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Preface

This text is intended for microprocessor courses at the undergraduate level in technology
and engineering. It is a comprehensive treatment of the microprocessor, covering both
hardware and software based on the Z80 microprocessor family. The text assumes a course
in digital logic as a prerequisite; however, it does not assume a background in program-
ming. This text is also suited for the second level course in curricula where the first level
course is based on another microprocessor. At the outset there are two critical questions:
Why teach an 8-bit microprocessor when technology is dominated by 16- and 32-bit
microprocessors? And why select the Z80 microprocessor?

The first question is best answered by an anology from the auto industry. For trans-
portation, we have trucks, sports cars, family cars, and compact cars. Each serves a
different purpose. The 8-bit microprocessors have already established their market in the
areas of industrial control, such as machine control, process control, instrumentation, and
consumer appliances. The 16- and 32-bit microprocessors are so powerful that their appli-
cations are better suited in such areas as high-speed data processing, CAD/CAM, multi-
tasking, and multi-user systems. The 16- and 32-bit microprocessors are less likely to
replace 8-bit microprocessors in industrial control applications. In many applications,
even 8-bit microprocessors are utilized at less than 50 percent of their capacity. Further-
more, the basic concepts of architecture, programming, and interfacing are easier to teach
with the 8-bit than with the 16-bit microprocessor.

The second question has several answers. One is that the Z80 is one of the most
widely used microprocessors in industrial applications. It has simple architecture and a
powerful instruction set that includes the 8085 instruction set (except for two instructions).
In addition, there appears to be a resurgence of interest in the Z80, indicated by the



PREFACE

introduction of Z80-compatible microprocessors by major manufacturers such as National
Semiconductor, Hitachi, Toshiba, and Zilog itself.

The microprocessor is a general purpose programmable logic device. A thorough
understanding of the microprocessor demands the concepts and skills from two different
disciplines: hardware concepts from electronics and programming skills from computer
science. Hardware is the physical structure of the microprocessor and the programming
makes it function—one without the other is meaningless. Therefore, in this text, the
contents are presented with an integrated approach to hardware and software in the context
of the Z80 microprocessor. Part I focuses on the microprocessor architecture and inter-
facing, Part II introduces programming, and Part III integrates the hardware and software
concepts from earlier sections in dealing with interfacing and designing microprocessor-
based products. Each topic is covered in depth from basic concepts to industrial applica-
tions and illustrated by numerous examples with complete schematics. Material is sup-
ported with assignments having practical applications.

Part I consists of five chapters that deal with the hardware aspects of the microcom-
puter as a system, presented with the spiral approach. The material is presented in a format
analogous to the view from an airplane that is getting ready to land. As the plane circles,
the passenger observes a view without details. As the plane descends, the same view is
seen with more details. This approach is preferable because students need to use a micro-
computer as a system in their laboratory work in the early stages of a course, without
understanding all aspects of the system. Chapter 1 presents an overview of the computer
systems and discusses the microcomputer and its assembly language in the context of the
entire spectrum of computers and their languages. Chapter 2 develops a generalized model
of the microprocessor unit and focuses on the basic concepts related to memory and
input/output (I/O). Chapter 3 examines the Z80 microprocessor in the context of the
hardware and software models developed in Chapter 2. Chapters 4 and 5 are concerned
with basic concepts in interfacing memory and I/O.

Part II has six chapters that deal with Z80 instructions, programming techniques,
program development, and software development systems. Chapters 6 and 7 are general in
nature, serving as an introduction to assembly language programming and assemblers. In
the remaining chapters (Chapters 8 through 11), the contents are presented in a step-
by-step format. A few instructions that can perform a simple task are selected. Each
instruction is reviewed briefly by referring to the instruction set in the appendix. These
instructions are then used in writing programs with explanations of programming tech-
niques and troubleshooting hints. Each illustrative program begins with a problem state-
ment, provides the analysis of the problem, illustrates the program, and explains the
programming steps. These chapters conclude by reviewing all the instructions discussed in
those chapters. The contents in Part II are presented in such a way that, in a course with
heavy emphasis on hardware, students can teach themselves assembly language program-
ming if necessary.

Part III synthesizes the hardware concepts of Part I and software techniques of Part
I1. It deals with advanced topics in interfacing memory and I/Os with numerous industrial
and practical examples. Each illustration analyzes the hardware and includes software, and
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describes how hardware and software work together to accomplish given objectives.
Chapters 12 through 16 include various types of data transfer between the microprocessor
and its peripherals, such as interrupts, interfacing of dynamic memory, I/O with hand-
shake signals using programmable devices, and serial I/O. Chapter 17 deals primarily with
the project design of a single-board microcomputer that brings together all the concepts
discussed in the text, and Chapter 18 provides a brief introduction to 16-bit microproces-
sors and single-chip microcontrollers. Finally, the text includes two appendices related to
the instruction set. Appendix A includes the complete set of Z80 instructions explained
with illustrative examples in alphabetical order so that students can easily access the
instruction set with a complete explanation of each item. In addition, Appendix E sum-
marizes all the instructions with flat information for quick reference when writing pro-
grams.

A Word to Faculty Members

This is my second textbook based on my teaching experience and my association with
industry engineers and programmers. It is an attempt to share my classroom experiences
and my observations in industrial practices. My assumptions and observations are similar
to those of my first 8085 textbook. They are as follows:

1. It is easier to teach microprocessor concepts with an 8-bit microprocessor than with a
16-bit microprocessor. Due to their easy access on college campuses, personal com-
puters can be used to develop programs using cross assemblers.

2. Software (instructions) is an integral part of the microprocessor and demands an
emphasis equal to that of the hardware.

3. In industry, for the development of microprocessor-based projects, 70 percent of the
efforts are devoted to software and 30 percent to hardware.

4. Technology and engineering students tend to be oriented toward hardware and have
considerable difficulty in programming.

5. Students have difficulty in understanding mnemonics and realizing the critical impor-
tance of flags.

The text meets the objectives of courses with various emphases at the undergraduate
level. For a one-semester course with 50 percent hardware and 50 percent software empha-
sis, the following chapters are recommended: Chapters 1 through 5 for hardware and
interfacing lectures, and Chapters 6 through 10 and selected sections of Chapter 11 for
software laboratory sessions. For additional interfacing concepts, the initial sections of
Chapters 12, 13, and 15 (concepts in introduction to interrupts, programmable /O
devices, and serial I/O) are recommended. If the course is heavily oriented toward hard-
ware, Chapters 1 through 5 and Chapters 12 through 16 are recommended, and necessary
programs can be selected from Chapters 6 through 10. Interfacing laboratory sessions can
be designed around the illustrations in chapters or assignments given at the end of chap-
ters. If the course is heavily oriented toward software, Chapters 1 through 3 and 6 through
11 can be used. For a two-semester course, the entire text can be covered. The instructor’s
manual includes a course design, suggested weekly lecture and laboratory schedule, solu-
tions, and selected figures to produce transparencies.

Xi
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A Word With Students

The microprocessor is an exciting, challenging, and growing field; it will pervade industry
for decades to come. To meet the challenges of this growing technology, you will need to
be well conversant with the programmable aspect of the microprocessor. Programming is a
process of problem solving and communication in a strange language of mnemonics. Most
often, hardware-oriented students find this communication process very difficult. One of
the questions frequently asked by a student is, How do I get started in a given program-
ming assignment? One approach to learning programming is to examine various types of
programs and imitate them: Begin by studying the illustrative program relevant to an
assignment, its flowchart, its analysis, program description, and particularly, the com-
ments. Read the instructions from Appendix A as necessary and pay attention to the flags.
This text is written in such a way that simple programming of the microprocessor can be
self-taught. Once you master the elementary programming techniques, interfacing and
design become exciting and fun.
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Part I of this book is concerned primarily with micro-
processor architecture in the context of micro-
processor-based products. The microprocessor-
based systems are discussed in terms of three com-
ponents—the microprocessor, memory, and input
and output—and their communication process. The
role of the programming languages, from the
machine language to high-level languages, is pre-
sented in the context of the system.

The material is presented in a format similar to
the view from an airplane preparing to land. As the
plane circles, one observes a view without any
details. As the plane descends, one begins to see the
same view but with more details. Chapter 1 presents
the microprocessor from two points of view: the
microprocessor as a programmable device and as an
element of a computer system, and how it commu-
nicates with memory and I/O. The chapter also dis-
cusses the role of assembly language in micro-
processor-based products and presents an overview
of various types of computers—-from large comput-
ers to microcomputers—and their applications.
Chapter 2 describes in generalized models a micro-
computer system and its three components: the




microprocessor, memory, and input and output (I/
0). Chapters 3, 4, and 5 examine these components
in detail and discuss how memory and I/O devices
interface with the Z80 microprocessor.

PREREQUISITES
The reader is expected to know the following con-
cepts:

0 Number systems (binary, octal and hexadecimal)
and their conversions.

O Boolean algebra, logic gates, flip-flops, and reg-
isters.

0O Concepts in combinational and sequential logic.

MICROPROCESSOR ARCHITECTURE AND INTERFACING



Microprocessors,
Microcomputers,
and Assembly
Language

The microcomputer plays a significant role in the
everyday functioning of industrialized societies. The
microcomputer is no different from any other com-
puter in its basic structure. In the 1960s, computers
were accessible and affordable only to such institu-
tions as large corporations, universities, and govern-
ment agencies. Today because of advances in semi-
conductor technology, the million-dollar computing
capacity of the 1960s is now available for less than
five dollars in an integrated circuit called the micro-
processor. The microprocessor can be defined as a
programmable logic device that can be used to con-
trol processes, to turn devices on or off, or as a data
processing unit of a computer. A computer that is
designed using the microprocessor is called a micro-
computer. This chapter introduces the basic struc-
ture of a computer and shows how the same structure
is applicable to microprocessor-based products. Lat-
er in the chapter, microcomputer applications in an
industrial environment are presented in the context
of the entire spectrum of various computer applica-
tions.

The microprocessor communicates and oper-
ates in the binary numbers O and 1, called bits. Each
microprocessor has a fixed set of instructions in the
form of binary patterns called a machine language.
However, it is difficult for humans to communicate

in the language of Os and 1s. Therefore, the binary
instructions are given abbreviated names, called
mnemonics, which form the assembly language for
a given microprocessor. This chapter explains both
the machine language and the assembly language of
the microprocessor known as the Z80. The advan-
tages of assembly language are compared with such
English-like languages as BASIC and FORTRAN.
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OBJECTIVES

0 Draw a block diagram of a microprocessor-based O Explain the difference between the machine lan-
system and explain the functions of each compo- guage and the assembly language of a com-
nent: microprocessor, memory, and I/O, and their puter.
lines of communication (the bus). O Explain the terms low-level and high-level lan-

O Explain the terms SSI, MSI, and LSI. guages.

0 Define the terms bit, byte, word, instruction, soft- 0 Explain the advantages of an assembly language
ware, and hardware. over high-level languages.

1.1

MICROPROCESSORS

A microprocessor is a multipurpose, programmable logic device that reads binary instruc-
tions from a storage device called memory, accepts binary data as input and processes data
according to those instructions, and provides results as output. A typical programmable
machine can be represented with three components: microprocessor, memory, and I/O as
shown in Figure 1.1. These three components work together or interact with each other to
perform a given task; thus, they comprise a system. The physical components of this
system are called hardware. A set of instructions written for the microprocessor to per-
form a task is called a program, and a group of programs is called software. The machine
(system) represented in Figure 1.1 can be programmed to turn traffic lights on and off,
compute mathematical functions, or keep track of a guidance system. This system may be
simple or sophisticated, depending on its applications, and it is recognized by various
names depending upon the purpose for which it is designed. When the microprocessor
system is used for control applications such as turning devices (or machines) on and off, it
is generally known as a microcontroller. When it is used for computing or data processing,
it is ’known as microcomputer.

BINARY DIGITS

The microprocessor operates in binary digits, O and 1, also known as bits. Bit is an
abbreviation for the term binary digit. These digits are represented in terms of electrical
voltages in the machine: generally, O represents one voltage level, and 1 represents an-
other. The digits 0 and 1 are also synonymous with low and high, respectively.

FIGURE 1.1
A Programmable Machine »1 Memory

Micro-
processor




MICROPROCESSORS, MICROCOMIPUTERS, AND ASSEMBLY LANGUAGE

Each microprocessor recognizes and processes a group of bits called the word, and
microprocessors are classified according to their word length. For example, a processor
with an 8-bit word is known as an 8-bit microprocessor, and a processor with a 16-bit word
is known as a 16-bit microprocessor.

A MICROPROCESSOR AS A PROGRAMMABLE DEVICE

The fact that the microprocessor is programmable means it can be instructed to perform
given tasks within its capability. A toaster is an example of an elementary programmable
machine. It can be programmed to remain on for a given length of time by adjusting a
mechanical lever to a “‘light”” or “‘dark’’ setting. The toaster is designed to understand and
execute one instruction. On the other hand, the present-day microprocessor is designed to
understand and execute many binary instructions. It can be used to perform sophisticated
computing functions as well as to perform such simple control tasks as turning devices on
and off. The person using a microprocessor selects appropriate instructions and asks the
microprocessor to perform various tasks on a given set of data.

The engineer who designs a toaster determines the timing for light and dark toast,
and the manufacturer of the toaster provides the necessary instructions to operate the
toaster. Similarly, after the engineers designing a microprocessor determine a set of tasks
the microprocessor should perform and design the necessary logic circuits, the manufac-
turer of the microprocessor provides the user with a list of the instructions the processor
will understand. For example, an instruction for adding two numbers may look like a
group of eight binary digits, such as 1000 0000. These instructions are simply a pattern of
0Os and 1s. The user (programmer) selects instructions from the list and determines the
sequence of execution for a given task. These instructions are entered or stored in a storage
device calied memory, which can be read by the microprocessor.

MEMORY

Memory is like the page(s) of a notebook with space for a fixed number of binary numbers
on each line. However, these pages are generally made of semiconductor material. Typ-
ically, each line is an 8-bit register that can store eight binary bits, and several of these
registers are arranged in a sequence called memory. These registers are always grouped
together in powers of two. For example, a group of 1024 (219 8-bit registers on a semi-
conductor chip is known as 1K byte of memory; 1K is the closest approximation in
thousands. The user writes the necessary instructions and data in memory through an input
device (described below), and asks the microprocessor to perform the given task and find
an answer. The answer is generally displayed at an output device (described below) or
stored in memory.

INPUT/OUTPUT

The user can enter instructions and data into memory through such devices as a keyboard
or simple switches. These devices are called input devices. The microprocessor reads the
instructions from the memory and processes the data according to those instructions. The
result can be displayed by such a device as seven-segment LEDs (Light Emitting Diodes)
or printed by a printer. These devices are called output devices.
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MICROPROCESSOR AS A CPU
We can also view the microprocessor as a primary component of a computer. Tradition-
ally, the computer is represented in block diagram as shown in Figure 1.2 (a). The block
diagram shows that the computer has four components: Memory, Input, Output, and the
central processing unit (CPU), which consists of the ALU (Arithmetic/Logic Unit) and
Control Unit. The CPU contains various registers to store data, the arithmetic/logic unit
(ALU) to perform arithmetic and logical operations, instruction decoders, counters, and
control lines. The CPU reads instructions from the memory and performs the tasks spec-
ified. It communicates with input/output devices either to accept or to send data. These
devices are also known as peripherals. The CPU is the primary and central player in
communicating with such devices as memory, input, and output. However, the timing of
the communication process is controlled by the group of circuits called the control
unit.

In the 1960s, the CPU was designed with discrete components on various boards.
With the advent of the integrated circuit technology, it became possible to build the CPU
on a single chip; this came to be known as a microprocessor, and the traditional block
diagram shown in Figure 1.2(a) can be replaced by the block diagram shown in Figure
1.2(b).

FIGURE 1.2 CPU
(a) Traditional Block Diagram of
a Computer (b) Block Diagram Arithmetic/
of a Computer with the Micro- Logic Unit
processor as CPU (ALU)
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1.11 Advances in Semiconductor Technology

In the last thirty years, semiconductor technology has undergone unprecedented changes.
After the invention of the transistor, integrated circuits (ICs) appeared on the scene at the
end of the 1950s; an entire circuit consisting of several transistors, diodes, and resistors
could be designed on a single chip. In the early 1960s, logic gates known as the 7400 series
were commonly available as ICs, and the technology of integrating the circuits of a logic
gate on a single chip became known as Small-Scale Integration (SSI). As semiconductor
technology advanced, more than 100 gates were fabricated on one chip; this was called
Medium-Scale Integration (MSI). A typical example of MSI is a decade counter (7490).
Within a few years, it was possible to fabricate more than 1000 gates on a single chip; this
came to be known as Large-Scale Integration (LSI). Now we are in the era of Very-
Large-Scale Integration (VLSI) and Super-Large-Scale Integration (SLSI). The lines of
demarcation between these different scales of integration are rather ill-defined and arbi-
trary.

As the technology moved from SSI to LSI, more and more logic circuits were built
on one chip, and they could be programmed to do different functions through hard wired
connections. For example, a counter chip can be programmed to count in Hex or decimal
by providing logic 0 or 1 through appropriate pin connections. The next step was the idea
of providing Os and 1s through a register. The necessary signal patterns of Os and 1s were
stored in registers and given to the programmable chip at appropriate times; the group of
registers used for storage was called memory. Because of the LSI technology, it became
possible to build many computing functions and their related timing on a single chip.

The Intel 4004 was the first 4-bit programmable device that was primarily used in
calculators. It was designed by Intel Corporation and became known as the 4-bit micro-
processor. It was quickly replaced by the 8-bit microprocessor (the Intel 8008), which was
in turn superseded by the Intel 8080. In the mid-1970s, the Intel 8080 was widely used in
control applications, and small computers also were designed using the 8080 as the CPU;
these computers became known as microcomputers. Within a few years after the emer-
gence of the 8080, the Motorola 6800, the Zilog Z80, and the Intel 8085 microprocessors
were developed as improvements over the 8080. The 6800 was designed with a different
architecture and the instruction set from the 8080. On the other hand, the 8085 and the Z80
were designed as upward software compatible with the 8080; that is, they included all
the instructions of the 8080 plus additional instructions. In terms of the instruction set, the
8080 and the 8085 are almost identical; however, the Z80 has a powerful instruction set
containing twice as many instructions as the 8080. As the microprocessors began to
acquire more and more computing functions, they were viewed more as CPUs rather than
as programmable logic devices. Most microcomputers are now built with 16- and 32-bit
microprocessors, and 64-bit microprocessors are also being used in some prototype
computers. The 8-bit microprocessors are not simply being replaced by more powerful
microprocessors, however; each microprocessor has begun to carve a niche for its own
applications. The 8-bit microprocessors are being used as programmable logic devices in
control applications, and the 16- and 32-bit microprocessors are being used for mathe-
matical computing (number crunching) and data processing applications. Our focus here is
in using 8-bit microprocessors as programmable devices.
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1.12 Microcomputer Organization

Figure 1.3 shows a simplified but formal structure of a microcomputer. It includes four
components: microprocessor, input, output, and memory (Read/Write Memory and Read-
Only Memory). These components are organized around a common communication path
called a bus. The entire group of components is also referred to as a system or a micro-
computer system, and the components themselves are referred to as sub-systems. At the
outset, it is necessary to differentiate between the terms microprocessor and microcom-
puter because of the common misuse of these terms in popular literature. The micropro-
cessor is one component of the microcomputer. On the other hand, the microcomputer is a
complete computer similar to any other computer, except that the CPU functions of the
microcomputer are performed by the microprocessor. Similarly, the term peripheral is
used for input/output devices. The various components of the microcomputer shown in
Figure 1.3 and their functions are described in this section.

MICROPROCESSOR

The microprocessor is a semiconductor device consisting of electronic logic circuits man-
ufactured by using either a large-scale (LSI) or very-large-scale integration (VLSI) tech-
nique. The microprocessor is capable of performing various computing functions and
making decisions to change the sequence of program execution. In large computers, a
CPU implemented on one or more circuit boards performs these computing functions. The
microprocessor is in many ways similar to the CPU, but includes all the logic circuitry,
including the control unit, on one chip. The microprocessor can be divided into three
segments for the sake of clarity, as shown in Figure 1.3: Arithmetic/Logic Unit (ALU),
Register Array, and Control Unit.

Arithmetic/Logic Unit This is the area of the microprocessor where various computing
functions are performed on data. The ALU unit performs such arithmetic operations as
addition and subtraction, and such logic operations as AND, OR, and exclusive OR.
Results are stored either in registers or in memory.

Microprocessor

Input Output

|

ALU { Register A A
I
I

rray
System Bus

I A4

Control I ROM l iR/WMJ

>

Memory

FIGURE 1.3
Microcomputer with Bus Architecture
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Register Array This area of the microprocessor consists of various registers. These
registers are primarily used to store data temporarily during the execution of a program.
Some of the registers are accessible to the user through instructions.

Control Unit The control unit provides the necessary timing and control signals to all
the operations in the microcomputer. It controls the flow of data between the micropro-
cessor and memory and peripherals.

Now the question is: what is the relationship among the programmer’s instruction
(binary pattern of 0s and 1s), the ALU, and the control unit? This can be explained with the
example of a Full Adder circuit. A Full Adder circuit can be designed with registers, logic
gates, and a clock. The clock initiates the adding operation. Similarly, the bit pattern of an
instruction initiates a sequence of clock signals, activates the appropriate logic circuits in
the ALU, and performs the task. This is called microprogramming, which is done in the
design stage of the microprocessor. The bit patterns required to initiate these micropro-
gram operations are given to the programmer in the form of the instruction set of the
microprocessor. The programmer selects appropriate bit patterns from the set for a given
task and enters them sequentially in memory through an input device. When the CPU reads
these bit patterns one at a time, it initiates appropriate microprograms through the control
unit, and performs the task specified in the instructions.

At present, various microprocessors are available from different manufacturers.
Examples of widely used 8-bit microprocessors include the Intel 8085, Zilog Z80, and
Motorola 6800 and 6809. Earlier microcomputers such as the Radio Shack TRS-80, the
Televideo 803, and the Kaypro 4 are designed around the Z80 microprocessor. The recent
versions of IBM personal computers, Personal System/2, are designed around 16-bit and
32-bit microprocessors; the model 60 is based on the Intel 80286 (16-bit) and the model 80
is based on the Intel 80386 (32-bit). Single-board microcomputers such as the Intel SDK-
85, the Motorola MEK-6800-D2, the Multitech Micro-Professor, and the CAMI Research
Micro-Trainer are commonly used in college laboratories; the SDK-85 is based on the
8085 microprocessor, the MEK-6800-D2 on the 6800 microprocessor, and the Micro-
Professor and the Micro-Trainer on the Z80 microprocessor.

INPUT

The input section transfers data and instructions in binary from the outside world to the
microprocessor. It includes such devices as a keyboard, a teletype, and an analog-to-
digital converter. Typically, a microcomputer used in college laboratories includes either a
hexadecimal keyboard or an ASCII keyboard as an input device. The hexadecimal (Hex)
keyboard has 16 data keys (0 to 9 and A to F) and some additional function keys to perform
such operations as storing data and executing programs. The ASCII keyboard (explained
in Section 1.3) is similar to a typewriter keyboard, and it is used to enter programs in an
English-like language. Although the ASCII keyboard is found in most microcomputers,
single-board microcomputers generally have Hex keyboards.

OUTPUT
The output section transfers data from the microprocessor to such output devices as light
emitting diodes (LEDs), a cathode-ray tube (CRT), a printer, a magnetic tape, or another
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computer. Typically, single-board computers include LEDs and seven-segment LEDs as
output devices.

MEMORY

Memory stores such binary information as instructions and data, and provides that infor-
mation to the microprocessor whenever necessary. To execute programs, the micropro-
cessor reads instructions and data from memory and performs the computing operations in
its ALU section. Results are either transferred to the output section for display or stored in
memory for later use. The memory block (Figure 1.3) has two sections: Read-Only
Memory (ROM) and Read/Write Memory (R/WM), popularly known as Random-
Access Memory (RAM).

The ROM is used to store programs that do not need alterations. The monitor pro-
gram of a single-board microcomputer is generally stored in the ROM. This program
interprets the information entered through a keyboard and provides equivalent binary
digits to the microprocessor. Programs stored in the ROM can only be read; they cannot be
altered.

The Read/Write Memory (R/WM) is also known as user memory. It is used to store
user programs and data. In single-board microcomputers, the monitor program monitors
the Hex keys and stores those instructions and data in the R/W memory. The information
stored in this memory can be easily read and altered.

SYSTEM BUS

The system bus is a communication path between the microprocessor and peripherals; it is
nothing but a group of wires to carry bits. In fact, there are several buses in the system that
will be discussed in the next chapter. All peripherals (and memory) share the same bus;
however, the microprocessor communicates with only one peripheral at a time; the timing
is provided by the control unit of the microprocessor.

1.13 How Does the Microcomputer Work?

Assume that a program and data are already entered in the R/W memory. (How to write
and execute a program will be explained later.) The program includes binary instructions
to add given data and to display the answer at the seven-segment LEDs. When the micro-
computer is given a command to execute the program, it reads and executes one instruction
at a time and finally sends the result to the seven-segment LEDs for display.

This process of program execution can best be described by comparing it to the
process of assembling a radio kit. The instructions for assembling the radio are printed in a
sequence on a sheet of paper. One reads the first instruction, then picks up the necessary
components of the radio and performs the task. The sequence of the process is read,
interpret, and perform. The microprocessor works the same way. The instructions are
stored sequentially in the memory. The microprocessor fetches the first instruction from its
memory sheet, decodes it, and executes that instruction. The sequence of fetch, decode,
and execute is continued until the microprocessor comes across an instruction to stop.
During the entire process, the microprocessor uses the system bus to fetch the binary
instructions and data from the memory. It uses registers from the register section to store
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data temporarily, and it performs the computing function in the ALU section. Finally, it
sends out the result in binary, using the same bus lines, to the seven-segment LEDs.

1.14 Summary of Important Concepts

The functions of various components of a microcomputer can be summarized as
follows:

1. The microprocessor
O communicates with all peripherals (memory and I/Os) using the system bus.
O controls timing of information flow.
O performs the computing tasks specified in a program.
2. The memory
O stores binary instructions and data, called programs.
O provides the instructions and data to the microprocessor on request.
O stores results and data for the microprocessor.
3. The input device
O enters data and instructions under the control of a program such as a monitor pro-
gram.
4. The output device
O accepts data from the microprocessor as specified in a program.
5. The bus
O carries bits between the microprocessor and memory and I/Os.

FROM LARGE COMPUTERS TO SINGLE-CHIP
MICROCOMPUTERS

11

1.2

In the last thirty years, advances in semiconductor technology have had an unprecedented
impact on computers. Thirty years ago, computers were accessible only to big corpora-
tions, universities, and government agencies. Now, ‘‘computer’’ has become a common
word. The range of computers now available extends from such sophisticated, multi-
million-dollar machines as the IBM 3090 to the less-than-$200 home computer. All the
computers now available on the market include the same basic components shown in
Figure 1.3. Nevertheless, it is obvious that these computers are not all the same.
Different types of computers are designed to serve different purposes. Some are
suitable for scientific calculations, while others are used simply for turning appliances on
and off. Thus, it is necessary to have an overview of the entire spectrum of computer
applications as a context for understanding the topics and applications discussed in this
text. Until 15 years ago, computers were broadly classified in three categories: mainframe,
mini-, and microcomputers. Since then, technology has changed considerably, and the
distinctions between these categories have been blurred. Initially, the microcomputer was
recognized as a computer with a microprocessor as its CPU. Now practically all computers
have various types of microprocessors performing different functions within the large
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CPU. For the sake of convenience, computers are classified here as large computers,
medium-sized computers, and microcomputers.

1.21 Large Computers

These are large, general-purpose computers designed to perform such data processing
tasks as complex scientific and engineering calculations and handling of records for large
corporations or government agencies. The price is generally beyond $1 million and can go
as high as $10 million. Typical examples of these computers include IBM 3090 or IBM
9370 series, Burroughs 6700, and Univac 1100.

These are high speed computers, and their word lengths range from 32 to 64 bits.
They are capable of addressing megabytes of memory and handling all types of periph-
erals. For the more expensive, the CPU alone may cost more than one million dollars. For
example, the IBM 3000/81 CPU, capable of addressing 32 megabytes of memory, may
cost more than $3 million; the price of the total system may go as high as $6 million.
However, IBM also has medium-sized systems, called 4300 series, costing around
$100,000, and they are also known as mainframe computers.

1.22 Medium-Sized Computers

In the late 1960s, these computers were designed to meet the instructional needs of small
colleges, the manufacturing problems of small factories, and the data processing tasks of
medium-sized businesses, such as payroll and accounting. They were called minicom-
puters. The price range was anywhere from $25,000 to $100,000. Typical examples
include such computers as Digital Equipment PDP 11/45 and Data General Nova.

These computers were slower than the large computers, and their word length gen-
erally ranged from 12 to 32 bits. They were capable of addressing 64K to 256K bytes of
memory. Some of the larger minicomputers were known as midicomputers. However,
these classifications are no longer valid. For example, Digital Equipment’s new VAX 11
system is a 32-bit machine with megabytes of memory addressing capacity. The price
ranges from $50,000 to $450,000. The high end of the VAX 11 system is almost in the
territory of the large computers.

1.23 Microcomputers

The 4-bit and 8-bit microprocessors became available in the mid 1970s, and initial appli-
cations were primarily in the areas of machine control and instrumentation. As the price of
the microprocessors and memory began to decline, the applications mushroomed in almost
all areas, including video games, word processing, and small business applications. Early
arrivals in the microcomputer market, such as Cromemco, North Star Horizon, Radio
Shack TRS-80, and Apple were designed around 8-bit microprocessors. Since then, 16-bit
and 32-bit microprocessors such as Intel 8086/88, 80286, and 80386, Motorola 68000,
and Zilog Z8000 have been introduced, and recent microcomputers have been designed
around these microprocessors. Present day microcomputers can be classified into four
groups: business (or personal), home, single-board, and single-chip microcomputers.
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BUSINESS MICROCOMPUTERS

These microcomputers are being used for a variety of purposes, such as payroll, business
accounts, word processing, legal and medical recordkeeping, personal finance, and
instruction. They are also known as personal computers. Typically, the price ranges from
$1,000 to $8,000 for a single-user system, and it can go higher for a multi-user system.
Examples include such microcomputers as IBM Personal Computers (IBM PC, XT,
AT, System/2), the AT&T 6300 series, Apple Computers, and Zenith or Compaq com-
puters.

At the low end of the microcomputer spectrum, a typical configuration includes an
8-bit or 16-bit microprocessor, 64K (or 128K) bytes of memory, a CRT terminal, a
printer, and dual disk drive for 5%-inch floppy disks. The floppy disk is a magnetic
medium similar to a cassette tape except that it is round in shape, like a record. Information
recorded on these disks can be accessed randomly using disk drives, while information
stored on a cassette tape is accessed serially. In order to read information at the end of the
tape, the user must run the entire tape through the machine. Floppy disks are used to store
such programs as compilers, interpreters, system programs, user programs, and data.
Whenever the user needs to write a program, the necessary software is transferred from the
floppy disk to the system’s memory. At the high end of the microcomputer spectrum, the
basic configuration remains essentially similar. It may include a 16-bit or 32-bit micro-
processor, a hard disk with megabytes of storage, two floppy disks, an expensive terminal,
and a printer.

FIGURE 1.4
Microcomputer with Disk Storage:
IBM Personal System/2

SOURCE: Photograph courtesy of IBM Corpo-
ration
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HOME COMPUTERS

Home computers are differentiated from business microcomputers in terms of their mem-
ory storage. Typically, these computers have an 8-bit microprocessor, a CRT terminal
with an ASCII typewriter, 16K to 64K memory, and a cassette tape as a storage medium.
Some of these computers can be used with television as a video monitor. The prices of
these computers may range from less than $200 to $500. Typical examples include Com-
modore 64, Tandy 100, and Atari 130XE. These microcomputers are used primarily for
playing video games, learning simple programming, and running some instructional pro-
grams.

SINGLE-BOARD MICROCOMPUTERS

These microcomputers are used primarily in college laboratories and industries for instruc-
tional purposes or for evaluating the performance of a given microprocessor. They can also
be part of some larger systems. Typically, these microcomputers include an 8-bit micro-
processor, from 256 to 2K bytes of user memory, a Hex keyboard, and seven-segment
LEDs for display. The system monitor programs of these computers are generally small;

FIGURE 1.5
Single-Board Microcomputer. Micro-Trainer
SOURCE: Photograph courtesy of CAMI Research, Inc
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they are stored in less than 2K bytes of ROM. The prices of these single-board computers
range from $100 to $800, with the average price being about $300.

Examples of these computers include such systems as Intel SDK-85, Motorola Eval-
uation Kit, and CAM1 Research Micro-Trainer (Figure 1.5). These are generally used to
write and execute assembly language programs and to perform interfacing experiments.

SINGLE-CHIP MICROCOMPUTERS
These microcomputers are designed on a single chip, which typically includes a micro-
processor, 64 bytes of R/W memory, from 1K to 2K bytes of ROM, and several signal
lines to connect I/Os. These are complete microcomputers on a chip; they are also known
as microcontrollers. They are used primarily for such functions as controlling appliances
and traffic lights. Typical examples of these microcomputers include the Zilog Z8, Intel
MCS 51 and 96 series, Fairchild F8, and Motorola 6802.

The entire spectrum of computer applications is shown in Figure 1.6, and various
applications and categories of the microcomputer are listed in Table 1.1.
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Applications: From Large Computers to Single-Chip Microcomputers
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TABLE 1.1
Microcomputer Applications
Types
Microcomputer Microcomputer
with Disk with Cassette Single-Board Single-Chip
Characteristics Storage Tape Storage Microcomputer Microcomputer
Price range $1,000-8,000 $100-$500 $100-$800 <$50
Memory size 64K-512K 4K-64K 256 Bytes—2K 64-128 bytes
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1.3

MICROPROCESSOR INSTRUCTION SET AND
COMPUTER LANGUAGES

Microprocessors recognize and operate in binary numbers. However, each microprocessor
has its own binary words, instructions, meanings, and language. The words are formed by
combining a number of bits for a given machine. The word (or word length), as defined
earlier, is the number of bits the microprocessor recognizes and processes at a time. The
word length ranges from 4 bits for small, microprocessor-based computers, to 32 bits for
such large computers as the IBM 3800 series. Another term commonly used to express
word length is byte. The byte is defined as a group of eight bits. For example, a 16-bit
microprocessor has a word length equal to two bytes. The term ‘‘nibble,’* which stands for
a group of four bits, is also found in popular computer magazines and books. (A byte has
two nibbles.)

The instruction is defined as a complete task (such as Add) the microprocessor can
perform; it can be made up of one or more words. Each machine has its own set of
instructions based on the design of its CPU or its microprocessor. To be intelligible to the
microprocessor, instructions must be written in binary language, also known as machine
language. However, it is difficult for human beings to write programs in sets of Os and 1s.
Therefore, microprocessor manufacturers have devised Englishlike words to represent the
binary instructions of a machine, and programmers can write programs using these words.
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These are called assembly language programs. Because an assembly language is specific
to a given machine, programs written in assembly language are not transferable from one
machine to another. To circumvent this limitation, such general-purpose languages as
BASIC and FORTRAN have been devised so that a program written in these languages
can be machine-independent. These languages are called high-level languages. This sec-
tion deals with various aspects of these three types of languages: machine, assembly, and
high-level. The machine and assembly languages are discussed in the context of the Z80
MiCroprocessor.

1.31 Machine Language

The number of bits in a word for a given machine is fixed, and words are formed through
various combinations of these bits. For example, a machine with a word length of eight
bits can have 256 (2%) combinations of eight bits—thus a language of 256 words. How-
ever, not all of these words need to be used in the machine. The microprocessor design
engineer selects combinations of bit patterns and gives a specific meaning to each com-
bination by using electronic logic circuits; this is called an instruction. The set of instruc-
tions designed into the machine makes up what is called the machine language, a binary
language composed of Os and 1s. Its words, its instructions, and their meanings are spe-
cific to each computer. In this book, we are concerned with the language of the Z80
microprocessor from Zilog Corporation, a widely used microprocessor in industrial appli-
cations. The primary focus here is on the microprocessor, because it is the microprocessor
that determines the machine language and the operations of a microcomputer.

1.32 Z80 Machine Language

The Z80 is a microprocessor with 8-bit word length. Its instruction set (or language) is
upward compatible with that of the 8080; the Z80 has 159 instructions that include the
entire 8080 set of 72 instructions. An instruction, as discussed earlier, is a binary pattern
entered through an input device to command the microprocessor to perform a specific
function. For example:

0011 1100 is an instruction that increments the number in the reg-
ister called the accumulator by one.

1000 0000 is an instruction which adds the number in the register
called B to the number in the accumulator, and keeps
the sum in the accumulator.

The Z80 microprocessor has a variety of such bit patterns resulting in its 159 instruc-
tions for performing different operations, called the instruction set. The Z80 micropro-
cessor also accepts data in 8-bit words as input from input devices, processes data accord-
ing to the instructions written by the user, and sends out data in 8-bit words to output
devices. This binary language with a predetermined instruction set is called the Z80
machine language.

However, it is tedious and conducive to error for human beings to recognize and
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write instructions in binary language. Therefore, for convenience, these instructions are
written in hexadecimal (or octal) code and entered into a single-board microcomputer by
using Hex keys.

For example, the binary instruction 0011 1100 (mentioned previously) is equivalent
to 3C in hexadecimal. This instruction can be entered into a singleboard microcomputer
system with Hex keyboard by pressing two keys: 3 and C. The monitor program of the
system translates these keys into their equivalent binary pattern.

1.33 Z80 Assembly Language

Even though the instructions can be written in hexadecimal code, it is still not easy to
understand such a program. Therefore, each manufacturer of microprocessors has devised
a symbolic code far each instruction, called a mnemonic. (The word mnemonic is based
on the Greek word related to memory aid.) The mnemonic for a particular instruction
consists of letters that suggest the operation to be performed by that instruction.

For example, the binary code 0011 1100 (3C;4 or 3Cyx™ in hexadecimal) of the
Z.80 microprocessor is represented by the mnemonic INC A:

INC A INC stands for increment, and A represents the accumulator. This symbol
suggests the operation of incrementing the accumulator content by one.

Similarly, the binary code 1000 0000 (80,6 or 80y*) is represented as follows:

ADD A, B ADD stands for addition, and A and B represent the contents in the
accumulator and register B respectively. This symbol suggests the
addition of the contents in register B and the accumulator.

Even though these symbols do not specify the complete operations, they suggest the
significant portions. The complete description of each instruction must be supplied by the
manufacturer. The complete set of Z80 mnemonics is called the Z80 assembly language,
and a program written in these mnemonics is called an assembly language program.
Again, the assembly language is specific to each microprocessor. For example, the Motor-
ola 6800 microprocessor has an entirely different set of binary codes and mnemonics from
that of the Z80. An assembly language program written for one microprocessor is not
transferable to a computer with another microprocessor unless the two microprocessors are
compatible in their machine codes.

The machine language and the assembly language are microprocessor-specific, and
both are considered low-level languages. The machine language is in binary, and the
assembly language is in English-like words; however, the microprocessor understands
only the binary. How, then, are the assembly language mnemonics entered into a micro-
processor system and translated into binary code? In a microcomputer, the mnemonics are
entered as ASCII code (explained in the next section) using the keyboard as an input
device, and the translation is performed by a program called an assembler. In a single-

*Hexadecimal numbers are shown with the subscript H in the text.
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board microcomputer, the user translates mnemonics into Hex digits by looking up the
code manually in the instruction set and enters them into the system through the Hex
keyboard. This is called hand assembly.

1.34 Alphanumeric Codes

A computer is a binary machine; in order to communicate with the computer in alphabetic
letters and decimal numbers, translation codes are necessary. The commonly used code is
known as ASCII—American Standard Code for Information Interchange. It is a 7-bit code
with 128 (27) combinations, and each combination from 00y to 7Fy is assigned to either a
letter, a decimal number, a symbol, or a machine command (See Appendix C). For
example, hexadecimal 30y to 39y represent 0 to 9, decimal digits; 41y to SAy represent
capital letters A through Z; 20y to 2Fy represent various symbols; and the initial codes 00y
to 1Fy represent such machine commands as carriage return and line feed. Devices which
use ASCII characters include ASCII terminals, teletype machines (TTY), and printers.
When the key 9 is pressed on an ASCII terminal, the computer receives 39y in binary,
and the system program translates ASCII characters into appropriate binary or BCD
numbers.

Another code, called EBCDIC (Extended Binary Coded Decimal Interchange Code)
is widely used in IBM computers (except in IBM Personal Computers or microcomputers).
This is an 8-bit code representing 256 combinations; however, several combinations are
not used.

1.35 Writing and Executing an Assembly Language Program

As explained earlier, a program is a set of logically related instructions written in a specific
sequence to accomplish a task. To write and execute an assembly language program
manually on a single-board computer, with a Hex keyboard for input and LEDs for output,
the following steps are necessary:

1. Write the instructions in mnemonics obtained from the instruction set supplied by the
manufacturer.

2. Find the hexadecimal machine code for each instruction by searching through the set of
instructions.

3. Enter (load) the program in the user memory in a sequential order by using the Hex
keyboard as the input device.

4. Execute the program by pressing the Execute key. The answer will be displayed by the
LEDs.

When the user program is entered by the keys, each entry is interpreted and con-
verted into its binary equivalent by the monitor program, and the machine code is stored as
eight bits in each memory location in a sequence. When the Execute command is given,
the microprocessor fetches each instruction, decodes it, and executes it in a sequence until
the end of the program.

The manual assembly procedure is commonly used in single-board microcomputers
and is suited for small programs. However, the steps of looking up the machine codes and
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entering the program, which are tedious and subject to errors, can be avoided by using an
assembler on a microcomputer system.

The assembler is a program that translates the mnemonics entered by the ASCII
keyboard into the corresponding binary machine codes of the microprocessor. Each micro-
processor has its own assembler because the mnemonics and machine codes are specific to
the microprocessor being used, and each assembler has certain rules which must be learned
by the programmer. Assemblers are discussed in detail in Chapter 7.

1.36 High-Level Languages

Programming languages that are intended to be machine-independent are called high-level
languages. The list includes such languages as C, FORTRAN, BASIC, PASCAL, and
COBOL. These languages have certain sets of rules and draw on symbols and conventions
from English. Instructions written in these languages are known as statements rather than
mnemonics. A program written in BASIC for a microcomputer with the Z80 micropro-
cessor can generally run on another microcomputer with a different microprocessor.

Now the question is: How do words in English get converted into the binary lan-
guages of different microprocessors? The answer lies with another program called either a
compiler or an interpreter. These programs accept English-like statements as their input,
called the source code. The compiler or interpreter then translates the source code into the
machine language compatible with the microprocessor being used in the system. This
translation into the machine language is called the object code (Figure 1.7). Each micro-
processor needs its own compiler or interpreter for each high-level language. The primary
difference between a compiler and an interpreter is in the process of generating machine
code. The compiler reads the entire program first and then generates the object code, while
the interpreter reads one instruction at a time, produces its object code, and executes the
instruction before reading the next instruction. M-Basic is a common example of an
interpreter for the BASIC language. Compilers are generally used in such languages as
FORTRAN, COBOL, and PASCAL.

Compilers and interpreters require large memory space because each instruction in
English requires several machine codes to translate that instruction into binary. On the
other hand, there is a one-to-one correspondence between the assembly language mne-
monics and the machine code. Thus, assembly language programs are compact and require
less memory space; they are more efficient than the high-level language programs. The
primary advantage of high-level languages is in troubleshooting programs, also known as
debugging. It is much easier to find errors in a program written in a high-level language
than to find them in a program written in assembly language.

In certain applications such as traffic control and appliance control, where programs
are small and compact, assembly language is suitable. Similarly, in such real-time appli-

FIGURE 1.7 o
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cations as converting a high frequency waveform into digital data, program efficiency is
critical. In real-time applications, events and time should closely match with each other
without significant delay. Therefore, assembly language is highly desirable in these appli-
cations. On the other hand, for applications in which programs are large and memory is not
a limitation, high-level languages may be desirable. The advantage of time saved in
debugging a large program may outweigh the disadvantages of large memory requirements
and inefficiency.

SUMMARY

The various concepts and terms discussed in this chapter are summarized below:

Computer Structure

O Digital Computer—a programmable machine that processes binary data. It includes
four components: CPU (ALU plus control unit), memory, input, and output.

0 CPU—the Central Processing Unit. The group of circuits that processes data and
provides control signals and timing. It includes the arithmetic/logic unit, registers,
instruction decoder, and the control unit.

0 ALU-—the group of circuits that performs arithmetic and logic operations. The ALU
is a part of the CPU.

O Control Unit—The group of circuits that provides timing and signals to all opera-
tions in the computer and controls data flow.

0 Memory—a medium that stores binary information (instructions and data).

O Input—a device that transfers information from the outside world to the computer.

O Output—a device that transfers information from the computer to the outside
world.

Scale of Integration

0O SSI-—Small-Scale Integration. The process of designing a few circuits on a single
chip. The term refers to the technology used to fabricate discrete logic gates on a
chip.

0 MSI-—Medium-Scale Integration. The process of designing more than 100 gates on
a single chip.

0 LSI—Large-Scale Integration. The process of designing more than 1,000 gates on a
single chip. Similarly, the terms VLSI (Very-Large-Scale Integration) and SLSI
(Super-Large-Scale Integration) are used to indicate the scale of integration.

Microcomputers

O Microprocessor—a semiconductor device (integrated circuit) that is manufactured
by using the large-scale integration technique. It includes the ALU, register arrays,
and control circuits on a single chip.
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O Microcomputer—a computer that uses a microprocessor as its CPU. It includes
four components: microprocessor, memory, input, and output.

O Bus—a group of lines used to transfer bits between the microprocessor and other
components of the computer system.

O ROM—Read-Only Memory. A memory that stores binary information permanently.
The information can be read from this memory but cannot be altered.

O R/WM—Read/Write Memory. A memory that stores binary information during the
operation of the computer. This memory is used as a writing pad to write user pro-
grams and data. The information stored in this memory can be easily read and
altered.

Computer Languages

O Bit—a binary digit, 0 or 1.

O Byte—a group of eight bits.

O Nibble-—a group of four bits.

0 Word—a group of bits the computer recognizes and processes as a whole.

O Instruction—a command in binary that is recognized and executed by the computer
in order to accomplish a task. Some instructions are designed with one word, and
some require multiple words.

0O Mnemonic—a combination of letters to suggest the operation of an instruction.

O Program—a set of instructions written in a specific sequence for the computer to
accomplish a given task.

O Machine Language—the binary medium of communication with a computer
through a designed set of instructions specific to each computer.

0O Assembly Language—a medium of communication with a computer in which pro-
grams are written in mnemonics. An assembly language is specific to a given com-
puter.

O Low-Level Language—a medium of communication that is machine-dependent, or
specific to a given computer. The machine and the assembly languages of a comput-
er are considered low-level languages. Programs written in these languages are not
transferable to different types of machines.

O High-Level Language—a medium of communication independent of a given com-
puter. Programs are written in English-like words, and they can be executed on a
machine using a translator (a compiler or an intepreter).

O Compiler—a program that translates English-like words of a high-level language
into the machine language of a computer. A compiler reads a given program, called
a source code, in its entirety, and then translates the program into the machine lan-
guage, which is called an object code.

O Interpreter—a program that translates the English-like statements of a high-level
language into the machine language of a computer. An interpreter translates one
statement at a time from a source code to an object code.

O Assembler—a computer program that translates an assembly language program
from mnemonics to the binary machine code of a computer.



MICROPROCESSORS, MICROCOMPUTERS, AND ASSEMBLY LANGUAGE 23

0 Manual Assembly—a procedure of looking up the machine code manually from the
instruction set of a computer and entering those codes into the computer through a
keyboard.

0 Monitor Program—a program that interprets the input from a keyboard and con-
verts the input into its binary equivalent.

LOOKING AHEAD

This chapter has given a brief introduction to computer organization and computer lan-
guages, with emphasis on the Z80 microprocessor and its assembly language. The
chapter has given an overview of the entire spectrum of computers, including their sa-
lient features and applications. The primary focus of this book is on the architectural
details of the Z80 microprocessor and its industrial applications, and on assembly lan-
guage programming in the context of these applications. In the microcomputer field,
there is hardly any separation between hardware and software, especially in applica-
tions where assembly language is necessary. In designing a microprocessor-based
product, hardware and software tasks are carried out concurrently because a decision
in one area affects the planning of the other area. There are various functions that can
be performed through either hardware or software, and a designer needs to consider
both approaches. This book focuses on trade-off between the two approaches as a de-
sign philosophy.

ASSIGNMENTS

1. List the components of a computer.

2. Explain the functions of each component of a computer.

3.  What is a microprocessor? What is the difference between a microprocessor and
a CPU?

4. Explain the difference between a microprocessor and a microcomputer.

5. Explain the following terms: SSI, MSI, and LSI.

6. Define: bit, byte, word, and instruction.

7. How many bytes make a word of 32 bits?

8. Explain the difference between the machine language and the assembly language

of the Z80 microprocessor.
9. What is an assembler?
10. What are low- and high-level languages?
11. Explain the difference between a compiler and an interpreter.
12. What are the advantages of an assembly language in comparison with high-level
languages?






Microcomputer
System: MPU,
Memory, and
/O

A microcomputer system consists primarily of three
components—the microprocessor unit (MPU),
memory, and /O (input/output). The MPU is the
central player; it communicates with memory and
I/O devices, processes data, and controls timing of
all its operations. In this chapter, we will examine
what the MPU does and what its requirements are.
We then design a model for a generalized MPU that
expands on the bus concept discussed in the previous
chapter and shows signals necessary for the MPU to
communicate with other devices. The model also
describes the requirements for processing data and
shows registers and logic circuits the MPU needs.

Memory and I/Os are integral parts of a micro-
computer system. We will discuss memory in terms
of its basic elements—Ilatches and registers—and
specify the requirements for a memory chip to store
information and communicate with the MPU. Based
on those requirements, we then develop the concepts
of memory addressing and memory maps. We also
discuss how the MPU addresses and communicates
with I/Os.
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OBJECTIVES

O

0

List the four program-initiated operations per-
formed by the MPU.

Define the functions of the address bus, data bus,
and control signals.

List the externally initiated operations the MPU
should respond to.
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the requirements of a memory chip to store infor-
mation and communicate with the MPU.

O Explain the functions of the control signals: Chip

Select (CS), Read (RD), and Write (WR).

0 Explain how memory addresses are assigned to a

memory chip and recognize the memory map of a

Draw the model of a generalized MPU showing given chip.
the necessary signals. O List the two techniques of addressing I/O
O List the types of registers the MPU needs to pro- devices.

cess data internally.
O Explain the internal organization of memory and

2.1

O Draw a block diagram of a microcomputer system
showing the MPU, memory, I/Os, and buses.

GENERALIZED MICROPROCESSOR UNIT (MPU)

The Microprocessor Unit (MPU) is a programmable logic device with a designed set of
instructions. In this section, we will examine the functions and requirements of the MPU
and derive a generalized model. From the previous chapter, we can recall what the MPU
does. It reads or fetches each instruction, one at a time, from memory and performs data
manipulation specified by the instruction; it also reads data from input devices, and writes
(or sends) data to output devices.

When the MPU is executing a program, it communicates frequently with memory
and I/O devices; the process consists of fetch, decode, and execute operations. However,
the question is: Can it respond to unexpected events? For example, while printing a long
program, can it stop printing temporarily and read any critical data that may arrive at the
input? Can it be ‘‘interrupted’’? Can it wait until a peripheral is ready? For example,
when memory response is too slow, can the MPU wait until memory is ready? The answer
to all these questions must be affirmative.

In addition to processing data according to the instructions written in memory, the
MPU needs to respond to various situations described above. External devices should be
able to interrupt and request the attention of the MPU. This communication process and
related operations between the MPU and the external devices (memory, I/Os) can be
classified into two main categories:

0 Program-initiated operations
D Peripheral (or externally) initiated operations.

To perform these operations, the MPU requires a group of logic circuits, a set of
signals to transfer information and control signals for timing, and clock circuitry; these
constitute the architecture. Early microprocessors did not have the necessary circuitry on
one chip; the complete units were made up of more than one chip. Therefore, we define
here the term Microprocessor Unit (MPU) as a group of devices that can perform opera-
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tions similar to those of the Central Processing Unit (CPU). For example, the 8080A MPU
requires three chips to make it a functional unit. However, since later microprocessors
include most of the necessary circuitry on a single chip, the terms MPU and micropro-
cessor are often used synonymously.

2.11 Program-Initiated Operations and Buses
To communicate with memory and I/Os, the MPU performs four operations:

1. Memory Read: Reads instructions or data from memory.
2. Memory Write: Writes instructions or data into memory.
3. VO Read: Accepts data from input devices.

4. /O Write: Sends data to output devices.

Now the question is: how does the MPU identify a memory register or an I/O device?
It does so the same way we identify a house; we give a number. Because it understands
only the binary numbers, the MPU identifies each memory register or I/O by a binary
number called an address. The next question is: how does the MPU inform the peripherals
when it is ready to read or write data? It does so by sending out appropriate timing signals
called control signals before it transfers data.

The steps in performing these MPU operations can be summarized as follows (not
necessarily in the order listed):

1. Identify the memory location or the peripheral with its address.
2. Transfer binary data.
3. Provide timing or synchronization signal.

Therefore, the MPU requires three sets of communication lines called buses: the first
group of lines, called the address bus, to identify the memory location; the second group,
called the data bus, to transfer data; and the third group, called the control lines, for timing
signals. In the previous chapter (Figure 1.3), all these different signal lines were grouped
together and shown as the system bus. Now we shall describe them individually.

ADDRESS BUS
As mentioned earlier, the MPU identifies each peripheral or memory location with a
binary address. Now the question is: how large is this address? The answer depends upon
the internal design of the microprocessor and available pins on a chip; it can be eight, 16,
20, or more bits. If the address size is 12 bits, the microprocessor can identify 4,096 (2'2)
different memory locations. The addressing is simply a numbering scheme to identify
memory registers. For example, a two-digit decimal numbering scheme can identify only
100 items, from 00 to 99. On the other hand, a four-digit numbering scheme can identify
10,000 items, from 0000 to 9999. Thus, the number of bits (address lines) used for
addressing by the MPU clearly determines the number of memory registers it can
identify.

Figure 2.1 shows one group of lines as the address bus for our generalized MPU.
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The arrow suggests that these lines are unidirectional—the signals flow from the MPU to
peripherals because only the MPU sends out an address. The address lines are generally
identified as Ag to A,,, where m is the size of the address bus. Typically, earlier micro-
processors such as the 8085, the Z80, and the 6800 have 16 address lines which are
capable of addressing 65,536 (2'®) memory locations, commonly known as 64K memory.
However, recent microprocessors such as the 8086 have 20 address lines, and the 68000
has 23 address lines.

DATA BUS

The second group of lines shown in Figure 2.1 is the data bus. These lines are used to
transfer data and are bidirectional—data can flow either direction. These lines are iden-
tified as Dg to D,,, where n signifies the size of the data bus. Again, the size of the data bus
determines how large a binary number can be transferred and processed at a time and thus
influences the microprocessor architecture considerably. The 8085, the Z80, and the 6800
have eight data lines and are thus called 8-bit microprocessors. On the other hand, the
8086, the Z8000, and the 68000 have 16 data lines and are called 16-bit micro-
Pprocessors.

CONTROL SIGNALS (MPU INITIATED)

These are individual signal lines generated by the MPU to indicate its operations. The
MPU generates a specific signal for each of its four operations—Memory Read, Memory
Write, I/0 Read, and I/O Write. These are timing signals that are used to enable, or
activate, peripherals. For example, to fetch (or read) an instruction from a memory loca-
tion, the MPU sends a timing pulse called Memory Read to enable the memory chip.

2.12 Externally Initiated Operations

There are various occasions when ongoing MPU operations need to be interrupted. For the
MPU we are designing, we can classify these types of external interruptions or delays into
four categories.

O Reset: Start again from the beginning. For example, if we are using a microprocessor as
a timer, we should be able to reset the timer after each operation or in the middle of an
operation and start again.

O Interrupt: Stop the ongoing process temporarily; do something now which is more
critical, and then go back to the original process. For example, we should be able to stop
printing temporarily and read data from a keyboard; then, when the MPU finishes
reading that data, it can go back to printing.

O Wait: When memory response time is too slow to respond to the speed of the MPU, this
signal can be used to delay the MPU operations.

O Bus Request: When the MPU operations are too slow compared to the speed of a
peripheral, the peripheral can request the use of the buses. For example, when large
amounts of data are to be transferred to memory, DMA (Direct Memory Access) con-
trollers can transfer data much faster than can the MPU.
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In our generalized MPU model (Figure 2.1), these externally initiated signals are
shown as External Requests. To indicate its response to some of these external requests,
the MPU needs additional signal lines shown as Request Acknowledge.

2.13 Clock Signals and Power

The MPU can be viewed as a complex timer. The timing is very critical in all its opera-
tions. The bits of a binary instruction are associated with the microprograms inside the
chip; when the MPU executes an instruction, it releases a series of microprograms at
precise time intervals. Therefore, the MPU needs circuits that generate clock signals. In
addition, it needs electrical power to run all the operations.

Figure 2.1 shows all the signals necessary for our generalized MPU. Presently,
because of LSI technology, most of the MPU requirements can be satisfied by single-chip
microprocessors with slight variations. For example, the Z80 microprocessor has all the
signals of the MPU except clock-generating circuitry, and some of its control signals need
to be logically ANDed to generate the specific control signals shown in Figure 2.1.

Power
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Microprocessor Ag
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FIGURE 2.1
Generalized Microprocessor Unit (MPU)
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However, the present microprocessors include all the data processing and timing circuitry
on one chip; therefore, they can be viewed as MPUs. Now we shall examine what is inside
the microprocessor to understand how it processes data.

2.14 Microprocessor as a Processing Unit

When the microprocessor executes instructions, it does so in a continuous sequence of
fetch, decode, and execute operations. After examining these operations in more detail,
we can describe the requirements of the internal architecture of our generalized micropro-
Ccessor.

FETCHING AN INSTRUCTION

To fetch an instruction, the microprocessor places a memory address on the address bus
and reads binary information using the data bus. Therefore, it needs a register that can hold
memory addresses and increment these addresses after the fetching is completed, a sort of
memory pointer.

DECODING AN INSTRUCTION
Once an instruction byte is fetched, it needs to be decoded to answer the following:

O Is it a complete instruction? If not, how many more bytes need to be fetched?
O What type of operation is required and on what data?

To perform these functions, the microprocessor needs an instruction decoder that can
interpret the fetched binary information.

EXECUTING AN INSTRUCTION
The type of data manipulation the microprocessor can perform depends on its internal
microprograms, that is, on its instruction set. These operations can be classified as data
copy (transfer), arithmetic/logic operations, and decision making. For example, to sub-
tract two numbers, both numbers must be loaded into registers. After the subtraction, it is
necessary to indicate whether the result is positive, negative, or zero. This can be indicated
by setting or resetting flip-flops called flags. To perform these arithmetic and logic oper-
ations, the microprocessor needs a group of logic circuits called Arithmetic/Logic Unit
(ALU).

This description of the requirements of the microprocessor to process data can be
summarized in a simplified block diagram shown in Figure 2.2. From this block diagram,
we can derive a programming model for a specific microprocessor.

2.15 Review of Important Concepts

The description and the requirements of a generalized microprocessor unit can be sum-
marized as follows (see Figure 2.3):
To communicate with memory and I/O devices, the MPU should have the following;:

1. Address bus to send the address of a memory register or an 1/O.
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FIGURE 2.2
MPU Internal Structure
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MPU Architecture
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. Data bus to transfer data between the MPU and memory and I/O devices.
. Control signals to identify its operations and provide timing.

. External Request signal lines to interrupt the MPU operations.

. Request Acknowledge signals to respond to the requests by peripherals.

. Clock signals to provide timing and power to operate circuits.
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To process data internally, the MPU should include the following:

Instruction Decoder to decode the fetched binary information.
Registers to store binary data.

Registers as memory pointers for addressing memory registers.
ALU to perform arithmetic and logic operations.

Flags (flip-flops) to indicate data conditions for decision making.

NP L=

MEMORY

Memory is an essential component of a microcomputer system; it stores binary instructions
and data for the microprocessor. There are various types of memory, and they can be
classified in two groups: prime (or main) memory and storage memory. In the last chapter,
we saw two examples of prime memory: Read/Write Memory (R/WM) and Read-Only
Memory (ROM). Magnetic tapes and disks can be cited as examples of storage memory.
First, we will focus on prime memory and then briefly discuss storage memory when we
examine various types of memory.

The R/W memory is made up of registers, and each register has a group of flip-flops
or field-effect transistors that store bits of information. The user can use this memory to
hold programs and store data. On the other hand, the ROM stores information permanently
in the form of diodes; the group of diodes can be viewed as a register. In a memory chip,
all registers are arranged in a sequence and identified by binary numbers called memory
addresses. The MPU uses its address bus to send the address of a memory register and uses
data and control buses to read from or write into that register. In the following sections, we
examine the basic concepts related to memory—its structure, its addresses, and its require-
ments for communication with the MPU—and build a model for R/W memory. However,
the discussion is equally applicable to ROM except for slight differences in Read/Write
control signals.

2.21 Flip-Flop or Latch as a Storage Element

What is memory? It is a circuit that can store bits—generally high or low voltage levels
representing 1 and 0. A flip-flop or a latch is a basic element of memory. To write or store
a bit in the latch, we need an input data bit and an enable signal (Figure 2.4(a)). In this
latch, the stored bit is always available on the output line. If a tri-state buffer is connected
to the output of the latch (as shown in Figure 2.4(b)), the stored bit can be read only when
the buffer is enabled. Similarly, we can also use a tri-state buffer on the input of the latch.
Now we can write into the latch (Figure 2.4(c)) by enabling the input buffer and read from
it by enabling the output buffer. This latch, which can store one binary bit, is called a
memory cell. Figure 2.5(a) shows four such cells or latches grouped together to form a
register which has four input lines and four output lines and can store four bits. The size of
this register is specified as either 4-bit or 1 X 4 bit, which indicates one register with four
cells or four I/O lines. The number of bits stored in a register is called a memory word.
Figures 2.5(b) and (c) show simplified block diagrams of the 4-bit register.
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FIGURE 2.4
Latches as Storage Elements

In Figure 2.6(a), four registers with eight cells (or 8-bit memory word) are arranged
in a sequence. To write into or read from any one of the registers, a specific register should
be identified or enabled. This is a simple decoding function; a 2-to-4 decoder can perform
that function. However, two more input lines A, and Ay, called address lines, are required
to the decoder. These two input lines can carry four different bit combinations (00, 01, 10,
11), and each combination can identify or enable one of the registers named as Register 0
through Register 3.

In Figure 2.6(a), the chip has an 8-bit memory word, and its size can be specified as
32 bits, 4 X 8 bits, or 4 bytes. If we have a memory chip with a 4-bit memory word, we
can combine two such chips in parallel to make an 8-bit memory word as shown in Figure
2.6(b). The address lines and RD/WR control signals (~ indicates active low) will be
connected in parallel, but the memory word will consist of 4 bits from each chip as
shown.

Now we can expand the number of registers. If we have eight registers on one chip,
we need three address lines and a 3-to-8 decoder. An interesting problem is how to deal
with two chips with four registers each. We have a total of eight registers; therefore, we
need three address lines. One address line, A,, is used to select a chip, and the address
lines A; and Ao are connected to both chips. Figure 2.7(b) shows that the Chip Select
signal CS is active low, so that when A, is 0 (low), Chip M, is selected and when A, is 1
(high), Chip M3 is selected. The addresses on A, and A will determine the registers to be
selected; thus, by combining the logic on A,, A;, and Ay, the memory addresses range
from 000 to 111. The concept of the Chip Select signal gives us more flexibility in
designing chips and allows us to expand memory size by using multiple chips.

Now let us examine the problem from a different perspective. Assume that we have
available four address lines and two memory chips with four registers each as before. Four
address lines are capable of identifying sixteen (2*) registers; however, we need only three
address lines to identify eight registers. What should we do with the fourth line? One of the
solutions is shown in Figure 2.8. Memory chip M, is selected when A3 and A, are both 0;
therefore, registers in this chip are identified with the addresses ranging from 0000 to 0011
(0 to 3). Similarly, the addresses of memory chip M, range from 1000 to 1011 (8 to B); this
chip is selected only when A is 1 and A, is 0. In this example, we need three lines to
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(a) 4 x 8 Bit Register (b) Two 4 X 4 Bit Registers
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FIGURE 2.7

(a) Memory Chip with Eight Registers (b) Two Memory Chips with Four Registers Each
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) o
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FIGURE 2.8

Addressing Eight Registers with Four Address Lines

identify eight registers, two for registers and one for Chip Select. However, we used also
the fourth line for Chip Select. This is called complete or absolute decoding. Another
option is to leave the fourth line as ‘*don’t care’’; we will further explore this concept
later.

After reviewing the above explanation, we can summarize the requirements of a
memory chip as follows:

1. A memory chip requires address lines to identify a memory register, a Chip Select CS
signal to enable the chip, and control signals to read from and write into memory
registers.

2. The number of address lines required is determined by the number of registers in a chip
(2" = Number of registers where »n is the number of address lines).

3. If additional address lines are available in a system, they are used to enable the Chip
Select CS signal. The memory address of a register is determined by the logic levels
(0/1) of all the address lines (including the address lines used for CS).

4. The control signal Read (RD) enables the output buffer, and data from the selected
register are made available on the output lines. Similarly, the control signal Write
(WR) enables the input buffer, and data on the input lines are written into memory
cells.

A model of a typical memory chip representing the requirements just stated is shown
in Figure 2.9. Figure 2.9(a) represents the R/W memory and Figure 2.9(b) represents the
Read-Only Memory; the only difference between the two as far as addressing is concerned
is that ROM does not need a WR signal. Internally, the memory cells are arranged in a
matrix format (in rows and columns), because as the size increases the internal decoding
scheme we discussed becomes impractical. For example, a memory chip with 1024 reg-
isters would require a 10-to-1024 decoder. If the cells are arranged in six rows and four
columns, however, the internal decoding circuitry can be designed with two decoders, one
for selecting a row and the other for selecting a column. The internal row and column
arrangement does not affect our external interfacing logic.
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CS RD WR CS RD
An An
Adflress R/WM Adfiress ROM
Lines Lines
Ag ——Aq
f—1/0—| 10—
Lines Lines
(a) (b)
FIGURE 2.9

(@) R/W Memory Model (b) ROM Model

2.22 Memory Map

Typically, in an 8-bit microprocessor system, 16 address lines are available for memory.
This means it is a numbering system of 16 binary bits and is capable of identifying 2'6
(65,536) memory registers, each register with a 16-bit address. The entire memory
addresses can range from 0000 to FFFF in Hex. Memory map is like a pictorial represen-
tation in which memory devices are located in the entire range of addresses. Memory
addresses provide the locations of various memory devices in the system, and the inter-
facing logic defines the range of memory addresses for each memory device.

Now let us assume that we have a memory chip with 256 registers which needs only
eight address lines (28 = 256). How can we assign 16-bit addresses to 256 registers? This
can be accomplished by using the remaining eight lines for the Chip Select through appro-
priate logic gates as illustrated in the next example.

37

IMustrate the memory map of the chip with 256 bytes of memory, shown in Figure 2.10(a),
and explain how the memory map can be changed by modifying the hardware of the Chip
Select CS line in Figure 2.10(b).

Figure 2.10(a) shows a memory chip with 256 registers with 8 I/O lines; the memory size
of the chip is expressed as 256 X 8. It has eight address lines A;—A,, one Chip Select CS
signal (active low) and two control signals Read (RD) and Write (WR). The eight address
lines (A;~Ao) of the microprocessor are required to identify 256 memory registers. The
remaining eight lines (A;s—Ag) are connected to the Chip Select (Eg) line through invert-
ers and the NAND gate. The memory chip is enabled or selected when CS goes low.
Therefore, to select the chip, the address lines A;s—Ag should be at logic 0, which will
cause the output of the NAND gate to go low. No other logic levels on the lines A;s—Ag
can select the chip. Once the chip is selected (enabled), the remaining address lines A7—Ao

Example
2.1

Solution
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can assume any combination from 00y to FFy, and identify any of the 256 memory
registers through its decoder. Therefore, the memory addresses of the chip in Figure
2.10(a) will range from 0000y to 00FFy as shown below.

Ais Al Az A Ay A Ay Ag A7 As As Ay A3 Ay A A
0 0 0 0 0 0O 0 0 0 0 0 0 0 0 0 0 =00004

l l
1 1 1 1 1 1 1 1 =00FFy

Chip Enable or Chip Select Register Select

The entire range of the memory addresses from 0000y to 00FFy is known as the
memory map of the chip in Figure 2.10(a). The Chip Select addresses are determined by
the hardware (the inverters and NAND gate); therefore, the memory map of the chip can be
changed by modifying the hardware. For example, if the inverter on line A5 is removed as
shown in Figure 2.10(b), the address required on A,s—Ag to enable the chip will be as
follows:

Ays Ay A3 Ay Ay Ay Ay Ag
1 0 0 0 0 0 0 0 =80y

The memory map for Figure 2.10(b) will be 8000y to 80FFy,.

The memory chips in Figures 2.10(a) and (b) are the same chips. However, by
changing the hardware of the Chip Select logic, the location of the memory in the map can
be changed, and memory can be assigned addresses in various locations over the entire
range of 0000 to FFFFy.
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In a memory system, a 16-bit address can be conceptually organized into two groups
of Hex numbers. With two Hex digits, 256 registers can be numbered from 00y to FFy as
shown in the previous example. This is defined as a page with 256 lines (registers) to read
from or write on. Similarly, high-order Hex digits in an address can be used to number the
pages from 00y to FFy; thus the total range of 64K can be conceptually divided into 256
pages with each page having 256 lines. For example, the memory address 020Fy repre-
sents line (register) 15 on page 2, and the address 07FFy, represents register 255 on page
7. A memory chip with 1K (1,024) byte can be viewed as a chip with four pages. This is
Just a convenient way of thinking memory maps.

Another way of viewing a memory address is in terms of high-order and low-order
addresses. The lines used for chip select are called high-order address lines, and the lines
connected to memory address lines are called low-order address lines. Let us use an
example of a four-digit (decimal) numbering system in a high-rise apartment building.
Generally, the first two digits (high-order) represent a floor and the last two digits (low-
order) represent an apartment number. To locate apartment 1241, we go first to the twelfth
floor (similar to Chip Select in memory addressing), and then we look for the apartment 41
(similar to selecting a register). Now let us use the example of an apartment complex. Let
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us assume the complex is divided into sections 1 to 9 and each section has up to 999
apartments. In this situation, the number 2451 would represent Section 2 and apartment
number 451; the digit 2 is a high-order address and 451 is a low-order address. This is
similar to memory addresses of 1K memory. The 1K memory chip will require 10 address
lines, and the remaining six lines of the address bus will be used for the CS. Thus, the
group of six address lines will be high-order, and the remaining ten address lines will be
Jow-order. The memory addresses will be determined by combining the logic levels of
these address lines. If the number of address lines in a microprocessor is larger than 16, we
will use a five-digit Hex numbering scheme.

2.23 How the MPU Writes into and Reads from Memory
To store (write) a byte into a memory location (Figure 2.11), the MPU

1. places the 16-bit address on the address bus of the memory location where a byte is to
be stored. This address is decoded to select the memory chip, and the memory register
is identified.

2. places the byte on the data bus.

3. sends the control signal Memory Write to enable the input buffers of the memory and

then stores the byte.
To read from memory, the steps are similar.

1. The MPU places the 16-bit address on the address bus and sends the control signal
Memory Read to enable the output buffer of the memory chip.

A
A‘S 16-Bit Memory Address Address Bus
0
Data
[}
MPU §
D ) 5 Memory
U g‘ Chip
Dy E
=
4
Data Bus Data
MEMWR Memory Write
FIGURE 2.11

Memory Write Operation
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2. The interfacing logic of the memory chip decodes the address and selects the appro-
priate memory register.

3. The memory chip places the data byte on the data bus, and the MPU reads the data
byte.

2.24 Memory Classification

Memory can be classified into two groups: prime (or main) memory and storage memory.
The R“WM and ROM discussed in the last section are examples of prime memorys; this is
the memory the microcomputer uses in executing and storing programs. This memory
should be able to respond fast enough to keep up with the execution speed of the micro-
processor. Therefore, it should be Random-Access Memory, meaning that the micropro-
cessor should be able to access information from any register with the same speed (inde-
pendent of its place in the chip).

Storage memory includes examples such as magnetic disks and tapes (see Figure
2.12). This memory is used to store programs and results after the completion of program
execution. Information stored in these memories is nonvolatile, meaning information
remains intact even if the system is turned off. Generally, these memory devices are not a
part of any system,; they are made part of the system only when stored programs need to be
accessed. The microprocessor cannot execute or directly process programs stored in these
devices; programs must be copied into the prime memory first. Therefore, the size of the
prime memory (e.g., 64K or 128K) determines how large a program the system can
process. The size of the storage memory is unlimited; when one disk or tape is full, another
can be used.

Figure 2.12 shows two subdivisions of storage memory: secondary storage and
backup storage. The secondary storage is similar to what you put on your shelf in your
study, and the backup is similar to what you store in your attic. Storage memory includes
such devices as disks, magnetic tapes, magnetic bubble memory, and charged-coupled
devices (CCD). The primary features of all these devices are high capacity, low cost, and
slow access. A disk is similar to a record; the access to the stored information in the disk is
semi-random. The remaining devices shown in Figure 2.12 are serial: if information is
stored in the middle of the tape, it can be accessed only after running half the tape. We will
discuss some of these memory storage devices again in Chapter 7. In this chapter, we will
focus on various types of prime memory.

Figure 2.12 shows that the prime memory is divided into two main groups: Read/
Write Memory (R/WM) and Read-Only Memory (ROM), and each group includes several
different types of memory.

R/WM (READ/WRITE MEMORY)

As the name suggests, the microprocessor can write into or read from this memory, and it

is popularly known as Random-Access Memory (RAM). It is used primarily for informa-

tion that is likely to be altered, such as writing programs or receiving data. This memory is

volatile, meaning that when the power is turned off, all its contents are destroyed.
Two types of R/W memories—static and dynamic—are available. Static memory is
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| Memory l

Prime Storage
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Storage Storage
Read/Write Read-Only Semi- Serial
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e Non-volatile RAM e CCD
RAM
FIGURE 2.12

Memory Classification

made up of flip-flops, and it stores the bit as a voltage. Dynamic memory is made up of
MOS transistor gates, and it stores the bit as a charge. The advantages of the dynamic
memory are that it has higher density, lower power consumption, and is cheaper than the
static memory. The disadvantage is that the charge (bit information) leaks; therefore,
stored information needs to be read and written again every few milliseconds. This is
called refreshing the memory, and it requires extra circuitry, which adds to the cost of the
system. It is generally economical to use dynamic memory when the system memory size
is larger than 16K; for smaller systems, the static memory is appropriate.

ROM (READ-ONLY MEMORY)
The ROM is a nonvolatile memory; it retains stored information even if the power is turned
off. This memory is used for programs and data that need not be altered because, as the
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name suggests, the information can be read only so that once a bit pattern is stored, it is
permanent or at least semi-permanent. The permanent group includes two types of mem-
ory: masked ROM and PROM, and the semi-permanent group also includes two types of
memory: EPROM and EE-PROM as shown in Figure 2.12.

MASKED ROM

In this ROM, a bit pattern is permanently recorded by the masking and metallization
process, which memory manufacturers are generally equipped to do. It is an expensive and
specialized process, but economical for large production quantities.

PROM (PROGRAMMABLE READ-ONLY MEMORY)

This memory has nichrome or polysilicon wires arranged in a matrix; these wires can be
functionally viewed as diodes or fuses. This memory can be programmed by the user with
a special PROM programmer that selectively burns the fuses according to the bit pattern to
be stored. The process is known as ‘‘burning the PROM,”’ and the information stored is
permanent.

EPROM (ERASABLE PROGRAMMABLE READ-ONLY MEMORY)

This memory stores a bit by charging the floating gate of a FET. Information is stored by
using an EPROM programmer, which applies high voltages to charge the gate. All the
information can be erased by exposing the chip to ultraviolet light through its quartz
window, and the chip can be reprogrammed. Because the chip can be reused many times,
this memory is ideally suited for product development, experimental projects, and college
laboratories.

EE-PROM (ELECTRICALLY ERASABLE PROM)

This memory is functionally similar to EPROM, except that information can be altered by
using electrical signals at the register level rather than erasing all the information. This has
an advantage in field and remote control applications. In microprocessor systems, soft-
ware update is a common occurrence. If EE-PROMs are used in the systems, they can be
updated from a central computer by using a remote link via telephone lines. Similarly, in a
process control in which timing information has to be changed, it can be done by sending
electrical signals from a central place. This memory also includes a chip-erase mode
whereby the entire chip can be erased in 10 ms as opposed to 15 to 20 minutes for an
EPROM.

RECENT ADVANCES IN MEMORY TECHNOLOGY
Memory technology has advanced considerably in recent years. In addition to static and
dynamic R/W memory, there are now more options available in memory devices. Recent
examples include Zero Power RAM from MOSTEK, Non-Volatile RAM from Intel, and
Integrated RAM from several manufacturers.

The Zero Power RAM is a CMOS Read/Write memory with battery backup built
internally. It includes lithium cells and voltage-sensing circuitry. When the external power
supply voltage falls below +3 V, the power switching circuitry connects the lithium
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battery; thus, this memory provides the advantages of both R/W and Read-Only
Memory.

The Non-Volatile RAM is a high speed static R/W Memory array backed up, bit for
bit, by an EE-PROM array for nonvolatile storage. When the power is about to go off, the
contents of R/W memory are quickly stored in the EE-PROM by activating a STORE
signal on the memory chip, and the stored data can be read into the R/W memory segment
when the power is turned on again. This memory chip combines the flexibility of static
R/W memory with the nonvolatility of EE-PROM.

The Integrated RAM (iRAM) is a dynamic memory with the refreshed circuitry built
on the chip. For the user, it is similar to the static R/W memory. The user can derive the
advantages of the dynamic memory without having to build the external refreshing cir-
cuitry. At present, this memory is economical for a system with medium-sized memory
(between 8K and 64K).

INPUT AND OUTPUT (VO) DEVICES

Input/Output devices are the means through which the MPU communicates with ‘‘the
outside world.”” The MPU accepts binary data as input from devices such as keyboards
and A/D converters and sends data to output devices such as LEDs or printers. There are
two different methods by which an MPU can identify 1/O devices: one uses an 8-bit
address and the other a 16-bit address. These methods are described briefly in the follow-
ing sections.

2.31 I/Os with 8-Bit Addresses (Peripheral-Mapped I/O)

In this type of I/O, the MPU uses eight address lines to identify an input or an output
device; this is also known as peripheral-mapped I/0. The eight address lines can have 256
(28 combinations) addresses; thus, the MPU can identify 256 input devices and 256 output
devices with addresses ranging from 00y to FFy. The input and output devices are dif-
ferentiated by the control signals I/O Read for input devices and /O Write for output
devices. The entire range of I/O addresses from 004 to FFy is also known as 1/0 map, and
individual addresses are also referred to as I/O device addresses or I/O port numbers.

If we use LEDs as output or switches as input, we need to resolve two issues: how to
assign addresses and how to connect these I/O devices to the data bus. In a bus architec-
ture, these devices cannot be connected directly to the data bus or the address bus; all
connections must be made through tri-state interfacing devices so they will be enabled and
connected to the buses only when the MPU chooses to communicate with them. In the case
of memory, we did not have to be concerned with these problems because of the internal
address decoding, Read/Write buffers, and availability of CS and control signals of the
memory chip. In the case of I/O devices, we need to use external interfacing devices.

The steps in communicating with an I/O device are similar to those in communi-
cating with memory and can be summarized as follows:
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1. The MPU places an 8-bit address on the address bus, which is decoded by the external
decode logic (explained in Chapter 5).

2. The MPU sends a control signal (I/O Read or I/O Write) to enable the I/O device.

3. Data are transferred on the data bus.

2.32 1/Os with 16-bit Addresses (Memory-Mapped I/O)

In this type of I/O, the MPU uses 16 address lines to identify an I/O device; an I/O is
connected as if it is a memory register. In memory-mapped I/O, the MPU uses the same
control signals (Memory Read or Memory Write) and instructions as those of memory and
follows the same steps as when it is accessing a memory register. In some microproces-
sors, such as the Motorola 6800, all I/Os have 16-bit addresses so that I/Os and memory
share the same memory map (64K).

The peripheral- and memory-mapped I/O techniques will be discussed in detail in
the context of interfacing I/0 devices (see Chapter 5).

EXAMPLE OF A MICROCOMPUTER SYSTEM

45

2.4

In the last three sections, we discussed a generalized MPU model, prime memory and its
organization model, and I/Os. The discussion can be summarized in the block diagram of a
microcomputer system as shown in Figure 2.13. It includes a generalized MPU, two types
of prime memory, and two I/O devices.

All address lines are used to address memory, and only the low-order address bus is
used to identify I/O devices, indicating that they are connected as peripheral-mapped /O
(the details of Chip Select decoding are omitted here). The data bus is bidirectional and

Ajs p
Ag| _ _HighOrder Address Bus |
ﬁ7 Low-Order Address Bus Aqs-Ap @
° </ N/ N/
EPROM RIW Input Output | Input
MPU Memory

‘-“ RD [6 RD WR ~» EN r» EN Output
AN NS |
Dy [ Data Bus

] | MEMRD

MEMWR
IORD

IOWR

FIGURE 2.13
Example of a Microcomputer System
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common to all devices. The four control signals generated by the MPU are connected to
different peripherals, as shown in Figure 2.13.

HOW DOES THE SYSTEM WORK?

Let us assume that a simple program with three instructions is already written and stored in
binary in R/W memory. Those instructions are

1. Read Input Port No. 20y.
2. Display the Data at the Output Port 804.
3. Stop.

To execute these instructions, the MPU does the following:

1. Places the memory address bus of the instruction 1 and fetches the instruction using
the control signal Memory Read (MEMRD). (The MPU may have to fetch instruction
codes more than once if the instruction has more than one byte.) It decodes the
instruction.

0 Reads the input port by placing the address bus 20y, reads data using the control
signal I/O Read (IORD), and stores the data in one of the registers.

2. Fetches the next instruction by placing the memory address of that instruction and the
control signal MEMRD. Then, it decodes the instruction.

O Places the port address 80y and transfers the data using the control signal I/O Write
(IOWR).
3. Again fetches the last instruction from memory as before, decodes it, and stops.

This is a simplified description of how the system works; it excludes the details
about multi-byte instructions, machine cycles, and timing.

SUMMARY

In this chapter, we examined the requirements of the Microprocessor Unit (MPU) to
communicate with memory and I/O devices and to process binary data. Based on those
requirements, we designed a generalized model of the MPU. We discussed memory in
terms of its storage elements, namely, latches and registers and techniques of assigning
addresses. The steps required for the MPU to communicate with memory and 1/Os
were briefly described. The important concepts are summarized as follows.

(0] The MPU performs four primary operations: Memory Read, Memory Write, /O
Read, and I/O Write.

0 To communicate with memory and 1/Os, the MPU needs three types of buses: the
unidirectional address bus to send memory and 1/0O addresses, the bidirectional data
bus to transfer data, and control signals to enable the devices.
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(J The MPU should have signal lines to accept and to acknowledge external requests.
These requests are Reset (go back to beginning), interrupt (stop the ongoing pro-
cess and attend to something urgent), wait to synchronize with slow memory, and
allow the use of buses to an external device because the MPU response time is
slower than that of the external device.

[J To process data, the MPU should include registers to store data, memory pointers
to hold memory addresses, ALU to perform arithmetic and logic operations, and
flags to indicate data conditions.

[J Memory is a group of registers, arranged in a sequence, to store bits. The number
of cells (latches) in a register determines the size of the memory word in a chip.

0J A memory chip requires address lines to identify a memory register, Chip Select
signal to select the chip, and control signals to read from and write into memory
registers.

(J The range of memory addresses assigned to a memory chip in a system is called
the memory map. The assignment of memory addresses is done through the Chip
Select logic.

[J An I/O device can be identified either with an 8-bit address called the peripheral-
mapped I/O or with a 16-bit address called the memory-mapped 1/O.

[1 To communicate with memory or I/O, the MPU places the address of the device on
the address bus, places data on the data bus, and sends the appropriate control sig-
nal.

LOOKING AHEAD
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In this chapter, we examined the microprocesser as a programmable logic device and
developed a generalized model. Similarly, we discussed memory as a storage element
and constructed a memory model. We examined briefly the role of I/Os as channels of
communication with *‘the outside world.”” These three elements were interconnected
through a bus architecture to form a model of a microcomputer system. Then we dis-
cussed how the MPU communicates with memory and I/Os.

In the next three chapters, we will explore each component and its communica-
tion process separately with details and specific examples. In Chapter 3, we will ex-
amine the Z80 microprocessor in the context of our generalized model of a program-
mable logic device. Chapter 4 discusses memory and its interfacing, and Chapter 5 is
devoted to interfacing I/O devices.

ASSIGNMENTS

1. List the four operations commonly performed by the MPU.
2. What is a bus?
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3. What is the function of the address bus?
4. How many memory locations can be addressed by the MPU with thirteen address
lines?
5. How many address lines are necessary to address two megabytes (2048K) of
memory?
6. What is the function of the interrupt signal and when is it used?
7. When is the bus request signal used?
8. Specify the number of registers and memory cells in a 128 X 4 memory chip.
9. How many bits are stored by a 256 X 4 memory chip? Can this chip be specified as
128-byte memory?
10. If the memory size is 1024 X 4 bits, how many chips are required to make up 1K-byte
memory?
11. If the memory chip size is 1024 X 1 bits, how many chips are necessary to make up
4K (4,096) bytes of memory?
12. What is the function of the WR signal on the memory chip?
13. How many address lines are necessary for the memory chip with 2048 X 8 size?
FIGURE 2.14 +5V
Identification of Memory Maps
for Assignments 17-18 EO .

Ap—>— MEMRD
' MEMWR

CS RD WR
Ag
1024 x 8
Ap
Data
Lines

¥
o
f=)
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14.
15.

16.
17.
18.

19.

20.

FIGURE 2.15
Identification of Memory Maps for

How many address lines are necessary for the memory chip with 2048 X 4 size?
The memory map of a 4K(4,096)-byte memory chip begins at the location 8000y.
Specify the entire memory map and the number of pages in the map.

The memory address of the last location of an 8K-byte memory chip is FFFFy. Find
the starting address.

Identify the memory map in Figure 2.14. List the high-order and low-order address
lines. How many pages of memory does the chip include?

In Figure 2.14, identify the memory map if the inverter of the address line A15 is
eliminated and A15 is connected directly to the NAND gate.

Figure 2.15 shows an MPU with the address bus containing 12 address lines and the
data bus with four data lines; it is interfaced with the 1K-byte memory chip. Find the
memory map.

Specify the size of the memory word shown in Figure 2.15.
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Microprocessor:
Programming
Model and
Hardware Model

The Z80 is one of the most versatile and widely used
8-bit microprocessors, and many microcomputer
systems are designed around the Z80. The Z80 chip
includes most of the logic circuitry for performing
computing tasks and necessary bus signals. This
chapter discusses the Z80 architecture in terms of
two models: the programming model and the hard-
ware model derived from the generalized MPU dis-
cussed in the previous chapter.

We will describe the programming model first
because it provides the overview of the Z80 archi-
tecture. This information is essential to hardware
designers as well as programmers. The model
describes the accumulator, internal 8-bit and 16-bit
registers, and their functions during the execution of
a program. The description also includes the details
of the flags and data conditions under which they are
set or reset, information very critical to the program-
mer.

The hardware model shows logic pinout of the
chip and classifies the signals in various groups
according to their functions. The model lists the
operations the Z80 frequently performs and
describes how the Z80 communicates with memory
and I/Os by using various buses. These operations
are illustrated in terms of machine cycles and logic
levels of the buses in relation to the system clock.

Finally, the chapter includes the discussion of
other contemporary 8-bit microprocessors in terms
of the generalized model developed in the last chap-
ter and compares them with the Z80.
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OBJECTIVES

a

]

0

Draw the Z80 programming model and identify
the registers.

Explain the functions of the accumulator, general-
purpose registers, and alternate registers.
Explain the functions of 16-bit registers and spe-
cial-purpose registers.

List the flags and explain the data conditions
under which they are set or reset.

List the functional groups of the Z80 signals.
Define the address bus, the data bus, and the con-
trol signals, and explain their functions.

List the types of external signals and explain their
purposes.

MICROPROCESSOR ARCHITECTURE AND INTERFACING

D List three categories of the Z80’s operations.
O Explain the terms instruction cycle, machine

cycle, and T-state.

O List the steps the Z80 performs to execute the

Opcode Fetch, the Memory Read, and the Mem-
ory Write cycles, and explain their functions.

O Show the bus contents and the appropriate control

signals in reference to the system clock when
these machine cycles are executed.

O Describe the 8085, the NSC800, and the 6800

microprocessors in terms of the generalized MPU
and compare them with the Z80.

3.1

THE Z80 PROGRAMMING MODEL

In the last chapter, we developed a model to represent the internal structure of the MPU
shown in Figure 2.3. We will now describe a similar model of the Z80 microprocessor;
however, we will include only those components necessary for the programmer. Figure
3.1 shows such a model, which includes an accumulator and a flag register, general-
purpose register arrays, registers used as memory pointers, and special-purpose reg-
isters. These registers and their functions are described in the following sections.

3.11 Accumulator

The accumulator is an 8-bit register that is part of the Arithmetic/Logic unit (ALU) and is
also identified as register A. This register is used to store 8-bit data and to perform
arithmetic and logic operations. The result of an operation performed in the ALU is also
stored in the accumulator. For example, in an 8-bit addition, the instruction ADD always
assumes that one of the numbers is the byte in the accumulator, and the result of the
addition is stored in the accumulator by replacing the previous byte.

Figure 3.1 shows an additional accumulator called A’ in the alternate register set. A’
is not directly accessible to store a byte or perform an ALU operation, but the contents of
A’ are accessible by exchanging its contents with the contents of the accumulator A.

3.12 Flag Register

The ALU includes six flip-flops that are set or reset according to data conditions after an
ALU operation, and the status of each flip-flop, also known as flags, is shown in the flag
register F. The status of each of the six flags is stored in the 8-bit flag register so that they
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Alternate Registers

Accumulator A Flags F Accumulator A’ Flags F'
B C B’ (&g
D E D’ E'
H L H L

Index Register IX

Index Register IY

Stack Pointer SP

Program Counter PC

Interrupt Vector I | Memory Refresh R

FIGURE 3.1
The 780 Programming Model
SOURCE: Courtesy of Mostek Corporation

FIGURE 3.2 D, D¢ Ds Dy D5 D, D, Dy
Flag Register: Bit Identification
S Z H PV N C
S = Sign P/V = Parity/Overflow
= Zero N = Add/Subtract
H = Half-Carry C = Carry

can be examined if necessary. The bit position of each flag is shown in Figure 3.2; bits Ds
and D3 are unused.

Among the six flags, the H (Half-Carry) and N (Add/Subtract) flags are used inter-
nally by the microprocessor for BCD (Binary Coded Decimal) operations. These two
flags cannot be tested by any instruction and are not available to the programmer for
decision making. The remaining four flags—S (Sign), Z (Zero), P/V (Parity/Overflow),
and C (Carry)*—can be tested in conjunction with Conditional Jump or Call instructions.

*To avoid confusion between C as a register and C as the Carry flag, we will refer to the Carry flag as CY when it
does not refer specifically to bit Dy in the flag register.
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Each of these four flags has two Jumps or Call instructions associated with it: one when the
flag is set and the other when the flag is reset. These flags have critical importance in the
decision making process; all decisions are based on the status of these flags. For example,
the instruction JP C, 2050H (Jump on Carry to memory location 2050y) is implemented to
change the sequence of a program when the Carry flag is set.

The details of these flags are described below in the order of frequency of use. They
will be discussed again in the context of illustrative programs. At the outset, the descrip-
tions of these flags may appear quite complex. However, when we begin to write pro-
grams, we will see that, in general, most flags are ignored except one or two depending
upon the operations being performed. For the time being, to understand their function, you
should focus on three flags: C (Carry), Z (Zero), and S (Sign).

0 C—Carry flag: If an arithmetic operation generates a carry (in addition) or a borrow
(in subtraction), the Carry flag is set; otherwise it is reset.

It is important to remember that when an arithmetic operation does not generate a carry
(or borrow), the flag is reset.

The flag is also affected by such other instructions as logic and shift instructions. The
details will be discussed when specific instructions are explained.

The Z80 includes instructions SCF—Set Carry Flag—and CCF—Complement Carry
Flag—that can set or complement this flag independent of the previous ALU opera-
tion.

O Z—Zero flag: If an 8-bit operation results in zero, the Z flag is set; otherwise it is
reset.

In a bit testing operation, if the bit is zero, this flag is set; otherwise it is reset.

In comparing two numbers, the Z flag is set when they are equal; otherwise it is
reset.

The Z flag is also affected by special input instruction, block I/O instructions, and
counting instructions.

O S—Sign flag: After an ALU operation, if the most significant bit D; is 1, the sign flag
is set; otherwise it is reset. When the flag is set, you do not necessarily have a negative
result. The interpretation of the Sign flag depends upon the number system (unsigned
number, signed magnitude, or 2’s complement) being used by the programmer. This
flag can, of course, be used to indicate negative numbers, but its usage can be confus-
ing. Therefore, it is discussed in detail in the context of the appropriate instructions.
This flag is also affected by special input instructions in the Z80 set.

O P/V—Parity/Overflow flag: This flag is used for two purposes: to check the parity (the
number of 1s in a byte) and to check an overflow in dealing with signed numbers.
In the case of parity check after an operation, if the number of 1s in the result is even
(even parity), this flag is set, and if the number of 1s is odd (odd parity), the flag is reset.
For example, if the result, of ANDing two bytesis000000 1 1, the parity flag is set to
indicate even parity (two 1s). In this example, the magnitude base-ten (3,0) is odd;
however, the odd or even number has no relationship with the odd or the even

parity.
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In arithmetic operations of signed numbers where bit D7 is used to indicate sign, this
flag is set to indicate an overflow condition. For example, when bit D is reserved for a
sign, the magnitude of a number is represented by the remaining seven bits, the max-
imumbeing0 1111111+ 127,9). After an addition, if the sum goes beyond +127,
bit D, changes to 1, a change that would indicate a negative result. In fact, this is an
overflow condition and it is indicated by the overflow (V) flag.

This flag is also used for other functions such as block transfer, search, and inter-
rupt.

O H~-—Half-Carry flag: In an arithmetic operation, this flag is affected by the carry or
borrow between bits D5 and D. In addition, when there is a carry from bit D3 to Dy, the
Half-Carry flag (H) is set; otherwise, it is reset. In a subtraction, when there is a borrow
from bit D4 to Ds, this flag is set; otherwise, it is reset.

The flag is used internally for BCD (Binary Coded Decimal) operations, and there are
no Jump or Call instructions associated with this flag.

O N—-Add/Subtract flag: This flag is also used internally for BCD operations to distin-
guish between addition and subtraction. For BCD addition, this flag is 0 and for sub-
traction it is set to 1.

The alternate flag register F’ is associated with the alternate accumulator A’ as shown in
Figure 3.1. The contents of this register can be accessed by using the exchange instruc-
tion.

3.13 General-Purpose and Alternate Registers

The Z80 microprocessor has six programmable general-purpose registers named B, C, D,
E, H, and L, as shown in Figure 3.1. These are 8-bit registers used for storing data during
the program execution. They can be combined as register pairs—BC, DE, HL-—to per-
form 16-bit operations or to hold memory addresses.

The programmer can use these registers to load or copy data. For example, the
instruction LD B, C copies the data from register C into register B. Conceptually, these
registers can be viewed as memory locations, except that they are built inside the micro-
processor and identified by specific names. Some microprocessors do not have this type of
register; instead, they use memory as their registers.

In addition to the general-purpose registers, the Z80 includes a similar set of six
alternate registers designated as B’, C', D', E’, H', and L'. These are 8-bit registers used
for exchanging data with the general-purpose registers. They are not directly available to
the programmer, except through the exchange instructions.

3.14 16-Bit Registers as Memory Pointers

The Z80 microprocessor includes four 16-bit registers used to hold memory addresses;
they are classified here as memory pointers. The primary function of memory is to store
instructions and data, and the microprocessor needs to access memory registers to read
these instructions and data. To access a memory register, the microprocessor identifies the
register by using the addresses in these memory pointers.
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INDEX REGISTERS (IX AND IY)
The Z80 has two 16-bit index registers called IX and IY. Each register is used to specify a
memory address by the 16-bit address it holds and a displacement count. For example, if
the IX register holds 2050y, a higher memory address such as 2060y can be specified by
adding the displacement count of 10y. Similarly, a lower memory address such as 2040y
can be specified by adding the negative of 10y in 2’s complement.

In addition to the index registers, the HL pair is frequently used as a memory
pointer. Similarly, the BC and DE pairs can be used also as memory pointers in a limited
way. However, no displacement byte can be added to the contents of these pairs.

STACK POINTER (SP)
The stack pointer is also a 16-bit register used to point to the memory location called the
stack. The stack is a defined area of memory locations in R/W memory, and the beginning
of the stack is defined by loading a 16-bit address into the stack pointer.

We will discuss the concept of the stack memory in detail when we introduce the
topic of subroutines.

PROGRAM COUNTER (PC)

This register functions as a 16-bit counter. The microprocessor uses this register to
sequence the execution of instructions. The program counter points to the memory address
from which the next byte is to be fetched, and when the microprocessor places an address
on the address bus to fetch the byte from memory, it then increments the program counter
by one to point to the next memory location.

3.15 Special-Purpose Registers

The Z80 microprocessor includes two special-purpose registers generally not found in
other 8-bit microprocessors. These registers are shown in Figure 3.1 as interrupt vector
register (I) and the memory refresh register (R).

INTERRUPT VECTOR REGISTER (I)

This is an 8-bit register used in the interrupt process. When an external device interrupts
the microprocessor with a request to do something else, the microprocessor should be
directed to a 16-bit address in memory where it can find what to do next. The I register is
used to store the high-order eight bits of the 16-bit address; the low-order eight bits must be
supplied by the interrupting device. We will discuss the details and applications of this
register in Chapter 12.

MEMORY REFRESH REGISTER (R)

The memory refresh register (R) is also an 8-bit register which is used as a 7-bit counter to
provide an address of memory cells to be refreshed in dynamic memory. As mentioned in
the previous chapter, information stored as a capacitive charge in dynamic memory leaks;
therefore, bit information should be refreshed, meaning it should be read and stored again
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every few milliseconds. Applications of the memory refresh register (R) will be discussed
in detail with the topic of Interfacing Dynamic Memory.

3.16 Using the Programming Model

In this section, we will illustrate what happens to the contents of some of the registers in
the microprocessor when a series of instructions is executed as shown in Example 3.1.

57

Write instructions in English-like statements to load the two data bytes 53y and C9y into
registers A and B respectively. Add the two bytes. Illustrate the contents of registers
affected in the programming model after the execution of each instruction and the status of
the Carry and Zero flags.

A 53 X F 1. Load A with 53y.
B 9 X C 2. Load B with C9y.
(a)
i SR Sk Ll 3. Add registers A and B
B 5 X . registers A and B.

FIGURE 3.3
Register Contents

Figure 3.3(a) shows the contents of registers A and B after the execution of the first two
instructions. The next instruction adds the contents of registers A and B; the sum is 11Cy.
Figure 3.3(b) shows the accumulator with 1Cy and the CY flag set in the flag register.
Please note that the flags are not affected by the Load or Copy instructions.

Example
3.1

Solution

Z80 HARDWARE MODEL

3.4

The Z80 hardware model described in this section represents the microprocessor unit
(MPU) as defined in Chapter 2. The Z80 microprocessor almost qualifies as an MPU,
except that an external oscillator circuit is required to provide the operating frequency and
appropriate control signals need to be generated to communicate with memory and I/O. In
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the following sections, we describe the Z80 microprocessor in relation to the model we
developed in the previous chapter. Then we examine the timing involved in reading an
instruction from memory and generate the necessary control signals by using appropriate
logic gates.

3.21 The Z80 Microprocessor

The Z80 is a general-purpose 8-bit microprocessor with 16 address lines and requires a
single +5 V power supply. It is housed in a 40-pin dual-in-line (DIP) package. The
different versions of Z80 microprocessors such as Z80, Z80A, Z80B, and Z80H are rated
to operate at various frequencies ranging from 2.5 MHz to 8 MHz. Even though the Z80
instruction set is upward compatible with the Intel 8080 set, neither of these micropro-
cessors are pin compatible.

Figure 3.4 shows pin configuration of the Z80 microprocessor and its hardware
model with logic signals. All the signals can be classified into six groups: (1) address bus,
(2) data bus, (3) control signals, (4) external requests, (5) request acknowledge and special

A
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FIGURE 3.4

780 Microprocessor Pinout and Logic Signals
SOURCE: Courtesy of Mostek Corporation
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signals, and (6) power and frequency signals. This Z80 hardware model matches the
hardware model of the generalized MPU described in Chapter 2. The specific details of
these signals follow.

ADDRESS BUS

The Z80 has 16 tri-state signal lines, A;s5—Ag, known as the address bus. These lines are
unidirectional and capable of addressing 64K (2'®) memory. The address bus is used to
send (or place) the addresses of memory registers and I/O devices.

DATA BUS

The data bus consists of eight tri-state bidirectional lines D;—Dy and is used for data
transfer. On these lines, data can flow in either direction—from the microprocessor to
memory and I/Os or vice versa.

CONTROL SIGNALS

This group consists of five individual output lines: three can be classified as status signals
indicating the nature of the operation being performed, and two as control signals to read
from and write into memory or I/Os.

0 M;—Machine Cycle One: This is an active low signal indicating that an opcode is being
fetched from memory. This signal is also used in an interrupt operation to generate an
interrupt acknowledge signal, which will be explained in Chapter 12.

& MREQ-—Memory Request: This is an active low tri-state line. This signal indicates that
the address bus holds a valid address for a memory read or write operation.

0 IORQ—I/O Request: This is an active low tri-state line. This signal indicates that the
low-order address bus (A7—Ao) holds a valid address for an I/O read or write operation.
This signal is also generated for an interrupt operation.

O RD—Read: This is an active low tri-state line. This signal indicates that the micropro-
cessor is ready to read data from memory or an I/O device. This signal should be used in
conjunction with MREQ for the Memory Read (MEMRD) operation and with IORQ for
the I/0 Read (IORD) operation.

O WR—Write: This is an active low tri-state line. This signal indicates that the micro-
processor has already placed a data byte on the data bus and is ready to write into
memory or an I/O device. This signal should be used in conjunction with MREQ for the
Memory Write (MEMWR) operation and with IORQ for the /O Write IOWR) oper-
ation.

EXTERNAL REQUESTS

This group includes five different input signals to the microprocessor from external
sources. These signals are used to interrupt an ongoing process and to request the micro-
processor to do something else.

0 RESET-—Reset: This is an active low signal used to reset the microprocessor. When
RESET is activated, the program counter (PC), the interrupt register (I), and the mem-
ory refresh register (R) are all cleared to 0. During the reset time, the address bus and
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the data bus are in high impedance state, and all control signals become inactive. This
signal also disables interrupt and refresh. The RESET signal can be initiated by an
external key or switch and must be active at least for three clock periods to complete the
reset operation.

O INT—Interrupt Request: This is an active low signal, initiated by an I/O device to
interrupt the microprocessor operation. When the microprocessor accepts the interrupt
request, it acknowledges by activating the IORQ signal during the M, cycle. The INT
signal is maskable, meaning it can be disabled through a software instruction. The
interrupt process will be fully discussed in Chapter 12.

O NMI—Nonmaskable Interrupt: This is a nonmaskable interrupt; it cannot be disabled. It
is activated by a negative edge-triggered signal from an external source. This signal is
used primarily for implementing emergency procedures. There is no signal or pin to
acknowledge this signal; it is accepted provided the Bus Request signal is inactive.

0 BUSRQ—Bus Request: This is an active low signal initiated by external I/O devices
such as the DMA (Direct Memory Access) controller. An I/O device can send a low
signal to BUSRQ to request the use of the address bus, the data bus, and the control
signals. The external device can use the buses, and when its operations are complete, it
returns the control to the microprocessor. This signal is used primarily for the direct
memory access technique to be discussed in Chapter 16.

0 WAIT—Wait: This is an active low signal and can be used by memory or I/O devices to
add clock cycles to extend the Z80 operations. This signal is used when the response
time of memory or I/O devices is slower than that of the Z80. When this signal goes
low, it indicates to the microprocessor that the addressed memory or I/O device is not
yet ready for data transfer. As long as this signal is low, the Z80 keeps adding cycles to
its operation.

REQUEST ACKNOWLEDGE AND SPECIAL SIGNALS

Among the five external requests described above, only two of the requests need acknowl-
edgement: Bus Request and Interrupt. The interrupt is acknowledged by the IORQ signal
in conjunction with the M, signal. The Bus Request is acknowledged by a BUSAK (Bus
Acknowledge). In addition, the Z80 has two special signals: HALT and RFSH.

0 BUSAK—Bus Acknowledge: This is an active low output signal initiated by the Z80 in
response to the Bus Request signal. This signal indicates to the requesting device that
the address bus, the data bus, and the control signals (RD, WR, MREQ, and IORQ)
have entered into the high impedance state and can be used by the requesting
device.

0 HALT-—Halt: This is an active low output signal used to indicate that the MPU has
executed the HALT instruction.

00 RFSH—Refresh: This is an active low signal indicating that the address bus Ag-Ag
(low-order seven bits) holds a refresh address of dynamic memorys; it should be used in
conjunction with MREQ to refresh memory contents.
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POWER AND FREQUENCY SIGNALS
This group includes three signals as follows:

0 ¢—Clock: This pin is used to connect a single phase frequency source. The Z80 does
not include a clock circuit on its chip; the circuit must be built separately.

O +5 V and GND—These pins are for a power supply and ground reference; the Z80
requires one +5 V power source.

MACHINE CYCLES AND BUS TIMINGS
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3.3

The Z80 microprocessor is designed to execute 158 different instructions. Each instruction
has two parts: operation code (known as opcode) and operand. The opcode is a com-
mand such as Add, and the operand is an object to be operated on, such as a byte or the
contents of a register. Some instructions are 1-byte instructions and some are multi-byte
instructions. To execute an instruction, the Z80 needs to perform various operations such
as Memory Read/Write and I/O Read/Write. However, there is no direct relationship
between the number of bytes of an instruction and the number of operations the Z80 has to
perform. For example, the instruction to send the contents of the accumulator to the output
port 10y is a 2-byte instruction: OUT (10H), A.

0O Byte 1: OUT - This is the opcode to output data.
0O Byte 2: (10H*), A — This is the operand to specify that the byte should be sent from
the accumulator to Port 10y.

But the Z80 has to perform three operations: (1) read Byte 1 from memory, (2) read Byte 2
from memory, (3) send data to port 10y.

In the previous section, numerous Z80 signals and their functions were described.
Now we need to examine these signals in conjunction with execution of individual instruc-
tions and their operations. This task may appear overwhelming at the beginning; fortu-
nately, all instructions are divided into a few basic operations called machine cycles, and
these machine cycles are divided into precise system clock periods.

The microprocessor external communication functions can be divided into three
basic categories:

1. Memory Read and Write.
2. T/O Read and Write.
3. Request Acknowledge.

These functions are further divided into various operations (machine cycles) as

*A hexadecimal number in an instruction is shown as a number followed by the letter H.
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shown in Table 3.1. Each instruction consists of one or more of these machine cycles, and
each machine cycle is divided into T-states.

To understand various operations, we need to define three terms: instruction cycle,
machine cycle, and T-state.

Instruction cycle is defined as the time required to complete the execution of an
instruction. The Z80 instruction cycle consists of one to six machine cycles or one to six
operations.

Machine cycle is defined as the time required to complete one operation of access-
ing memory, accessing I/0, or acknowledging an external request. This cycle may consist
of three to six T-states.

T-state is defined as one subdivision of the operation performed in one clock period.
These subdivisions are internal states synchronized with the system clock, and each T-state
is precisely equal to one clock period. The terms T-state and clock period are often used
synonymously.

In this chapter, we focus on the first three operations listed in Table 3.1—Opcode
Fetch, Memory Read, and Memory Write—and examine the signals on various buses in
relation to the system clock. In the next chapter, we will use these timing diagrams to
interface memory with the Z80 microprocessor. Similarly, we will discuss timings of other
machine cycles in later chapters in the context of their applications. For example, I/O
Read/Write machine cycles will be discussed in Chapter 5 and Interrupt Acknowledge will
be discussed in Chapter 12.

3.31 Opcode Fetch Machine Cycle (M)

The first operation in any instruction is opcode fetch. The microprocessor needs to get
(fetch) this machine code from the memory register where it is stored before the micro-
processor can begin to execute the instruction. The opcode fetch operation and its timing
signals are illustrated in the example below.

TABLE 3.1
The Z80 Machine Cycles and Control Signals
Machine Cycle M, MREQ IORQ RD WR

Opcode Fetch (M) 0 0 1 0 1
Memory Read 1 0 1 0 1
Memory Write 1 0 1 1 0
VO Read 1 1 0 0 1
/O Write 1 1 0 1 0
Interrupt Acknowledge 0 1 0 1 1
Non-maskable Interrupt 0 0 1 0 1
Bus Acknowledge (BUSAK = 0) 1 Z Z Z Z

NOTE: Logic 0 = Active, Logic 1 = Inactive, Z = High Impedance
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The accumulator of the Z80 microprocessor holds the data byte 9Fy, and the code for
instruction LD B, A (opcode) 01 00 01 1 1 (47y) is stored in memory location 2002.
This is a 1-byte instruction, and when this opcode is executed, the contents of the accu-
mulator will be copied into register B. List the sequence of events that takes place to
execute this machine code and illustrate the signals on various buses in relation to the
system clock.

Before the Z80 can execute the opcode, it needs to fetch the code from the memory
location. To fetch the opcode, the Z80 performs the following steps:

1. The Z80 places the contents of the program counter (2002y) on the address bus, and
increments the program counter to the next address, 2003y. The program counter
always points to next byte to be executed.

2. The address is decoded by the external decoding circuit and the register 2002y is
identified.

3. The Z80 sends the control signals (MREQ and RD) to enable the memory output
buffer.

4. The contents of the memory register (opcode 47y) are placed on the data bus and
brought into the instruction decoder of the microprocessor.

5. The Z80 decodes the opcode and executes the instruction, meaning it copies the con-
tents of the accumulator into register B.

Figure 3.5 shows how the Z80 fetches the opcode using the address and the data
buses and the control signal. Figure 3.6 shows the timing of the Opcode Fetch machine
cycle in relation to the system’s clock. The address bus in Figure 3.6 is shown as two
parallel lines. This is a commonly used practice to represent logic levels of groups of lines;
some lines are high and others are low, and the crossover of the lines indicates that a new
address is being placed on the address bus. The high impedance state is shown by a straight
line as in the data bus (D;—-Dg). The timing details of these signals are given below.

1. Figure 3.6 shows that the Opcode Fetch cycle is completed in four clock periods or
T-states. This machine cycle is also identified as the M, cycle.

2. At the beginning of the first clock period T;, the control signal M; goes low and the
contents of the program counter (2002y) are placed on the address bus.

3. After the falling edge of T, the Z80 asserts two control signals—MREQ and RD, both
active low. The MREQ indicates that it is a memory related operation and RD suggests
that it is a Read operation. Both signals are necessary to read from memory.

4. The internal decoder of the memory and the Chip Select circuit (not shown in Figure
3.6) decode the address and identify register 2002y. The control signals MREQ and
RD are used to enable the memory output buffer. The data bus, which was in high
impedance state, is activated as an input bus (to the microprocessor) shortly after the
leading edge of T,. After the falling edge of T,, memory places its register contents
(47y) on the data bus.

Example
3.2

Solution
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FIGURE 3.5

Z80 Memory Read Operation

At the leading edge of T3, the data on the data bus are read, and the control signals
become inactive.

During T3 and T4, the instruction decoder in the microprocessor decodes and executes
the opcode. These are internal operations and cannot be observed on the data bus.

The following two steps are irrelevant to the present problem; however, they are

included here as part of the M; cycle.

7.

During T; and T, when the Z80 is performing internal operations, the low-order
address bus is used to supply a 7-bit address for refreshing dynamic memory. If the
system includes dynamic memory, this operation simplifies its interfacing hardware.
This aspect of the M, cycle will be discussed again when we illustrate interfacing of
dynamic memory (Chapter 16).

Figure 3.6 shows the signal called WAIT. The Z80 samples the Wait line during T,
and if it is forced low by an external device (such as memory or I/O), the Z80 adds Wait
states (clock cycles) to extend the machine cycle and continues to add clock cycles until
the Wait signal goes high again. This technique is used to interface memories with slow
response time and will be discussed again in Chapter 16.
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3.32 Memory Read Machine Cycle

The second machine cycle we want to illustrate is Memory Read. As explained in the next
example, this cycle is quite similar to the Opcode Fetch cycle.

Two machine codes—001 11 110BEy)and 1001111 1 (9Fy)—are stored in Example
memory locations 2000y and 2001y respectively, as shown below. The first machine code 3.3
(3Ey) represents the opcode to load a data byte into the accumulator, and the second code

(9Fy) represents the data byte to be loaded into the accumulator. Illustrate the bus timings

as these machine codes are executed, and calculate the time required to execute the

Opcode Fetch and the Memory Read cycles and the entire instruction cycle if the clock

frequency is 4 MHz.

Address Machine Code Instruction Comment

20004 00111110/ — 3E LD A, 9FH ;Load 9FH in the accumulator

2001 iootriir] ~ F

This instruction consists of two bytes; the first is the opcode and the second is the data Solution

byte. The Z80 must first read these bytes from memory and thus requires at least two
machine cycles. The first machine cycle is Opcode Fetch and the second machine cycle is



66

MICROPROCESSOR ARCHITECTURE AND INTERFACING

Memory Read, as shown in Figure 3.7. These cycles are described in the following
list.

1.

K4
:
Pr=

The first machine cycle (Opcode Fetch) is identical in bus timings with the machine
cycle illustrated in Example 3.2, except for the bus contents. The address bus contains
20004 and the data bus contains the opcode 3Ey. When the Z80 decodes the opcode
during the T; state, it realizes that a second byte must be read.

. After the completion of the Opcode Fetch cycle, the Z80 places the address 2001y on

the address bus and increments the program counter to the next address, 2002y. To
differentiate the second cycle from the Opcode Fetch cycle, the M, signal remains
inactive (high).

. After the falling edge of T, of the Memory Read cycle, the control signals MREQ and

RD are asserted. These signals along with the memory address are used to identify the
register 2001y and enable the memory chip.

. After the leading edge of T3, the Z80 activates the data bus as an input bus; memory

places the data byte 9Fy on the data bus, and the Z80 reads and stores the byte in the
accumulator during Ts3.

. After the falling edge of T3, both control signals become inactive (high), and at the end

of T3, the next machine cycle begins.

M, Opcode Fetch
T T, T; T, T T, T

L L L L L L
o0 | Y e
/

t«———Memory Read ——

l_J

\
N\ T
/ \

RD [T
WR
D,-Dy 3En ) { 9Fs f—
FIGURE 3.7

Memory Read Machine Cycle and Its Timings
SOURCE: Courtesy of Zilog Inc. (adapted).
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The execution times of the Memory Read machine cycle and the instruction cycle are
calculated as follows:

Clock Frequency f = 4 MHz

T-state = Clock Period (1/f) = 0.25 ps

Execution Time for Opcode Fetch: (4 T) X 0.25 = 1.0 pus

Execution Time for Memory Read: (3 T) X 0.25 = 0.75 ps

Execution Time for Instruction: (7 T) X 0.25 = 1.75 ps.
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3.33 Memory Write Cycle

Now we want to illustrate the third machine cycle: Memory Write. This machine cycle
writes or stores data in a specified memory register as shown in the following ex-
ample.

The HL register holds the address 2350y, and the accumulator has the data byte 9Fy. The
instruction code 0111 0111 (77y) is stored in memory location 2003,. When this cade is
executed, it stores the contents of the accumulator in the memory location indicated by the
address in the HL register. Illustrate the bus contents and timings as this instruction is
being executed.

Instruction: LD (HL), A ;Copy contents of the accumulator
into memory location, the address
of which is stored in HL register.

This is a one-byte instruction with two machine cycles: Opcode Fetch and Memory Write.
In the first machine cycle, the Z80 fetches the code (77y), and in the second machine
cycle, it copies the byte 9Fy from the accumulator into the memory location 2350y. The
timings of these machine cycles are shown in Figure 3.8 and explained below.

1. In the Opcode Fetch machine cycle, the Z80 places the address 2003y on the address
bus and gets the code 77y by using the control signals MREQ and RD as in the previous
examples. The program counter is also incremented to the next address, 2004y.

2. During the T3 and Ty states, the Z80 decodes the machine code 77y and prepares for the
memory write operation.

3. At the beginning of the next machine cycle (Memory Write), it places the contents
(2350y) of the HL register on the address bus. At the falling edge of T, MREQ goes
low and the data byte 9Fy from the accumulator is placed on the data bus.

4. After allowing one T-state (after MREQ) to stabilize the address, the Z80 asserts the
control signal Write (WR), which is used to write the data byte at the address shown on
the address bus.

5. After the falling edge of T3, both control signals become inactive, and one-half T-state
later, the data bus goes into high impedance state.

Example
3.4

Solution
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- M, Opcode Fetch
T T, Ty T, T, T, T,

Refresh
20031 X Address X 2350H X

Memory Write——+

FIGURE 3.8
Memory Write Machine Cycle and Its Timings
SOURCE: Courtesy of Zilog Inc. (adapted)

3.34 Review of Important Concepts

1.

2.

In each instruction cycle, the first operation is always Opcode Fetch, and it is indicated
by the active low M, signal. This cycle can be four to six T-states in duration.

The Memory Read cycle is in many ways similar to the Opcode Fetch cycle. Both use
the same control signals (MREQ and RD) and read contents from memory.
However, the Opcode Fetch reads opcodes and the Memory Read reads 8-bit data or
addresses; the two machine cycles are differentiated by the M, signal.

The control signals MREQ and RD, are both necessary to read from memory.

In the Memory Write cycle, the Z80 writes (stores) data in memory using the control
signals MREQ and WR.

In the Memory Read cycle, the Z80 asserts the MREQ and RD signals to enable
memory, and then the addressed memory places data on the data bus; on the other
hand, in the Memory Write cycle, the Z80 asserts the MREQ), places data byte on the
data bus, and then asserts the WR signal to write into the addressed memory.

. Generally, the Memory Read and Write cycles consist of three T-states; however,

they can take four T-states in some instructions. The Memory Read and Write cycles
will not be asserted simultaneously; the microprocessor cannot read and write at the
same time.

3.35 Generating Control Signals

After examining the concepts summarized at the end of the previous section, we may need

to

generate additional control signals.
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Generating Memory Control Signals

1. To read from memory, the MREQ and the RD signals are necessary, and to read from

an input device, the IORQ and the RD are necessary; all these signals are active low.
As a design practice, the MREQ is generally combined with a decoded address (dis-
cussed in Chapter 4) and RD is connected directly to the memory chip. However,
control signals RD and WR can also be combined with MREQ and IORQ to generate
additional signals. We can generate active low Memory Read (MEMRD) signal either
by ANDing these signals in a negative NAND gate as shown in Figure 3.9(a) or by
using a 2-to-4 decoder as shown in Figure 3.9(b). The decoder is enabled by the MREQ
and has RD and WR signals as input. Both inputs cannot be active at the same time;
when one is low, the other will remain high. When RD is active low, the inputis 0 1,

and the output O; goes active as MEMRD.

- To write into memory, the MREQ and the WR signals are necessary, and to write a data
byte to an output device the IORQ and WR signals are necessary; all these signals are
active low. If necessary, we can generate active low Memory Write (MEMWR) signal
by ANDing MREQ and WR signals in a negative NAND gate as shown in Figure
3.9(a) or by using the decoder as shown in Figure 3.9(b). Similarly, IORD (I/O Read)
and JOWR (I/O Write) signals can be generated; this is discussed in Chapter 5.

SOME PUZZLING QUESTIONS AND THEIR ANSWERS
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3.4

After reading the previous sections, the reader may have many unanswered questions. One
of the primary reasons for this predicament is that the microprocessor is a programmable
and complex device. It interacts with external devices such as memory and I/Os, and some
questions cannot be answered until we discuss these other devices. Similarly, some ques-
tions will remain unanswered until we start using instructions and writing programs.
However, there are some questions which we should answer immediately.

1. How does the Z80 microprocessor know where to begin after the power is turned

on?
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Most microcomputer systems have built-in power-on reset circuits, meaning that
when the power is turned on, the microprocessor is reset and its program counter is cleared
to the address 0000y. The address 0000y is placed on the address bus, and the instruction
stored at that location determines what happens next.

2. How does the Z80 know what operation to perform first (Memory Read/Write or 1/0
Read/Write)?

The first operation is always an Opcode Fetch.

3. How does the microprocessor differentiate between an opcode and a data byte?

When the first opcode is fetched and decoded in the instruction register, the micro-
processor recognizes the number of bytes that must be read from memory for the complete
instruction. The instructions can range from 1-byte to 4-byte in length. Figure 3.7, for
example, contains a 2-byte instruction (3E and Data), and the second byte is always
considered Data. If that second byte is omitted by mistake, the Z80 will interpret whatever
is in that memory location as Data. The byte after the Data will be treated as the next
instruction. The microprocessor is a sequential machine; it goes from one memory location
to the next unless instructed to do otherwise.

4, What is the use of the M, signal? It looks as if it will not be connected to any
device.

This signal serves two purposes: (1) it differentiates the Opcode Fetch cycle from
other operations, and (2) it can be used to generate the Interrupt Acknowledge signal.

5. If flags are individual flip-flops, can they be observed on an oscilloscope?

No, they cannot be observed on an oscilloscope; these flip-flops are internal and not
connected to any of the external pins. However, they can be examined by storing them on
the stack memory (see Chapter 10).

6. Is the number of T-states required for a given machine cycle constant?

No. But most Opcode Fetch machine cycles require four T-states, and Memory
Read/Write and I/O Read/Write machine cycles, generally, take three or four T-states.
However, there are some exceptions.

7. How does one recognize the machine cycles in a given instruction?

The number of machine cycles and the T-states required for those machine cycles are
listed in the instruction set. There is a repetitive pattern, and one can use the following
guidelines.

O The number of machine cycles in an instruction indicates how many times the micro-
processor must access memory or I/O.

O The first machine cycle in an instruction is always Opcode Fetch.

O The microprocessor must read all the bytes (codes) from memory before it can execute
an instruction.
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For example, a 3-byte instruction requires at least three machine cycles. The uncon-
ditional Jump instruction is a 3-byte instruction with 10 (4, 3, 3) T-states; it consists of one
opcode and a 16-bit address of the jump location. Therefore, by examining the number of
T-states, we can easily classify the machine cycles of the Jump instruction as one Opcode
Fetch and two Memory Read.

Another example is ADD A, 32H (add a byte 32y to the contents of the accumu-
lator). This is a 2-byte instruction with 7 (4, 3) T-states. By examining the number of bytes
and the number of T-states, we can conclude that it must have two machine cycles—the
first is Opcode Fetch and the second is Memory Read. The addition is performed inside the
processor, and it does not need any additional information from memory or I/O.

8. How does one recognize machine cycles in an instruction when the number of bytes is
not the same as the number of machine cycles?

One has to examine the number of bytes, T-states, and the operation being per-
formed. For example, the instruction LD (2050H), A has three bytes and 13 (4, 3, 3, 3)
T-states; it copies the contents of the accumulator into the memory location 2050y. The
processor must read the entire instruction first; therefore, the first must be Opcode Fetch,
followed by two Memory Read cycles. This accounts for ten T-states. In the remaining
three states, the processor must write (copy) the contents of the accumulator into the
memory location 2050y; therefore, it must be the Memory Write cycle.

ARCHITECTURE OF CONTEMPORARY 8-BIT
MICROPROCESSORS

11

3.9

The primary reasons to discuss other 8-bit contemporary microprocessors are to examine
how the MPU model developed in the last chapter matches with various MiCroprocessors
and to confirm that the underlying basic concepts remain similar even though specific
details may vary from one chip to another. At present, a large number of 8-bit general-
purpose microprocessors is available in the market. We will focus on three: the Intel 8085,
the National Semiconductor NSC 800, and the Motorola 6800. These MiCroprocessors are
selected to illustrate various strategies used in designing the microprocessor. The recent
trend in 8-bit microprocessors can be illustrated by so-called 8-bit super chips, such as the
Hitachi HD64180 and the Zilog Z280. These are discussed in Chapter 18.

3.51 The Intel 8085

The Intel 8085 and its predecessor the 8080 are the most widely used 8-bit microproces-
sors. The 8080 MPU is composed of three chips—the 8080 microprocessor, the clock
generator, and the system driver—and it needs three power supplies (+5 V, =5 V,
+12 V). The 8085 is an upgraded version of the 8080; it operates with one + 5 V power
supply, and one chip replaces the 8080’s three chips. The 8085 is upward software com-
patible with the 8080; it has only two more instructions than the 8080. The programming
models of both microprocessors are identical; however, the 8085 hardware model differs
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significantly not only from the 8080 but also from other contemporary 8-bit microproces-
sors. The 8085 has a multiplexed bus (8 lines), which is used as both the 8-bit data bus and
the low-order address bus. This feature allows Intel to provide additional interrupt lines.

THE 8085 HARDWARE MODEL
Figure 3.10 represents the hardware model with the logic pinout of the 8085. The six
categories of the signals are address bus, data bus, control (and status) signals, external
requests, request acknowledge, and power and frequency signals. In addition, the 8085
has two signals for serial I/O.

The 8085 has a 16-bit address bus; however, its low-order address bus is multiplexed
with the data bus. These eight lines are time-shared by two functions; in the earlier part of a
machine cycle, they are used for a low-order address, and in the later part for data. To

Power and Frequency

, Xy X2 Ve Vs
Special Serial I/O SID
Purpose
Signals <~ ] SOD As
High-Order
Accumulator Flags Address Bus
TRAP B C Ag
RST 7-5 D E
RST 6°5 H L
RST 5°5
External —————"]
Requests INTR AD;,
READY Stack Pointer (SP) Multiplexed
HOLD Program Counter (PC) Address/Data Bus
RESETIN AD,
e
ALE
Request ~<+—————1INTA 8085A SoF——
Acknowledge «————— HLDA S, Cont;ol
— an
. 10/ Mp——>
Special  _____ IpESET OUT S Status
Purpose RD ’
Signals ~———{CLK OUT WR .

FIGURE 3.10
The Intel 8085 Microprocessor Model
SOURCE: Courtesy of Intel Corporation



280 MICROPROCESSOR: PROGRAMMING MODEL AND HARDWARE MODEL

interface this chip with memory (without any special features), these lines need to be
demultiplexed (separated). The 8085 has a signal called ALE (Address Latch Enable),
which can be used to demultiplex the bus, as shown in Figure 3.11. The ALE is asserted at
the beginning of each machine cycle, when the bus has an address. Figure 3.11 shows that
the ALE is used to latch the address, thus creating a separate low-order bus A7-Ag. The
Z80 does not need this signal because it has separate lines for the data and the address
buses.

__The 8085 has two status signals Sy and S, to identify various machine cycles, and an
10/M signal to differentiate between an I/O operation and a memory operation. In contrast,
the Z80 identifies the Opcode Fetch cycle by asserting M; and has two separate signals
(MREQ and IORQ) to identify memory and I/O operations. In the 8085, the control

A2 High-Order
Ay, Address Bus

8085
Microprocessor

Ag Ay

ALE Enable G

AD, AD, D Q '—OD‘
ADg
ADs
AD,
AD, 74LS373
AD,
AD,
AD, AD, ocC Aq

Ay Low-Order
Address Bus

TTTTTT]

Data Bus

FIGURE 3.11
Demultiplexing the 8085 Bus

13
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signals Memory Read/Write and I/O Read/Write are generated by ANDing IO/M and
control signals RD and WR.

Figure 3.10 shows that the 8085 provides five interrupt lines as external requests,
out of which the TRAP is equivalent to the Z80 non-maskable interrupt. The Z80 provides
various additional interrupt modes through software.

THE 8085 SOFTWARE MODEL

Figure 3.10 also shows the software model of the 8085. It includes one accumulator, a flag
register, a general-purpose register array, and two 16-bit registers as memory pointers
(program counter and stack pointer). This model matches very well with the requirements
of the microprocessor as a processing unit (Figure 2.2). The Z80 includes all the 8085
registers in addition to an alternate set of registers, index registers, and special-purpose
registers.

3.52 The National Semiconductor NSC800

The NSCB800 is an 8-bit microprocessor manufactured by National Semiconductor. It is a
low-power CMOS device that combines features of the 8085 and the Z80. Because its
power consumption is 5 percent of that of NMOS devices, it is ideally suited for low-
power or battery-operated applications.

The NSCB800 has a bus structure similar to that of the 8085: a multiplexed bus with
the status signals Sg, S;, and IO/M. It has a powerful interrupt scheme that combines the
8085 signals and the Z80 interrupt modes. Its software model, instruction set, and mne-
monics are identical with those of the Z80.

In summary, the NSC800 combines the software capability of the Z80 with the bus
structure of the 8085; its hardware and software models match with the generalized model
we developed in the previous chapter.

3.53 The Motorola MC6800

The MC6800 was developed at about the same time as the Intel 8080. The hardware model
of this processor is similar to any other processor we have discussed, but it has a different
internal architecture.

Figure 3.12 represents the 6800’s architecture. It has 16 address lines, 8 data lines
and fewer control (and status) signals than the Z80. The fewer control signals result from
not having peripheral-mapped I/O; all I/Os are interfaced as memory-mapped I/Os. There-
fore, the control signals in this processor need not differentiate between memory and I/0
operations.

The other significant difference is in its internal architecture; it has two accumula-
tors, one flag register shown as the Condition Code Register, but no general-purpose
registers. This processor uses external memory for storing interim calculations and data
bytes; it makes extensive use of memory referencing in its operations. The 6800 has simple
timing and control signals; the clock period is the same as the machine cycle.

The 6809 is the latest improved version of the 6800 family; however, its machine
code is not compatible with that of the 6800. Its internal architecture is similar to that of the
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The Motorola 6800 Microprocessor Model
SOURCE: Courtesy of Motorola, Inc.

6800, except it has an additional stack pointer, an additional index register, and a register
to be used for referencing memory. The basic design philosophy is the same as that of the
6800, but it has eliminated some limitations of the 6800.

3.54 Review of 8-bit Microprocessors

In the last section, we examined the architectures of three microprocessors and occasion-
ally compared them with the Z80. Now we can easily conclude that the architectures of
various 8-bit microprocessors have similar patterns and can be represented by the hardware
and the software models developed in the last chapter. We can classify these processors
into two categories: one group, including the Z80, the 8085, NSC800, is register-oriented;
the group including the 6800 and the 6809 is memory-reference-oriented.

SUMMARY

15

(1 The Z80 microprocessor has six general-purpose 8-bit registers (B, C, D, E, H,
and L) as a primary set. In addition, it includes the alternate set of these registers,
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all of which can be used to exchange information with the primary set. The regis-
ters B and C, D and E, and H and L can be combined to perform some 16-bit op-
erations.

The ALU section of the Z80 includes accumulator A and the flag register to indi-
cate six different data conditions. It also includes the alternate accumulator A’ and
flag register F’, which can be used to exchange information with A and F respec-
tively.

Four flags—Sign, Zero, Carry, and Parity/Overflow—can be used for decision
making and tested in conjunction with Jump, Call and Return instructions. Two
flags—Half-Carry and Add/Subtract—are used internally for BCD operations and
not available for the programmer.

The Z80 has four 16-bit registers—IX, 1Y, SP, and PC—used as memory pointers.
Two index registers IX and IY can be used to point to any memory location, and
an address and the direction (backward or forward) can be specified with a dis-
placement byte. The stack pointer (SP) is used to specify memory locations in a de-
fined R/W memory segment called the stack. The program counter (PC) is used to
sequence the program execution; it points to the next memory address from which
the machine code is to be fetched.

The Z80 includes two 8-bit special-purpose registers: Interrupt Vector (I) and Mem-
ory Refresh (R). The I register provides the high-order 8 bits of a 16-bit address to
which the program is to be directed after an interrupt. The R register is a 7-bit
counter and supplies an address for refreshing memory cells of a dynamic memory.
The Z80 signals can be classified into six groups: address bus, data bus, control
signals, external requests, request acknowledge, and power and frequency signals
(see Section 3.2 for definitions of these signals).

The Z380 is designed to execute 158 instructions, and each instruction can be di-
vided into a few basic operations called machine cycles.

The frequently used machine cycles are Opcode Fetch, Memory Read and Write,
and I/O Read and Write.

The Opcode Fetch and Memory Read are operationally similar; the Z80 reads from
memory in both machine cycles. However, the Z80 reads opcode during the Op-
code Fetch cycle, and it reads 8-bit data during the Memory Read cycle. In the
Memory Write cycle, the Z80 writes data into memory.

The memory operations are differentiated from I/O operations by two control sig-
nals: MREQ and IORQ. The signal MREQ is combined with RD and WR signals
to generate MEMRD and MEMWR control signals.

The Z80 performs three basic steps in any of these machine cycles: It places an ad-
dress on the address bus, sends appropriate control signals, and transfers data via
the data bus.

The contemporary 8-bit microprocessors can be classified into two categories: One
group is register-oriented, and the other is memory-reference-oriented.
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ASSIGNMENTS
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10.

11.

12.

13.
14.

15.

16.

17.

18.

19.

How is the accumulator different from the 8-bit general-purpose registers of the
Z80 microprocessor?

Explain the function of the alternate registers.

What is a flag and what is its function?

If the Z80 adds 87y and 79y, specify the contents of the accumulator and the
status of the S, Z, and CY flags.

If the Z80 is an 8-bit microprocessor, why are the program counter and the stack
pointer 16-bit registers?

If the Z80 has fetched the machine code located at the memory location 205Fy,
specify the contents of the program counter.

The index register IX holds the address 2058. Specify the value of the displace-
ment byte needed to make the effective address 2097y.

The index register IY holds the address 2070y. Specify the value of the displace-
ment byte in 2’s complement needed to make the effective address 2050y.

The MOS Technology 6501 microprocessor chip has 13 address lines. Specify
the memory registers it is capable of addressing.

If the Intel 8086 microprocessor has 20 address lines, what is its capacity of
memory addressing?

If the clock frequency is 4 MHz, how much time is required to execute an in-
struction of 21 T-states?

The instruction LD IX, (2050y) loads 2050 into the index register. Specify the
number of bytes, machine cycles, and T-states of this instruction by checking the
instruction set. Calculate the time required to execute the instruction if the sys-
tem clock frequency is 6 MHz.

List the sequence of events that occurs when the Z80 reads from memory.

In the Opcode Fetch cycle, what are the control signals required to enable the
memory buffer?

When is the data byte placed on the data bus in the Memory Write cycle?

The memory location 2065y holds the opcode F9y. If the Z80 begins the Opcode
Fetch cycle by placing the address 2065y on the address bus, specify the con-
tents of the data bus after the falling edge of the T, state.

The instruction LD B, (HL) copies the contents of the memory location specified
by the 16-bit contents in the HL register. It is a 1-byte instruction with two ma-
chine cycles. Identify the second machine cycle and its control signals.

Figure 3.13 shows a 3-to-8 decoder with MREQ, RD, and WR as input signals.
Identify the control signals that can be generated at the outputs of the decoder.
Figure 3.14 shows the timings of three machine cycles. Identify the types of op-
erations.
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FIGURE 3.13 o.k
Generating Control Signals Using i MSB| ., 5138 .
a 3-to0-8 Decoder: Assignment 18 o—
._ b
WR 3-t0-8 o S—
MREQ Decoder | -
E, E;, E30pf—
f +5V
20. Do the three machine cycles in Figure 3.14 represent a complete instruction? Ex-

21.

plain.
Examine the machine cycle M, in Figure 3.14 and specify the memory being ac-
cessed and its contents.

22. Does the byte on the data bus in the machine cycle M, in Figure 3.14 represent
an opcode?
23. Explain what is being done in machine cycle M, (Figure 3.14).
24, Identify the machine cycles M, and M, in Figure 3.15.
25. Identify the machine cycles in the following instructions:
SUB B : 1-byte, 4 T-states
: Subtract the contents of register B from the accumulator
AND 47H : 2-byte, 7 (4, 3) T-states

: Logically AND 47H with the contents of the accumulator

LD A, (2050H) : 3-byte, 13 (4, 3, 3, 3) T-states

: copy the contents of the memory location 2050H into the accumulator

PUSH BC : 1-byte, 10 (4, 3, 3) T-states

: copy the contents of BC register into two stack memory locations
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Machine Cycles for Assignment 24
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Memory Interfacing

Memory is an intergral part of a microcomputer sys-
tem, and in this chapter our focus will be on how to
interface a memory chip with the microprocessor.
We will examine memory structure and require-
ments to read from it and write into it. We then com-
pare those requirements with those of the Z80 Mem-
ory Read and Write machine cycles. From that com-
parison, we will derive the basic steps necessary to
interface memory.

This chapter illustrates two examples of inter-
facing memory chips, one EPROM and the other
static R/W memory. The discussion includes analy-
ses of the following: decoding circuits, memory
maps, the concept of foldback memory, and linear
decoding versus absolute decoding. Finally, an
example of memory design is illustrated to synthe-
size the interfacing concepts.

OBJECTIVES

O List the requirements to read from memory.

O List the steps initiated by the Z80 to read from and
write into memory. ‘

O List the steps required to interface a memory chip
with the Z80.

O Analyze given EPROM and static R/'W memory
interfacing circuits and specify their memory

maps.

0O Explain the terms absolute decoding, linear
decoding, and foldback memory.

O Design a circuit to interface EPROM and R/W
memory with the Z80 for given memory maps.
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INTERFACING MEMORY

While executing a program, the microprocessor needs to access memory frequently to read
instruction codes and data stored in memory, and the inferfacing circuit enables that
access. Memory has certain signal requirements for writing into and reading from its
registers. Similarly, the microprocessor initiates a set of signals when it wants to com-
municate with memory. The interfacing process involves designing a circuit that will
match the memory requirements with the microprocessor signals. In the following section,
we examine memory structure and its requirements and also the Z80 Memory Read and
Write machine cycles. Then we derive the basic steps necessary to interface memory with
the Z80.

4,11 Memory Structure and Its Requirements

Read/Write Memory (R/WM) is a group of registers to store binary information. Figure
4.1 shows a typical R/W memory chip; it has 1024 registers, each of which can store eight
bits indicated by eight I/O lines. The chip has ten address lines Ag—Ao, one Chip Select
CS, and two control lines: Read (RD) to enable the output buffer and Write (WR) to enable
the input buffer. Figure 4.1 also shows the internal decoder to decode the address lines.
We may recall from Chapter 2 that to read from or write into one of the memory registers
certain requirements have to be met. They are as follows:

1. An address should be placed on the address lines. The low-order address lines are
decoded by the internal decoder of the memory chip, and the addressed register is
identified.

FIGURE 4.1 CS RD WR
Logic Diagram: A Typical 1K | L

Memory Chip o 0

1024 x 8

Internal Decoder

T

~——]/Q—
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2. The high-order address should be decoded to generate a Chip Select signal, and the
memory chip is selected by asserting the Chip Select CS low.

3. To read from the addressed register, the RD should be asserted low to enable the output
buffer, and then the data byte from the register will be placed on the I/O lines.

4. To write into the addressed register, the WR should be asserted low to enable the input
buffer, and then data bits from the data lines are stored into the register.

To interface this memory with the Z80 microprocessor, we need to examine the
signals the microprocessor asserts when it attempts to communicate with memory.

4.12 How does the Z80 Read from or Write into Memory?

In Chapter 3, we showed the timing diagrams and the Z80 bus contents when an opcode or
a data byte is fetched from memory. To read from memory, the Z80 performs the fol-
lowing steps, as shown in Figure 4.2(a):

1. places a 16-bit address on its address bus (shown as high- and low-order
addresses).

asserts the MREQ to indicate that the address bus holds a valid address.

3. asserts the RD signal low to indicate that it wants to read.

d

To write into memory, the Z80 performs the following steps, as shown in Figure 4.3:

1. places a 16-bit address on the address bus.
2. asserts MREQ and places data on the data bus.
3. asserts WR signal.

To understand and design an interface circuit, we need to match the memory require-
ments with the Z80 read/write operations.

4.13 Basic Concepts in Memory Interfacing

The primary function of memory interfacing is to allow the microprocessor to read from
and write into a given register of a memory chip. To perform these operations, the micro-
processor should

1. be able to select the chip.
2. identify the register.
3. enable the appropriate buffer.

83
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Memory Read —-———

T Ty
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FIGURE 4.2

(a) Memory Read Timing Diagram (b) Block Diagram: Address Decoding and Memory

Read/Write Operations
SOURCE: Courtesy of Zilog, Inc. (adapted)

FIGURE 4.3 T, T, T,
Writing into Memory Register

As-Ag Memory Address X

MREQ /

MSEL /

WR \ | /|
< Data from >

D7_D() MPU

Let us examine the timing diagram of the Memory Read operation—Figure 4.2(a)—
in order to understand how the Z80 can read from memory. In Figure 4.2(a), the address
bus is divided into two segments, low-order and high-order, to explain the decoding
concepts.

1. The Z80 places a 16-bit address on the address bus, and with this address only one
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register should be selected. For the memory chip in Figure 4.1, only ten address lines
are required to identify 1,024 registers. Therefore, we can connect the low-order
address lines Ag—Ag of the Z80 address bus to the memory chip. The internal decoder
of the memory chip will identify and select the register, as shown in Figure 4.2(b).

2. The remaining Z80 address lines (A;s—A ;o) should be decoded to generate a Chip-
Select (CS) signal unique to that combination of address logic.

3. The Z80 provides two signals: MREQ and RD. The MREQ can be combined with the
decoded address pulse (CS) to generate a Memory Select (MSEL) to select the memory
chip.

4. The microprocessor asserts the control signal RD, enables the output buffer of mem-
ory, and reads the data byte. Figure 4.2(a) also shows that memory must place the data
byte on the data bus at the beginning of Ts.

To write into a register, the microprocessor performs similar steps. Figure 4.3 shows
the Memory Write cycle. In the Write operation, the Z80 places the address and data, and
asserts the MREQ_signal. After allowing sufficient time for data to become stable, it
asserts the Write (WR) signal. The WR signal enables the input buffer of the memory chip
and stores the byte in the selected register.

An alternative to generating the MSEL signal (Step 3 in Memory Read) to select the
memory chip is to generate the control signals MEMRD and MEMWR by combining the
MREQ, RD, and WR as shown in Figure 4.4(a). The MEMRD can be used to enable the
output buffer to read from memory; the MEMWR can be used to enable the input buffer to
write into memory, and the decoded address pulse (CS) can be used to select the chip as
shown in Figure 4.4(b).

To interface memory with the microprocessor, we can summarize the above steps as
follows:

- Selects
High-Order Address‘ Memory
Address Decoder Chip

MEMRD  Enables

AND Output Buffer

MEMWR
‘ . Enables

AND Input Buffer

qrar

(@ (b

FIGURE 4.4
(a) Generating Control Signals (b) Block Diagram: Alternative Approach to Memory Read/
Write Operations
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1. Connect the required address lines of the address bus to the address lines of the memory
chip.

2. Decode the remaining address lines of the address bus to generate the Chip Select
signal, as discussed in the next section (4.14).

3. Generate the signal Memory Select (MSEL) by combining the decoded address pulse
CS and the MREQ, and use the MSEL to select the memory chip.

4. Connect the Z80 RD and WR control signals to the RD and WR memory signals to
enable memory buffers.

5. An alternative procedure is to generate control signals MEMRD and MEMWR by
combining RD and WR signals with the MREQ and to use them to enable appropriate
buffers. The decoded address pulse (CS) is used to select the memory chip.

4.14 Address Decoding

The process of address decoding should result in identifying a register with a given
address; we should be able to generate a unique pulse for that address. For example, in
Figure 4.5(a), the output of the NAND gate goes low (active) only when the address on the
address lines is F7y; no other address can cause the output of the gate to go low. This
process is called decoding the address. We can also use a decoder for address decoding, as
discussed below, or a PROM (Programmable Read-Only-Memory), as discussed in Chap-
ter 16.

Figure 4.5(b) shows a 3-to-8 decoder and a 4-input NAND gate. The decoder has
three enable lines-—one active high and two active low. The enable line E, is connected to
address line A3, and E, is connected to address lines As~A7 through the NAND gate.
Address lines A,, A;, and Ap are inputs to the decoder, and the enable line E; is tied
high and is not being used here for decoding.

In this decoder circuit, three input lines can have eight different logic combinations

Ay
Ag
As —
p— O
Ay Flu vss | Bt B2 Es ol F7n
Ay—0 lo——
/ 2 —
Al Al o—
A Orv—..-—
0 Ao 308 o
Decoder — FOH
(a) (b)
FIGURE 4.5

Address Decoding
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from 000 to 111; each input combination can be identified by the corresponding output line
if enable lines are active. For example, if the input is 0 0 0, Og goes low (others remain
high), and if the inputis 1 1 0, O¢ goes low. To activate the enable line E., A should be
low, and to activate E,, address lines A;—A, should be high causing the output of the
NAND gate to go low. If the input to the decoder is 1 1 1, the output line O, of the decoder
will go low, thus decoding the address F7y.

A; As As Ay As Ay A A
1 1 1 1 0 1 1 1 =FTy
L |1 |

I v
Enable Input

This 3-to-8 decoder can identify or decode eight addresses from FOy to F7y as
shown in Figure 4.5(b). We will use this address decoding scheme for interfacing memory
chips in the following illustrations (Sections 4.2 and 4.3).

ILLUSTRATIVE EXAMPLE 1: INTERFACING 2732
EPROM
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4.2

In this secion we illustrate memory interfacing with the Z80 microprocessor by using an
actual chip: 2732 EPROM (Erasable Programmable Read-Only Memory). This is a mem-
ory chip commonly used in industry to develop microprocessor-based products. In this
illustration, we assume that the chip has been already programmed—-that is, the binary
patterns representing Z80 instructions are stored in it—and we only read from it. We focus
only on the interfacing concepts, interfacing logic circuit, and memory maps.

4.21 2132 EPROM

This is a 4K (4096 X 8) memory chip with eight data lines housed in a 24-pin package;
Figure 4.6 shows the logic pinout and the pin configuration. It has twelve address lines
Ay—A to identify 4096 registers, one Chip Select signal shown as Chip Enable (E—E), and
one Output Enable (OE) signal to enable the output buffer. It operates from a single +5 V
power supply in the Read mode and requires a +25 V pulse Vpp to program it. The signals
OE and Vpp are multiplexed at pin 20; in the Read mode, pin 20 is used as OE and in the
programming mode, it is used as Vp,.

The chip has a quartz window, and the information stored in this memory can be
erased by exposing the window to ultraviolet light for 15 to 20 minutes. To avoid acci-
dental erasures from direct sunlight or fluorescent lights, the window should be covered
with an opaque label. Once it is erased, the chip can be used again to store a new program.
The programming is done by using a circuit called EPROM programmer, which can store
bits in memory registers by providing a 25 V pulse to V.
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Pin Configuration CE OE/Vpp
- ./
A1 24 [ Vee
As[]2 2317 A Y Py — Vee
As[T]3 221 A,
A 4 21 A, EPROM
A s 20 [JOE/Vpp 2732
A6 19 J Ay, Address | 4096 <8
A, 7 18] CE Lines
A L] 8 171770,
0,19 16 7 O¢
o,J10 15[ 05
107) i B 1430, S o GND
GND[]12 13105
Data ——l
Lines
0, O
Mode Selection
Pin Names Pins | CE| OE/Vpp |Vee| Outputs
Mode 18) 20 24) [ (9-11, 13-17
Ap-Ay; | Addresses ( ©0 il )
— - Read ViL ViL +5 Dout
CE Chip Enable :
— Standby Vi | Don't Care | +5 High Z
OE Output Enable 5 v v
Op-04 Outputs Togram - 1L L *+3 Dy
Program Verify| Vj; ViL +5 Doyt
Program Inhibit] Vi, Vep +5 High Z

FIGURE 4.6
2132 EPROM: Pin Configuration and Logic Symbol
SOURCE: Courtesy of Intel Corporation.

4.22 Interfacing Circuit

Figure 4.7 shows a complete schematic of interfacing the 2732 with the Z80 micropro-
cessor. We will describe this circuit in terms of the four steps required for interfacing as
listed in the previous section.

Step 1: Connect the necessary address lines to the memory chip.

Figure 4.7 shows that the address lines A;—Aq are connected to the memory chip to
identify 4,096 registers.

Step 2: Decode the remaining address lines and combine the MREQ with the decoded
&  pulse to generate the Memory Select (MSEL) pulse.
Step 3:
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MREQ +5V L I—RD
Axs l l S Q.
CE OE
1«:1 E, B,
A A
Ay A, 1 1 )
N o, TSIz Address E;’%(;M
13 1 Bus
Ay A mﬁ(} 4096 x 8
12 0 3.to-8 Opjo——— Ag Ag
Decoder
Data
Bus
D Do
FIGURE 4.7

Schematic of Interfacing 2732 EPROM

In this schematic, two steps—the decoding of the address and generating of the
Memory Select (MSEL)—are combined by using the 74LS138 3-to-8 decoder. The
decoder has three inputs, three enable lines, and eight output lines. Two enable lines are
active low and one is active high. Once the decoder is enabled, only one output line,
corresponding to the input combination, goes active (low).

In Figure 4.7, the output Og of the decoder is shown as Memory Select (MSELO),
which is connected to the Chip Enable (CE) of the memory, and Og goes active low when
the address lines As—A, and the MREQ are all at logic 0. The address line A;s and the
MREQ are used to enable the decoder (active low); the address lines A4, A 3, and A5 are
used as input to the decoder, and the enable line > line Es is connected to +5 V. No other logic
level on these address lines can assert the MSEL, signal.

Step 4: Connect the Z80 control signal to enable an appropriate buffer.

Figure 4.7 shows that the Z80 Read (RD) is connected to the OE signal of the
memory chip. When the RD signal is asserted, the output buffer is enabled and the data
byte from the selected register is placed on the data bus.

4.23 Memory Map

We can obtain the address range of this memory chip by analyzing the possible logic levels
on the 16 address lines. The logic levels on the address lines A;s—A , have to be 0 to assert
the Chip Enable, and the address lines A;;—A( can assume any combinations from all Os to
all Is. Therefore, the memory map of this chip ranges from 0000y to OFFFy,.

Ais Ais Az Ap Al A Ag Ag A; Ag As Ay Az A, A Ao
0 0 0 0 0 0 0 0 0 0 0 O 0O 0 0 0 =0000y4

l l
MSEL, 1 1 1 1 1 1 1 1 1 1 1 1=0FFFy
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We can verify the memory map in terms of our analogy of page and line numbers.
The chip’s 4,096 bytes of memory can be viewed as 16 pages with 256 lines each. Let us
examine the high order Hex digits of the map; they range from 00 to OF, indicating 16
pages—0000 to 00FF and 0100 to O1FF, for example.

ILLUSTRATIVE EXAMPLE 2: INTERFACING STATIC
R/'W MEMORY

In this example, we will use the MOSTEK MK4802 memory chip to demonstrate both
Read and Write operations. To simplify the discussion, we will use the same decoding
circuit as in Figure 4.7, except that the MSEL, signal is used as the Chip Enable. This
chip has 2K memory; therefore, one address line (A;) will be left as “don’t care” in
order to use the previous circuit. Because of the “don’t care” address line, the memory
registers will have multiple addresses, and the memory chip will occupy more memory
space than necessary, as explained later.

431 MOSTEK MK4802 Static R’W Memory

This is a 2K static R/W memory chip, organized in a 2048 x 8 format. It has eleven
address lines (Ag—Ay), eight data lines, and three control signals: CE, OE, and WE.
We are already familiar with the first two control signals; the third signalW—E— (Write
Enable) is active low and used to enable the input buffer of the memory. The logic
pinout and the pin configuration are shown in Figure 4.8.

4.32 Interfacing Circuit

Figure 4.9 shows the interfacing circuit using the MK4802 memory chip. The decoding
circuit is the same as in Figure 4.7. We will analyze this circuit in terms of the same four
steps outlined previously.

Step 1: The Z80 address lines A0—Ao are connected to pins Ajp—Ao of the memory
chip to address 2048 registers; the address line A;; is not necessary for the
chip. The address line A;; can be connected to the decoder by modifying the
circuit, but we have left it ‘“‘don’t care’’ to observe its effects on the memory
map.

Step 2: The Memory Select MSEL4 line (the output 04 of the decoder) is used as the

&  Chip Enable (CE). The CE is asserted only when the address on Ajs—A;; is

Step 3: 0100.

Step 4: In the case of a R/W memory, we need two control signals: Read (RD) and
Write (WR), both active low. The RD is connected to OE, as in the the previous
illustration, to enable the output buffer. The WR is connected to WE (Write
Enable) of the memory chip, and when WR is asserted low, the input buffer
of the memory chip is enabled, allowing data to be written into the selected
memory register.
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Pin Connections

l

}

A, 1 (124 Ve CE WE OE
A¢ 2] 123 A4 A -
As 3] 122 Ay
Ay 4] 121 WE
Ay 5[] 120 OE MK4802
A, 6] [ 119 Ao Address
A 1 118 CE Lines 2K X 8
Ao 8] 17 DQ,
DQ, 9] 716 DQg
DQ,; 10{] 115 DQ;
DQ, 11[] 114 DQ, Ag
Vss 12[] 113 DQ;4 DQ, DQ,
l Data I
/O
Pin Names
Ag-App Address Inputs Vee Power (+5V)
CE Chip Enable WE Write Enable
Vss Ground OE Output Enable

DQy-DQ, Data In/Data Out

FIGURE 4.8

MK4802 Static R/W Memory Pin Configuration and Logic Symbol
SOURCE: Courtesy of Mostek Corporation

74L.S138

FIGURE 4.9
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Schematic of Interfacing Static R/W Memory MK4802
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433 Memory Map

Assuming the ‘‘don’t care’’ address line A, at logic 0, the memory map of this memory
chip ranges from 4000y to 47FFy.

AlS A14 A13 AIZ All AIO A9 A8 A7 A6 AS A4 A3 AZ Al AO

0 1 0 0 X 0 0 0 0 0 0 0 0 0 0 0 =4000y
l !
MSEL, X 1 1 1 1 1 1 1 1 1 1 1 =47TFFy

If we assume A at logic 1, the memory map ranges from 4800y to 4FFF}; as shown
below:

Ais Ay Az A Ay A Ay Ag A; Ag As Ay Az Ay A A

o 1 0 0 1 0 0 0 0 0 0 0 0 0 O 0 =43800y4
— ! l
MSEL, 1 1 1 1 1 1 1 1 1 1 1 1 =4FFFy

The entire memory map appears to be from 4000y to 4FFFy (4K memory). In
reality, we have only 2K memory occupying the memory space of 4K. Because of the one
““don’t care’’ line, each register can have two addresses. For example, the addresses
4000y and 4800y will select the same register. The duplicate or redundant range of the
memory addresses (4800y to 4FFFy) is generally known as the foldback memorys; this
memory space cannot be used by any other memory chip.

434 Absolute versus Linear Decoding

In Illustrative Example 1 (Figure 4.7), all the high-order address lines A;s-A;> were
decoded to select the memory chip, and the memory chip is selected only for the specified
logic levels (all Os) on these high-order address lines; no other logic levels can select the
chip. This is called absolute decoding, a desirable design practice commonly used in large
memory systems. In Hlustrative Example 2 (Figure 4.9), high-order address lines were
partially decoded, resulting in multiple addresses. In small systems, hardware for the
decoding logic can be eliminated by using individual high-order address lines to select
memory chips. For example, in Figure 4.9, A5 can be directly connected to the memory
chip, thus eliminating the decoder, and the chip is selected whenever A;s = 0. This is
called linear decoding. The scheme can reduce cost, but has the drawback of multiple
addresses. The linear decoding can be used in small systems, such as a microwave oven,
where memory requirements are limited and further expansion is unlikely.

ILLUSTRATIVE EXAMPLE 3: DESIGNING MEMORY

In this section, we will approach the question of memory interfacing from a design point-
of-view. In the previous examples, we analyzed the given schematics of memory inter-
facing; now we will design an interfacing circuit for given specifications.
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441 Problem Statement

Given a 2K R/W (2048 X 8) static memory chip and one 3-to-8 decoder, design memory
for the beginning address 2800y. Use the MREQ signal to enable one of the decoder lines,
and the RD and WR control signals can be directly connected to the memory chip.

4,42 Problem Analysis

1. The 2K memory requires 11 address lines (Ajo—Ao), and the remaining five address
lines Ajs—A; can be used to generate the Memory Select signal.

2. The 74L.S138 decoder has three input lines and three enable lines: two active low and
one active high. Out of the five address lines, three lines can be used as input to the
decoder, and two address lines and the MREQ can be used to enable the decoder.

3. The Z80 control signals RD and WR should be connected to the Output Enable (OE)
and Write Enable (WE) of the memory chip, respectively.

4. To assign the starting address 2800y. The address lines should have the following logic
levels:

Ais Ay Az Az Aln Ao Ag Az A A As Ay As Ay A Ay
0 0 1 0 1 0O 0 0 0 0 0O O 0 0 0 0 =28004
| ]

MSEL,

These logic level requirements dictate that A3 and Ay, should be 1, and that A;s,
Ay4, and Ay, should be O.We can connect A3 to the active high enable line (E3), and A5
and MREQ to the active low enable lines (E, and E,) of the decoder, respectively, and by
connecting the output O, of the decoder to CE, we can ensure that the memory chip is
selected when A = 1.

4.43 Circuit Analysis

Figure 4.10 shows the schematic of the interfacing circuit based on the problem analy-
sis.

m Ay l ‘ J;—-WR
Ajs | b
1 l CE OE WE
E, E, E3
A A, Ap— A
Ap A Adg;fss 2K X 8
Al Aq 0, b MSEL A N
74LS138 DO, DOy
Data
Bus
FIGURE 4.10

Schematic of 2K Memory Design
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1. The output line O, of the decoder is connected to the Chip Enable (CE) of the memory
chip. The decoder is enabled when A5 = 0, Aj3 = 1, and MREQ is asserted low. The
output line O, of the decoder is asserted only when input lines are at logic 0 0 1.
The logic levels on these address lines will assign the starting address as 2800y.

2. In this design example, the MREQ is used to enable the decoder. The output of the
decoder goes low only when the MREQ is asserted; thus, the chip is enabled when the
MREQ is low. The output and the input buffers of the memory chip are enabled directly
by the control signals RD and WR.

TESTING AND TROUBLESHOOTING INTERFACING
CIRCUITS

In the last section, we discussed how to design or interface memory for a given address.
The next step is to test and verify that we ¢an store a byte at a memory location within the
address range of the memory chip and read the byte. At this point, we need to make an
assumption that we have a working microcomputer system, and the memory design is an
expansion of the existing system. If we are designing a system, we may need to use an
in-circuit emulator to test the memory; this is discussed in Chapter 17.

To test the memory, we can simply access an address such as 2800y through the
system keyboard, store a byte, and check the address location again to verify the byte. If
there is any fault in the interfacing circuit, the system is likely to show an error message, or
a different byte from the one we stored will be displayed. Now we need to troubleshoot the
interfacing circuit. The question is: Where do we begin? The obvious step is to check the
wiring and the pin connections. After this preliminary check, most traditional methods
used in checking analog circuits (such as an amplifier) are ineffective because the logic
levels on the buses are dynamic; they constantly change depending upon the operation
being performed at a given instant by the microprocessor. In troubleshooting analog cir-
cuits, a commonly used technique is signal injection, whereby a known signal is injected at
the input, and the output signal is verified against the expected outcome. To use this
concept, we need to generate a constant and identifiable signal and check various points in
relation to that signal. We can generate such a signal by asking the processor to execute a
continuous loop, called a diagnostic routine, as shown.

Diagnostic Routine
START: LD A, F7TH :Load F7H into the accumulator

LD (2800H), A ;Store accumulator contents in location 2800H

JP START ;Jump back to beginning and repeat

This routine has three instructions. The first instruction loads F7y into the accumu-
lator, and the second instruction stores the byte in the memory location 2800y. The third
instruction is a Jump instruction that takes the program control at the beginning, and these
three instructions are repeated continuously. Now we need to examine the machine cycles
of these instructions to find an identifiable signal that is repeated at a certain interval. We
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can analyze the loop in the machine cycles as follows (it will be helpful to have read

Chapter 6 to understand the diagnostic routine):

Machine Cycles

Instruction Bytes T-states M; M,

LD A, FTH 2 74,3) Opcode Memory
Fetch Read

LD (2800H), A 3 134, 3,3,3) Opcode Memory
Fetch Read

JP START 3 10 (4, 3, 3) Opcode Memory
Fetch Read

M; M,

Memory Memory
Read Write
Memory

Read

This loop has 30 T-states and nine operations. To execute the loop once, the micro-
processor asserts the RD signal eight times (the Opcode Fetch is also a Read operation) and
the WR signal once. Assuming the system clock frequency is 2 MHz, the loop is executed
in 15ps, and the WR VR signal, repeated every 15 s, can be observed on a scope. If we sync
the scope on the WR pulse from the Z80, we can check M, the output of the decoder
MSEL, and memory signals CE, WR, and RD; three of these signals are in Figure 4.11.

FIGURE 4.11
Timing Signals of Diagnostic Routine
SOURCE: Photograph by Gregg Texido
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When the Z80 asserts the WR signal, the high-order address A;s—A;; must be 0 0 1
0 1, and MSEL; must be asserted low. If MSEL, is high, it indicates that the address lines
A;s—A;; or MREQ are improperly connected or the decoder chip is faulty.

If MSEL, is low, it confirms that the decoding circuit is functioning properly. Now
if we check the entire address bus and the data bus in relation to the WR signal, one line at
a time, we must read the address 2800y and the data F7y. If we check the RD signal, it
must be high when the WR is asserted, and we will observe eight RD signals between
every two WR signals, as shown in Figure 4.11.

SOME QUESTIONS AND ANSWERS

In the above discussion of memory interfacing, we focused on certain aspects of the
communication process between the Z80 and memory. However, in order to avoid dis-
traction from basic concepts, we did not address several important issues. Now we will
attempt to answer those questions briefly or provide references for them.

1. How do you determine whether a memory chip is too slow for a given Z80 system?

The response time of a memory chip is defined in terms of Access Time. This is the
time delay between when the microprocessor places a memory address on the address bus
and when memory places a data byte on the data bus. Typically, Access Time is 50-450 ns
for static R’W memory. Similarly, the microprocessor has a timing specification: the time
delay after the Z80 places an address on the address bus to when it begins to read data on
the data bus. The memory access time must be less than this microprocessor time delay.
This will be discussed when we consider advanced topics in memory interfacing.

2. How do you interface a memory chip with slow response time?

If the memory response time is slower than the microprocessor read time, the Mem-
ory Read cycle can be extended by using the WAIT signal. During the T, state of the
Memory Read cycle, the Z80 samples the WAIT signal, and if it is low, the Z80 adds Wait
states until the signal goes high again. Typically, one Wait state (one clock cycle) provides
sufficient time for memory to place data on the data bus. Extra circuitry is necessary for
adding Wait states; this is discussed in Chapter 16.

3. Why did you not include an illustrative example of dynamic memory?

The dynamic memory stores information as a capacitive charge; therefore, informa-
tion needs to be refreshed every few milliseconds. In the latter part of the Opcode Fetch
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cycle, the Z80 uses the low-order bus for refresh addresses. To interface the dynamic
memory, additional refresh circuits that can use the refresh addresses from the Opcode
Fetch cycle are necessary. This will also be discussed in Chapter 16.

SUMMARY

O To read from memory, the address of the register to be read from should be placed
on the address lines, and the Chip Enable CE and RD signals must be asserted low
to enable the output buffer.

0 To write into memory, the address of the register to be written into should be
placed on the address lines; a data byte should be placed on the data lines, and the
Chip Enable CE and WR signals must be asserted low to enable the input buffer.

0 The Z80 identifies memory operations by initiating the MREQ signal. This signal is
combined with the decoded address pulse (CS) to generate Memory Select (MSEL),
which is connected to Chip Enable (CE) signal of the memory chip. Another alter-
native is to use the decoded address pulse CS to enable the memory chip and gener-
ate Memory Read (MEMRD) and Memory Write (MEMWR) signals by combining
MREQ, RD, and WR signals.

0 To interface a memory chip with the Z80, the necessary low-order address lines of
the Z80 address bus are connected to the address lines of the memory chip. The
high-order address lines and the MREQ are used to generate the MSEL signal,
which enables the chip. The RD signal is used to enable the output buffer, and the
WR signal is used to write into memory by enabling the input buffer.

0 In the absolute decoding technique, all the address lines not used by a memory chip
to identify a memory register must be decoded; thus, the Chip Select can be as-
serted by only one address. In the linear decoding technique, one address line can
be used for C'-S:, and others can be left ‘‘don’t care.”’ This technique saves on hard-
ware, but generates multiple addresses, which result in foldback memory space.

O To troubleshoot an interfacing circuit, a constant and identifiable signal must be
generated by writing a continuous loop.

ASSIGNMENTS

1. If a memory chip is organized in a 4096 X 1 format, specify the number of reg-
isters in the chip and the number of bits stored by each register.

2. If 16K X 1 memory chips are used in a memory design, how many chips are re-
quired to design 64K-byte memory?

3. Specify the number of chips necessary to design 8K-byte memory with 1024 X 4
memory chips.
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4. In Figure 4.7, generate the Chip Select (CS) signal by using a 4-input NAND
gate (and inverters) to decode the address lines Ajs—A;, and combine CS with
the MREQ using an appropriate gate to generate the equivalent MSEL signal.

5. Generate the signal equivalent to the MSEL. signal in Figure 4.7 using the
741.8139, which has two 2-to-4 decoders in the package.

6. If the first address of the 8K X 8 memory chip is 0800y, what is the address of
the last register?

7. 1In Figure 4.7, if we connect the output line O4 (instead of Op) of the decoder to
the CE signal, what will be the memory map of the circuit?

8. In Figure 4.7, if we use all the output lines (0;—0p) of the decoder to select 8
memory chips of the same size as the 2732, what is the total range of the
memory map?

9. In Figure 4.9, replace the address line A15 with All and find the range of the
foldback memory.

10. In Figure 4.9, replace the MK4802 with a 1K X 8 memory chip and leave ad-
dress lines A;; and A as ‘‘don’t care.’’ Find the memory map of the chip and
the range of the foldback memory.

11. By examining the range of the foldback memory in Figure 4.9, and in Assign-
ment 10, specify the relationship between the range of foldback memory and the
number of ‘‘don’t care’’ lines.

12. In Figure 4.12, the control signals Eﬁ, MREQ, and WR are used as inputs to
the 3-to-8 decoder, and the decoder is enabled. Specify the output lines that can
be used as MEMRD and MEMWR control signals.

13. In Figure 4.12, explain why the output line Oy cannot be asserted low.

14. In Figure 4.13, specify the memory maps of ROM1, ROM2 and R/'WMI.

15. Is there a foldback memory for any one of the chips in Figure 4.13?

16. Sketch the memory map in Figure 4.13.

17. Figure 4.14 illustrates an example of linear decoding. Specify the memory map
of each chip without accessing more than one chip at a time.

18. Given a 1K (1024 X 8) EPROM memory chip and one 3-to-8 decoder, design an
interfacing circuit to assign the beginning address at 0400y. Use the 74L.S32 OR
gate to generate the control signal MEMRD.

19. You are given the 74L.S139 (two 2-to-4 decoders) and 8K static R/W memory.

FIGURE 4.12

Generating Control Signals RD MSB A TSI 2_07

Using the 3-to-8 Decoder : o

MREQ A, g
WR Ag g
E, E, E; p—0y
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FIGURE 4.13
Schematic for Assignments 14-16
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FIGURE 4.14

Memory Map with Linear Decoding

Use one decoder to assign the memory map with the starting address at 8000y
and use the other decoder to generate the MEMRD and MEMWR control sig-

nals.
In Section 4.5, if the diagnostic routine is executed on a system with the clock

20.

frequency 4 MHz, specify the time interval between two WR pulses.
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In the diagnostic routine, how many times is the MREQ signal asserted in one
loop?

Specify the logic levels of the address lines A;s and A,; and the data lines D,
and D; when the WR signal is asserted during the diagnostic routine.

How many times is the M, signal asserted during the execution of the diagnostic
routine?

Sketch the waveforms of MSEL, signals in one loop.



Interfacing 1/0
Devices

The I/O (Input/Output) is the third component of a
microcomputer system. I/O devices, such as key-
boards and displays, are the ears and eyes of the
MPUs; they are the communication channels to the
“‘outside world.”” Data can enter or exit in groups of
eight bits using the entire data bus; this is called the
parallel /O mode. The other mode is the serial
1/0, whereby one bit is transferred using one data
line; typical examples include peripherals such as
CRT terminals or cassette tapes. In this chapter, we
focus on interfacing I/O devices in the parallel mode;
the serial mode will be discussed in Chapter 15.

In the parallel I/O mode, devices can be inter-
faced using two techniques: peripheral-mapped /O
and memory-mapped I/O. In peripheral-mapped
I/0, a device is identified with an 8-bit address and
enabled by I/O-related control signals. In memory-
mapped [/O, a device is identified with a 16-bit
address and enabled by memory-related control sig-
nals. The process of data transfer in both is identical.
Each device is assigned a binary address through its
interfacing circuit. When the Z80 is programmed to
transfer data, it places the appropriate address on the
address bus, sends the control signals, enables the
interfacing device, and transfers data. The interfac-
ing device is like a gate for data bits, which is
opened by the MPU whenever it intends to transfer
data.

To grasp the essence of interfacing techniques,

we first examine the machine cycles of I/O instruc-
tions to determine the timings for I/O data arriving
on the data bus, and then latch (or catch) that infor-
mation. We derive the basic concepts of peripheral-
mapped and memory-mapped /O from the machine
cycles. The peripheral-mapped I/O concepts are
illustrated with two examples: interfacing LEDs as
an output device and switches as input device. The
memory-mapped I/O technique is illustrated with an
example of appliance control. The chapter also
includes additional interfacing examples that occur
frequently in microprocessor-based products.
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OBJECTIVES mapped I/O by analyzing the associated logic cir-
O IHlustrate the Z80 bus contents and control signals cuit.
when OUT and IN instructions are executed. O Explain the differences between the peripheral-
O Explain the necessity of Wait states in I/O mapped and memory-mapped /O techniques.
machine cycles. O Interface an I/O device to a microcomputer for a
0 Recognize the device (port) address of a peri- specified device address by using logic gates and
pheral-mapped I/O by analyzing the associated such MSI chips as decoders, latches, and buffers.
logic circuit. O Explain the concepts in interfacing analog devices
O Recognize the device (port) address of a memory- such as sensors and motors.
5. ]. INTERFACING OUTPUT DEVICES

In peripheral-mapped I/O, a device is identified with an 8-bit address, and I/O-related
control signals are used to enable the device. The process of data transfer is in many ways
similar to that of reading from or writing into a memory register. The Z80 uses the
instruction IN to read (input) data from an input device and uses the instruction OUT to
write (send) data to an output device. To understand interfacing of I/O devices, we need to
examine the execution and machine cycles of these input/output instructions. In the next
section, we will examine the execution of the QUT instruction and discuss the interfacing
of output devices, and in Section 5.3, we will examine the IN instruction and discuss the
interfacing of input devices.

5.11 OUT Instruction

The Z80 microprocessor has several output instructions to send (copy or write) data to an
output device. It can send data from the accumulator, internal general-purpose registers, or
memory registers to an output device. The Out instructions include the 8-bit address of a
device as an operand. Therefore, the address can be any of the 256 8-bit binary combi-
nations from 00y to FFy. Thus, an output device can be assigned any 8-bit address
between 00y and FFy through an appropriate interfacing circuit. The address range from
00y to FFy is called the I/O or peripheral map, and an address can be referred to as a device
address, port address, or port number. Among the several Out instructions, we will exam-
ine the machine cycles and timing of the following instruction.

Opcode Operand Description

ouT (8-bit), A This is a 2-byte instruction with the hexadecimal opcode D3,
and the second byte is the port address of an output device.

This instruction transfers (copies) data from the accumulator
to the output device.

Typically, to display the contents of the accumulator at an output device (such as
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LEDs) with the address, for example, 07y, the instruction will be written and stored in
memory as follows:

Memory Machine Memory

Address Code Mnemonics Contents
2050 D3 OUT (07H), A ; 2050 |1 101001 1}=D3y
2051 07 ;2051 [0000011 1]=074

NOTE: The memory locations are chosen here arbitrarily for the illustration.

When the microprocessor reads and executes the machine codes written at memory
registers 2050y and 2051y, it will transfer (copy) the byte from the accumulator to the
LED port with address 07y and display the byte. Now the question remains: How is the
address 07y assigned to the output port? To answer that question, we need to examine the
machine cycles of this instruction, as shown in the next section.

5.12 Execution of OUT Instruction and Timing

The OUT instruction has three machine cycles: Opcode Fetch, Memory Read, and /O
Write. The Z80 reads the opcode and the port address from memory in the first two
machine cycles and writes into the port in the third cycle. Figure 5.1 shows the timing of
the OUT instruction with the port address 07y illustrated in the previous section.

The first two machine cycles—Opcode Fetch and Memory Read—are similar to the
machine cycles shown in Figure 3.7; however, in Figure 5.1, the low-order and high-order
address buses are shown separately to illustrate the contents of the low-order bus in the
third cycle. In the Opcode Fetch cycle, the Z80 places the address 2050y on the address
bus and fetches the opcode D3y (1 10100 1 1) via the data bus. When the Z80 decodes
the opcode, it realizes that the instruction consists of two bytes, and that it must read the
second byte. In the second machine cycle, the Z80 places the next address, 2051y, on the
address bus and reads the port address 07y.

In the third machine cycle, M5 (I/O Write), the following events occur:

1. The Z80 places the port address 07y on the low-order address bus and the contents of
the accumulator on the data bus.

2. During T, it asserts the IORQ and WR control signals; the assertion of IORQ indicates
that it is an I/O operation.

3. The Z80 automatically inserts a single Wait state Tw after T2 to allow sufficient
response time for an I/O device; this Wait state is added regardless of the WAIT signal
status.

4. During Ts, the control signals IORQ and WR become inactive.

To interface an output device, the information on the buses during the M3 cycle is
critical. From the beginning of T, until the end of T3, we have the port address (07y) on the
low-order address bus and the data byte to be displayed on the data bus. The availability of
this information is indicated by the control signals. Now what we must do is to latch
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FIGURE 5.1
780 Timing for Execution of OUT Instruction

(catch) this information using the control signals before it disappears from the buses; we
need to open the gate at that precise moment to let the data flow to the *‘outside world.”’
This is the essence of interfacing.

5.13 Basic Concepts in Interfacing Output Devices

The concepts in interfacing output devices are similar to those in interfacing memory. The
steps can be listed as follows:

1. Decode the low-order address bus to generate a unique pulse corresponding to the port
address on the bus; this is called the I/O address (IOADR) pulse

2. Combine (AND) the I/O address pulse (I0ADR), IORQ, and WR to generate the
IOSEL. (I/O select) pulse (Figure 5.2(a)). Another approach is to generate the IOWR
(I/0 Write) by combining IORQ and WR, and then combine IOWR with the IOADR
(/O Address) pulse to generate the IOSEL pulse (Figure 5.2(b) ). The critical concept
here is that the decoded address, IORQ, and WR are all necessary to latch the data at
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I0RQ WR Function

(a)
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Device
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WR ~—— Function —l_l_ 1/0 Select
(b)
FIGURE 5.2

Block Diagram: Output Interfacing

the appropriate time; how these signals are combined is often dictated by availability of
decoding devices (chips) in the system.
3. Use the IOSEL pulse to enable (activate) the output device.

Let us examine the significance of the I/0 select pulse. This pulse is generated by
ANDing the decoded address, IORQ, and WR signals as shown in Figure 5.2(a); all these
signals are active low. The assertion of this pulse indicates two pieces of information: (1)
the low-order address bus has the port address (07y), and (2) the data byte from the
accumulator is on the data bus. Thus, this is the appropriate time to enable the latch (or
open the gate for data). Figure 5.2(b) shows how these control signals are generally
ANDed in a typical interfacing circuit to generate the IOSEL pulse and how the I/0 select
pulse is used to enable the output latch.

ILLUSTRATIVE EXAMPLE 1: INTERFACING LEDS

1056

0.2

In this section, we will analyze an actual interfacing circuit with the port address 074 to
display binary data. A group of 8 LEDs will be used to indicate binary 1s and Os and will
be connected to the data bus using the 7475 latches.

5.21 Hardware

Figure 5.3 shows the logic symbols of the 7475 latch. It has four bistable latches con-
trolled by the active high enable signals; E_, enables the first two latches and E;_4 enables
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FIGURE 5.3
Logic Symbol. 7475 Latch 5 12
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the remaining two. When E is high, data enter the latch and appear at the Q outputs, and Q
outputs correspond to the input data. When E goes from high to low, data will be latched
and will remain stable until E goes high again.

When Q output is high, it can supply (source) 400 wA, and when it is low, it can sink
16 mA current. Since most LEDs require a 10~15 mA current to be properly illuminated,
they are connected to Q output of the latch so that when the input is high, Q output is low
and the LED is turned on.

5.22 Interfacing Circuit

Figure 5.4 shows an interfacing circuit for the LED output port with the address 07. We
will analyze this circuit in terms of the three steps for interfacing output devices as outlined
in Section 5.13.

1. An 8-input NAND gate with five inverters is used to decode the low-order address bus
As-Ag. The output of the NAND gate is asserted when the addressis000001 11
(07y); thus, the NAND gate performs the decoding function to generate the I/0 address
(IOADR) pulse.

2. The control signals IORQ and WR are ANDed in a negative AND ND gate (physically, an
OR gate) to generate the control signal IOWR (active low). The IOWR is again ANDed
(through a NOR gate) with the /0O address pulse to generate the I/O select pulse (active
high). This pulse is asserted only when the address is 07, and the control signals IORQ
and WR are low.

3. The I/0 select pulse is used to enable the latches 7475. The data bus D;-Dy is connected
to the D input and the LED cathodes are connected to the Q output of the latch. The
LED anodes are connected to the power supply + 5 V through the current-limiting
I€SIStors.

At the beginning of T in the third machine cycle shown in Figure 5.1, the control
signals JORQ and WR are asserted, and the I/O select pulse (Figure 5.4) goes high if the
address is 07y. When the 1/0 select pulse goes high, the data on the data bus enters the
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FIGURE 5.4
Schematic: Interfacing LED Output Port

latches. During T3, when the control signals become inactive, the I/O select pulse goes
low, and the data are latched. The logic Is on the data lines turn on the corresponding
LEDs because when a data bit is high, the Q ouput is low and the LED is turned on.

INSTRUCTIONS
To display data, for example 97y, at this LED port, instructions are as follows:

LD A, 97H ; Load accumulator with the specified byte

OUT (07H), A ; Display the accumulator contents at port 07H

The first instruction (LD A) stores the second byte 97y in the accumulator, and the
OUT instruction sends the byte (97y) from the accumulator to the LED port 07y. When the
1/0 select pulse is asserted, the byte 97y enters the latch and is displayed by the LEDs.
When it goes low (inactive), the byte is latched and continues to be displayed by the
LEDs.

INTERFACING INPUT DEVICES 5. 3

The interfacing of input devices is almost identical to that of interfacing output devices,
but with some differences in bus signals and circuit components. In this discussion, we
will assume that you are familiar with the basic concepts of interfacing (Section 5.13) and
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describe only the additional details. First, we examine the execution and timing of the IN
instruction and discuss the interfacing of input devices in relation to the timing
diagram.

5.31 IN Instruction

The Z80 instruction set includes several instructions to read (copy) data from such input
devices as switches, keyboards, and A/D data converters. These instructions can read an
input device and place the data into the accumulator, Z80 registers, or memory registers.
These are two-byte instructions; the first byte is the opcode, and the second byte specifies
port address. Although there are numerous ways of specifying the port address, it is always
eight bits long. Thus, the addresses for input devices can range from 00y to FFy. Among
the several Input instructions available, we will examine the machine cycles and timing of
the following instruction.

Opcode Operand Description
IN A, (8-bit) This is a two-byte instruction with the hexadecimal opcode
DB, and the second byte is the port address of an Input
device.

This instruction reads (copies) data from an input device
and places the data byte into the accumulator.

To read switch positions, for example, from an input port with the address 84y, the
instructions will be written and stored in memory as follows:

Memory Machine Memory

Address Code Mnemonics Contents
2065 DB INA, (84H) ;2065 |1101101 1]=DBy
2066 84 ;2066 100001 00]= 84y

NOTE: The memory locations 2065;; and 2066 are selected arbitrarily for the illustration.

When the microprocessor is asked to execute these instructions, it will first read the
machine codes (or bytes) stored at locations 2065, and 2066y, then read the switch
positions at port 84y by enabling the interfacing device of the port. The data byte indi-
cating switch positions from the input port will be placed in the accumulator. To design an
interfacing circuit with the port address 84y, we now need to examine the machine cycles
and execution timing of the IN instruction.

5.32 Execution of IN Instruction and Its Timing

The IN instruction has three machine cycles: Opcode Fetch, Memory Read, and I/O Read.
In the first two machine cycles, the Z80 reads the opcode DB and the port address 84 (see
example in previous section). These cycles are identical to the first two machine cycles of
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the OUT instruction shown in Figure 5.1. In the third machine cycle, the Z80 reads a data
byte from the input port as follows (Figure 5.5):

1.

2.

3.

The port address 84y is placed on the low-order address bus at the beginning of the
machine cycle M3 (I/O Read).

During T2, the control signals IORQ and RD are asserted, and one Wait state is
inserted automatically after T,.

During T3, the Z80 reads the data bus and then causes the control signals (IORQ and
RD) to go inactive.

5.33 Basic Concepts in Interfacing Input Devices

To interface an input port with the address 84y, we need to logically AND the information
on the address bus with the control signals and enable the input port. The steps are as
follows:

1.
2.

Decode the low-order bus to generate the I/O address pulse.

Combine the I/O address pulse with the control signals IORQ and RD to generate the
signal I/O Select (IOSEL, Figure 5.5). Another approach is to combine IORQ and RD
to generate an IORD signal and then to combine the IORD with the I/O address pulse to
generate the I/O select pulse.

. Enable the input interfacing device using the I/O select pulse.

These steps are identical to those listed for interfacing output devices; the only

differences are (1) the control signal is RD instead of WR, and (2) data flow from an input
port to the accumulator rather than from the accumulator to an output port.

FIGURE 5.5 M; (1/0 Read)
Z80 Timing for Execution of IN Instruction T T, T T
B Input
Ao Port Address Biu X
Input
D;-Dy \ «
IORQ y,\ /_
ol W /
IOSEL \ j
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ILLUSTRATIVE EXAMPLE 2: INTERFACING INPUT
SWITCHES

In this section, we will analyze the circuit used for interfacing eight DIP switches as shown
in Figure 5.6. The circuit includes the 74L.S138 3-to-8 decoder to decode the low-order
bus and the tri-state octal buffer (74L.5S244) to interface the switches to the data bus. The
port can be accessed with the address 84y; however, it also has multiple addresses.

5.41 Hardware

Figure 5.6 shows the 74L.S244 tri-state octal buffer used as an interfacing device. The
device has two groups of four buffers each, and they are controlled by the active low signal
OE. When OE is low, the input data appear on the output lines, and when OE is high, the
output lines assume high impedance state.

5.42 Interfacing Circuit

Figure 5.6 shows that the low-order address bus (with the exception of lines A4 and Aj) is
connected to the decoder 74L.S138; the address lines A4 and As are left in ‘‘don’t care’’
state. The output line O, of the decoder goes low when the address bus has the following
address (we assume the ‘‘don’t care’’ lines are at logic 0):

+5V

TTEsE,

—AMA—
AMA—

1
A, D, 7415244
Ag Octal 1 S/
>
A5———~—1 Buffer 1 85/
5 B 1 S4
MSB E| E; E3 Data = 1 3 ;
A2 A2 Bus e S3 [
TOATD 0 2
I0ADR -
A A O, 0 S
| I 5°
Ao A0 3 10-8 D, P 0
Decoder OE
74LS138 1.7 =
IOSEL
] =
RD IORD

FIGURE 5.6
Schematic: Interfacing Input Switches
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Ar As As As As Ay Al A
I 0 0/ [0 O] L 0 0]=84y
) )

Enable Don’t Input
Lines Care

The control signal I/O Read (IORD) is generated by ANDing the IORQ and RD in a
negative NAND gate, and the 1/O select pulse is generated by ANDing the output of the
decoder with the control signal IORD. When the address is 84y and the control signals
IORQ and RD are asserted, the I/0 select pulse enables the tri-state buffer, and the logic
levels of the switches are placed on the data bus. The Z80 then reads switch positions
during T3 (Figure 5.5) and places the data byte into the accumulator. When a switch is
closed, it has logic 0, and when it is open, it is tied to +5 V, representing logic 1. Figure
5.6 shows that the switches S;—S5 are open and S,—Sg are closed; thus, the input reading
will be F8y.

5.43 Multiple Port Addresses

In Figure 5.6, the address lines A4 and Aj are not used by the decoding circuit; the logic
levels on these lines can be either 0 or 1. Therefore, this input port can be accessed by four
different addresses, as shown.

A As As Ay As Ay A} A
I 0 0 0 0 1 0 0 =84y

0 1 = SCH
1 0 = 94H
1 1 = 9CH

5.44 Instructions to Read Input Port

To read data from the input port shown in Figure 5.6, the instruction IN A, (84H) can be
used. When this instruction is executed, the Z80 places the address 84y on the low-order
bus, asserts the control signals, and reads the switch positions.

MEMORY-MAPPED 1/0
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5.9

In memory-mapped I/O , the input and output devices are assigned and identified by 16-bit
addresses. To transfer data between the microprocessor and I/O devices, memory-related
instructions (such as LD A, (16-bit)) and memory control signals (such as MREQ) are
used. The microprocessor communicates with an I/O device as if it were one of the
memory locations.
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5.51 Memory-Related Data Transfer Instructions

To understand the memory-mapped 1/0 technique, we need to examine how a data byte is
transferred from the Z80 to a memory location or vice versa. For example, the following
instruction will transfer (copy) the contents of the accumulator to the memory location
8000y. It is assumed here that the instruction is stored in memory locations 2050y, 51y,
and 52y.

Memory Machine

Address Code Mnemonics Comments
2050 32 LD (8000H), A ;Store contents of accumulator
2051 00 in memory location 8000y
2052 80

This is a 3-byte instruction; the first byte is the opcode, and the second and the third
byte specify the memory address. However, the 16-bit address 8000y is entered in the
reverse order; the low-order byte 00 is stored in location 2051, followed by the high-order
address 80y (the reason for the reversed order will be explained in Section 5.7). In this
example, if an output device instead of a memory register is connected at this address, the
accumulator contents will be transferred to the output device. This is called the memory-
mapped /O technique.

Similarly, the instruction LD A, (4000H) will transfer the contents of the memory
location 4000y to the accumulator. To assign this address for a memory-mapped input
port, we can interface an input device (for example, a keyboard) instead of memory by
using the memory-related control signals (MREQ and RD). When the processor executes
the instruction, the accumulator receives data from the input device rather than from a
memory register 4000y.

5.52 Execution of Memory-Related Data Transfer Instructions

The execution of memory-related instructions discussed in the previous section is similar
to the execution of I/O instructions (Sections 5.1 and 5.3), except that the memory-related
instructions have 16-bit addresses.

Figure 5.7 shows the execution of the instruction LD (8000H), A. It has four
machine cycles; in the first three machine cycles, the Z80 reads the three bytes. The fourth
machine cycle My (Memory Write) is similar to the machine cycle Mj of the OUT instruc-
tion. In this machine cycle, the Z80 places the 16-bit address 8000y on the address bus and
the accumulator contents on the data bus. This is followed by the assertion of the control
signals MREQ and WR. The information available during M4 can be used to interface a
memory-mapped output port with the 16-bit address 80004.

In memory-mapped I/0, 1/O selection and data transfer require steps similar to those
required in peripheral-mapped 1/O:

1. Decode the entire address bus As—Ao (rather than just A;—Ay).
2. Combine the control signals MREQ, WR, and the decoded pulse from Step 1 to gen-
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FIGURE 5.7

Z80 Timing for Execution of Instruction LD (8000H), A

erate a pulse similar to the MSEL pulse, which will be used to select an I/O rather than
memory.

3. Use the 1/0 select pulse (actually MSEL) to enable the I/O port.

To interface a memory-mapped input port, the steps are similar to those of the
memory-mapped output port. We can use the instruction LD A, (16-bit), which reads data
from an input port with the 16-bit address and places it in the accumulator. The instruction
has four machine cycles; only the fourth machine cycle differs from M, in Figure 5.7. The
control signal will be RD rather than WR, and data flow from the input port to the
MiCrOprocessor.

ILLUSTRATIVE EXAMPLE 3: APPLIANCE CONTROL
USING MEMORY-MAPPED /O TECHNIQUE

0.0

Figure 5.8 shows a schematic of interfacing I/O devices using the memory-mapped /O
technique. The circuit includes one input port with eight DIP switches and one output port
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Schematic: Interfacing /O Devices with Memory-Mapped /O

to control the appliances. The appliances are turned on and off by the microprocessor
according to the corresponding switch positions. For example, the switch S; controls the
air conditioner and the switch Sg controls Light 4. All switch inputs are tied high; there-
fore, when a switch is open (off), it has +5 V, and when a switch is closed (on), it has
logic 0. The circuit includes two 3-to-8 decoders and one 8-input NAND gate to decode the
address bus and generate the control signals. The eight switches are interfaced using a
tri-state buffer 741.5244, and the appliances are interfaced using an octal latch (741.S373)

with tri-state output.
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5.61 Control Signals

In a memory-mapped I/O circuit, the control signals required are MREQ (Memory
Request) and Read (RD) or Write (WR). In this circuit (Figure 5.8), they are used as inputs
to a 3-to-8 decoder (labelled #2) to generate additional control signals. The enable lines of
the decoder are controlled by the address lines. Assuming the decoder is enabled by the
appropriate address, we need to analyze the input and identify the output lines of the
decoder that can be used as control signals.

To assert the Memory Write (MEMWR) signal, the input should be MREQ = 0,
WR =0, andRD = | (RD and WR cannot be active at the same time). With this input, the
output line O4 goes active and generates the MEMWR signal.

To assert the Memory Read (MEMRD) signal, the input should be MREQ = 0,
WR =1, and RD = 0. With this input to the decoder, the output O, goes active and
generates the MEMRD signal.

5.62 Output Port and Its Address

The appliances are connected to the data bus through the latch 74LS373 and solid state
relays. If an output bit of the 74LS373 is high, it activates the corresponding relay and
turns on the appliance, which remains on as long as the bit stays high. Therefore, to control
the appliances, we need to supply the appropriate bit pattern to the latch.

The 741.S373 is a latch followed by a tri-state buffer, as shown in Figure 5.9. The
latch and the buffer are controlled independently by Latch Enable (LE) and Output Enable
(OE). When LE is high, the data enter the latch, and when LE goes low, data are latched.
The latched data are available on the output lines of the 74L.S373 if the buffer is enabled by
OE (active low). If OE is high, the output lines go into high impedance state.

Figure 5.8 shows that the OE is connected to the ground; thus, the latched data will
keep the relays on or off according to the bit pattern. The LE is connected to the device
select pulse, which is asserted when the output Oq of decoder #1 and the control signal
MEMWR go low. Therefore, to assert the I/O select pulse, the output port address should
be 82FFy.

FIGURE 5.9 74L8373
Logic Symbol: 74LS373 Octal Latch D, - 0,
g0 3"“0[>—‘
Dy O

LE OE
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5.63 Input Port and Its Address

The DIP switches are interfaced with the Z80 using the tri-state buffer 74LS244. The
switches are tied high and are turned on by grounding as shown in Figure 5.8. The switch
positions can be read by enabling the signal OE, which is asserted when both the output O,
of decoder #1 and the control signal MEMRD go low. Therefore, to read the input port,
the port address should be 86FFy.

Ais Ais Az A A A Ay Ag A As As Ay Ay A, A Ao
1 0 0 0 0 1 1 0 1 1 1 1 1 1 1 1 = 86FFy

d l ! !
Enable Lines Input Enable To 8-Input
Decoder #1 To #1 Lines #2 NAND Gate

5.64 Instructions

To control the appliances according to switch positions, the microprocessor should read
the bit pattern at the input port and send that bit pattern to the output port. The following
instructions can accomplish this task.

READ: LD A, (86FFH) ;Read the switches

CPL ;Complement switch reading, convert “‘on’’ switch
(logic 0) into logic 1 to turn on appliances

LD (82FF), A ;Send switch positions to output port and
turn appliances on or off

JP READ ;Go back and read again

When this program is executed, the first instruction reads the bit pattern
1011011 1(B7y) at the input port 86FFy and places that reading in the accumulator;
this bit pattern represents the ‘‘on’’ position of switches S and S;. The second instruction
complements the reading; this instruction is necessary because the “‘on’’ position has logic
0, and logic 1 is necessary to turn on solid state relays. The third instruction sends the
complemented accumulator contents (0 100 1000 = 48y) to the output port 82FFy. The
74L.5373 latches the databyte 0 100 1 0 0 0 and turns on the space heater and Light 1. The
last instruction, JP READ, takes the program back to the beginning and repeats the loop
continuously in order to monitor the switches.
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In previous examples, we illustrated the interfacing of I/O devices that were primarily
binary devices (on/off). We now extend the concepts to interface analog devices such as
temperature sensors and motors. In interfacing analog devices, the basic procedure
remains similar to that of interfacing binary devices; the MPU identifies the device through
a binary port address and enables it with an appropriate control signal. However, we need
to find a way to detect and to convert the analog signal into the binary format and vice
versa. The analog signal is generally handled in two ways: one is to detect the signal when
it reaches a predetermined level, and the other is to convert it into binary format propor-
tional to its magnitude. The predetermined level of the analog signal can be detected by
using a comparator circuit, and the binary equivalent can be obtained by using an A/D
(Analog-to-Digital) data converter. In this section, we will focus on interfacing circuits
that can detect the predetermined level of analog signals and defer the discussion of
interfacing data converters to Chapter 13.

Figure 5.10 shows the interfacing of a temperature sensor. This circuit is designed to
detect (through an input port) whether the temperature has risen to 100°C, and at that
temperature it turns on the dc motor of a water pump The dc motor is interfaced with the
MPU through an output port.

5.71 Hardware: Temperature Sensor LM135 and Comparator LM311

Figure 5.10 shows the LM 135 used as a temperature sensor, and its output is connected as
one of the inputs to the comparator LM311. The LM135 is an integrated circuit, designed
to sense changes in temperature; its output voltage changes 10 mV/°C. It is rated to operate
over a temperature range from —55°C to +150°C, and the current range 400A to 5 mA.
At 25°C, the output of the sensor is typically 2.98 V, and it increases 10mV/C; therefore,
at 100°C, it can reach 3.73 V (2.98 V + 750 mV).

The LM311 is a voltage comparator that can be operated from a +5 V power supply.
The comparator compares two voltages at its input terminals, and if the difference between
the two voltages is less than or equal to —10 mV, its output remains at the saturation
voltage of about 0.75 V; otherwise, the output is near the power supply voltage.

The output of the sensor is connected to the positive terminal of the comparator, and
its negative terminal is set to 3.73 V. At temperatures lower than 100°C the output voltage
of the sensor is less than 3.73 V; thus, the comparator output remains at 0.75 V (logic 0).
When the temperature reaches 100°C, the output of the sensor is 3.73 V, and the com-
parator output goes to +4.5 V (logic 1). The output of the comparator is connected to the
tri-state buffer 741.S244, which serves as an input port to the MPU.

5.72 Interfacing Circuit for the Sensor

Figure 5.10 shows that the 741.S138 (3-to-8) decoder is used for address decoding. This
decoding circuit is identical to the circuit shown in Figure 5.6; thus, the outputs of the
decoder are asserted for port addresses ranging from 80y to 87y (‘‘don’t care’’ lines are
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Interfacing Analog Signals

assumed to be at logic 0). The control signals IORD (I/0 Read) and IOWR (I/O Write) are
generated by using the 74LS139 (2-to-4) decoder; which is enabled by the IORQ signal.
When the MPU intends to read, it asserts the IORQ and RD signals. The input of the 2-to-4
decoder becomes 0 1, and the output 0, goes active low to assert the IORD (I/O Read)
control signal. The IORD is logically ANDed with the decoded address 80y to generate the
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IOSELgoy (I/0 Select) signal, which enables the input buffer 74L.S244 to read the output
of the comparator. The output voltage of the comparator is connected to the data line Do
through the buffer, and the MPU can monitor the temperature by monitoring the data
line Do.

5.73 Interfacing Circuit for the DC Motor

The dc motor is interfaced with the MPU through the latch 74L.§373; the output bit Og of
the latch can drive the dc motor by turning on the transistor (Darlington pair). The logic
level of bit Og of the latch is controlled by the data line Dy. The port address of the latch
(87y) is determined by the 3-to-8 decoder; the output line O of the decoder is ANDed with
the control signal IOWR to generate the IOSELgy, which enables the latch 74L.S373.
When the temperature reaches 100°C, the MPU sends logic 1 to the latch (port 87y) to turn
on the motor, and when the temperature is less than 100°C, the motor is turned off by the
logic 0.

5.74 Instructions
START: IN A, (80H) ;Read the output of the comparator

AND 00000001B ;Save logic of Dy and eliminate D, through D,
OUT (87H), A ;Turn on motor if Dy = 1 or turn off if Dg =0
JP START ;Go back and read the output of the comparator

5.75 Program and Circuit Description

The first instruction IN A, (80H) enables the buffer 741.5244, reads the entire data bus
D;-Dy, and places the byte in the accumulator. However, we are interested in the logic
level of only bit Dy; it has the output of the comparator. Therefore, the next instruction
AND:s the contents of the accumulator with the byte 01y in order to eliminate bits D{-Dsg
and save the logic level of bit Dy. When the temperature exceeds 100°C, the output of the
comparator is about +5 V, and the MPU reads logic 1 on the data line Dy. When the
temperature is lower than 100°C, the comparator output is about 0.7 V, and the MPU reads
logic O on the data line Dg. The next instruction OUT turns on the transistor if Dg = 1 or
turns off the transistor if Dy = 0. When the transistor is on, it supplies the necessary
current for the motor to run, and when the transistor is off, the motor is turned off. The last
instruction JP takes the program back to the beginning and continuously monitors the
changes in the output of the comparator.

5.76 Additional Sensors and Output Devices

Figure 5.10 illustrates one example of interfacing a sensor and driving a dc motor. We can
extend the same concepts to other sensing and output devices. In Figure 5.10, we used
only one data line Dy to monitor the output of the comparator. We can connect additional
sensors such as light detectors, level detectors, and smoke detectors to the remaining data

119



120

0.8

MICROPROCESSOR ARCHITECTURE AND INTERFACING

lines, and instructions can monitor all the sensors in a sequence. Similarly, we can connect
output devices such as speakers, alarms, and lights by using solid state relays to the
remaining output lines of the latch.

TROUBLESHOOTING /O INTERFACING CIRCUITS

In the last several sections, we discussed the interfacing of I/O devices and instructions to
test them. In Hlustrative Example 1 (Figure 5.4), the test program includes two instruc-
tions that load the byte 97y into the accumulator and output the byte to port 07y. If we
execute these instructions and no change is observed at the output port, we must imple-
ment the troubleshooting technique similar to that which we used for troubleshooting
memory interfacing circuits in the last chapter. After checking the wiring and the pin
connections, we can write a diagnostic routine and execute it in a continuous loop to
generate a constant and identifiable signal, and then check various points in relation to that
signal.

DIAGNOSTIC ROUTINE AND MACHINE CYCLES

We can use the same instructions for the diagnostic routine that we used in Illustrative
Example 1; however, to generate a continuous signal, we need to add a Jump instruction,
as shown.

Instruction Bytes  T-states Machine Cycles
M, M, M;
START: LD A, 97H 2 7 (4, 3) Opcode Memory

Fetch Read

OUT (07H), A 3 11 (4, 3, 4) Opcode Memory I/0
Fetch Read Write

JP START 3 10 (4, 3, 3) Opcode Memory Memory
Fetch Read Read

This loop has 28 T-states and eight operations (machine cycles). To execute the loop
once, the microprocessor asserts the RD signal seven times (the Opcode Fetch is also a
Read operation) and the WR signal once. Assuming the system clock frequency is 2 MHz,
the loop is executed in 14 ws, and the WR signal, repeated every 14 s, can be observed on
a scope. If we sync the scope on the WR pulse from the Z80, we can check the output of
the 8-input NAND gate (IOADR), IOWR, and IOSEL signals; WR and IOSEL signals of a
working circuit are shown in Figure 5.11.

When the Z80 asserts the WR signal, the port address 07H must be on the address
bus A7-A0, and the output of the NAND gate must be low. Similarly, the IOWR must be
low and the IOSEL must be high. Now if we check the data bus in relation to WR signal,
one line at a time, we must read the data byte 97H.
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FIGURE 5.11
Timing Signals of Diagnostic Routine

SOME QUESTIONS AND ANSWERS
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During the discussion of interfacing I/O devices, we focused on the basic concepts and
avoided some details in order to simplify the presentation. We will now attempt to answer
some of those questions.

1. What are the other 1/O instructions in the Z80 instruction set, and how do they differ
from the 1/O instructions discussed here?

The Z80 instruction set includes six output instructions of which we discussed only
one. The remaining five instructions perform various types of output functions: for exam-
ple, output a byte from any of the registers or from a memory location, or output a block of
memory. In these instructions, register C is used to specify the port address and register B
can be used as a counter.

2. What are the contents of the high-order bus (A;5—Ag) during the Mj cycle of the
IN/OUT instructions?

The contents of the high-order bus during the Ms cycle of the I/O instructions,
illustrated in Sections 5.1 and 5.3, are generally irrelevant to the interfacing of 1/O
devices. For the I/O instructions discussed, the contents of the accumulator are placed on
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the A;s—Ag bus. However, in other I/O instructions where the contents of register C are
used to specify a port address, the contents of register B are placed on the high-order
bus.

3. Why is one Wait state automatically inserted when an 110 instruction is executed?

When an I/O instruction is being executed, the control signal IORQ is asserted
during T, of the M; cycle. This does not leave sufficient time for the Z80 to sample the
WAIT line. Therefore, a slow-responding I/O device would not be able to decode its
address and activate the WAIT line if necessary. Adding one Wait cycle allows the device
to activate the WAIT signal for additional Wait states.

4. In a memory-mapped 110, what is the reason for not automatically inserting a Wait
state?

In the Memory Read/Write cycles, the MREQ is asserted during T,; therefore, there
is sufficient time to sample the WAIT line during T, state.

5. In a memory-mapped /O, how does the microprocessor differentiate between I/0 and
memory, and can an 1/O device have the same address as a memory register?

In the memory-mapped /O, the microprocessor cannot differentiate between an I/O
device and memory; it treats an I/O device as if it is memory. Therefore, an I/O device and
memory register cannot have the same address; the entire memory map (64K) of the
system has to be shared between memory and I/O.

6. Why is a 16-bit address (data) stored in memory in the reversed order—the low-order
byte first, followed by the high-order byte?

In the Z80 microprocessor, the instruction decoder and the associated microprogram
are designed to recognize the second byte as the low-order byte in a 3-byte instruction.

SUMMARY

In this chapter, we have examined the machine cycles of the OUT and IN instructions
and derived the basic concepts for interfacing peripheral-mapped I/Os. Similarly, we
examined the machine cycles of memory-related data transfer instructions and derived
the basic concepts for interfacing memory-mapped I/Os. These concepts were illus-
trated with three examples of interfacing 1/0 devices and one example of interfacing
an analog signal. The interfacing concepts can be summarized as follows.

Peripheral-Mapped /O

0O The OUT is a 2-byte instruction and copies (transfers or sends) data from the accu-
mulator to the addressed port.
00 When the Z80 executes the OUT instruction, in the third machine cycle it places the
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output port address on the low-order bus, places data on the data bus, and asserts
the control signals IORQ and WR.

O A latch is generally used to interface output devices.

O The IN instruction is a two-byte instruction and copies (transfers or reads) data from
an input port and places the data into the accumulator.

0 When the Z80 executes the IN instruction, in the third machine cycle it places the
input port address on the low-order bus, asserts the control signals IORQ and RD,
and transfers data from the port to the accumulator.

O A tri-state buffer is generally used to interface input devices.

0 To interface an output or an input device, the low-order address bus needs to be de-
coded to generate the device address pulse, which must be combined with control
signals IORQ and RD (or WR) to select the device.

Memory-Mapped /O

O Memory-related instructions are used to transfer data.

O To interface I/O devices, the entire bus must be decoded to generate the device ad-
dress pulse, which must be combined with the control signals MREQ and WR or
RD to generate the /O select pulse. Data are transferred by using this pulse to en-
able the I/O device.

ASSIGNMENTS

1. Explain why the number of output ports in peripheral-mapped /O is restricted to
256 ports?
2. In peripheral-mapped I/O, can an input port and an output port have the same
port address?
3. If an output and input port can have the same 8-bit address, how does the Z80
differentiate between the ports?
4. Specify the two control signals required to latch data in an output port.
5. Specify the type of pulse required to latch data in the 7475.
6. Are data latched in the 7475 at the leading edge, during the level, or at the trail-
ing edge of the enable (E) signal?
7. If the control signals WR and IORQ are asserted at the same time, can data be
latched using only the control signal WR?
8. If the answer to the previous question is yes, what are potential problems with
the interfacing circuit?
9. In Figure 5.4, explain why the LED cathodes rather than anodes are connected to
the latch.
10. Specify the control signals required to enable an input port.
11. Explain why a latch is used for an output port, but a tri-state buffer can be used
for an input port.
12.  What are the control signals necessary in memory-mapped 1/O?
13. Can the microprocessor differentiate whether it is reading from a memory-
mapped input port or from memory?
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Schematic for Assignments 15-16
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In Figure 5.10, connect the output of the comparator to data line D; and also

drive the transistor with bit D;. Make the necessary changes in the instructions.

Identify the port address in Figure 5.12. .
In Figure 5.12, if OE is connected directly to the WR signal and the output of

the decoder is connected to the latch enable (through an inverter), can you dis-
play a byte at the output port? Explain your answer.
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Schematic for Assignments 17-18

In Figure 5.13, determine whether it is the memory-mapped or the peripheral-

In Figure 5.13, what is the port address if all the ‘‘don’t care’’ address lines are
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Schematic for Assignments 19-20
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26.

In Figure 5.14, are ports A and B input or output ports?

In Figure 5.14, what are the addresses of ports A and B?

In Figure 5.15, identify two output lines of decoder #2 that can be used as con-
trol signals and explain their functions. Explain why other output lines cannot be
used as control signals.

In Figure 5.15, specify the /O addresses.

In Figure 5.16, the decoder 74LS155 and an 8-input NAND gate are used to de-
code the address bus and generate the control signals. The decoder has two input
lines A and Ao and four enable lines (pins 1, 2, 14, and 15). When pins 14 and
15 (active low) are enabled, the four output lines of the ‘‘b”’ group decode the
input signal, and when pins 1 (active high) and 2 (active low) are enabled, the
four output lines of ‘‘a’” group decode the input signals. Identify the addresses
that can assert the output lines of the decoder and specify their I/O functions.
Sketch the waveforms of the M, cycles in the diagnostic routine (Section 5.8).
Write a similar diagnostic routine to test the circuit in Figure 5.6.

Is there a WR pulse in your diagnostic routine of 25? If the answer is no, what
is the unique identifiable signal that can be used to sync the scope?
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Schematic for Assignments 21-22
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CHAPTER 6
Introduction to Z80 Assembly Language
Programming

CHAPTER 7
Software Development Systems and
Assemblers

CHAPTER 8
Introduction to Z80 Instructions and
Programming Techniques

CHAPTER 9
Logic and Bit Manipulation Instructions

CHAPTER 10
Stack and Subroutines

CHAPTER 11
Application Programs and Software Design

Part II of this book is an introduction to Z80 assem-
bly language programming. It explains commonly
used instructions, elementary programming tech-
niques and their applications, and the modular
approach to software design.

The content is presented in a format similar to
one for learning a foreign language. One approach to
learning a foreign language is to begin with a few
words that can form simple, meaningful, and inter-
active sentences. After learning a few sentences, one
begins writing paragraphs that can convey ideas in a
coherent fashion; then, by sequencing a few para-
graphs, one can compose a letter. Chapters 6 to 11
are arranged in similar fashion—from simple
instructions to applications.

Chapter 6 provides an overview of the Z80
instruction set and its capability, and Chapter 7
presents software development systems and Z80
assemblers. Chapters 8 and 9 are concerned primar-
ily with the Z80 instructions that occur most fre-
quently. The instructions are not introduced accord-
ing to the six groups as classified in Chapter 6;
instead, a few instructions that can perform simple
tasks are selected from each group. Chapter 8

o

Assembly
Language
Programming:
The Z80
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includes the discussion of instructions from three
groups—data copy, arithmetic and branch—and
their various applications. Chapter 9 introduces logic
and bit manipulation instructions and their applica-
tions. Chapter 10 introduces the concepts of subrou-
tine and stack, which provide flexibility and variety
for program design. Chapter 11 synthesizes the pro-
gramming concepts presented in earlier chapters by
illustrating application programs and demonstrates
the modular approach to software design.

PREREQUISITES
The reader is expected to know the following
topics:

0 The Z80 architecture, especially the programming
registers.

O The concepts related to memory and 1/Os.

O Logic operations, and binary and hexadecimal
arithmetic.



Introduction to Z80
Assembly
Language
Programming

An assembly language program is a set of instruc-
tions, written in the mnemonics of a given micropro-
cessor, and in a sequence appropriate to a specified
task. To write such programs, we should be familiar
with the capabilities of the microprocessor and its
instruction set. This chapter provides such an over-
view of the Z80 microprocessor.

The Z80 instruction set is classified into six
categories, and each category is explained with
examples. The chapter also discusses the instruction
format and various addressing modes. Writing,
assembling, and executing a program are illustrated
by a simple problem of adding two Hex numbers.
The flowcharting technique and symbols are dis-
cussed in the context of the illustrative program. The
chapter concludes with a list of selected Z80 instruc-
tions.

OBJECTIVES

O Explain the terms operation code (opcode) and
operand, and illustrate these terms by writing
instructions.

O Classify the instructions in terms of their word
size and specify the number of memory registers
required to store the instructions in memory.

O List the six categories of the Z80 instruction
set.

Define and explain the term addressing mode.
Write logical steps needed to solve a simple pro-
gramming problem.

Draw a flowchart from the logical steps of a
given programming problem.

Write mnemonics from the flowchart and convert
the mnemonics into Hex code for a given pro-
gramming problem.
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OVERVIEW: Z80 INSTRUCTION SET

The instruction set of a microprocessor determines the capability of its operations, the
power of its data manipulation, and the ease of programming it. For example, the Z80
instruction set includes an instruction that can copy contents from one block of memory
locations to another. For most other 8-bit microprocessors, the programmer needs to write
a program to perform the same function. Although it is necessary to have an overall view
of the instruction set, our intent here is merely to acquaint you with the overall operations
and capability of the Z80 microprocessor. As you progress through the chapters of Part II,
you will be exposed to various instructions in more detail along with their applica-
tions.

The Z80 microprocessor has 158 instruction types; it includes all the instructions of
the Intel 8080 microprocessor and all but two of the 8085. As discussed in Chapter 1, each
instruction has two parts: one is the task to be performed (such as Load, Add, and Jump),
called the operation code (opcode); and the second identifies the data to be operated on,
called the operand. First, we will examine various formats of these instructions in terms of
number of bytes and then their classification according to their function.

6.11 Instruction Format

An instruction is a command to the microprocessor to perform a given task on specified
data. The size of Z80 instructions ranges from one to four bytes; thus, the number of
memory registers (locations) required to write (or store) them varies. For example, to write
a 3-byte instruction into memory requires three memory locations. Most opcodes (opera-
tion codes) are specified in one byte; however, some specialized opcodes require two
bytes. The operand (or data) can be specified in the following ways: 8-bit data, 16-bit data,
registers, register pairs, and memory addresses. The Z80 instruction set can be classified
into four groups according to the length of an instruction: 1-byte to 4-byte instructions.
Because the Z80 is an 8-bit microprocessor, the terms ‘‘byte’’ and ‘‘word’’ are used
synonymously.

1-BYTE INSTRUCTIONS
In a 1-byte instruction, the opcode and the operand are included in the same byte as shown
in the following examples.

Task Opcode Operand Binary Code

Copy the contents of register LD A, B 01 111 000 (78H)
B into the accumulator A.

Add the contents of register ADD A, B 10000 000 (80H)
B to the contents of A.

These are 1-byte instructions performing two different tasks. In the first instruction,
the opcode LD is specified by the first two bits (01) and the operand registers A and B are
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specified by the remaining six bits. (The accumulator A is represented by 111 and register
B by 000.) In the second instruction, the ADD is a 5-bit (10000) opcode, and the operand
B is specified by the remaining three bits (000). These bits are associated with the internal
microoperations of the microprocessor.

2-BYTE INSTRUCTIONS
In a 2-byte instruction, the first byte specifies the opcode and the second byte specifies the
operand (with exceptions of some Z80 two-opcode instructions).

Task Opcode Operand Binary Code
Load register B with the LD B, 32H* 0000 0110 (06H) Byte 1
hexadecimal number 32. 0011 0010 (32H) Byte 2

(Opcode for LD B is 06H)

3-BYTE INSTUCTIONS

In a 3-byte instruction, the first byte specifies the opcode, and the following two bytes
specify the 16-bit address or data in a reversed order: low-order byte followed by the
high-order byte. For example:

Task Opcode Operand Binary Code
Copy data from memory LD A, (2080H) 0011 1010 (3AH) Byte 1
address 2080y into the 1000 0000 (80H) Byte2
accumulator. 0010 0000 (20H) Byte 3

4-BYTE INSTRUCTIONS

The descriptions given above for 2- and 3-byte instructions are valid for the instructions
compatible with the 8080 instructions. The Z80 instruction set, however, includes numer-
ous special-purpose instructions that are not compatible with the 8080 instruction set. An
8-bit microprocessor can have a maximum of 256 bit combinations; thus its instruction set
is limited to 256 operation codes. The 8080 has already used 242 combinations for its 72
different instructions leaving only 14 combinations unused. However, the Z80 micropro-
cessor needs many more combinations to use its additional registers (two index registers,
alternate registers, interrupt vector, and refresh). This problem was resolved by designing
2-byte opcodes: unused opcodes combined with instruction opcodes. Z80 4-byte instruc-
tions are generally associated with index registers, as is the following example.

Task Opcode Operand Binary Code
Load index register IX LD IX, 2000H 1101 1101 (DDH) Byte 1
with 16-bit address 0010 0001 (21H) Byte 2
2000y. 0000 0000 (00OH) Byte 3

0010 0000 (20H) Byte 4

Now we can discuss various instructions according to their functional classification.

*In an instruction, hexadecimal number is shown as the number followed by capital H, and in the text, the
number is shown with the subscript 4.
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6.12 Z80 Instruction Set

The Z80 instruction set can be divided into six major categories as follows:

1. Data Copy (Transfer) or Load Operations
2. Arithmetic Operations

3. Logic Operations

4. Bit Manipulation

5. Branch Operations

6. Machine Control Operations.

DATA COPY OR LOAD OPERATIONS
Copying data is one of the major functions the microprocessor needs to perform. The Z80
has numerous instructions that copy data from one location, called source, to another
location, called destination, without modifying the contents of the source. In technical
manuals, this function is quite often referred to as data transfer. However, since the term
data transfer creates the impression that the contents of the source are destroyed, we prefer
the term data copy. In this text, we have also used the terms Load, Read, and Write, all of
which are data copy operations.

Figure 6.1 shows various categories of data copy operations. The Z80 has several
instructions associated with each category, each of which, with its subdivisions, is listed
below with examples of instructions.

Direct
ROM
Data

Microprocessor

Input l n I I I I Output
Devices \_/ Devices

[

y

R/W Stack
Memory Memory

FIGURE 6.1
Types of Data Copy Operations
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Data Copy Operations

1. From one register into another regis-
ter.

2. (a) Specific data byte into a register or
a memory location.

(b) Specific 16-bit data into a register
pair.

3. From a memory location into a register
or vice versa.

4. (a) From an input port into the accu-
mulator.

(b) From the accumulator into an out-
put port.

S. From microprocessor registers into
stack memory locations and vice
versa.

6. Exchange contents between registers.
(This is a slightly different operation
from data copy; this is a data
exchange.)

Examples

Copy the contents of register B into the
accumulator.

LD A, B; LD means Load

Load register B with the hexadecimal
number 32.

LD B, 32H

Load register pair HL. with hexadecimal
number 2050.

LD HL, 2050H
Copy data from memory location 2080y
into the accumulator.

LD A, (2080H)
Read data from input port 01y and copy
into the accumulator.

IN A, (01H)

Write (send) the contents of the accumula-
tor into port 07y. ‘

OUT (07H), A

Copy the contents of register pair BC into
defined stack memory locations.

PUSH BC

Exchange the contents of general purpose
registers (BC, DE, HL) with alternate reg-
isters.

EXX

General characteristics of these data copy instructions can be listed as follows:

1. In data copy operations, the contents of the source are copied into the destination
without affecting the contents of the source (except in Exchange instructions).

2. In an operand, the destination is specified first, followed by the source. For example, in
the instruction LD A, B the source is register B and the destination is the accumulator.
This may appear backward because the flow is generally assumed to be from left to

right.

3. The memory and I/O addresses are enclosed in parentheses.
4. In some instructions, operand is implicit (for example, EXX).
5

. These instructions do not affect flags.

ARITHMETIC OPERATIONS

The Z80 instruction set includes four types of arithmetic operations: addition, subtraction,
increment/decrement, and 1’s and 2’s complement. In 8-bit arithmetic operations, the
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accumulator is generally assumed to be one of the operands (with the exception of incre-
ment/decrement instructions).

O Addition. Any 8-bit number, or the contents of a register, or the contents of a memory
location can be added to the contents of the accumulator. The result of the addition is
stored in the accumulator, and the flags are affected by the result. No two other 8-bit
registers can be added directly; for example, the contents of register B cannot be added
directly to the contents of register C.

Examples: Add the contents of register B to the contents of the —> ADD A, B
accumulator.
Add the byte 97y to the contents of the accumula- — ADD A, 97H
tor.

O Subtraction. Any 8-bit number, or the contents of a register, or the contents of a
memory location can be subtracted from the contents of the accumulator. The subtrac-
tion is performed in 2’s complement, and the result is stored in the accumulator. The
result modifies the flags, and if the result is negative, it is expressed in 2’s complement.
The following mnemonics indicate that the accumulator is implicitly assumed as one of
the operands.

Examples: Subtract the contents of register C from the contents —> SUB C
of the accumulator.
Subtract the byte 47y from the contents of the accu- -> SUB 47H
mulator.

O Increment/Decrement. The 8-bit contents of a register (including the accumulator) or a
memory location can be incremented or decremented by 1. Similarly, the 16-bit con-
tents of a register pair (such as HL) can be incremented or decremented by 1. Unlike
Add and Subtract, these operations can be performed in any of the registers. The
instructions related to 8-bit contents affect flags (except Carry); on the other hand,
instructions related to 16-bit contents do not affect any flags.

Examples: Increment the contents of register B. -> INC B
Decrement the contents of register pair BC. — DEC BC

O 1’s and 2’s Complement. The contents of the accumulator can be complemented (1’s
or 2’s complement), and the result is stored in the accumulator. Some flags are affected
by the result. These instructions assume that the operand is the accumulator.

Examples: Complement the contents of the accumulator —> CPL
(this is equivalent to 1’s complement).
Subtract the contents of the accumulator from zero — NEG
(this is equivalent to 2’s complement).
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LOGIC OPERATIONS
The instructions related to logic operations can be divided into three groups: logic func-
tions (AND, OR, etc), bit rotations or shifts, and comparisons (less than, greater than, and
equal to) of data bytes.

O Logic Functions. Any 8-bit number, the contents of a register, or the contents of a
memory location can be ANDed, ORed, or Exclusive ORed with the contents of the
accumulator. The result is stored in the accumulator, and the flags are affected by the
result.

Examples: Logically AND the contents of register B with the — AND B
contents of the accumulator.
Exclusive OR the contents of register B with the —> XOR B
contents of the accumulator.

O Shift and Rotate. Each bit in the accumulator, in the registers, or in memory can be
shifted either left or right by one position.

Examples: Rotate the contents of the accumulator — RRA
right through Carry flag.
Rotate left the contents of register B. — RLC B

0 Compare. Any 8-bit number, the contents of a register, or memory can be compared
for equality, greater than, or less than with the contents of the accumulator. The result of
the comparison is indicated by appropriate flags.

Examples: Compare the contents of register B with the — CP B
contents of the accumulator.
Compare the data byte 97, with the contents — CP 97H
of the accumulator.

BIT MANIPULATION
The bit manipulation instructions can be classified into two groups: bit test and bit set/
reset.

O Bit Test—Any one of the eight bits in a register, accumulator, or memory can be
verified as 0 or 1, and the Z flag will be modified accordingly.

Example: Check bit D in register B. — BIT 7, B

O Bit Set/Reset—Any one of the eight bits in a register, accumulator, or memory can be
set or reset.

Examples: Set bit Ds in the accumulator. — SET 5, A
Reset bit D, in register B. — RES 2, B
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BRANCHING OPERATIONS
This group of instructions alters the sequence of program execution either conditionally or
unconditionally.

O Jump. The sequence of program execution can be altered either conditionally or uncon-
ditionally. When a conditional Jump instruction is used, the microprocessor checks the
specified flag, and if the condition is true, the execution sequence is altered; otherwise,
the next instruction is executed. The destination location to which the program should
be directed can be specified directly or relative to the contents of the program counter.
These instructions are critical to the decision making process in programming.

Examples: After an operation (such as an addition), — JP C, 2050H
if CY flag is set, jump to location 2050y.
If Zero flag is not set, jump forward —> JR NZ, OFH
by 15 locations.

O Call/Return. These instructions change the sequence of a program by calling a sub-
routine or returning from a subroutine. The conditional Call and Return instructions
check for appropriate flags.

Examples: Go to subroutine located at 2050y. — CALL 2050H
Go to Subroutine located at 2070y — CALL Z, 2070H
if Z flag is set.

O Restart. These instructions are used to change the program sequence to one of eight
restart locations on memory page 00. The instructions are generally used with inter-
rupts.

Example: Call location 0028y. — RST 28H

MACHINE CONTROL OPERATIONS
These instructions control microprocessor operations such as Halt and Interrupt.

Examples: Suspend execution of instruction. — HALT
Disable interrupts by resetting the — DI
Interrupt Enable flip-flops.

6.13 Review of Important Concepts

Our intent here is to give you an overall view of the instruction set and the capability of the
Z80 microprocessor. The Z80 has 158 instructions with 694 opcodes. These numbers can
be overwhelming and intimidating to a beginner. Fortunately, as you begin to use instruc-
tions, a logical pattern will begin to emerge. At this point, the important concepts to
remember are as follows:

1. Each instruction has two parts: opcode and operand. The opcode specifies the task, and
the operand specifies either data or where data are located.
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2. Instructions can be classified into four groups according to their word length: one to
four bytes.

3. In an instruction, when the data source and the destination are explicitly specified, the
destination is shown first and the source second.

4. When an operand is a 16-bit address (or data), it is stored in memory in a reversed
order: the low-order byte first, followed by the high-order byte.

5. Instructions are stored in memory in binary format; the microprocessor neither reads
nor understands mnemonics or hexadecimal numbers.

6. The number of memory locations required to store an instruction is determined by the
word length. For example, a 3-byte instruction would require three memory loca-
tions.

ADDRESSING MODES
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0.2

The addressing mode is a way of specifying an operand or pointing to a data location. The
Z80 microprocessor has ten addressing modes, as shown in Table 6.1. The first three are
explained here as illustrations, and the others will be explained in later chapters.

In Section 6.12, we listed various categories of data copy operations. Data can be
loaded directly into registers (or memory) or can be copied from registers and memory,
including /O ports. Here are the addressing modes of these data copy operations.

Addressing
Modes Examples

1. Immediate In this mode, the byte following the opcode is the operand.
Example: LD A, 32H -»> Load 32y into the accumulator
3E Opcode
32 Operand

2. Immediate  In this mode, two bytes following the opcode constitute the operand; the
Extended second byte is low-order and the third byte is high-order.

Example: LD HL, 2050H — Load 2050y into the HL pair.
21 Opcode
50 Operand: Low-order
20 Operand: High-order

3. Register In this mode, a data byte is copied from one register to another register,
and both registers are spcified in the instruction.

Example: LD A, B — Copy the contents of register B into A.

At this point, you are not familiar with the instructions set; therefore, you should
avoid the details of the addressing modes given in Table 6.1. As we begin to use various



TABLE 6.1

780 Addressing Modes Explanation Example
1. Immediate : The byte following the opcode is the operand. This mode is used to
load 8-bit data into a register.
Load 97y into register B LD B, 97H
2. Immediate : The two bytes following the opcode are the operands. This mode is
Extended used to load 16-bit data or address into a register pair.
Load 8045y into register pair BC LD BC, 8045H
3. Register The operand register is included as a part of the opcode. This mode is
used to copy data from one Z80 register into another register.
Copy data from register A into B LDB, A
4. Implied This refers to operations in which the opcode implies one or more Z80
registers as containing the operands. For example, instructions for logic
operations imply that the accumulator is one of the operands and that
the result is stored in the accumulator.
Logically AND register B with A AND B
5. Register This mode is used to copy data between the MPU and memory; the 16-
Indirect bit contents in a register pair are used as a memory pointer.
Copy the contents of memory location 2060y into register B. Register LD, B, (HL)
HL contains the address 2060y.
6. Extended The two bytes following the opcode specify the jump location.
Jump to location 2080y. JP 2080H.
7. Relative In this mode, the second byte specifies the displacement value in a
signed 2’s complement for a jump location.
Jump forward 20 locations from the address of the next instruction. JR 14H
8. Indexed In this mode, the byte following the opcode specifies a displacement
value that is added to one of the index registers to form a memory
pointer.
The index register IX contains 2060y; increment the contents of memo- INC (IX + 10H)
ry location 2070y.
9. Bit This mode is used for bit operation (manipulation). In this mode, in-
struction specifies a bit from a register or a memory location using one
of the three addressing modes (register, register indirect, or indexed).
Set bit D5 in register B. SET 7, B
10. Page Zero : The instruction set includes eight restart (one-byte call) instructions on
memory page zero. In this mode, the memory location can be specified
by using the low-order byte, and the high-order byte is assumed to be
004.
Call restart memory location 0028. RST 28H
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instructions in following chapters, we will discuss the appropriate addressing modes. As
you become more familiar with the instruction set, you will be able to choose an appro-
priate addressing mode for a given task.

HOW TO WRITE, ASSEMBLE AND EXECUTE A
SIMPLE ASSEMBLY LANGUAGE PROGRAM
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6.3

An assembly language program is a sequence of instructions written in mnemonics to
perform a specific task. These instructions are selected from the instruction set of the
microprocessor being used. To write a program, we need to divide a given problem into
small steps and translate these steps into the operations the Z80 can perform. For example,
the Z80 does not have an instruction that can multiply two binary numbers, but it can add.
Therefore, the multiplication problem can be written as a series of additions.

After writing the instructions in mnemonics, you should translate them into binary
machine code; this process of translation is called assembling the code. Quite often, this
process involves intermediate steps, such as translating mnemonics into Hex code and then
into binary code. The code assembly can be done manually, as described in this chapter, or
using an assembler (a program that translates mnemonics into machine code), as described
in the next chapter.

To execute a program, the binary code should be entered and stored in the R/'W
memory of a microcomputer so that the microprocessor can read and execute the binary
instructions written in memory. In a single-board microcomputer the instructions are,
generally, entered using a Hex keyboard. This is one of the reasons why we translate
mnemonics into Hex code as an intermediate step rather than into binary code directly.
When the Hex code is entered, the keyboard program, residing in the microcomputer
system, translates the Hex code into binary code. The steps required to write, assemble,
and execute a program are illustrated in the next section.

6.31 Ilustrative Program: Adding Two Hexadecimal Numbers

PROBLEM STATEMENT
Write instuctions to load the two hexadecimal numbers 32y and A2y into registers B and C
respectively. Add the numbers, and display the sum at the LED output port PORTI.

PROBLEM ANALYSIS

Even though this is a simple problem, it is necessary to divide the problem into small steps
in order to examine the process of writing programs. The wording of the problem provides
sufficient clues for the necessary steps. They are as follows:

1. Load the numbers into the registers.
2. Add the numbers.
3. Display the sum at the output port PORTI.
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FLOWCHART

The steps listed in the problem analysis and the sequence can be represented in a block
diagram, called a flowchart. Figure 6.2 shows such a flowchart representing those steps.
This is a simple flowchart, and the steps are self-explanatory. We will discuss flowchart-
ing in the next section.

ASSEMBLY LANGUAGE PROGRAM

To write an assembly language program, we need to translate the blocks shown in the
flowchart into Z80 operations and then into mnemonics. By examining the blocks, we can
classify them into three types of Z80 operations: Blocks 1 and 3 are copy operations;
Block 2 is an arithmetic operation; and Block 4 is a machine control operation. The
translation of each block into mnemonics with comments is shown below.

Block 1: LD B, 32H ;Load register B with 32H.
LD C, A2H ;Load register C with A2H.
LD A, C ;Copy contents of C into accumulator to perform addi-
tion. B and C cannot be added directly.
Block 2: ADD A, B ;Add two bytes and save the sum in A.
Block 3: OUT (01H), A ;Display accumulator contents at port O1H.
Block 4: HALT ;End

FROM ASSEMBLY LANGUAGE TO HEX CODE
To convert the mnemonics into Hex code, we need to look up the code in the Z80 instruc-
tion set; this is called either manual or hand assembly. The Hex code is as follows:

FIGURE 6.2
Start
Flowchart for Adding Two Numbers CD

Load |
Hex
Numbers

l

2
Add
Numbers

!

. 3
Display
Sum
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Mnemonics Hex Code

LD B, 32H 06 2-byte instruction
32

LD C, A2H OE 2-byte instruction
A2

LD A, C 79 1-byte instruction

ADD A, B 80 1-byte instruction

OUT (01H), A D3 2-byte instruction
01

HALT 76 1-byte instruction

STORING IN MEMORY AND CONVERTING FROM HEX CODE
TO BINARY CODE

To store the program in R/W memory of a single-board microcomputer and display the
output, we need to know the memory map and the output port address. Let us assume that
R/W memory ranges from 2000y to 20FFy, and the system has an LED output port with
the address O1y. To enter the program, the following steps are necessary:

1. Reset the system by pushing the RESET key.

2. Using Hex keys, enter the first memory address at which the program should be stored.
Let us assume it is 20004.

3. Enter each machine code by pushing Hex keys. For example, to enter the first machine
code push 0, 6, and STORE keys. (The STORE key may be labelled differently in
different systems.) When you push the STORE key, the program will store the machine
code in memory location 2000y and upgrade the memory address to 2001y.

4. Repeat Step 3 until the last machine code 76y.

5. Reset the system.

Now the question is: How does the Hex code get converted into binary code? The
answer lies with the Monitor program stored in the Read-Only Memory (or EPROM) of
the microcomputer system. An important function of the Monitor program is to check the
keys and convert Hex code into binary code. The entire process of manual assembly is
shown in Figure 6.3.

To
F—> Memory
for Storage

Flowchart 280‘ Manual . Hex | Monitor | Binary
Mnemonics | Lookup | Code | Program Code

FIGURE 6.3
Assembling the Code
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In this illustrative example, the program will be stored in memory as shown:

Memory

Mnemonics Hex Code Memory Contents Address
LD B, 32H 06 00000110 2000
32 00110010 2001
LD C, A2H OE 00001110 2002
A2 10100010 2003

LD A, C 79 01111001 2004
ADD A, B 80 10000000 2005
OUT (01H), A D3 11010011 2006
01 00000001 2007
HALT 76 01110110 2008

This program has nine machine codes and will require nine memory locations to
store the program. The critical concept to be emphasized here is that the microprocessor
can understand and execute only the binary instructions (or data); everything else (mne-
monics, Hex code, comments) are for the convenience of those who write and use the
assembly language programs.

EXECUTING THE PROGRAM

To execute the program, we need to tell the microprocessor where the program begins by
entering the memory address 2000y. Then, we can push the Execute key (or the key with a
similar label) to begin the execution. As soon as the Execute function key is pushed, Z80
loads 2000y into the program counter, and the program control is transferred from the

- Monitor program to our program.

The microprocessor begins to read one machine code at a time, and when it fetches
the complete instruction, it executes that instruction. For example, it will fetch the
machine codes stored in memory locations 2000y and 2001y and execute the instruction
LD B, 32H; thus it will load 32 into register B. It continues to execute instructions until it
fetches the HALT instruction.

6.32 Program Documentation Or Writing Format

‘Program documentation is an important aspect of writing programs. The documentation

should be able to communicate what the program does and the logic underlying the pro-
gram, so that it can be debugged and modified if necessary. For our illustrative program, a
writing format based on assembler files (discussed in the next chapter) is shown here.
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Memory Hex Instruction
Address Code Label (Opcode) (Operand) Comments
2000 06 START: LD B, 32H ; Load first byte
2001 32
2002 OE LD C, A2H  ; Load second byte to be added
2003 A2
2004 79 LD A, C ; Copy one of the bytes into A
2005 80 ADD A, B ; Add two bytes
2006 D3 ouT (0IH), A ; Display the result
2007 01
2008 76 HALT ; End

This writing format has five columns: Memory Address, Hex Code, Label, Instruc-
tion (Opcode and Operand), and Comments. Each column is described below in the
context of a single-board computer.

Memory Addresses These are 16-bit addresses of the system’s R/W memory in which
the binary code of the user program is stored. In the illustration, we assumed that the R/W
memory in our system begins at the address 2000y, and we chose to store the program
starting at the location 2000y; we could have chosen any other available memory block to
store our program.

Hex Codes These are the hexadecimal codes of the Z80 mnemonics we looked up in the
instruction set; they were entered in memory using the Hex keyboard of the single-board
microcomputer system. The key monitor program of the system translates these Hex codes
and stores the binary equivalents in the proper memory locations.

Labels They are used to identify a memory location. The program has one label:
START. This label is used for documentation; it indicates the beginning of the program.
The labels are used to identify memory locations and will be especially useful for Jump
instructions when we use assemblers to write programs (discussed in the next chapter).

Instructions  These are the Z80 mnemonics representing the microprocessor operations.
Each instruction is divided into two parts: opcode and operand.

Comments The comments are written as a part of the proper documentation of a pro-
gram to explain or elaborate the purpose of the instruction used. They thus play a critical
role in the user’s understanding of the logic behind a program. Because the illustrative
program is very simple, the comments shown are either redundant or trivial, but in general
comments should not merely describe the meaning of mnemonics.

FLOWCHARTING

143

0.4

A flowchart is a graphic representation of the logic and sequence of tasks to be performed.
A flowchart should assist in clarifying one’s thinking process and communicate the pro-
grammer’s approach and logic in writing the program.
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Symbol Meaning

@ Oval: Indicates the beginning
or end of a program.

Arrow: Indicates the direction
of the program execution.

Rectangle: Represents a process or
an operation.

Diamond: Represents a decision-making
block.

Double-sided
Rectangle: Represents a predefined
process such as a subroutine.

Circle with
an Arrow: Represents continuation
(an entry or exit) to

a different page.

FIGURE 6.4
Flowcharting Symbols

Flowcharting is an art; how much detail it should include requires a subjective
decision. At one level, the flowchart includes only the functions to be performed without
any reference to a particular microprocessor; at another level the functions of registers
being used are specified in detail. However, it should not duplicate the instructions in the
program in a graphic format; this would defeat the whole purpose of drawing the flow-
chart. It should simply represent a logical approach and sequence of steps in solving the
problem.

The six symbols commonly used in flowcharting are shown in Figure 6.4. We have
already used three symbols in Figure 6.2. The fourth symbol, shown by the diamond
shape, represents the decision-making block. It is used when data conditions need to be
checked and the program sequence has to be altered. This symbol is illustrated in Figure
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FIGURE 6.5
Flowchart: Adding Two Hex
Numbers and Checking Carry

Load
Step 1 Numbers
in Registers

Y

Add
Numbers

Step 2

Step 3

Yes

Get Ready
Step 4 to Display
01H

Step 5 Display

Step 6 End

6.5. The fifth symbol, a double-sided rectangle, represents a predetermined process such
as a subroutine (discussed in Chapter 10). The last symbol, a circle with an arrow, is used
to show continuation of the flowchart to a different column or to a different page.

Draw a flowchart to represent the following problem. Load two Hex bytes into Z80 Example
registers and add the bytes. If the sum is larger than 8 bits, display 01y as the overload 6.1
condition at port PORT7; otherwise, display the sum at the output port.

The problem can be divided into the following steps. Solution

Load bytes into Z80 registers.

Add the bytes.

Check the sum.

If the sum > FFy, display Oly at the output port.

If the sum < FFy, display the sum at the outport port.

I
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The steps listed in Example 6.1 and the sequence can be represented by the flowchart
shown in Figure 6.5. The first two blocks can be easily understood. The third block,
shown by the diamond shape, is a decision-making block. In this block the result is
checked by examining the CY flag, and the program execution is altered accordingly. If
the CY flag is set, the result is larger than FFy and the program execution goes to the next
block. It loads 01y and displays it at the output port. If the answer to the question in the
decision block is “‘No,’’ the sum is less than FF. The program sequence is then altered; it
bypasses Block 4 and displays the sum at the output port.

An interesting question is: Can we interchange the answers “‘Yes’’ and ““No’” at the
decision-making block? That is, can the program sequence be changed if CY is set? This is
given as a problem at the end of the chapter; you may find that the resulting flowchart will
have two end points.

6. 5 LIST OF SELECTED Z80 INSTRUCTIONS

The Z80 instruction set includes 158 instructions resulting in 694 machine codes. The
following list is a representative sample of each group described in Section 6.1. The
purpose of the list is to show you the overall capability of the Z80 and some logical
patterns in its instruction. You should not study these instructions in detail; instead, you
should search for logical patterns. Once you recognize logical patterns, you will be able to
recognize the function of an instruction even if you have not seen it before.

Most instructions are compatible with the 8080 instruction set, with a few excep-
tions. Notations used in the description of the instructions include

r = Z80 8-bit Register rp = Register Pair

r, = Register Source rx = Index Registers
rq = Register Destination d = Displacement Byte
m = Memory b = Bit

( ) = contents of 16-bit Memory Address
or 8-bit I/O Address

1. Data Copy (Load) Instructions
Mnemonics Bytes Tasks

Data (8 bits and 16 bits) copy or load in registers

LD rg, 1g 1 Copy data from source register 1, into destination register ry.
LD r, 8-bit 2 Load 8-bit into a register.

LD rp, 16-bit 3 Load 16-bit into register pair.

LD rx, 16-bit 4 Load 16-bit data into index register.
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Data copy between registers and memory

LD A, (16-bit)
LD (16-bit), A
LD A, (rp)
LD (1p), A
LD r, (HL)
LD (HL), r
LDr, (rx + d)

LD (rx +d), r

2. Arithmetic Instructions*

ADD A, r
ADD A, 8-bit
ADD A, (HL)

SUBr
SUB 8-bit
SUB (HL)

INCr
INC (HL)

INC p
DEC r
DEC (HL)

DEC 1p

3

[a—

1

Load accumulator from memory; the address is specified by 16-bit op-
erand.

Load memory from accumulator; the memory address is specified by
16-bit operand.

Load accumulator from memory; the memory address is specified by
contents of register pair.

Load memory from accumulator; the memory address is given by the
contents of register pair.

Load register from memory; the address is specified by 16-bit contents
in HL.

Load memory from register; the address is specified by 16-bit contents
in HL.

Copy memory contents into register r; the memory address is obtained
by adding the contents of index register and the displacement byte d.

Copy register contents into memory address shown by index register
and the displacement (rx + d)

Add register contents to accumulator.
Add 8-bit data to accumulator.

Add memory contents to accumulator; the memory address is specified
by the contents in HL.

Subtract contents of register from accumulator.
Subtract 8-bit data from accumulator.

Subtract memory contents from accumulator; the memory address is
specified by the contents of HL.

Increment the contents of a register.

Increment the contents of memory; the memory address is specified by
the contents of HL.

Increment 16-bit contents in a register pair.
Decrement the contents of a register.

Decrement the contents of memory; the memory address is specified
by the contents of HL.

Decrement 16-bit contents in a register pair.

*Instructions used for 16-bit addition and subtraction are not shown here.




148

3. Logic Instructions®

ASSEMBLY LANGUAGE PROGRAMMING: THE Z80

AND r | Logically AND the contents of a register with the accumulator.

AND 8-bit 2 Logically AND 8-bit data with accumulator.

AND (HL) 1 Logically AND the contents of memory with accumulator; the me-
mory address is specified by the contents of HL.

CPr 1 Compare the contents of register with accumulator for less than, equal
to, or greater than.

CP 8-bit 1 Compare 8-bit data with accumulator for less than, equal to, or greater
than.

CP (HL) 1 Compare the contents of memory with accumulator for less than,
equal to, or greater than. The memory address is specified by the con-
tents of HL.

. Bit Rotation

RLCA 1 Rotate each bit in the accumulator to the left position.

RLA 1 Rotate each bit in the accumulator including the carry C to the left po-
sition.

RRCA 1 Rotate each bit in the accumulator to the right position.

RRA 1 Rotate each bit in the accumulator including the carry C to the right
position.

5. Branch Instructionst

JP 16-bit 3 Change the program sequence (Jump) to memory location specified by
the 16-bit address.

JP Z, 16-bit 3 Change the program sequence (Jump) to memory location specified by
the 16-bit address if the Zero (Z) flag is set.

JP NZ, 16-bit 3 Change the program sequence (Jump) to memory location specified by
the 16-bit address if the Zero (Z) flag is reset.

JP C, 16-bit 3 Change the program sequence (Jump) to memory location specified by
the 16-bit address if the Carry (C) flag is set.

JP NC, 16-bit 3 Change the program sequence (Jump) to memory location specified by
the 16-bit address if the Carry (C) flag is reset.

CALL 16-bit 3 Change the program sequence to the location of the subroutine.

RET 1 Return to the calling program after completing the subroutine se-

quence.

*The Z80 instruction set includes similar instructions for logically ORing and Exclusive ORing with mnemonics
OR and XOR respectively.

1The Z80 set also includes conditional Call and Return instructions.
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6. Machine Control Instructions

HALT 1
NOP 1

7. Bit Rotation*

RLCr
RL r
SLAT

8. Bit Manipulationt

BIT b, r 2
SET b, r
RES b, r 2

Suspend execution and wait.

Do not perform any operation.

Rotate each bit in register r to the left.
Rotate each bit in register r to the left, including Carry flag.
Shift each bit in register r to the left.

Test bit bin register r, affecting the Z flag.
Set bit b in register r. (‘‘b”’ represents bit position 0 to 7)

Reset bit b in register r.

9. 780 Special (Conditional) Repetitive Instructions. The Z80 instruction set in-
cludes several instructions that are automatically repeated until a specified register
becomes zero. These instructions are quite efficient in dealing with block transfer
or counter applications. Some of these instructions are as follows:

CPDR 2
DINZ d 2
INDR 2
OTDR 2

Compare memory contents specified by HL with the accumulator. In-
crement HL, decrement BC, and repeat until BC = 0.
or A = contents of memory specified by HL.

Decrement B, and if B #0, jump to memory address obtained by add-
ing displacement byte to the program counter.

Read input port indicated by the C register, and store the byte in
memory specified by HL register. Decrement B and HL, and continue
until B = 0.

Output the contents of memory specified by HL to port indicated by
the C register. Decrement B and HL, and continue until B = 0.

SUMMARY

This chapter has provided an overview of the Z80 instruction set and the capability of
the Z80 microprocessor. The important concepts and topics discussed in this chapter

can be summarized as follows:

*The Z80 set includes similar instructions to shift right as well as to rotate bits in any memory location.
FSimilarly, any bit in a memory location can be set or reset.
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The Z80 microprocessor operations are classified into six major groups: data copy
(load), arithmetic, logic, bit manipulation, branch and machine control.

An instruction has two parts: opcode (operation to be performed) and operand (data
to be operated on). The operand can be 8- or 16-bit data, an address, register, regis-
ter pair, or it can be implicit.

The method of specifying an operand is called the addressing mode.

The instruction set is classified into four groups according to the word size: 1-, 2-,
3-, and 4-byte instructions.

To write a simple assembly language program, the problem should be divided into
small steps in terms of microprocessor operations, and these steps should be trans-
lated into Z80 mnemonics. Then, the Hex code is assembled by looking up the code
in the instruction list; this is called either hand or manual assembly.

To enter a program in memory of a single-board microcomputer, Hex keys are used
to enter the code, which is converted into binary code by the Key Monitor program
of the system and stored in R/W memory. This binary code can then be read and
executed by the microprocessor.

ASSIGNMENTS

1. List the six types of operations the Z80 performs.

2. Define opcode and operand, and specify the opcode and the operand in the in-
struction LD A, B.

3. Explain the instruction LD A, B. Specify the data source and destination.

4. If the instruction LD A, B is stored in memory location 2005y, what are the
contents of the memory register?

5. Explain the instruction SUB H. List the operand implicit in the instruction.

6. Write mnemonics to load F8y into register C and show the Hex codes with the
memory address starting at 1800y.

7. Write logical steps to load the following three Hex numbers (2F, 47, and TA)
into Z80 registers B, C, and D, respectively. Add the numbers and save the sum
in register H.

8. Translate the steps in the previous question into Z80 assembly language.

9. Redraw the flowchart in Figure 6.5 by interchanging the answers of the decision
block. For example, the program sequence will be altered if the answer is
““Yes.”” (Hint: The flowchart can have two End statements.)

10. Draw a flowchart to represent the following problem. Load two numbers into

Z380 registers, and subtract the second number from the first number. If the result
generates a borrow, display FFy at the output port of the system; otherwise dis-
play the second number.
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Development
Systems and
Assemblers

A software development system is a computer that
enables the user to develop programs (software)
with the assistance of other programs. The develop-
ment process includes writing, modifying, testing,
and debugging of the user programs. In the previous
chapter, we discussed how to write a simple assem-
bly language program and translate its mnemonics
into Hex code manually. In this chapter, we will
develop assembly language programs with the help
of four other programs: Editor, Assembler, Linking
Loader, and Debugger. These programs enable the
user to write programs in mnemonics, translate mne-
monics into Hex and binary code, and debug the
code. All the activities of the computer—hardware
and software—are directed by another program,
called the operating system.

This chapter describes a microprocessor-based
software development system, its hardware, and
related programs. It also describes such widely used
operating systems as CP/M and MS-DOS, and illus-
trates the use of the assembler to write assembly lan-
guage programs.
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OBJECTIVES O Explain the functions of these programs: Editor,
O Describe the components of a software develop- Assembler, Linking Loader, and Debugger.

ment system. O List the advantages of the assembler over manual
O List various types of floppy disks, and explain assembly.

how information is accessed from the disk. O List the assembler directives, and explain their
O Define the operating system of a microcomputer, functions.

and explain its function. O Write assembly language programs with appropri-

/.1

ate directives.

MICROPROCESSOR-BASED SOFTWARE
DEVELOPMENT SYSTEMS

A software development system is simply a computer that enables the user to write,
modify, debug, and test programs. In a microprocessor-based development system, a
microcomputer is used to develop software for a particular microprocessor. Generally, the
microcomputer has a large R/W memory (64K or higher), disk storage, and a video
terminal with a typewriter-like keyboard. The keyboard enables the user to write programs
in alphanumeric (alphabet and number) characters, which are translated into ASCII
(American Standard Code for Information Interchange) binary code; the keyboard (or the
terminal) is known as ASCII keyboard (or terminal). The system includes programs that
enable the user to develop software in either assembly language or high-level languages.
This text will focus on developing programs in the Z80 assembly language.

Conceptually, this type of microcomputer is similar to a single-board microcomput-
er except that it has additional features that can assist in developing large programs.
Programs are accessed and stored under a file name (title), and they are written by using
such other programs as text editors and assemblers. The system (I/Os, files, programs,
etc.) is managed by a program called the operating system. The various hardware and
software features of a typical software development system are described in the next
sections.

1.11 System Hardware and Storage Memory

Figure 7.1 shows a typical software development system; it includes an ASCII keyboard, a
CRT terminal, an MPU board with at least 64K R/W memory and disk controllers, and two
disk drives. The disk controller is an interfacing circuit through which the MPU can access
a disk and provide Read/Write control signals. The disk drives have Read/Write elements
that are responsible for reading and writing data on the disk. Three types of floppy disks
are in use: 8-inch, 5%4-inch, and 3Y4-inch; at present, systems with 5%4-inch disks seem to
be the most commonly used. A 5Y4-inch single-density disk can store about 90K bytes of
data; the storage capacity can be doubled by using double-density disks, and quadrupled
(to 360K) by using both sides of the disks. Recently, manufacturers have improved on
storage density, and now 5%s-inch high-density disks with 1.2 megabyte storage capacity
are available.
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FIGURE 7.1

A Typical Software Development
System; AT&T PC 6300 Plus
SOURCE: Photograph Courtesy of AT&T

o [ s fogn

FLOPPY DISK

A floppy disk—Figure 7.2 (a)—is made of a thin magnetic material (iron oxide) that can
store logic Os and 1s in the form of magnetic directions. The surface of the disk is divided
into a number of concentric tracks, each track divided into sectors, as shown in Figure
7.2(b). The large hole in the center of the disk is locked by the disk drive when it spins the
disk. The small hole shown in Figure 7.2(a) is known as the indexing hole. The disk drive
uses this hole as a reference to count the sectors. The oblong cutout, called the head slot, is
the reading/recording segment; this is the only segment of the surface that comes in contact
with the R/W head. At the edge of the disk, near the head slot, is a notch called the Write
Protect notch. In the 5V-inch disk, if this notch is covered, data cannot be written on the
disk; the disk is then ‘‘Write Protected.”’

Floppy disks are further classified as either soft-sectored or hard-sectored. The disk
shown in Figure 7.2(b) is a soft-sectored disk; it has one hole as a reference to the first
sector, and the other sectors are formatted by using software. In the hard-sectored disk,
now almost obsolete, each sector is identified with a separate hole.
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Manufacturer’s % H i
Label % /
Write é g
Center Protect
‘ Notch — —
Hole for Sectors
Disk Drive %
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Recording Slot
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o g\ ]
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FIGURE 7.2

(a) A Typical 5%-Inch Floppy Disk and (b) Its Sectors and Tracks

Each sector and track is assigned a binary addresss. The MPU can access any
information on the disk with the sector and the track addresses; however, the access is
semi-random. To go from one track to another, the access is random. Once the track is
found, the system waits for the index hole and then locates the sector serially by counting
the sectors. Once data bytes are located, they are transferred to the system’s R/W memory.
These data transfer functions between a floppy disk and the system are performed by the
disk controller and controlled by the operating system, also known as the Disk Operating
System (DOS), described in Section 7.12.

HARD DISK

Another type of storage memory used with computers is called a hard disk or Winchester
disk. The hard disk is similar to the floppy disk except that the magnetic material is coated
on a rigid aluminum base and enclosed in a sealed container. While it is highly precise and
reliable, the hard disk requires sophisticated controller circuitry; it is thus relatively expen-
sive. However, its storage capacity is quite large. Hard disks are available in various sizes;
3Y4-inch, 5Va-inch, 8-inch, and 14-inch. Storage capacity can range from several mega-
bytes to several gigabytes.
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1.12 Operating Systems and CP/M

The operating system of a computer is a group of programs that manages or oversees all the
operations of the computer. The computer transfers information constantly among such
peripherals as a floppy disk, printer, keyboard, and video monitor. It also stores user
programs under file names on a disk. (A file is defined as related instructions or records
stored as a single entity.) The operating system is responsible primarily for managing the
files on the disk and the communication between the computer and its peripherals. The
functional relationship between the operating system and the computer’s various subsys-
tems is shown in Figure 7.3.

Each computer has its own operating system. CP/M (Control Program/Monitor
for Microcomputers) is by far the most widely used operating system for the microcom-
puters designed around the Z80 and the 8085/8080 microprocessors. The CP/M design
is, for the most part, independent of the machine, so that microcomputer manufacturers
can adapt it to their own designs with minimum changes. To illustrate the operation of
a software development system, CP/M is briefly described here in reference to a system
with 64K R/W memory.

CP/M
This operating system is divided into three components: BIOS (Basic Input/Output Sys-
tem), BDOS (Basic Disk Operating System), and CCP (Console Command Processor).

BIOS This program consists of input/output routines; it manages data transfer between
the microprocessor and various peripherals. This section of CP/M is accessible to the user.
Each manufacturer writes a BIOS specifically to the hardware design in a particular sys-
tern.

BDOS This program directs the activities of the disk controller and manages the file
allocation on the disk. The BDOS program allocates memory space under a file name.

Operating
System
4
Input Micro- Output
Devices processor Devices
Primary | R/'WM Disks Secondary
Storage ROM Tapes Storage

FIGURE 7.3
Operating System and Its Functional Relationship with Various Components of a
Computer System
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CCP This program reads and interprets the CP/M commands from the keyboard. These
commands include such operations as listing the programs on the disk, copying, erasing,
and renaming a file. CCP also transfers the program control from CP/M to user or other
programs.

When CP/M is loaded into a system’s R/W memory, it occupies 6K to 12K of
memory at the highest available locations, as shown in Figure 7.4. In addition, the first
256 locations (from 0000 to 00FFy) are reserved for system parameters. The rest of the
R/W memory (approximately 52K to 58K) is available for the user. Once the operating
system is loaded into R/W memory, the user can write, assemble, test, and debug pro-
grams by using utility programs, which are described in the next section.

1.13 Tools for Developing Assembly Language Programs

The CP/M operating system includes programs called utility programs. These programs
can be classified in two categories: (1) file management utilities, and (2) program devel-
opment utilities. The file management utilities are programs that enable the user to perform
such functions as copying, printing, erasing, and renaming files. The program develop-
ment utilities enable the user to write, assemble, and test assembly language programs;
they include programs such as Editor, Assembler, Linking Loader, and Debugger.

EDITOR

The Editor is a program that allows the user to enter, modify, and store a group of
instructions or text under a file name. To write text, the user must call the Editor under
CP/M control. As soon as the Editor program is transferred from the disk to the system
memory, the program control is transferred from CP/M to the Editor program. The Editor

FIGURE 7.4 0000
CP/M Memory Map with 64K
R/W Memor System
Y Parameters | O0FF
0100
Transient
Program Approximately
Area 58K
(TPA)
A =
CCP

L Approximately

CP/M
BDOS 6K

BIOS

) - FFFFH
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has its own commands, with which the user can enter and modify text. Some Editor
programs such as “Word Star,” “Word Perfect,” and “Tele Write” are easy to use. At
the completion of writing a program, the exit command of the editor will save the
program on the disk under the file name, and will transfer the program control back
to CP/M. This file is known as a source file or a source program.

The Editor program is not concerned with whether one is writing a letter or an
assembly language program. If the source file is intended to be a program in the Z80
assembly language, the user should follow the syntax of the assembly language and the
rules of the assembler.

Z80 ASSEMBLER

Several Assemblers are available commercially as Z80 Assemblers. The following
description is accurate for the Microsoft M80 Assembler. The assembler is a program that
translates the source file into modules of the Z80 code and generates two files: one is called
the print (PRN) or listing file and the other is called the relocatable (REL) file. In addition
to translating mnemonics, the Assembler performs such functions as error checking and
memory allocations.

The print file includes the source file plus the memory addresses and the Hex code of
each instruction. This file is used primarily for documentation and may look like the
hand-assembled file shown in the last chapter. The relocatable file is an intermediate file,
generated to create two more files: a Hex file and an object file, which is necessary to
combine different modules (or programs) and relocate the modules from one block of
memory to another. The Assembler is described in more detail in Section 7.2.

LINKING LOADER

The Linking Loader is a program that uses the REL file generated by the Assembler
to generate a binary code file called the COM file or object code; it can also generate
a Hex file. The COM file is the only file that can be executed by the microcomputer.
To execute the program, the COM file is called under CP/M control and executed. The
HEX file is used for debugging the code and transferring files from one system to
another. This transfer of files among different systems is called either downloading or
uploading of files.

DEBUGGER
The Debugger is a program that allows the user to test and debug the object file. The user
can employ this program to perform the following functions:

O Make changes in the object code.

O Examine and modify the contents of memory.

O Set breakpoints, execute a segment of the program, and display register contents after
the execution.

O Trace the execution of the specified segment of the program, and display the register
and memory contents after the execution of each instruction.

0 Disassemble a section of the program; for example, convert the object code into the
source code or mnemonics.
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In the M80 Assembler, translating mnemonics into binary code is a two-step
process: first, the source file is converted into the REL (Relocatable) file by the Assem-
bler program; then, the REL file is converted into the binary object (COM) file by the
Linking Loader program. This is called program assembly. Additional files, such as Hex
and PRN files, can be also generated using these programs. In addition, the Editor
generates the back-up (BAK) file. The BAK file is generated when the user calls the
source file for reediting; the BAK file is the copy of the previous file before the user
begins to reedit. The BAK file is generated as a precautionary measure, in the event
that the user may wish to go back to the previous file. At the completion of the assembly
process, the CP/M user will have the following files:

O Source File: This is the source file written by the user. Under CP/M, a filename can be
one to eight characters long with an extension of a maximum three characters. The
filename and the extension are separated by a dot. For example, the file name can be
DELAY1.ASM; the extension ASM suggests that it names an assembly language
file.

O REL File: This is a relocatable binary file generated by the assembler without any
specific reference to the user memory. This file is used to generate a COM file and
relocate the entire program for storage to specified memory locations.

O PRN File: This is the print file generated by the assembler program for documentation
purposes. It contains memory locations, Hex code, mnemonics, and comments.

0 HEX File: this is generated by the loader program and contains program code in hexa-
decimal notations. This file can be used for debugging the program and transferring files
from one system to another.

0 COM File: This is the executable file generated by the linking loader program, and it
contains binary code.

O BAK File: When the source file is called for reediting, the previous file is saved as the
BAK file.

1.14 MS-DOS Operating System

The CP/M operating system is designed for 8-bit microprocessors; however, recent disk-
based microcomputers, such as the IBM PC, XT, and AT, are designed around 16-bit
microprocessors. In these microcomputers, the MS-DOS (Microsoft Disk Operating Sys-
tem) is so widely used that it has become the industry standard. The MS-DOS is in many
ways similar to the CP/M, except that it is capable of handling 16-bit data words and large
size (1 Megabyte) system memory. Similarly, it is designed to handle disks with quad
(high) density disk format with memory capacity of 720K and 1,200K. The latest version
of MS-DOS is geared towards handling communication between multi-user systems.
The MS-DOS operating system, installed on IBM PCs, is divided into four compo-
nents: ROM-BIOS, IBMBIO, IBMDOS, and COMMAND; these are COM files. In a
typical 1Mbyte (1,024K-byte) system, the memory space is divided into 16 blocks from 0
to F, each being 64K memory; the Hex address ranges from 00000 to FFFFFy. Generally,
the lowest addresses in the 0 block are reserved for system software, the highest block F is



SOFTWARE DEVELOPMENT SYSTEMS AND ASSEMBLERS

used for ROM-BIOS, and approximately ten blocks (640K) are reserved as the user mem-
ory. The remaining blocks are used for such varied purposes as video display and BIOS
extensions.

ROM-BIOS This program is functionally similar to BIOS in the CP/M; it is called
ROM-BIOS because it is generally installed in Read-Only Memory. The primary function
of this program is to communicate with I/O devices when it receives commands from a
user’s program. The IBMBIO program is an extension of the ROM-BIOS; the IBMBIO
program allows modifications in the BIOS programs and additions of new peripherals.

IBMDOS This program directs the activities of the disk controller and also contains
DOS service routines; these service routines include such programs as DIR (Directory),
FORMAT (Formatting disk), and COPY (Copying files). These programs are also in-
cluded in CP/M, but they are generally stored on a disk, and are not part of the sys-
tem.

COMMAND This program reads and interprets the commands from the keyboard and
differentiates between the DOS services (such as COPY) and the utility programs such as
DEBUG.

In summary, the DOS operating system is conceptually similar to the CP/M oper-
ating system, but it is capable of handling large memory size, large word size, and many
more functions than the CP/M.

MS-DOS AND CROSS-ASSEMBLERS

The MS-DOS is an operating system designed primarily for 16-bit microprocessors. Now
the question is: Why are we discussing it in the context of an 8-bit microprocessor such as
the Z80? The answer lies with the widespread use of IBM PCs or their compatibles on
college campuses. A 16-bit microprocessor is not ideally suited for learning about micro-
processors; they are too complex for the control type applications. But we can use these
16-bit machines to develop (write) Z80 assembly language programs by using a program
called cross-assembler. This program translates Z80 mnemonics into appropriate Z80
machine codes. From the user’s point of view, it makes no difference whether he/she uses
a Z80-based system or any other system with a Z80 cross-assembler. After assembling a
program, the Hex file can be directly transferred to R/W memory of your Z80 single-board
microcomputer by using a download program. Thus, hardware related laboratory experi-
ments can be easily performed.

ASSEMBLERS
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1.2

The assembler, as defined before, is a program that translates assembly language mne-
monics or source code into binary executable code. Here, we are using the term assembler
to include all the utility programs (such as Assembler, Linker Loader) necessary for the
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assembly process. This translation process requires that the source program be written
strictly according to the specified syntax of the assembler. The assembly language source
program includes three types of statements:

1. The program statements in Z80 mnemonics, which are to be translated into binary
code.

2. Comments, which are reproduced as a part of the program documentation.

3. Directives to the assembler that specify such items as starting memory locations, label
definitions, and required memory spaces for data.

The first two types of statements have been used in the program of adding two Hex
numbers in the last chapter. The format of these statements as they appear in an assembly
language source program is identical to the format used here. The third type—directives—
and their functions will be described in Section 7.22.

71.21 Assembly Language Format

A typical assembly language programming statement is divided into four parts, called
fields: label, operation code (opcode), operand, and comments. These fields are separated
by delimiters for the CP/M assembler, as shown in Table 7.1.

TABLE 1.1

Delimiters Used in Assembler Delimiter Placement
Statements Colon After label
Space Between an opcode and an operand
Comma Between two operands*
Semicolon Before the beginning of a comment

*Some assemblers may not tolerate space between comma and the oper-
and

The assembler statements have a free-field format, which means that any number
of blanks can be left between fields. Comments are optional but are generally included for
good documentation. A label for an instruction is also optional, but its use greatly facil-
itates specifying jump locations. As an example, a typical assembly language statement is
written as follows:

Label Opcode Operand Comments
START: LD B, 32H ; Load the first data byte
Delimiters

Delimiters include the colon following START, the space following LD, the comma
following B, and the semicolon preceding the comment.
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7.22 Assembler Directives

The assembler directives are the instructions to the assembler concerning the program
being assembled; they are also called pseudo operations or pseudo-ops. These instructions
are neither translated into machine code nor assigned any memory locations in the object
file. Some of the important assembler directives for the Z80 assembler are listed and
described here.

Assembler Example Description
Directives
1. ORG ORG 0100H The next block of
(Origin) instructions should be stored
in memory locations starting
from 0100.
2. END END End of assembly. The HALT

instruction suggests the end
of a program, but that does
not necessarily mean the end
of assembly.
3. EQU PORTI EQU O0lH The value of the term

(Equate) PORT!1 is equal to O1y. Gen-
erally, this means the PORT!
has the port address Oly.

INBUF EQU 2099H The value of the term INBUF
is 2099y. This may be the
memory location used as in-
put buffer.

OUTBUF EQU INBUF + 4 The equate can be expressed
by using the label of another
equate. This example defines
the OUTBUF memory loca-
tion in terms of INBUF.

4. DB DATA: DB A2H, 9FH Initializes an area byte by
{Define byte. Assembled bytes of
Byte) data are stored in successive

memory locations until all
values are stored. This is a
convenient way of writing a
data string. The label is op-

tional.
5. DW DW  2050H Initializes an area of two
(Define bytes at a time. This state-
Word) ment reserves two locations

for 2050y.
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6. DS OUTBUF: DS 4 Reserves a specified number
(Define of memory locations. In this
Storage) example, four memory loca-
tions are reserved for OUT-

BUF.

1.23 Advantages of the Assembler

The assembler is a tool for developing programs with the assistance of the computer.
Assemblers are absolutely essential for writing industry-standard software; manual assem-
bly is quite time-consuming for programs larger than 50 instructions. The assembler per-
forms many functions in addition to translating mnemonics, and it has several advantages
over manual assembly. The salient features of the assembler are as follows:

1. The assembler translates mnemonics into binary code with speed and accuracy, thus
eliminating human errors in looking up the codes.

2. The assembler assigns appropriate values to the symbols used in a program. This
facilitates specifying jump locations.

3. It is easy to insert or delete instructions in a program; the assembler can quickly
reassemble the entire program with new memory locations and modified addresses for
jump locations. This avoids rewriting the program manually.

4. The assembler checks syntax errors, such as wrong labels and expressions, and pro-

vides error messages. However, it cannot check logic errors in a program.

. The assembler can reserve memory locations for data or results.

. The assembler can provide files for documentation.

7. A Debugger program can be used in conjunction with the assembler to test and debug
an assembly language program.

[

WRITING PROGRAMS USING AN ASSEMBLER

This section deals primarily with writing programs using an assembler. The illustrative
example is simple and has been selected to demonstrate the use of assemblers. An assem-
bler source program is identical to a program the user writes with paper and pencil, except
that the assembler source program includes assembler directives.

To illustrate how to write a source program, we selected the Z80 assembler called
MACRO-80 (M80), developed by Microsoft. The example is taken from the last chapter,
where it was assembled using manual assembly. The source program is written using
an Editor under the file name PROGRAMI.MAC. To assemble the program using the
assembler M8O, the file name must have the extension .MAC and it should include the
pseudo-op .Z80 at the beginning.

1.31 TIllustrative Program: Addition of Two Hexadecimal Numbers

This illustrative program is the same one we discussed in the last chapter. The problem
statement is repeated here for convenience; refer to Section 6.31 for analysis.
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PROBLEM STATEMENT

Write instructions to load the two hexadecimal numbers 32y and A2y into registers B and
C, respectively. Add the numbers, and display the sum at the LED output port
PORT1I.

SOURCE PROGRAM
;This program adds two Hex bytes and displays the sum.

.Z80
ORG 2000H ;Begin assembly at 2000H
PORT1 EQU 01H ;Output port address
START: LD B, 32H ;Load first byte
LD C, 0A2H* ;Load second byte to be added
LD A, C ;Copy one of the bytes into A
ADD A, B ;Add two bytes
OUT (PORTYD), A ;Display the result
HALT ;End
END

This program illustrates the following assembler directives:

o ORG
The object code will be stored starting at the location 2000y.

o EQU
The program defines one equate: PORT!. In this program it would have been easier to
write the port address directly with the instructions. However, equates are essential in
development projects where hardware and software design are done concurrently, and
they are also useful in long programs because they make it easy to change or redefine
port addresses.

O Label
The program illustrates one label: START. This label represents the memory location
2000y. In this illustration, the label is not particularly useful; generally, labels are used
to specify Jump and Call addresses. In writing assembly language programs, it is con-
venient to identify a Jump or Call address by a label because absolute addresses are not
known in the beginning. This is especially true when programmers in a team are
assigned various tasks. Also, if any changes (deletions and additions) are made in the
source program, the assembler will reassign all label addresses when it is reassembled.
In manual assembly, the entire program must be rewritten with new addresses if any
changes are to be made.

0 End
The end of assembly.

*Any Hex number that begins with A through F must be preceded by zero.
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TWO-PASS ASSEMBLER

To assemble the program, the assembler scans through the program twice; this is known as
a two-pass assembler. In the first pass, the first memory location is determined from the
ORG statement, and the counter known as the location counter is initialized. Then the
assembler scans each instruction and records locations in the address column of the first
byte of each instruction; the location counter keeps track of the bytes in the program. The
assembler also generates a symbol table during the first pass. When it comes across a label,
it records the label and its location. In the second pass, each instruction is examined, and
mnemonics and labels are replaced by their machine codes.

ASSEMBLED PRINT FILE

To create the REL file and the PRN file from a source file, the following command format
is necessary when the prompt * appears after calling M80:

RELFILE, PRNFILE = SOURCE FILE

Therefore, to generate the relocatable object file and the print file from the source file
PROGRAMI1.MAC, the command is

PROGRAMI,PROGRAMI1 = PROGRAMI

I__—Source file

Generates PROGRAMI.PRN file

Generates PROGRAMI1.REL file

In this command, any file names can be given to the REL and the PRN files. For example,
if we were to substitute TEST1 for the first word PROGRAMI, the assembler will gen-
erate a TEST1.REL file from the PROGRAMI source file.

The PRN file generated from the source program has five columns: memory
addresses, Hex codes, labels, mnemonics and comments. It lists the memory addresses of
the first byte of each instruction with its Hex codes on the same line. For example, the
listing shows that the first memory address is 2000 and the first two Hex codes are 06 32;
the next address is 2002. The memory address 2001, then, holds the Hex byte 32. In
addition to the program listing, the PRN file includes the list of symbols, equates, and
eITor messages.

Error Messages In addition to translating the mnemonics into object code, the assem-
bler also gives error messages. These messages are of two types: terminal error messages
and source program error messages. In the first case, the assembler is not able to complete
the assembly. In the second case, the assembler lists the errors, but it is able to complete
the assembly.
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PRINT (PRN) FILE
;This program adds two Hex bytes and displays the sum.

.Z80

ORG 2000H ; Begin assembly at 2000H
0001 PORT1 EQU O1H ; Output port address
2000° 0632  START: LD B, 32H ; Load first byte
2002’ OE A2 LD C, OA2H ; Load second byte to be added
2004 79 LD A,C ; Copy one of the bytes into A
2005’ 80 ADD A,B ; Add two bytes
2006 D301 OUT (PORT1), A ; Display the result
2008' 76 HALT ; End

END
Macros:
Symbols:

PORT! 0001 START 2000’

No Fatal error(s)

GENERATING COM AND HEX FILES

The Linking Loader program (L80) generates COM and HEX files. To create the COM
file and the HEX file from the PROGRAMI1.REL file, the following command format
must be used after calling L.80:

PROGRAMI1, PROGRAMI/N/X/E

This command will generate PROGRAM1.COM and PROGRAM1.HEX files, save them
on the disk, and exit to the operating system.

Precautions in Writing Programs Assembler programs are available from various soft-
ware companies, and for the most part, they follow a similar format. However, we suggest
the following precautions in writing assembly language programs.

1.

> &

The M80 Assembler allows the free format in writing the source code; however, some
assemblers (especially cross-assemblers) do not allow free format, meaning the unnec-
essary spaces are not tolerated.

- The letter following a number specifies the type of a number. A hexadecimal number is

followed by the letter “‘H,’’ an octal by letter ‘‘O,’” a binary by letter *“‘B.”” A number
without a letter is interpreted as a decimal number.

. Any Hex number that begins with A through F must be preceded by zero; otherwise,

the assembler interprets the number as a mnemonic and gives an error message because
it does not understand the mnemonic.
Some assemblers require a colon after a label.

. When a 16-bit address is used in a mnemonic (such as Jump to 2050H), the M80 prints

the address as 2050; however, it is stored in the reversed order in memory. Some
assemblers print the address as 50 20.
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SUMMARY

A software development system and an assembler are essential tools for writing large
assembly language programs. These tools facilitate the writing, assembling, testing,
and debugging of assembly language programs.

A disk-based microcomputer, its operating system, and assembler programs can
serve as a development system. All the operations of the computer are managed and
directed by the operating system of the computer. The Assembler and other utility pro-
grams assist the user in developing software. The Editor allows the user to enter text,
and the Assembler translates mnemonics into machine code and provides error mes-
sages. The Debugger assists in debugging the program.

The program thus assembled is in many ways similar to that of the hand assem-
bly program except that the program written for the assembler includes assembler di-
rectives, which are instructions concerning how to assemble the program. The assem-
bler has many advantages over manual assembly; without the assembler, it would be
extremely difficult to develop industry-standard software.

ASSIGNMENTS

Check the appropriate answer in 1-10.
1. The process of accessing information on a floppy disk is
a. random.
b. serial.
c¢. semi-random.
2. The operating system of a computer is defined as
a. hardware that operates the floppy disk.
b. a program that manages files on the disk.
¢. a group of programs that manages and directs hardware and software in the
system.
3. The Editor is
a. an assembly language program that reads and writes information on the disk.
b. a high-level language program that allows the user to edit programs.
c. a program that allows the user to write, modify, and store text in the comput-
er system.
4. The Assembler is
a. a compiler that translates statements from high-level language into assembly
language.
b. a program that translates mnemonics into binary code.
¢. an operating system that manages all the programs in the system.



SOFTWARE DEVELOPMENT SYSTEMS AND ASSEMBLERS

5.

10.

11.

A file is
a. a group of related records stored as a single entity.

b. a program that transfers information between the system and the floppy disk.

¢. a program that stores data.

The COM file

a. consists of Hex digits and is used for communication.

b. is the only file that can be interpreted and executed by the microprocessor.

¢. consists of Z80 mnemonics.

The Hex file generated by the M80 Assembler is used primarily

a. to reduce the memory requirement for storing files.

b. to transfer a file from one system to another.

c. to transfer a file between a floppy disk and the system’s R/W memory.

A hard-sectored disk is

a. a floppy disk in which each sector is identified with a hole.

b. a hard disk that stores information on an aluminum-based magnetic surface.

¢. a double-density, double-sided floppy disk.

A disk controller is

a. a program that manages the files on the disk.

b. a circuit that interfaces the disk with the microcomputer system.

¢. a mechanism that controls the spinning of the disk.

The MS-DOS is

a. an operating system that is designed primarily to handle the communication
between the 16-bit microprocessor and its peripherals.

b. an updated version of the CP/M operating system.

¢. an application program that handles communication between various systems.

Assemble the following program with the starting address 0100y, and print the
PRN file. The address of the output port PORT7 is 07y.

START: LD B, 32H ;Load B with first data byte
LD C, 0A2H ;Load C with second data byte
LD A, C ;Copy (C) into A for addition
ADD A, B ;Add two bytes

JP NC, DSPLAY ;If sum < FFH, display sum at PORT7
LD A, O0IH ;If sum > FFH, load 01 to display
; as over load
DSPLAY: OUT (PORT7), A ;Display result at PORT7
HALT

END
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Introduction to Z80
Instructions and
Programming
Techniques

When a microcomputer is asked to execute a pro-
gram stored in its memory, it reads one instruction at
a time and performs the task specified by the instruc-
tion. Each instruction in the program is a command,
in binary, to the microprocessor to perform an oper-
ation. In Chapter 6, we examined briefly the Z80
instruction set and its capability. In this chapter, we
will introduce a few selected instructions and illus-
trate them with examples. These instructions are
selected from three groups: data copy, arithmetic,
and branch operations.

A computer is at its best, relative to human
capability, when it is asked to repeat such simple
tasks as adding or copying. The programming tech-
niques-—such as looping, indexing, and count-
ing—necessary to perform such tasks are introduced
and illustrated with two programs. This chapter also
includes a brief discussion of debugging programs.

Finally, a group of special Z80 instructions
that perform multiple tasks are introduced with illus-
trative examples.

OBJECTIVES

O Explain the functions of data copy instructions
and how the contents of the source register and the
destination registers are affected.

O List four types of data copy operations and
explain the term addressing mode.

O Explain how a memory address is specified to
copy data from and to a memory register.
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O Explain how data are transferred from and to I/O
devices.

O Explain the functions of arithmetic instructions
(ADD, SUB, INC, DEC) and how flags are
affected by these instructions.

{1 Write a set of commands using data copy and
arithmetic instructions to perform a given task.

0O Explain the functions of unconditional and condi-
tional jump instructions and how they are used for
decision making.

0 Draw a flowchart of a conditional loop to illus-
trate the indexing and counting techniques.

O List the seven blocks of a generalized flowchart
illustrating data acquisitions and data process-

ing.
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O Write a program to copy data from one block of
memory to another block including the case of
overlapping blocks. '

O Write a program to perform arithmetic operations
on given data stored in memory.

O List the types of errors that frequently occur in
writing assembly language programs and in hand
assembling the code. Recognize the errors in a
given program.

O List Z80 special instructions and explain how they
provide more flexibility and improve efficiency in
writing Z80 programs.

0O Modify the previously written programs using the
780 special instructions.

DATA COPY (LOAD) OPERATIONS

In this section, we focus on three types of data copy operations: data copy related to
internal registers, memory, and I/Os. Instructions frequently used are illustrated below,
and the Z80 block transfer instruction will be discussed later in the chapter. In addition,
one machine control instruction—HALT—is introduced; this instruction is necessary to
indicate the end of a program.

8.11 Data Copy (Load) among Registers

In this group, we have three types of instructions: data copy from one register to another,
loading 8-bit data into a register and loading 16-bit data into a register pair.*

Addressing
Opcode Operand Bytes Mode Description
LD rd, rs 1 Register Copy data from source register
1s to destination register rd. In
this mode, the operand is a part
of the opcode.
LD r, 8-bit 2 Immediate Load 8-bit data of the second

byte into the specified register.
In this mode, the second byte is
the operand.

*Appendix A includes complete descriptions of these instructions in alphabetical order with illustrative exam-
ples.
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LD p, 16-bit 3 Immediate Load 16 bits into the specified
Extended register pair. In this mode, two
bytes following the opcode are

the operands.

LD rx, 16-bit 4 Immediate Load 16 bits into the specified
Extended index register.
HALT 1 This is a machine control in-

struction. The processor stops
executing and enters into Wait
state.

General Characteristics

1. Copy (Load) instructions do not affect flags.

2. The operands of copy instructions specify a destination register first, followed by a
source register; they are separated by a comma.

3. The data byte is copied without modifying the contents of a source register.

4. A 16-bit operand is stored in two consecutive memory locations in the reversed order:
the low-order byte first, followed by the high-order byte.

5. The instructions related to the index registers IX and IY have two-byte opcodes.
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Write instructions to load 97y into the accumulator, 2050y into HL registers, and 2075y
into the index register IX. Copy the contents of the accumulator into register C and the
contents of register H into register B. Write the HALT instruction at the end of the
sequence. Enter the machine codes of these instructions in R/W memory starting from
2000y, and show the contents of each register after the execution.

Memory Hex Opcode Operand Register Contents
Address Code

2000 3E LD A, 97TH ————>A 07H— ] F
2001 97 B c
2002 21 LD HL, 2050H D E
2003 50 B 500 J|L
2004 20 x| C 20750/
2005 DD LD IX, 2075H — " 1y X\ 7

2006 21 @

2007 75

2008 20

2009 79 LD C,A___

2004 “ b B H B[ 20u | 974 ]C
2008 76 HALT ®

FIGURE 8.1

Instructions and Register Contents

Example
8.1

Solution
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Description

1. The first instruction LD A, 97y is a 2-byte instruction; the opcode 3E and the operand
97 are stored in the first two memory locations. This instruction loads 97 into the
accumulator (Figure 8.1(a)).

2. The second instruction is a 3-byte instruction that loads 16-bit data (2050y) into the HL
registers (Figure 8.1(a)). The low-order byte (50) is stored first in memory location
2003y, followed by the high-order byte (20).

3. The third instruction (IX, 2075H) is a 4-byte instruction; it has a 2-byte opcode (DD
and 21). This instruction loads 16-bit data (2075y) into the index register IX.

4. The remaining two instructions are 1-byte instructions; they copy data from one reg-
ister to another as shown in Figure 8.1(b). It is important to note that the copy oper-
ations do not destroy the contents of the source registers. Figure 8.1 shows that reg-
isters A and H retain their contents after the copy operations.

5. The last instruction (HALT) is a machine control instruction; it forces the machine into
the Wait state.

8.12 Data Copy Between Z80 Registers and Memory

To copy data from and into memory, the 16-bit address of a selected memory register must
be specified, and this memory address can be specified in various ways: for example,
using the HL register, register pairs, or a direct 16-bit address. Methods using index
registers are discussed after the discussion of 2’s complement arithmetic because the index
registers include a displacement byte, which is expressed as a signed 2’s complement
number. In Z80 mnemonics, the memory address is enclosed in parentheses, as shown in
the following list.

Addressing
Opcode Operand Bytes Modes Description
LD r, (HL) 1 Register Copy contents of memory into
Indirect register r. The memory ad-
dress is specified indirectly by
the number in the HL register;
therefore, this is called register
indirect addressing.
LD (HL), r 1 Register Copy contents of register r
Indirect into memory.
LD (HL), 8-bit 2 Register Copy 8-bit data into memory.
Indirect & This mode is combination of
Immediate indirect and immediate ad-

dressing.

Note: In these three instructions, the memory address is specified by the contents of
register HL, and register r can be any one of the general-purpose registers.
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LD A, (1p) 1 Register Copy contents of memory into
Indirect accumulator.

LD (rp), A 1 Register Copy contents of accumulator
Indirect into memory.

Note: In the preceding two instructions, the memory address is shown by the contents of a

register pair (BC or DE). However, these instructions can copy data from and into
the accumulator only.

LD A, (16-bit) 3 Extended Copy contents of memory into
accumulator.
LD (16-bit), A 3 Extended Copy contents of accumulator

into memory.

Note: In these instructions, the memory address is the 16-bit operand, and these instruc-

tions can copy data from and into the accumulator only.

General Characteristics

1.
2.

3.

No flags are affected by these data copy operations.

Memory-related data copy operations can be recognized by the parentheses around
the operand.

Register HL is a versatile memory pointer; a data byte can be copied from any
memory location to any general-purpose register and vice versa. In addition, HL
can be used to load a byte directly into memory.

. A 16-bit direct address and other register pairs (BC and DE) can be used as

memory pointers to copy data from a memory location into the accurmulator and
vice versa. However, these memory pointers cannot be used to copy data between
general-purpose registers and memory.

The memory location 2050y contains the data byte 37y. Write instructions to copy the byte Example
from the memory location into the accumulator. Ilustrate three different ways of trans- 8.2
ferring the byte from memory to the microprocessor and list the associated machine
codes.

Solution
1. The first method of copying a byte from memory into the microprocessor is by using

HL register as a memory pointer; this is an illustration of indirect addressing. First, we
need to load the memory address into the HL register and then use the contents of HL as
a memory pointer (Figure 8.2(a)).

. The second method of copying a byte from memory into the microprocessor is by using

BC or DE as a memory pointer; this is also the indirect addressing (Figure 8.2(b)).

. The third technique is to use the direct extended addressing (Figure 8.2(c)).
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LD A, (HL) Memory
371
Code Instruction
21 LD HL, 2050H g Flags g
50
20 D B — 20501 37
7E LD A, (HL) H 204 50H L
FIGURE 8.2
(a) Indirect Addressing Using HL
LD A, (BO)
37u
Code Instruction
01 LD BC, 2050H A Flags |F
50 B 20H 50H C\ 2050 37H
20 D E
0A LD A, (BC) H L
FIGURE 8.2
(b) Indirect Addressing Using BC
LD A, (2050H)
37u
Code Instruction
3A LD A, (2050H) Al | Flags |F
30 2050 37n
20
FIGURE 8.2

(c) Extended Addressing

Example
8.3

Solution

The memory location 2040y contains the data byte F2y. Copy the data byte F2y from the
memory location 2040y into 2070y using memory pointers. Then, clear the memory
location 2040y. Enter the machine codes of these instructions in memory locations starting
from 2000y. Describe how data copy operations are performed.

Memory Hex

Address Code Opcode Operand Comments
2000 21 LD HL, 2040H ; Set up HL as memory pointer
2001 40 for 2040H

2002 20
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2003 01 LD BC, 2070H ; Set up BC as memory pointer

2004 70 for 2070H

2005 20

2006 7E LD A, (HL) ; Copy data (F2H) into accumula-
tor

2007 02 LD BO), A ; Copy data into memory
(2070H)

2008 36 LD (HL), 00 ; Clear location 2040H

2009 00

200A 76 HALT

Description

1. The first two instructions load registers HL. and BC with the numbers 20404 and 2070y
respectively. These are not memory-related data copy instructions because the oper-
ands do not have any parentheses.

2. The next two instructions copy the data byte (F2y) stored in memory location 2040y
into the accumulator and from the accumulator into location 2070y (see Figure
8.3).

3. The next instruction LD (HL), 00 is a 2-byte instuction; it clears the memory location
2040y by loading 00 into the memory location pointed to by the HL register.

LD A, (HL) Memory

F2H
A F F2u  |2040
B 20H 70H C
D E
H 20H 40H L L "
A F2H F
B 20H 701 c F2H
H 201 40H L 2070
FIGURE 8.3

Data Copy between Microprocessor and Memory
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8.13 Data Copy Between Accumulator and I/Os

In the Z80 instruction set, input and output devices are identified by 8-bit addresses. The
set includes several instructions that can read data from an input device (also known as
input port) and write data into an output device (or output port). Two of these I/O instruc-
tions are described here:

Opcode Operand Bytes Description
IN A, (8-bit) 2 Read data from an input port into the accumula-
tor.
ouT (8-bit), A 2 Write data to an output port from the accumula-
tor.

General Characteristics

1. These I/O instructions do not affect flags. (Some Z80 /O instructions do affect flags;
they are discussed later.)

2. The /O instructions have 8-bit operands; thus, the Z80 is capable of addressing 256
input and 256 output ports.

3. The 8-bit I/O addresses are enclosed in parentheses similar to those of memory
addresses.

Example
8.4

Solution

Read the switches connected to the input port 01y (Figure 8.4). Display the reading at the
LED output port 07y and store it in memory location 2060y.

Instructions are as follows:

Opcode Operand Comments
IN A, (OIH) ; Read input switches
ouT (07TH), A ; Display switch reading at output port
LD (2060H), A ; Store switch reading in memory
HALT

Description

1. Figure 8.4 shows that the switch positions at the input port Oly provide the reading
01001111 (4Fy). The first instruction reads the switch positions and places the
reading in the accumulator.

2. The OUT instruction sends the accumulator contents to the output port 07y and dis-
plays the corresponding LEDs (Figure 8.4).

3. The last instruction stores the accumulator contents in memory location 2060y,.
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+5V
5
3
_ S; OFF 0
<S55 ON 1 D,
. Ss OFF 0 E Data Bus
Tri-State
S 4F —» —1» i Flags
| 4 OFF _l Buffer F > > Al 4F ags | F
B c
{ S; ON
AN LN . D E
=S5 oN 1| Port H .
O1H
P~ oN 1 D
S0 ON 1
L EN Lfo L OFF —
L—— Input Enable 1 F— ON ——
0 — OFF —
Output
f» Port OFF LEDs
1 07w — ON ——
1 — ON ——
1 -— ON ——
1 EN —— ON —
Output Enable —————T
FIGURE 8.4

Reading Data at Input Port and Sending Data to Qutput Port
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ARITHMETIC OPERATIONS

8.2

The Z80 microprocessor performs various arithmetic operations such as addition, sub-
traction, increment/decrement, and I's and 2’s complement. Most of these operations are
concerned with 8-bit operands. The instruction set also includes some 16-bit operations
which will be discussed in later chapters. (See Appendix A for complete alphabetical
listing of the Z80 instruction set and how flags are affected by the instructions.)

8.21 Addition and Subtraction

The addition and subtraction operations are performed in relation to contents of the accu-
mulator. We focus here on three types of operands: register contents, 8-bit data, and
memory contents.
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Opcode Operand Bytes Description

ADD A r 1 Add contents of register r to the contents of the
accumulator, and store the result in the accumu-
lator.

ADD A, 8-bit 2 Add 8-bit data directly to the accumulator.

ADD A, (HL) 1 Add memory contents to the accumulator.

SUB I 1 Subtract contents of register r from the accumu-
lator.

SUB 8-bit 2 Subtract 8-bit data from the accumulator.

SUB (HL) 1 Subtract memory contents from the accumulator.

General Characteristics:

These Arithmetic Instructions

assume that the accumulator is one of the operands.

modify all the flags according to the result of the operation.
place the result in the accumulator.

do not affect the contents of the operand register or memory.

.

8.22 Increment/Decrement Instructions

The following instructions are a special type of arithmetic instructions; they increment or
decrement the contents of the operand by one. These instructions are generally used in
counting and indexing.

Opcode Operand Bytes Description

INC r 1 Increment the contents of register r.

INC (HL) 1 Increment the contents of memory.

INC p 1 Increment the contents of register pair rp (Regis-
ter pairs are BC, DE, HL, and SP).

DEC r 1 Decrement the contents of register r.

DEC (HL) 1 Decrement the contents of memory.

DEC p 1 Decrement the contents of register pair rp.

General Characteristics

1. In these instructions, the operand can be any of the 8-bit registers , memory, or
register pairs r,. The result is stored back into the same operand register.

2. The instructions dealing with 8-bit registers affect all the flags except the Carry
(CY) flag.

3. The instructions dealing with register pairs do not affect any flags. This is
important to remember when a register pair is used as a 16-bit counter.
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8.23 I's and 2's Complement Instructions

The Z80 instruction set includes the following instructions that perform complement oper-
ations with the contents of the accumulator. The addressing mode is implied; the accu-
mulator is implied as the operand.

Opcode Operand Bytes Description

CPL 1 Invert each bit of the accumulator. This can also
be classified as the NOT function. No flags (ex-
cept H and N) are affected.

NEG 2 Subtract the contents of the accumulator from 00;
this is equivalent to taking 2’s complement of the
number in the accumulator. This instruction af-
fects all the flags.
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Load two unsigned numbers F2y; and 68y in registers B and C respectively, and store A2y
in memory location 2065y, using the HL register as a memory pointer. Subtract 68y from
F2y, complement the result, and add A2y from memory. Store the final answer in memory
location 2066y;. Show register contents and the status of S (Sign), Z (Zero), and CY
(Carry) flags as each instruction is being executed.

Instructions Register Contents Flags
Mnemonics A B ¢ H L S Z CY
1. LD BC, F268H X F2 68 X X No change
2. LD HL, 2065H X 20 65
3. LD (HL), A2H 2065 X l l l
4. LD A, B F2
5. SUB C (F2 — 68) — 8A 1 0 O
6. CPL (Invert 8A) — 75 No change
7. ADD A, (HL) (75 + A2) 17 0 0 1
8. INC HL l 20 66 No change
9. LD (HL), A 2066 Voo VoLl
HALT 17 F2 68 20 66 0 0 1
Description

1. The first instruction loads register BC with the given bytes. This could be achieved by
using two separate load instructions for each register, but loading a register pair is
slightly more efficient.

2. The second instruction sets up HL as a memory pointer for location 2065y, and the
third instruction loads A2y into the memory location indicated by HL.

Example
8.5

Solution
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3. To subtract C from B, it is necessary to copy the contents of B into the accumulator
(Instruction 4).

4. Instructions 1 through 4 are all data copy instructions; they do not affect flags. All the
flags will remain in their initial conditions before the program is executed.

S. Instruction 5 performs the subtraction in 2’s complement and places 8Ay in the accu-
mulator as shown below. The subtraction method using 2’s complement involves three
steps: (1) Find 2’s complement of the subtrahend, (2) Add the 2’s complement to the
minuend, and (3) Complement CY. (Refer to Appendix B if you are unfamiliar with the
technique.)

Register C = 684 — 0110 1000 Subtrahend
2’s Com. of 68y — 1001 100 O} 2’s Complement of Subtrahend
Accumulator=F2y — + 1111 0010 Minuend

1 1000 1010 Sum
Complement CY - 0 1000 1010 — 8Ay Final Result
Flags: S=1,Z=0,and CY =0

The result of this subtraction sets the Sign flag and resets the Zero and Carry flags.
However, the result is not a negative number. After an arithmetic operation, if bit Dy =
1, the Sign flag is set. In this subtraction, the Sign flag should be ignored because data
bytes are not signed numbers (see further discussion in Section 8.24).

6. The instruction CPL inverts the contents of the accumulator 8 Ay; the result is 75. This
instruction does not affect any flags, so the flags set by the previous instruction are
preserved.

10001010(@A) — 0111 0101 (75y)

7. Instruction 7 adds A2y from the memory location pointed to by HL to the accumulator
contents (75y). The result is 117y. The instruction places 17y into the accumulator,
sets the CY flag, and resets the S and Z flags.

Accumulator= 754 — 0111 0101
Memory (20654) = A2y — + 1010 0010
C— 10001 0111 — 1174
Flags: S=0,Z2=0,CY =1

8. Instruction 8 increments HL to point to the next location 2066y, and the next instruc-
tion stores the result in the memory location 2066y.

8.24 TFlags and Decision Making

As described in Chapter 3, the Z80 architecture includes six flags, which are flip-flops that
are set or reset after the execution of arithmetic and logic operations, with some excep-
tions. Four of the flags (S, Z, P/V, CY) can be used by the programmer for decision
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making in conjunction with Jump and Call instructions; the remaining two (H, N) are used
internally by the microprocessor for BCD arithmetic. The thorough understanding of flags
is critical to writing assembly language programs.

In many ways the flags are like signs on an interstate highway that help drivers in
decision making. A driver sees one or more signs at a time, but continues along the
highway ignoring the signs until the appropriate sign is found, and then he or she changes
direction or takes an exit. Flags function similarly as signs of data conditions. After an
operation, one or more flags is set (or reset) and can be used to change the direction of
program sequence by using Jump instructions (discussed in the next section). The follow-
ing illustrations from Example 8.5 may clarify some of the critical issues.

1. In Example 8.5, Instruction 5 sets the Sign flag and resets the other flags. However, the
sign flag can be ignored because the numbers loaded into registers are unsigned num-
bers. The Sign flag should be considered only when the programmer is dealing with
signed numbers.

2. Instruction 7 sets the Carry flag and resets the other flags. If the programmer is adding
numbers and is interested in finding the total, the Carry flag must be used to test for a
sum larger than an 8-bit number.

3. Another important observation that can be made after the execution of Instruction 7 is
that the flags set by Instruction 5 are altered by Instruction 7. Thus, if the programmer
is interested in making a decision based on the Sign flag, it should be made before that
flag is altered by another operation.

8.25 Signed Numbers and Flags

The microprocessor is incapable of understanding a + or — sign unless the sign is rep-
resented in the form of binary digits. Therefore, in 8-bit microprocessors, bit Dy is
reserved for the sign by the user when signed numbers are used in arithmetic operations.
For a positive number, bit D is 0, and for a negative number, D is set to 1; the remaining
seven bits represent the magnitude of a number. If a number is negative, it is represented in
2’s complement. In an 8-bit microprocessor, the largest positive number is 0111 1111
(7Fy = +127,0), and the largest negative number is 1000 0000 (804 = —128;0).

The Z80 microprocessor has two flags to indicate the status of the arithmetic results
in signed numbers: Sign and Overflow. After an arithmetic (or logical) operation, if bit
D; = 1, the Sign flag is set, and if D; = 0, the Sign flag is reset. However, this flag can be
misleading when the result of an addition exceeds the magnitude 7Fy or that of the sub-
traction exceeds 80y. These conditions are known as overflow and are indicated by the
P/V flag.

The P/V flag is a dual-purpose flag; in logical operations it indicates the parity, and
in arithmetic operations it indicates the overflow (we have discussed this flag in Chapter
3). In arithmetic operations, the P/V flag is used to indicate an overflow. If the sum of an
addition of two positive numbers exceeds 7F, bit D; becomes 1, indicating a negative
number. However, the Z80 sets the P/V flag to indicate the error in the result. The critical
point to remember is that the Z80 does not know whether the numbers are signed,
unsigned, or just individual digits. The interpretation of the flags is the responsibility of
the user.

181
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Example
8.6

Solution

Add two signed numbers: + 29y and + 76y. Indicate the status of the flags S, P/V, and
CY if the operation is performed by the Z80 microprocessor. Explain how the flags are
affected if the numbers are unsigned.

+294= 0010 1001
+

+76y= 0111 0110

+9Fy= 1001 1111

CY = 0 because the sum is less than FFy,
S 1 because D; = 1, and

P/V 1 because the sum exceeds 7Fy.

I

I

In this addition of two positive numbers, the sign flag erroneously indicates that the
sum is negative; however, the overflow flag (P/V) suggests that the result has an overflow
from bit D¢ and that the result is therefore inaccurate. The user must check the P/V flag and
correct the sum.

If these numbers were unsigned numbers, the result and the status of the flags would
not be altered. The interpretation of the result would therefore be different; the user should
ignore the S and P/V flags and check for the CY flag. In this example, the sum is 9Fy with

no carry.

8.3

BRANCH OPERATIONS

The branch instructions and their associated flags are the key to the power of a computer
or its microprocessor. These instructions can change the sequence of execution based on
certain data conditions indicated by the flags; thus, they are decision-making instruc-
tions.

The branch instructions are classified into three categories, as listed in Chapter 6:
(1) Jump instructions, (2) Call and Return instructions, and (3) Restart instructions. In
this chapter, we concentrate on Jump instructions.

8.31 Jump Instructions

The Jump instructions can be divided into two groups: absolute jump and relative jump. In
case of absolute jump, the operand specifies the 16-bit address to which the program
sequence should be transferred; these are 3-byte instructions. The relative jump instruc-
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tions are 2-byte instructions and contain an operand that specifies 8-bit displacement,
forward or backward (in 2’s complement), in relation to the address of the Jump instruc-
tion; these instructions are discussed in the next Section.

The absolute jump instructions can be further classified into two groups: uncondi-
tional and conditional jump. The conditional jump instructions are implemented based on
the status of four flags: S (Sign), Z (Zero), CY (Carry), and P/V (Parity/Overflow). Two
instructions are associated with each flag: one for when the flag is set and the other for
when it is reset. The list of Jump instructions is as follows:

Opcode Operand Bytes Description

JP 16-bit 3 Jump unconditional to memory location
specified by the 16-bit operand.

JP C, 16-bit 3 Jump on carry to 16-bit address (CY = 1).
JP NC, 16-bit 3 Jump on no carry to 16-bit address
(CY = 0).
JP Z, 16-bit 3 Jump on zero to 16-bit address (Z = 1).
JP NZ, 16-bit 3 Jump on no zero to 16-bit address (Z = 0).
JP M, 16-bit 3 Jump on minus to 16-bit address (S = 1).
JP P, 16-bit 3 Jump on positive to 16-bit address (S = 0).
JP PE, 16-bit 3 Jump on parity even to 16-bit address
(P/IV=1).
JP PO, 16-bit 3 Jump on parity odd to 16-bit address
(PIV =0).

General Characteristics

1. The Jump (JP) instructions are 3-byte instructions. The second byte specifies the
low-order address and the third byte specifies the high-order address.

2. A conditional jump instruction checks for the appropriate flag. If the condition is
true, the program sequence is changed to the memory location specified by the
operand; otherwise, the execution continues to the next instruction.

3. The Jump instructions do not affect any flags.

Write instructions to load two Hex bytes BYTE! and BYTE2 into registers B and C, Example
respectively, and add the bytes. If the sum is larger than 8 bits, display O00H as the overload 8.1
condition at output port PORT1 and clear the memory location OUTBUF; otherwise, store

the sum in memory location OUTBUF. Draw a flowchart and assemble the program

starting at location 2000y. The data bytes and the labels are defined as follows:

BYTE1 = 9Ay, BYTE2 = A7y, PORTI1 = 01y, and OUTBUF = 2050y

This problem is similiar to Example 6.1 with some variations in display and data storage. Solution
A flowchart and instructions are as follows:
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Hex Memory

Mnemonics Code Address
—t_ LD B, BYTEI 06 2000

Oat ata
Block 1 Bytes 9A 2001
LD C, BYTE2 OE 2002
| A7 2003
Block 2 Add Data LD A, C 79 2004
ytes ADD A, B 80 2005
Block 3 Mo JP NC, STORE D2 2006
LOW 2007
d HIGH 2008
es
Got Ready LD A, 00H 3E 2009
Block 4 to Display 00 200A
Overload OUT (PORTI), A D3 200B
01 200C
Block § Momoy | STORE: LD (OUTBUF), A 32 200D
50 200E
20 200F
End HALT 76 2010
FIGURE 8.5
Flowchart

Program Description

1.

2.

The first four instructions (Block 1 and 2) are similar to those we used previously and
do not need any additional explanation.

Block 3 is concerned with decision making, and it is important to understand how this
block is translated into Hex code. Initially, to assemble the decision-making block (JP
NC, STORE), we do not know the address of the jump location. Therefore, we just
label the address as STORE and leave the two memory locations (2007 and 2008y) for
the address to be filled in later.

Now we can assemble the staight line segment of the flowchart (Block 4 and Block 5),
the instructions shown in these blocks are self-explanatory. The critical point to
remember in entering memory addresses is that the 16-bit number is entered in the
reversed order—Ilow-order byte first, followed by the high-order byte.

. After completing the translation of Blocks 4 and 5, we can specify the address of the

Jump location STORE (200DH), and fill in the blanks for LOW and HIGH bytes; 0Dy
is entered in location 2007y and 20y in location 2008y.
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Write instructions to read incoming data from input port INPORT, count the number of Example
readings, and add the readings. When the sum exceeds FFy, stop reading the port, store 8.8
the number of readings added in memory location OUTBUF, and display 01 at the output

port OUTLED to indicate the overload.

Solution
Mnemonics Comments
Clear Registers LD BC, 0000H ;Clear B to save the sum and C to
to Save Sum ; count the number of readings
and Set up Counter
Read READ: IN A, (INPORT) ;Read data
Input Port
[} Update Count INC C ;Add count
o Add Data ADD A, B ;Add new data to previous sum
and Save LD B, A ;Save the sum
Yes
‘ JP C, OVRLD :Check for overload
No
Go Back JP READ ;Go back to read next data
and Read Data
e Save Count OVRLD: LD HL, OUTBUF ;5et up HL as memory pointer
¢ Display Overload LD (OUTBUF), C ;Save the count in memory
LD A, OIH ;Load 01 as overload indicator
OUT (OUTLED), A ;Display overload indicator
= HALT ;End of program

FIGURE 8.6
Flowchart
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Program Description

1.

This program uses two labels—READ AND OVRLD—to specify jump memory
locations. Similarly, I/O ports are shown with labels: INPORT and OUTLED. To
assemble this program, these labels must be replaced by appropriate addresses.

. Register B is used to save the sum and register C is used to count the number of

readings added.

. Initially, registers B and C are cleared. If they are not cleared in the first operation

the sum and the count will have the residual contents of registers B and C.

. The IN instruction reads the input port, and register C counts the number of data

bytes read. The two following instructions add the data bytes and save the result in
register B.

. If the addition does not generate a carry, the READ loop is repeated. When the

addition generates a carry, the microprocessor sets the CY flag to indicate an
overload. The program jumps to location OVRLD, whereby the count is saved in
memory location OUTBUF, and the overload is indicated by displaying Oly at the
output port.

8.32 Relative Jump Instructions

The Z80 instruction set includes two types of relative jump instructions: unconditional and
conditional. The new address to which the program sequence is redirected is specified by
an 8-bit offset (displacement) value relative to the Jump instruction. The displacement can
be positive (forward jump), specified by the seven bits Dg-Dy (the MSB D; = 0), or
negative (backward jump) specified in 2’s complement. The total offset values range
from —126 to +129 bytes (explained in Example 8.9). The list of relative Jump instruc-
tions is as follows (d = displacement).

Mnemonics Bytes Description
JR d 2 ;Jump relative unconditionally
JRZ,d ;JJump relative if Z =1

2
JRNZ, d 2 ;Jump relative if Z=0

JRC,d 2 ;Jump relative if CY = 1
JR NC, d 2 Jump relative if CY =0

Note: There are no Relative Jump instructions based on Sign and Parity flags.

General Characteristics

1.

These are 2-byte instructions, therefore more efficient than 3-byte absolute jump
instructions in terms of memory space and, in some situations, execution time.

2. Relative jumps are limited to 256 memory locations.
3. No flags are affected by these instructions.
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The unconditional relative jump instruction is stored in memory locations 2100 and 2101y,
as shown below. Find the memory address of the forward jump location if the displace-
ment byte is 7Fy, and find the memory address for the backward jump if the displacement
byte is 9Cy.

2100 18 JR d ;Jump relative to given offset
2101 Offset d
2102 Next Opcode

1. When the jump instruction is executed, the program counter (PC) contains the address
2102 (PC always points to the next machine code to be fetched). By adding the dis-
placement byte to the program counter, the address of the jump location becomes
(21024 + 7Fy = 2181 4.

For an 8-bit displacement byte, 7Fy is the largest offset value for a forward jump.
Therefore, relative to the memory location of the first code of the jump instruction, the
maximum displacement is 7Fy plus two memory locations of the instruction. The
decimal equivalent of 81y (7F + 2) is 129; thus, the positive range extends to 129
memory locations.

2. If the displacement byte is 9Cy, it must be in 2’s complement because D; = 1. The
memory address for the jump location is calculated by adding the displacement byte to
the program counter using the 2’s complement procedure.

Program Counter: 2 1 0 2

Displacement Byte +9 C
in 2’s Complement:

9 E
Complement Cy and 1 9 E
subtract from 21y: 270 9 E

Memory address of the jump location is 209Ey.

Example
8.9

Solution

Z80 Instructions Related To Index Registers

8.4

The Z80 microprocessor includes two 16-bit index registers IX and 1Y, and they are used
primarily as memory pointers. In the previous sections, we discussed instructions con-
cerning data copy, arithmetic, and branch operations. The Z80 can perform these opera-
tions with the contents of memory registers using the index registers.
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The following group shows data copy, arithmetic, and unconditional jump instruc-
tions related to the IX registers; there is an identical set for the I'Y register.
Opcode Operand Byies Description

LD IX, 16-bit 4 Load 16-bit data into IX register (this in-
struction was discussed in Section 8.11)

LD (IX + d), 8-bit 4 Load 8-bit into memory location IX + d*
LD r, (IX +d) 3 Copy from memory IX + d into register r
LD (IX+d),r 3 Copy from register r into memory IX + d
ADD A, (IX +d) 3 Add contents of memory IX +d to A
SUB (IX + d) 3 Subtract contents of memory IX + d from A
INC IX 2 Increment 16-bit contents of IX
INC (IX +4d) 3 Increment contents of memory IX + d
DEC IX 2 Decrement 16-bit contents of IX

3

DEC (IX +d) Decrement contents of memory IX + d

General Characteristics

1. Index registers IX and IY are used as memory pointers. The memory address is
calculated by adding the displacement byte (also known as offset) to the contents of
the index register. The displacement byte is an 8-bit number; it can be either
positive or negative. The magnitude of a positive offset is specified by the seven
bits Dg-Dyg, and the positive sign is indicated by bit D; being 0. For a negative
offset, the displacement byte is expressed in 2’s complement (illustrated in
Example 8.10). The total offset ranges from + 127 to — 128 memory locations.

2. When the operand is memory, it is specified by enclosing the memory address in
the parentheses (as in any other memory-related instructions), and when the
operand is the index register, it is written without parentheses.

3. The instructions listed above follow the same pattern as discussed in the previous
sections.

4. These instructions have 2-byte opcodes; therefore, the number of bytes in
index-related instructions ranges from two to four bytes.

Example
8.10

Solution

Set up index registers IX and 1Y as memory pointers to locations 2050y and 2150y
respectively. Load data bytes 32y into location 20904 and 97 into 2110y using the index
registers. Add the bytes and save the sum in the accumulator.

Mnemonics Descriptions
LD IX, 2050H ;Point index IX to location 2050H
LD IY, 2150H ;Point index IY to location 2150H

*d is an offset value added to the contents of the index register to obtain in the memory location (see Example
8.10)
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LD (IX + 40H), 32H ;Load byte into location (2050H + 40H) = 2090H
LD (IY + COH), 97H ;Load byte into location 2110H
Offset is (2110H — 2150H) 40H locations
backward. 2’s complement of 40H = COH.

LD A, (IX + 40H) ;Copy first byte (32H) into A
ADD A, (IY + COH) ;Add second byte
HALT

The memory addresses are calculated by adding the offset to the low-order byte of the
index register.

IX 4+ 40 =20 50 IY + CO = 21 50
+ 40 + CO
90H g 2090H 1 IOH i 2110H

Because the second operation is a 2’s complement addition, the carry is comple-
mented.

PROGRAMMING TECHNIQUES: LOOPING, 8 5
COUNTING, AND INDEXING '

The examples illustrated in the previous sections are simple and can be solved manually.
However, a computer is at its best, surpassing human capability, when it has to repeat such
tasks as adding a large set of numbers or copying bytes from one block of memory
locations to another. It is fast and accurate.

To perform a given repetitive task, commonly used techniques are looping, count-
ing, and indexing. To add data bytes stored in memory, for example, the following steps
are necessary.

1. Define the task to be repeated: looping.
A loop is set up by using either a conditional Jump or an unconditional Jump as
illustrated in Examples 8.7 and 8.8.

2. Specify how many times the task is to be repeated: Counting.
The counter is set by loading a count (number of times the task is to be repeated) into a
register or a register pair, and the counting is done by decrementing the count every
time the loop is repeated. The counter can also be set up to count from 0 to the final
count using increment instructions.

3. Specify the location of the data: Indexing.
The starting location of the data can be specified by loading the memory address into a
register pair and using the register pair as a memory pointer or index.

4. Indicate the end of the repetitive task: Setting Flags.
The end of repetition is indicated by the flag of the conditional jump instruction. When
the condition is true, the loop is repeated, and when the condition is false, the loop
execution is terminated, and the execution goes to the next instruction in memory.
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These steps are further clarified in Example 8.11.

Example
8.11

Solution

Draw a general flowchart to add ten bytes of data stored in memory starting at a given
location, and display the sum. Explain the blocks in the flowchart.

To draw a flowchart, the problem must be divided into steps as follows:

1. Set up a counter to count the number of bytes.
Set up a memory pointer (index) to locate where data bytes are stored.
Clear a register if necessary (either to store partial results or count the number of
carries).

2. Transfer data from memory to the microprocessor.

3. Perform addition, checking for carry.

4. Save the partial result.

5. Update the counter and the memory pointer for the next operation.

6. Check the flag to indicate the completion of the task. If the condition is true, repeat the
task; otherwise go to the next instruction.

7. Display or store the result.

These steps and their sequence can be represented in the form of a flowchart as shown in

Figure 8.7.

Blocks FIGURE 8.7

1. Initialization

Generalized Programming Flowchart

This is a planning stage where all initial -
. . Start
conditions and requirements are defined. In

our example, this block should set up a

cou.nter, memory index (pointer), carry Initialization Block |
register, and temporary storage register.
|
2. Data Acquisition
Data are generally stored in memory or read Data Block 2
f . . . Acquisition
rom an input port. This step is concerned
with bringing data into the microprocessor. ¢
3. Data Processing b Data Block 3
R . 5 . rocessing
This step involves data manipulation, such as ¢
arithmetic or logical operations. In the
example, we add a data byte, check for a gf::g;’;ag
carry, and update carry register if necessary. Partial Block 4
4. Temporary Storage Results
This step involves storing of partial results
so that the previous result will not be B

destroyed by the next data processing
operation.
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® (;)
5. Getting Ready for Next Operation
Before we can check whether the task is Getting Ready
completed, we need to update the initial for Block 5
conditions; the index and the counter should Next Operation

be incremented or decremented.

6. Decision Making

In this step, the flag is checked. if the
condition is true, the loop is repeated;

Decision
Making.

) Are All Operations
otherwise, the program goes to the next block Complete?
to display the result.
7. Output
In this Block, the result is either sent to
an output port or stored in memory. [ Output Block 7

Block 6
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LOOKING AHEAD

In the previous sections, we introduced three groups of instructions: data copy, arithmetic,
and branching. These instructions were illustrated with examples. In the last section, we
discussed the programming techniques with the generalized flowchart (Figure 8.7). Now
we will illustrate two programs using the instructions and the programming techniques that
were introduced and discussed. We will attempt to analyze the programming problems in
terms of the blocks shown in Figure 8.7 and modify these blocks if necessary.

ILLUSTRATIVE PROGRAM 1: BLOCK TRANSFER OF
DATA BYTES

8.6

In practical applications, data transfer from one memory block to another is a common
occurrence. This illustrative program demonstrates how to copy data bytes from one block
of memory to another using the instructions discussed previously.

8.61 Problem Statement

One hundred bytes of data are stored in a block of memory with the starting location
labelied as SOURCE. Transfer all data to a new block starting with the location labelled as
OUTBUF (Output Buffer). When the data transfer is complete, display 01 at the output
port PORTO.

8.62 Problem Analysis

We can analyze this problem in terms of the generalized flowchart (Figure 8.7).

1. Initialization: In this problem, we need one counter to count 100 bytes and two mem-
ory pointers: one for SOURCE memory and the other for OUTBUF memory.
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2. Data Acquisition: In this problem, when a data byte is transferred from memory to the
microprocessor, it is immediately transferred to a new memory location. There is no
data processing; thus, we can eliminate Blocks 3 and 4.

The flowchart is shown in Figure 8.8; Blocks 5, 6 and 7 are identical to the blocks shown
in Figure 8.7.

8.63 Program and Flowchart

Label Mnemonics Comments

START: LD HL, SOURCE ;Set up HL as pointer for Source
e Sct Up Mcemory memory
Pointers for SOURCE
o OUTBUR LD DE, OUTBUF ;Set up DE as pointer for Output
« Set un Byte Count Buffer memory
ot up Byte Founter LD B, 64H ;Set register B to count 100 bytes
ot Data B NEXT: LD A, (HL) ;Get byte from Source
° Get Data Byte . :
from SOURCE LD (DE), A ;Store byte in Output Buffer
® Store It in OUTBUF
INC HL ;Point to next Source location
" Dpdate Memory INC DE ;Point to next Output Buffer
ointers X
location
* Count = Count — | DEC B ;:Decrement count
JP NZ, NEXT ;If counter is not zero, go back
Is to get next byte
Counter

Zero?

LD A, OIH ;Load display indicator
OUT (PORTO), A ;Display end of data transfer
HALT ;End of program

FIGURE 8.8

Flowchart: Block Transfer of

Data Bytes

8.64 Program Description and Execution

In this program, several labels are used to specify memory locations and /O ports; this is a
common industrial practice. When an assembler is used to write programs, labeling pro-
vides convenience and flexibility. In manual assembly, labels make it easy to read a
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program. In this problem, we need to specify or define absolute values of the labels
SOURCE, OUTBUF, AND PORTO, as well as the label START, the location where the
program begins. The memory address of the label NEXT depends on the starting address
of the program, and in manual assembly, it can be calculated by counting the number of
bytes of each instruction written before NEXT. If we assume the starting address of the
program is 2000y, the memory address of NEXT will be 2008y.

The flowchart in Figure 8.8 is similar to the generalized flowchart of Figure 8.7. In
the first block, registers HL and DE are used as memory pointers and register B as a
counter to count 100 bytes. In the next block, a byte is transferred from SOURCE memory
to the accumulator using HL as the memory pointer, and the same byte is stored in
OUTBUF memory using DE as the memory pointer.

The statements shown in the next block update the memory pointers and the counter.
These statements may appear strange as algebraic equations; in fact, they are not algebraic
statements but value assignments. The statement Count = Count — 1 means the new value
is obtained by decrementing the previous value at the completion of one loop. It is impor-
tant to remember that updating should be done before the decision making because once
the Jump instruction finds the Zero flag not set, the program execution will go back to
location NEXT. This loop is repeated until the counter B = 0, and then the data transfer is
indicated by displaying 01 at PORTO: this is shown as End in the flowchart.

When you execute the program on a single-board system, the successful completion
of data transfer can be checked by verifying the contents of some locations in SOURCE
memory and the corresponding memory locations in OUTBUF memory.

ILLUSTRATIVE PROGRAM 2: ADDITION WITH CARRY
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8.7

The following program adds the number of bytes stored in memory and counts the number
of carries generated. The maximum sum can be up to 16-bit.

8.71 Problem Statement

Add the following ten data bytes stored in memory with the starting address INBUF (Input
Buffer). Store the sum in two memory locations; the low-order byte of the sum should be
stored in OUTBUF and the high-order byte in OUTBUF + 1.

Data (H): A2, 37, 4F, 97, 22, 6B, 75, 8E, 9A, C7.

8.72 Problem Analysis

This problem is similar to Example 8.11 and can be very easily analyzed in terms of the
blocks shown in the generalized flowchart in Figure 8.7.

1. In the initialization block, we need to set up a counter to count ten bytes, a memory
pointer for INBUF, and registers to save the partial sum and carries. We use the
accumulator for addition. The memory pointer for OUTBUF is not necessary until the
data processing is completed; thus, the memory pointer used for INBUF can be also
used for OUTBUF.



Mnemonics and Flowchart Comments

LD A, OOH ;Clear accumulator for addition
Block 1 LD C, A ;Clear register C to save carry
LD HL, INBUF ;Set up HL as input buffer memory pointer
LD B, OAH ;Set up register B as a counter
Block 2 NXTBYT: I LD D, (HL) l ;Get data byte from input buffer
ADD A, D ;Add data byte
Block
3 and 4
;If no carry, do not increment CY register
INC C ;Save carry bit
Block 5 SKIPCY: INC HL ;Point to next memory location
o¢ DEC B ;One addition complete, decrement counter
;If all bytes are not added, go back to
Block 6 JP NZ, NXTBYT get next byte
LD HL, OUTBUF ;Set up HL as output buffer memory pointer
LD (HL), A ;Store low-order byte of the sum
Block 7 INC HL ;Point to memory OUTBUF + 1
LD (HL), C ;Store high-order byte in OUTBUF + 1
( HALT ) ;End of program
FIGURE 8.9

Adding Ten Bytes: Program and Flowchart
194
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2. In this problem, the data processing block needs to be expanded because of the carries.
Whenever a carry is generated after an addition, the carry register will be incremented;
thus, the high-order byte of the sum will be saved in the carry register and the low-order
byte will be in the accumulator.

8.13 Program Description and Execution

The comments written in the program (see Figure 8.9) explain the function of each instruc-
tion, and the flowchart drawn around the instructions shows the sequence of execution.

In the initialization block, the accumulator and register C are cleared for use in
arithmetic operations; otherwise, residual data would cause erroneous results. However,
register D need not be specifically cleared because the first load instruction replaces its
residual data.

This program has two types of loops; one loop repeats the addition-related instruc-
tions if the counter is not zero, and the second loop skips the carry counter if there is no
carry. The instruction ADC (Add with Carry) is inappropriate for this problem; this
instruction can be used for 16-bit addition (See Appendix A).

In the output block, the HL register is used again as a memory pointer for the output
buffer memory. After all bytes have been added, the low-order byte of the result, which is
in the accumulator, is stored in the memory location OUTBUF, and the high-order byte
(carries) in register C is stored in the next memory location OUTBUF + 1.

DEBUGGING A PROGRAM
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8.8

Debugging a program is similar to troubleshooting hardware, but is much more difficult
and cumbersome. When a program does not work, very few clues alert you to what exactly
went wrong. Therefore, it is essential to search carefully for the errors in the program
logic, machine code, and execution.

The debugging procedure can be divided into two parts: static debugging and
dynamic debugging. Static debugging is similar to visual inspection of a circuit board; it
is the paper-and-pencil check of a flowchart and machine code. Dynamic debugging
involves observing outputs, register contents, and flags following the execution of either
instruction (the single-step technique) or a group of instructions (the breakpoint tech-
nique).

8.81 Static Debugging of Machine Code

Translating the assembly language into the machine code is similar to building a circuit
from a schematic, in that the machine code will have errors Just as would the circuit board.
If an assembler is used to translate the code, most of the errors involved in hand assembly
can be eliminated. The following errors are common in manual assembly:

1. Selecting a wrong code.
2. Forgetting the second byte or third byte of an instruction.
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3. Specifying the wrong jump location.
4. Not reversing the order of high and low bytes in a Jump instruction.
5. Writing memory addresses in decimal, thus specifying wrong jump locations.

The debugging problems given in the Assignments section at the end of the chapter
will illustrate some of these errors.

8.82 Dynamic Debugging

Dynamic debugging is concerned with observations of data after executing an instruction
or set of instructions. These observations may include verifying output displays, checking
flags, examination of register contents, and tracing execution flow. The process is similar
to that of the signal-injection technique in troubleshooting hardware, which involves
injecting a signal into a hardware system and checking signals at various points against the
expected outputs. Similarly, in debugging programs, we execute a few instructions and
check register contents or outputs against the expected results. The commonly used tech-
niques and tools are (1) Single Step, (2) Register Examine, and (3) Breakpoint.

SINGLE STEP

The single step technique allows us to execute one instruction at a time and to observe the
results following each instruction. As we advance through each instruction, we will be
able to observe memory addresses and codes as they are executed. With the single step
technique, we can spot

O Incorrect addresses.
O Incorrect jump locations for loops.
O Incorrect data or missing codes.

This technique is generally used in conjunction with the Register Examine facility
(described below), and it is very useful for short programs (50-100 machine codes). For
larger programs, the technique is cumbersome and time consuming.

REGISTER EXAMINE

The Register Examine facility allows us to examine the contents of the microprocessor
registers and the flags. We can examine registers after the execution of each instruction or
after the execution of a group of instructions and compare the contents with the expected
outcomes.

BREAKPOINT

The breakpoint technique allows us to check the program in segments. We can set a
breakpoint at the end of a program segment or multiple breakpoints at various memory
locations. When the microprocessor is asked to execute the program, it executes the codes
until it comes across the first breakpoint, where it returns the control to the breakpoint
subroutine in the system. At this point, we can examine the registers for expected results.
If the segment of the program is found satisfactory, the program can be executed up to the
next breakpoint. With the breakpoint technique, we can isolate the segments of the pro-
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grams with errors and debug those segments with the single step technique. The breakpoint
technique is generally used to check out timing loops, I/O sections, and interrupts.

COMMON SOURCES OF ERRORS

In addition to the errors mentioned in Section 8.81, here is a list of errors of common
occurrence in the types of programs discussed in this chapter.

O Failure to clear the accumulator when it is used to add data.

O Failure to clear registers when they are used to store partial results or carries.

O Failure to update an index or a counter.

O Failure to set a flag before using a conditional Jump instruction or use of an inappro-

priate flag.

O Inadvertently changing a flag before using a Jump instruction.

Z80 SPECIAL INSTRUCTIONS 8. 9

The Z80 instruction set includes some instructions that perform more than one task. These
instructions improve programming efficiency considerably. Some of these instructions are

as follows:

Mnemonics

DINZ d

LDI

LDIR

LDD

LDDR

Description

Decrement B and Jump Relative on no zero (Z = 0)

The instruction decrements register B, and if B # 0, it jumps to
memory address specified by the offset value d.

Load and Increment

The instruction copies a data byte from the memory location shown
by HL into the memory location pointed to by DE. Registers HL and
DE are incremented and BC is decremented.

Load, Increment, and Repeat

This is similar to the instruction LDI, except that it is repeated until
BC = 0.

Load and Decrement

The instruction copies a data byte from the memory location shown
by HL into the memory location pointed to by DE. Registers HL,
DE, and BC are decremented.

Load, Decrement, and Repeat

This instruction is similar to LDD, except that it is repeated until
BC =0.
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Example
8.12

Solution

Modify the illustrative program Addition With Carry (Section 8.7) using the instruction
DINZ and the offset value.

The following mnemonics are repeated from a segment of the program in Figure 8.9; we
assume that the segment is stored in memory locations starting from 2008y.

Location Label Mnemonics Comments
2008 NXTBYT: LD D, (HL) ;Get data byte from input buffer
2009 ADD A, D ;Add data byte
200A JP NC, SKIPCY ;If no carry, do not save CY
200D INC C ;Save carry bit
200E SKIPCY: INC HL ;Point to next memory location
200F DINZ F7H ;Decrement counter B, and if B #

0, jump to location 2008 to get
the next byte

Program Description and Calculation of the Offset Value In this program, the
instruction DINZ replaces two instructions—DEC B and JP NZ, NXTBYT—from the
program in Figure 8.9. The instruction DINZ assumes that register B is used as a counter.
When the Z80 executes the 2-byte instruction DINZ, the program counter holds the
address 2011y. The offset value for the jump location NXTBYT (2008y) is obtained as
follows:

Program Counter: 2 0 11

Jump Location: 2 0 038
09%(00001000D
2’s Complement F7lu (111101110

of 09y:

8.10

ILLUSTRATIVE PROGRAM 3: BLOCK TRANSFER OF
DATA BYTES USING Z80 SPECIAL INSTRUCTIONS

This program transfers data from one memory block to another using the Z80 instruction
LDIR.

8.101 Problem Statement

Modify the illustrative program (Section 8.63) using the instruction LDIR. The problem
statement from the previous program is as follows: Transfer 100 bytes from the memory
block SOURCE to the memory block OUTBUF and indicate the end of data transfer by
displaying 01 at PORTO.
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8.102 Problem Analysis

To use the instruction LDIR, the HL register should be used to point to memory SOURCE
and the DE register to the destination OUTBUF. Even if the total number of bytes to be
transferred is an 8-bit number (64y), the register BC should be used as the counter with the
16-bit count (0064y).

8.103 Program

Label Mnemonics Comments
START: LD HL, SOURCE ;Set up HL as pointer for SOURCE memory
LD DE, OUTBUF ;Set up DE as pointer for OUTBUF memory

LD BC, 0064H ;Specify the number of bytes in BC

LDIR ;Transfer data byte from SOURCE to OUTBUF
and repeat until BC = 0

LD A, OIH ;Load display indicator

OUT (PORTO0), A ;Display end of data transfer

HALT ;End of program

8.104 Program Description

In this program, the instruction LDIR is the workhorse; it replaces several instructions
from the illustrative program in Section 8.63. The instruction performs three operations:
(1) copies a data byte from the memory location pointed to by the HL register into the
memory location indicated by the DE register, (2) updates memory pointers (HL and DE)
and the counter (BC), and (3) makes the decision to repeat or terminate the loop based on
the count in the BC register. When all 100 bytes are copied into new locations, the counter
BC becomes zero, and the program goes on to display 01 at PORTO.

SUMMARY
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In this chapter, we illustrated a group of instructions from the Z80 set frequently used
in writing programs. Instructions were selected from three groups: data copy, arith-
metic, and branch. These instructions range from 1-byte to 4-byte in length.

General characteristics of these instructions are as follows:

1. The data copy and load instructions copy the contents of the source into the desti-
nation without affecting the source contents. They do not affect the flags.

2. The arithmetic instructions (with some exceptions) assume one of the operands is
the accumulator, and the result of an operation is usually stored in the accumulator.
Most of these instructions affect the flags.

3. The conditional Jump instructions are decision-making instructions and executed
according to the status of the flags. Not all instructions affect the flags; in particu-
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lar, the data copy instructions and 16-bit increment/decrement instructions do not
affect the flags.

The Z80 microprocessor includes two index registers (IX and 1Y), which are used
primarily as memory pointers. The instructions related to index registers have 2-
byte opcodes and perform data copy and arithmetic operations with the contents of
memory registers.

Programming techniques such as looping, counting, and indexing were discussed

and a generalized flowchart was illustrated. Two illustrative programs were discussed
in the context of this generalized flowchart.

Finally, some Z80 special instructions were introduced. These instructions per-

form multiple tasks; thus, they improve programming efficiency.

ASSIGNMENTS

Note: In the following assignments use your own data if data are not given.

Section 8.1

1.

2.

Write mnemonics to load 39y into register B and 92y into register D. Save the
contents of B in register L and display the contents of D at PORT]I.

Write instructions to load 47y into register B and F2y into register C using one in-
struction. Store the contents of C in memory location 2080y and display the con-
tents of B at PORT1. Assemble the Hex code and store the code in memory loca-
tions starting from 2000y.

. Write instructions to load A2y into register D and 2080y into register HL.. Copy

the contents of D into memory location 2080.

. Write instructions to load A7y into register D and 2055y into register BC. Copy

the contents of D using BC as a memory pointer.

. The memory location 2040y contains 98y and 2070y contains F7,. Write instruc-

tions to exchange the contents of these memory locations and assemble the Hex
code.

Specify the register contents and the flag statuses after execution of the following
instructions (show only changes):
Registers Flags
A B C H L Z CY
34 7F FF 01 00 0 I (Initial Conditions)
LD A, O0H
LD BC, 8058H
LD B, A
LD HL, 2040H
ILDL,C
LD (HL), A

HALT
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7. Write instructions to read the input port 80y and output the reading to the port 05y
(See Figure 8.10). What appliances will be turned on with this output?
8. Write comments to explain the functions of the following instructions:

LD HL, 2065H
LD (HL), OOH
HALT

Section 8.2

9. What are the contents of the accumulator after the execution of the instruction
SUB A? Specify the status of the Z and CY flags.

10. Write the instructions to load FFy into the accumulator and increment A. Specify
the status of the S, Z, and CY flags after the execution of the increment instruc-
tion.

11. In the previous assignment (#10), replace the increment instruction with the in-
struction ADD A, 01H and explain how the flags S, Z, and CY are affected after
the addition.

ON: §;—1 D,
OFF: sﬁ_&
OFF: §,— 2
ON: S, 11 Input Port Data Bus 780
ON: 53_______1_. 80H System
ON: sz..__.-T
ON: 5, 1 =
ON:  §j— EN 0
Input —————T ] —————— Air Conditioner
Enable |————— Heater
Coffeepot
Output  _  Radio
gg: Light |
Light 2
Light 3
EN ———— Light 4
Output Enable —————}
FIGURE 8.10

Appliance Control
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12. Specify the register contents and the flag status after the execution of the follow-

13.

14.

15.

16.

17.

ing instructions. What is being displayed at PORT1?

Register Contents Flags
A B C S Z CY
FF 77 89 1 0 1 (Initial Conditions)
SUB A

IDB, A

ADD A, ASH
LD C, 57TH

ADD A, C

DEC A

OUT (PORT1), A
HALT

Write instructions to load 40FFy into register HL and increment HL. Specify the
contents of register HL..

Register HL contains 20FFy;. What are the contents of register HL if the byte 01y
is added (not incremented) to register L? What are the statuses of the S, Z, and
CY flags after the addition?

Write instructions to perform the operations listed in 14, and assemble the code
showing memory addresses.

Show the contents of the registers and the memory locations that are affected after
the execution of the following instructions. Explain the difference between the
two INC instructions shown below.

LD (209FH), FFH
LD HL, 209FH
INC (HL)

INC HL

HALT

Find the results of the following operations and explain the difference between the
two results.

SUB A SUB A

LD HL, 971FH LD HL, 971FH
L.D BC, 8F9CH LD BC, 8F9CH
ADD A, L ADD A, L
ADD A, C ADD A, C
ADD A, B SUB H

SUB H ADD A, B

HALT HALT
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Section 8.3

18.

Load 48A2y into register BC. Subtract the contents of C from B. If the answer
is in 2’s complement, display 01y at PORT1; otherwise, display the result. As-
semble the code and execute the program.

19. Execute the program in 18 by loading F247y in register BC.

20. Three data bytes are stored in memory locations 2050, 2051, and 2052;;. Write
instructions to subtract the bytes stored in memory locations 2050 and 2051 from
the byte stored in location 2052y. If the answer is in 2’s complement, display
FFy at PORTI; otherwise, display the answer. Execute the instructions with the
following set of data in Hex.

Set 1: 2050 = 32, 2051 = 78, 2052 = F9
Set 2: 2050 = 67, 2051 = 98, 2052 = F9

21. The Relative Jump instruction JR NZ, 68H is stored in memory locations 20A7y
and 20A8y. Calculate the jump location.

22. If the opcode of the Relative Jump instruction JR NC, 8FH is located at memory
location 2050y, calculate the jump location.

23. Assemble the code in Illustrative Program 1 (Section 8.63) and replace the in-
struction JP NZ, NEXT with the appropriate Relative Jump instruction and off-
set.

24. In Ilustrative Program 2 (Figure 8.9), assemble the code and replace the Jump
instructions JP NC, SKIPCY; and JP NZ, NXTBYT with the appropriate Rela-
tive Jump instructions and their offsets.

Section 8.4

25. Rewrite the instructions in Figures 8.2 (a), (b), and (c) using the index registers
IX and I'Y as memory pointers.

26. Write instructions to load 20704 into the IY index register. Using the register I'Y
as a memory pointer with appropriate offsets, store the bytes A2y and 32y in
memory locations 204Fy and 209F,, respectively.

27. Calculate the value of the memory pointer if register IX contains 2000y with the
displacement byte 80y.

28. Calculate the values of two memory pointers if register I'Y contains 20FFy and it
is combined with the displacement bytes 7Fy and 8Fy.

29. Assuming the index register IX contains 2050y, explain the difference between
the instructions INC IX and INC (IX + 0).

30. Rewrite Illustrative Program 1 (Section 8.6), Block Transfer of Data Bytes, us-
ing the index registers as memory pointers.

Section 8.5

31. Draw a flowchart to add the numbers stored in memory location INBUF (Input

Buffer). When the result generates a carry, subtract the last byte and display the
sum.
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32.

33.

34,
35.
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Modify the above program to count and display the number of bytes added (ex-
cluding the last one).

You are given a long grocery list and asked to buy the iterns from number 20 to
47. Any item that costs more than $10.00 should be excluded. Add up the total
cost and show the total expenses. Draw a flowchart for performing these tasks.
Modify the above flowchart to include a ceiling of $100 on total expenses.
Draw a flowchart to add the string of numbers stored in memory locations
BUFFER. The end of the string is indicated by the number 00. Display the sum.

Section 8.6

36.

37.

38.

39.

The following block of data is stored in memory locations INBUF. Transfer the
data to the locations QUTBUF in the reverse order.

Data (H) 47, 97, F2, 9C, A2, 98

Ten bytes are stored in memory locations starting from INBUF. To insert an ad-
ditional five bytes at the beginning locations, it is necessary to shift the first ten
bytes by five locations. Write a program to shift the data string by five memory
locations.

Ten 16-bit readings are stored in memory locations SOURCE; the low-order byte
is stored first, followed by the high-order byte. Write a program to copy the low-
order bytes only to a new location BUFFER.

Given the initial conditions in 38, eliminate the high-order readings and store the
low-order readings in consecutive memory locations SOURCE.

Section 8.7

40.

41.

42.

43.

44.

45.

46.

Draw a flowchart to modify Illustrative Program 2 (Section 8.7) to include the
instruction Jump On Carry instead of Jump On No Carry (JP NC, SKIPCY).
You may have to use an additional Jump instruction, and the flowchart may have
to be altered significantly.

Modify Illustrative Program 2 (Section 8.7) using the DE register as a memory
pointer instead of HL.

Modify Illustrative Program 2 (Section 8.7) using the DE register as a memory
pointer and a memory location as a counter (instead of register B).

Write a program to add the following string of data bytes until a carry is generat-
ed. When the Carry flag is set, subtract the last byte added and display the sum
at PORT1.

Data (H) 89, 32, 2B, 7A, BS, 68, 2F, . ..

Modify the previous program to count the number of bytes added (excluding the
byte that generates the carry) and display the count at PORT2.

Ten 16-bit readings are stored in memory locations SOURCE; the low-order byte
first, followed by the high-order byte. Write a program to add the low-order
bytes. Display the sum at two different ports and store the sum in two memory
locations OUTBUF and OUTBUF + 1.

Two sets of data, ten bytes each, are stored in memory locations INBUF1 and
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INBUF2. Subtract each data byte stored at INBUF2 from the corresponding data
byte at INBUF1. Add the remainders, and if the sum of the remainders generates
a carry, display FFH at PORT1; otherwise, display the sum at PORTI.

Section 8.8

47. Find the errors in the following instructions.
a. The following instructions add two Hex bytes (06 and 52) and display the
sum at PORT7.

2000
2001
2002
2003
2004
2005
2006
2007

06 LD B, 06H ;Load data bytes
06

OE LD C, 52H

52

80 ADD A, B ;Add data bytes

81 ADD A, C
D3 OUT (07H), A ;Display the sum
76 HALT

b. The following instructions add five bytes stored in memory locations starting
from 2050y4. The sum will be less than FFy.

2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012

S9F
21
20
50
78
05
86
23
05
D2
04
20
76

SUB A ;Clear A
LD HL, 2050H ;Set up HL as memory index

LD B, O5H ;Set up B as a counter
ADD A, (HL) ;Add byte

INC HL ;Point to next byte
DECB ;Reduce count

JP NZ, 2004H ;If B #+ /0, get next byte

HALT ;End of program

¢. The following program transfers a 100y bytes of data starting from the mem-
ory location 2100y to a new location starting from 2800y.

LD HL, 2100H ;Set up HL as index for Source

LD BC, 2800H ;Set up BC as index for new memory

LD DE, 0100H ;Set up DE as counter

NEXT: LD A, (HL) ;Get byte
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LD (BC), A ;Transfer byte to new memory
INC HL ;Update indexes and counter
INC BC

DEC DE

JP NZ, NEXT ;If transfer is not complete, go back
and get next byte
HALT ;End of data transfer

Section 8.9

48.

49.

56.

A data set with 512 bytes is stored in memory locations with the starting address
INBUF1 (2100y). Shift the entire data set by 256 locations with the starting ad-

dress INBUF2 on the next page (2200y). Use the instruction LDDR.

Rewrite Illustrative Program 2 (Section 8.7) using the instructions DJNZ and

JR NC.

Rewrite Illustrative Program 1 (Section 8.6) using the index registers IX and IY

as memory pointers and the instruction DINZ.



Logic and Bit
Manipulation
Instructions

The microprocessor is a programmable logic device;
it can perform all the logic functions of hardware
gates, such as AND, OR, and Ex-OR (exclusive-
OR). It can compare two bytes and indicate the com-
parison (less than, equal to, or greater than) by set-
ting appropriate flags. In addition, it can rotate and
shift bytes, and manipulate individual bits.

In this chapter, Z80 instructions related to log-
ic and compare operations and bit manipulation are
introduced. These instructions are illustrated with
examples, and their applications are shown in two
illustrative programs, one of which demonstrates
how to design time delays using software instruc-
tions. This chapter also includes a section on debug-
ging, which lists errors that commonly occur in writ-
ing these types of programs and suggests debugging
techniques using a counter program.

Finally, this chapter introduces Z80 special
instructions related to the compare operations. These
special instructions perform multiple tasks such as
comparing two bytes, updating registers that are
used as memory pointers and a counter, and making
a decision to change the program sequence. For
example, one of the Compare instructions can search
for a specific byte in a given memory block.
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OBJECTIVES

O Explain how logic instructions (AND, OR, and O

XOR) perform their operations and how flags are

affected by these instructions. O

O Write a set of instructions to illustrate logic oper-
ations and explain how these instructions are used

in masking, setting, and resetting bits. O

O Explain how the Compare instructions perform a

comparison and modify flags to indicate the com- O

parison of two bytes.

O Explain the Rotate instructions and their effects O

on the contents of the accumulator and the CY
flag.

ASSEMBLY LANGUAGE PROGRAMMING: THE Z80

Write a set of instructions (programs) to illustrate
the use of Compare and Rotate instructions.
Explain how a specific bit in a register or memory
can be checked and set or reset by using bit
manipulation instructions.

Write a program to set/reset specific bits at a given
interval.

Explain the Z80 special instructions related to
search and compare operations.

Write a set of instructions to illustrate these Z80
special instructions and explain their advan-
tages.

9. ]. LOGIC AND COMPARE OPERATIONS

The microprocessor is basically a programmable logic chip. It can perform all the logic
functions of the hard-wired logic through its instruction set. However, the logic operations
are slightly different from the hard-wired logic. The AND gate shown in Figure 9.1(a) has
two inputs and one output. On the other hand, in an 8-bit microprocessor, the AND
instruction simulates eight 2-input AND gates. Figure 9.1(b) shows ANDing the contents
of register B with the contents of the accumulator. Register B contains 77y and the
accumulator has 81y. After ANDing, the result (01y) is stored back into the accumulator.
The other logic functions are performed similarly. In the following sections, we discuss
instructions related to AND, OR, and XOR logic functions; the instruction related to the
NOT function was discussed as 1’s complement in the last chapter.

Y I I O B O O N O N

Input :D——— Output ] l [ [ [ I ] l
(a) AND B

w=[0o ] o] of o ofofof 1]

FIGURE 9.1

(a) AND Gate, and (b) a Sirnulated AND Instruction
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9.11 Logic AND, OR, and XOR Instructions

Logic instructions are examples of implied addressing; the implied operand is the 8-bit
word of the accumulator. The other operand can be an 8-bit data word or the contents of a
register or memory. When the second operand is a memory location, it can be specified
either by the 16-bit number in the HL register or the 16-bit number in an index register with
an offset byte. (See Appendix A for complete descriptions with examples of these instruc-
tions.)

Opcode Operand Bytes Description

AND r 1 AND contents of a register with the accumulator

AND 8-bit 2 AND 8-bit data with the accumulator

‘:gg g%l dy* :1,)} AND contents of memory with the accumulator

OR r 1 OR contents of a register with the accumulator

OR 8-bit 2 OR 8-bit data with the accumulator

8§ g{; )+ dy ;} OR contents of memory with the accumulator

XOR T 1 Exclusive OR contents of a register with the ac-
cumulator

XOR 8-bit 2 Exclusive OR 8-bit data with the accumulator

XOR (HL) l} Exclusive OR contents of memory with the ac-

XOR (IX + d)y* 3 cumulator

General Characteristics

These logic instructions

1. implicitly assume that the accumulator is one of the operands.

2. reset (clear) Carry (CY) flag and modify S, Z, and P/V flags according to the data
conditions of the result.

3. place the result in the accumulator.

4. do not affect the contents of the operand register or memory.

209

Figure 9.2 shows an input port (PORT1) with three switches connected to data lines Do,
D,, and D,; when a switch is on, it provides logic 1 to the respective data line. Write
instructions to read the port and save the reading in memory location INBUF.

IN A, (PORT1) ;:Read the switch positions

AND 07H ;Mask data bits D3-D4
LD (INBUF), A ;Store the reading in memory INBUF
HALT

*The similar instructions related to the index register IY are not shown here.

Example
9.1

Solution
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FIGURE 9.2 0
Reading Switches from an Input Port 3V Input 7
Port ——D
__._DS
- D,
PORT1 Data Bus
Ds
On 1 1 Dv
I “OF 0 0 o
i
~_ On 1 N i D,

= READ Control
Signal

The first instruction reads the switch positions at PORT1. Even if only three switches are
connected, the reading will be 8-bit data; bits D3-D7 will be random. Therefore, bits Ds-D4
should be masked or eliminated without affecting the switch positions. This is accom-
plished by ANDing the input reading with an appropriate masking byte (07y). The mask-
ing byte is obtained by placing Os in bit positions that are to be masked and by placing 1's
in bit positions where switches are connected. The masking is performed as follows, and
the switch positions (1 0 1) are stored in memory INBUF.

D; D Ds Dy D3 Dy D, Dy
Input Reading in Accumulator: AND X X X X X 1 0 1
Masking Byte (07y): 0 0 0 o o0 1 1 1
Result in Accumulator: o 0 0 0 o0 1 0 1
Flag Status: $=0,Z2=0,CY=0

Example
9.2

A microcomputer with two input ports and one output port is designed to monitor various
processes (conveyor belts) on the floor of a manufacturing plant (Figure 9.3). The input
port Fly; with seven switches is located at the north end of the floor, and the input port
F2y, also with seven switches, is located at the south end of the floor. The port F1 is used
to start and stop the conveyor belts in a normal situation, and if necessary, a belt can be
stopped or prevented from starting by sending logic 1 through the corresponding switch at
port F2y. (The data line Dy of the output port is connected to an emergency signal and is
not a part of this example.)
Write instructions to

1. Turn on and off the seven conveyor belts according to ON/OFF positions of switches
S6~So at port F]H

2. Stop the conveyor belt if the corresponding switch is on at port F2y.

3. Monitor the switches continuously.
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Conveyor
Belt
Relays

(A)

(A) — (B)

(A)

(A)

(B)

X X
s Off 0 0 Data Bus
6
5. Off 0 Input 0
o Off 0 Port 0 Mi Z80
4
Y of 0 0 :> icroprocessor
S, On 1 Fin 1
S, On 1 1
s On 1 1
0 EN
l READ
X X 0
, 0 0 [} Off
6 0 Input 0 0 Output or
o ) Port 0 of Port Off
‘; 0 0 0 Off
: 9 F2u 0 1 F3u On
. 0 0 1 On
s;; 1 1 0 Off
EN EN
[—— READ WRITE ——md
FIGURE 8.3
Microprocessor-Controlled Conveyor Belts
START: IN A, (F1H) ;Read switches
at F1H X0000111
AND A, 7FH ;:Mask bit D5 orrrratrt
LD B, A ;Save reading
from F1H 00000111
IN A, (F2H) ;Read switches
at F2H X0000001
AND A, 7FH :Mask bit D, ott111111
00000001
XOR B ;Check switches
that are on at
Fland F2 00000111
OUT (F3H), A ;Turn on/off ap-
propriate con-
veyor belts 00000110

(A)
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Solution
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JP START ;Go back and
read switches
again

The three switches So, Sy, and S, at port Fly are turned on as shown in Figure 9.3.
Initially, these switch positions are read, bit D7 is masked, and the reading is saved in
register B. In port F2y, the switch Sy’ is on, which means somebody from the south end of
the floor wants to stop the belt connected to line Do. This reading, after bit D, is masked
again, is Exclusive-ORed with the reading from the port Fly. Because the switch So’ is on,
the output at port F33is 00 0 0 0 1 1 0, which turns off the first conveyor belt.

9.12 Compare Instructions

The Compare instructions test a byte for less than, equal to, or greater than the contents of
the accumulator, and the comparison is indicated by the flags without affecting the oper-
ands. The instructions can test the contents of a register, memory, or 8-bit data against the
contents of the accumulator. The instructions are as follows:

Opcode Operand Bytes Description
CP r 1 Compare the contents of a register with the accu-
mulator
Cp 8-bit 2 Compare 8-bit data with the accumulator
CP (HL) 1} Compare the contents of memory with the accu-
Cp (IX + d) 3 mulator

General Description These instructions compare the operand (data byte, register con-
tents, or memory contents) with the contents of the accumulator by subtracting the operand
from the accumulator. However, no contents are modified; the comparison is indicated by
setting the flags.

If (A) < operand, the Carry flag is set and the Zero flag is reset.

If (A) = operand, the Zero flag is set and the Carry flag is reset.

If (A) > operand, the Carry and Zero flags are reset.

Other flags are also affected according to the result of the subtraction.

When the operand is memory, the address is specified by the contents of HL register or
index registers with an offset byte.

I

Example
9.3

Write instructions to compare the byte in memory location 2050y with 80y. If the byte is
equal to 80y, jump to location CHECK, and if it is higher than 80y, jump to OVRLD to
indicate the circuit overload.
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LD HL, 2050H :Set up HL as memory pointer
LD A, 80H ;Load comparison byte
CP (HL) ;Compare memory byte with 80H
JR Z, CHECK ;If memory byte = 80H, begin CHECK procedures
JR C, OVRLD :Indicate overload
A Relative Jump instruction can be used with a label; the assembler will automatically

calculate the offset value. However, in manual assembly, the magnitude of the offset must
be calculated by the user.
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Solution

ROTATE (SHIFT) OPERATIONS AND BIT
MANIPULATION

9.2

The rotate instructions shift each bit either to the right or to the left. These instructions are
used primarily for mathematical operations and serial I/O, where one bit is transmitted
over a single line. The Z80 has a set of rotate instructions that can rotate bits not only in the
accumulator but in any register and memory location.

Another group of instructions that makes the Z80 one of the most attractive micro-
processors in control applications is bit manipulation. The Z80 can test, set, or reset any bit
in an 8-bit register or memory. In other microprocessors, the user must write a set of
instructions to test a bit in a register or memory.

In this section, we first introduce the Rotate instructions dealing with the accumu-
lator bits and then discuss the Rotate instructions dealing with registers and memory.
Finally, we examine the bit manipulation instructions.

9.21 Rotate Instructions (Accumulator)

The following Rotate instructions deal with the bits in the accumulator. The rotate oper-
ations can be classified into two groups: Rotate Left and Rotate Right. Each group can be
further classified into (1) 8-bit rotation and (2) 9-bit rotation through Carry. In 8-bit
rotation, each bit of the accumulator is shifted to the adjacent position. In this operation,
the Carry flag is affected by the rotation, but it is not a part of the rotation. On the other
hand, in 9-bit rotation, the C flag is one of the bits in the rotation. These instructions are
shown in Figure 9.4.
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RLCA :Rotate accumulator left.
Carry is affected by D5.

RL.A :Rotate accumulator left
through Carry.

RRCA :Rotate accumulator right.

Carry is determined by Dj.

RRA :Rotate accumulator right
through Carry.

FIGURE 9.4
Rotate Instructions
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Example
9.4

Solution

The accumulator contains 81y with the Carry flag reset. Illustrate the contents of the
accumulator and the status of the Carry flag after the execution of each rotate instruc-

tion.

cY D; Dg Ds D, Dy D, D, D, CY  D;D¢ DsD, Dy D, D, D,

—11!0!0!0!0!0!0!1'«-— Reca~ [1]  [oJoJoJo o o 1]1]~ 03

L—@-—{llo ofofofofo] 1}« RrLA- E] lofo]ofo]o]o]1]o]— 024

1 rrca— [1] [i]iTeJoJo]0]0]0]- cos

FIGURE 9.5

1 RRa- [1] [o]1JoJoJoJo]o]0]- 40u

Rotate Instructions and Accumulator Contents

Figure 9.5 shows how the byte 81y in the accumulator is changed after various rotate
instructions. The first two instructions rotate bits to the left; however, RLCA is an 8-bit
rotation and RLA is a 9-bit rotation. In instruction RLCA, bit D5 is rotated into bit Dy; yet,
in instruction RLA, CY is rotated into bit Do. Both instructions modify the CY flag ac-
cording to bit Dy. Similarly, RRCA is an 8-bit and RRA a 9-bit rotate right instruction.
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The memory location 2050y contains a 4-bit number. Write instructions to multiply the
number by ten and store the result in the same memory location.

LD HL, 2050H ;Set up memory pointer

LD A, (HL) ;:Get the number

RLCA ;Multiply by 2

ILDB, A :Save result to use it later

RLCA ;Multiply by 4

RLCA ;Multiply by 8

ADD A, B ;To multiply by 10, add multiply-by-2
LD (HL), A ;Save result in memory

HALT

Rotating bits to the left by one position is equivalent to multiplying the number by two, and
rotating to the right is equivalent to dividing by two. For example, if the number is Oly,
the instruction Rotate Left makes it 02y. This technique is valid until bit D; does not rotate
1 into bit Dy. For example, rotating the number 80y left makes it O1y. However, this
number can be divided by two by rotating it right.

In the above instructions, the number is multiplied by eight by rotating the accu-
mulator contents three times. Adding the result of multiply-by-two to the result of multi-
ply-by-eight is equivalent to multiply-by-ten.

Example
9.5

Solution

9.22 Rotate and Shift Instructions (Registers and Memory)

The Z80 instruction set has several rotate instructions; these instructions can rotate bits in a
register or memory. This is unlike the 8080 set, which restricts rotation to the accumulator.
In addition, the Z80 has shift instructions which shift bits in a given direction. In the
following instructions, r represents any register (A, B, C, D, E, H, orL), and m stands for
a memory location in R/W memory. In these instructions, a memory location can be
specified by HL or an index register. The instructions are as follows:

Opcode Operand Description
RLC rorm Rotate bits left in a register or memory.
RL rorm Rotate bits left through Carry in a register or memory.
RRC rorm Rotate bits right in a register or memory.
RR rorm Rotate bits right through Carry in a register or memory.
SLA rorm Shift bits left through CY in a register or memory and in-

sert O in bit position Dy.

SRL rorm Shift bits right through CY in a register or memory and in-

sert O in bit position D-.

The set also includes the instructions SRA, RLD, and RRD. (See Appendix A for their
complete description.)
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General Characteristics

1. In these instructions, the memory address can be specified either by using the HL
register or an index register with an offset.

2. Flags S, Z, and P/V are modified according to data conditions. The CY flag is deter-
mined by Dy in left rotation (or shift) and by Dy in right rotation (or shift).

3. The Shift instructions (SLA and SRA) differ from the rotate instructions in their oper-
ations. In Shift instructions, bits are shifted into the next position and Os are inserted
from the other direction. (See Appendix A for complete discription of these instruc-
tions.)

Example
9.6

Solution

In a Key Monitor program, register B is used to store binary codes of data keys of the Hex
keyboard. When a key is pressed, the accumulator receives the 4-bit binary code, and it is
stored as the low-order four bits in register B. When a new key is pressed, the previous
4-bit code in register B is shifted to the left and the new key code is stored as the low-order
four bits. Write instructions to store a new key code in register B.

SLAB ;Shift low-order key code to left
SLAB ;and clear bit positions D3;-Dg in B
SLAB

SLAB

OR B ;Store new key code as low-order bits
LD B, A

9.23 Bit Manipulation

The bit manipulation group has three types of instructions: Bit Test, Bit Set, and Bit Reset.
These instructions can test, set, or reset a bit in a register or memory. The instructions are
as follows:

Opcode Operand Description
BIT b, rorm Test bit b in register or memory. If bit is 0, set Z flag, and
if it is 1, reset Z flag.
SET b,rorm Set bit b in register or memory.
RES b, rorm Reset bit b in register or memory.

General Characteristics

1. The operand ‘‘b’’ represents any bit from D7 to Dy; it is specified as a number between
0 and 7.

2. The memory address can be specified by using either the HL register or an index
register.

3. The Set/Reset instructions do not affect any flags.
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Write instructions to read a byte from PORT 1, reset bit D, and store the reading in memory
INBUF.

IN A, (PORT1) :Read PORT1
RES 7, A ;Eliminate the parity bit
LD (INBUF), A ;Store reading in memory

To cite a practical use for these instructions, bit D5 is used to indicate the parity in
ASCII characters; therefore, to process these characters, bit D; must be eliminated (this
will be discussed in Chapter 15).

Example
9.7

Solution

ILLUSTRATIVE PROGRAM 1: SEARCHING FOR A
MAXIMUM NUMBER

9.3

This program searches for a maximum number in a given set of data bytes stored in
memory. It compares two numbers at a time, saves the higher number, and continues the
process until the end of the data set.

9.31 Problem Statement

A set of ten readings is stored in memory locations starting from INBUF. Write a program
to find the highest reading in the set, and store that reading in memory OUTBUF.

9.32 Problem Analysis

1. Initialization: In this problem, we need one counter to count ten readings and a memory
pointer for the INBUF memory. In addition, we need one register and the accumulator
for comparison.

2. Data Processing: This block involves comparing two numbers and saving the larger one
for the next comparison. This process is continued until the counter is zero.

9.33 Program
START: XOR A ;Begin with minimum reading (00)

LD B, OAH ;Set up register B as a counter
LD HL, INBUF ;Set up HL as memory pointer for INBUF

NEXT: CP (HL) ;Compare memory reading with accumulator
JP NC, SKIP ;If reading is lower, do not save
LD A, (HL) ;Save reading

SKIP: INC HL ;Point to next memory location

DEC B ;One comparison complete, decrement count

JP NZ, NEXT ;Get next reading if counter # 0



218

9.4

ASSEMBLY LANGUAGE PROGRAMMING: THE Z80

LD HL, OUTBUF ;Set up HL, as memory pointer for OUTBUF
LD (HL), A ;Save the highest reading
HALT ;End of program

9.34 Program Description

In this program, the new concept is a comparison of two numbers; otherwise, the remain-
ing program is similar to the programs in the previous chapter.

This program begins by clearing the accumulator and then compares the reading in
memory INBUF with the accumulator. If the data byte in the accumulator (A) is larger than
the data byte in memory (HL), the CY flag is reset, and the program does not save the byte.
If the data byte in memory is larger than (A), the CY flag is set, and the byte is saved for
the next comparison. This process is continued until all the readings are compared.

ILLUSTRATIVE PROGRAM 2: GENERATING SQUARE
WAVE PULSES

The microprocessor can be used as a function generator to produce various types of
waveforms using time delays and appropriate hardware. This program generates a square
wave for a given frequency by turning a bit of an output port on or off at the specified time
interval.

9.41 Problem Statement

Write a program to generate a square wave with period of 500 ws if the system frequency is
2 MHz. Use bit Dy of the output port PORT]1 to display the waveform.

9.42 Problem Analysis

This problem is somewhat different from the previous data transfer or arithmetic pro-
grams. It involves turning bit Dy on or off every 250 ws; Figure 9.6 shows the flow-
chart.

The initialization block is simple; it includes the loading of bit pattern into the
accumulator, but does not even require a counter or a memory pointer. The bit manipu-
lation block is similar to the data processing block; it gets ready appropriate bits for an
output, and the output block turns bit Do on or off. The time delay block provides appro-
priate delay for the output pulse.

TIME DELAYS

A time delay is generated by loading a general-purpose register with an appropriate count
and setting up a loop to decrement the count until it reaches zero. The delay is determined
by the clock period of the system, the number of instructions in the loop, and the number
of times the loop is repeated. A typical set of instructions representing the time delay is
shown here, and Figure 9.7 shows the flowchart for these instructions.
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( start )

Load Bit
Pattern

® Get Bit Pattern . Loas! Dela'y
° Bit Manipulation Count in Register
Output
to Turn On/Off Decrement
Pulse Count
Delay
Loop
l No
Go Back
— to Change
Pulse Yes
FIGURE 9.6 FIGURE 9.7
Flowchart; Square Wave Generation Flowchart: Time Delay
Mnemonics T-states Comments
LD B, 64H 7 ;Delay Count
LOOP:DEC B 4 ;Delay Loop

JP NZ, LOOP 10

To calculate the time delay in this loop, we need to examine the T-states in the loop;
one T-state is equivalent to one clock period of the system. For example, the instruction
DEC B has four T-states, so the Z80 executes the instruction in four clock periods. The
loop includes two instructions with 14 T-states, and the loop is repeated 100 (64y = 100)
times; the first instruction LD B, 64H is not part of the loop. Therefore, the loop delay, Ty,
is calculated by the formula Ty = (T¢ X Lt X Njg). In our example,

Te = System clock period (f =2 MHz; T = 1/f = 0.5 us)
Lt = Loop T-states (14)
N = Count in decimal (64y = 100)
" T = (0.5 %X 1076 x 14 X 100)
= 700 ps.
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To calculate the total delay, we need to include the execution time outside the loop.
In this example, one instruction (LD B, 64H) is outside the loop. It has seven T-states and
will require 3.5 ps.

Total Delay Tp = T, + T
where T, = Delay outside the loop
Ty, = Loop delay
Tp =700 ps + 3.5 ps
= 703.5 ps

In most applications, the delay outside the loop is insignificant and can be ignored.
However, in our illustrative program, the delay outside the loop is quite significant, as
discussed in Section 9.44. We can now write the program for generating square wave.

9.43 Program

Mnemonics T-states Comments

1. START: LD C, 01010101B ;L.oad bit pattern

2. ROTATE: LD A, C ) ;Place bit pattern in A

3. RLCA “@) ;Change bit pattern for next
output

4. IDC, A @) ;Save bit pattern

5. AND 01H N ;Mask bits D;—D;

6. OUT (PORT1),A (11 ;Change pulse voltage

7. LD B, COUNT @) ;Load register B with a delay
count

8. LOOP: DEC B G ;Set up delay loop

9, JP NZ, LOOP (10)

10. JP ROTATE 10$) ;Go back to change pulse

voltage

9.44 Program Description

The bit pattern is selected for this program in such way that when it is rotated, it provides
logic 0 and | alternately at bit Do. The bit pattern is masked by ANDing with the byte 01 to
eliminate bits D;—~D;. Bit Dy is turned on and off at the interval of 250 s to generate a
square wave with the period of 500 ws. In this program, we are concerned with the delay
between two consecutive outputs and not just the delay in the loop. The loop count for the
total delay of 250 ws is calculated as follows:

1. The delay loop consists of two instructions (8 and 9) with a total of 14 T-states;
however, the number of times the loop is repeated (COUNT) needs to be calcu-
lated.

Delay in the loop T= (0.5 x 107¢ X 14 X Count)
= 7 X 107% x Count



LOGIC AND BIT MANIPULATION INSTRUCTIONS

. In this problem, we are concerned with not just the delay in the loop, but how long the

pulse stays on. After the execution of the OUT instruction (6), all the delay caused by
the instructions in addition to the delay loop should be accounted for until the OUT
instruction is executed again. The instructions that are executed once are 2 through 7
and 10. Therefore,
T-states outside the loop =47.
Delay outside the loop To = (0.5 x 10° X 47) = 23.5 ps
Total delay Tp =T, + T
250 ps = 23.5 + 7 x 107 x Count
Count = (250 — 23.5)/7 = 32

In this program, the delay outside the loop is quite significant, ten percent of the total

delay. The loop will be repeated 32 (20y) times.

DEBUGGING PROGRAMS
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9.5

The debugging techniques discussed in the previous chapter can be used to check errors in
programs similar to those discussed in this chapter. Common sources of errors in these
types of programs are as follows:

1.
2.

»

9.
10.

Failure to update a memory pointer or a counter.

Failure to set a flag before using a conditional Jump instruction. This is especially true
with 16-bit increment/decrement instructions.

Failure to save partial results.

Specifying Jump instruction on a wrong flag. This error occurs frequently with the
Compare instructions.

Use of wrong Rotate instruction or improper combination of Rotate instructions.
Errors in counting T-states in a delay loop. Typically, the first instruction—to load a
delay register—is mistakenly included in the loop.

7. Errors in recognizing how many times a loop is repeated.
8.

Failure to convert a delay count from a decimal number into its hexadecimal equiv-
alent or vice versa.

Conversion error from decimal to hexadecimal number or vice versa.

Specifying wrong jump location, thus possibly setting up an infinite loop.

9.51 Illustrative Program for Debugging

The following program is designed as a Hex counter to

1. Count from 00 to 20y continuously.
2.
3. Illustrate the loop within the loop technique. The inner loop LOOP1 provides 2.25 ms

Provide 450 ms delay between two consecutive counts.

of delay.
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The program includes several errors. Recognize the errors by answering the ques-
tions below. After correcting those errors, execute the program. If the program still does
not give you the expected output, debug the program using the single-step and the break
point techniques. For delay calculations, the system’s clock is assumed to be 2 MHz.

Mnemonics T-states Comments
1. START: LD A, O0OH ;Load initial count
2. DSPLAY: OUT (PORTD), A (11) ;Display count
3 LOOP2: LD B, C7TH ) ;Load count for outer loop
4. LD C, COUNTI @) ;Load count for inner loop
5. LOOPI: DECC 4) ;Decrement COUNTI
6. NOP 4) ;Add T-states for delay
7 JP NZ, LOOPI (10) ;Repeat LOOPI until C =0
8. DEC B (4) ;Decrement count in outer loop
9. JP Z, LOOP2 (10) ;Repeat LOOP2 until B =0
10. INC A 4) ;Next Hex count
11. CP 20H @) ;Is Hex count = 204?
12. JP NC, DSPLAY (10) ;Go back to display count
13. JP DSPLAY ;Start again
DEBUGGING QUESTIONS

1. Is the jump location for instruction 7 appropriate?
2. The COUNT!1 for LOOPI is as follows:

Ty = T X (T-states) X COUNT1
2.25 ms = 0.5 ps X 25 X COUNT]1
COUNTI = 180

Find the error in the calculations, and recalculate COUNT].
3. The total delay (T) between two consecutive outputs is the sum of the initial delay (Ty),
the outer loop delay (Toy), and the inner loop delay (Ty;). The inner loop (LOOP1) is
repeated 199 (C7y) times because of the outer loop. Thus:

T = 199 X 2.25 ms = 447.75ms

The instructions in the outer loop are 3, 4, 8, and 9, which require a total of 28
T-states. Since these instructions are repeated 199 times:

Tor = (0.5 ws) X 28 X 199 = 2.78 ms

The instructions executed once before the next display are 2, 3, 10, 11, and 12—
a total of 39 T-states.

T, = 0.5 ps X39 = 19 ps

Is there any error in these calculations, assuming the appropriate COUNT1?
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4. Is the jump location for instruction 9 appropriate? What is the effect of the present
location on LOOP2?
5. Execute the program, and observe the output. Write your educated guesses about the

output.

6. Set up a breakpoint after instruction 8 and execute the program. Examine the regis-

ters.

7. Single-step the remaining instructions and examine the contents of registers if neces-
sary. Explain your observations.
8. Correct the errors and run the program again.

Z80 SPECIAL INSTRUCTIONS
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9.6

In this section, we introduce additional Z80 special instructions. The Z80 has Compare
instructions that are capable of searching for a given byte in memory; some instructions
can search through 64K bytes of memory.

Instructions

CPI

CPIR

CPD

CPDR

Compare and Increment

This instruction compares the contents of the memory location specified by
register HL. with the contents of the accumulator. Register HL is incre-
mented and register BC is decremented.

Compare, Increment, and Repeat

This instruction is similar to the previous instruction CPI, except that the
instruction is repeated until BC = 0 or the contents of memory are equal to
the contents of the accumulator.

Compare and Decrement

This instruction compares the contents of the memory location specified by
register HL with the contents of the accumulator. Registers HL. and BC are
decremented.

Compare, Decrement, and Repeat

This instruction is similar to the previous instruction CPD, except that the
instruction is repeated until BC = 0 or the contents of memory are equal to
the contents of the accumulator.

General Characteristics

1. These are 2-byte instructions.

2. The Zero (Z) flag is set when a match is found, meaning the memory byte is the same as
the accumulator byte.

3. The Sign (S) flag is set if the memory byte is larger than the accumulator byte.

4. The Parity/Overflow (P/V) flag is reset when BC = 0.

5. The Carry flag is not affected.
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Example
9.8

Solution

The input buffer memory (INBUF) contains 256 bytes of data. Search for the byte (char-
acter) 24H in the input buffer. If it is found, jump to location START; otherwise, jump to
location ERROR.

LD HI., INBUF ;Set up HL as memory pointer
LD BC, 0100H ;Set up BC as a counter

LD A, 24H ;Load the byte to be searched
CPIR ;Search for 24H in the input buffer
JR Z, START ;Character found, start the process
JR ERROR ;Display error message

The instruction CPIR will be repeated until it finds the character 24,;. When it finds the
character, the Z flag is set, the loop is terminated, and the program jumps to location
START. If there is no match, the instruction is repeated until BC = 0, and the P/V flag is
reset. This flag can be used for decision making if necessary. (The P/V flag is not used in
this example.)

9.7

ILLUSTRATIVE PROGRAM 3: SEARCHING FOR A
MAXIMUM NUMBER USING THE INSTRUCTION CPI

This program searches for a maximum number in a given set of data bytes stored in
memory; this is similar to Illustrative Program 1 in Section 9.3. It compares two numbers
at a time using the instruction CPI and saves the higher number, and the process is
continued until the end of the data set.

9.71 Problem Statement

A set of ten readings is stored in memory locations starting from INBUF. Write a program
to find the highest reading in the set, and store that reading in memory OUTBUF.

9.72 Problem Analysis

1. Initialization: To use the multi-tasking instruction CPI (Compare and Increment), BC
should be used as a 16-bit counter even if the number of readings is not higher than 255,
and HL should be used as the memory pointer for the INBUF memory.

2. Data Processing: This block involves comparing two numbers and saving the larger one
for the next comparison. This process is continued until the counter is zero.

9.73 Program

START: XOR A ;Begin with minimum reading (00)
LD BC, 000AH ;Set up register B as a counter
LD HL, INBUF ;Set up HL as memory pointer for INBUF
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NEXT: CPI ;Compare memory reading with accumulator
JP P, SKIP ;If new reading is lower, do not save
LD A, (HL) ;Save this reading for next comparison
SKIP: JP PE, NEXT ;Get next reading if counter # 0
LD HL, OUTBUF ;Set up HL as memory pointer for OUTBUF
LD (HL), A ;Save the highest reading
HALT ;End of program

9.714 Program Description

This program is similar to the program given in Section 9.3, except that it uses the
instruction CPI, which eliminates the need to update the memory pointer and the counter.
The other significant differences are in flags. The S flag is used to jump to location SKIP
(JP P, SKIP) instead of the Carry flag (JP NC), and the P/V flag is used to go to location
NEXT instead of the Z flag. These changes are necessary because the CPI instruction does
not affect the Carry flag, and it sets the Z flag when a match is found in comparing two
bytes.

To compare two bytes, the instruction CPI subtracts the contents of the memory
location pointed to by the HL register from the accumulator. If the number in the accu-
mulator is smaller than the number in the memory location, it sets the S (Sign) flag to
indicate the negative result; otherwise, it resets the S flag to indicate the positive result.
The contents of the accumulator or memory are not affected in this comparison. The jump
instructions associated with the Sign flags are JP M (Jump On Minus, S = 1) and JP P
(Jump On Positive, S = 0). In our illustration, if the number in the accumulator is larger
than the number in the memory location, S = 0, and the instruction JP P, SKIP does not
save the new byte from memory.

SUMMARY
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In this chapter, instructions related to logic (AND, OR, XOR) operations, compare op-
erations, bit rotation, and bit manipulation were introduced. The chapter is concluded
with the illustrations of Z80 special instructions related to compare operations. General
characteristics of these instructions are as follow:

1. Logic operations can be performed with the contents of the accumulator and the
contents of a register, memory, or 8-bit data. The AND, OR, and XOR instruc-
tions reset the CY flag and modify other flags according to the result of an oper-
ation.

2. A byte can be compared with the contents of the accumulator; the byte can be
direct 8-bit data or from a register or memory. The Compare instructions per-
form the comparison by subtracting the byte from the accumulator, and the com-
parison is indicated by setting appropriate flags without affecting the contents.
When (A) < the byte, the CY flag is set; when (A) = the byte, the Z flag is set,
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and when (A) > the byte, the CY and Z flags are reset. All other flags are af-
fected according to the result of the subtraction.

The rotate instructions can rotate bits in the accumulator, register, or memory ei-
ther left or right by one position. Bit rotations can be performed either for eight
bits or for nine bits including the CY flag. In either rotation, the status of the
CY flag is determined by D5 in the left rotation and by Dy in the right rotation.
The shift instructions can shift each bit in the accumulator, register, or memory
either left or right by one position. When bits are shifted to the left, bit Dy is
placed into the CY flag and O is inserted into bit Dy. When bits are shifted to the
right, bit Dy is placed into the CY flag and 0 is inserted into bit D5.

Bit manipulation instructions can test, set, or reset any bit in a register or memory.

Two applications programs—searching for a maximum number in a data set and

generating a square wave—were illustrated. The square wave program also illustrated
how to design time delays. Errors that commonly occur in writing these programs
were listed, and debugging techniques were suggested in the context of a counter pro-

gram.

Finally, the Z80 special instructions related to block compare operations were il-

lustrated. These Compare instructions can be used for searching a byte in memory.

ASSIGNMENTS

Section 9.1

1.

?“

* N

Write instructions to load 80y and 7Fy into registers B and C respectively. Logi-
cally AND the bytes and save the answer in memory INBUF. Specify the status
of the S, Z, and CY flags after ANDing the bytes.

If the bytes in 1 are ORed instead of ANDed, specify the contents of the accu-
mulator and the flag statuses (S, Z, CY).

Specify the contents of the accumulator and the flag statuses (S, Z, CY) after ex-
ecuting the instruction XOR A.

Write instructions to read PORTI. If the reading is 00y, set the Z flag and jump
back to read the port again. What is the reason to set the Z flag when the input
reading is 004? Specify a I-byte logic instruction that can set the Z flag without
affecting the input reading.

In 4, is AND A an appropriate instruction to set the Z flag? Explain your an-
swer.

Write instructions to read the input port (INPORT) and mask bit D-.

Looad bit pattern 97y into register D and mask high-order bits Dy-Dj,.

Write instructions to load BYTEI and BYTE2 into registers D and E respective-
ly. Check bit Dy in both bytes, and if either one is at logic 1, turn on the indica-
tor connected to bit Dg at the output port OUTI.



LOGIC AND BIT MANIPULATION INSTRUCTIONS

9. Eight lights are connected to output port OUT1. These can be turned on from the
corresponding switches from either of the input ports INPUT1 or INPUT2. Write
instructions to read INPUT1 and INPUT2. If all the switches are off in both
ports, continue to read the input ports. When a switch (or switches) is on in ei-
ther port, turn on the corresponding light(s) at OUT1.

10. Write instructions to load 37y into the accumulator and 6Fy into register B.
Compare the two bytes and specify the statuses of the S, Z, and CY flags.

11. When BYTE2 in register B is compared with BYTEL! in the accumulator, the
CY flag is reset. Explain the significance of the CY flag status.

12. The following instructions read the switches S;—S¢ from port INPUT1 and
S7'~8o' from port INPUT2. When a switch is ON, it provides logic 1 to the corre-
sponding data line (for example, S, to D;). The readings are processed and used
for decision making. Read the instructions, and answer the questions following.

START:

READ:

LD HL, 2065H
LD (HL), 80H
IN A, (INPUTI)
LDB, A

IN A, (INPUT2)
AND B

JP Z, READ
LD B, A

AND 80H

CP (HL)

JP Z, URGENT
OUT (OUT1), A
Continue-—

a.  What is the output at OUT1 when switches So, S;, S3', and S, are turned

ON? Explain your answer.

b. Does the program jump to location URGENT when switches S, S;', and Sq
are ON, or does it go back to READ?

¢. Specify the output if switches S7, Ss, Ss, Si, So from INPUTI and Ss', S4’,
S\, and Sy’ from INPUT2 are ON.

Section 9.2

13. The accumulator contains the byte 77y. What is the byte in the accumulator and
the CY flag status after the execution of the instruction RRCA?

14. The accumulator contains the data byte Cly, and the CY flag is 0. Specify the
contents of the accumulator and the status of the CY flag if the instruction

RLCA is executed twice.

15. In 14, specify the contents of the accumulator and the status of the CY flag if
the instruction RLA is used instead of the instruction RLCA.
16. What is in the accumulator and the CY flag after the execution of the following

instructions?

221
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LD A, F3H
OR A

RLA
RRCA

17. Register B holds the byte 3Fy, representing the values of two Hex keys, 3 and
F. The accumulator holds 02y, representing a new key. Specify the contents of
register B after the execution of the following instructions and explain the func-
tion of the instruction OR A.

LDL, A ;Save new key in register L
LD C, 04H ;Set up C as a counter
LD A, B ;Get previous two keys
SHIFT: OR A ;The next four instructions shift low-order
RLA ;four bits of register B (now in A) into high-
DEC C ;order positions D7—Dy4 and clear D3—Dyg
JP NZ, SHIFT
OR L ;Place bits of new key into D3;~Dy
LD B, A ;Save key bits in B

18. Write instructions using the masking technique and four RL.CA instructions to
perform the same shift function as in 17.

19. Write instructions to shift high-order bits D;—D, of the byte in the accumulator
into low-order position D3;—Dg, and multiply the bits by eight.

20. In 19, mask the low-order bits D3—Dg and shift the remaining bits to the right by
one position. Is the result the same as in 19?

21. Mask the high-order bits D;—Dy of the accumulator and add the remaining bits
D;—Dy four times using the instruction ADD A, A. Explain the result.

22. Can you achieve the same result as in 21 by using the shift instruction?

23. Write instructions to reset the bit D5 in the accumulator and check whether the
number is odd. Ifitis odd, jump to the REJECT routine; otherwise continue.

24. Write instructions to check bits D, and Dy in the acumulator, and if both bits
are high, jump to the URGNCY routine.

Section 9.3

25. Rewrite Illustrative Program 1 (Section 9.3) to find the minimum number in a
given data set.
Data (H) 32, F8, 6A, 47, 1F, AF, 97, 20, 2F, C2

26. A set of ten readings is stored in memory DATA. Write a program to check
whether the byte 30y exists in the set. If it does, stop checking, and display its
memory location; otherwise output FFH.
Data (H) 48, 8F, C7, 68, 9F, 9C, 30, 33, B8, D9

27. A set of ten readings, representing the power consumption in watts of each
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28.

29.

30.

house in the area, is stored in memory INBUF. The limit on consumption per
house is set at 200,¢ watts. Check each reading and count all the readings that
exceed the limit and display the number.

Data (H) A9, B3, 98, C8, C7, F5, C8, 89, D2, E7

A set of eight current readings is stored in memory INBUF. The readings are ex-
pected to be positive (<128,0). Write a program to check each reading, reject
the negative readings, and add the positive readings. Display the answer at the
output port or store it in the output buffer memory OUTBUF.

Data (H) 74, 6F, Al, 7F, 76, 87, 5B, 8C

In 28, modify the program to add the positive readings until the sum exceeds
FFH. If the addition generates a carry, stop the addition and display O1H at the
output port; otherwise, display the sum.

Data (H) 27, Al, 2A, 1F, 38, 81, 19, 9A

Data (H) 87, 22, 5F, 3A, 47, 52, 35, 81

A data string is stored in memory INBUF, and the end of data string is indicated
by the data byte 004. Copy the data string into new memory OUTBUF.

Data (H) 67, 89, 7F, F5, (8, 9A, 4B, 00, F8, F8

Section 9.4

31. Calculate the period of the square wave in Illustrative Program 2 if the COUNT
in the delay loop is changed to 44y.
32. Write a program to generate a square wave with the period of 750 ps. Use bit
D5 to output the square wave.
33. Write a program to generate a rectangular wave with a 300 ws on-period and 500
s off-period.
34. In the following instructions, calculate the delay in LOOP2, LOOPI (exclusive
of LOOP2), and the total delay if the system clock is 4 MHz.
Instructions T-states
START: LD B, 64H 7
LOOP1: LD C, FAH 7
LOOP2: NOP 4
NOP 4
DEC C 4
JP NZ, LOOP2 10
DEC B 4
JP NZ, LOOP1 10
35. The following instructions use two memory locations MEM1 and MEM1 + 1 as

counters to set up delay loops. Calculate the delay in LOOP1, LOOP2 (exclusive
of LOOP1), and the total delay (clock period = 0.5 us).

229
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Instructions T-states Comments

START: LD HL, MEMI ;Set up HL. as memory pointer

LD (HL), 32H ;Load MEM1 with count for LOOP1
LOOPI1: INC HL 6 :Point to MEM1 + 1

LD (HL), F8H 10 ;Load count for LOOP2
LOOP2: DEC (HL) 11 ;Begin LOOP2

JP NZ, LOOP2 10 ;:Go back if MEM1 + 1 # 0

DEC HL 6 ;Point to MEM I

JP NZ, LOOPI 10 ;Go back if MEM1 # 0
Section 9.5

36. The following program checks eight numbers stored in memory INBUF, rejects
the negative numbers, and adds the positive numbers. If the sum generates a car-
ry, it displays Oly for an overload condition; otherwise, it displays the sum.
However, it appears that the program works only for certain data sets. Debug the
program and execute it for the given three data sets. After debugging the pro-
gram, when it works for Set 2, make sure that it also works for Set 3.

Set 1 (H) 77, 8F, 68, 32, 47, 92, 89, 6C
Set 2 (H) 32, 10, 2A, 8A, A2, BS, 22, 15
Set 3 (H) 87, 2C, 19, 22, CF, F2, 41, D3

PROGRAM

START: LD HL, INBUF
LD C, 08H
LD B, O0OH
NEXT: LD A, (HL)
RLA
JP C, REJECT
RRCA
ADD A, B
JP C, OVRLOD
LD B, A
REJECT: INC HL
DEC C
JP NZ, NEXT

OUT (PORTI), A

HALT
OVRLOD: LD A, OlH

OUT (PORT1), A

HALT

Expected Output: Oly
Expected Output: A3y
Expected Output: A8y

;Set up HL as memory pointer

;Set up register C as a counter

;Clear B to save partial results

;Get the byte

;Place D7 in CY

;If D7 = 1, reject number

;If number is positive, restore it

;Add the previous sum

JIf sum > FFH, it is overload

;Save the sum

:Point to the next number

;Update counter

;I all numbers are not checked,
go back and get the next number

;Display the sum

;End

;Load overload indicator

;Display overload signal

;End
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Sections 9.6 and 9.7

37. Write a program to transfer a block of data from memory INBUF to new memo-
ry locations OUTBUF. The end of the data string is indicated by 00y. The sug-
gested Z80 special instructions to be used are LDI (Load and Increment) and JR
(Jump Relative).

38. Rewrite Illustrative Program 3 to find the minimum number in a given data set
of ten readings.






Stacks and
Subroutines

The stack is a group of memory locations in a sys-
tem’s R/W memory that is used to store register con-
tents and memory addresses temporarily during the
execution of a program. The starting location of the
stack is defined by loading a 16-bit address into the
stack pointer, and space is reserved, usually at the
high end of the memory map. This method of infor-
mation storage resembles the process of stacking
books, one above another, so that information is
always retrieved from the top of the stack; hence, the
particular group of memory locations is called the
stack. In this chapter, the processes of information
storage into the stack and retrieval from the stack and
associated instructions are introduced. An illustra-
tive program demonstrates how to use these instruc-
tions to examine ana inanipulate the flags.

The latter part of the chapter deals with the
subroutine technique. A subroutine is a group of
instructions that performs a subtask (for example,
time delay) that is required repeatedly in a program.
The subroutine is written as a separate unit, apart
from the main program, and can be called whenever
it is necessary. When a main program calls a subrou-
tine, the program execution is transferred to the sub-
routine, and after the completion of the subroutine,
the program execution returns to the main program.
The microprocessor uses the stack to store the return
address.

The subroutine and the stack offer a great deal
of flexibility in writing programs. The subroutine
technique eliminates the need to repeat the instruc-
tions for a subtask; thus, memory is used efficiently
and programs can be written concisely. The use of a
stack can provide a practically unlimited number of
microprocessor registers. When a subroutine is writ-
ten, the contents of the registers being used by the
calling program can be stored on the stack, and the
registers can be reused in the subroutine to perform
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the subtask. At the end of the routine, the register
contents of the calling program can be retrieved. The
illustrative program, Traffic Signal Controller, dem-
onstrates the use of the subroutine technique.

In the industrial environment, a large software
project is generally divided into subtasks called
modules. These modules can be developed and

OBJECTIVES

O Define the stack and initialize it at a given mem-
ory location using the stack pointer (register).

O Explain how information is stored and retrieved
from the stack using the instructions PUSH and
POP and the stack pointer (register).

O Demonstrate how the contents of the flag register
can be examined and how a given flag can be set
or reset.

O Define the subroutine and explain its uses.

O Explain the sequence of program execution when
a subroutine is called and executed.

O Explain how information is exchanged between

10.1

STACK
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tested independently as subroutines by different pro-
grammers. This modular approach to software
design provides flexibility and ease in writing pro-
grams. The modular approach is demonstrated by
designing a BCD counter and its seven-segment dis-
play, and techniques are suggested for debugging
modular programs.

the program counter and the stack, and identify
the contents of the stack pointer (register) when
the CALL and RET (Return) instructions are exe-
cuted.

O Write a subroutine for a given task.

0O List and explain conditional Call and Return
instructions.

O Explain multiple call, nested, and multiple ending
subroutines.

O Explain the modular programming technique and
demonstrate the technique by writing a pro-
gram.

The stack is a group of memory locations in R/W memory, defined by loading a memory
address into the stack pointer (register).* The stack is used to store binary information
temporarily during the execution of a program. Theoretically, the size of the stack is
unlimited, restricted only by the available R/W memory in a microcomputer system.

In Z80 systems, the beginning of the stack is defined in the program by using the
instruction LD SP, 16-bit (Load Stack Pointer), which loads the 16-bit address into the
stack pointer (register). The contents of register pairs (BC, HL, for example, but not just a
single register) can be stored in two consecutive stack memory locations by using the
instruction PUSH and can be retrieved from the stack into register pairs by using the
instruction POP. The microprocessor keeps track of the stack by incrementing or decre-
menting the address in the stack pointer (register). The address in the stack pointer (reg-
ister) always points to the top of the stack and indicates that the next memory location
(SP —1) is available to store information.

Once the stack pointer is loaded with a 16-bit address—for example, 2099 —the
storing of information begins at the next location SP —1 (2098y) in the decreasing order.
The contents of a register pair are stored at SP—1 and SP—2 (2098y; and 2097), and the

*Initially, we are using the term stack pointer (register) to emphasize the difference between the stack as memory

and the stack pointer as a 16-bit register.
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stack pointer is decremented by two from 2099y to 2097y. The storing of information can
continue in the reversed numerical order (decreasing memory addresses). Therefore, as a
general practice, the stack is initialized at the highest possible memory location to prevent
the user program from being destroyed by the stack information. The process of informa-
tion retrieval from the stack is opposite to the storing process; it begins at the location
pointed to by the stack pointer whenever a POP instruction is executed, and the stack
pointer is incremented twice. This process will be further clarified in Example 10.1.

The stack is shared by the programmer and the microprocessor to store information.
The programmer can store and retrieve the contents of register pairs by using PUSH and
POP instructions. Similarly, the microprocessor can automatically store and retrieve the
contents of the program counter when a subroutine is called (discussed later in the
chapter).

10.11 Stack Instructions

The instructions used to store and retrieve information to and from the stack are listed
here.

Opcode Operand Description

LD SP, 16-bit Load 16-bit address i