Language specification for MSX BASIC
Yer 1.3 (19+h August 183)
(C) 1983 by Microsoft Corp.

All information contained herein |s proprieTtary to ASCI!I| Micresoft

EFO—BSI3VWRLBICOWT, KEvA2rov 7 PRERSH TR+~ A4 20Y 7 b i

5y XFRLIHELHTR, Va3 HERS T b BN THE, ANF 52 SRBL SR TS
+, '

AR, i

o o il b

Language specificatlion for MSX BASIC Page 2

CHAPTER 1

GENERAL INFORMATION ABOUT MSX BASIC

MSX BASIC is an extended version to the Microsoft standard Basic version

4.3, which includes supports to graphics, music and various peripherals

attached to MSX Home and Personal compuvter. Generaliy, MSX BASIC s
designed to follow +he GW-BASIC which is a8 standard Basic in 16=-bit
machine world. But the major effort was made to make The whole system

as flexible and expandable as possible.

Also MSX BASIC is featured with up to 14 digits accuracy double

precision BCD arlthmetic function. This means arithmetlc operations
no more generate strange round errors that confuse novice users. Every
trancendental func*tions are also calculated with +this accuracy. 16
bit signed iInteger operation s also available for faster execution.
1.1 MODES OF OPERATION

When MSX BASIC s Initialized, it displays +the prompt "Ok™", WOk

Indicates MSX BASIC is at command level; that is, it is ready to accept
commands. At this point, MSX BASIC may be used in either of two modes:
direct mode or indirect mode.

fn direct mode, MSX BASIC statements and commands are not preceded
by line numbers. They are executed as they are entered. Results of
arithmetic and logical operations may be displayed immediately and
stored for |ater wuse. but +the instructions themselves are Jost after
executlion. Direct mode Is useful for debuggling and for using MSX BASIC
as a calculator" for quick computations that do not require a complete
program,

Indirect mode is used for entering programs. Program |lnes! are preceded

by line numbers and are stored In memory. The program stored [n memory
s executed by entering the RUN command.

1.2 LINE FORMAT

PR e —

Language specification for MSX BASIC Page 3

MSX BASIC program lines have the following format (square brackets
indicate optional input):

nnnan BASIC statement[:BASIC statement...] <carriage return>

More than one BASIC statement may be placed on a line, but each must
be separated from the last by a colon. i

An MSX BASIC program Iine always begins with a |line number and ends
with a carriage return. A |lne may contaln a maximum of 255 characters.
1.2.1 Line Numbers

Every MSX BASIC program l|line begins with 2 |ine number. Line numbers
indicate the order in which +the ©program lines are stored !n memory.
Line numbers are also used as references in branchling and editing.

Line numbers must be In the range 0 to 65529.

A period (.) may be used in LIST, AUTO. and DELETE
commands tTo refer to the current |[Ilne.

1.3 CHARACTER SET

The MSX BASIC <character set consists of alphabetic characters, numeric
characters, special characters ,graphic characters and both hirakana
and katakana characters. '

The alphabetic characters In MSX BASIC are the upper <case and |ower
case letters of the alphabet.

The MSX BASIC numeric characters are the digits 0 through 9.

In addiftlon, the following special characters are recognized by MSX
BASIC:
Character Action
Blank

Equals sign or assignment symbol
Plus sign

Minus sign

Asterlsk or multiplication symbol
Slash or division symbol

Up arrow or exponentliation symbol
Left parentheslis

Right parenthesis

Percent

Number (or pound) sign

Dollar sign

Exclamatlon polint

Left bracket

Right bracket

ummm%mVﬁ}*|+u

Language speclification for MSX BASIC Page 4

5 Comma
" Perlod or decimal point
! Single quotation mark (apostrophe)
; Semicolon
: Colon
& Ampersand
? Question mark
< Less than
> Greater than
¥ Yen sign or integer division symbol
e At sign
-~ Underscore
<rubout> Deletes last character typed.
<escape> Escapes
<tab> Moves print position to next tab stop.
Tab stops are set every elght columns.
<line feed> Moves to next physlical Iine.
" <carriage
return> Terminates input of a |lne.

‘1.4 CONSTANTS

Constants are the values 'MSX BRASIC uses during executlon. There are
two Types of constants: string and numeric.

A string constant is a sequence of up +to 255 alphanumeric characters
enclcsed in double gquotation marks. :

Examples:

THELLO®
"$25,000.00"
"Number of Employees™"

Numeric constants are positive or negative numbers. MSX BASIC numeric
consfants cannot contain commas. There are five Ttypes of numeric
constants:

1. Integer constants Whole numbers between -32768 and 32767. Integer
constants do not contain decimal points.
2. Fixed-point Positive or negative real numbers, i.e., numbers
constants that contaln decimal polnts.
3. Floating-point Positive or negative numbers represented in
constants exponentlal form (similar to scientiflc

notatlion). A floating-point constant consists
of an optionally signed integer or fixed-polnt

number (the mantlissa) followed by the |etter
E and an optionally signed (Integer (the
exponent). The allowable range for
floating-polint constants s 10-64 +to 10+63.

Examples:

Language specification for MSX BASIC Page 5

235.988E-7 = ,0000235988
2359E6 =2359000000

(Double preclision floating=-point constants
are denoted by +the Ilefter D Instead of E.)

4. Hex constants Hexadecimal numbers, denoted by tThe prefix
&H.

Examples:

&H76
&H32F

un

. 0Octal constants Detal numbefs, denoted by the prefix &0 or &.

Examples:

80347
81234
6. Binary constants - Binary numbers, denoted by the prefix &B.
Examples:
&BO11

10110
&B11100111

1.4.1 Single And Double Precision Form For Numeric Constants

Numeric constants may be either single precision or deuble precision

numbers. Single precision numeric constants are stored with 6 dii g s
of precision, and printed with up +to 6 digits of precision. Double
precision numeric constants are stored with 14 digits of precision

and printed with up +to 14 digits. Double precision Is the default
for constant in MSX BASIC.

A single precision constant is any numerlc constant +that has one of
the following characteristics:

1. Exponentlal form using E.

2. A tfrailing exclamation point (1).
Examples:

-1.09E-06
Ed.+81

A double precision constant 1Is any numeric constant that has one of
these characteristics:

Language specification for MSX BASIC Page 6

1. Any digits of number without any exponential or type specifier.
2. Exponentlal form using D.

3. A tralllng number sign (#).
Examples:

3489
345692811
-1.09432D-06
3489.0#
1694321 1234

1.5 VARIABLES

VYariables are names used +to represent values used In a BASIC program.
The value of a variable may be assigned explicitly by the programmer,
or it may be assigned as the result of calcutations In the program.
3efore a varlable Is assigned a value, [ts value [s assumed to be zero.

LT VYVariable Names And Declaration Characters

" MSX BASIC variable names may be any length. Up to 2 characters are
significant. Varlable names can contain l|etters and numbers. However,
the first character must be a letter. Speclal type declaration

characters are also allowed=-~see below.

A varlable name may not be a reserved word and may not contain embedded

reserved words. Reserved words include all MSX BASIC commands,
statements, function names, and operator names. |lf a variable begins
with FN, it is assumed to be a call to a user-defined function.

Variables may represent either a numeric value or a string. String

variable names are written with a dollar sign ($) as the last character.
Ffor example: A$ = "SALES REPORT". '

The dollar sign is a variable type declaration character; that 1is,
it "declares" that the varliable will represent a string.

Numeric variable names may declare integer, single precision, or double
precision values. The type declaration characters for these variable
names are as follows:

¥ Integer variable
l Single preclision variable
Couble precision variable

The default type for a numeric varlable name [s double precision.

Examples of MSX BASIC variable names:

Language specificatlon for MSX BASIC Page 7
Pl # Declares a double precision value.
MINIMUMI Declares a single precision value.
LIMITE Declares an integer value.
NS Declares a string vaiue.
ABC Represents a double preclision value.
There is a second method by which variable types may be declared. The
MSX BASIC statements DEFINT, DEFSTR, DEFSNG, and DEFDBL may be [ncluded
in a program to declare the types for certain varlable names. Refer

to the description for these statements.

1.5.2 Array Variables

An array Is a group or table of values referenced by the same variable
name. Each element In an array |is referenced by an array varlable
that Is subscripted with an Integer or an integer expression. An array
variaple name has as many subscripts as there are dimensions in +he
array. For example V(10) would reference a value In a one-dimensjon
array, T(1,4) would reference a value 1In a +two-dimension array, and
TS0 Oy The maximum number of dimensions for an array Iis 255. The
maximum number of elements s determined by memory size.

1.5.3 Space Requirements
The following table |ists only the number of bytes occupied by the
values represented by +the variable names.
Varlables Type Bytes
fnteger

2
Single Precision 4
Double Precision 8

Arrays Type Bytes
Infteger 2 per element
Single Precision 4 per element
Double Precision 8 per element
Strings

3 bytes overhead plus the present contents of the Strlng.

1.6 TYPE CONVERSION

When necessary, MSX BASIC will convert a numeric constant from one
type to another. The following rules and examples should be kept In
mind.

1. I+ @ numerlc constant of one +type [s set equal to a numeric

Language specification for MSX BASIC Page 8

variable of a different type, the number will be stored as
the type declared In the varliable name. (If a string variable
I's set equal to a numeric value or vice versa, a "Type mismatch"
error occurs.)

Example:
10 A%=23.42
20 PRINT A%
RUN
23
2. During expression wevaluation, all of +the operands in an
arithmetic or relational operation are converted +o the same
degree of precision, Il.e., that of the most precise operand.
Also, the result of an arithmetic operation is returned to

this degree of precision.

Examples:

10 D=6/71 The arithmetic was performed in double
20 PRINT D precision and +the result was returned
RUN in D as a double precision value.

.85714285714286

10 D1=6/7 _ The arithmetic was performed In double

20 PRINT D! precision and +he result was returned

RUN to D! (single precision variable),
.8571453 ’ rounded, and printed as a single

precision value.

5. Loglical operators convert their operands to integers and return
an integer result. Operands must be In the range =-32768 to
32767 or an "Overflow" error occurs.

4. When a floating-point value Is converted to an integer, the
fractional portion is ftruncated.

Example:

10 C%=55.88
20 PRINT C%
RUN

g5

5. If a double precision varlable Is assigned a slngle precision
value, only +the first =six digits of the converted number will
be valid. This is because only six digits of accuracy were
supplled with the single preclision value. :

Exampie:
10 AI=SQR(2)

20 B=Al
30 PRINTA!,B

vt it hegﬂiﬁ_ﬂ_?ﬁ!fql.’.t-a‘:»ﬁ“&wﬂi\ﬁmﬁw ey

Language specification for MSX BASIC Page 9
RUN
1.41421 1.41421

1.7 EXPRESSIONS AND OPERATORS

An expression may be a string or numeric constant, a varlable, or a
combination of constants and variables wlth cperators which produces

~a single value.

Operators perform mathematical or logical operations on values. The
MSX BASIC operators may be divided into four categories:

1. Arithmetic
2. Relational
Jw Logléal

4. Functional

Each category Is described in the following sections.

1.7.1 Arithmetic Operators

The arithmetic operators, in order of precedence, are:

Operator Operation Sample Expression
A Exponentiation XAY
- Negation -X
%,/ Multiplication, Floating- X*Y
point Division X/Y
+,- Addition, Subtraction X+Y
To change the worder in which the operations are performed, use
parentheses. Operations within parentheses are performed first. Inside

parentheses, the usual order of operations is malntained.

1:7:1..1 Integer Divislion And Modulus Arithmetic

Two additlional operators are available in MSX BASIC:

Integer division is denoted by the yen symbol. The operands are
truncated to Integers (must be In +the range -32768 to 32767) before
the division Is performed, and the quotient Is truncated to an Integer.

Example:

b R e 50 ¢

Language speciflication for MSX BASIC Page 10
10¥4=2
25.68¥6.99=4

Integer division follows multiplication and floating-point divislon
In order of precedence.

Modulus arithmetic Is denoted by the operator MOD. Mocdulus arithmetic
ylelds the Integer value that Is the remainder of an infeger division.
Example:

10.4 MOD 4=2 (10/4=2 with a remainder 2)
25.68 MOD 6.99=1 (25/6=4 with a remainder 1)

Moduius arithmetic follows In+egér division in order of precedence.

1.7.1.2 Overflow And Division By Zero -

[f, during +the evaluation of an expression, division by zero |is

encountered, the "Division by zero" error message is displayed and
execuTion of program terminates. '

lf overflow occurs, +the ™Overflow" error message is displayed and
execution termlinates.

1.7.2 Relational Operators

Relational operators are used +to compare two values. The result of

the comparison is either "true" (-1) or "false" (0). Thls result may
tThen be wused +to meke a decision regarding program flow. (See
description for "|F" statements.)

The relational operators are:

Operator Relation Tested Example
= Equal ity X=Y
<> Inequal Ity X<>Y
< Less than X<Y
-2 Greater than X>Y
= Less than or equal to X<=Y
>= Greater than or equal to X>=Y

(The equal sign Is also used to assign a value to a variable.)

When arithmetlic and relatlonal operators are combined in one expression,
the arithmetic 1Is always performed flrst, For example, the expression

]
!

ok Bgen e |
s

a9

Language specification for MSX BASIC Page 11

: X+Y<(T=1)/2

Is true 1f +the value of X plus Y is less than the value of T=1 divided
by Z.

More examples:

IF SIN(X)<0 GOTO 1000
[F" 1 MOD J<>Q0 THEN K=K+1

1.7.3 Loglical Operators

Logical operators perform fesfs'on multiple relations, bit manipulation,
or Booiean operations. The logical operator returns a bitwlse result
which is either "true" (not zero) or "false" (zero). In an expression,

-logicai operations are performed after arlithmetic and relatlional

operations. The outcome of a logical operation Is determined as shown
in Table 1. The operators are listed In order of precedence.

Table 1. MSX BASIC Relaticonal Operators Truth Table

NOT
X NOT X
1 0
0 1
AND
X Y X AND Y
1 1 1
1 0 0
0 ! 0
0 0 0
OR
X y X OR Y
1 1 1
1 0 1
0 1 1
0 0 0
XOR
X Y X XOR Y
1 1 0
1 0 1
0 1 1
0 0 0
EQV
X Y X EQV Y
1 1 1
1 0 0
0 1 0
0 0 1

Language specification for MSX BASIC Page 12

I MP
X 4 X IMP Y
1 1 1
1 0 0
0 1 1
0 0 1

Just as the relatlional operators can be used to make declisicns regarding
program flow, logical operators <can connect two or more relations and
return a true or false value to be used in a decision .

Example:
|F D<200 AND F<4 THEN 80
IF 1>10 OR K<Q THEN 50
IF NOT P THEN 100

Logical operators work by converting their operands to 16-bit, signed,
two's complement integers in the range -32768 +fo 32767. (If the

operands are not in this range, an error results.) If both operands
are supplied as 0 or =1, logical operators return 0 or -1. The given
operation Iis performed on “These integers in biftwise fashion, 1By

each bit of +the result is determined by the corresponding bits in the
tTwo operands. '

Thus, it is possible to use logical_ cperators +to test bytes for -2
partlcular bit pattern. For instance, +the AND operator may be used
to "mask" all but one of the bits of a status byte at a machine /0
port. The OR operator may be wused to "merge" two bytes Tc create a
particufar binary value. The following examples will help demonstrate
how the loglcal operators work. '

63 AND 16=16 63=binary 111111 and 16=binary 10000, so 63 AND 16=16.
15 AND 14=14 15=binary 1111 and 14=binary 1110, so 15 AND 14=14
. (binary 1110).

-1 AND 8=8 -i=binary 11111111111 111711 and 8=binary 1000, 5@ =
AND 8=8. '

4 OR 2=6 4=binary 100 and 2=binary 10, so 4 OR 2=6 (binary 110).

10 OR 10=10 10=binary 1010, so 1010 OR 1010= 1010 (decimal 10).

-1 OR -2=-1 -1=binary 1111111111111111 and =-2=binary 1111111111111110
so -1 OR -2=-1., The bit complement of sixteen zeros
is sixteen ones, which is the two's complement

representation of -1,

NOT X==(X+1) The two'!s complement of any Integer Is the bift
complement plus one.

1.7.4 Functional Operators

= " = ¥ - T R e .- e ———————— . e ——— e

Language speciflicatlon for MSX BASIC Page 13
A function Is wused 1In an expression to call a predetermined operation
that Is to be performed on an operand. MSX BASIC has M"intrinsic"
functions that reside In +the system, such as SQR (square root) or SIN
(sine).

MSX BASIC also allows TMuser-defined" functions +that are written by

the programmer. See descriptions for "DEF FN".

1.7.5 String Operations
Stfrings may be concatenated by using +.

Example:

10 AS="FILE"™ : B$="NAME"
20 PRINT A$+B8$

30 PRINT "NEW "+AS$+BS
RUN :
FILENAME

NEW FI1LENAME

Strings may be «compared wusing the same relational operators that are
used with numbers:

= <> < > <= >=

String comparisons are made by taking one character at a +ime from

each string and comparing the ASCI!| codes. If all the ASCI!l codes
are the same, the strings are equal. If the ASCI| codes differ, the
lower code number precedes +the higher. I|f durlng string comparison
The end of one string [s reached, the shorter string is sald +o be
smaller. Leading and trafling blanks are significant.
Examples:

"AA"("ABH

"FILENAME"="F | LENAME™

ﬂx&")"X#!l

‘HCL II>IICL"

TrgM>UKGT

"SMYTH"<"SMYTHE"

B§<"9/12/83" where B$="8/12/83"

Thus, string comparisons can be used to test string values or to
alphabetlze strings. All string constants used I'n comparlison
expressions must be enclosed In gquotation marks.

1.8 'PROGRAM EDITING !

The Full Screen Edltor equiped with MSX BASIC allows the user to enter
program |lnes as usual, then wedlt an entlre screen before recording
the changes. This time-saving capablllity Is made possible by special

keys for cursor movement, character I[nsertion and deletion, and lline

i
i
3
2

3
i
%
3
%

Language specification for MSX BASIC Page 14

or screen erasure. Speclfic functions and key asslignments are dlscussed
In the following sectlions.

With the Full Screen Editor, a user can move quickly around the screen,
making corrections where necessary. The changes are entered by placing
the cursor on the first |I|ine <changed and pressing <RETURN> at the
beginning of each Ilne. A program |line Is not actually changed until
<RETURN> I[s entered from somewhere within the |1lne.

Writing Programs

Within MSX BASIC, the editor is in control any time after an 0K prompt
and before a RUN command s issued. Any line of text +that s entered
Is processed by the editor. Any line of text that begins with a number
Is consjidered a program statement.

Program statements are processed by the editor in one of the following

ways:
1. A new line 1is added +to the program. This occurs [f the [Ine
number is valfd (0 through €65529) and at Ieast one non-blank
character follows the |ine number.
2. An existing line Is modified. This occurs If the |ine number.
matches that of an existing l[ine in the program. The existTing
[Ine is replaced with the text of the new [ine. :
3. An existing line Is deleted. This occurs If the {ine number
matches that of an existing line, and the new Ilne <contains
cniy the |ine number.
4., An error is produced.
If an attempt 1is made *ta delete a non-existent [(lne, an
"Undefined [ine number"™ error message is displayed.
If program memory is exhausted, and a line is added +to The
program, an "Qut of memory" error s displayed and the line
is not added.
More than one statement may be placed on a llne. |f this is done,
the statements must be separated by a colon (:). The «colon deces not
have to be surrounded by spaces.
The maximum number of <characters allowed in a program Ilne, Including
the |lne number, is 250.

Editing Programs

Use fthe LIST statement to display an entire program or range of ilnes
on the screen so that they can be edlted. Text can then be modifled
by moving the cursor to the place where +the change Is needed and

performing one of the followlng actlions:

R

%
;]

BROAL: b

Language specification for MSX BASIC Page 15

1. Typling over existing characters
2. Deleting characters to the right of the cursor

3. Deleting characters to the left of the cursor

4. Inserting characters

5. Appending characters to the end of the logical ilne
These actlions are performed by special keys assigned to the various
Full Screen Editor functions (see next section).
Changes to a [ine are recorded when a carriage return is entered while
the cursor is somewhere on the line. The carriage return entfers all
changes for that loglical line, no matter how many physlical |ines are
included and no matter where the cursor is located on The line.
Full Screen Editor Functions

The following table |ists the hexadecimal «codes for +he MSX BASIC

confroi{ characters and summarizes thelr functlons. The Control-key
sequence normally assigned to each functlon is also |Ilsted. These
conform as closely as possible to ASCI| standard conversions.

Individual control functions are described following the fable.

Table 1. MSX BASIC Control Functions. The ASClI confréi key is entered
by pressing the key while hoiding down the Control key.

Hex. Control| Special

Code Key Key Functlion

Q1 A Graphic character header

02 B Move cursor fo start of previous word

03 c Break when MSX BASIC is waiting for inpuv
04 D lgnored

05 E Truncate |ine (clear text to end of logical

line)

06 F Mocve cursor to start of next word

07 G . Beep

08 H Back Space Backspace, deleting characters passed over
09 I Tab Tab (8 spaces)

0A J Line feed

0B K Home Move cursor to home position

ocC L CLS Clear screen :
0D M Return Carrlage return (enter current logical [ine)
0OE N Append to end of IlIne

OF 0 lgnored

10 P lgnored

11 Q lgnored

12 R INS Toggle Insert/typeover mode

13) Ignored

Language specification for MSX BASIC Page 16

14 T lgnored

15 U Clear logical line
16] Ignored

17 W lgnored

18 X Select lgnored

19 Y lgnored

TA Z : Ignored

18 C ESC Ignored

1C \ Right arrow Curser right

1D] Left arrow Cursor left

1E " Up arrow Cursor up

1F _ Down arrow Cursor down

1F DEL DEL Delete character at cursor

PREY IOUS WORD ‘
The cursor is moved left to the oprevious word. The previous
word is defined as the next character tc¢ the left of the cursor

in the sets A-Z, a-z, or (0-9.

BREAK
Returns to MSX BASIC dlirect mode, without saving changes that
were made to the |ine currently being edited.

TRUNCATE
The «cursor is moved +to the wend of +the logical line. The
characters it passes over are deleted. Characters typed. from
the new cursor position are appended to the [ine. '

NEXT WORD
The cursor is moved right tfo the next word. The next word
is defined as the next <character +to the right of the cursor
in the sets A-Z, a-z, or 0-9.

BEEP
The beep sound will be produced.

BACKSPACE
Deletes the character to the left of the cursor. All characters
to the right of the <cursor are moved |efft one positfion.
Subsequent characters and |ines within the <current logical
line are moved up (wrapped). -

TAB

TAB moves the cursor to the next tab stop overwriting blanks.
Tab stops occur every 8 characters.

CURSOR HOME
Moves the cursor to the upper left corner of +the screen. The
screen Is not blanked.

CLEAR SCREEN _ :
Moves the <cursor to home position and ciears the entlre screen,
regardéess of where the cursor is positioned when the key Is
entered.

G .,_wm.,wlmmfm,ﬁt‘w S ini;

Language specification for MSX BASIC Page 17

CARRIAGE RETURN

A carriage return ends the logical line and sends |+ <o MSX
BASIC.

APPEND
Moves <cursor to +the end of +he lTne, without deleting the
characters passed over. All characters +typed from +the new
poslition until a carrliage return are appended to the logical
line.

INSERT
Toggle switch for insert mode. When insert mode is on, +he
size of the cursor Is reduced and <characters are inserted at
the current cursor position. Characters +to the right of the
cursor move right as new ones are Iinserted. Line wrap is
observed.
When insert mode (s off, the slize of cursor returned to normal
size and typed characters will replace existing characters
on the line.

CLEAR LOGICAL LINE :
When +his key Is entered anywhere in +the line. +he entlre

logical line Is erased.

CURSOR RIGHT
Moves the cursor one position +to the right. Line wrap .is

observed.

CURSOR LEFT .
Move the <cursor one position +to the - left. Line wrap s

observed.

CURSCR UP
Moves the cursor up one physical line (at the current position).

CURSOR DOWN '
Move the cursor down one physical line (at the current

position).

Logical line Definition with INPUT

Normally, a logical line consists of all +the characters on each of
the physical llnes that make up the logical iine. During executlion
of an INPUT or LINE |INPUT statement, however, +this deflinitlon [s
modified siightly to allow for forms Input. When elther of these
statements [s executed, the logical Ilne is restricted to characters
actually typed or passed over by the cursor. Insert mode and the delefte
function only move <characters which are within that loglcal line, and
Delete will decrement the size of the |lne.

Insert mode Increments the loglical llne except when the characters
moved will write over non-blank characters that are on the same physical
I'ne but not part of the loglical Ilne. In this case, +the non-blank
characters not part of the loglical Ilne are preserved and the characters

e

i i AR

Language speciflcation for MSX BASIC _ Page 18

at the end of the loglcal line are thrown out. This preserves |abels
that existed prior to the INPUT statement. If an incorrect character
is entered as a line [s being typed, It can be deleted with +the <Back
Space> key or with Control=-H. and they backspacing over a character
and erasing [t. Once a character(s) has been deleted, simply contlinue
typing the |llne as desired.

To delete a line that is In the process of being typed, type Control-U.

To correct program lines for a program that is currently in memory,
simply retype the |ine using the same |ine number. MSX BASIC will
automatically replace the olid |ine with the new Ilne.

To delete the entire program currently residing In memory, enter the
NEW command. NEW is usually used to clear memory prior +tfo entering
a new program.

1.9 Special keys

MSX BASIC supports several special keys as follows.

1.9.1 Function Keys

MSX BASIC has 10 pre-defined function keys. fﬁe current contents §f
these keys are displayed on +the last |ine on the screen and can be

re-defined by program with KEY statement. The initlal values for each
keys are:

F1 color(b] [b] = blank character

F2 autol[b] [cr]= carriage return

Fé gotol[b] Lul = cursor up character

F5 l1st{b] Lcls]=clear screen character
F5 runlcr]

Fé coglor 15,4,:7Ler]

F7 cload™

F8 cont[cr]

Fg lTst.lerJCullul]

F10 Ccls]runler]

Function keys are also used as event trap keys. See ON KEY GOSUB and
KEY ON/OFF/STOP statement for details.

1.9.2 Stop key

When MSX BASIC is In command mode, the STOP key has no effects fo the
operation, MSX BASIC Just Ignores It. -

When MSX BASIC [Is executing the program, pressing the STOP key causes
suspension of the program executlion, and MSX BASIC turn on +he cursor
display to Indicate +that +the execution Is suspended. Another STOP
key Input resumes the execution. I|f the STOP key and control key are
pressed simultaneously, MSX BASIC +terminates the executlon and refurn

———— e - s

Language speciflication for MSX BASIC | Page 19

to command mode with following message.
Break in nnnn

where nnnn s the program |ine number where the executlion stopped.

1.10 ERROR MESSAGES

|f an error <causes program execution +to tferminate, an error message
is printed. For a complete |ist of MSX BASIC error codes and error
messages, see Appendix A.

&
3
-
g

Language speciflication for MSX BASIC Page 20

.33

CHAPTER 2

MSX BASIC COMMANDS, STATEMENTS AND FUNCTIONS

Commands, Statements, and Functions except 1/0

Commands except |/0

AUTO [<tine number>(,<increment>]]

CONT

To generate a2 |ine number automaticaily after every «carriage
return.

AUTO begins numbering at <|line number> and . increment each
subsequent [ine number by <increment>. The default for beth
value is 10. lf <line number> is followed by a comma but
<increment> |s not specifled, The l|ast Increment specified Iin

an AUTO command is assumed.

If AUTO generates a line number that is already being used, an
asterisk is printed after the line number to warn the wuser thaft
any Input will replace +the existing Iine. However, typing a
carrfage return immedlately after the asterisk wlll save the

line and generate the next |lne number.

AUTO Is terminated by *typing Control-C or Control-STOP. The
fine in which Contfrol-C Is typed Is not saved. After Controi-C
is Typed, BASIC refurns to command level.

To continue program execution after BREAK or STOP in executlon.

DELETE [<line number>][-<line number>]

LIST

To delete program llnes.
BASIC always returns to command level after a DELETE Is executed.
If <line number> does not exist, an 'lllegal functlon call' error
occurs. '

C<line number>[-[<line number>]]]
To |IIst all or part of the program.

s

Language specification for MSX BASIC Pagé 21

LS

NEW

RENUM

I|f both <line number> parameters are omitted, +the program |is
| Isted beginning at the lowest [ine number.

I[f only the first <line number> is speciflied, that [ine Is listed.
[t the first <line number> and "-" are speciflied, that |line and
all higher-numbered |ines are |Isted.

[f "=" and the second <line number> are specified, all lines
from the beglinning of the program through that ilne are |isted.
tf both <line number> parameters are specified, the range from
the first <line number> through the second <|ine number> s
listed.

Listing Is terminated by typing "CTRL" and "STOP" keys at same
time. Listing is suspended by +typling "STOP"™ key. and it s
resumed by typing "STOP"™ key agalin.

[<line number>[-[<lIlne number>]]]
To i1st all or part of the program on the printer. (See The
LIST command for details of the parameters).

To delete entire program from working memory and reset
varlables.

[C<new number>][,[<o0ld number>][,<Increment>]]]

To renumber program |Ines.

<new number> is the flrst |lne number +¢ be used I[In the new
sequence. The default is 10. <old number> is the [Tne in the
current program where renumbering is to begin. The default s
he first: Llibe of “he . program. <increment> |[s the Increment
to be used in the new sequence. The default Is 10.

RENUM also changes all Ilne number references following GOTO,
GOsSuB, THEN. ELSE. ON..GOTO, ON..GOSUB and ERL statements fo
reflect the new Ilne numbers. If a nonexlstent |lne number
appears after one of these statement, the error message 'Undefined
line nnnn in mmmm' is printed. The incorrect |ine number
reference(nnnn) Is not <changed by RENUM, but Ilne number mmmm
may be changed.

NOTE: RENUM cannot be used to change the order of program |lnes

(for example, RENUM 15,30 when the program has three |Ines

numbered 10, 20 and 30) or to create |Ilne numbers greater than
65529. An 'lliegal fumctlion call' error will result.
RUN [<line number>]
To execute a program.
If <llne number> Is speclfled, executlon begins on +that Ilne.

Otherwlse, executlon beglns at the lowest |ine number.

all

ik

=
=2
2
o
2
£
2

Language specification for MSX BASIC Page 22

TRON/TROFF

CLEAR

To trace the execution of program statements.

As an aid In debugging, the TRON statement (executed In elther

the direct or indirect mode) enables a frace flag that prints
each [ine number of the program as [s executed. The numbers
appear enclosed In square brackets. The trace flag is disabled

with the TROFF statement (or when a NEW command is executed).

[<string space>[,<highest location>]]
To set all numeric variables to zero, all string variables <o
null, and close all open files, and optionally, to set the end

of memory.

<string space>

Space for string variables. Default size Is 200 bytTes.
<Highest location>

The highest memory location available for use by BASIC.

DATA <list of constants>

DIM <|

To store the numeric and strling constants +that are accessed by
The program's READ statement(s).

DATA statements are nonexecutable and may be placed anywhere
in the program. A DATA statement may contain as many constanTs
as will fIt on a Iine (separated by commas), and any number of
DATA statements may be used In a program. The - READ statements
access the DATA statements in order (by |ine number) and the
data contalined there in may be thought of as one <contlnuous [Ist
of items, regardless of how many tems are on a line or where
the lines are placed in the program.

<list of constants> may contein numeric constants in any formaT;
i.e.,fixed point, floating point, or integer. (No numeric
expressions are allowed in the list.) Siring constants in DATA
statements must be surrounded by double quotation marks only
if they contain comma, colons, or signiflicant leading or ftfrailling
spaces. Otherwise, quotation marks are not needed.

The variable +type (numeric or string) given in the READ statement¥
must agree with the corresponding constant in the DATA statement.
DATA statements may be read from the beginning or specified Iine
by use of the RESTORE statement.

Ist of subscripted variables>
To specify +the maximum values for array variable subscripts and

allocate storage accordingly.

If an array varlable name Is used without a DIM statement, the

maxImum value of [ts subscript(s) |Is assumed +to be 10. If &
subscript Is used that [s greater than the maximum specifled,
a 'Subscript out of range'! error occurs. The minimum value for

a subscript Is always 0.

Language specification for MSX BASIC Page 23

DEFINT <range(s) of letters>

DEFSNG <range(s) of letters>

DEFDBL <range(s) of letters>

DEFSTR <range(s) of letters> -
To declare variable type as Integer, single precision, double
precision, or string.

DEFINT/SNG/DBL/STR statements declare that +the variable names

beginning with the letter(s) speciflied will be that type varlable.
However, a type declaratlion <character always tTakes precedence
over a DEFxxx statement in the typing of a wvarlables. (See the

end of section 1.5.1, for details of declaration characters.)

DEF FN<name>[(<parameter [1st>)]=<functlon definition>
To define and name a function that is written by the user.
<name> must be a legal varlable name. This name, preceded by
FN. becomes +the name of the function. <parameter |Ist> is .

comprlsed of those variable name in the functlion definition ThaT
are to be replaced when the function is called. The items In

the |lst are separated by commas. <function definifion> s an
expression that performs the operation of the function. I+ is
<I'imlted To one | ine. Variable names that appear in this
expression serve only to defline the function; they do not affect
program variables that have the same name. A variable name used
in a2 function definition may or may not appear in the paramefer
[Tst. If it does, the value of the parameter s supplied when
the function is called. Otherwise, the current value of The

variable [s used.

The varlables in the parameter |Ist represent, on a one-to-one
basis, the argument variables or values that will be gliven in
the function call.

If a type iIs specifled in the function name, the value of the
expression is forced to that type before it is returned tfo the

calllng statement. If a type is specified in the functlion name
and the argument +type does not match, a 'Type mismatch' error
occurs. :

A DEFFN statement must be executed before the functlon it defines

may be <called. 1¥f a function 1Is called before it has been
defined, an 'Undefined user function! error Qoccurs. DEFFN s
Illegal In the direct mode.

DEFUSR[<digit>]=<Integer expression>
To specify the starting address of an assembly language

subroutline.

<dlgit> may be any diglt from 0 +to 9. The digit corresponds
to the number of the USR routine whose address is belng speciflied.
If <dIgit> 1Is omltted, DEFUSRO is assumed. The value of <inTeger
expresslion> Is the starting address of the USR routine

-

e s

Language specification for MSX BASIC Page 24
Any number of DEFUSR statements may appear In a program *to
redeflne subroutine starting addresses, thus allowing access

ERASE

END

ERROR

to as many subroutines as necessary.

<list of array varliables>
To eliminate arrays from a program

Arrays may be redimensioned after they are ERASEd, or the
previously allocated array space In memory may be used for other

purposes. If an attempt is made to redimension an array without
first ERASEing it, a '"Redimensioned array' error occurs.
To terminate program execution, <close all files and return fo

command l|evel,

END statements may be placed anywhere in the program to Terminate
execution. Unlike +the STOP statement, END does not cause a BREAK
message 1o be prinfed. An END statement at the end of a program

is optlonal.

<integer expression>
To simulate the occurrence c¢f an error cr To allow error codes

to be defined by the user.

The value of <Integer expression> must be greater than .0 and
less than 255. |If the value of <lnteger expression> equals an
error code already 1in use by BASIC, the ERROR statement will
simulate the occurrence of that error, and the corresponding

error messace will be printed.

To define your own error code, use a value that is greatfter than

any used by BASIC for error codes. See Appendix A for a [list
of error codes and messages. (It Is preferable To use the highest
available values, so compatibilifty may be malnftained when more

error codes are added to BASIC.) This user deflned error code
may then be conveniently handled in an error frap routine.

Example:

10 ON ERROR GOTO 1000

-

120 IF A$="Y" THEN ERROR 250

1000 IF ERR=250 THEN PRINT "Surel"

If an ERROR statement speclfied a code for whlich no error message
has been deflined, BASIC responds wlth the message 'Unprintable
error!. Executlion of an ERROR statement for which there Is no
error trap routine causes an 'Unprintable error' werror message
to be printed and executlon to haift.

i Language speciflication for MSX BASIC Page 25

FOR <variable>=x TO y [STEP z]

NEXT [<variable>][,<variable>...]
note: <Variable> <can be Integer,single-precision or doub | e~

_precision. where x,y,z are numeric expressions.

To allow a series of instructions to be performed in a loop a
given number of times.

<variable> is used as a counter. The first numeric expression
(x) Is The Initial value of the <counter. The second numeric
expression (y) is the final value of +the counter. The program
lines following +the FOR statement are executed until the NEXT
statement is encountered. Then the counter s Iincremented by
the amount specified by STEP. A check is performed to see if
the value of the counter is now greater than the flnal value
{y). If It Is not greater, BASIC branches back to the statement
after the FOR statement and the process is repeated. if It s
greater., execution continues with the statement following the
NEXT statement. This is a FOR...NEXT |oop. If STEP is not
specified, The Increment [s assumed to be one.

[f step is negative, +the flnal value of the counter s set to
be less than the initial value. The counter is decremented each
time through the loop, and the loop is executed until the counter
is less than the final value.

The body of the loop is executed one time at least If the initial
value of the |oop *times the sign of the step exceeds the final
value times vhe slign of the step,.

FOR...NEXT locops may be nested, that is, & FOR...NEXT loop may
be placed within +the context of another FOR...NEXT {oop. When
loops are nested, each loop must have & unique variable name
as its counter. The NEXT statement for the inside loop musT
appear before that for the outfside |oop. [f nested loops have
the same end point, a single NEXT statement may be used for all
of them. Such nesting of FOR...NEXT loops is |limited only by
available memory. '

The variable(s) In +he NEXT statement may be omitted, in which
Case The NEXT statement will match the most recent FCR statement.
If a NEXT statement |[s encountered before I+s corresponding FOR
statement, a 'NEXT without FOR' error message Is issued and
execution is terminated.

GOSUB <lIne number>

RETURN [<Iline number>]
To branch fo subroutine beginning at <line number> and return

from a subroutine.

<lIne number> Is +the first [ine of the subroutine. A subroutline
may be called any number of times in a program, and a subroutine

Language specification for MSX BASIC Page 26

may be <called from within another subroutine. Such nesting of
subroutines is |Imited only by avallable memory.

The RETURN statement(s) In a subroutine cause BASIC +to branch
back to the statement following the most recent GOSUB statement.
A subroutine may contain more than one RETURN statement, should
logic dictate a return at different points in the subroutine.
Subroutines may appear anywhere in the program, but It is
recommended that the subroutine be readliy distinguishable from
the maln program. To prevent inadvertent entry into the
subroutine, it may be preceded by a STOP, END, or GOTO statement
that directs program conftrol around the subroutine. Otherwise,
a 'RETURN without GOSUB' error message is issued and execution
is terminated.

GOTO <line number>
To branch unconditionally out of +the normal program sequence

to a specifled <llne number>.

| f <line number> is an executable statement, +that staftement and
Those following are executed. If I+ is a nonexecutable statement,
execution proceeds at the first executable statement encountered
after <line number>.

IF <expression> THEN <statftement(s) [<|ine number>
[ELSE <statement(s)i<line number>]
[F <expresslon> GOTO <line naumber>
[ELSE <statement(s) [<]ine number>]
To make a declsion regarding program flow based on the resulft
returned by an expression. '

|f the resuit of <expresslion> is not zero, the THEN or GOTO ciause
is executed. THEN may be followed by either a line number for
branching or one or more statements to be executed. GOTO is
always followed by a line number. |f the result of <expression>
is zero, the THEN or GOTO clause is Ignored and the ELSE clause,
if present, is executed. Execution <continues with tThe next
executable statement.

Example:
A=1:B=2 => A=B is zero (FALSE).

A=2:b=2 => A=B is not zero (TRUE).

IF...THEN...ELSE statements may be nested. Nesting Is [|Imited
only by the length of the llne. If the statement does not contain
the same number of ELSE and THEN clauses, each ELSE Is mafched
with The closest unmatched THEN. For example,

IF A=B THEN IF B=C THEN PRINT "A=C"
ELSE PRINT MA«>CY

will not print "A<>C"™ when A<>B. It wll!l print ™"A<>C" when A=B
and B<>C,.

I'f an IF...THEN statement 1Is followed by a |lne number In the

R YT R O T

INPUT

: Language specification for MSX BASIC Page 27
“ direct mode, an 'Undefined |lne' error results unless a statement
with the specifled |Ine number had previously been entered in

+he Indirect mode.

["<prompt string>";J]<1ist of variables>
To allow Input from the keyboard durlng program execution.

When an INPUT statement is encountered, program execuftion pauses
and a question mark is printed to indicate the program is waitling
for data. If "<prompt string>" is Included, the string is printed
before the question mark. The required data s Then entered
at the keyboard.

The data that 1is entered 1Is assligned fo the variable(s) given
in <variable list>. The number of data Items supplied must bDe
+he same as +the number of variables in the [Ist. Data ifems

are separated by commas.

The names in the <lIst of variables> may be numeric or string’

variable names (inciuding subscripted variables). The type of
each data i+em that is input must agree with The Type specified
by the wvariable name. (Strings inpuT to an INPUT statement need
not be surrounded by quotation marks.) :

Responding to input with the wrong fype cf value (string Instead
of the numeric, efc.) causes +the message "?Redo from start"
+o be printed. No assignment of Input value s made until an

acceptable response is glven.

Example:

[st

10 INPUT "A and B";A,B
20 PRINT A+B

Ok

run

A and B? 10,80
?Redo from start
A and B? 10,20
30

0k

Responding to INPUT with ftoo many Ifems causes the message "7Extra
ignored" to be printed and the next statement to be executed.

Example:
[ist
10 INPUT "A and B";A,B
20 PRINT A+B
Ok ’
run
A and B? 10,20.30
?Extra ignored
30
Ok

Language specification for MSX BASIC Page 28

Responding to INPUT with tfoo few Item causes two question marks
Yo be printed and a wait for the next data item.

Example:

list

10 INPUT "A and B";A,B
20 PRINT A+B

Ok

run

A and B? 10 (The 10 was typed in by the user)
72 20 (The 20 was typed In by the user)
30

Ok

Escape INPUT by typing Control-C or the "CTRL™ and "STOP" keys
simulfaneously. BASIC refurns fto command |evel and types "Ok".
Typing CONT resumes execution at the I[INPUT statement.

LINE INPUT ["<prompt string>";]<string variable>
; To input an entire |ine (up *to 254 characters) +to a string

variable, without fthe use of dellmiters.

The prompt string Is a string |ifteral that is printed at the
console before Input is accepted. A question mark is net printed
uniess it s part of the prompt string. All Input from The end
of the prompt to the <carriage refurn |[s assigned to <string

variable>,

Escape LINE INPUT by +typing Control-C or the "CTRL"™ and "STOP"
keys simultaneocusiy. BASIC returns to command J|level and types
"Ok"™. Typing CONT resumes execution at the LINE [NPUT statement.

CLET] <variable>=<expression>
To assign value of an expression to a variable.

Notice +the word LET [s optional; i.e., the equai sign s
sufficient when assigning an expression to a variable name.

LPRINT [<list of expressions>]
LPRINT USING <string expression>;<|llist of expressions>
; To print data at the line printer. {see PRINT and PRINT USING

statements below for details.)

MIDS(<string exp. 1>),n[,m])=<string exp.2)
To replace a portion of one string with another string.

.
i

The character in <string exp.1>, beginning at posiftion n, are
replaced by the characters In <string exp.2>. The optional m
refers to the number of characters from <strlng exp.2> that will
be used In the replacement. If m |Is omitted or Included,I Ti:
eng

replacement of characters never goes beyond the orliglnal
of <string exp.l>,

ON ERROR GOTO <!Ilne number>

3 To enable error trapping and specify the first line of the error

Language specification for MSX BASIC Page 29

handling subroutine.

Once error +trapping has been enabled all errors detected,
including direct mode errors (e.g., SN (Syntax) errors), will
cause a jump to the speclifled error handling subroutine. 1 f
<line number> does not exist, an 'Undefined [Ine number' error
results. To disable error frapping, execute an ON ERROR GOTO
0. Subsequent errors will print an error message and halt
execution. An ON ERROR GOTQ 0 statement that appears In an error
trapping subroutine causes BASIC to .stop and print the error

message for the error that caused the ftrap. I¥ s recommended
that all error Trapping subroutines execute an ON ERROR GOTO
0 if an error Is encountered for which +there is no recovery
action.

I f an error occurs during execution of an error handlling
subroutine, the BASIC error message 1is printed and execution
Terminates. Error +trapping does not occur within +he error

handling subroutine.

ON <expression> GOTO <list of |ine number>
ON <expression> GOSUB <list of |ine number>
; To branch to one of several speciflied |Ine numbers, depending

on the value refurned when an expression is evaluated. The value
of <expression> determines which line number in the {ist will
be used for branching. For example, If the value s three, the
‘third line number in the list will be +the destination of +the
branch. (If +the value Is a noninteger, the fractional porticn
is discarded.) '
In the ON...GOSUB stztement, each |lne number in the |ist must
be the firs+ |ine number of a subroutine.

If the value of <expression> Is zero or greater than the number
of items in the |ist (but less than or -equal Yo 255), BASIC
continues witTh tThe next executable statement. If the value of
<expresslion> is negative or greater than 255, a 'lllegal function
ealil® &rfor gcturs.

ouT <pdr+ number>,<integer expression>
; To send a byte to a machine output port.

<port number> and <Integer expression> are in +the range 0 Teo
255. <lInteger expression> s the data (byte) to be transmitfed.

POKE <address of the memory>,<Integer expression>
; To write a byte into a memory location.

<address of the memory> is the address of the memory location
to be POKEd. The <Integer expresslon> Is the data (byte) to
be POKEd. |t must be Iin the range 0 +to 255. And <address of
the memory> must be in the range -32768 to 65535. |If this value
Is negatlive, address of the memory location is computed as
subtracting from 65536. For example, =1 Is same as the 65535
(=65536-1). Otherwise, an 'Overflow' error occurs,

Language specificatlion for MSX BASIC Page 30

PRINT

.
?

PRINT

[<list of expressions>]
To output data to the console.

If <list of expresslons> 1Is omitted, a blank [ine is printed.
If <list of expressions> is included, the values of tThe
expressions are printed at +the console. An expression in The
[ist may be a numeric and/or a string expression. (Strings must
be erclosed In quotation marks.)

The position of each printed [tem is determined by the punctuation
used to separate the Items in the Iist. BASIC divides +the |line
into print zones of 14 spaces each. In the <|ist of expressions>,
a comma causes the next value +o be printed at the beginning
of the next zone. A semicolon causes the next value to be printed
immediateiy after the last value. Typing one or more spaces
befween expressions has the same effect as typing a semicolon.

If a comma or a semicolon terminates the <|ist of expressions>,

the next PRINT statement begins printing on the same |ine, spacing
accordingly. If +the <list of expressions> +terminates without
a comma or a semicolon, a carrlage return is printed at the end
of the Ilne. If +the printed 1Iine s longer than the consoile
width, BASIC goes fo the next physical [ine and contfinues
printing. .

Printed numbers are always followed by a space. Positive numbers
are preceded by a space. Negative numbers are preceded by a
minus sign. -

A question mark may be used in-place of the word PRINT in a PRINT
statement.

USING <string expression>;<|Iist of expressions>
To print strings or numerics using a specified formaft.

<list of expressions> comprises the string expressions or numeric
expressions that are to be printed, separated by semicolons,
<string expression> s a string |Iteral (or variable) comprising
special formatting characters. These formatting characters (see
below) determine the field and the format of The printed strings

or numbers.

When PRINT USING is used to print strings, one of three formatting
characters may be used to format the string field:

"!II‘

Specifiles that only the flrst character in the given string Is
to be printed.

Example:
As="Japan"
Ok

PRINT USING "I%;AS

Language speclification for MSX BASIC Page 31

J
Ok

"gn spacesd&"”

Speclfies that 2+n characters from the string are to be printed.
If the backslashs are typed with no spaces, *two <characters will

be printfed; with one space three characters will be printed,
and so on. |f the string Is longer than the fleld, *The extra
characters are ignored. |f the field Is longer than the string,
+he string will be left=-justified In the field and padded with
spaces on the right.

Example:

Ag$="Japan™

Ok

PRINT USING "& &";AS

Japa

Ok

i @1!

Specifies that the whole character in the glven string 1is *To

be printed.

Example:

AS="Japan"

Ok-

PRINT USING "| love € very much.";AS
i love Japan very much.

Ok

B ——— P el St

When PRINT USING is used to print numbers, the following special
characters may be used to format the numeric fleld:

ﬂ#!l

A number sign Is wused to represent each digift position. Digit
positions are always filled. |f the number o be -printed has
fewer digits +than positions specified, the number will ©be
right-justifled (preceded by spaces) In the fleld.

A decimal point may be Inserted at any position In the fleld.
If the format string specifies that a digit Is o precede The
decimal point, the digit will always be printed (as 0 if

necessary). Numbers are rounded as necessary.

Example:

PRINT USING "###.##";10.2,2,3.456,.24
10.20 2,00 3.46 0.24

Ok

"

3 Language specificatlion for MSX BASIC Page 32

A plus sign at the beginning or end of the format string will
cause the sign of the number (plus or minus) to be printed before
or after the number.

Example:
PRINT USING "+###.##";1.25,-1.25
+1 .25 =1.28

Ok -
PRINT USING "###.##+";1.25,-1.25
125+ 1:25~
Ok
mwn
A minus sign at the end of the format field wlll cause negative

numbers to be printed with a tralling minus sign.

Example:

PRINT USING "§##.##-";1.25,-1.25
lold ", 1 429" '

Ok

HET 21

A double asterisk at the beginning of the format string causes
leading spaces In the numeric field fo be filled with asterisks.
The ** also specifies positions for Two or more digits.

Example:
: PRINT USING "*x# ##".1.25,-1.25
‘ *%1 ,25%-1_25

Ok

|'I¥¥ n

A double yen sign causes a yen sign to be printed to the immediate
left of the formatted number. The ¥¥ <specifies *two more diglt
posiftions, one of which is the yen sign. The exponential format
cannot be used with ¥X. Negative numbers cannot ~be used unless
the minus sign trails to the right.

Example: o

PRINT USING "¥x###.#4#";12.35,-12.35
Yi2.35 —%i2.58

Ok

-PRINT USING M"¥¥###. ##-";12.35,-12.35
A2 D3 *1¥ .25~

Ok

Makyn

The **¥¥% at+ +the beglnning of a format string combines the effects
of the above two symbols. Leading spaces will be asterisk-filled
and a vyen sign will be printed before the number. *¥¥ specifles

‘ﬁ%&%"ﬁ@ﬁﬁ—'?ﬂ:ﬁwu e e S i s 34 SR b

Language speciflication for MSX BASIC Page 33

o ——oao aHgE

three more digit positions, one of which Is the yen sign.

Example:

PRINT USING "**Y# ##v:12.35
¥¥12.35

Ok

L 1
2

A comma that is to the left of the decimal point in a formatting

string causes a2 comma fo be printed to the left of every +hird
digit tfo the left of the decimal pointf. A comma that is at the
end of the format string is prinfed as part of +the string. A

comma specifies another digit position. The comma has no effect
If used with the exponential format.

Example:

PRINT USING "####,.##";1234.5
1,234.50Q :

Ok

PRINT USING "####.##,";1234.5
VZS4 50,

Ok

IlM/\/\fl

Four carats may be placed after +the digit position <characters"

to specify exponential format. The four carats allow space for
E+xx to be printed. Any decimal point position may be specified.
The significant digits are |eft-justified, and the exponent is
adjusted. Unless a leading + or tralling + or =~ s specifled,
one digit position will be used to the |eft of the decimal point

to print a space or minus sign.

Example:

PRINT USING "##.,FF#AARAN ;234,56
2.35E+02 '

Ok

PRINT USING "F.##FAAAA=";-12,34
1.23E+01-

Ok

PRINT USING "+#.##AAAA";12.34,-12.34

+1.23E+01-1.23E+01

Ok

g
'ﬁ

If the number +to be prInTed is larger than the specifled numeric

fleld, a percent sign is printed In front of the number. Also,
[f rounding causes the number +to exceed +the fleld, a percent
sign will be printed In front of the rounded number.

Example:

PRINT USING "##.##";123 .45
4123 .45

Language speciflication for MSX BASIC Page 34

Ok

PRINT USING ", ##";.999

£1.00

Ok

[f the number of dliglts speclifled exceed 24, an '"lllegal function
call' error will result.

READ <list of variables>

; To read values from a DATA statement and assign them to varlables.
A READ statement must always be used in conjunction with a DATA
statement. READ statements assign variables +Tc DATA statement
values on a one-to=-one basis. READ statement variables may be
numeric or string, and "the values read must agree with the
variable types speclified. |f they do not agree, a 'Syntax error!
will result.

A single READ statement may access one or more DATA statements

(they will be accessed In order), or severai READ statements
may access the same DATA statement. |f the number of variables
in <lIst of variables> exceeds the number of elements in the
DATA statement(s), an 'OQut of DATA' error wil!l result. If the
number of variables speciflied (s fewer than the number of elements
in the DATA statement(s), subsequent READ staftements will begin
reading data at +the flrst unread element,. If *there .are no

subsequent READ statements, the extra dafta is ignored.

To reread DATA statements from tThe start, -use The RESTORE
statement. .

REM <remark>
; To allow explanatory remarks fo be Inserted in a program.

REM statements are not executed but are ocutput exactly as entered

when the program Is |listed.

REM statements may be branched I[nto (from a GOTO or GOSUB
statement), and execution wlll continue with the first executable
statement after The REM statement.)

Remarks may be added to the end of a line by preceding the remark
witTh a single quotation mark instead of :REM. -

Do not wuse this in a DATA statement as it would be considered
legal data.

RESTORE [<line number>]
i 3 To allow DATA statements to be reread from a specifled l|line.

After a RESTORE statement |[s executed, the next READ statement
accesses the flrst Item In +the flirst DATA statement In the
program. |f <lline number> [|s specified, the next READ statement
accesses the flrst Item In +the speclifled DATA statement. | f
a8 nonexlstent |lne number Is specifled, an 'Undefined Line number'

4
:(;é;
g
#
&
¥
%

Language specificatlion for MSX BASIC Page 35

error willl result.
RESUME
RESUME O©

RESUME NEXT .
RESUME <l ine number>
To contlnue program execution after an error recovery procedure

has beer performed.

;

Any one of the four formats shown above may be used, depending
upon where execution is to resume:

RESUME or RESUME O
Executlon resumes at the statement which caused the error.

RESUME NEXT
Execution resumes at the statement Immediately following the

one which caused the error.

RESUME <l ine number>
Execution resumes at <iine number>

A RESUME statement that is no+ in an error trap subroufine causes
a 'RESUME without! error.

STOR
. To terminate program execution and refurn to command level.

STOP statement may be used anywhere ([n a program 70 terminate
execution. When a STOP statement is encountered, the followling

message Is printed:

Break in nnnn (nnnn is a |ine number)
Unlike the END statement, the STOP statement does not close files.
Execution is resumed by Iissuing a CONT command.

SWAP <variable>,<varlable>
; To exchange the value of fwo varlables.

Any ftype of variable may be SWAPed (integer, single precision,
double precision, string), but the +wo varlable must be of the
same type or a 'Type mismatch' error results.

WAIT <port number>,I1[,J]
; To suspend program execution while monitoring the status of a

machine Input port.

The WAIT statement causes executlon 1o’ be suspended untll a
specifled machine Input port develops a specifled bit patfern.
The data read at the port Is excluslive OR'ed with t+he Integer
expression J, and then AND'ed wlth [Integer expression |. I f
the result 1Is zero, BASIC |loops back and reads the data at the
port agaln. ¥ the resultT [s non-zero, execution continues with

Language speciflcatlion for MSX BASIC Page 36

the next statement. If J Is omitted, It is assumed to be zero.

Language specification for MSX BASIC . Page 37

2.1.3 Functions, except 1/0

ABS(X)

; Returns the absolute value of the expression X.

ASC(X$)

; Refurns a numerical value that is the ASCI! code of +the first
character of the string X$. If X$§ Is null, a '"lllegal function
call' error is returned.

ATN(X)

; Retfurns the a&arctangent of X in radlans. Result is In +he range
-pi/2 to pi/2. The expression X may be any numeric type, but
the evaluation of ATN s always performed in double precision.

BINS(n)
; Returns a string which represents the binary value of the decimal

argument.

n is a numeric wexpression in the range -32768 +to 65535. 'f n~
s negatlive, the two's complement from is used. That Is, BINS(=n)
s the same as BIN$(65536-n).

COBL(X)

; Converts X to a double precision number.

CHRS$ (1) :

; Returns a string whose one element is the ASCI| code for |. ASCS
is commonly used to send a special character +to +he console,
etc. '

CINT(X)
; Converts X to a Integer number by “tfruncating +the fractional

portion. If X isn't +the range =32768 to 32767, an 'Overfiow!
error occurs.,

COS(X)
; Returns the cosine of X In radians. COS(X) Is «calculated to

double precision.

CSNG(X)
; Converts X +o a sIingle precislon number.
CSRLIN
; Returns the vertical coordinate of +the cursor.

EOF(<flle number>)
; Return =1 (true) I[f the end of a sequential file has been reached.
Use EOF +to test for end-of-flle while INPUTIing, to avoid 'Input

past end! errors.

ERL/ERR
; When an error handling subroutine Is entered, the varlable ERR

contains the error code for error. and the varlable ERL contains

Language specification for MSX BASIC Page 38

the line number of *the Ilne in which the error was detected.
The ERR '‘and ERL variables are usually used In iF...THEN statements
to direct program flow In the error trap routine.

¥ the statement that caused +the error was a direct mode
statement, ERL will contain 65535. To test if an error occurred
in a direct statement, use

IF 65535=ERL THEN
Otherwlse, use

IF ERL=<!ine number> THEN
IF ERR=<error code> THEN....

Because ERL and ERR are reserved variables, neither may appear
To the left of +the equal sign in a LET (assignment) statement.

EXP(X)

Returns e fto the power of X. X must be <=145.06286085862. [T
EXP overflows, the 'Overflow! error message Is printed. .

FIX(X) _
; Returns The integer part of X (fraction truncated). FIX(X) is
equivalent to SGN(X)*INT(ABS(X)). The major difference between

FIX and INT is that FIX does not return the next |ower number

for negative X.

FRE(Q)

FRE(™H)
Arguments to FRE are dummy arguments. FRE returns the number

of bytes [n memory not being used by BASIC.

.
2

FRE(Q) returns the number of bytes in memory which <can be used

for BASIC »program, text file, machine language program fife,
etc. FRE("") returns the number of bytes in memory for string
space.
HEX$(X)
; Returns a string which represents the hexadecimal 'value of the

decimal argument.

n is a numeric expression in the range -32768 to 65535. If n
Is negative, the two's complement from is used. That ls, HEXS$(+n)
is the same as HEXS$(65536-n).

INKEY $
; Returns elther a one-character string containing a character
read from the keyboard or a null string |f no key [s pressed.
No characters will be echoed and all characters are passed through
to the program except for Control=C, which terminates the program.

INP(CL) _
; Returns the byte read from the port |I. | must be in the range
0 To 255. INP Is the complementary functlon +o the QUT statement.

Language specification for MSX BASIC Page 39

INPUTS(X)
; Returns a string of X characters, read from the keyboard. No
character will be echoed and all characters are passed through

except Control-C, terminates the execution of the INPUT$ function.

INSTR([1,]XS$,YS$) :
; Searches for the first occurrence of string Y§ in X3 and refurns

the position at which the match s found. Optional offset |

sets the position for starting tThe search. | must be in the
range 0 to 255. If I>LEN(XS$) or if X$ is null or If Y$ cannot
be found or if X3 and Y$ are null, INSTR returns 0. "[f only
Y$ is null, INSTR returns [or 1. X$ and Y$ may be string
variables, string expressions, or string literals.

INT(X)

; Returns the largest integer <=X.

LEFTS(XS, 1)

; Returns a string comprising the leftmost [characters of X§.
| must be in the range 0 to 255. |If | is greater than LEN(XS),
the entire string (X3$) Is returned. If 1=0, a2 null string (length
zero) is returned.

LEN(XS)

; Retfurns the number of <characters in X$. Nonprinting characters
and blanks are counted. :

LOG(X) ¥

; Returns the natural logarithm of X. X must be greater than zero.
LPOS(X)

; Returns the current position of the line printer print head within

the |lne printer buffer. Does not necessarily give tThe physical

position of the print head. X is a dummy argument.

MIDS(XS,I[,d])

; Returns a string of length J characters from X$ beginning with
the |th character. | and J must be In the range 1 fo 255. Hf
J Is omitted or if there are fewer than J characters to the right
of the |th character, all rightmost characters beglinning with
the |th character are returned. 1¥ [>LEN(XS$), MIDS$ returns &
null string.
0CTS$(n)

; Returns a string which represents the octal value of the decimal
argument.

n {s a numeric expresslion in the range =32768 to 65535. If n
ls negative, the two's complement from Is used. That Is, OCT$(=n)

Is the same as QOCT$(65536=n).

PEEK (1) .
; Returns the byte (decimal Integer In the range 0 to 255) read

from memory location |. | must be In the range -32768 to 65335.

- SIN(X)

Language specification for MSX BASIC Page 40

PEEK is the complementary function to the PCOKE statement.

POS(1)
; Returns the current cursor position. The leftmost pesition 1Is
0. | is a dummy argument. :
RIGHTS$(XS$,1)
; Retfurns the rightmost | characters of string X§. If I=LEN(XS),
return X$. [f I=0, a null string (length zero) Is returned.
RND(X)
; Returns a random number between 0 and 1. The same sequence of
random number s generated each *time the program is RUN. If
X<0, the random generator is reseeded for any given X. X=0
repeats the last number generated. X>0 generates the next random

number in the sequence.
SGN(X)
; Returns 1 (for X>0), 0 (for X=0), =1 (for X<0Q).

Returns the sine of X in radians. SIN(X) Is calculated to double
precision.

.
’

SPACES(X)
Returns the string of spaces of length X. The expression X

discards the fractional portion and must be range 0 to 255.

-
?

SPC(1) :
; Prints | bianks on the screen. SPC may only be wused with PRINT
and LPRINT statements. | must be in the range 0 to 255.
SQR(X)
; Returns the square rootft of X. X must be >=0.
STRI(X)

; Returns a string representation of the value of X.
STRINGS(1,J)

STRINGS(!,X$)
; Returns a string of length | whose characters all have ASCI!I

code J or the first character of the string X3.

TAB(1)
; Spaces *to position | on the <console, I¥f +the current prinft
position Is already beyond space |, TAB does nothing. Space
0 is +the leffmost position, and the rightmost position [s the
width minus one. | must be In the range 0 to 255. TAB ‘may only
be used with PRINT and LPRINT statements. ‘
TAN(X) .
; Returns the tangent of X In radlans. TAN(X) Is calculated *to

doublie preclslon. If TAN overfliows, an ‘'Overflow! error will
geccur.

Language specificatlion for MSX BASIC

Page 41

USRC<dlgit>](X)

.
?

Calls the wuser's assembly language subroutine with the argument
X. <digit> is in the range 0 fo 9 and corresponds +to the digi%
supplied with the DEFUSR statement for that routine. |If <digit>
is omitted, USRO is assumed. -

VAL(XS)
; Returns the numerical value of the string X$§. The VAL function
also strips leading bianks, fabs, and |inefeeds from the argument

string. For example

PRINT VALL® =7%)
=¥
Ok

VARPTR(<variable name>)
VARPTR(#<flle number>)

¥

Returns the address of +the first byte of data identlfied with
<variable name>. A value must be assigned +tc <variable name>

prior to execution of VARPTR. Otherwise, an 'lllegal function
call.! error results. Any type variable name may be used (numeric,
string, array), and the address returned will be an integer in
+*he range -32768 to 32767. |If a negative address is returned,

add it to 65536 to obtain the actual address.

VARPTR is wusually wused +to obtaln +the address of a variable or -

array so It may be passed +to an machlne |anguage subroutine.
A function call of +the form VARPTR(A(0)) is usually specifled
when passing an array, so that the |owest~address element of
tThe array Is returned. ‘

All simple variables should be assigned before calling VARPTR
for an array because the address of the arrays change whenever
a new simple variable 1Is assignecd. I£ #<file number> is

specifled, VARPTR returns the starting address of the file control
block.

Language specificatlion for MSX BASIC Page 42

2.2 Device specific statements and functlions.

--- Expanded statements and functions for MSX =--

2.2.1 Statements

SCREEN [<mode>][,<sprite size>][,<key click switch>]
[,<cassette baud rate>][,<printer option>]

5 To asslign the screen mode, sprite slize, key click, cassette baud
rate and printer option.

<mode> should be set To 0 fTo select 40x24 tText mode, 1 To select
32x24 text mode, 2 To select high resolution mode, 3 to select
multl color (low-resolution mode).

0:40x24 textT mode
1:32x24 text mode
2:high resolution mode
3:multi color mode

<sprife size> determines +the =size of sprite. Should be set to

0 to select 8x8 unmagniflied sprites, 1 To select 8x8 magnified
sprites, 2 tfo select 16xi16 unmagnified sprites, 3 to select 16x16
magnified sprites. NOTE: If <sprite size> s specified, *tThe
contents of SPRITES will be cleared.

0:8x8 unmagnified
1:8x8 magnified
2:16x16 unmagnified
3:16x16 magnified

e

<key click switch> determines whether to enable or disable the
key click. Should be set to 0 to disable ift.

O:disable the key click
l:enable the key click

Nete that in text mode, all graphics statements except 'PUT
SPRITE' generate an 'lllegal functlion call' error. Note also
that the mode Is forced to text mode when an '|NPUT!? statement
is encountered or BASIC returns to command level.

<cassette baud rate> determlines the default baud rate for
succeeding write operations. 1 for 1200 baud, and 2 for 2400
baud. Baud rate can also be determined using CSAVE command with

baud rate option.

Note that when reading cassette, baud rate 1Is automatically
determined, so +the wuser don't have +to know In what baud rate
the cassette Is written. <printer optlon> determines [If the

printer In operatlion [s 'MSX printer! (which has 'graphics symbol!
and 'HIRAGANA'! capabillity) or not. Should be non-0 If the printer
does not have such capabllilty. In this case, graphlics symbols

Language specification for MSX BASIC , Page 43

are converted to spaces, and HIRAGANA characters are converfted
to equivalent KATAKANA characters.

WIDTH <width of screen in text mode?>
. To Set the width of display during texft mode. Legal value Is
1..40 in 40x24 text mode, 1..32 in 32x24 text mode.

’

CLS

r

To clear the screen. Valid in al! screen modes.

LOCATE [<x>J[,<y>]1[,<cursor display switch>]
: To locate <character poslition for PRINT. <cursor display swltch>

can be specified only In text mode.

O:disable the cursor display
1:enable the cursor display

COLOR [<foreground color>][,<background color>][,<border color>]
; To define the color. Defaults to 15,4,7. The argument can be

In the range of 0..15. Actual color corresponding to each value -

s as follows.

fransparent
black

medium green
|ightT green
dark blue
light blue
dark red
cyan

medium red
light red
dark yellow
light yellow
dark green
magenta

gray

white

— OO~ WM P WN—O

o

H.J_J_Lg
Ul R =

PUT SPRITE <sprite plane number>[,<coordinate specifier>][,<color>}
[,<pattern number>]
; To set up sprite attributes.

<sprite plane number> may range from 0 fo 31.
<coordlnates specifier> always can come in one of two forms:

STEP (x offsetf, y offsef) or
(absolute x, absolute y)

The first form Is a polnt relative *o +he most recent point
referenced. The second form (s more common and dlrectly refers
to a polnt without regard fo the last point referenced. Examples

are:

Language specification for MSX BASIC Page 44

(10.10) absolute form

STEP (10,0) offset 10 in x and 0 in y

(0,0) origin
Note that when Basic scans coordinate values It will allow Them
to be beyond the edge of the screen, however values outside the
integer range (-32768 to 32767) wlill ~cause an overflow error.
Note +hat (0,0) Is always +the wupper leff hand corner. [T may
seem strange to start numbering y at the top so the boftom lef?
corner Is (0,191) in both high-resolutlion and medium resolution,

but this Is tThe standard.

Above description can be _applied wherever graphic coordinafte

is used.

X coordinate <x> may range from =32 to 255. Y coordinates <y>
may range from -32 to 191. If 208 (&HDO) is glven to <y>, all
sprite planes behind dlsappears untll| a value other than 208
is given +to that plane. [f 209 (&HD1) Is specifled to <y>, then
that sprite disappears from the screen. (Refer to VYDP manuai

for further details.)

When a fleld (s omitted, the currenft value s used. AT startT
up, color defaults to the current foreground color.

<pattern number> specifies the pafttern of sprite, and must be
less than 256 when size of sprites if 0 or 1, and must be [ess
+han 64 when slze of sprites is 2 or 3. <pafttern number> defaul ts
to the <sprite plane number>. (See also SCREEN statement and

SPRITES vartable)

CIRCLE <coordinate speclifier>,<radius>[,<color>]
C,<start angle>][,<end angle>][,<aspect ratio>]
; To draw an ellipse with a center and radius as indicated by the
flrst of its arguments.

<coordlinate specifler> specifies +the coordinate of the center
of the circle on +the screen. For +the detail of <coordinate
spacifler>, see the description at PUT SPRITE statement.

The <color> defaults +o foreground color.

The <start angle> and <end angle> parameters are radian arguments
between 0 and 2*P| which allow you to specify where drawing of

the elllpse wlill begin and end. If the start or end angle Is
negative, the elllpse will be connected to the center polnt wlith
a line, and tThe angles wlill be treated as [f tThey were positive

(Note that this Is different than adding 2*Pl).

The <aspect ratio> Is for horizontal and vertical ratio of the
elllipse.

DRAW <string expresslon>
; To draw figure according to the graphlc macro |anguage.

Language speciflcation for MSX BASIC Page 45

The graphic macro language commands are contained in +he string
expression string. The sfring defines an object, which is drawn
when BASIC executes the DRAW s+atement. During executlion, BASIC
examines the value of string and interprets single l|etter commands
from the contents of the string. These commands are detalled

below:

The following movement commands begin movement from +the {as+
poeint referenced. After each command, last point referenced
is the last point the command draws.

Un ;Moves up

D n ;Moves down

L n ;Moves left .

R n ;Moves right

E n ;Moves diageonally up und right
Fn ;Moves diagonally down and right
G n ;Moves dlagonally down and lefft
H n ;Moves dlagonally up and left

n in each of the preceding commands indicating +the distance “o
move. The number of points moved Is n times the scaling factor

(set by the S command).

M x,y ;Moves absolute or relative. If x has a plus
sign(+) or a minus sign(=) in front of i+, it
is relative. Otherwise, It is absolute.

The aspect ratio of the screen is T So 8. horizontal points
are equal in length to 8 vertical points.

The following two prefix commands may precede any of the above
movement commands.

B ;Moves, but doesn't plot any points.
N ;Moves, but returns to Tthe original position
when finished.

The following commands are also available:

A n ;Sets angle n. n may range from 0 to 3, where
0 is 0 degree, 1. is 90, 2 Is 180, 3 Is 270.

0
l
| =g
I
2
Cn ;Sets color n. n may range 0 to 15.
S n ;Sets scale factor. n may range from 0 to 255.

n divided by 4 Is the scale factor. For example,
If n=1, +then the scazle factor is 1/4. The scale

Language specification for MSX BASIC 7 Page 46

factor multiplied by +the distance given with
the U,D,L,R,E,F,G,H, and relative M commands
gives the actual distance moved. The default
value |s 0, which means 'no-scalling! (l.e.,
same as S4)

X<string varlable>;
;Executes substring. This allows you fo execute

a8 second string from within a string.

Example A$="UBQORB80OD8BOLBO":DRAW "XAS$;™"
->Draws a square

In all of fthese commands, the n,x, or y argument can be a constant
like 123 or it can be '=<variablie>;! where <variable> 1is the
name of a numeric variable. The semlcolon (;) Is required when
you use a variable this way, or in the X command. Qtherwise,
a semicolon is optional between commands. Spaces are ignored
in string. Foe example, you could use variables in a move command
this way:

X1=40:X2=50
DRAW "™M+=x1;,-=X2"

The X command can be a very wuseful part of DRAW, because you
can define a partT of an object separafe from the entire object

and also can use X to draw a string of commands more than 255
characters long.

LINE [<coordinate specifier>]=-<coordlinate specifier>[,<éo!cr>j

[,<8Y8F>]
; To draw line connecting the two specified coordinate. For the
detail of the <coordinate specifier>, see description at PUT

SPRITE statement.

If '"B'is specified, draws rectangle. ¥ '"BF' is specified, fills
rectangle.

PAINT <coordinate specifier>(,<paint color>][,<color regarded
as border>]

; To fill In an arbitrary graphics fligure of +the specifled fill
color starting at <coordlnate speciflier>. For the detail of
the <coordinate speclifler>, see the description at PUT SPRITE
statement.

Note that PAINT must not have border for high resoluticn graphics,
border <can be speclfied only in multicolor made. in high
resolution graphics mode, paint color is regarded as border color.

PSET<coordlnate specifler>[,<color>]
PRESET<coordinate speclifler>[,<color>]
; To set/reset +the specified coordinate. For the detail of the
<coordinate specifler>, see the description at PUT SPRITE
statement

Language specificatlon for MSX BASIC Page 47

The only difference between PSET and PRESET Is that if no <color>
is given in PRESET statement, the background color 1is selected.
When a <color> argument is glven, PRESET Is identical to PSET.

KEY <function key #>,<string expression>
; To set a string to specifled function key. <function key #>
must be In +the range 1 to 8. <string expression> must be within
15 characters.

Example:

KEY 1,"PRINT TIMES"+CHRS$(13)
Af="Japan"®
KEY 2,A8
KEY LIST
; To list the contents of all function keys.
Example:
KEY LIST
color
auto
goto
st
run
color 15,7,7
cload"
cont
[1st .
run
Ok
"color™ aligns with key "f1", mMayto" with "f2n, "goto"™ with "f3",
and so on, Position in +the |Ist reflects the key assignments.
Note that control <characters assigned to a functlion key s

converted Yo spaces.

ON KEY GOSUB <list of line numbers>
To set up a line numbers for BASIC to ftrap to when the function

keys is pressed.

H

example
ON KEY GOSuB 100,200,,400,,500

When a tfrap occurs, an automatic KEY(n)STOP is executed so receive
traps can never take place. The RETURN from the trap routlne
will automatically do a KEY(n)ON wunless an explicit KEY(n)OFF
has been performed Inside the trap routine.

Event tfrapping: does not take place when BASIC is not execution
a program. When an error “trap (resultling from an ON ERROR
Statement) takes place +this automatically disables all’ trappling
(Including ERROR, STRIG, STOP, SPRITE, INTERVAL and KEY).

KEY (<function key #>) ON/OFF/STOP
i To activate/deactivate +trapping of the speclified functlon key

" "b‘w‘ ¥

3

Language specification for MSX BASIC Page 48

in a BASIC program.

A KEY(n)ON statement must be executed to activate *frappling of
function key. After KEY(n)ON statement, iIf a line number is
specified In the ON KEY GOSUB statement then every time BASIC
s+arts a new statement It will <check to see [f the specified
key was pressed. |f so it will perform & GOSUB to the line number
specified in the ON KEY GOSUB statement.

lf a KEY(n)OFF statement has been executed, no trapping takes
place and the event is not remembered even if It does take place.

[f a KEY(n)STOP statement has been executed, no ‘tfrapping will
take place, buf if the specifled key is pressed this is remembered
so an immediate trap will take piace when KEY(n)JON s executed.

KEY(n)ON has no effect on whether +the function key value are
displayed at the bottom of the console.

ON STRIG GOSUB <list of line numbers>

°
?

STRIG

To set up a line numbers for BASIC fo frap fo when the *trigger
button is pressed.

Example:
ON STRIG GOSUB ,200,,400

When the trap occurs an automatic STRIG(n)STOP Is executed so
receive traps can never Take place. The RETURN from the “rap
routine will automatically do a STRIG(n)ON unless an explicit

STRIG(n)OFF has been performed inside the trap routine.

Event ftrapping does not take place when BASIC is not executing
a program. When an error frap (resulting from an ON ERROR
statement) takes place +his automatically dlsables z2t1 trapping
(including ERROR, STRIG, STOP, SPRITE, INTERVAL and KEY T

(<n>) ON/QFF/STOP
To activate/deactivate trapping of trigger buttons of jJoy sticks

in a BASIC program.

<n> can be in the range of 0..4. lf <n>=0, the space bar s
used for a trigger button. |If <n> is elither 1 or 3, the trigger
of a joy-stick 1 is used. When <n> Is either 2 or 4, joy-stick

A STRIG(n)ON statement must be executed to activate trapping
of trigger button. After STRIG(n)ON statement, [f a |lne number
is specified In the ON STRIG GOSUB statement Then every time
BASIC starts a new statement It will check to see If the Tfrigger
button was pressed. I+ so It wlll perform a GOSUB to the ‘line
number specifled In the ON STRIG GOSUE statement.

I+ a STRIG(n)OFF statement has been executed, no frapping takes
place and +the event is not remembered even [f [t does take place.

Language specification for MSX BASIC | Page 49

If a STRIG(n)STOP statement has been executed, no ftrapping will
take place, ©but |if +the frigger button Is pressed +this |Is
remembered so an immediate trap will take place when STRIG(n)ON

ls executed.

ON STOP GOSUB <line number>
; To sef wup a line numbers for BASIC +to +trap to when +the
Control-STOP key Is pressed.

When the frap occurs an automatic STOP STOP is executed so recelve
traps can never take place. The RETURN from the trap routine
will automatically do a STOP ON unless an explicit STOP OFF has
been performed inside the trap routine.

Event trapping does not ‘take place when BASIC is not execution
a program. When an error frap (resulting from an ON ERRCR
statement) takes place thls automatically disables all trapping
(including ERROR, STRIG, STOP, SPRITE, INTERVAL and KEY).

The user must be VERY careful when wusing +this statement. For
example, following program cannot be aborted. The only way left
is fo reset the system!

example: 10 ON STOP GOSUB 40
20 STOP ON
30 GOTO 30
40 RETURN

STOP-ON/QFF/STOP .
; To activate/deactivate *trapping of a control-STOP.

A STOP ON statement must be executed +to activate *trapping of
a control-S5TQOP. After STOP ON statement, if a line number is
specified In the ON STOP GOSUB statement +then every tTime BASIC
starts a new statement [t will <check fo see [f a control=-STOP
was pressed. l[f so, it will perform a GOSUB tao the |ine number
specitftled In the ON STCOP GQOSUB statement.

If a STOP OFF statement has been executed, no trapping takes
place and the event is not remembered even if it does take place.

If a STOP STOP statement has been executed, no frapping will
take place, but if a control-STOP is pressed this is remembered
so an immediate trap will take place when STOP ON s executed.

ON SPRITE GOSUB <l|ine number>
3 To set wup a |ine number for BASIC to trap to when the sprites

coincide.

When the tfrap occurs an automatic SPRITE STOP is executed so

recel{ve traps «can never take place. The RETURN from the ftrap
routine will automatically do a SPRITE ON unless an expliclt

SPRITE OFF has been performed Inside the trap routine.

Event tfrapping does not take place when BASIC is not executlon

Language specification for MSX BASIC Page 50

a program. When an error ftrap (resultling from an ON ERROR
statement) takes place +this automatically dlisables all trapping
(including ERROR, STRIG, STOP, SPRITE, {INTERVAL and KEY).

SPRITE ON/OFF/STOP .
; To acfiyafe/deacfivafa Trapping of sprite In a BASIC program.

A SPRITE ON statement must be executed to activate frappidg of
sprite. After SPRITE ON statement, if a |line number is speclfied
in the ON SPRITE GOSUB statement +then every time BASIC starts
a new statement it will check to see [f +the sprites coincide.
If so it will perform a GOSUB to the line number speciflied in
the ON SPRITE GOSUB statement.

If a SPRITE OFF statement has been executed, no “tfrapping takes
place and +the event is not remembered even if |t does take place.

tf a2 SPRITE STOP statement has been executed, no trapping will
take place, but if the sprites coincide +this is remembered so
an Immediate “trap will take ©place when SPRITE ON is executed.

ON INTERVAL=<tIime Interval> GOSUB <line number>
; To set up a line number for BASIC to trap to time intervai.

Generates a timer interrupt at every <time interval>/60 second.

When the frap occurs an automatic INTERYAL STOP is executed so
receive fraps can never take place. The RETURN from tThe Trap
routine will automatically do a INTERVAL ON unless an explicift
INTERYAL OFF has been performed Inside the trap routine,

Event trapping does not take place when BASIC is not executling
a program. When an error ftfrap (resulting from an ON ERROR
statement) takes place +this automatically disables all traps
(including ERROR, STRIiG, STOP, SPRITE, INTERVAL and KEY).

INTERVAL ON/QFF/STOP
; To activate/deactivate “trapping of +time interval in a BASIC

program.

A INTERVAL ON statement must be executed To activate Trapping
of time Interval. After INTERYAL ON statement, (f a |ine number
Is specified in the ON INTERVAL GOSUB statement then every Time
BASIC starts a new statement [t will check the Time interval.
lf so It will perform a GOSUB to the line number specified In
the ON INTERVAL GOSUB statement.

lf a INTERVAL OFF statement has been executed, no trapping takes
place and the event [s not remembered even [f [t does take place.

If a INTERVAL STOP statement has been executed, no “trappling will
take place, but If the timer Interrupt occur, thlis Is remembered
so an immediate trap wil| take place when INTERVYAL ON Is executed.

BN s it ke

YPOKE <address of YRAM>,<value to be wrltten>

e ————— e e .

Language specification for MSX BASIC Page 51

; To poke a value to specified |ocation of VRAM. <address of VYRAM>
can be in the range of 0..16383. <value +to be written> shoulid
be a byte value.

BEEP

; To generate a beep sound. Exactly the same with - outputting

CHRS$(7).
MOTOR [<ONYOFF>]

; To change the status of cassette motor switch. When no argument
is glven, flips the motor switch. Otherwise, enables/dlisables
motor of cassette.

SOUND <register of PSG>,<value to be written>

; To write value directly to the <register of PSG>.

PLAY <string exp for vojce 1>[,<string exp for voice 2> [,<string exp

for voice 3>7]
; To play music according to music macro language.

PLAY fmplemenfs a concept similar to DRAW by embedding a M"music

macro language" into a character string. <string exp for voice

n> is a string expression consisting of single character music

commands. When a null string 1is specified, the voice channel|
remains silent. The single character commands in PLAY are:

A to G with optional #,+,or =

;iPlays the indicated note in +he current cctave.
A number sign(#) or plus sign(+) aftTerwards
indicates a sharp, a minus sign(=) Indicates
a ftat. The #,+, or - is not allowed unless
it corresponds to a black key on a piano. For
example, B# is an invalid note.

0 n ;O0ctave, Sets the current octave for the
following notes. There are 8 octaves, numbered
I fo 8. Each octave goes from C +o B. Octave
4 Is the default octave.

N n ;Plays note n. . n may range from 0 to 96. n=0
means rest. This Is an alternative way of
selecting notes beslides specifying the octave(O
n) and the note name (A-G). (The C of octave
4 Is 36.)

L n ;Sets the length of +the following hotes. The
actual note length is 1/n. n may range from
1 to 64. The followling table may help explaln
tThis: '

Length Equlivalent

L1

whole note

Language speciflcation for MSX BASIC Page 52
L2 " half note
L3 one of & +triplet of +three
half notes (1/3 of a 4 beat
measure)
L4 quarter note
L5 one of a quintuplet (1/5
of a measure)
Lé one of a quarter note tfriplet
L64 sixty~-forth note

The length may also follow the note when vyou
want to «change the length only for the note.
For example, Al6 is equivalent fto L16A.

;Pause(rest). n may range from 1 teo 64, and
figures the length of the pause [n Tthe same
way as L(length).

; (Dot or period) After a note, causes +the note
to be played as a dotted note. That is, Its
length is multiplied by 3/2. More than one
dot may appear after the note, and the [ength
is adjusted accordingly. .For exampie, "A..."
will play 27/8 as long, etc. -Dotfs may-also
appear affer the pause(P) To scale the pause.
length in the same way.

;Tempo. Sets the number of quarter noftes in
a minute. n may range from 32 “fo 255. The
defaultT s 120. '

;Yolume. Sets the voiume of output. n meay range
from 0 to 15.

;Modulation, Sets period of envelcpe. n may
range from 1 to 65535.

;Shape. Sets shape of envelope. n may range

from 1 to 15. The pattern set by *this command
are as follows:

0:,1:2,3:9

435,:6,;7;13

Language specification for MSX BASIC Page 53

10

13

14 ////
X<variable>;
;Executes specified string.

In all of +these commands the n argument can be a constant |ike
12 or it can be "=<varliable>;"™ where variable is the name of
a variable. The semicolon(;) is required when you use a variable
in this way, and when you use The X command. Otherwise, a

semlcolon is optional between commands.

MAXFILES=<expression>
;7 To specify the maxIimum number of files opened at ..a “time.
<expresslion> can be in +the range of 0..15. When "MAXFILES=0'

Is executed, only SAVE and LOAD can be performed.
The default value assigned is 1. :

OPEN "<device_descriptor>[<file name>]" [FOR <mode>]

AS [#]<file number>
; To allocate a buffer for |1/0 and set the mode that will be used

wlth the buffer.

" This statement opens a devlice for further processing. Currently,
following devices are supported.

CAS: cassette
CRT: CRT screen
GRP: Graphlc screen

i
g
&
£
i

Language speciflication for MSX BASIC Page 54

LPT: line printer

Device descriptors can be added using +the ROM <cartridge. See
SLOT.MEM for further detalls.

<mode> is one of the following:

QUTPUT : Specifies sequential output mode
INPUT : Specifies sequential input mode
APPEND : Specifies sequential append mode

<file number> 1Is an Integer expression whose value Is betfween
one and the maximum number of files specified 1in a MAXFILES=
statement.

<file number> 1Is the number that |[Is associated with the flle
for as long as it is OPEN and Is wused by other /0 statements

to refer to the flle.

An OPEN must be executed before any |/0 may be done to the file
using any of the following statements, or any statfement or
function requiring a file number:

PRINT #, PRINT # USING
INPUT #, LINE'INPUT #
INPUTS, GET, PUT

#<file number>,<exp>
#<file number>,USING <string expression>;<|lst of-expressicn>
To write data to the specified channel. (See PRINT/PRINT USING

statements for details.)

#<file number>,<variable [1st>
To read data items from +the specified channei and assign Them

to program variables.

The type of data in the file must match the +type specified by
the <variable |ist>. Unlike +the INPUT statement, no question

mark is printed with INPUT# statement.

The data items In the flle should appear just as they would If
data were beling typed In response to an [NPUT statement. WITh
numeric values, leading spaces, carrlage returns, and |ine feeds
are Ignored. The flirst character encountered that is not a space,
carriage return, or |ine feed Is assumed fo be start of a number.
The number terminates on a space, carrliage return, [Ine feed,
or comma. :

Also, If the BASIC Is scanning the data for a string Item, leading
spaces, carrfage returns and |Ine feeds are Ignored. The first
character encountered tha+t is not a space, carrlage return, or
Ilne feed |[Is assumed +to be the start of a strling Item. [|f this
first character Is a double-quotation mark ("), the string Item
will consist of all <characters read between the first quotation
mark and‘The second. Thus, a quoted string may not contaln a

£
3
i
: |

Language specification for MSX BASIC Page 55

quotation mark as a character.

If the first character of the string is not a quotation mark,

the string Is an unquoted string, and will ferminate on a comma,
carriage return, line feed, or after 255 characters have been
read. |f end of file Is reached when a numeric or string ifem

is being INPUT, the item is terminated.

LINE INPUT #<file number>,<string variable>
To read an entire line (up to 254 characters), without delimiters,
from a sequential flle to a string variable.

-
’

<file number> 1is +the number which the file was OPENed.

<string variable> 1Is the name of a string variable to which The
line will be assligned.

LINE INPUT# reads all characters In +the sequential flle up *o
a carrlage return. I+ +then skips over the carriage return/line
feed sequence, and the next LINE [NPUT# reads all <characters
up to the next carrlage return. (If a {ine feed/carriage return
sequence Is encountered, It s preserved. That 1is, the line
feed/carriage return <characters are returned as part of tThe
string.)

LINE INPUTF 1Is especiafiy-useful if each [ine of a file has been
broken into fields, -or 1{if a BASIC program saved [n ASCl| -mode

is being read as data by ancther program.
INPUTS(n,(#]<file number>)
s To Return a string of n characters, read from the file. <file
number> is the number which the file was OPENed.

CLOSE [[#J<file number>[,<file number>]]

; To close the <channel and releases the buffer associated wlTh
s oF l¥f no <file number>'s are specifled, all open <channels are
closed.

SAVE "<device descriptor>[<file name>]"

; To save a BASIC program file to the device. Control-Z is treated

as end-of-file.

LOAD "<device_descriptor>[<file name>]"
;s To load a BASIC program file from the devlice.
LOAD closes all open flles and deletes the current program from
memory. However, with the "R"™ option, all data flles remain
OPEN and execute the loaded program.

lf the <flle name> Is omitted, +the next program, which should
be an ASClIl file, encountered on the tape s loaded. Control=Z
is treated as end-of-flle.

MERGE "<device descriptor>[<flle name>]"
; To merge +the lines from an ASCIIl program flle into the program

e T

BSAVE

e

ELOAD

CSAVE

Language specification for MSX BASIC — Page 56

currently in memory.

If any lines in the file being merged have the same |lne number
as llnes In +the program In memory, the l[ines from the flle will
replace the corresponding |lnes In memory. ’

After *the MERGE COmmand; the MERGEd program resides 1In memory,
and BASIC returns to command level.

If the <file name> is omitted, the next program files, it should
be ASCII| flle, file encountered on the tape [s MERGEd. Control=-2

is tfreated as end-of-flle.

"<device descriptor>[<flle name>]",<top adrs>,<end adrs>

[,<execution adrs>]
To save a memory Image at the speciflied memory locatlion to the

device. (Currently, only CAS: Is supported.)

<tfecp adrs> and <end adrs> are the top address and the end address-
of the area to be saved.

If <execution adrs> 1is omitted, <top adrs> |is regarded as
<execution adrs>,

Example:

BSAVE "CAS:TEST",&HA0Q00,&HAFFF
BSAYE "CAS:GAME",&HEOO00,&HEOFF,&HE0Q20

"<device_descriptor>(<file name>]"[,R]I[,<offset>]
To load a machine language program from the specified device.
(Currently only CAS: Is supported.)

If R option s specified, after +the |loading, program begins

execution automatically from the address which is specifled aft
BSAVE.
The loaded machine |anguage program will be stored at the memory

locatlion which is specified at BSAYE. |If <offset> 1is specified,
all addresses which are specified at BSAVE are offset by that

value.

If the <file name> is omitted, the next machine Ilanguage program
file encountered Is |oaded.

"<flle name>"[,<baud rate>]
To save a BASIC program flle to the cassette tape.

BASIC saves the flle In a compressed binary (tokenized) formaft.

ASCll flles +take up more space, but some types of access require
that filles be In ASCII format. For example, a flle Intended
to be MERGEd must be saved In ASC!| format. Programs saved In
ASCIl may be read as BASIC data flles and text flles. In that

case, use The SAVE command.

ot A B .- i

H
&
5

Language specification for MSX BASIC Page 57
<baud rate> 1Is a parameter from 1 +to 2, which determines the
default baud rate for every cassette wrlite operations. 1 for

CLOAD

.
»

-

’

CALL <name of expanded statement>[(<argument [ist>)]

1200 baud, 2 for 2400 baud. The default baud rate can also be
set with SCREEN statement.

["<file name>"]
To load. - a BASIC program file from the CMT.

CLOAD closes all open filles and deletes the current program from
memory. |f the <file name> is omitted, the next program file
encountered on the “tape s |oaded. For all cassette read

operations, baud rate is determined automatically.

CLOAD? ["<flle name>"]

To verify a BASIC program on .-CMT with one in memory.

To Iinvoke an expanded statement suppllied by ROM cartridge. See
SLOT.MEM for further details. ' ' is an abbreviation for 'CALL',
so the next 2 statements have the same meaning.

CALL TALK("Yamashita","Hayashi","Suzuki GSX4Q00FW™)
_TALK("Yamashita", "Hayashi", "Suzuki GSX400FW™)

Language speciflication for MSX BASIC Page 58

2.2 .2 Fumetlons

BINS(<expression>)

; Returns a binary equivalent string of <expressjion>. Leading

0's are suppressed.

POINT(<X coordinate>,<Y coordinate>)
Returns color of a specified pixel.

-
r

VPEEK(<address of VRAM>)

in the range of 0..16383.

Returns a value of YRAM specified. <address of VRAM> <can be

STICK(<n>)

; Returns the direction of a joy-stick. <n> can be In the range
of Q..2. If <n>=0, the «cursor key Is used as a joy-stick. |If
<n> is either ! or 2, +the joy-stick ~connected fo proper port
is used. When neutral, 0 is returned. Otherwise, value
corresponding to direction is returned.

1
2 1 2
“ 1 7
N/
T e Q3
/1IN
£ 1N
5 | 6
518 {6l en>]

; Returns the status of a trigger button of a joy=-stick. <n> can
be in the range of 0..4. |¥ <n>=0, the space bar s wused for
a ¥rigger button. If <n> is either 1 or 3, the trigger of a
joy=stick 1 is used. When <n> is either 2 or 4, Jjoy=-stick 2.
0 is returned if the trigger is not being pressed, -1 Is returned
otherwise.

POL(<n>)
; Returns the value of a paddle. <n> can be In the range of 1..1Z.

When <n> is ejither 1, 3, 5, 7, 9 or 11, the paddle connected
To port | is wused. When 2, 4, 6, 8, 10 or 12, the paddle

connected to port 2 is used.

PAD(<n>)
; Returns varlous status of touch pad. <n> can be In the range
of 0..7.
When 0..3 Is Epecif!ed, touch pad connected to joy stick port

1 Is selected, when 4..7, port 2.

When <n>=0 or 4, the status of touch pad ls returned, -1
touched, 0 when released.

when

Language specification for MSX BASIC Page 59

When <n>=1 or 5, the X=-coordinate is returned, when <n>=2 or
6§, Y-coordinate Is returned.

When <n>=3 or 7, the status of switch on the pad Is returned,
-1 when being pushed, 0 otherwise.

Note that coordinates are valld only when PAD(0) (or PAD(4))
is evaluated. When PAD(O) is evaluated, PAD(53) and PAD(6) are
both affected, and when PAD(4), PAD(1) and PAD(2). :

PLAY(<play channel>)
; Returns the status of & music queue. <n> can be In tThe range

of @:uda ¥ <n>=0, all 3 status are ORed and returned. 1f <n>
s either 1,2 or 3, -1 s returned [f the queue is still in
operation, i.e., still playing. 0 is refurned otherwise.

EQOF(<file_number>)
; Returns -1 {f end-of-file 1Is encountered from input device.

Otherwise, returns 0

Language specification for MSX BASIC Page 60

2.2.3 Special varlables

Following are the special variables for MSX. When assigned, the content
is changed, when evaluated, the current value {s returned.

TIME (type: unsligned integer)
; The system internal fimer. TIME is automatically Iincremented
by 1 everytime VDP generates interrupt (60 +times per second),
thus, when an interrupt is disabled (for example, when

manipulating cassette), It retains the old value.

SPRITES(<pattern number>) (type: string)
; The pattern of sprite.

<pattern number> must be |ess +than 256 when size of spritfes Is
0 or 1, less than 64 when size of sprites is 2 or 3.

The length of this varlable [s fixed to 32 (bytes). So, if assign
the string that s shorter +than 32 character, the chr$(0)s are

added.

Example
list

100 SCREEN 3,3

110 AS$S=CHRS$(1)+CHRS(3)+CHRS(7)+CHRS(&HF)+CHRS(&HIF)
+CHRS(&H3F)+CHRS(&HT7F)+CHRS(&HFF)
120 SPRITES(1)=AS$

130 SPRITES(2)=A$+AS

140 SPRITES(3)=A$+A5+AS

150 SPRITES(4)=A$+AS+AS+AS

160 PUT SPRITE 1,(20,20),15

170 PUT SPRITE 2,(60,20),15

180 PUT SPRITE 3,(100,20),15

190 PUT SPRITE 4,(140,20),15

200 GOTO 200

Ok

run

A S S SRR TR EE S EER RS S SRR RS R EE S S S RS R R R RS R E R R R X R E RS SRS RS RS SRS SRR RS S

* .
* Note: Following two are system varliables which <can be evaluated
* or assigned |lke other ordinary variables. Prepared for
* advanced programmers only. If you don't know the meaning,
* never use.
¥*
s S EES 2 EES T S R EE R R SRR SR S S S R E S R S R RS SRS SRS E R SRR ST SRS S S X E S SR R R L R
VDP(<n>) (type: unsigned byte)

; If <n> Is In +the range of 0..7, specifles the current value of

VDP's write only register. °If <n> 1Is 8, specifles +the status

reglster of YDP., VDP(8) Is read only.

BASE(<n>) (type: Integer) :
Current base address for each table. The description of

follows next.

; <n>

Language speciflcation for MSX BASIC Page 61

0 - base of name table for text mode.)

| - meaningless A\

2 - base of pattern generator table for text mode. > 40 * 24
3 - meaningless /

4 - meaningless N

5 - base of name table for text mode. \

6 - base of color tabie for text mode. \

7 - base of pattern generator table for fext mode. > 32 * 24
8 - base of sprite attribute table for text mode. /

9 - base of sprite pattern ftable for text mode. /
10 - base of name table for high-resolutfion mode.
11 - base of color table for .high-resolution mode.
12 - base of pattern generator table for high-resofution mode.
13 - base of sprite atfribute table for high-resolution mode.
14 - base of sprite pattern fable for high-resolution mode.

15 - base of name table for multi-color mode.

16 - meaningless
17 - base of pattern generator table for multi-color mode.
18 - base of sprite attribute table for multi-color mode.

19 - base of sprite pattern table for multi-color mode.

Language specification for MSX BASIC Page 62

CHAPTER 3

APPENDIX

A. Summary of error codes and error messages

code message

1 NEXT without FOR
A variable in a NEXT statement does not
correspond to any previously executed, unmatfched
FOR statement variable. -

2 Syntax error .

A line is encountered that contains some
incorrect sequence of characters (such as
unmatched parenthesis, misspelled command or
statement, incorrect punctuation, etc.}

3 RETURN without GOSUB ;
A RETURN statement Is encountered for which
there Is no previous, unmatched GOSUB statement.

4 Qut of DATA
A READ statement is executed when TtThere are
no DATA statement with unread data remaining
in the program.

5 [llegal function call
A parameter that Is out of the range Is passed
to a math or string funcilon, An FC error
may also occur as the result of:

1. a negative or unreasonably large subscript.

2. a negative or zero argument with LOG.

3. a negatlve argument to SQR.

4. an Improper argument to MID$, LEFTS$, RIGHTS,
INP, OUT, PEEK, POKE, TAB, SPC, STRINGS,
SPACES, INSTR$ or ON...GOTO.

& Overflow
The result of a «calculation 1Is tfoo large o
be represented In BASIC's number format.

7 Out of memory

A program Is +too large, has too many flles,
has ftoo many FOR loops or GOSUBs, too many
varlables, or expressions that are too

Language specification for MSX BASIC Page 63

complicafed..

8 Undefined [Ine number
A | iTne reference In a GOTO, GOsuB,
I'F s 5 o THEN .« «ELSE. I8 To 2 nocnexlistent line.
g, Subscript out of range
An array element [Is referenced elther with
a subscript That Is outside the dimenslions

of +the array, or with the wrong number of
subscripts.

10 Redimensicned array
Two DIM statements are glven for the same array,

or DIM statement is given for an array affter
the default dimension of 10 has been established
for that array.

11 Division by zero
A division by =zero s encountfered in an
expression, or the operation of invelution
results In zero being raised +to a negative
power. '

12 I1legal direct
A statement that Is iilegal in dlirect mode

is entered as a direct mode command.

13 Type mismatch .
' A string variable name 1is assigned a numeric

value or vice versa; a functlion that expects

a numeric argument s glven a sfring argument

or vice versa.

14 Out of string space
String variables have <caused BASIC +o exceed
the amount of free memeory remalining. BASIC
will allocate string space dynamicaily, until

[t runs out of memory.

15 String too long ;
An attempt Iis made +*To <c¢reate a string more

than 255 character long.

16 String formula too complex
A string expresslion Is too long or too complex.
The expression should be broken into smaller

expressions.

17 Can't contlnue
An attempt Is made to continue a program that:

1. has halted due to an error,
2. has been modifled during a break In
executlion, or

Language specification for MSX BASIC ; Page 64

3. does not exist.

18 Undefined user function
FN function is called before defining It with
the DEF FN statement.

19 Device 1/Q error
An /0 error occurred on a cassette, printer,
or CRT operation. I+ Is a fatai error; l.e.,

BASIC cannot recover from the error.

20 Verify error
The current program is dlifferent from the

program saved on the cassetfte.

21 No RESUME
An error trapping routine is entered but

contalns no RESUME statement.

22 RESUME without error
A RESUME statement Is encountered before . an

error trapping routline is entered.

23 Unprintable error
An error message Is not available for the error
condition which exists. This is usually caused
by an ERROR with an undefined error code.

24 Missing operand -
An expression contained an operator with no

operand following I*T.

to Microsoft +the condltlons under which The
message appeared.

92 Bad flle number
A statement or command references a flle wIth
a flle number +that Is not _OPEN or Is out eof

25 Line buffer overflow
' An entered line has too many characters.
26 Unprintable errors
2 These codes have no definitions. Should be
49 reserved for future expansion in BASIC.
50 FIELD overflow -
: A FIELD statement |Is attempting allocate more
/ bytes than were speciflied for the record J|ength
3 of -a random fjile 1In the OPEN statement. O0Or,
= the end of the FIELD buffer is encountered
! while doing sequential |/O(PRINT#, INPUT#) to
5 a random flle.
2 51 Internal error ,
E An internal malfunction has occurred. Report
)
&
il

A.anguage speciflication for MSX BASIC Page 65

the range of file numbers specified by MAXFILE
statement. .

53 File not found
A LOAD, KILL, or OPEN statement references
. a file that does not exist in the memory.

§ 54 File already open
A sequential output mode OPEN is Issued for

¢ a file that is already open; or a KILL Is gliven .
g for a file that is open. £
%
t f 55 input past end
‘ ' An INPUT statement Is executed after all the

¥ data in the flle has been INPUT, or for null
4 | (empty) file. To avoid +this error, use the
EOF functlion to detect the end of flle.

56 Bad file name
An 1llegal form s used for the file name with

LOAD, SAYE, KILL, NAME, efc.

57 Direct statement in file
A direct statement Is encountered while LOADIng
an ASCI| format flle. The LOAD Is ferminated.

58 Sequential 1/0 only _
A statement +To random access is issued for
a sequential file.

59 File not OPEN .
The flle specified Iin a PRINT#H, INPUT#, etfc.

hasn't been OPENed.

60 Unprinftable error
. These codes have no definitions. Users may
. place their own error code definitions at “the
233 high end of this range.

lh.hl‘{\.u'fl;_\ v e g Vb e

J ~.j.'$?45‘1=:nwrg~ T4

