM area

 Input: HL register <-- F562H
 The following parameters should be set:

 * SX (F562H, 2) X-coordinate of the source
 * SY (F564H, 2) Y-coordinate of the source
 * DX (F566H, 2) X-coordinate of the destination
 * DY (F568H, 2) Y-coordinate of the destination
 * NX (F56AH, 2) number of dots in the X direction
 * NY (F56CH, 2) number of dots in the Y direction
 * CDUMMY (F56EH, 1) dummy (not required to be set)
 * ARG (F56FH, 1) selects the direction and expansion
 RAM (same as VDP R#45)
 * LOGOP (F570H, 1) logical operation code (same as the
 logical operation code of VDP)

 Output: the CY flag is reset

 Registers: all

2. Transferring data between RAM and VRAM

To use the routines below, the following memory space should be allocated as

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

graphic area for screen modes.

* screen mode 6
 number of dots in X direction times number of dots in Y direction/4 + 4

* screen mode 5 or 7
 number of dots in X direction times number of dots in Y direction/2 + 4

* screen mode 8
 number of dots in X direction times number of dots in Y direction/2 + 4

Note to raise fractions.

For disk or RAM, data to indicate the size is added as the array data. The
first two bytes of data indicate the number of dots in X direction; the next
two bytes indicate the number of dots in the Y direction.

* BLTVM (0195H/SUB)

 Function: transfers the array to VRAM

 Input: HL register <-- F562H
 The following parameters should be set:

 * DPTR (F562H, 2) source address of memory
 * DUMMY (F564H, 2) dummy (not required to be set)
 * DX (F566H, 2) X-coordinate of the destination
 * DY (F568H, 2) Y-coordinate of the destination
 * NX (F56AH, 2) number of dots in the X direction
 (not required to be set; this is
 already in the top of data to be
 transferred)
 * NY (F56CH, 2) number of dots in the Y direction
 (not required to be set; this is
 already in the top of data to be
 transferred)
 * CDUMMY (F56EH, 1) dummy (not required to be set)
 * ARG (F56FH, 1) selects the direction and expansion
 RAM (same as VDP R#45)
 * LOGOP (F570H, 1) logical operation code (same as the
 logical operation code of VDP)

 Output: the CY flag is set when the number of data bytes to be
 transferred is incorrect

 Registers: all

* BLTMV (0199H/SUB)

 Function: transfers to the array from VRAM

 Input: HL register <-- F562H
 The following parameters should be set:

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 * SX (F562H, 2) X-coordinate of the source
 * SY (F564H, 2) Y-coordinate of the source
 * DPTR (F566H, 2) destination address of memory
 * DUMMY (F568H, 2) dummy (not required to be set)
 * NX (F56AH, 2) number of dots in the X direction
 * NY (F56CH, 2) number of dots in the Y direction
 * CDUMMY (F56EH, 1) dummy (not required to be set)
 * ARG (F56FH, 1) selects the direction and expansion
 RAM (same as VDP R#45)

 Output: the CY flag is reset

 Registers: all

3. Transferring between the disk and RAM or VRAM

The filename should be set first to use the disk (specify the filename as
BASIC). The following is an example:

 .
 .
 .
 LD HL,FNAME ; Get pointer to file name
 LD (FNPTR),HL ; Set it to parameter area
 .
 .
 .
FNAME: DB 22H,"B:TEST.PIC",22H,0 ; "TEST.PIC", end mark

When an error occurs, control jumps to the error handler of the BASIC
interpreter. Set the hook to handle the error in the user program or to call
this routine from MSX-DOS or a ROM cartridge. This hook is H.ERRO (FFB1H).

* BLTVD (019DH/SUB)

 Function: transfers from disk to VRAM

 Input: HL register <-- F562H
 The following parameters should be set:

 * FNPTR (F562H, 2) address of the filename
 * DUMMY (F564H, 2) dummy (not required to be set)
 * DX (F566H, 2) X-coordinate of the destination
 * DY (F568H, 2) Y-coordinate of the destination
 * NX (F56AH, 2) number of dots in the X direction
 (not required to be set; this is
 already in the top of data to be
 transferred)
 * NY (F56CH, 2) number of dots in the Y direction
 (not required to be set; this is
 already in the top of data to be
 transferred)
 * CDUMMY (F56EH, 1) dummy (not required to be set)
 * ARG (F56FH, 1) selects the direction and expansion
 RAM (same as VDP R#45)

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 * LOGOP (F570H, 1) logical operation code (same as the
 logical operation code of VDP)

 Output: the CY flag is set when there is an error in the parameter

 Registers: all

* BLTDV (01A1H/SUB)

 Function: transfers from VRAM to disk

 Input: HL register <-- F562H
 The following parameters should be set:

 * SX (F562H, 2) X-coordinate of the source
 * SY (F564H, 2) Y-coordinate of the source
 * FNPTR (F566H, 2) address of the filename
 * DUMMY (F568H, 2) dummy (not required to be set)
 * NX (F56AH, 2) number of dots in the X direction
 * NY (F56CH, 2) number of dots in the Y direction
 * CDUMMY (F56EH, 1) dummy (not required to be set)

 Output: the CY flag is reset

 Registers: all

* BLTMD (01A5H/SUB)

 Function: loads array data from disk

 Input: HL register <-- F562H
 The following parameters should be set:

 * FNPTR (F562H, 2) address of the filename
 * SY (F564H, 2) dummy (not required to be set)
 * SPTR (F566H, 2) the starting address for loading
 * EPTR (F568H, 2) the end address for loading

 Output: the CY flag is reset

 Registers: all

* BLTDM (01A9H/SUB)

 Function: saves array data to disk

 Input: HL register <-- F562H
 The following parameters should be set:

 * SPTR (F562H, 2) the starting address for saving
 * EPTR (F564H, 2) the end address for saving
 * FNPTR (F566H, 2) address of the filename

 Output: the CY flag is reset

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 Registers: all

===

Changes from the original in APPENDIX 4:

- Address of FLAGS variable is corrected from FB1BH to FB1CH.

- Address of MCLLEN variable is corrected from FB39H to FB3BH.

- Address of H.FIEL hook is corrected from DE2BH to FE2BH.

-=-

APPENDIX 4 - WORK AREA LISTING

Figure A.5 shows the map of the MSX2 work area. In this section, the system
work area and hook from F380H to FFCAH in the figure are described. The
following notation is used. Length is in bytes.

 Label name (address, length)

 Initial value, contents, purpose

 Figure A.5 Work area

FFFF ---------------------------
 | slot selection register |
FFFC |-------------------------|
 | reserved |
FFF8 |-------------------------|
FFF7 | MAIN-ROM slot address |
 |-------------------------|
 | register reservation |
 | area for new |
FFE7 | VDP (9938) |
 |-------------------------|
 | program for |
FFCA | expansion BIOS calls |
 |-------------------------|
 | |
 | hook area |
FD9A | |
 |-------------------------|
 | |
 | system work area |
F380 | |

* Subroutines for read/write calls of the inter-slot

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

RDPRIM (F380H, 5)
 contents: read from basic slot

WRPRIM (F385H, 7)
 contents: write to basic slot

CLPRIM (F38CH, 14)
 contents: basic slot call

* Starting address of assembly language program of USR function, text screen

USRTAB (F39AH, 20)
 initial value: FCERR
 contents: starting address of assembly language program of USR function
 (0 to 9); the value before defining assembly language program
 points to FCERR (475AH).

LINL40 (F3AEH, 1)
 initial value: 39
 contents: screen width per line at SCREEN 0 (set by WIDTH statement
 at SCREEN 0)

LINL32 (F3AfH, 1)
 initial value: 32
 contents: screen width per line at SCREEN 1 (set by WIDTH statement
 at SCREEN 1)

LINLEN (F3B0H, 1)
 initial value: 29
 contents: current screen width per line

CRTCNT (F3B1H, 1)
 initial value: 24
 contents: number of lines of current screen

CLMLST (F3B2H, 1)
 initial value: 14
 contents: horizontal location in the case that items are divided by
 commas in PRINT statement

* Work for initialisation

- SCREEN 0

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

TXTNAM (F3B3H, 2)
 initial value: 0000H
 contents: pattern name table

TXTCOL (F3B5H, 2)
 contents: unused

TXTCGP (F3B7H, 2)
 initial value: 0800H
 contents: pattern generator table

TXTATR (F3B9H, 2)
 contents: unused

TXTPAT (F3BBH, 2)
 contents: unused

- SCREEN 1

T32NAM (F3BDH, 2)
 initial value: 1800H
 contents: pattern name table

T32COL (F3BFH, 2)
 initial value: 2000H
 contents: colour table

T32CGP (F3C1H, 2)
 initial value: 0000H
 contents: pattern generator table

T32ATR (F3C3H, 2)
 initial value: 1B00H
 contents: sprite attribute table

T32PAT (F3C5H, 2)
 initial value: 3800H
 contents: sprite generator table

- SCREEN 2

GRPNAM (F3C7H, 2)
 initial value: 1800H
 contents: pattern name table

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

GRPCOL (F3C9H, 2)
 initial value: 2000H
 contents: colour table

GRPCGP (F3CBH, 2)
 initial value: 0000H
 contents: pattern generator table

GRPATR (F3CDH, 2)
 initial value: 1B00H
 contents: sprite attribute table

GRPPAT (F3CFH, 2)
 initial value: 3800H
 contents: sprite generator table

- SCREEN 3

MLTNAM (F3D1H, 2)
 initial value: 0800H
 contents: pattern name table

MLTCOL (F3D3H, 2)
 contents: unused

MLTCGP (F3D5H, 2)
 initial value: 0000H
 contents: pattern generator table

MLTATR (F3D7H, 2)
 initial value: 1B00H
 contents: sprite attribute table

MLTPAT (F3D9H, 2)
 initial value: 3800H
 contents: sprite generator table

* Other screen settings

CLIKSW (F3DBH, 1)
 initial value: 1
 contents: key click switch (0 = OFF, otherwise = ON), set by
 <key click switch> of SCREEN statement

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

CSRY (F3DCH, 1)
 initial value: 1
 contents: Y-coordinate of cursor

CSRX (F3DDH, 1)
 initial value: 1
 contents: X-coordinate of cursor

CNSDFG (F3DEH, 1)
 initial value: 0
 contents: function key display switch (0 = display, otherwise = no
 display), set by KEY ON/OFF statement

* Area to save VDP registers

RG0SAV (F3DFH, 1)
 initial value: 0

RG1SAV (F3E0H, 1)
 initial value: E0H

RG2SAV (F3E1H, 1)
 initial value: 0

RG3SAV (F3E2H, 1)
 initial value: 0

RG4SAV (F3E3H, 1)
 initial value: 0

RG5SAV (F3E4H, 1)
 initial value: 0

RG6SAV (F3E5H, 1)
 initial value: 0

RG7SAV (F3E6H, 1)
 initial value: 0

STATFL (F3E7H, 1)
 initial value: 0
 contents: stores VDP status (contents of status register 0, in MSX2)

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

TRGFLG (F3E8H, 1)
 initial value: FFH
 contents: stores trigger button status of joystick

FORCLR (F3E9H, 1)
 initial value: 15
 contents: foreground colour; set by colour statement

BAKCLR (F3EAH, 1)
 initial value: 4
 contents: background colour; set by colour statement

BDRCLR (F3EBH, 1)
 initial value: 7
 contents: border colour; set by colour statement

MAXUPD (F3ECH, 3)
 initial value: JP 0000H (C3H, 00H, 00H)
 contents: used by CIRCLE statement internally

MINUPD (F3EFH, 3)
 initial value: JP 0000H (C3H, 00H, 00H)
 contents: used by CIRCLE statement internally

ATRBYT (F3F2H, 1)
 initial value: 15
 contents: colour code in using graphics

* Work area for PLAY statement

QUEUES (F3F3H, 2)
 initial value: QUETAB (F959H)
 contents: points to queue table at the execution of PLAY statement

FRCNEW (F3F5H), 1)
 initial value: 255
 contents: used by BASIC interpreter internally

* Work area for key input

SCNCNT (F3F6H, 1)
 initial value: 1
 contents: interval for the key scan

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

REPCNT (F3F7H, 1)
 initial value: 50
 contents: delay until the auto-repeat of the key begins

PUTPNT (F3F8H, 2)
 initial value: KEYBUF (FBF0H)
 contents: points to address to write in the key buffer

GETPNT (F3FAH, 2)
 initial value: KEYBUF (FBF0H)
 contents: points to address to read from key buffer

* Parameters for Cassette

CS120 (F3FCH, 5*2)

- 1200 baud

 contents: 83 (LOW01) Low width representing bit 0
 92 (HIGH01) High width representing bit 0
 38 (LOW11) Low width representing bit 1
 45 (HIGH11) High width representing bit 1
 HEADLEN * 2/256 High bytes (HEDLEN = 2000)
 of header bits for short
 header

- 2400 baud

 contents: 37 (LOW02) Low width representing bit 0
 45 (HIGH02) High width representing bit 0
 14 (LOW12) Low width representing bit 1
 22 (HIGH12) High width representing bit 1
 HEADLEN * 4/256 High bytes (HEDLEN = 2000)
 of header bits for short
 header

LOW (F406H, 2)
 initial value: LOW01, HIGH01 (by default, 1200 baud)
 contents: width of LOW and HIGH which represents bit 0 of current baud
 rate; set by <cassette baud rate> of SCREEN statement

HIGH (F408H, 2)
 initial value: LOW11, HIGH11 (by default, 1200 baud)
 contents: width of LOW and HIGH which represents bit 1 of current baud
 rate; set by <cassette baud rate> of SCREEN statement

HEADER (F40AH, 1)
 initial value: HEADLEN * 2/256 (by default, 1200 baud)
 contents: header bit for the short header of current baud rate

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 (HEADLEN = 2000); set by <cassette baud rate> of SCREEN
 statement

ASPCT1 (F40BH, 1)
 contents: 256/aspect ratio; set by SCREEN statement to use in CIRCLE
 statement

ASPCT2 (F40DH, 1)
 contents: 256 * aspect ratio; set by SCREEN statement to use in CIRCLE
 statement

ENDPRG (F40FH, 5)
 initial value: ":"
 contents: false end of program for RESUME NEXT statement

* Work used by BASIC internally

ERRFLG (F414H, 1)
 contents: area to store the error number

LPTPOS (F415H, 1)
 initial value: 0
 contents: printer head location

PRTFLG (F416H, 1)
 contents: flag whether to send to printer

NTMSXP (F417H, 1)
 contents: printer (0 = printer for MSX, otherwise not)

RAWPRT (F418H, 1)
 contents: non-zero when printing in raw-mode

VLZADR (F419H, 2)
 contents: address of character to be replaced by VAL function

VLZDAT (F41BH, 1)
 contents: character to be replaced with 0 by VAL function

CURLIN (F41CH, 2)
 contents: currently executing line number of BASIC

KBUF (F41FH, 318)

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 contents: crunch buffer; translated into intermediate language from
 BUF (F55EH)

BUFMIN (F55DH, 1)
 initial value: ","
 contents: used in INPUT statement

BUF (F55EH, 258)
 contents: buffer to store characters typed; where direct statements
 are stored in ASCII code

ENDBUF (F660H, 1)
 contents: prevents overflow of BUF (F55EH)

TTYPOS (F661H, 1)
 contents: virtual cursor location internally retained by BASIC

DIMFLG (F662H, 1)
 contents: used by BASIC internally

VALTYP (F663H, 1)
 contents: used to identify the type of variable

DORES (F664H, 1)
 contents: indicates whether stored word can be crunched

DONUM (F665H, 1)
 contents: flag for crunch

CONTXT (F666H, 2)
 contents: stores text address used by CHRGET

CONSAV (F668H, 1)
 contents: stores token of constant after calling CHRGET

CONTYP (F669H, 1)
 contents: type of stored constant

CONLO (F66AH, 8)
 contents: value of stored constant

MEMSIZ (F672H, 2)
 contents: highest address of memory used by BASIC

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

STKTOP (F674H, 2)
 contents: address used as stack by BASIC; depending on CLEAR statement

TXTTAB (F676H, 2)
 contents: starting address of BASIC text area

TEMPPT (F768H, 2)
 initial value: TEMPST (F67AH)
 contents: starting address of unused area of temporary descriptor

TEMPST (F67AH, 3 * NUMTMP)
 contents: area for NUMTEMP

DSCTMP (F698H, 3)
 contents: string descriptor which is the result of string function

FRETOP (F69BH, 2)
 contents: starting address of unused area of string area

TEMP3 (F69DH, 2)
 contents: used for garbage collection or by USR function

TEMP8 (F69FH, 2)
 contents: for garbage collection

ENDFOR (F6A1H, 2)
 contents: stores next address of FOR statement (to begin execution from
 the next of FOR statement at loops)

DATLIN (F6A3H, 2)
 contents: line number of DATA statement read by READ statement

SUBFLG (F6A5H, 1)
 contents: flag for array for USR function

FLGINP (F6A6H, 1)
 contents: flag used in INPUT or READ

TEMP (F6A7H, 2)
 contents: location for temporary reservation for statement code; used
 for variable pointer, text address, and others

PTRFLG (F6A9H, 1)
 contents: 0 if there is not a line number to be converted,otherwise not

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

AUTFLG (F6AAH, 1)
 contents: flag for AUTO command validity (non-zero = valid, otherwise
 invalid)

AUTLIN (F6ABH, 2)
 contents: last input line number

AUTINC (F6ADH, 2)
 initial value: 10
 contents: increment value of line number of AUTO command

SAVTXT (F6AFH, 2)
 contents: area to store address of currently executing text; mainly
 used for error recovery by RESUME statement

ERRLIN (F6B3H, 2)
 contents: line number where an error occurred

DOT (F6B5H, 2)
 contents: last line number which was displayed in screen or entered

ERRTXT (F6B7H, 2)
 contents: text address which caused an error; mainly used for error
 recovery by RESUME statement

ONELIN (F6B9H, 2)
 contents: text address to which control jumps at error; set by ON
 ERROR GOTO statement

ONEFLG (F6BBH, 1)
 contents: flag which indicates error routine execution
 (non-zero = in execution, otherwise not)

TEMP2 (F6BCH, 2)
 contents: for temporary storage

OLDLIN (F6BEH, 2)
 contents: line number which was terminated by Ctrl+STOP, STOP
 instruction, END instruction, or was executed last

OLDTXT (F6C0H, 2)
 contents: address to be executed next

VARTAB (F6C2H, 2)

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 contents: starting address of simple variable; executing NEW statement
 causes [contents of TXTTAB(F676H) + 2] to be set

ARYTAB (F6C4H, 2)
 contents: starting address of array table

STREND (F6C6H, 2)
 contents: last address of memory in use as text area or variable area

DATPTR (F6C8H, 2)
 contents: text address of data read by executing READ statement

DEFTBL (F6CAH, 26)
 contents: area to store type of variable for one alphabetical
 character; depends on type declaration such as CLEAR, DEFSTR,
 !, or #

* Work for user function parameter

PRMSTK (F6E4H, 2)
 contents: previous definition block on stack (for garbage collection)

PRMLEN (F6E6H, 2)
 contents: number of bytes of objective data

PARM1 (F6E8H, PRMSIZ)
 contents: objective parameter definition table; PRMSIZ is number of
 bytes of definition block, initial value is 100

PRMPRV (F74CH, 2)
 initial value: PRMSTK
 contents: pointer to previous parameter block (for garbage collection)

PRMLN2 (F74EH, 2)
 contents: size of parameter block

PARM2 (F750H, 100)
 contents: for parameter storage

PRMFLG (F7B4H, 1)
 contents: flag to indicate whether PARM1 was searched

ARYTA2 (F7B5H, 2)

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 contents: end point of search

NOFUNS (F7B7H, 1)
 contents: 0 if there is not an objective function

TEMP9 (F7B8H, 2)
 contents: location of temporary storage for garbage collection

FUNACT (F7BAH, 2)
 contents: number of objective functions

SWPTMP (F7BCH, 8)
 contents: location of temporary storage of the value of the first
 variable of SWAP statement

TRCFLG (F7C4H, 1)
 contents: trace flag (non-zero = TRACE ON, 0 = TRACE OFF)

* Work for Math-Pack

FBUFFR (F7C5H, 43)
 contents: used internally by Math-Pack

DECTMP (F7F0H, 2)
 contents: used to transform decimal integer to floating-point number

DECTM2 (F7F2H, 2)
 contents: used at division routine execution

DECCNT (F7F4H, 2)
 contents: used at division routine execution

DAC (F7F6H, 16)
 contents: area to set the value to be calculated

HOLD8 (F806H, 48)
 contents: register storage area for decimal multiplication

HOLD2 (F836H, 8)
 contents: used internally by Math-Pack

HOLD (F83EH, 8)

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 contents: used internally by Math-Pack

ARG (F847H, 16)
 contents: area to set the value to be calculated with DAC (F7F6H)

RNDX (F857H, 8)
 contents: stores last random number in double precision real number;
 set by RND function

* Data area used by BASIC interpreter

MAXFIL (F85FH, 1)
 contents: maximum file number; set by MAXFILES statement

FILTAB (F860H, 2)
 contents: starting address of file data area

NULBUF (F862H, 2)
 contents: points to buffer used in SAVE and LOAD by BASIC interpreter

PTRFIL (F864H, 2)
 contents: address of file data of currently accessing file

RUNFLG (F866H, 2)
 contents: non-zero value if program was loaded and executed; used
 by R option of LOAD statement

FILNAM (F866H, 11)
 contents: area to store filename

FILNM2 (F871H, 11)
 contents: area to store filename

NLONLY (F87CH, 1)
 contents: non-zero value if program is being loaded

SAVEND (F87DH, 2)
 contents: end address of assembly language program to be saved

FNKSTR (F87FH, 160)
 contents: area to store function key string (16 character x 10)

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

CGPNT (F91FH, 3)
 contents: address to store character font on ROM

NAMBAS (F922H, 2)
 contents: base address of current pattern name table

CGPBAS (F924H, 2)
 contents: base address of current pattern generator table

PATBAS (F926H, 2)
 contents: base address of current sprite generator table

ATRBAS (F928H, 2)
 contents: base address of current sprite attribute table

CLOC (F92AH, 2)
 contents: used internally by graphic routine

CMASK (F92CH, 1)
 contents: used internally by graphic routine

MINDEL (F92DH, 1)
 contents: used internally by graphic routine

MAXDEL (F92FH, 2)
 contents: used internally by graphic routine

* Data area used by CIRCLE statement

ASPECT (F931H, 2)
 contents: aspect ratio of the circle; set by <ratio> of CIRCLE
 statement

CENCNT (F933H, 2)
 contents: used internally by CIRCLE statement

CLINEF (F935H, 1)
 contents: flag whether a line is drawn toward the center; specified
 by <angle> of CIRCLE statement

CNPNTS (F936H, 2)
 contents: point to be plotted

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

CPLOTF (F938H, 1)
 contents: used internally by CIRCLE statement

CPCNT (F939H, 2)
 contents: number of one eight of the circle

CPNCNT8 (F93BH, 2)
 contents: used internally by CIRCLE statement

CPCSUM (F93DH, 2)
 contents: used internally by CIRCLE statement

CSTCNT (F93FH, 2)
 contents: used internally by CIRCLE statement

CSCLXY (F941H, 1)
 contents: scale of x and y

CSAVEA (F942H, 2)
 contents: reservation area of ADVGRP

CSAVEM (F944H, 1)
 contents: reservation area of ADVGRP

CXOFF (F945H, 2)
 contents: x offset from the center

CYOFF (F947H, 2)
 contents: y offset from the center

* Data area used in PAINT statement

LOHMSK (F949H, 1)
 contents: used internally by PAINT statement

LOHDIR (F94AH, 1)
 contents: used internally by PAINT statement

LOHADR (F94BH, 2)
 contents: used internally by PAINT statement

LOHCNT (F94DH, 2)

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 contents: used internally by PAINT statement

SKPCNT (F94FH, 2)
 contents: skip count

MIVCNT (F951H, 2)
 contents: movement count

PDIREC (F953H, 1)
 contents: direction of the paint

LFPROG (F954H, 1)
 contents: used internally by PAINT statement

RTPROG (F955H, 1)
 contents: used internally by PAINT statement

* Data area used in PLAY statement

MCLTAB (F956H, 2)
 contents: points to the top of the table of PLAY macro or DRAW macro

MCLFLG (F958H, 1)
 contents: assignment of PLAY/DRAW

QUETAB (F959H, 24)
 contents: queue table
 +0: PUT offset
 +1: GET offset
 +2: backup character
 +3: queue length
 +4: queue address
 +5: queue address

QUEBAK (F971H, 4)
 contents: used in BCKQ

VOICAQ (F975H, 128)
 contents: queue of voice 1 (1 = a)

VOICBQ (F9F5H, 128)
 contents: queue of voice 2 (2 = b)

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

VOICCQ (FA75H, 128)
 contents: queue of voice 3 (3 = c)

* Work area added in MSX2

DPPAGE (FAF5H, 1)
 contents: display page number

ACPAGE (FAF6H, 1)
 contents: active page number

AVCSAV (FAF7H, 1)
 contents: reserves AV control port

EXBRSA (FAF8H, 1)
 contents: SUB-ROM slot address

CHRCNT (FAF9H, 1)
 contents: character counter in the buffer; used in Roman-kana
 translation (value is 0 <=n <=2)

ROMA (FAFAH, 2)
 contents: area to store character in the buffer; used in Roman-kana
 translation (Japan version only)

MODE (FAFCH, 1)
 contents: mode switch for VRAM size

 (0000WVV0)

 |||
 |++--- 00 = 16K VRAM
 | 01 = 64K VRAM
 | 11 = 128K VRAM
 |
 +----- 1 = mask, 0 = no mask
 Flags whether to specify VRAM address
 ANDed with 3FFFH in SCREEN 0 to 3;
 in SCREEN 4 to 8, never masked

NORUSE (FAFDH, 1)
 contents: unused

XSAVE (FAFEH, 2)
 contents: [I OOOOOOO XXXXXXXX]

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

YSAVE (FB00H, 2)
 contents: [x OOOOOOO YYYYYYYY]

 I = 1 lightpen interrupt request
 OOOOOOO = unsigned offset
 XXXXXXX = X-coordinate
 YYYYYYY = Y-coordinate

LOGOPR (FB02H, 1)
 contents: logical operation code

* Data area used by RS-232C

RSTMP (FB03H, 50)
 contents: work area for RS-232C or disk

TOCNT (FB03H, 1)
 contents: used internally by RS-232C routine

RSFCB (FB04H, 2)
 contents: FB04H + 0: LOW address of RS-232C
 FB04H + 1: HIGH address of RS-232C

RSIQLN (FB06H, 5)
 contents: used internally by RS-232C routine

MEXBIH (FB07H, 5)
 contents: FB07H +0: RST 30H (0F7H)
 FB07H +1: byte data
 FB07H +2: (Low)
 FB07H +3: (High)
 FB07H +4: RET (0C9H)

OLDSTT (FB0CH, 5)
 contents: FB0CH +0: RST 30H (0F7H)
 FB0CH +1: byte data
 FB0CH +2: (Low)
 FB0CH +3: (High)
 FB0CH +4: RET (0C9H)

OLDINT (FB12H, 5)
 contents: FB12H +0: RST 30H (0F7H)
 FB12H +1: byte data
 FB12H +2: (Low)
 FB12H +3: (High)
 FB12H +4: RET (0C9H)

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

DEVNUM (FB17H, 1)
 contents: used internally by RS-232C routine

DATCNT (FB18H, 3)
 contents: FB18H +0: byte data
 FB18H +1: byte pointer
 FB12H +2: byte pointer

ERRORS (FB1BH, 1)
 contents: used internally by RS-232C routine

FLAGS (FB1CH, 1)
 contents: used internally by RS-232C routine

ESTBLS (FB1DH, 1)
 contents: used internally by RS-232C routine

COMMSK (FB1EH, 1)
 contents: used internally by RS-232C routine

LSTCOM (FB1FH, 1)
 contents: used internally by RS-232C routine

LSTMOD (FB20H, 1)
 contents: used internally by RS-232C routine

* Data area used by DOS

reserved (FB21H to FB34H)
 contents: used by DOS

* Data area used by PLAY statement
 (the following is the same as with MSX1)

PRSCNT (FB35H, 1)
 contents: D1 to D0 string parse
 D7 = 0 1 pass

SAVSP (FB36H, 2)
 contents: reserves stack pointer in play

VOICEN (FB38H, 1)

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 contents: current interpreted voice

SAVVOL (FB39H, 2)
 contents: reserves volume for the pause

MCLLEN (FB3BH, 1)
 contents: used internally by PLAY statement

MCLPTR (FB3CH, 1)
 contents: used internally by PLAY statement

QUEUEN (FB3EH, 1)
 contents: used internally by PLAY statement

MUSICF (FC3FH, 1)
 contents: interrupt flag for playing music

PLYCNT (FB40H, 1)
 contents: number of PLAY statements stored in the queue

* Offset from voice static data area
 (offset is in decimal)

METREX (+0, 2)
 contents: timer count down

VCXLEN (+2, 1)
 contents: MCLLEN for this voice

VCXPTR (+3, 2)
 contents: MCLPTR for this voice

VCXSTP (+5, 2)
 contents: reserves the top of the stack pointer

QLENGX (+7, 1)
 contents: number of bytes stored in the queue

NTICSX (+8, 2)
 contents: new count down

TONPRX (+10, 2)

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 contents: area to set tone period

AMPPRX (+12, 1)
 contents: discrimination of volume and enveloppe

ENVPRX (+13, 2)
 contents: area to set enveloppe period

OCTAVX (+15, 1)
 contents: area to set octave

NOTELX (+16, 1)
 contents: area to set tone length

TEMPOX (+17, 1)
 contents: area to set tempo

VOLUMX (+18, 1)
 contents: area to set volume

ENVLPX (+19, 14)
 contents: area to set enveloppe wave form

MCLSTX (+33, 3)
 contents: reservation area of stack

MCLSEX (+36, 1)
 contents: initialisation stack

VCBSIZ (+37, 1)
 contents: static buffer size

* Voice static data area

VCBA (FB41H, 37)
 contents: static data for voice 0

VCBB (FB66H, 37)
 contents: static data for voice 1

VCBC (FB8BH, 37)
 contents: static data for voice 2

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

* Data area

ENSTOP (FBB0H, 1)
 contents: flag to enable warm start by [SHIFT+Ctrl+Kana key]
 (0 = disable, otherwise enable)

BASROM (FBB1H, 1)
 contents: indicates BASIC text location (0 = on RAM, otherwise in ROM)

LINTTB (FBB2H, 24)
 contents: line terminal table; area to keep information about
 each line of text screen

FSTPOS (FBCAH, 2)
 contents: first character location of line from INLIN (00B1H) of BIOS

CODSAV (FBCCH, 1)
 contents: area to reserve the character where the cursor is stacked

FNKSW1 (FBCDH, 1)
 contents: indicates which function key is displayed at KEY ON
 (1 = F1 to F5 is displayed, 0 = F6 to F10 is displayed)

FNKFLG (FBCEH, 10)
 contents: area to allow, inhibit, or stop the execution of the line
 defined in ON KEY GOSUB statement, or to reserve it for each
 function key; set by KEY(n)ON/OFF/STOP statement
 (0 = KEY(n)OFF/STOP, 1= KEY(n)ON)

ONGSBF (FBD8H, 1)
 contents: flag to indicate whether event waiting in TRPTBL (FC4CH)
 occurred

CLIKFL (FBD9H, 1)
 contents: key click flag

OLDKEY (FBDAH, 11)
 contents: key matrix status (old)

NEWKEY (FBE5H, 11)
 contents: key matrix status (new)

KEYBUF (FBF0H, 40)

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 contents: key code buffer

LINWRK (FC18H, 40)
 contents: temporary reservation location used by screen handler

PATWRK (FC40H, 8)
 contents: temporary reservation location used by pattern converter

BOTTOM (FC48H, 2)
 contents: installed RAM starting (low) address; ordinarily 8000H
 in MSX2

HIMEM (FC4AH, 2)
 contents: highest address of available memory; set by <memory upper
 limit> of CLEAR statement

TRAPTBL (FC4CH, 78)
 contents: trap table used to handle interrupt; one table consists of
 three bytes, where first byte indicates ON/OFF/STOP status
 and the rest indicate the text address to be jumped to

 FC4CH to FC69H (3 * 10 bytes) used in ON KEY GOSUB
 FC6AH to FC6CH (3 * 1 byte) used in ON STOP GOSUB
 FC6DH to FC6FH (3 * 1 byte) used in ON SPRITE GOSUB
 FC70H to FC7EH (3 * 5 bytes) used in ON STRIG GOSUB
 FC7FH to FC81H (3 * 1 byte) used in ON INTERVAL GOSUB
 FC82H to FC99H for expansion

RTYCNT (FC9AH, 1)
 contents: used internally by BASIC

INTFLG (FC9BH, 1)
 contents: if Ctrl+STOP is pressed, setting 03H here causes a stop

PADY (FC9CH, 1)
 contents: Y-coordinate of the paddle)

PADX (FC9DH, 1)
 contents: X-coordinate of the paddle)

JIFFY (FC9EH, 2)
 contents: used internally by PLAY statement

INTVAL (FCA0H, 2)
 contents: interval period; set by ON INTERVAL GOSUB statement

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

INTCNT (FCA2H, 2)
 contents: counter for interval

LOWLIM (FCA4H, 1)
 contents: used during reading from cassette tape

WINWID (FCA5H, 1)
 contents: used during reading from cassette tape

GRPHED (FCA6H, 1)
 contents: flag to send graphic character (1 = graphic character,
 0 = normal character)

ESCCNT (FCA7H, 1)
 contents: area to count from escape code

INSFLG (FCA8H, 1)
 contents: flag to indicate insert mode (0 = normal mode,
 otherwise = insert mode)

CSRSW (FCA9H, 1)
 contents: whether cursor is displayed (0 = no, otherwise = yes);
 set by <cursor swicth> of LOCATE statement

CSTYLE (FCAAH, 1)
 contents: cursor shape (0 = block, otherwise = underline)

CAPST (FCABH, 1)
 contents: CAPS key status (0 = CAP OFF, otherwise = CAP ON)

KANAST (FCACH, 1)
 contents: kana key status (0 = kaka OFF, otherwise = kana ON)

KANAMD (FCADH, 1)
 contents: kana key arrangement status (0 = 50-sound arrangement,
 otherwise = JIS arrangement)

FLBMEM (FCAEH, 1)
 contents: 0 when loading BASIC program

SCRMOD (FCAFH, 1)
 contents: current screen mode number

OLDSCR (FCB0H, 1)

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 contents: screen mode reservation area

CASPRV (FCB1H, 1)
 contents: character reservation area used by CAS:

BRDATR (FCB2H, 1)
 contents: border colour code used by PAINT; set by <border colour>
 in PAINT statement

GXPOS (FCB3H, 2)
 contents: X-coordinate

GYPOS (FCB5H, 2)
 contents: Y-coordinate

GRPACX (FCB7H, 2)
 contents: graphic accumulator (X-coordinate)

GRPACY (FCB9H, 2)
 contents: graphic accumulator (Y-coordinate)

DRWFLG (FCBBH, 1)
 contents: flag used in DRAW statement

DRWSCL (FCBCH, 1)
 contents: DRAW scaling factor (0 = no scaling, otherwise = scaling)

DRWANG (FCBDH, 1)
 contents: angle at DRAW

RUNBNF (FCBEH, 1)
 contents: flag to indicate BLOAD in progress, BSAVE in progress,
 or neither

SAVENT (FCBFH, 2)
 contents: starting address of BSAVE

EXPTBL (FCC1H, 4)
 contents: flag table for expansion slot; whether the slot is expanded

SLTTBL (FCC5H, 4)
 contents: current slot selection status for each expansion slot
 register

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

SLTATR (FCC9H, 64)
 contents: reserves attribute for each slot

SLTWRK (FD09H, 128)
 contents: allocates specific work area for each slot

PROCNM (FD89H, 16)
 contents: stores name of expanded statement (after CALL statement) or
 expansion device (after OPEN); 0 indicates the end

DEVICE (FD99H, 1)
 contents: used to identify cartridge device

* Hooks

H.KEYI (FD9AH)
 meaning: beginning of MSXIO interrupt handling
 purpose: adds the interrupt operation such as RS-232C

H.TIMI (FD9FH)
 meaning: MSXIO timer interrupt handling
 purpose: adds the timer interrupt handling

H.CHPH (FDA4H)
 meaning: beginning of MSXIO CHPUT (one character output)
 purpose: connects other console device

H.DSPC (FDA9H)
 meaning: beginning of MSXIO DSPCSR (cursor display)
 purpose: connects other console device

H.ERAC (FDAEH)
 meaning: beginning of MSXIO ERACSR (erase cursor)
 purpose: connects other console device

H.DSPF (FDB3H)
 meaning: beginning of MSXIO DSPFNK (function key display)
 purpose: connects other console device

H.ERAF (FDB8H)
 meaning: beginning of MSXIO ERAFNK (erase function key)
 purpose: connects other console device

H.TOTE (FDBDH)

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 meaning: beginning of MSXIO TOTEXT (set screen in text mode)
 purpose: connects other console device

H.CHGE (FDC2H)
 meaning: beginning of MSXIO CHGET (get one character)
 purpose: connects other console device

H.INIP (FDC7H)
 meaning: beginning of MSXIO INIPAT (character pattern initialisation)
 purpose: uses other character set

H.KEYC (FDCCH)
 meaning: beginning of MSXIO KEYCOD (key code translation)
 purpose: uses other key arrangement

H.KYEA (FDD1H)
 meaning: beginning of MSXIO NMI routine (Key Easy)
 purpose: uses other key arrangement

H.NMI (FDD6H)
 meaning: beginning of MSXIO NMI (non-maskable interrupt)
 purpose: handles NMI

H.PINL (FDDBH)
 meaning: beginning of MSXIO PINLIN (one line input)
 purpose: uses other console input device or other input method

H.QINL (FDE0H)
 meaning: beginning of MSXINL QINLIN (one line input displaying "?")
 purpose: uses other console input device or other input method

H.INLI (FDE5H)
 meaning: beginning of MSXINL INLIN (one line input)
 purpose: uses other console input device or other input method

H.ONGO (FDEAH)
 meaning: beginning of MSXSTS INGOTP (ON GOTO)
 purpose: uses other interrupt handling device

H.DSKO (FDEFH)
 meaning: beginning of MSXSTS DSKO$ (disk output)
 purpose: connects disk device

H.SETS (FDF4H)
 meaning: beginning of MSXSTS SETS (set attribute)
 purpose: connects disk device

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

H.NAME (FDF9H)
 meaning: beginning of MSXSTS NAME (rename)
 purpose: connects disk device

H.KILL (FDFEH)
 meaning: beginning of MSXSTS KILL (delete file)
 purpose: connects disk device

H.IPL (FE03H)
 meaning: beginning of MSXSTS IPL (initial program loading)
 purpose: connects disk device

H.COPY (FE08H)
 meaning: beginning of MSXSTS COPY (file copy)
 purpose: connects disk device

H.CMD (FE0DH)
 meaning: beginning of MSXSTS CMD (expanded command)
 purpose: connects disk device

H.DSKF (FE12H)
 meaning: beginning of MSXSTS DSKF (unusde disk space)
 purpose: connects disk device

H.DSKI (FE17H)
 meaning: beginning of MSXSTS DSKI (disk input)
 purpose: connects disk device

H.ATTR (FE1CH)
 meaning: beginning of MSXSTS ATTR$ (attribute)
 purpose: connects disk device

H.LSET (FE21H)
 meaning: beginning of MSXSTS LSET (left-padded assignment)
 purpose: connects disk device

H.RSET (FE26H)
 meaning: beginning of MSXSTS RSET (right-padded assignment)
 purpose: connects disk device

H.FIEL (FE2BH)
 meaning: beginning of MSXSTS FIELD (field)
 purpose: connects disk device

H.MKI$ (FE30H)

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 meaning: beginning of MSXSTS MKI$ (create integer)
 purpose: connects disk device

H.MKS$ (FE35H)
 meaning: beginning of MSXSTS MKS$ (create single precision real)
 purpose: connects disk device

H.MKD$ (FE3AH)
 meaning: beginning of MSXSTS MKD$ (create double precision real)
 purpose: connects disk device

H.CVI (FE3FH)
 meaning: beginning of MSXSTS CVI (convert integer)
 purpose: connects disk device

H.CVS (FE44H)
 meaning: beginning of MSXSTS CVS (convert single precision real)
 purpose: connects disk device

H.CVD (FE49H)
 meaning: beginning of MSXSTS CVS (convert double precision real)
 purpose: connects disk device

H.GETP (FE4EH)
 meaning: SPDSK GETPTR (get file pointer)
 purpose: connects disk device

H.SETF (FE53H)
 meaning: SPCDSK SETFIL (set file pointer)
 purpose: connects disk device

H.NOFO (FE58H)
 meaning: SPDSK NOFOR (OPEN statement without FOR)
 purpose: connects disk device

H.NULO (FE5DH)
 meaning: SPCDSK NULOPN (open unused file)
 purpose: connects disk device

H.NTFL (FE62H)
 meaning: SPCDSK NTFLO (file number is not 0)
 purpose: connects disk device

H.MERG (FE67H)
 meaning: SPCDSK MERGE (program file merge)
 purpose: connects disk device

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

H.SAVE (FE6CH)
 meaning: SPCDSK SAVE (save)
 purpose: connects disk device

H.BINS (FE71H)
 meaning: SPCDSK BINSAV (save in binary)
 purpose: connects disk device

H.BINL (FE76H)
 meaning: SPCDSK BINLOD (load in binary)
 purpose: connects disk device

H.FILE (FD7BH)
 meaning: SPCDSK FILES (displey filename)
 purpose: connects disk device

H.DGET (FE80H)
 meaning: SPCDSK DGET (disk GET)
 purpose: connects disk device

H.FILO (FE85H)
 meaning: SPCDSK FILOU1 (file output)
 purpose: connects disk device

H.INDS (FE8AH)
 meaning: SPCDSK INDSKC (disk attribute input)
 purpose: connects disk device

H.RSLF (FE8FH)
 meaning: SPCDSK; re-select previous drive
 purpose: connects disk device

H.SAVD (FE94H)
 meaning: SPCDSK; reserve current disk
 purpose: connects disk device

H.LOC (FE99H)
 meaning: SPCDSK LOC function (indicate location)
 purpose: connects disk device

H.LOF (FE9EH)
 meaning: SPCDSK LOC function (file length)
 purpose: connects disk device

H.EOF (FEA3H)

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 meaning: SPCDSK EOF function (end of file)
 purpose: connects disk device

H.FPOS (FEA8H)
 meaning: SPCDSK FPOS function (file location)
 purpose: connects disk device

H.BAKU (FEADH)
 meaning: SPCDSK BAKUPT (backup)
 purpose: connects disk device

H.PARD (FEB2H)
 meaning: SPCDEV PARDEV (get peripheral name)
 purpose: expands logical device name

H.NODE (FEB7H)
 meaning: SPCDEV NODEVN (no device name)
 purpose: sets default device name to other device

H.POSD (FEBCH)
 meaning: SPCDEV POSDSK
 purpose: connects disk device

H.DEVN (FEC1H)
 meaning: SPCDEV DEVNAM (process device name)
 purpose: expands logical device name

H.GEND (FEC6H)
 meaning: SPCDEV GENDSP (FEC6H)
 purpose: expands logical device name

H.RUNC (FECBH)
 meaning: BIMISC RUNC (clear for RUN)

H.CLEAR (FED0H)
 meaning: BIMISC CLEARC (clear for CLEAR statement)

H.LOPD (FED5H)
 meaning: BIMISC LOPDFT (set loop and default value)
 purpose: uses other default value for variable

H.STKE (FEDAH)
 meaning: BIMISC STKERR (stack error)

H.ISFL (FEDFH)

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

 meaning: BIMISC ISFLIO (file input-output or not)

H.OUTD (FEE4H)
 meaning: BIO OUTDO (execute OUT)

H.CRDO (FEE9H)
 meaning: BIO CRDO (execute CRLF)

H.DSKC (FEEEH)
 meaning: BIO DSKCHI (input disk attribute)

H.DOGR (FEF3H)
 meaning: GENGRP DOGRPH (execute graphic operation)

H.PRGE (FEF8H)
 meaning: BINTRP PRGEND (program end)

H.ERRP (FEFDH)
 meaning: BINTRP ERRPTR (error display)

H.ERRF (FF02H)
 meaning: BINTRP

H.READ (FF07H)
 meaning: BINTRP READY

H.MAIN (FF0CH)
 meaning: BINTRP MAIN

H.DIRD (FF11H)
 meaning: BINTRP DIRDO (execute direct statement)

H.FINI (FF16H)
 meaning: BINTRP

H.FINE (FF1BH)
 meaning: BINTRP

H.CRUN (FF20H)
 meaning: BINTRP

H.CRUN (FF20H)
 meaning: BINTRP

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

H.CRUS (FF25H)
 meaning: BINTRP

H.ISRE (FF2AH)
 meaning: BINTRP

H.NTFN (FF2FH)
 meaning: BINTRP

H.NOTR (FF34H)
 meaning: BINTRP

H.SNGF (FF39H)
 meaning: BINTRP

H.NEWS (FF3EH)
 meaning: BINTRP

H.GONE (FF43H)
 meaning: BINTRP

H.CHRG (FF48H)
 meaning: BINTRP

H.RETU (FF4DH)
 meaning: BINTRP

H.PRTF (FF52H)
 meaning: BINTRP

H.COMP (FF57H)
 meaning: BINTRP

H.FINP (FF5CH)
 meaning: BINTRP

H.TRMN (FF61H)
 meaning: BINTRP

H.FRME (FF66H)
 meaning: BINTRP

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

H.NTPL (FF6BH)
 meaning: BINTRP

H.EVAL (FF70H)
 meaning: BINTRP

H.OKNO (FF75H)
 meaning: BINTRP

H.FING (FF7AH)
 meaning: BINTRP

H.ISMI (FF7FH)
 meaning: BINTRP ISMID$ (MID$ or not)

H.WIDT (FF84H)
 meaning: BINTRP WIDTHS (WIDTH)

H.LIST (FF89H)
 meaning: BINTRP LIST

H.BUFL (FF8EH)
 meaning: BINTRP BUFLIN (buffer line)

H.FRQI (FF93H)
 meaning: BINTRP FRQINT

H.SCNE (FF98H)
 meaning: BINTRP

H.FRET (FF9DH)
 meaning: BINTRP FRETMP

H.PTRG (FFA2H)
 meaning: BIPTRG PTRGET (get pointer)
 purpose: uses variable other than default value

H.PHYD (FFA7H)
 meaning: MSXIO PHYDIO (physical disk input-output)
 purpose: connects disk device

H.FORM (FFACH)
 meaning: MSXIO FORMAT (format disk)
 purpose: connects disk device

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

H.ERRO (FFB1H)
 meaning: BINTRP ERROR
 purpose: error handling for application program

H.LPTO (FFB6H)
 meaning: MSXIO LPTOUT (printer output)
 purpose: uses printer other than default value

H.LPTS (FFBBH)
 meaning: MSXIO LPTSTT (printer status)
 purpose: uses printer other than default value

H.SCRE (FFC0H)
 meaning: MSXSTS SCREEN statement entry
 purpose: expands SCREEN statement

H.PLAY (FFC5H)
 meaning: MSXSTS PLAY statement entry
 purpose: expands PLAY statement

* For expanded BIOS

FCALL (FFCAH)
 contents: hook used by expanded BIOS

DISINT (FFCFH)
 contents: used by DOS

ENAINT (FFD4H)
 contents: used by DOS

===

Changes from the original in APPENDIX 5:

- The original VRAM mapping figures have been converted to simple text
tables.

- In SCREEN 0 (WIDTH 80) map, different end addresses for the blink table are
indicated for 24 lines mode and 26.5 lines mode.

-=-

APPENDIX 5 - VRAM MAP

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

* SCREEN 0 (WIDTH 40) / TEXT 1

0000H - 03BFH --> Pattern name table
0400H - 042FH --> Palette table
0800H - 0FFFH --> Pattern generator table

* SCREEN 0 (WIDTH 80) / TEXT 2

0000H - 077FH --> Pattern name table
0800H - 08EFH --> Blink table (24 lines mode)
 090DH (26.5 lines mode)
0F00H - 0F2FH --> Palette table
1000H - 17FFH --> Pattern generator table

* SCREEN 1 / GRAPHIC 1

0000H - 07FFH --> Pattern generator table
1800H - 1AFFH --> Pattern name table
1B00H - 1B7FH --> Sprite attribute table
2000H - 201FH --> Colour table
2020H - 204FH --> Palette table
3800H - 3FFFH --> Sprite generator table

* SCREEN 2 / GRAPHIC 2

0000H - 07FFH --> Pattern generator table 1
0800H - 0FFFH --> Pattern generator table 2
1000H - 17FFH --> Pattern generator table 3
1800H - 18FFH --> Pattern name table 1
1900H - 19FFH --> Pattern name table 2
1A00H - 1AFFH --> Pattern name table 3
1B00H - 1B7FH --> Sprite attribute table
1B80H - 1BAFH --> Palette table
2000H - 27FFH --> Colour table 1
2800H - 2FFFH --> Colour table 2
3000H - 37FFH --> Colour table 3
3800H - 3FFFH --> Sprite generator table

* SCREEN 3 / MULTI COLOUR

0000H - 07FFH --> Pattern generator table
0800H - 0AFFH --> Pattern name table
1B00H - 1B7FH --> Sprite attribute table
2020H - 204FH --> Palette table
3800H - 3FFFH --> Sprite generator table

* SCREEN 4 / GRAPHIC 3

0000H - 07FFH --> Pattern generator table 1
0800H - 0FFFH --> Pattern generator table 2
1000H - 17FFH --> Pattern generator table 3
1800H - 18FFH --> Pattern name table 1

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

1900H - 19FFH --> Pattern name table 2
1A00H - 1AFFH --> Pattern name table 3
1B80H - 1BAFH --> Palette table
1C00H - 1DFFH --> Sprite colour table
1E00H - 1E7FH --> Sprite attribute table
2000H - 27FFH --> Colour table 1
2800H - 2FFFH --> Colour table 2
3000H - 37FFH --> Colour table 3
3800H - 3FFFH --> Sprite generator table

* SCREEN 5, 6 / GRAPHIC 4, 5

0000H - 5FFFH --> Pattern name table (192 lines)
 69FFH (212 lines)
7400H - 75FFH --> Sprite colour table
7600H - 767FH --> Sprite attribute table
7680H - 76AFH --> Palette table
7A00H - 7FFFH --> Sprite generator table

* SCREEN 7, 8 / GRAPHIC 6, 7

0000H - BFFFH --> Pattern name table (192 lines)
 D3FFH (212 lines)
F000H - F7FFH --> Sprite generator table
F800H - F9FFH --> Sprite colour table
FA00H - FA7FH --> Sprite attribute table
FA80H - FAAFH --> Palette table

===

Changes from the original in APPENDIX 6:

none

-=-

APPENDIX 6 - I/O MAP

00H to 3FH user defined

40H to 7FH reserved

80H to 87H for RS-232C
 80H 8251 data
 81H 8251 status/command
 82H status read/interrupt mask
 83H unused
 84H 8253
 85H 8253
 86H 8253
 87H 8253

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

88H to 8BH VDP (9938) I/O port for MSX1 adaptor
 This is V9938 I/O for MSX1. To access VDP directly,
 examine 06H and 07H of MAIN-ROM to confirm the port
 address

8CH to 8DH for the modem

8EH to 8FH reserved

90H to 91H printer port
 90H bit 0: strobe output (write)
 bit 1: status input (read)
 91H data to be printed

92H to 97H reserved

98H to 9BH for MSX2 VDP (V9938)
 98H VRAM access
 99H command register access
 9AH palette register access (write only)
 9BH register pointer (write only)

9CH to 9FH reserved

A0H to A3H sound generator (AY-3-8910)
 A0H address latch
 A1H data read
 A2H data write

A4H to A7H reserved

A8H to ABH parallel port (8255)
 A8H port A
 A9H port B
 AAH port C
 ABH mode set

ACH to AFH MSX engine (one chip MSX I/O)

B0H to B3H expansion memory (SONY specification) (8255)
 A8H port A, address (A0 to A7)
 A9H port B, address (A8 to A10, A13 to A15), control R/"
 AAH port C, address (A11 to A12), data (D0 - D7)
 ABH mode set

B4H to B5H CLOCK-IC (RP-5C01)
 B4H address latch
 B5H data

B6H to B7H reserved

B8H to BBH lightpen control (SANYO specification)
 B8H read/write
 B9H read/write
 BAH read/write
 BBH write only

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

BCH to BFH VHD control (JVC) (8255)
 BCH port A
 BDH port B
 BEH port C

C0H to C1H MSX-Audio

C2H to C7H reserved

C8H to CFH MSX interface

D0H to D7H floppy disk controller (FDC)
 The floppy disk controller can be interrupted by an
 external signal. Interrupt is possible only when the
 FDC is accessed. Thus, the system can treat different
 FDC interfaces.

D8 to D9H kanji ROM (TOSHIBA specification)
 D8H b5-b0 lower address (write only)
 D9H b5-b0 upper address (write)
 b7-b0 data (read)

DAH to DBH for future kanji expansion

DCH to F4H reserved

F5H system control (write only)
 setting bit to 1 enables available I/O devices
 b0 kanji ROM
 b1 reserved for kanji
 b2 MSX-AUDIO
 b3 superimpose
 b4 MSX interface
 b5 RS-232C
 b6 lightpen
 b7 CLOCK-IC (only on MSX2)
 Bits to void the conflict between internal I/O
 devices or those connected by cartridge. The bits
 can disable the internal devices. When BIOS is initialised,
 internal devices are valid if no external devices are
 connected. Applications may not write to or read from here.

F8H colour bus I/O

F7H A/V control
 b0 audio R mixing ON (write)
 b1 audio L mixing OFF (write)
 b2 select video input 21p RGB (write)
 b3 detect video input no input (read)
 b4 AV control TV (write)
 b5 Ym control TV (write)
 b6 inverse of bit 4 of VDP register 9 (write)
 b7 inverse of bit 5 of VDP register 9 (write)

F8H to FBH reserved

FCH to FFH memory mapper

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

===

Changes from the original in APPENDIX 8:

none

-=-

APPENDIX 8 - CONTROL CODES

| Code | Code | | Corresponding |
| (dec)| (hex)| Function | key(s) |
|------+------+-----------------------------------+---------------------|
0	00H		CTRL + @
1	01H	header at input/output of graphic	CTRL + A
		characters	
2	02H	move cursor to the top of the	CTRL + B
		previous word	
3	03H	end the input-waiting state	CTRL + C
4	04H		CTRL + D
5	05H	delete below cursor	CTRL + E
6	06H	move cursor to the top of the	CTRL + F
		next word	
7	07H	speaker output	CTRL + G
		(same as the BEEP statement)	
8	08H	delete a character before cursor	CTRL + H or BS
9	09H	move to next horizontal tab stop	CTRL + I or TAB
10	0AH	line feed	CTRL + J
11	0BH	home cursor	CTRL + K or HOME
12	0CH	clear screen and home cursor	CTRL + L or CLS
13	0DH	carriage return	CTRL + M or RETURN
14	0EH	move cursor to the end of line	CTRL + N
15	0FH		CTRL + O
16	10H		CTRL + P
17	11H		CTRL + Q
18	12H	insert mode ON/OFF	CTRL + R or INS

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

19	13H		CTRL + S
20	14H		CTRL + T
21	15H	delete one line from screen	CTRL + U
22	16H		CTRL + V
23	17H		CTRL + W
24	18H		CTRL + X or SELECT
25	19H		CTRL + Y
26	1AH		CTRL + Z
27	1BH		CTRL + [or ESC
28	1CH	move cursor right	CTRL + \ or RIGHT
29	1DH	move cursor left	CTRL +] or LEFT
30	1EH	move cursor up	CTRL + ^ or UP
31	1FH	move cursor down	CTRL + _ or DOWN
127	7FH	delete character under cursor	DEL

===

Changes from the original in APPENDIX 10:

none

-=-

APPENDIX 10 - ESCAPE SEQUENCES

* Cursor movement

<ESC> A move cursor up
<ESC> B move cursor down
<ESC> C move cursor right
<ESC> D move cursor left
<ESC> H move cursor home
<ESC> Y <Y-coordinate+20H> <X-coordinate+20H>
 move cursor to (X, Y)

* Edit, delete

MSX2 TECHNICAL HANDBOOK.txt[04/04/2019 21:53:44]

<ESC> j clear screen
<ESC> E clear screen
<ESC> K delete to end of line
<ESC> J delete to end of screen
<ESC> L insert one line
<ESC> M delete one line

* Miscellaneous

<ESC> x4 set block cursor
<ESC> x5 hide cursor
<ESC> y4 set underline cursor
<ESC> y5 display cursor

==

APPENDIX 7 - CARTRIDGE HARDWARE

and

APPENDIX 9 - CHARACTER SET

are not available here

	Disque local
	MSX2 TECHNICAL HANDBOOK.txt

