The MSX Red Book (revised version 1997/08/06)
Notes fromthe editor

- The book was scanned and converted (via O C.R) by one person and edited by
anot her (using an | BM PC conpatible), independently.

- Al pages have a fix size of 64 lines. The width was not justified to nake
future nodifications easier, though no line is |longer than 80 col umms.

- This book only covers standard MSX. The BIOS entry points from O000H to
01B5H shoul d be used instead of the called entries described in the book
because ot her machi nes (MsSX2, MSX2+, MsSX turbo R and custom zed ones) have
different positions for the routines. The use of internal BIOS routine
addresses are responsible for many prograns only running in MSX

- Some errors present in the original book were fixed, though it was tried to
keep it as unaltered as possible. Al page nunbers nmatch the originals,
except undetected errors already present in the original

- Most figures were nodificated due to the text-only nature of this file. The
character set used during edition was the International IBM PC s one. The
foll owi ng special characters were used and shoul d be changed to the
correspondi ng ones of other character sets:

Fr ame UAAA;, Pound: oe
characters: 3“3 "3 Mcro: a
AAAA
3 3 3

CONTENTS

Introduction
1. Programmabl e Peripheral Interface
2. Video Display Processor

3. Programmbl e Sound Generator

6. Menmory MBp
7. Machine Code Programs

Contents Copyright 1985 Aval on Software
Iver Lane, Cow ey, M ddx, UB8 2JD

M5X is a trademark of M crosoft Corp.
Z80 is a trademark of Zilog Corp.
ACADEMY is trademark of Alfred .

21

26

89

| NTRODUCT! ON

Al s

Thi s book is about MSX conputers and how t hey work. For
techni cal and commerci al reasons MSX conputer manufacturers
only make a |limted ambunt of information available to the end
user about the design of their machines. Usually this will be a
fairly detail ed description of Mcrosoft MSX BASIC together
with a broad outline of the system hardware. Wiile this |evel
of docunmentation is adequate for the casual user it wll
inevitably prove limting to anyone engaged in nore
sophi sti cated progranm ng.

The aimof this book is to provide a description of the
standard MsX hardware and software at a | evel of detai
sufficient to satisfy that nost demandi ng of users, the machine
code programmer. It is not an introductory course on
programmi ng and is necessarily of a rather technical nature. It
is assuned that you already possess, or intend to acquire by
ot her means, an understanding of the Z80 M croprocessor at the
machi ne code level. As there are so many general purpose books
al ready in existence about the Z80 any description of its
characteristics would sinply duplicate widely avail abl e
i nformati on.

Organi zati on
The MSX Standard specifies the follow ng as the mjor
functional conmponents in any MSX conputer:
(1) Zilog Z80 M croprocessor
(2) Intel 8255 Programmbl e Peripheral Interface
(3) Texas 9929 Video Display Processor
(4) General Instrument 8910 Progranmabl e Sound Gener at or
(5) 32 KB MsSX BASI C ROM
(6) 8 KB RAM ni ni num
Al t hough there are obviously a great many additiona
conmponents involved in the design of an MSX conputer they are
all small-scal e, non-programmble ones and therefore
"invisible" to the user. Manufacturers generally have
considerabl e freedomin the selection of these snall-scale
conmponents. The progranmmbl e conmponents cannot be varied and
therefore all MSX nmachines are identical as far as the
programmer is concerned.
Chapters 1, 2 and 3 describe the operation of the

Programmabl e Peripheral Interface, Video Display Processor and
Progranmmabl e Sound Generator respectively. These three devices

| NTRODUCT! ON

provide the interface between the Z80 and the peripheral
hardware on a standard MSX nachine. All occupy positions on the
Z80 1/0O (I nput/output) Bus.

Chapter 4 covers the software contained in the first part of
the MSX ROM This section of the ROMis concerned with
controlling the nmachine hardware at the fine detail |evel and
is known as the ROM BI OS (Basic I nput Qutput System. It is
structured in such a way that nost of the functions a machine
code programer requires, such as keyboard and video drivers,
are readily avail abl e.

Chapter 5 describes the software contained in the renai nder
of the ROM the Mcrosoft MSX BASIC Interpreter. Although this
is largely a text-driven program and consequently of |ess use
to the programmer, a cl ose exam nation reveals many poi nts not
docurent ed by manufacturers

Chapter 6 is concerned with the organization of system
menory. Particular attention is paid to the Wrkspace Area,
that section of RAM from F380H to FFFFH, as this is used as a
scratchpad by the BICS and the BASIC Interpreter and contains
much i nformation of use to any application program

Chapter 7 gives sonme exanples of machi ne code prograns that
meke use of ROM features to mninmze design effort.

It is believed that this book contains zero defects, if you

know ot herwi se the author would be delighted to hear from you
This book is dedicated to the Wal ki ng Ni ght mare.

1. PROGRAMVABLE PERI PHERAL | NTERFACE

The 8255 PPl is a general purpose parallel interface device
configured as three eight bit data ports, called A, B and C, and
a node port. It appears to the Z80 as four I/O ports through
whi ch the keyboard, the nenory swi tching hardware, the cassette
nmotor, the cassette output, the Caps Lock LED and the Key Cick
audi o output can be controlled. Once the PPl has been
initialized access to a particular piece of hardware just
involves witing to or reading the relevant 1/0O port.

PPl Port A (1/0O Port A8H)

7 6 5 4 3 2 1 0
UAAAAAAAAAAAAAAAAAAAAAAAARAAARAAAAAAAAAARAAARAAR;
3 Page 3 3 Page 2 3 Page 1 3 Page O 3
3 PSLOT# 3 PSLOT# 3 PSLOT# 3 PSLOT# 3
3 (C000- FFFF 3 8000- BFFF 3 4000- 7FFF 3 0000- 3FFF 3

AAU

Figure 1. Primary Sl ot Register

This output port, known as the Primary Sl ot Register in MSX
term nology, is used to control the nmenory switchi ng hardware.
The Z80 M croprocessor can only access 64 KB of nenory directly.
This limtation is currently regarded as too restrictive and
several of the newer personal computers enploy nethods to
overcone it.

MSX machi nes can have nultiple nenory devices at the same
address and the Z80 nay switch in any one of them as required.
The processor address space is regarded as being duplicated
"sideways" into four separate 64 KB areas, called Primary Slots
0 to 3, each of which receives its own slot select signa
al ongsi de the normal Z80 bus signals. The contents of the
Primary Sl ot Register determ ne which slot select signal is
active and therefore which Primary Slot is selected.

To increase flexibility each 16 KB "page" of the Z80 address
space may be selected froma different Primary Slot. As shown
in Figure 1 two bits of the Primary Sl ot Register are required
to define the Primary Sl ot nunber for each page.

The first operation performed by the MSX ROM at power-up is
to search through each slot for RAMin pages 2 and 3 (8000H to
FFFFH). The Primary Slot Register is then set so that the
rel evant slots are sel ected thus nmaking the RAM pernmanently
avail abl e. The nenory configuration of any MSX nachi ne can be

1. PROGRAMVABLE PERI PHERAL | NTERFACE

determ ned by displaying the Primary Sl ot Register setting with
the BASI C statenent:

PRI NT RI GHTS$(" 0000000" +BI N$(| NP(&HA8)) , 8)

As an exanple "10100000" woul d be produced on a Toshi ba HX10
where pages 3 and 2 (the RAM both cone fromPrimary Slot 2 and
pages 1 and 0 (the MSX ROM from Primary Sl ot 0. The MSX ROM
must always be placed in Primary Slot 0 by a manufacturer as
this is the slot selected by the hardware at power-up. O her
menory devices, RAM and any additional ROM may be placed in
any slot by a manufacturer.

A typical UK machine will have one Primary Slot containing
the MSX ROM one containing 64 KB of RAM and two sl ots brought
out to external connectors. Mst Japanese nachi nes have a
cartridge type connector on each of these external slots but UK
machi nes usual ly have one cartridge connector and one |DC
connect or.

Expander s

System nenory can be increased to a theoretical maxinmm of
si xteen 64 KB areas by using expander interfaces. An expander
plugs into any Primary Slot to provide four 64 KB Secondary
Slots, numbered O to 3, instead of one primary one. Each
expander has its own |ocal hardware, called a Secondary Sl ot
Regi ster, to select which of the Secondary Slots should appear
inthe Primary Slot. As before pages can be selected from
di fferent Secondary Sl ots.

7 6 5 4 3 2 1 0
3 Page 3 3 Page 2 3 Page 1 3 Page O 3
3 SSLOT# 3 SSLOT# 3 SSLOT# 3 SSLOT# 3
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAU

Figure 2: Secondary Slot Register

Each Secondary Slot Register, while actually being an eight
bit read/write latch, is nmade to appear as nenory |ocation
FFFFH of its Primary Slot by the expander hardware. In order to
gain access to this location on a particular expander it will
usual Iy be necessary to first switch page 3 (COOOH to FFFFH) of
that Primary Slot into the processor address space. The
Secondary Sl ot Register can then be nodified and, if necessary,
page 3 restored to its original Primary Slot setting. Accessing
menory in expanders can becone rather a convol uted process.

It is apparent that there nust be sonme way of determ ning
whether a Primary Slot contains ordinary RAM or an expander in

1. PROGRAMVABLE PERI PHERAL | NTERFACE

order to access it properly. To achieve this the Secondary Sl ot
Regi sters are designed to invert their contents when read back
During the power-up RAM search nmenory | ocation FFFFH of each
Primary Slot is examined to deternine whether it behaves
normal |y or whether the slot contains an expander. The results
of these tests are stored in the Wirkspace Area systemresource
map EXPTBL for later use. This is done at power-up because of
the difficulty in performng tests when the Secondary Sl ot

Regi sters actually contain live settings.

Mermory switching is obviously an area demandi ng extra
caution, particularly with the hierarchical nmechani sms needed
to control expanders. Care nust be taken to avoid sw tching out
the page in which a programis running or, if it is being used,
the page containing the stack. There are a nunber of standard
routi nes available to the machi ne code programrer in the BICS
section of the MSX ROMto sinplify the process.

The BASIC Interpreter itself has four methods of accessing
extension ROVs. The first three of these are for use with
machi ne code ROVs placed in page 1 (4000H to 7FFFH), they are:

(1) Hooks (Chapter 6).
(2) The "CALL" statenent (Chapter 5).
(3) Additional device nanmes (Chapter 5).

The BASIC Interpreter can al so execute a BASI C program ROM
detected in page 2 (8000H to BFFFH) during the power-up ROM
search. What the BASIC Interpreter cannot do is use any RAM
hi dden behi nd other nenory devices. This limtationis a
reflection of the difficulty in converting an established
programto take advantage of newer, nore conpl ex machines. A
simlar situation exists with the version of Mcrosoft BASIC
avail able on the IBMPC. Qut of a 1 MB nenory space only 64 KB
can be used for program storage.

PPl Port B (1/0O Port A9H)

7 6 5 4 3 2 10
° Keyboard Column I nputs 2

Fi gure 3

This input port is used to read the eight bits of col umm
data fromthe currently selected row of the keyboard. The MsSX
keyboard is a software scanned el even row by ei ght col umm
matri x of normally open switches. Current machines usually only
have keys in rows zero to eight. Conversion of key depressions

1. PROGRAMVABLE PERI PHERAL | NTERFACE

into character codes is perforned by the MSX ROM i nterrupt
handl er, this process is described in Chapter 4.

PPl Port C (1/0O Port AAH)

7 6 5 4 3 2 1 0
UAAAAAAAAAAAAAAAARAAARAAAAAAAAARAAAARAAARAARRAAR,;
3 Key 3 Cap 3 Cas 3 Cas ® Keyboard Row Sel ect 3
3Click® LED 3 Qut 3Mdtor? 3
AAL

Figure 4

This output port controls a variety of functions. The four
Keyboard Row Sel ect bits select which of the el even keyboard
rows, numbered fromO to 10, is to be read in by PPl Port B

The Cas Mbtor bit determines the state of the cassette nptor
relay: 0=0On, 1=Of.

The Cas Qut bit is filtered and attenuated before being
taken to the cassette DIN socket as the MC signal. Al
cassette tone generation is performed by software.

The Cap LED bit determnes the state of the Caps Lock LED
0=0n, 1=Of.

The Key Click output is attenuated and nixed with the audio
output fromthe Progranmabl e Sound Generator. To actually
generate a sound this bit should be flipped on and off.

Note that there are standard routines in the ROMBICOS to
access all of the functions available with this port. These
shoul d be used in preference to direct manipul ation of the
hardware if at all possible.

PPl Mode Port (I/0O Port ABH)

7 6 5 4 3 2 1 0
UAAAAAAAAAAAAAAAARAAARAAAAAAAAAAAAAAAAAARAARRAAR,;
3 1 3 A&C 3 A 3 C 3 B&C:* B 3 C 3
3 3 Mode 3 Dir 3 Dir 3 Mode® Dir 3 Dir 3

AAL

Figure 5: PPl Mode Sel ection

This port is used to set the operating node of the PPlI. As
the MSX hardware is designed to work in one particul ar

1. PROGRAMVABLE PERI PHERAL | NTERFACE

configuration only this port should not be nodified under any
circunmstances. Details are given for conpl eteness only.

Bit 7 must be 1 in order to alter the PPl npde, when it is O
the PPl perforns the single bit set/reset function shown in
Fi gure 6.

The A&C Mode bits determ ne the operating nmode of Port A and
the upper four bits only of Port C. 00=Normal Mbde (MSX),
01=Strobed Mode, 10=Bidirectional Mode

The A Dir node deternmines the direction of Port A: 0=Cutput
(MsX), 1=Input.

The C Dir bit determines the direction of the upper four
bits only of Port C. 0=Qutput (MSX), 1=Input.

The B&C Mode bits determ ne the operating nmode of Port B and
the lower four bits only of Port C. O=Normal Mode (MSX),
1=Str obed Mode.

The B Dir bit determines the direction of Port B:0= output,
1=l nput (MSX).

The C Dir bit determ nes the direction of the |ower four
bits only of Port C. 0=Qutput (MSX), 1=Input

7 6 5 4 3 2 1 0
UAAAAAAAAAAAAAAAAAAAARAAARAARAAARAAARAAARAARRAAR,;
3 0 3 Not used 3 Bit Nunber 3 Set 3

AAU

Figure 6: PPl Bit Set/Reset

The PPl Mode Port can be used to directly set or reset any
bit of Port C when bit 7 is 0. The Bit Nunber, fromO to 7,
determ nes which bit is to be affected. Its new value is
determ ned by the Set/Reset bit: 0O=Reset, 1=Set. The advantage
of this nobde is that a single output can be easily nodified. As
an exanple the Caps Lock LED may be turned on with the BASIC
statement OUT &HAB, 12 and off with the statement OUT &HAB, 13.

2. VI DEO DI SPLAY PROCESSOR

The 9929 VDP contains all the circuitry necessary to
generate the video display. It appears to the Z80 as two 1/0O
ports called the Data Port and the Command Port. Although the
VDP has its own 16 KB of VRAM (Video RAM), the contents of which
define the screen inmage, this cannot be directly accessed by
the Z80. Instead it nust use the two I/O ports to nodify the
VRAM and to set the various VDP operating conditions.

Data Port (I1/O Port 98H)

The Data Port is used to read or wite single bytes to the
VRAM The VDP possesses an internal address register pointing

to a location in the VRAM Reading the Data Port wll input the
byte fromthis VRAM | ocation while witing to the Data Port
will store a byte there. After a read or wite the address

register is automatically increnmented to point to the next VRAM
| ocation. Sequential bytes can be accessed sinply by continuous
reads or wites to the Data Port.

Command Port (I/O Port 99H)

The Conmand Port is used for three purposes:

(1) To set up the Data Port address register
(2) To read the VDP Status Register
(3) To write to one of the VDP Mdde Regi sters.

Addr ess Regi ster

The Data Port address register nust be set up in different
ways dependi ng on whether the subsequent access is to be a read
or a wite. The address register can be set to any value from
0OO0OH to 3FFFH by first witing the LSB (Least Significant
Byte) and then the MSB (Most Significant Byte) to the Conmand
Port. Bits 6 and 7 of the MSB are used by the VDP to deternine
whet her the address register is being set up for subsequent
reads or wites as foll ows:

UAAAAAAAAAAAAAAAAAAAAAAAAAAAAA,
3 Read 3 XXXXXXXX 3 OOXXXXXX 3
AAARAARAAAAAAAARAARARAAAARAAAAL
3 Wite 3 XXXXXXXX 3 OLXXXXXX 3
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAU

Figure 7: VDP Address Setup

It is inmportant that no other accesses are nmade to the VDP
in between witing the LSB and the MSB as this will upset its

2. VI DEO DI SPLAY PROCESSOR

synchroni zation. The MSX ROM interrupt handler is continuously
reading the VDP Status Register as a background task so
interrupts should be disabled as necessary.

VDP St atus Regi ster

Readi ng the Command Port will input the contents of the VDP
Status Register. This contains various flags as bel ow

7 6 5 4 3 2 1 0
Uﬂ" AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAN ;
3 F 3 58S3 C 3 Fifth Sprite Nunber 3
®Fl ag®*Fl ag® Fl ag? 3
AAARAAARRAAAARARAAAAAARAAAAAAAAAAAAARAL
Figure 8. VDP Status Register

The Fifth Sprite Number bits contain the nunber (0 to 31) of
the sprite triggering the Fifth Sprite Flag.

The Coincidence Flag is nornmally O but is set to 1 if any
sprites have one or nore overl apping pixels. Reading the Status
Register will reset this flag to a 0. Note that coincidence is
only checked as each pixel is generated during a video frane,
on a UK machine this is every 20 ms. If fast noving sprites pass
over each other between checks then no coincidence will be
fl agged.

The Fifth Sprite Flag is normally O but is set to 1 when
there are nore than four sprites on any pixel |ine. Reading the
Status Register will reset this flag to a 0.

The Franme Flag is normally O but is set to a 1 at the end of
the last active line of the video frane. For UK nachines with a
50 Hz frame rate this will occur every 20 ns. Reading the Status
register will reset this flag to a 0. There is an associ ated
out put signal fromthe VDP which generates Z80 interrupts at
the sane rate, this drives the MSX ROM i nterrupt handl er.

VDP Mbde Regi sters

The VDP has eight write-only registers, nunbered 0 to 7
whi ch control its general operation. A particular register is
set by first witing a data byte then a register selection byte
to the Cormand Port. The register selection byte contains the
regi ster nunber in the |lower three bits: 10000RRR. As the Mbde
Regi sters are wite-only, and cannot be read, the MSX ROM
mai ntai ns an exact copy of the eight registers in the Wrkspace
Area of RAM (Chapter 6). Using the MSX ROM standard routines
for VDP functions ensures that this register image is correctly
updat ed.

2. VI DEO DI SPLAY PROCESSOR

Mode Register O

7 6 5 4 3 2 1 0
2 0320303023023 0°3M83EV:?
Figure 9

The External VDP bit determ nes whether external VDP input
is to be enabl ed or disabl ed: 0=Di sabl ed, 1=Enabl ed.

The M3 bit is one of the three VDP npde sel ection bits, see
Mode Regi ster 1.

Mode Register 1

7 6 5 4 3 2 1 0
UAAAAAAAAAAAAAAAAAAAAAAAARAAARAAAAAARAAARAAARAAARAARRAAR,;
34/16K 3Blank 3 IE 3 ML 3 M2 3 O 3 Size 3 Mag 3
AAL
Figure 10

The Magnification bit determ nes whether sprites will be
normal or doubled in size: O=Nornal, 1=Doubl ed.

The Size bit deternines whether each sprite pattern will be
8x8 bits or 16x16 bits: 0=8x8, 1=16x16.

The ML and M2 bits determine the VDP operating node in
conjunction with the M3 bit from Mbde Register O:

32x24 Text Mbde
Gr aphi cs Mode

Mul ti col our Mode
40x24 Text Mbde

HOOO;
OHOO%
OOI—‘OS

The Interrupt Enable bit enables or disables the interrupt
out put signal fromthe VDP: 0=Di sabl e, 1=Enable.

The Bl ank bit is used to enable or disable the entire video
di spl ay: 0=Di sabl e, 1=Enable. Wen the display is blanked it
will be the sanme col our as the border.

The 4/ 16K bit alters the VDP VRAM addressi ng characteristics
to suit either 4 KB or 16 KB chips: 0=4 KB, 1=16 KB.

A 10 A

2. VI DEO DI SPLAY PROCESSOR

Mode Register 2

7 6 5 4 3 2 1 0

OAAAAAAAAAARRAAAAAAAAAAAAAAAARAAAAAAAAAA,

{ 0O 30 30 3 0 3 Nane Table Base 3
AR AAAAAARAAAAAARAAAAAARAAAAARAAAAAARRAAD

Fi gure 11

Mode Register 2 defines the starting address of the Nane
Table in the VDP VRAM The four available bits only specify
positions 00BB BBOO 0000 0000 of the full address so register
contents of OFH would result in a base address of 3COOH

Mode Register 3

7 6 5 4 3 2 10

UAAAAAAAAAAAAAAAAAAAAAA;,

3 Col our Tabl e Base 3
KA AAAAAAAAAAAAARAARAAAD

Figure 12

Mode Register 3 defines the starting address of the Col our
Table in the VDP VRAM The eight available bits only specify
positi ons 00BB BBBB BBOO 0000 of the full address so register
contents of FFH would result in a base address of 3FCOH. In
Graphics Mode only bit 7 is effective thus offering a base of
0000H or 2000H. Bits 0 to 6 nust be 1.

Mode Regi ster 4

7 6 5 4 3 2 1 0
UAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARAAAAAAAAAARA
3 0 3 0 3% 0O ® 0 3 0 3Character Patterns

AAU

Fi gure 13

Mode Register 4 defines the starting address of the
Character Pattern Table in the VDP VRAM The three avail able
bits only specify positions 00BB BOOO 0000 0000 of the ful
address so register contents of 07H would result in a base
address of 3800H. In Graphics Mdde only bit 2 is effective thus
offering a base of 0000H or 2000H. Bits 0 and 1 nust be 1.

A11 A

2. VI DEO DI SPLAY PROCESSOR

Mode Register 5

7 6 5 4 3 2 1 0

OAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA,
203 Sprite Attribute base 3
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAU

Fi gure 14

Mode Register 5 defines the starting address of the Sprite
Attribute Table in the VDP VRAM The seven available bits only
speci fy positions 00BB BBBB BOOO 0000 of the full address so
regi ster contents of 7FH would result in a base address of
3F80H.

Mode Register 6

7 6 5 4 3 2 1 0
OAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARAAAAAAA,
0 *0 30 30 %0 *Sprite Pattern?

AR AAAARAAAA AR AR A A AR A AR A A AR AR A AR AAAC

Fi gure 15

Mode Register 6 defines the starting address of the Sprite
Pattern Table in the VDP VRAM The three available bits only
speci fy positions 00BB BOOO 0000 0000 of the full address so
regi ster contents of 07H would result in a base address of
3800H.

Mode Register 7

7 6 5 4 3 2 1 0

OAAAAAAAAAAAAAAAAAAAAAAAAAAARAAARARAAAAA,

{ Text Col our 1 3 Bor der Col our 3
AR AAAAARAAAA AR R AAAAAAAAAAAAAAAAAAARARAD

Fi gure 16

The Border Colour bits determne the col our of the region
surrounding the active video area in all four VDP nodes. They
al so determ ne the colour of all O pixels on the screen in
40x24 Text Mode. Note that the border region actually extends
across the entire screen but will only becone visible in the
active area if the overlying pixel is transparent.

A 12 A

2. VI DEO DI SPLAY PROCESSOR

The Text Colour 1 bits determine the colour of all 1 pixels
in 40x24 Text Mode. They have no effect in the other three
nodes where greater flexibility is provided through the use of
the Col our Table. The VDP col our codes are:

0 Transparent 4 Dark Bl ue 8 Red 12 Dark Green
1 Bl ack 5 Light Blue 9 Bright Red 13 Purple
2 Green 6 Dark Red 10 Yell ow 14 G ey

3 Light Green 7 Sky Bl ue 11 Light Yellow 15 White

Screen Modes

The VDP has four operating nodes, each one offering a
slightly different set of capabilities. Cenerally speaking, as
the resolution goes up the price to be paid in VRAM size and
updating conplexity also increases. In a dedicated application
t hese associ ated hardware and software costs are inportant
considerations. For an MSX machine they are irrelevant, it
therefore seenms a pity that a greater attenpt was not nade to
st andardi ze on one particular node. The Graphics Mode is
capabl e of adequately perfornmng all the functions of the other
nmodes with only mnor reservations.

An added difficulty in using the VDP arises because
insufficient allowance was nmade in its design for the
overscanni ng used by nost televisions. The resulting | oss of
characters at the screen edges has forced all the video-rel ated
MSX software into being based on peculiar screen sizes. UK
machi nes nornmally use only the central thirty-seven characters
avail abl e in 40x24 Text Modde. Japanese nachines, with NTSC
(National Television Standards Committee) video outputs, use the
central thirty-nine characters.

The central elenment in the VDP, fromthe programer’'s point
of view, is the Nane Table. This is a sinple list of single-
byte character codes held in VRAM It is 960 bytes long in
40x24 Text Mode, 768 bytes long in 32x24 Text Mdde, G aphics
Mode and Mul ticol our Mode. Each position in the Nanme Tabl e
corresponds to a particular |ocation on the screen

During a video frame the VDP will sequentially read every
character code fromthe Nane Table, starting at the base. As
each character code is read the correspondi ng 8x8 pattern of
pi xels is looked up in the Character Pattern Tabl e and
di spl ayed on the screen. The appearance of the screen can thus
be nodified by either changing the character codes in the Nanme
Tabl e or the pixel patterns in the Character Pattern Tabl e.

Note that the VDP has no hardware cursor facility, if one is
required it nust be software generated.

A 13 A

2. VI DEO DI SPLAY PROCESSOR

40x24 Text Mbde

The Nane Tabl e occupi es 960 bytes of VRAM from 0000H to

03BFH:

Figure 17: 40x24 Nane Tabl e

0000H
0028H
0050H
0078H
00AOH
00C8H
OOFOH
0118H
0140H
0168H
0190H
01B8H
01EOH
0208H
0230H
0258H
0280H
02A8H
02DOH
02F8H
0320H
0348H
0370H
0398H

0123456789012345678901234567890123456789

UAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

oo~NoOoOUThWwWNE O

0123456789012345678901234567890123456789

Pattern Tabl e occupies 2 KB of VRAM from 0800H

to OFFFH. Each ei ght byte bl ock contains the pixe
a character code:

UAAAAAAAAAAAAAAA,,
30010000 0°
30101000 0°
31000100 0°
31000100 0°
31111100 0°
31000100 0°
31000100 0°
30000000 0°
ARRAAAAAAAAAAAAAD

Fi gure 18: Character

Byt e
Byt e
Byt e
Byt e
Byt e
Byt e
Byt e
Byt e

~N~No o~ WNEO

pattern for

Pattern Bl ock (No. 65 shown = "A")

The first block contains the pattern for character code O,
second the pattern for character code 1 and so on to character
code 255. Note that only the leftnpst six pixels are actually

di spl ayed in this node.
this node are defined by VDP Mode Regi ster
are blue and white.

A 14 A

71

The colours of the 0 and 1 pixels in

initially they

t he

2. VI DEO DI SPLAY PROCESSOR

32x24 Text Mbde

The Nane Tabl e occupies 768 bytes of VRAM from 1800H to
1AFFH. As in 40x24 Text Mode normal operation involves placing
character codes in the required position in the table. The
"VPOKE" statenment nmay be used to attain famliarity with the
screen | ayout:

01234567890123456789012345678901

1800H
1820H
1840H
1860H
1880H
18A0H
18C0OH
18EOH
1900H
1920H
1940H
1960H
1980H
19A0H
19C0OH
19EOH
1A00H
1A20H
1A40H
1A60H
1A80H
1AAOH
1ACOH
1AEOH

01234567890123456789012345678901

Fi gure 19: 32x24 Name Tabl e

The Character Pattern Table occupies 2 KB of VRAM from 0000H
to O7FFH. Its structure is the same as in 40x24 Text Modde, al
ei ght pixels of an 8x8 pattern are now displ ayed.

The border colour is defined by VDP Mode Register 7 and is
initially blue. An additional table, the Col our Tabl e,
determ nes the colour of the O and 1 pixels. This occupies
thirty-two bytes of VRAM from 2000H to 201FH. Each entry in the
Col our Table defines the 0 and 1 pixel colours for a group of
ei ght character codes, the lower four bits defining the 0 pixe
colour, the upper four bits the 1 pixel colour. The first entry
in the table defines the colours for character codes 0 to 7
the second for character codes 8 to 15 and so on for thirty-two
entries. The MSX ROMinitializes all entries to the sane val ue,
bl ue and white, and provides no facilities for changing
i ndi vi dual ones.

A 15 A

2. VI DEO DI SPLAY PROCESSOR

Graphi cs Mode

The Nane Tabl e occupies 768 bytes of VRAM from 1800H to
1AFFH, the sane as in 32x24 Text Mode. The table is initialized
with the character code sequence 0 to 255 repeated three tinmes
and is then left untouched, in this node it is the Character
Pattern Table which is nodified during nornmal operation

The Character Pattern Table occupies 6 KB of VRAM from 0000H
to 17FFH. While its structure is the same as in the text nodes
it does not contain a character set but is initialized to all O
pi xels. The first 2 KB of the Character Pattern Table is
addressed by the character codes fromthe first third of the
Nane Table, the second 2 KB by the central third of the Nane
Table and the last 2 KB by the final third of the Nane Tabl e.
Because of the sequential pattern in the Nane Table the entire
Character Pattern Table is read out linearly during a video
frane. Setting a point on the screen involves working out where
the corresponding bit is in the Character Pattern Table and
turning it on. For a BASIC programto convert X, Y coordinates
to an address see the MAPXYC standard routine in Chapter 4.

01234567890123456789012345678901

0000H
0100H
0200H
0300H
0400H
0500H
0600H
0700H
0800H
0900H
O0AOOH
0BOOH
0COOH
ODOOH
OEOOH
OFOOH
1000H
1100H
1200H
1300H
1400H
1500H
1600H
1700H

01234567890123456789012345678901

Figure 20: Graphics Character Pattern Table

The border colour is defined by VDP Mdde Register 7 and is
initially blue. The Col our Table occupies 6 KB of VRAM from

A 16 A

2. VI DEO DI SPLAY PROCESSOR

2000H to 37FFH. There is an exact byte-to-byte mapping fromthe
Character Pattern Table to the Col our Table but, because it
takes a whole byte to define the O pixel and 1 pixel colours,
there is a |ower resolution for colours than for pixels. The

| ower four bits of a Colour Table entry define the col our of

all the 0 pixels on the correspondi ng ei ght pixel line. The
upper four bits define the colour of the 1 pixels. The Col our
Table is initialized so that the O pixel colour and the 1 pixe
col our are blue for the entire table. Because both colours are
the sane it will be necessary to alter one colour when a bit is
set in the Character Pattern Tabl e.

Mul ti col our Mode

The Nane Tabl e occupies 768 bytes of VRAM from 0800H to
OAFFH, the screen nmapping is the same as in 32x24 Text Mode.
The table is initialized with the follow ng character code
pattern:

OOH to 1FH (Repeated four tines)
20H to 3FH (Repeated four tines)
40H to 5FH (Repeated four tines)
60H to 7FH (Repeated four tines)
80H to 9FH (Repeated four tines)
AOH to BFH (Repeated four tines)

As with Graphics Mbde this is just a character code "driver"
pattern, it is the Character Pattern Table which is nodified
during nornmal operation.

The Character Pattern table occupies 1536 bytes of VRAM from
0000H to O5FFH. As in the other npdes each character code maps
onto an eight byte block in the Character Pattern Tabl e.

Because of the lower resolution in this node only two bytes of
the pattern block are actually needed to define an 8x8 pattern

Figure 21: Milticolour Pattern Bl ock

As can be seen from Figure 21 each four bit section of the two
byte bl ock contains a colour code and thus defines the COLOUR
of a quadrant of the 8x8 pixel pattern. So that the entire
ei ght bytes of the pattern block can be utilized a given
character code will use a different two byte section depending

A 17 A

2. VI DEO DI SPLAY PROCESSOR

upon the character code's screen |ocation (i.e. its position in
the Nane Tabl e):

Video row 0, 4, 8, 12, 16, 20 Uses bytes 0 and 1
Video row 1, 5, 9, 13, 17, 21 Uses bytes 2 and 3
Video row 2, 6, 10, 14, 18, 22 Uses bytes 4 and 5
Video row 3, 7, 11, 15, 19, 23 Uses bytes 6 and 7

When the Nanme Table is filled with the special driver sequence
of character codes shown above the Character Pattern Table will
be read out linearly during a video frane:

01234567890123456789012345678901

0000H
0002H
0004H
0006H
0100H
0102H
0104H
0106H
0200H
0202H
0204H
0206H
0300H
0302H
0304H
0306H
0400H
0402H
0404H
0406H
0500H
0502H
0504H

01234567890123456789012345678901
Figure 22: Milticolour Character Pattern Table
The border colour is defined by VDP Mode Register 7 and is
initially blue. There is no separate Col our Table as the

colours are defined directly by the contents of the Character
Pattern Table, this is initially filled with bl ue.

Sprites

The VDP can control thirty-two sprites in all npdes except
40X24 Text Mode. Their treatnment is identical in all npdes and
i ndependent of any character-orientated activity.

The Sprite Attribute Table occupies 128 bytes of VRAM from

A 18 A

2. VI DEO DI SPLAY PROCESSOR

1BOOH to 1B7FH. The table contains thirty-two four byte bl ocks,
one for each sprite. The first block controls sprite 0 (the
"top" sprite), the second controls sprite 1 and so on to sprite
31. The format of each block is as bel ow

7 6 5 4 3 2 1 0

UAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6

® Vertical Position Byte O
o R

: Hori zontal Position 3 Byte 1
e e G S L L R

3 Pattern Nunber 3 Byte 2
e e L SR

SEC3 03 03 03 Colour Code 3 Byte 3

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAU

Figure 23: Sprite Attribute Bl ock

Byte 0 specifies the vertical (Y) coordinate of the top-Ileft
pi xel of the sprite. The coordinate systemruns from-1 (FFH)
for the top pixel Iine on the screen down to 190 (BEH) for the
bottomline. Values |less than -1 can be used to slide the
sprite in fromthe top of the screen. The exact val ues needed
wi || obviously depend upon the size of the sprite. Curiously
there has been no attenpt in MSX BASIC to reconcile this
coordi nate systemwi th the normal graphics range of Y=0 to 191.
As a consequence a sprite will always be one pixel |ower on the
screen than the equival ent graphic point. Note that the special
vertical coordinate value of 208 (DOH) placed in a sprite
attribute block will cause the VDP to ignore all subsequent
bl ocks in the Sprite Attribute Table. Effectively this neans
that any lower sprites will disappear fromthe screen

Byte 1 specifies the horizontal (X) coordinate of the top-
| eft pixel of the sprite. The coordinate systemruns fromO for
the | eftnost pixel to 255 (FFH) for the rightnost. As this
coordi nate system provides no nmechanismfor sliding a sprite in
fromthe left a special bit in byte 3 is used for this purpose,
see bel ow.

Byte 2 selects one of the two hundred and fifty-six 8x8 bit
patterns available in the Sprite Pattern Table. If the Size bit
is set in VDP Mode Register 1, resulting in 16x16 bit patterns
occupying thirty-two bytes each, the two |east significant bits
of the pattern nunber are ignored. Thus pattern nunmbers 0, 1, 2
and 3 would all select pattern nunber O.

In Byte 3 the four Col our Code bits define the colour of the
1 pixels in the sprite patterns, 0 pixels are al ways

A 19 A

2. VI DEO DI SPLAY PROCESSOR

transparent. The Early Clock bit is normally O but will shift
the sprite thirty-two pixels to the left when set to 1. This is
so that sprites can slide in fromthe left of the screen, there
bei ng no spare coordinates in the horizontal direction

The Sprite Pattern Table occupies 2 KB of VRAM from 3800H to
3FFFH. It contains two hundred and fifty-six 8x8 pixe
patterns, nunbered fromO to 255. If the Size bit in VDP Mde
Register 1 is 0, resulting in 8x8 sprites, then each eight byte
sprite pattern block is structured in the same way as the
character pattern block shown in Figure 18. If the Size bit is
1, resulting in 16x16 sprites, then four eight byte bl ocks are
needed to define the pattern as bel ow

UAAAAAAAAA; UAAAAAAAAAAA,;
3 8 Byt es 3 3 3 3
3 Block A 3
L et Ay
3 8 Bytes 3
3 Block B 3
AAAAAAAAAN 3 B 3 D 3
3 8 Byt es 3 3 3 3
3 Block C 3 AAAAAAAAAAAAU
et

3 8 Bytes 3

® Block D3

Figure 24: 16x16 Sprite Pattern Bl ock

A 20 A

3. PROGRAMVABLE SOUND GENERATOR

As well as controlling three sound channels the 8910 PSG
contains two eight bit data ports, called A and B, through
which it interfaces the joysticks and the cassette input. The
PSG appears to the Z80 as three I/O ports called the Address
Port, the Data Wite Port and the Data Read Port.

Address Port (1/0 port AOH)

The PSG contains sixteen internal registers which conpletely
define its operation. A specific register is selected by
writing its nunber, fromO to 15, to this port. Once sel ected,
repeated accesses to that register may be nmade via the two data
ports.

Data Wite Port (1/0O port AlH)

This port is used to wite to any register once it has been
sel ected by the Address Port.

Data Read Port (1/0O port A2H)

This port is used to read any register once it has been
sel ected by the Address Port.

Regi sters 0 and 1

7 6 5 4 3 2 1 0
UAAAAAAAAAAARAARAARAARAAAARAARAARARAARAARAARAARA ;
3 Channel A Frequency 2 RO
3 (LSB) 3
RAAL
3 x ¥ x 3 x 3 x 3 Channel A Frequency 3 Rl
3 3 3 3 3 (NSB) 3

AAL

Figure 25

These two registers are used to define the frequency of the
Tone Generator for Channel A. Variable frequencies are produced
by dividing a fixed master frequency with the nunber held in
Regi sters 0 and 1, this nunber can be in the range 1 to 4095.
Regi ster 0 holds the | east significant eight bits and Register
1 the nost significant four. The PSG divi des an externa
1.7897725 MHz frequency by sixteen to produce a Tone Generator
master frequency of 111,861 Hz. The out put of the Tone Generator

A 21 A

3. PROGRAMVABLE SOUND GENERATOR

can therefore range from 111,861 Hz (divide by 1) down to
27.3 Hz (divide by 4095). As an exanple to produce a nmddle "A"
(440 Hz) the divider value in Registers 0 and 1 would be 254.

Regi sters 2 and 3

These two registers control the Channel B Tone Generator as
for Channel A

Regi sters 4 and 5

These two registers control the Channel C Tone Generator as
for Channel A

Regi ster 6

7 6 5 4 3 2 1 0
UAAAAAAAAAAAAAAAAAAAAARARAAAAAARAA ;
2 x 3 x3 x3 Noise Frequency 3
i i N AQ)
Figure 26

In addition to three square wave Tone Generators the PSG
contains a single Noise Generator. The fundanmental frequency of
the noi se source can be controlled in a simlar fashion to the
Tone Generators. The five least significant bits of Register 6
hold a divider value from1l to 31. The Noi se Generator nmaster
frequency is 111,861 Hz as before.

Regi ster 7

7 6 5 4 3 2 1 0
UAAAAAAAAAAAAAAAAAAAAAAAAAAAARAARAARAAAAAAARAARA,;
3Port 3Port 3 C 3 B 3 A 3 C 3 B 3 A 3
3B Dir3A Dir3Noi se3®Noi se3Noi se3Tone 3Tone 3Tone 3
AAL

Fi gure 27

This register enables or disables the Tone Generator and
Noi se Generator for each of the three channels: O=Enable
1=Di sable. It also controls the direction of interface ports A
and B, to which the joysticks and cassette are attached:
O=l nput, 1=Qutput. Register 7 nmust always contain 10XXXXXX oOr
possi bl e danage could result to the PSG there are active
devi ces connected to its |/O pins. The BASIC "SOUND' st atenent
will force these bits to the correct value for Register 7 but
there is no protection at the machine code |evel

A 22 A

3. PROGRAMVABLE SOUND GENERATOR
Regi ster 8

7 6 5 4 3 2 1 0

UAAA
3 x 3% X 3 X 3Mde 3 Channel A Anmplitude 3
AAL

Figure 28

The four Anplitude bits determ ne the anplitude of Channel A
froma mninumof 0 to a maxi num of 15. The Mdde bit sel ects
either fixed or nodul ated anplitude: O=Fi xed, 1=Modul ated. When
nmodul ated anplitude is selected the fixed anplitude value is
i gnored and the channel is nodul ated by the output fromthe
Envel ope Generator.

Regi ster 9

This register controls the anplitude of Channel B as for
Channel A

Regi ster 10

This register controls the anplitude of Channel C as for
Channel A

Regi sters 11 and 12

7 6 5 4 3 2 10
OAAAAAAAAAAAAAAAARAAAAAAA,
®Envel ope Frequency (LSB)® R11l
i/ LI T Rt A bt s A
®Envel ope Frequency (MSB)*® R12
AAAAAALAAAAARAAAAAAAARAAL

Figure 29

These two registers control the frequency of the single
Envel ope Generator used for anplitude nodulation. As for the
Tone Generators this frequency is determ ned by placing a
divider count in the registers. The divider value may range
from1l to 65535 with Register 11 holding the | east significant
eight bits and Register 12 the nobst significant. The naster
frequency for the Envel ope Generator is 6991 Hz so the envel ope
frequency nay range from 6991 Hz (divide by 1) to 0.11 Hz (divide
by 65535).

A 23 A

3. PROGRAMVABLE SOUND GENERATOR

Regi ster 13

7 6 5 4 3 2 1 0
Ue" AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAN ;

2 x 3 x 3 x 3 x 3Envel ope Shape 3
A AAAAAAAAAAAAAAABAAAAARARAAAAAKAL
Fi gure 30
The four Envel ope Shape bits determ ne the shape of the
anplitude nodul ati on envel ope produced by the Envel ope
Generator:

3210 Modul ati on Envel ope

0 0 x X 3\

01 X X /3

1000 3\3\3\3\3\3\3\3\3\3

1001 3\

(O AV AV AV AV AVAVAVAVAVA

1011 \3

1100 [3/3/3]3[3]3[3]3/[3]

1101 /

1110 /NINININININININTNY

1111 /3

Fi gure 31

Regi ster 14

7 6 5 4 3 2 1 0
UAAAAAAAAAAAAAAAARAAARAAAAAARAAAAAAAAAAARAARRAAR,;
3 Cas 3 Kbd 3 Joy ¥ Joy ¥ Joy 3 Joy % Joy 3 Joy 3
3lnput3Mode 3Trg.B3*Trg. A3Right3Left 2Back 3 Fwd 3

AAL

Figure 32

This register is used to read in PSG Port A. The six
joystick bits reflect the state of the four direction swtches

A 24 A

3. PROGRAMVABLE SOUND GENERATOR

and two trigger buttons on a joystick: O0=Pressed, 1=Not

pressed. Alternatively up to six Paddl es may be connected

i nstead of one joystick. Although nost MSX machi nes have two 9
pin joystick connectors only one can be read at a tinme. The one
to be selected for reading is detern ned by the Joystick Sel ect
bit in PSG Regi ster 15.

The Keyboard Modde bit is unused on UK machi nes. On Japanese
machines it is tied to a junper link to determ ne the
keyboard's character set.

The Cassette Input is used to read the signal fromthe
cassette EAR output. This is passed through a conparator to
clean the edges and to convert to digital levels but is
ot herwi se unprocessed.

Regi ster 15

7 6 5 4 3 2 1 0
UAAAAAAAAAAAAAAAAAAAARAAARAARAAARAAAAAAARAARRAAR,;
3Kana 3 Joy 3Pulse3Pulse 1 3 1 3 1 3 1 3
3 LED3 Se| 3 2 3 1 3 3 3 3 3

AAL

Fi gure 33

This register is used to output to PSG Port B. The four
| east significant bits are connected via TTL open-coll ector
buffers to pins 6 and 7 of each joystick connector. They are
normally set to a 1, when a paddle or joystick is connected, so
that the pins can function as inputs. When a touchpad is
connected they are used as handshaki ng out puts.

The two Pul se bits are used to generate a short positive-
goi ng pul se to any paddl es attached to joystick connectors 1 or
2. Each paddl e contains a nonostable tinmer with a variable
resistor controlling its pulse length. Once the tiner is
triggered the position of the variable resistor can be
determ ned by counting until the nopnostable tinmes out.

The Joystick Select bit determ nes which joystick connector
is connected to PSG Port A for input: O=Connector 1,
1=Connector 2.

The Kana LED output is unused on UK machi nes. On Japanese
machines it is used to drive a keyboard node indicator.

A 25 A

4. ROM BI OS

The design of the MSX ROMis of inportance if machine code
prograns are to be developed efficiently and Operate reliably.
Al nost every program including the BASIC Interpreter itself,
will require a certain set of primtive functions to operate.
These include screen and printer drivers, a keyboard decoder
and other hardware related functions. By separating these
routines fromthe BASIC Interpreter they can be nade avail abl e
to any application program The section of ROM from O000H to
268BH is largely devoted to such routines and is called the ROM
BI OS (Basic | nput Qutput System

This chapter gives a functional description of every
recogni zably separate routine in the ROM BI OS. Speci al
attention is given to the "standard" routines. These are
docurmented by M crosoft and guaranteed to renmin consistent
t hrough possi bl e hardware and software changes. The first few
hundred bytes of the ROM consists of Z80 JP instructions which
provide fixed position entry points to these routines. For
maxi mum conpatibility with future software an application
program shoul d restrict its dependence on the ROMto these
| ocations only. The description of the ROM begins with this
list of entry points to the standard routines. A brief conment
is placed with each entry point, the full description is given
with the routine itself.

Dat a Areas

It is expected that npbst users will wish to disassenble the
ROM to sonme extent (the full listing runs to nearly four
hundred pages). In order to ease this process the data areas,
whi ch do not contain executable Z80 code, are shown bel ow

0004H- 0007H
002BH- 002FH
0508H- 050DH
092FH- 097FH
ODASH- OEC4H
1033H- 105AH
1061H- 10C1H
1233H- 1252H
13A9H- 1448H
160BH- 1612H

Not e that these data areas are for the UK ROM

185DH- 1863H
1B97H 1BAAH
1BBFH- 23BEH
2439H- 2459H
2CF1H- 2E70H
3030H- 3039H
3710H- 3719H
392EH- 3FE1H
43B5H- 43C3H
46E6H- 46E7H

4B3AH- 4B4CH
4C2FH- 4C3FH
555AH- 5569H
5D083H- 5DBOH
6F76H- 6F8EH
70FFH- 710CH
7182H- 7195H
71A2H- 71B5H
71C7H- 71DAH
72A6H- 72B9H

73E4H- 73E4H
752EH- 7585H
7754H 7757H
7BA3H- 7BCAH
7ED8H- 7F26H
7F41H- 7FB6H
7FBEH- 7FFFH

there are slight

differences in the Japanese ROMrelating to the keyboard
decoder and the video character set. Disparities between the
ROVs are restricted to these regions with the bul k of the code
bei ng identical in both cases.

A 26 A

4. ROM BI OS

Ter mi nol ogy

Reference is frequently made in this chapter to the standard

routines and to Workspace Area vari abl es.

Whenever this is done

the Mcrosoft-recommended nane is used in upper case letters,

for exanple "the FILVRM standard routine"

and "SCRMOD i s set".

Subrouti nes which are not naned are referred to by a

par ent hesi zed address,
When reference is nmade to the Z80 status fl ags
assenbly | anguage conventions are used,
woul d nean that the carry flag is set while "Flag NzZ"
that the zero flag is reset.

exanpl e.

"the screen is cleared (0777H)" for

for exanmple "Flag C'
nmeans

The terms "El" and "DI" nean

enabl ed interrupts and disabled interrupts respectively.

ADDR.

NAME TO

FUNCTI ON

AAAAAAAAAAAAAAAANAAANAAAAAAA

0000H CHKRAM 02D7H Power - up,

0004H

KEYI NT
INITIO
I NI FNK
DI SSCR
ENASCR
VWRTVDP
RDVRM

VRTVRM 07CDH
SETRD O7ECH
SETWRT 07DFH
FI LVRM 0815H
LDI RW 070FH
LDl RVM 0744H
CHGVOD 084FH

check RAM

Two bytes, address of ROM character set
One byte, VDP Data Port nunber
One byte, VDP Data Port nunber
Check BASI C program character
NOP

Read RAM in any sl ot

NOP

Get next BASI C program character
NOP

Wite to RAMin any sl ot

NOP

Qut put to current device

NOP

Call routine in any slot

NOP

Conpare register pairs HL and DE
NOP

Enabl e any sl ot permanently

NOP

Get BASI C operand type

Fi ve bytes Version Nunber

Call routine in any slot

Fi ve NOPs

I nterrupt handl er, keyboard scan
Initialize 1/0O devices
Initialize function key strings
Di sabl e screen

Enabl e screen

Wite to any VDP register

Read byte from VRAM

Wite byte to VRAM

Set up VDP for read

Set up VDP for write

Fill block of VRAMwith data byte
Copy block to menmory from VRAM
Copy block to VRAM from nmenory
Change VDP npde

4. ROM BI OS

0062H
0065H
0066H
0069H
006CH
006FH
0072H
0075H
0078H
007BH
007EH
0081H
0084H
0087H
008AH
008DH
0090H
0093H
0096H
0099H
009CH
009FH
00AZ2H
00A5H
00A8H
00ABH
00AEH
00B1H
00B4H
00B7H
00BAH
00BDH
00COH
00C3H
00C6H
00C9H
00CCH
00CFH
00D2H
00D5H
00D8H
00DBH
00DEH
00E1H
OOE4H
00E7H
O00EAH
OOEDH
OOFOH
00F3H
00F6H
00F9H
O00FCH
OOFFH

NM
CLRSPR
I NI TXT
I NI T32
| NI GRP
I NIMT
SETTXT
SETT32
SETGRP
SETMLT
CALPAT
CALATR
GSPSI Z
GRPPRT
G CIN
WRTPSG
RDPSG
STRTMS
CHSNS
CHGET
CHPUT
LPTOUT
LPTSTT
CNVCHR
PI NLI N
I NLI N
Q NLI N
BREAKX
| SCNTC
CKCNTC
BEEP
CLS
POSI T
FNKSB
ERAFNK
DSPFNK
TOTEXT
GTSTCK
GTTRI G
GTPAD
GTPDL
TAPI ON
TAPI N
TAPI OF
TAPOON
TAPOUT
TAPOOF
STMOTR
LFTQ
PUTQ
RI GHTC
LEFTC

A 28 A

16EEH

Change VDP col ours

NOP

Non Maskabl e Interrupt handl er

Clear all sprites

Initialize VDP to 40x24 Text Mode
Initialize VDP to 32x24 Text Mde
Initialize VDP to Graphics Mde
Initialize VDP to Miulticol our Mde
Set VDP to 40x24 Text Mode

Set VDP to 32x24 Text Mbode

Set VDP to G aphics Mde

Set VDP to Milticol our Mde

Cal cul ate address of sprite pattern
Cal cul ate address of sprite attribute
Get sprite size

Print character on graphic screen
Initialize PSG (G Chip)

Wite to any PSG register

Read from any PSG register

Start rnusic dequeuei ng

Sense keyboard buffer for character
Get character from keyboard buffer (wait)
Screen character out put

Line printer character output

Line printer status test

Convert character with graphic header
Get line fromconsole (editor)

Get line fromconsole (editor)

Di splay "?", get line fromconsole (editor)
Check CTRL-STOP key directly

Check CRTL-STOP key

Check CTRL-STOP key

Go beep

Cl ear screen

Set cursor position

Check if function key display on
Erase function key display

Di splay function keys

Return VDP to text npde

Get joystick status

Get trigger status

Get touch pad status

Get paddl e status

Tape input ON

Tape i nput

Tape input OFF

Tape out put ON

Tape out put

Tape out put OFF

Turn nmotor ON OFF

Space left in nmusic queue

Put byte in music queue

Move current pixel physical address right
Move current pixel physical address |eft

4. ROM BI OS

0102H UPC 175DH Move current pixel physical address up
0105H TUPC 173CH Test then UPC if |egal

0108H DOANNC 172AH Move current pixel physical address down
010BH TDOANC 170AH Test then DOANC i f | egal

010EH SCALXY 1599H Scal e graphi cs coordi nates

0111H MAPXYC 15DFH Map graphic coordi nates to physical address
0114H FETCHC 1639H Fetch current pixel physical address
0117H STOREC 1640H Store current pixel physical address
011AH SETATR 1676H Set attribute byte

011DH READC 1647H Read attribute of current pixe
0120H SETC 167EH Set attribute of current pixe

0123H NSETCX 1809H Set attribute of nunber of pixels
0126H GTASPC 18C7H Get aspect ratio

0129H PNTI NI 18CFH Paint initialize

012CH SCANR 18E4H Scan pixels to right

012FH SCANL 197AH Scan pixels to |eft

0132H CHGCAP OF3DH Change Caps Lock LED

0135H CHGSND OF7AH Change Key Cick sound out put

0138H RSLREG 144CH Read Primary Sl ot Register

013BH WSLREG 144FH Wite to Primary Sl ot Register

013EH RDVDP 1449H Read VDP St atus Regi ster

0141H SNSMAT 1452H Read row of keyboard matri x

0144H PHYDI O 148AH Di sk, no action

0147H FORMAT 148EH Di sk, no action

014AH | SFLI O 145FH Check for file I/0O

014DH OUTDLP 1B63H Fornatted output to line printer
0150H GETVCP 1470H CGet nusi c voi ce pointer

0153H GETVC2 1474H Cet nusic voice pointer

0156H KI LBUF 0468H Cl ear keyboard buffer

0159H CALBAS 01FFH Call to BASIC from any sl ot

O15CH NOPs to 01B5H for expansion

Address... 01B6H

Nane. RDSLT
Entry..... A=Sl ot | D, HL=Address
Exit...... A=Byte read

Modi fies.. AF, BC, DE, D

Standard routine to read a single byte fromnmenory in any
slot. The Slot ldentifier is conposed of a Primary Sl ot nunber
a Secondary Sl ot nunmber and a flag:

7 6 5 4 3 2 1 0
UAAAAAAAAAAAAAAAARAAAAAAAAAARAAAAAAARAARAAARAAARAAARAAARARRAARRA
3 Flag 3 0 3 0 3 0 3Secondary Slot#3 Primary Slot# 3
AAL
Figure 34: Slot ID

The flag is normally O but nust be 1 if a Secondary Sl ot nunber
is included in the Slot ID. The nenory address and Slot |ID are
first processed (027EH) to yield a set of bit nmasks to apply to
the relevant slot register. If a Secondary Slot nunber is

A 29 A

4. ROM BI OS

speci fied then the Secondary Slot Register is first nmodified to
sel ect the relevant page fromthat Secondary Slot (02A3H). The
Primary Slot is then switched in to the Z80 address space, the
byte read and the Primary Slot restored to its original setting
via the RDPRIM routine in the Workspace Area. Finally, if a
Secondary Slot nunber is included in the Slot ID, the origina
Secondary Sl ot Register setting is restored (01ECH)

Note that, unless it is the slot containing the Wrkspace
Area, any attenpt to access page 3 (COOOH to FFFFH) will cause
the systemto crash as RDPRRMwi |l switch itself out. Note al so
that interrupts are left disabled by all the nenory swi tching
routines.

Address... 01D1H

Nane. VWRSLT
Entry..... A=Sl ot I D, HL=Address, E=Byte to write
Exit...... None

Modifies.. AF, BC, D, D

Standard routine to wite a single byte to menory in any
slot. Its operation is fundanentally the sanme as that of the
RDSLT standard routi ne except that the Workspace Area routine
WRPRI M i s used rather than RDPRI M

Address... O01FFH

Nane. CALBAS
Entry..... | X=Addr ess
Exit...... None

Modifies.. AF, BC, DE, H.', 1Y, D

Standard routine to call an address in the BASIC Interpreter
fromany slot. Usually this will be froma machi ne code program
running in an extension ROMin page 1 (4000H to 7FFFH). The
hi gh byte of register pair 1Y is |loaded with the M5X ROM Sl ot
ID (0O0H) and control transfers to the CALSLT standard routine.

Address... 0205H

Nane...... CALLF
Entry..... None
Exit...... None

Modifies.. AF, BC, DE, H.', IX 1Y, D

Standard routine to call an address in any slot. The Slot ID
and address are supplied as inline paraneters rather than in
registers to fit inside a hook (Chapter 6), for exanple:

RST 30H

DEFB Slot ID
DEFW Addr ess
RET

The Slot IDis first collected and placed in the high byte of
register pair IY. The address is then placed in register pair

A 30 A

4. ROM BI OS

I X and control drops into the CALSLT standard routi ne.

Address... 0217H

Nane. CALSLT
Entry..... I Y(H gh byte)=Slot ID, |X=Address
Exit...... None

Modifies.. AF, BC, DE, H.', D

Standard routine to call an address in any slot. Its
operation is fundanentally the same as that of the RDSLT
standard routine except that the Workspace Area routine CLPRI M
is used rather than RDPRIM Note that CALBAS and CALLF are just
specialized entry points to this standard routine which offer a
reduction in the amunt of code required.

Address... 025EH

Nane. ENASLT
Entry..... A=Sl ot | D, HL=Address
Exit...... None

Modi fies.. AF, BC, DE, Dl

Standard routine to switch in a page permanently from any
slot. Unlike the RDSLT, WRSLT and CALSLT standard routines the
Primary Slot switching is perforned directly and not by a
Wor kspace Area routine. Consequently addresses in page 0 (0000OH
to 3FFFH) will cause an i nmedi ate system crash.

Address... 027EH

This routine is used by the menory swi tching standard
routines to turn an address, in register pair HL, and a Slot
ID, inregister A into a set of bit nmasks. As an exanple a
Slot ID of FxxxSSPP and an address in Page 1 (4000H to 7FFFH)
woul d return the foll ow ng:

Regi ster B=00 00 PP 00 (OR nask)
Regi ster C=11 11 00 11 (AND nmsk)
Regi ster D=PP PP PP PP (Replicated)
Regi ster E=00 00 11 00 (Page nask)

Regi sters B and C are derived fromthe Primary Slot nunber and
the page mask. They are later used to mix the new Prinmary Sl ot
nunber into the existing contents of the Primary Sl ot Register.
Regi ster D contains the Primary Sl ot nunber replicated four
times and register E the page mask. This is produced by
exam ning the two nost significant bits of the address, to
determ ne the page nunber, and then shifting the nask along to
the relevant position. These registers are |ater used during
Secondary Sl ot switching

As the routine termnates bit 7 of the Slot IDis tested, to
deternm ne whether a Secondary Sl ot has been specified, and Fl ag
Mreturned if this is so.

A 31 A

4. ROM BI OS

Address... 02A3H

This routine is used by the menory swi tching standard
routines to nodify a Secondary Slot Register. The Slot IDis
supplied in register Awhile registers D and E contain the bit
masks shown in the previous routine.

Bits 6 and 7 of register D are first copied into the Primary
Slot register. This switches in page 3 fromthe Prinmary Sl ot
specified by the Slot 1D and makes the required Secondary Sl ot
Regi ster available. This is then read fromnenory | ocation
FFFFH and the page mask, inverted, used to clear the required
two bits. The Secondary Slot nunber is shifted to the rel evant
position and nixed in. Finally the new setting is placed in the
Secondary Slot Register and the Primary Sl ot Regi ster restored
to its original setting.

Address... 02D7H

Narme. CHKRAM
Entry..... None
Exit...... None

Modi fies.. AF, BC, DE, HL, SP

Standard routine to performnenory initialization at power-
up. It non-destructively tests for RAMin pages 2 and 3 in al
si xteen possible slots then sets the Primary and Secondary Sl ot
registers to switch in the largest area found. The entire
Wor kspace Area (F380H to FFCOH) is zeroed and EXPTBL and SLTTBL
filled in to map any expansion interfaces in existence
Interrupt Mode 1 is set and control transfers to the remainder
of the power-up initialization routine (7C76H)

Address... 03FBH

Nane. | SCNTC
Entry..... None
Exit...... None

Modi fies.. AF, El

Standard routine to check whether the CTRL-STOP or STOP keys
have been pressed. It is used by the BASIC Interpreter at the
end of each statenent to check for programternmn nati on. BASROM
is first examined to see if it contains a non-zero value, if so
the routine termnates i mediately. This is to prevent users
breaki ng i nto any extensi on ROM containing a BASIC program

INTFLG i s then checked to determ ne whether the interrupt
handl er has placed the CTRL- STOP or STOP key codes (03H or 04H)
there. If STOP has been detected then the cursor is turned on
(09DAH) and | NTFLG continually checked until one of the two key
codes reappears. The cursor is then turned off (0A27H) and, if
the key is STOP, the routine term nates.

I f CTRL- STOP has been detected then the keyboard buffer is
first cleared via the KILBUF standard routine and TRPTBL is

A 32 A

4. ROM BI OS

checked to see whether an "ON STOP GOSUB" statenent is active.
If so the relevant entry in TRPTBL is updated (OEF1H) and the
routine termnates as the event will be handl ed by the
Interpreter Runloop. Otherwi se the ENASLT standard routine is
used to switch in page 1 fromthe MSX ROM in case an extension
ROM is using the routine, and control transfers to the "STOP"
st at ement handl er (63E6H)

Address... 0468H

Nare. KI LBUF
Entry..... None
Exit...... None

Standard Routine to clear the forty character type-ahead
keyboard buffer KEYBUF. There are two pointers into this
buffer, PUTPNT where the interrupt handler places characters,
and GETPNT where application prograns fetch themfrom As the
nurmber of characters in the buffer is indicated by the
difference between these two pointers KEYBUF is enptied sinply
by maki ng them both equal

Address... 046FH

Nane. BREAKX
Entry..... None
Exit...... Flag Cif CTRL-STOP key pressed

Modi fies.. AF

Standard routine which directly tests rows 6 and 7 of the
keyboard to determ ne whether the CTRL and STOP keys are both
pressed. If they are then KEYBUF is cleared and row 7 of OLDKEY
nmodi fied to prevent the interrupt handl er picking the keys up
as well. This routine nay often be nore suitable for use by an
application program in preference to I SCNTC, as it will work
when interrupts are disabled, during cassette I/O for exanple,
and does not exit to the Interpreter

Address... 049DH

Nane. INITIO
Entry..... None
Exit...... None

Modi fies.. AF, E, El

Standard routine to initialize the PSG and the Centronics
Status Port. PSG Register 7 is first set to 80H nmaki ng PSG Port
B=Qut put and PSG Port A=lnput. PSG Register 15 is set to CFH to
initialize the Joystick connector control hardware. PSG
Regi ster 14 is then read and the Keyboard Mde bit placed in
KANAMD, this has no rel evance for UK machi nes.

Finally a value of FFH is output to the Centronics Status
Port (1/0O port 90H) to set the STROBE signal high. Control then
drops into the G CIN standard routine to conplete
initialization.

A 33 A

4. ROM BI OS

Address... 04BDH

Name. G C N
Entry..... None
Exit...... None

Modi fies.. El

Standard routine to initialize the PSG and the Wrkspace
Area vari abl es associated with the "PLAY" statenent. QUETAB,
VCBA, VCBB and VCBC are first initialized with the values shown
in Chapter 6. PSG Registers 8 9 and 10 are then set to zero
anplitude and PSG Register 7 to B8H. This enables the Tone
Generator and di sabl es the Noi se Generator on each channel

Address... 0508H

This six byte table contains the "PLAY" statenent paraneters
initially placed in VCBA, VCBB and VCBC by the G CINI standard
routi ne: COctave=4, Length=4, Tenpo=120, Vol une=88H
Envel ope=00FFH

Address... 050EH

Nane. I NI TXT
Entry..... None
Exit...... None

Modi fies.. AF, BC, DE, HL, E

Standard routine to initialize the VDP to 40x24 Text Mbde.
The screen is tenporarily disabled via the DI SSCR st andard
routi ne and SCRMOD and OLDSCR set to OOH. The paraneters
required by the CHPUT standard routine are set up by copying
LIN .40 to LINLEN, TXTNAM to NAMBAS and TXTCGP to CGPBAS. The
VDP col ours are then set by the CHGCLR standard routine and the
screen is cleared (077EH). The current character set is copied
into the VRAM Character Pattern Table (071EH). Finally the VDP
node and base addresses are set via the SETTXT standard routine
and the screen is enabl ed.

Address... 0538H

Nane. I NI T32
Entry..... None
Exit...... None

Modi fies.. AF, BC, DE, HL, E

Standard routine to initialize the VDP to 32x24 Text Mode.
The screen is tenporarily disabled via the DI SSCR st andard
routi ne and SCRMOD and OLDSCR set to O1lH. The paraneters
required by the CHPUT standard routine are set up by copying
LINL32 to LINLEN, T32NAM to NAMBAS, T32CGP to CGPBAS, T32PAT to
PATBAS and T32ATR to ATRBAS. The VDP colours are then set via
the CHGCLR standard routine and the screen is cleared (077EH)
The current character set is copied into the VRAM Character
Pattern Table (071EH) and all sprites cleared (06BBH). Finally
the VDP npde and base addresses are set via the SETT32 standard
routine and the screen is enabl ed.

A 34 A

4. ROM BI OS

Address... 0570H

Narme. ENASCR
Entry..... None
Exit...... None

Modi fies.. AF, BC, El

Standard routine to enable the screen. This sinply involves
setting bit 6 of VDP Mdde Register 1.

Address... 0577H

Nane...... DI SSCR
Entry..... None
Exit...... None

Modi fies.. AF, BC, El

Standard routine to disable the screen. This sinply involves
resetting bit 6 of VDP Mdde Register 1.

Address... O057FH

Nane. WRTVDP
Entry..... B=Dat a byte, C=VDP Mbde Regi ster nunber
Exit...... None

Modi fies.. AF, B, El

Standard routine to wite a data byte to any VDP Mde
Regi ster. The register selection byte is first witten to the
VDP Conmand Port, followed by the data byte. This is then
copied to the relevant register imge, RGOSAV to RG/SAV, in the
Wor kspace Area

Address... 0594H

Nane. SETTXT
Entry..... None
Exit...... None

Modi fies.. AF, BC, DE, HL, El

Standard routine to partially set the VDP to 40x24 Text
Mode. The node bits ML, M2 and M3 are first set in VDP Mde
Regi sters 0 and 1. The five VRAMtabl e base addresses,
begi nning with TXTNAM are then copied fromthe Wrkspace Area
into VDP Mode Registers 2, 3, 4, 5 and 6 (0677H).

Address... 05B4H

Nane. SETT32
Entry..... None
Exit...... None

Modi fies.. AF, BC, DE, HL, EI

Standard routine to partially set the VDP to 32x24 Text
Mode. The npode bits ML, M2 and M3 are first set in VDP Mde
Regi sters 0 and 1. The five VRAMtabl e base addresses,
begi nning with T32NAM are then copied fromthe Wrkspace Area
into VDP Mode Registers 2, 3, 4, 5 and 6 (0677H).

A 35 A

4. ROM BI OS

Address... 05D2H

Narme. I NI GRP
Entry..... None
Exit...... None

Modi fies.. AF, BC, DE, HL, E

Standard routine to initialize the VDP to Graphics Mde. The
screen is tenporarily disabled via the DI SSCR standard routine
and SCRMOD set to 02H. The paraneters required by the GRPPRT
standard routine are set up by copyi ng GRPPAT to PATBAS and
GRPATR to ATRBAS. The character code driver pattern is then
copied into the VDP Nane Table, the screen cleared (07A1H) and
all sprites cleared (06BBH). Finally the VDP nbde and base
addresses are set via the SETCGRP standard routine and the
screen i s enabl ed.

Address... 0602H

Nanme. SETGRP
Entry..... None
Exit...... None

Modi fies.. AF, BC, DE, HL, El

Standard routine to partially set the VDP to G aphics Mode.
The node bits ML, M2 and M3 are first set in VDP Mode Registers
0 and 1. The five VRAM tabl e base addresses, beginning with
GRPNAM are then copied fromthe Wrkspace Area into VDP Mde
Registers 2, 3, 4, 5 and 6 (0677H)

Address... 061FH

Nane. I NI MLT
Entry..... None
Exit...... None

Modi fies.. AF, BC, DE, HL, E

Standard routine to initialize the VDP to Milticol our Mde.
The screen is tenporarily disabled via the DI SSCR st andard
routi ne and SCRMOD set to O3H. The paraneters required by the
GRPPRT standard routine are set up by copying MLTPAT to PATBAS
and MLTATR to ATRBAS. The character code driver pattern is then
copied into the VDP Nane Table, the screen cleared (07B9H) and
all sprites cleared (06BBH). Finally the VDP nbde and base
addresses are set via the SETML.T standard routine and the
screen i s enabl ed.

Address... 0659H

Narme. SETMLT
Entry..... None
Exit...... None

Modi fies.. AF, BC, DE, HL, E

Standard routine to partially set the VDP to Milticol our
Mode. The node bits ML, M2 and M3 are first set in VDP Mde
Regi sters 0 and 1. The five VRAMtabl e base addresses,
beginning with MLTNAM are then copied fromthe Wrkspace Area

A 36 A

4. ROM BI OS

to VDP Mbde Registers 2, 3, 4, 5 and 6
Address... 0677H

This routine is used by the SETTXT, SETT32, SETGRP and
SETMLT standard routines to copy a block of five table base
addresses fromthe Wrkspace Area into VDP Mode Registers
2, 3, 4, 5 and 6. On entry register pair HL points to the rel evant
group of addresses. Each base address is collected in turn
shifted the required nunber of places and then witten to the
rel evant Mode Register via the WRTVDP standard routi ne.

Address... 06A8H

Nane. CLRSPR
Entry..... None
Exit...... None

Modi fies.. AF, BC, DE, HL, E

Standard routine to clear all sprites. The entire 2 KB Sprite
Pattern Table is first filled with zeros via the FILVRM
standard routine. The vertical coordinate of each of the
thirty-two sprite attribute blocks is then set to -47 (D1H) to
pl ace the sprite above the top of the screen, the horizonta
coordinate is | eft unchanged.

The pattern nunbers in the Sprite Attribute Table are
initialized with the series 0, 1, 2, 3, 4,... 31 for 8x8 sprites or
the series 0, 4, 8, 12, 16,... 124 for 16x16 sprites. The series to
be generated is determned by the Size bit in VDP Mde Register
1. Finally the colour byte of each sprite attribute block is
filled in with the col our code contained in FORCLR, this is
initially white.

Note that the Size and Mag bits in VDP Mdde Register 1 are
not affected by this routine. Note also that the INIT32, I N CRP
and I NI M.T standard routines use this routine with an entry
poi nt at 06BBH, |eaving the Sprite Pattern Tabl e undi sturbed.

Address... 06E4H

Nane. CALPAT
Entry..... A=Sprite pattern nunber
Exit...... HL=Sprite pattern address

Modi fies.. AF, DE, HL

Standard routine to calculate the address of a sprite
pattern. The pattern nunber is first nultiplied by eight then
if 16x16 sprites are selected, nmultiplied by a further factor
of four. This is then added to the Sprite Pattern Tabl e base
address, taken from PATBAS, to produce the final address.

This nunbering systemis in line with the BASIC
Interpreter's usage of pattern nunbers rather than the VDP' s
when 16x16 sprites are selected. As an exanple while the
Interpreter calls the second pattern nunber one, it is actually

A 37 A

4. ROM BI OS

VDP pattern nunber four. This usage neans that the maxi num
pattern nunber this routine should allow, when 16x16 sprites
are selected, is sixty-three. There is no actual check on this

limt so large pattern nunbers will produce addresses greater
than 3FFFH. Such addresses, when passed to the other VDP
routines, will wap around past zero and corrupt the Character

Pattern Table in VRAM

Address... 06F9H

Nane. CALATR
Entry..... A=Sprite nunber
Exit...... HL=Sprite attri bute address

Modi fies.. AF, DE, HL

Standard routine to calculate the address of a sprite
attribute block. The sprite nunmber, fromzero to thirty-one, is
mul tiplied by four and added to the Sprite Attribute Table base
address taken from ATRBAS

Address... 0704H

Nane. GSPsSI z
Entry..... None
Exit...... A=Bytes in sprite pattern (8 or 32)

Modi fies.. AF

Standard routine to return the nunmber of bytes occupied by
each sprite pattern in the Sprite Pattern Table. The result is
determ ned sinply by exam ning the Size bit in VDP Mde
Regi ster 1.

Address... 070FH

Nane. LDl RW
Entry..... BC=Lengt h, DE=RAM address, HL=VRAM addr ess
Exit...... None

Modi fies.. AF, BC, DE, E

Standard routine to copy a block into main nenory fromthe
VDP VRAM The VRAM starting address is set via the SETRD
standard routine and then sequential bytes read fromthe VDP
Data Port and placed in nmain nenory.

Address... 071EH

This routine is used to copy a 2 KB character set into the
VDP Character Pattern Table in any node. The base address of
the Character Pattern Table in VRAMis taken from CGPBAS. The
starting address of the character set is taken from CGPNT. The
RDSLT standard routine is used to read the character data so
this may be situated in an extensi on ROM

At power-up CGPNT is initialized with the address contai ned
at ROM | ocation 0004H, which is 1BBFH. CGPNT is easily altered
to produce sone interesting results, POKE &HF920, &HC7: SCREEN 0
provi des a thoroughly confusing exanple.

A 38 A

4. ROM BI OS

Address... 0744H

Nane. LDl RvM
Entry..... BC=Lengt h, DE=VRAM address, HL=RAM address
Exit...... None

Modi fies.. AF, BC, DE, HL, E

Standard routine to copy a block to VRAM from nmai n nenory.
The VRAM starting address is set via the SETWRT standard
routi ne and then sequential bytes taken from main nmenory and
witten to the VDP Data Port.

Address... 0777H

This routine will clear the screen in any VDP npde. |In 40x24
Text Mode and 32x24 Text Mode the Nanme Tabl e, whose base
address is taken from NAMBAS, is first filled with ASCI
spaces. The cursor is then set to the honme position (0A7FH) and
LINTTB, the line termnation table, re-initialized. Finally the
function key display is restored, if it is enabled, via the
FNKSB st andard routi ne.

In Graphics Mode the border colour is first set via VDP Mde
Regi ster 7 (0832H). The Colour Table is then filled with the
background col our code, taken from BAKCLR, for both 0 and 1
pi xels. Finally the Character Pattern Table is filled with
zer oes.

In Multicol our Mbde the border colour is first set via VDP
Mode Register 7 (0832H). The Character Pattern Table is then
filled with the background col our taken from BAKCLR

Address... 07CDH

Nane. VRTVRM
Entry..... A=Dat a byte, HL=VRAM address
Exit...... None

Modi fies.. El

Standard routine to wite a single byte to the VDP VRAM The
VRAM address is first set up via the SETWRT standard routine
and then the data byte witten to the VDP Data Port. Note that
the two seemingly spurious EX(SP),HL instructions in this
routine, and several others, are required to neet the VDP' s
timng constraints.

Address... 07D7H

Nane. RDVRM
Entry..... HL=VRAM addr ess
Exit...... A=Byte read

Modi fies.. AF, El
Standard routine to read a single byte fromthe VDP VRAM

The VRAM address is first set up via the SETRD standard routine
and then the byte read fromthe VDP Data Port.

A 39 A

4. ROM BI OS

Address... O07DFH

Nane. SETWRT
Entry..... HL=VRAM addr ess
Exit...... None

Modi fies.. AF, El

Standard routine to set up the VDP for subsequent wites to
VRAM via the Data Port. The address contained in register pair
HL is witten to the VDP Command Port LSB first, MSB second as
shown in Figure 7. Addresses greater than 3FFFH will wap
around past zero as the two nost significant bits of the
address are ignored.

Address... O7ECH

Nane. SETRD
Entry..... HL=VRAM addr ess
Exit...... None

Modi fies.. AF, El

Standard routine to set up the VDP for subsequent reads from
VRAM via the Data Port. The address contained in register pair
HL is witten to the VDP Command Port LSB first, MSB second as
shown in Figure 7. Addresses greater than 3FFFH will wap
around past zero as the two nost significant bits of the
address are ignored.

Address... O7F7H

Narme. CHGCLR
Entry..... None
Exit...... None

Modi fies.. AF, BC, HL, E

Standard routine to set the VDP colours. SCRMOD is first
exanined to determine the appropriate course of action. In
40x24 Text Mode the contents of BAKCLR and FORCLR are written
to VDP Mdde Register 7 to set the colour of the O and 1 pixels,
these are initially blue and white. Note that in this npde
there is no way of specifying the border colour, this will be
the sane as the 0 pixel colour. In 32x24 Text Mde, G aphics
Mode or Multicol our Mode the contents of BDRCLR are witten to
VDP Mode Register 7 to set the colour of the border, this is
initially blue. Also in 32x24 Text Mdde the contents of BAKCLR
and FORCLR are copied to the whole of the Colour Table to
deternmine the 0 and 1 pixel col ours.

Address... 0815H

Nane. FI LVRM
Entry..... A=Dat a byte, BC=Length, HL=VRAM address
Exit...... None

Modi fies.. AF, BC, El

Standard routine to fill a block of the VDP VRAMwith a
single data byte. The VRAM starting address, contained in
register pair HL, is first set up via the SETWRT standard

A 40 A

4. ROM BI OS

routine. The data byte is then repeatedly witten to the VDP
Data Port to fill successive VRAM | ocati ons.

Address... 083BH

Nane. TOTEXT
Entry..... None
Exit...... None

Modi fies.. AF, BC, DE, HL, E

Standard routine to return the VDP to either 40x24 Text Mbde
or 32x24 Text Mode if it is currently in G aphics Mde or
Mul ticol our Mode. It is used by the BASIC Interpreter Mainloop
and by the "I NPUT" statenent handl er. Whenever the I NI TXT or
I Nl T32 standard routines are used the node byte, OOH or 01H, is
copied into OLDSCR. If the node is subsequently changed to
Graphi cs Mode or Multicol our Mode, and then has to be returned
to one of the two text nodes for keyboard input, this routine
ensures that it returns to the same one.

SCRMOD is first examned and, if the screen is already in
either text node, the routine sinply termnates with no action
Ot herwi se the previous text node is taken from OLDSCR and
passed to the CHGVOD standard routi ne.

Address... 0848H

Nane. CLS
Entry..... Flag Z
Exit...... None

Modifies.. AF, BC, DE, E

Standard routine to clear the screen in any node, it does
nothing but call the routine at 0777H. This is actually the
"CLS" statement handl er and, because this indicates that there
is illegal text after the statenment, it will sinply return if
entered with Flag NZ.

Address... 084FH

Nane. CHGVOD
Entry..... A=Screen node required (0, 1, 2, 3)
Exit...... None

Modi fies.. AF, BC, DE, HL, E

Standard routine to set a new screen node. Register A,
containing the required screen node, is tested and contro
transferred to INITXT, INIT32, INIGRP or | N MT.

Address... 085DH

Nane...... LPTOUT
Entry..... A=Character to print
Exit...... Flag Cif CTRL-STOP termn nation

Modi fies.. AF

Standard routine to output a character to the line printer
via the Centronics Port. The printer status is continually

A 41 A

4. ROM BI OS

tested, via the LPTSTT standard routine, until the printer
becomes free. The character is then witten to the Centronics
Data Port (I1/O port 91H) and the STROBE signal of the
Centronics Status Port (I/O port 90H) briefly pulsed |ow. Note
that the BREAKX standard routine is used to test for the CTRL-
-STOP key if the printer is busy. If CTRL-STOP is detected a CR
code is witten to the Centronics Data Port, to flush the
printer's line buffer, and the routine ternmnates with Flag C

Address... 0884H

Nane. LPTSTT
Entry..... None
Exit...... A=0 and Flag Z if printer busy

Modi fies.. AF

Standard routine to test the Centronics Status Port BUSY
signal. This just involves reading I/O port 90H and exani ni ng
the state of bit 1: O=Ready, 1=Busy.

Address... 088EH

Nane...... POSI T
Entry..... H=Col um, L=Row
Exit...... None

Modi fies.. AF, El

Standard routine to set the cursor coordi nates. The row and
colunmm coordinates are sent to the OUTDO standard routine as
the paraneters in an ESC, "Y", Rowt1FH, Col um+1FH sequence. Note
that the BI OS hone position has coordinates of 1,1 rather than
the 0,0 used by the BASIC Interpreter.

Address... 089DH

Nane. CNVCHR
Entry..... A=Char act er
Exit...... Fl ag Z, NC=Header; Flag Nz, C=Graphic; Flag Z, C=Nor nal

Modi fies.. AF

Standard routine to test for, and convert if necessary,
characters with graphic headers. Characters less than 20H are
normal ly interpreted by the output device drivers as contro
characters. A character code in this range can be treated as a
di spl ayabl e character by preceding it with a graphic header
control code (01H) and adding 40H to its value. For exanple to
directly display character code ODH, rather than have it
interpreted as a carriage return, it is necessary to output the
two bytes 01H,4DH. This routine is used by the output device
drivers, such as the CHPUT standard routine, to check for such
sequences.

If the character is a graphic header GRPHED is set to 01H
and the routine term nates, otherwi se GRPHED is zeroed. If the
character is outside the range 40H to 5FH it is |left unchanged.
If it is inside this range, and GRPHED contai ns 01H i ndicating
a previous graphic header, it is converted by subtracting 40H

A 42 A

4. ROM BI OS

Address... 08BCH

Nane. CHPUT
Entry..... A=Char act er
Exit...... None

Modi fies.. El

Standard routine to output a character to the screen in
40x24 Text Mode or 32x24 Text Mbde. SCRMOD is first checked
and, if the VDP is in either G aphics Mde or Milticol our Mde,
the routine termnates with no action. Oherw se the cursor is
renoved (OA2EH), the character decoded (08DFH) and then the
cursor replaced (09E1H). Finally the cursor columm position is
pl aced in TTYPOS, for use by the "PRINT" statenment, and the
routine termnnates.

Address... 08DFH

This routine is used by the CHPUT standard routine to decode
a character and take the appropriate action. The CNVCHR
standard routine is first used to check for a graphic
character, if the character is a header code (01H) then the
routine termnates with no action. If the character is a
converted graphic one then the control code decoding section is
ski pped. Otherwi se ESCCNT is checked to see if a previous ESC
character (1BH) has been received, if so control transfers to
the ESC sequence processor (098FH). O herw se the character is
checked to see if it is smaller than 20H, if so contro
transfers to the control code processor (0914H). The character
is then checked to see if it is DEL (7FH), if so contro
transfers to the delete routine (0OAE3H)

Assumi ng the character is displayable the cursor coordinates
are taken from CSRY and CSRX and placed in register pair HL,
H=Col umm, L=Row. These are then converted to a physical address
in the VDP Nane Tabl e and the character placed there (OBE6H)

The cursor colum position is then increnented (0A44H) and,
assum ng the rightnost colum has not been exceeded, the
routine termnates. Gtherwise the rows entry in LINTTB, the
line termnation table, is zeroed to indicate an extended

| ogical line, the colum nunber is set to O1H and a LF is
per f or med.

Address... 0908H

This routine perforns the LF operation for the CHPUT
standard routine control code processor. The cursor rowis
increnmented (0A61H) and, assuming the | owest row has not been
exceeded, the routine term nates. Otherw se the screen is
scroll ed upwards and the | owest row erased (0A88H)

Address... 0914H

This is the control code processor for the CHPUT standard
routine. The table at 092FH is searched for a match with the

A 43 A

4. ROM BI OS

code and contro

Addr ess.

transferred to the associ ated address.

092FH

This table contains the control codes, each with an

associ at ed addr ess,

recogni zed by the CHPUT standard routine:

FUNCTI ON

AAAAAAAAAAAAAAAAAAAAAAAAAAAAANAAAAAAAAAAAAAAAAAAN

CODE TO

07H 1113H
08H O0A4CH
09H O0A71H
0OAH 0908H
0BH OA7FH
OCH O077EH
ODH O0A81H
1BH 0989H
1CH O0A5BH
1DH O0A4CH
1EH OA57H
1FH O0OA61H

Addr ess.

BELL, go beep

BS, cursor |eft

TAB, cursor to next tab position
LF, cursor down a row

HOVE, cursor to hone

FORMFEED, cl ear screen and hone
CR, cursor to | eftnmpst col um
ESC, enter escape sequence

Rl GHT, cursor right

LEFT, cursor left

UP, cursor up

DOWN, cursor down.

0953H

This table contains the ESC control codes, each with an

associ at ed addr ess,

recogni zed by the CHPUT standard routine:

FUNCTI ON

AAA

ESC, "j", clear screen and hone
ESC, "E", clear screen and hone
ESC, "K', clear to end of line
ESC, "J", clear to end of screen
ESC "I", clear line

ESC, "L", insert line

ESC, "M, delete line

ESC, "Y", set cursor coordinates
ESC, "A", cursor up

ESC, "B", cursor down

ESC, "C', cursor right

ESC, "D"', cursor left

ESC, "H', cursor hone

ESC, "x", change cursor

ESC, "y", change cursor

CODE TO

6AH O77EH
45H O77EH
4BH OAEEH
4AH O0BO5SH
6CH OAECH
4CH O0AB4H
4ADH O0A85H
59H 0986H
41H OA57H
42H O0A61H
43H O0A44H
44H O0A55H
48H OA7FH
78H 0980H
79H 0983H

Address... 0980H

This routine perforns the ESC,"x" operation for the CHPUT
standard routine control code processor. ESCCNT is set to O1H
to indicate that the next character received is a paraneter.

Addr ess.

0983H

This routine perfornms the ESC,"y" operation for the CHPUT

A 44 A

4. ROM BI OS

standard routine control code decoder. ESCCNT is set to O2H to
i ndicate that the next character received is a paraneter.

Address... 0986H

This routine perforns the ESC', Y' operation for the CHPUT
standard routine control code processor. ESCCNT is set to 04H
to indicate that the next character received is a paraneter.

Address... 0989H

This routine performs the ESC operation for the CHPUT
standard routine control code processor. ESCCNT is set to FFH
to indicate that the next character received is the second
control character.

Address... 098FH

This is the CHPUT standard routine ESC sequence processor
I f ESCCNT contains FFH then the character is the second contro
character and control transfers to the control code processor
(0919H) to search the ESC code table at 0953H

I f ESCCNT contains 01H then the character is the single
paraneter of the ESC, "x" sequence. |f the paranmeter is "4"
(34H) then CSTYLE is set to OOH resulting in a block cursor. If
the paraneter is "5" (35H) then CSRSWis set to OOH nmaking the
cursor normally disabl ed.

I f ESCCNT contains 02H then the character is the single
paraneter in the ESC "y" sequence. |If the paranmeter is "4"
(34H) then CSTYLE is set to OlH resulting in an underline
cursor. |If the paraneter is "5" (35H) then CSRSWis set to 01H
meki ng the cursor normally enabl ed.

I f ESCCNT contains 04H then the character is the first
parameter of the ESC,"Y" sequence and is the row coordinate.
The paraneter has 1FH subtracted and is placed in CSRY, ESCCNT
is then decrenented to 03H

I f ESCCNT contains 03H then the character is the second
paraneter of the ESC, "Y" sequence and is the colum coordinate.
The paraneter has 1FH subtracted and is placed in CSRX

Address. .. 09DAH

This routine is used, by the CHGET standard routine for
exanple, to display the cursor character when it is normally
disabled. If CSRSWis non-zero the routine sinply term nates
with no action, otherwi se the cursor is displayed (09E6H)

Address... 09E1H

This routine is used, by the CHPUT standard routine for

A 45 A

4. ROM BI OS

exanple, to display the cursor character when it is normally
enabled. If CSRSWis zero the routine sinply term nates with no
action. SCRMOD is checked and, if the screen is in G aphics
Mbde or Multicolour Mode, the routine terminates with no
action. Otherw se the cursor coordinates are converted to a
physi cal address in the VDP Nane Table and the character read
fromthat |ocation (0BD8H) and saved in CURSAV

The character's eight byte pixel pattern is read fromthe
VDP Character Pattern Table into the LI NARK buffer (OBA5H). The
pi xel pattern is then inverted, all eight bytes if CSTYLE
i ndicates a block cursor, only the bottomthree if CSTYLE
i ndi cates an underline cursor. The pixel pattern is copied back
to the position for character code 255 in the VDP Character
Pattern Table (OBBEH). The character code 255 is then placed at
the current cursor location in the VDP Nanme Tabl e (OBE6H) and
the routine term nates.

This met hod of generating the cursor character, by using
character code 255, can produce curious effects under certain
conditions. These can be denpnstrated by executing the BASIC
statement FOR N=1 TO 100: PRI NT CHR$(255);: NEXT and then
pressing the cursor up key.

Address... 0A27H

This routine is used, by the CHGET standard routine for
exanple, to renove the cursor character when it is normally
di sabled. If CSRSWis non-zero the routine sinply term nates
with no action, otherwi se the cursor is removed (0A33H)

Address... OA2EH

This routine is used, by the CHPUT standard routine for
exanple, .to renmpve the cursor character when it is normally
enabled. If CSRSWis zero the routine sinply termnates with no
action. .SCRMOD is checked and, if the screen is in G aphics
Mode or Multicol our Mode, the routine termnates with no
action. Otherw se the cursor coordinates are converted to a
physi cal address in the VDP Nane Table and the character held
in CURSAV witten to that |ocation (0OBE6H)

Address... O0A44H

This routine perforns the ESC, "C' operation for the CHPUT
standard routine control code processor. If the cursor colum
coordinate is already at the rightnost colum, determ ned by
LINLEN, then the routine terminates with no action. O herw se
the colunm coordinate is increnented and CSRX updat ed.

Address... OA4CH

This routine performs the BS/LEFT operation for the CHPUT
standard routine control code processor. The cursor colum

A 46 A

4. ROM BI OS

coordinate is decrenented and CSRX updated. |f the colum
coordi nate has noved beyond the | eftnpst position it is set to
the rightnost position, fromLINLEN, and an UP operation

per f or ned.

Address... 0A55H

This routine perfornms the ESC,"D' operation for the CHPUT
standard routine control code processor. If the cursor colum
coordinate is already at the leftnpst position then the routine
term nates with no action. OGtherw se the colum coordinate is
decrenent ed and CSRX updat ed.

Address... 0A57H

This routine perforns the ESC,"A" (UP) operation for the CHPUT
standard routine control code processor. If the cursor row
coordinate is already at the topnpst position the routine
term nates with no action. Otherwi se the row coordinate is
decremented and CSRY updat ed.

Address... 0A5BH

This routine perforns the RI GHT operation for the CHPUT
standard routine control code processor. The cursor colum
coordinate is incremented and CSRX updated. |f the colum
coordi nate has noved beyond the rightnost position, determ ned
by LINLEN, it is set to the |eftnpst position (01H) and a DOMN
operation perfornmed.

Address... 0A61H

This routine performs the ESC,"B" (DOW) operation for the
CHPUT standard routine control code processor. |If the cursor
row coordinate is already at the | owest position, determ ned by
CRTCNT and CNSDFG (0C32H), then the routine terminates with no
action. Otherw se the row coordinate is incremented and CSRY
updat ed.

Address... O0A71H

This routine performs the TAB operation for the CHPUT
standard routine control code processor. ASClI| spaces are
output (O8DFH) until CSRX is a multiple of eight plus one (BIOS
colums 1, 9, 17, 25, 33).

Address... OA7FH

This routine performs the ESC,"H' (HOVE) operation for the
CHPUT standard routine control code processor, CSRX and CSRY
are sinmply set to 1,1. The ROM BI OS cursor coordinate system
while functionally identical to that used by the BASIC
Interpreter, nunbers the screen rows from1l to 24 and the
colums from 1 to 32/40.

A 47 A

4. ROM BI OS

Address... O0A81H

This routine perforns the CR operation for the CHPUT
standard routine control code processor, CSRX is sinply set to
01H .

Address... 0A85H

This routine perforns the ESC "M function for the CHPUT
standard routine control code processor. A CR operation is
first performed to set the cursor columm coordinate to the
| eftnost position. The nunber of rows fromthe current rowto
the bottom of the screen is then determned, if this is zero
the current rowis sinply erased (OAECH). The row count is
first used to scroll up the relevant section of LINITB, the
line term nation table, by one byte. It is then used to scrol
up the relevant section of the screen a row at a tine. Starting
at the row below the current row, each line is copied fromthe
VDP Nane Table into the LINARK buffer (OBAAH) then copied back
to the Nanme Tabl e one row higher (OBC3H). Finally the | owest
row on the screen is erased (OAECH)

Address... 0AB4H

This routine perfornms the ESC,"L" operation for the CHPDT
standard routine control code processor. A CR operation is
first performed to set the cursor columm coordinate to the
| eftrost position. The number of rows fromthe current rowto
the bottom of the screen is then determned, if this is zero
the current rowis sinply erased (OAECH). The row count is
first used to scroll down the relevant section of LINTTB, the
line term nation table, by one byte. It is then used to scrol
down the rel evant section of the screen a row at a tine.
Starting at the next to last row of the screen, each line is
copied fromthe VDP Nane Table into the LI NWRK buffer (0BAAH)
then copi ed back to the Name Table one row | ower (0BC3H)
Finally the current row is erased (OAECH)

Address... OAE3H

This routine is used to performthe DEL operation for the
CHPUT standard routine control code processor. A LEFT operation
is first perfornmed. If this cannot be conpl eted, because the
cursor is already at the home position, then the routine
term nates with no action. Oherwise a space is witten to the
VDP Nane Table at the cursor's physical |ocation (0OBE6H)

Address... OAECH
This routine perforns the ESC,"|I" operation for the CHPUT
standard routine control code processor. The cursor colum

coordinate is set to OlH and control drops into the ESC, "K"
routine.

A 48 A

4. ROM BI OS

Address... OAEEH

This routine perforns the ESC, "K" operation for the CHPHT
standard routine control code processor. The row s entry in
LINTTB, the line termination table, is first made non-zero to
indicate that the logical line is not extended (0C29H). The
cursor coordinates are converted to a physical address (0BF2H)
in the VDP Nane Table and the VDP set up for wites via the
SETWRT standard routine. Spaces are then witten directly to
the VDP Data Port until the rightnost colum, determ ned by
LI NLEN, is reached.

Address... OBO5H

This routine perfornms the ESC,"J" operation for the CHPUT
standard routine control code processor. An ESC, "K' operation
is perforned on successive rows, starting with the current one,
until the bottom of the screen is reached.

Address... 0B15H

Nane. ERAFNK
Entry..... None
Exit...... None

Modi fies.. AF, DE, El

Standard routine to turn the function key display off.
CNSDFG is first zeroed and, if the VDP is in G aphics Mde or
Mul ti col our Mode, the routine termnates with no further
action. If the VDP is in 40x24 Text Mdde or 32x24 Text Mode the
| ast row on the screen is then erased (O0AECH)

Address... 0B26H

Nane. FNKSB
Entry..... None
Exit...... None

Modi fies.. AF, BC, DE, E

Standard routine to show the function key display if it is
enabled. If CNSDFG is zero the routine termnates with no
action, otherw se control drops into the DSPFNK standard
routine. .

Address... 0B2BH

Nane. DSPFNK
Entry..... None
Exit...... None

Modifies.. AF, BC, DE, E

Standard routine to turn the function key display on. CNSDFG
is set to FFH and, if the VDP is in G aphics Mde or
Mul ticol our Mdde, the routine termnates with no further
action. Otherw se the cursor row coordinate is checked and, if
the cursor is on the last row of the screen, a LF code (0AH)
i ssued to the OUTDO standard routine to scroll the screen up

A 49 A

4. ROM BI OS

Regi ster pair HL is then set to point to either the unshifted
or shifted function strings in the Wrkspace Area dependi ng
upon whether the SHI FT key is pressed. LINLEN has four
subtracted, to allow a mni mum of one space between fields, and
is divided by five to deternmine the field size for each string.
Successi ve characters are then taken from each function string,
checked for graphic headers via the CNVCHR standard routine and
placed in the LINARK buffer until the string is exhausted or
the zone is filled. When all five strings are conpleted the
LI N\RK buffer is witten to the last rowin the VDP Nane Tabl e
(0BC3H)

Address... 0B9CH

This routine is used by the function key display related
standard routines. The contents of register A are placed in
CNSDFG t hen SCRMOD tested and Flag NC returned if the screen is
in Graphics Mdde or Milticol our Mode.

Address... OBA5H

This routine copies eight bytes fromthe VDP VRAMinto the
LI N\V\RK buffer, the VRAM physical address is supplied in
regi ster pair HL.

Address... OBAAH
This routine copies a conplete row of characters, with the

| ength determ ned by LINLEN, fromthe VDP VRAMinto the LINARK
buffer. The cursor row coordinate is supplied in register L.

Address... OBBEH

This routine copies eight bytes fromthe LINWRK buffer into
the VDP VRAM the VRAM physical address is supplied in register
pair HL.

Address... OBC3H

This routine copies a conplete row of characters, with the
|l ength determned by LINLEN, fromthe LINWRK buffer into the
VDP VRAM The cursor row coordinate is supplied in register L.

Address... OBD8H

This routine reads a single byte fromthe VDP VRAM i nto
register C. The columm coordinate is supplied in register H
the row coordinate in register L.

Address... OBE6H

This routine converts a pair of screen coordinates, the
colum in register Hand the rowin register L, into a physical
address in the VDP Nane Table. This address is returned in

A 50 A

4. ROM BI OS

regi ster pair HL.

The row coordinate is first nultiplied by thirty-two or
forty, depending upon the screen node, and added to the colum
coordinate. This is then added to the Nane Tabl e base address,
taken from NAMBAS, to produce an initial address.

Because of the variable screen width, as contained in
LI NLEN, an additional offset has to be added to the initial
address to keep the active region roughly centered within the
screen. The difference between the "true" nunber of characters
per row, thirty-two or forty, and the current width is hal ved
and then rounded up to produce the left hand offset. For a UK
machine, with a thirty-seven character width in 40x24 Text
Mode, this will result in two unused characters on the |eft
hand side and one on the right. The statement PRINT (41-WD)\2,
where WD is any screen width, will display the |eft hand
colum offset in 40x24 Text Mode.

A conpl ete BASI C program which enul ates this routine is
gi ven bel ow

10 CPR=40: NAMEBASE(0) : W D=PEEK(&HF3AE)
20 SCRVD=PEEK(&HFCAF) : | F SCRVMD=0 THEN 40
30 CPR=32: NAMEBASE(5) : W D=PEEK(&HF3AF)
40 LH=(CPR+1-W D)\ 2

50 ADDR=NAM#(ROW 1) * CPR+(COL- 1) +LH

This programis designed for the ROWand COL coordi nate system
used by the ROM BI OS where hone is 1,1. Line 50 may be
sinmplified, by renmoving the "-1" factors, if the BASIC
Interpreter's coordinate systemis to be used.

Address... OC1DH

This routine calculates the address of a row s entry in
LINTTB, the line term nation table. The row coordinate is
supplied in register L and the address returned in register
pair DE.

Address... 0C29H

This routine makes a row s entry in LINTTB non-zero when
entered at 0C29H and zero when entered at 0C2AH. The row
coordinate is supplied in register L.

Address... 0C32H

This routine returns the nunber of rows on the screen in
register A It will normally return twenty-four if the function
key display is disabled and twenty-three if it is enabled. Note
that the screen size is determ ned by CRTCNT and may be
nodi fied with a BASIC statenent, POKE &HF3B1H, 14: SCREEN 0 for
exanpl e.

A 51 A

4. ROM BI OS

Address... OC3CH

Nane. KEYI NT
Entry..... None
Exit...... None

Modi fies.. El

Standard routine to process Z80 interrupts, these are
generated by the VDP once every 20 ns on a UK machi ne. The VDP
Status Register is first read and bit 7 checked to ensure that
this is a frame rate interrupt, if not the routine term nates
with no action. The contents of the Status Register are saved
in STATFL and bit 5 checked for sprite coincidence. If the
Coi ncidence Flag is active then the relevant entry in TRPTBL is
updat ed (OEF1H).

I NTCNT, the "I NTERVAL" counter, is then decrenented. If this
has reached zero the relevant entry in TRPTBL is updated
(OEF1H) and the counter reset with the contents of | NTVAL.

JIFFY, the "TIME" counter, is then increnented. This counter
just waps around to zero when it overfl ows.

MJSI CF i s exam ned to determ ne whether any of the three
musi ¢ queues generated by the "PLAY" statenent are active. For
each active queue the dequeueing routine (113BH) is called to
fetch the next nusic packet and wite it to the PSG

SCNCNT is then decrenmented to determine if a joystick and
keyboard scan is required, if not the interrupt handl er
termnates with no further action. This counter is used to
i ncrease throughput and to mnim ze keybounce probl ens by
ensuring that a scan is only carried out every three
interrupts. Assuming a scan is required joystick connector 1 is
selected and the two Trigger bits read (120CH), followed by the
two Trigger bits fromjoystick connector 2 (120CH) and the
SPACE key fromrow 8 of the keyboard (1226H). These five
i nputs, which are all related to the "STRIG' statenent, are
conmbined into a single byte where 0=Pressed, 1=Not pressed:

7 6 5 4 3 2 1 0
UAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARAARAAAAAAARA
3Joy 23Joy 23Joy 13Joy 13 0O 3 0 3 O S3Spaces
STrg.B2Trg. ASTrg. BETrg. A3 s s s 3
AAAAAAAAAAAAAAAAAAAAAAARAAAAARAAAAARAAAAARAAAAAAL

Figure 35: "STRIG' Inputs

This reading is conpared with the previous one, held in TRG-LG
to produce an active transition byte and TRGFLG i s updated with
the new reading. The active transition byte is normally zero
but contains a 1 in each position where a transition from
unpressed to pressed has occurred. This active transition byte

A 52 A

4. ROM BI OS

is shifted out bit by bit and the relevant entry in TRPTBL
updat ed (OEF1H) for each active device.

A conpl ete scan of the keyboard matrix is then perfornmed to
i dentify new key depressions, any found are translated into key
codes and placed in KEYBUF (0D12H). If KEYBUF is found to be
enpty at the end of this process REPCNT is decrenented to see
whet her the auto-repeat delay has expired, if not the routine
termnates. If the delay period has expired REPCNT is reset
with the fast repeat value (60 ns), the OLDKEY keyboard map is
reinitialized and the keyboard scanned again (OD4EH). Any keys
which are continuously pressed will show up as new transitions
during this scan. Note that keys will only auto-repeat while an
application program keeps KEYBUF enpty by readi ng characters.
The interrupt handl er then term nates.

Address... 0OD12H

This routine perforns a conplete scan of all eleven rows of
the keyboard matrix for the interrupt handl er. Each of the
eleven rows is read in via the PPl and placed in ascending
order in NEWKEY. ENSTOP is then checked to see if warmstarts
are enabled. If its contents are non-zero and the keys CODE
GRAPH, CTRL and SHI FT are pressed control transfers to the BASIC
Interpreter (409BH) via the CALBAS standard routine. This
facility is useful as even a nachine code program can be
term nated as long as the interrupt handler is running.

The contents of NEWKEY are conpared with the previous scan
contained in OLDKEY. |If any change at all has occurred REPCNT
is loaded with the initial auto-repeat delay (780 ns). Each row 1,
reading from NEWKEY is then conpared with the previous one,
held in OLDKEY, to produce an active transition byte and OLDKEY
is updated with the new reading. The active transition byte is
normal ly zero but contains a 1 in each position where a
transition fromunpressed to pressed has occurred. |f the row
contains any transitions these are decoded and pl aced i n KEYBUF
as key codes (0OD89H). When all eleven rows have been conpl eted
the routine checks whether there are any characters in KEYBUF,
by subtracting GETPNT from PUTPNT, and terninates.

Address... OD6AH

Nare. CHSNS
Entry..... None
Exit...... Flag NZ if characters in KEYBUF

Modi fies.. AF, El

Standard routine to check if any keyboard characters are
ready. If the screen is in Graphics Mdde or Milticol our Mode
then CGETPNT is subtracted from PUTPNT (0D62H) and the routine
termnates. If the screen is in 40x24 Text Mde or 32x24 Text
Mode the state of the SHI FT key is al so exam ned and the
function key display updated, via the DSPFNK standard routi ne,
if it has changed.

A 53 A

4. ROM BI OS

Address... 0D89H

This routine converts each active bit in a keyboard row
transition byte into a key code. A bit is first converted into
a key nunber deternmined by its position in the keyboard matri x:

UAAA&
i 7 3 6 @ 5 @ 4 3 3 3 2 3 1 3 0 2 RowO
3 (07H) 3 (06H) 2 (05H) 2 (04H) 3 (03H) 2 (02H) 2 (01H) 3 (00H) 3

3] 3 [3 \ 3 = 3 - 3 9 3 8 3 Rowl

> (OFH) 2 ((OEH) 3 (ODH)® (0CH) 2 ((0BH) > (0AH) > (09H) 2 (08H) °

AA

3 B 3 A 3 e 3 / 3 3 3 N 3 ! 3 Row 2

S(17H) 3 (16H)3 (15H) 3 (14H) 3 (13H) 3 (12H)3 (11H) 3 (10H)3

s J s | 3 HS® G=3 F 3 E 3 D3 C % Row3
(1FH) S (1EH) 2 (1DH) 2 (1CH) 3 (1BH) 2 (1AH) ° (19H) ° (18H) @

s R3% Q3% P 3 O3 N3 M3 L 3 K 3 Rowdé4
2(27H) 2 (26H) 3 (25H) 2 (24H) * (23H) * (22H) 3 (21H) 2 (20H) ®

s Z s Y s X3 W3 V3 U3 T3 S 3 Rws
2 (2FH) ° (2EH) ° (2DH) ° (2CH) ° (2BH) * (2AH) * (29H) * (28H) *

S F3 3 F2 3 F1 3CODE ° CAP 3GRAPH*CTRL 3SHIFT® Row 6
2(37H) 2 (36H) * (35H) * (34H) ° (33H) 2 (32H) 2 (31H) * (30H) *

s CR % SEL 3 BS 3STOP3 TAB® ESC3 F5 3 F4 3 Row 7
2 (3FH) 2 (3EH) 2 (3DH) ° (3CH) (3BH) ° (3AH) * (39H) * (38H) *

SRIGHTSDOWN 3 UP SLEFT 3 DEL ° INS ®HOME 3SPACE® Row 8
2(A7H) ° (46H) ° (45H) ° (44t ° (43H) * (42H) * (41H) * (40H) 2

s 4 3 3 3 2 3 1 3 Q0 3 3 3 3 Row 9
2 (AFH) S (AEH) 2 (4DH) 2 (ACH) 2 (4BH) 2 (4AH) ° (49H) ° (48H) ®

s . s , 3 - 38 9 38 8 8 7 38 6 3 5 3 Row 10
8 (57H) 3 (56H) 2 (55H) 3 (54H) 3 (53H) 3 (52H) 3 (51H) 2 (50H) 3
AAL

7 6 5 4 3 2 1 0 Col um

Fi gure 36: Key Nunbers

A 54 A

4. ROM BI OS

The key nunber is then converted into a key code and placed in
KEYBUF (1021H). When all eight possible bits have been
processed the routine term nates.

Address... ODA5H

This table contains the key codes of key nunbers 0O0H to 2FH
for various conbinations of the control keys. A zero entry in
the table neans that no key code will be produced when that key
i s pressed:

37H 36H 35H 34H 33H 32H 31H 30H Row O

3BH 5DH 5BH 5CH 3DH 2DH 39H 38H Row 1

NORVAL 62H 61H 9CH 2FH 2EH 2CH 60H 27H Row 2
6AH 69H 68H 67H 66H 65H 64H 63H Row 3

72H 71H 70H 6FH 6EH 6DH 6CH 6BH Row 4

7TAH 79H 78H 77H 76H 75H 74H 73H Row 5

26H 5EH 25H 24H 23H 40H 21H 29H Row O

3AH 7DH 7BH 7CH 2BH 5FH 28H 2AH Row 1

SHI FT 42H 41H 9CH 3FH 3EH 3CH 7EH 22H Row 2
4AH 49H 48H 47H 46H 45H 44H 43H Row 3

52H 51H 50H 4FH 4EH 4DH 4CH 4BH Row 4

5AH 59H ©58H 57H 56H 55H 54H 53H Row 5

FBH F4H BDH EFH BAH ABH ACH O0O9H Row O

O6H ODH O1H 1EH F1H 17H O7H ECH Row 1

GRAPH 11H C4H 9CH 1DH F2H F3H BBH O0O5H Row 2
CoH DCH 13H 15H 14H CDH C7H BCH Row 3

18H CCH DBH C2H 1BH O0OBH C8H DDH Row 4

OFH 19H 1CH CFH 1AH COH 12H D2H Row 5

0OOH F5H OOH OOH FCH FDH OOH OAH Row O

04H OEH 02H 16H FOH 1FH 08H OOH Row 1

SH FT OOH FEH 9CH F6H AFH AEH F7H O3H Row 2
GRAPH CAH DFH D6H 10H D4H CEH Cl1H FAH Row 3
AOH CBH Dr/H C3H D3H OCH COH DEH Row 4

F8H AAH F9H DOH D5H C5H OOH Di1H Row 5

ElIH EOH 98H 9BH BFH D9H 9FH EBH Row O

B7H DAH EDH 9CH E9H EEH 87H E7H Row 1

CCDE 97H 84H 9CH A7H A6H 86H E5H B9H Row 2
91H Al1H B1H 81H 94H 8CH 8BH 8DH Row 3

93H 83H A3H A2H A4H E6H BS5H B3H Row 4

85H AOH B8AH 88H 95H 82H 96H 89H Row 5

OOH O0OH 9DH 9CH BEH 9EH ADH D8H Row O

B6H EAH E8H OOH OOH OOH 80H E2H Row 1

SH FT O0OH 8EH 9CH A8H O0OOH 8FH E4H B8H Row 2
CCDE 92H OOH BOH 9AH 99H O00OH O0OH OOH Row 3
00OH O0OH E3H OOH A5H OOH B4H B2H Row 4

00OH OOH OOH OOH OOH 90H OOH OOH Row 5

7 6 5 4 3 2 1 0 Col um

A 55 A

4. ROM BI OS

Address... OEC5H

Control transfers to this routine, fromOFC3H, to conplete
decoding of the five function keys. The relevant entry in
FNKFLG is first checked to determ ne whether the key is
associated with an "ON KEY GOSUB" statenent. If so, and
provi ded that CURLIN shows the BASIC Interpreter to be in
program node, the relevant entry in TRPTBL is updated (OEF1H)
and the routine termnates. If the key is not tied to an "ON
KEY GOSUB" statement, or if the Interpreter is in direct node,
the string of characters associated with the function key is
returned instead. The key nunber is nultiplied by sixteen, as
each string is sixteen characters | ong, and added to the
starting address of the function key strings in the Wrkspace
Area. Sequential characters are then taken fromthe string and
pl aced in KEYBUF (OF55H) until the zero byte terminator is
reached.

Address... OEF1H

This routine is used to update a device's entry in TRPTBL
when it has produced a BASIC programinterrupt. On entry
register pair HL points to the device's status byte in the
table. Bit 0 of the status byte is checked first, if the device
is not "ON'" then the routine termnates with no action. Bit 2
the event flag, is then checked. If this is already set then
the routine termnates, otherwise it is set to indicate that an
event has occurred. Bit 1, the "STOP" flag, is then checked. If
the device is stopped then the routine term nates with no
further action. Oherwi se ONGSBF is increnented to signal to
the Interpreter Runloop that the event should now be processed.

Address... OFO6H

This section of the key decoder processes the HOVE key only.
The state of the SHI FT key is deternmined via row 6 of NEWKEY
and the key code for HOVE (OBH) or CLS (OCH) placed in KEYBUF
(OF55H) accordingly.

Address... OF10H

This section of the keyboard decoder processes key nunbers
30H to 57H apart fromthe CAP, F1 to F5, STOP and HOVE keys.
The key nunber is sinply used to | ook up the key code in the
table at 1033H and this is then placed in KEYBUF (OF55H)

Address... OF1FH

This section of the keyboard decoder processes the DEAD key
found on European MSX nmachi nes. On UK machines the key in row
2, columm 5 always generates the pound key code (9CH) shown in
the table at ODA5H. On European machines this table will have
the key code FFH in the sanme | ocations. This key code only
serves as a flag to indicate that the next key pressed, if it

A 56 A

4. ROM BI OS

is a vowel, should be nodified to produce an accented graphics
character.

The state of the SHIFT and CODE keys is deternmined via row 6
of NEVWKEY and one of the follow ng placed in KANAST: 01H=DEAD
02H=DEAD+SHI FT, 03H=DEAD+CODE, 04H=DEAD+SHI FT+CODE.

Address... OF36H

This section of the keyboard decoder processes the CAP key.
The current state of CAPST is inverted and control drops into
t he CHGCAP standard routi ne.

Address... OF3DH

Nane. CHGCAP
Entry..... A=ON/ OFF Switch
Exit...... None

Modi fies.. AF

Standard routine to turn the Caps Lock LED on or off as
determ ned by the contents of register A. 00H=On, NzZ=Off. The
LED is modified using the bit set/reset facility of the PP
Mode Port. As CAPST is not changed this routine does not affect
the characters produced by the keyboard.

Address... OF46H

This section of the keyboard decoder processes the STOP key.
The state of the CTRL key is determined via row 6 of NEWKEY and
the key code for STOP (04H) or CTRL/STOP (03H) produced as
appropriate. If the CTRL/STOP code is produced it is copied to
I NTFLG, for use by the I SCNTC standard routine, and then placed
in KEYBUF (OF55H). If the STOP code is produced it is also
copied to INTFLG but is not placed in KEYBUF, instead only a
click is generated (OF64H). This means that an application
program cannot read the STOP key code via the ROM BI OS st andard
routines.

Address... OF55H

This section of the keyboard decoder places a key code in
KEYBUF and generates an audible click. The correct address in
the keyboard buffer is first taken from PUTPNT and the code
pl aced there. The address is then incremented (105BH). If it
has wrapped round and caught up with GETPNT then the routine
termnates with no further action as the keyboard buffer is
full. O herwi se PUTPNT is updated with the new address.

CLI KSW and CLI KFL are then both checked to deterni ne whether
a click is required. CLIKSWis a general enabl e/disable switch
while CLIKFL is used to prevent nultiple clicks when the
function keys are pressed. Assuning a click is required the Key
Click output is set via the PPl Mdde Port and, after a delay of
50 as, control drops into the CHGSND standard routine.

A 57 A

4. ROM BI OS

Address... OF7AH

Nanme. CHGSND
Entry..... A=0ON/ OFF Swi tch
Exit...... None

Modi fies.. AF

Standard routine to set or reset the Key Cick output via
the PPl Mode Port: OOH=Reset, NZ=Set. This audio output is AC
coupl ed so absolute polarities should not be taken too
seriously.

Address... OF83H

This section of the keyboard decoder processes key nunbers
OOH to 2FH. The state of the SH FT, GRAPH and CODE keys is
determ ned via row 6 of NEWKEY and conbi ned with the key nunber
to forma | ook-up address into the table at ODASH. The key code
is then taken fromthe table. If it is zero the routine
termnates with no further action, if it is FFH contro
transfers to the DEAD key processor (OF1FH). If the code is in
the range 40H to 5FH or 60H to 7FH and the CTRL key is pressed
then the corresponding control code is placed in KEYBUF
(OF55H). If the code is in the range Ol1H to 1FH then a graphic
header code (01H) is first placed in KEYBUF (OF55H) foll owed by
the code with 40H added. If the code is in the range 61H to 7BH
and CAPST indicates that caps lock is on then it is converted
to upper case by subtracting 20H Assum ng that KANAST contai ns
zero, as it always will on UK machines, then the key code is
pl aced in KEYBUF (OF55H) and the routine term nates. On
Eur opean MSX machi nes, with a DEAD key instead of a pound key,
then the key codes corresponding to the vowels a, e, i, 0o, u may be
further nodified into graphics codes.

Address... OFC3H

This section of the keyboard decoder processes the five
function keys. The state of the SHI FT key is exanmi ned via row 6
of NEWKEY and five added to the key nunmber if it is pressed.
Control then transfers to OEC5H to conpl ete processing.

Address... 1021H

This routine searches the table at 1B97H to determ ne which
group of keys the key nunber supplied in register C belongs to.
The associated address is then taken fromthe table and contro
transferred to that section of the keyboard decoder. Note that
the table itself is actually patched into the middle of the
OUTDO standard routine as a result of the nodifications nade to
t he Japanese ROM

Address... 1033H

This table contains the key codes of key nunbers 30H to 57H
other than the special keys CAP, F1 to F5, STOP and HOVE. A

A 58 A

4. ROM BI OS

zero entry in the table neans that no key code will be produced
when that key is pressed:

0O0OH O00OH OOH OOH OOH OOH OOH OOH Row 6
ODH 18H 08H O0OH 09H 1BH O00H OOH Row 7
1CH 1FH 1EH 1DH 7FH 12H OCH 20H Row 8
34H 33H 32H 31H 30H OOH OOH OOH Row 9
2EH 2CH 2DH 39H 38H 37H 36H 35H Row 10

7 6 5 4 3 2 1 0 Colum

Address... 105BH

This routine sinply zeroes KANAST and then transfers contro
to 10C2H.

Address... 1061H

This table contains the graphics characters which repl ace
the vowels a, e, i, 0o, u on European nachi nes.

Address... 10C2H

This routine increnments the keyboard buffer pointer, either
PUTPNT or GETPNT, supplied in register pair HL. If the pointer
then exceeds the end of the keyboard buffer it is wapped back
to the begi nning.

Address... 10CBH

Nane. CHGET
Entry..... None
Exit...... A=Char acter from keyboard

Modi fies.. AF, El

Standard routine to fetch a character fromthe keyboard
buffer. The buffer is first checked to see if already contains
a character (OD6AH). If not the cursor is turned on (09DAH),
the buffer checked repeatedly until a character appears (OD6AH)
and then the cursor turned off (0A27H). The character is taken
fromthe buffer using GETPNT which is then increnented (10C2H)

Address... 10F9H

Nane. CKCNTC
Entry..... None
Exit...... None

Modi fies.. AF, El

Standard routine to check whether the CTRL-STOP or STOP keys
have been pressed. It is used by the BASIC Interpreter inside
processor-intensive statenents, such as "WAIT" and "CI RCLE", to
check for programterm nation. Register pair HL is first zeroed
and then control transferred to the | SCNTC standard routi ne.
When the Interpreter is running register pair HL normally
contains the address of the current character in the BASIC

A 59 A

4. ROM BI OS

programtext. |If ISCNTC is CTRL-STOP term nated this address
will be placed in CLDTXT by the "STOP" statenent handl er
(63E6H) for use by a later "CONT" statement. Zeroing register
pair HL beforehand signals to the "CONT" handl er that

term nation occurred inside a statement and it will issue a
"Can't CONTINUE" error if continuation is attenpted.

Address... 1102H

Nane. VWRTPSG
Entry..... A=Regi ster nunber, E=Data byte
Exit...... None

Modi fies.. El

Standard routine to wite a data byte to any of the sixteen
PSG regi sters. The register selection nunber is witten to the
PSG Address Port and the data byte written to the PSG Data
Wite Port.

Address... 110EH

Nane. RDPSG
Entry..... A=Regi st er nunber
Exit...... A=Dat a byte read from PSG

Modifies.. A

Standard routine to read a data byte fromany of the sixteen
PSG regi sters. The register selection nunber is witten to the
PSG Address Port and the data byte read fromthe PSG Data Read
Port.

Address... 1113H

Nane. BEEP
Entry..... None
Exit...... None

Modifies.. AF, BC, E, E

Standard routine to produce a beep via the PSG Channel Ais
set to produce a tone of 1316Hz then enabled with an anplitude
of seven. After a delay of 40 ms control transfers to the G CIN
standard routine to reinitialize the PSG

Address... 113BH

This routine is used by the interrupt handler to service a
musi ¢ queue. As there are three of these, each feeding a PSG
channel, the queue to be serviced is specified by supplying its
nunmber in register A: 0=VO CAQ 1=VA CBQ and 2=VO CCQ

Each string in a "PLAY" statenent is translated into a
series of data packets by the BASIC Interpreter. These are
pl aced in the appropriate queue followed by an end of data byte
(FFH). The task of dequeuei ng the packets, decoding them and
setting the PSGis left to the interrupt handler. The
Interpreter is thus free to proceed imediately to the next
statenment without having to wait for notes to finish

A 60 A

4. ROM BI OS

The first two bytes of any packet specify its byte count

duration. The three nost significant bits of the first byte

specify the nunber of bytes follow ng the header

The

remai nder of the header specifies the event duration in

20 nms units. This duration count determnes how long it wll
before the next packet is read fromthe queue.

7 6 5 4 3 2 1 0
UAAAAAAAAAAAAAAAAARAARARAARAARAARARRARAARAARAARA ;
3Byte Count 3 Dur ati on (MSB) 3
RAAL
3 Duration (LSB) 3
AAU

Figure 37: Packet Header

any

The packet header may be foll owed by zero or nore bl ocks,

order, containing frequency or anplitude information

7 6 5 4 3 2 1 0
OAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
203 03 x 3 x 3Frequency (MSB)3

IR AL L Tt beh vt AR et A
3 Frequency (LSB) 3
AAAAAAAAAAAAARAARAAAAAAAAAAAAAAAU
Frequency Bl ock

7 6 5 4 3 2 1 0
OAAAAAAAAAAAARAAAAAAAAAAAAAAAAAA
3x313x3x3x3x3x3x3
JOTE AT AT AN AN
3 Envel ope Frequency (MSB) 3

AT LI T b AT Wk dvied A
3 Envel ope Frequency (LSB) 3
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAU
Envel ope Bl ock

UAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
31 3 x 3 x 3Mde® Anplitude/Shape 3
AAAAAAAAAAAAARAARAARAAARAAAAAAAAAAARAAAAAAAU
Ampl i tude Bl ock

Figure 38: Packet Bl ock Types

and

in the packet.

be

in

The routine first |ocates the current duration counter in the
rel evant voice buffer (VCBA, VCBB or VCBC) via the GETVCP

A 61 A

4. ROM BI OS

standard routine and decrenents it. If the counter has reached
zero then the next packet nust be read fromthe queue,
otherwi se the routine tern nates.

The queue nunber is placed in QUEUEN and a byte read from
the queue (11E2H). This is then checked to see if it is the end
of data mark (FFH), if so the queue term nates (11BOH)

Ot herwi se the byte count is placed in register C and the
duration MSB in the relevant voice buffer. The second byte is
read (11E2H) and the duration LSB placed in the rel evant voice
buffer. The byte count is then exanmined, if there are no bytes
to follow the packet header the routine terminates. O herw se
successive bytes are read fromthe queue, and the appropriate
action taken, until the byte count is exhausted.

If a frequency block is found then a second byte is read and
both bytes written to PSG Registers 0 and 1, 2 and 3 or 4 and 5
dependi ng on the queue nunber.

If an anplitude block is found the Anplitude and Mbdde bits
are witten to PSG Registers 8, 9 or 10 depending on the queue
nunber. |If the Mode bit is 1, selecting nodul ated rather than
fixed anplitude, then the byte is also witten to PSG Regi ster
13 to set the envel ope shape.

If an envel ope block is found, or if bit 6 of an anplitude
block is set, then a further two bytes are read fromthe queue
and written to PSG Registers 11 and 12

Address... 11BOH

This routine is used when an end of data mark (FFH) is found
in one of the three nusic queues. An anplitude val ue of zero is
witten to PSG Register 8 9 or 10, dependi ng on the queue
nunber, to shut the channel down. The channel's bit in MJSICF
is then reset and control drops into the STRTMS standard
routine.

Address... 11C4H

Nane. STRTMS
Entry..... None
Exit...... None

Modi fies.. AF, HL

Standard routine used by the "PLAY" statenent handler to
initiate nusic dequeueing by the interrupt handler. MJSICF is
first examned, if any channels are already running the routine
termnates with no action. PLYCNT is then decrenented, if there
are no nore "PLAY" strings queued up the routine term nates.

Ot herwi se the three duration counters, in VCBA, VCBB and VCBC
are set to 0001H, so that the first packet of the new group
will be dequeued at the next interrupt, and MUSICF is set to
O7H to enable all three channels.

A 62 A

4. ROM BI OS

Address... 11E2H

This routine |oads register Awith the current queue nunber,
from QUEUEN, and then reads a byte fromthat queue (14ADH).

Address... 11EEH

Nane. GTSTCK
Entry..... A=Joystick ID (0, 1 or 2)
Exit...... A=Joystick position code

Modi fies.. AF, B, DE, HL, El

Standard routine to read the position of a joystick or the
four cursor keys. If the supplied IDis zero the state of the
cursor keys is read via PPl Port B (1226H) and converted to a
position code using the |ook-up table at 1243H. O herw se
joystick connector 1 or 2 is read (120CH) and the four
direction bits converted to a position code using the | ook-up
table at 1233H. The returned position codes are:

8§ 3 2
\ 3
\3/
7AAAAOAAAA3
/3\
I3\
6 2 4

Address... 120CH

This routine reads the joystick connector specified by the
contents of register A: 0=Connector 1, 1=Connector 2. The
current contents of PSG Register 15 are read in then witten
back with the Joystick Select bit appropriately set. PSG
Regi ster 14 is then read into register A (110CH) and the
routi ne term nates.

Address... 1226H

This routine reads row 8 of the keyboard matri x. The current
contents of PPI Port C are read in then witten back with the
four Keyboard Row Sel ect bits set for row 8 The colum inputs
are then read into register A fromPPl Port B

Address... 1253H

Nane...... GITRI G
Entry..... A=Trigger ID (0, 1, 2, 3 or 4)
Exit...... A=St at us code

Modi fies.. AF, BC, El
Standard routine to check the joystick trigger or space key

status. If the supplied IDis zero row 8 of the keyboard matri x
is read (1226H) and converted to a status code. Ot herw se

A 63 A

4. ROM BI OS

joystick connector 1 or 2 is read (120CH) and converted to a
status code. The selection |IDs are:

0=SPACE KEY

1=JOY 1, TRIGGER A
2=JOY 2, TRIGGER A
3=JOY 1, TRIGGER B
4=JOY 2, TRIGGER B

The value returned is FFH if the relevant trigger is pressed
and zero otherw se

Address... 1273H

Nane. GTPDL
Entry..... A=Paddl e ID (1 to 12)
Exit...... A=Paddl e value (0 to 255)

Modi fies.. AF, BC, DE, E

Standard routine to read the value of any paddle attached to
a joystick connector. Each of the six input |ines (four
direction plus two triggers) per connector can support a paddle
so twelve are possible altogether. The paddl es attached to
joystick connector 1 have entry identifiers 1, 3, 5, 7, 9 and 11.
Those attached to joystick connector 2 have entry identifiers
2, 4, 6, 8, 10 and 12. Each paddle is basically a one-shot pulse
generator, the length of the pulse being controlled by a
variable resistor. A start pulse is issued to the specified
joystick connector via PSG Register 15. A count is then kept of
how many tines PSG Regi ster 14 has to be read until the
rel evant input tinmes out. Each unit increment represents an
approxi mate period of 12 as on an MSX nachine with one wait
state.

Address... 12ACH

Nane. GTPAD
Entry..... A=Function code (0 to 7)
Exit...... A=St atus or val ue

Modi fies.. AF, BC, DE, HL, E

Standard routine to access a touchpad attached to either of
the joystick connectors. Avail able functions codes for joystick
connector 1 are:

O=Return Activity Status
1=Return "X" coordinate
2=Return "Y" coordinate
3=Return Switch Status

Function codes 4 to 7 have the sane effect with respect to
joystick connector 2. The Activity Status function returns FFH
if the Touchpad is being touched and zero otherwi se. The Switch
Status function returns FFH if the switch is being pressed and
zero otherwi se. The two coordinate request functions return the
coordi nates of the |ast |ocation touched. These coordinates are

A 64 A

4. ROM BI OS

actually stored in the Wrkspace Area variabl es PADX and PADY
when a call with function code O or 4 detects activity. Note
that these variables are shared by both joystick connectors.

Address... 1384H

Nane...... STMOTR
Entry..... A=Mbt or ON/ OFF code
Exit...... None

Modi fies.. AF

Standard routine to turn the cassette notor relay on or off
PPI Port C. 0O0OH=OFf, O01H=On, FFH=Reverse current state.

Address... 1398H

Nane. NM
Entry..... None
Exit...... None

Modi fi es.. None

Standard routine to process a Z80 Non Maskabl e Interrupt,

sinply returns on a standard MSX nmachi ne.

Address... 139DH

Nane. I NI FNK
Entry..... None
Exit...... None

Modi fies.. BC, DE, HL

Standard routine to initialize the ten function key strings

to their power-up values. The one hundred and sixty bytes of
data commencing at 13A9H are copied to the FNKSTR buffer in the
Wor kspace Area.

Address... 13A9H

This area contains the power-up strings for the ten function

keys. Each string is sixteen characters |long, unused positions
contain zeroes:

F1 to F5 F6 to F10

col or color 15,4,4 CR
aut o cl oad"

goto cont CR

list list. CR UP UP

run CR run CLS CR

Address... 1449H

Nane. RDVDP
Entry..... None
Exit...... A=VDP Status Register contents

Modifies.. A

Standard routine to input the contents of the VDP Status

Regi ster by reading the Command Port. Note that reading the VDP

A 65 A

4. ROM BI OS

Status Register will clear the associated flags and may affect
the interrupt handler.

Address... 144CH

Nare. RSLREG
Entry..... None
Exit...... A=Primary Sl ot Register contents

Modifies.. A

Standard routine to input the contents of the Primary sl ot
Regi ster by reading PPl Port A

Address... 144FH

Nane. WSLREG
Entry..... A=Val ue to wite
Exit...... None

Modi fi es.. None

Standard routine to set the Primary Slot Register by witing
to PPl Port A

Address... 1452H

Nane. SNSVAT
Entry..... A=Keyboard row nunber
Exit...... A=Col unm data of keyboard row

Modi fies.. AF, C E

Standard routine to read a conplete row of the keyboard
matrix. PPl Port Cis read in then witten back with the row
nunber occupying the four Keyboard Row Select bits. PPl Port B
is then read into register Ato return the eight colum inputs.
The four mscellaneous control outputs of PPl Port C are
unaffected by this routine.

Address... 145FH

Nane. | SFLI O
Entry..... None
Exit...... Flag NZ if file 1/O active

Modi fies.. AF

Standard routine to check whether the BASIC Interpreter is
currently directing its input or output via an I/0O buffer. This
is determ ned by exam ning PTRFIL. It is normally zero but wll
contain a buffer FCB (File Control Block) address while
statements such as "PRI NT#1", "I NPUT#1", etc. are being
executed by the Interpreter

Address... 146AH

Nane. DCOVPR
Entry..... HL, DE
Exit...... Flag NCif HL>DE, Flag Z if HL=DE, Flag Cif HL<DE

Modi fies.. AF

Standard routine used by the BASIC Interpreter to check the

A 66 A

4. ROM BI OS

relative values of register pairs HL and DE

Address... 1470H

Nane. GETVCP
Entry..... A=Voi ce nunber (0, 1, 2)
Exit...... HL=Addr ess in voice buffer

Modi fies.. AF, HL

Standard routine to return the address of byte 2 in the
specified voice buffer (VCBA, VCBB or VCBC)

Address... 1474H

Nane. GETVC2
Entry..... L=Byt e nunber (0 to 36)
Exit...... HL=Address in voice buffer

Modi fies.. AF, HL

Standard routine to return the address of any byte in the
voi ce buffer (VCBA, VCBB or VCBC) specified by the voice nunber
in VO CEN

Address... 148AH

Nane. PHYDI O
Entry..... None
Exit...... None

Modi fi es.. None

Standard routine for use by Disk BASIC, sinply returns on
standard MSX nmechi nes.

Address... 148EH

Nane. FORVAT
Entry..... None
Exit...... None

Standard routine for use by Disk BASIC, sinply returns on
standard MSX nmchi nes.

Address... 1492H

Nane. PUTQ
Entry..... A=Queue nunber, E=Data byte
Exit...... Flag Z if queue ful

Modi fies.. AF, BC, HL

Standard routine to place a data byte in one of the three
musi ¢ queues. The queue's get and put positions are first taken
from QUETAB (14FAH). The put position is tenporarily
i ncrenmented and conpared with the get position, if they are
equal the routine term nates as the queue is full. O herw se
the queue's address is taken from QUETAB and the put position
added to it. The data byte is placed at this location in the
queue, the put position is incremented and the routine
term nates. Note that the music queues are circular, if the get

A 67 A

4. ROM BI OS

or put pointers reach the last position in the queue they wap
around back to the start.

Address... 14ADH

This routine is used by the interrupt handler to read a byte

fromone of the three music queues. The queue nunber is
supplied in register A the data byte is returned in register A
and the routine returns Flag Z if the queue is enpty. The
queue's get and put positions are first taken from QUETAB
(14FAH). If the putback flag is active then the data byte is
taken from QUEBAK and the routine termnates (14D1H), this
facility is unused in the current versions of the MSX ROM The
put position is then conpared with the get position, if they
are equal the routine term nates as the queue is enpty.
Ot herwi se the queue's address is taken from QUETAB and t he get
position added to it. The data byte is read fromthis |ocation
in the queue, the get position is incremented and the routine
term nat es.

Address... 14DAH

This routine is used by the G CIN standard routine to
initialize a queue's control block in QUETAB. The control bl ock
is first located in QUETAB (1504H) and the put, get and putback
bytes zeroed. The size byte is set fromregister B and the
gueue address fromregister pair DE

Address... 14EBH

Nane...... LFTQ
Entry..... A=Queue nunber
Exit...... HL=Free space | eft in queue

Modi fies.. AF, BC, HL

Standard routine to return the nunber of free bytes left in
a nmusi c queue. The queue's get and put positions are taken from
QUETAB (14FAH) and the free space determ ned by subtracting put
from get.

Address... 14FAH

This routine returns a queue's control paranmeters from
QUETAB, the queue nunber is supplied in register A The contro
block is first located in QUETAB (1504H), the put position is
then placed in register B, the get position in register C and
the putback flag in register A

Address... 1504H

This routine |locates a queue's control block in QUETAB. The
queue nunber is supplied in register A and the control block
address returned in register pair HL. The queue nunber is
sinmply nmultiplied by six, as there are six bytes per block, and
added to the address of QUETAB as held in QUEUES

A 68 A

4. ROM BI OS

Address... 1510H

Nane. GRPPRT
Entry..... A=Char act er
Exit...... None

Modi fies.. El

Standard routine to display a character on the screen in
ei ther Graphics Mbde or Multicolour Mdde, it is functionally
equi val ent to the CHPUT standard routi ne.

The CNVCHR standard routine is first used to check for a
graphic character, if the character is a header code (01H) then
the routine termnates with no action. If the character is a
converted graphic one then the control code decoding section is
ski pped. Otherwi se the character is checked to see if it is a
control code. Only the CR code (ODH) is recognized (157EH), all
ot her characters snaller than 20H are ignored.

Assum ng the character is displayable its eight byte pixe
pattern is copied fromthe ROM character set into the PATWRK
buffer (0752H) and FORCLR copied to ATRBYT to set its colour.
The current graphics coordinates are then taken from GRPACX and
GRPACY and used to set the current pixel physical address via
the SCALXY and MAPXYC standard routi nes.

The eight byte pattern in PATWRK is processed a byte at a
time. At the start of each byte the current pixel physica
address is obtained via the FETCHC standard routine and saved.
The eight bits are then exanmined in turn. If the bit is a 1 the
associ ated pixel is set by the SETC standard routine, if it is
a 0 no action is taken. After each bit the current pixe
physi cal address is moved right (16ACH). When the byte is
finished, or the right hand edge of the screen is reached, the
initial current pixel physical address is restored and noved
down one position by the TDOANC standard routi ne.

VWen the pattern is conplete, or the bottom of the screen
has been reached, GRPACX is updated. In Graphics Mdde its val ue
is increased by eight, in Milticolour Mde by thirty-two. If
GRPACX t hen exceeds 255, the right hand edge of the screen, a
CR operation is performed (157EH)

Address... 157EH

This routine performs the CR operation for the GRPPRT
standard routine, this code functions as a conbi ned CR, LF.
GRPACX is zeroed and eight or thirty-two, depending on the
screen node, added to GRPACY. If GRPACY then exceeds 191, the
bottom of the screen, it is set to zero

GRPACX and GRPACY may be nmmni pul ated directly by an

application programto conpensate for the limted nunber of
control functions avail able.

A 69 A

4. ROM BI OS

Address... 1599B

Nane. SCALXY
Entry..... BC=X coordi nate, DE=Y coordi nate
Exit...... Flag NC if clipped

Modi fies.. AF

Standard routine to clip a pair of graphics coordinates if
necessary. The BASIC Interpreter can produce coordinates in the
range -32768 to +32767 even though this far exceeds the actua
screen size. This routine nodifies excessive coordi nate val ues
to fit within the physically realizable range. If the X
coordinate is greater than 255 it is set to 255, if the Y
coordinate is greater than 191 it is set to 191. If either
coordinate is negative (greater than 7FFFH) it is set to zero.
Finally if the screen is in Milticol our Mode both coordinates
are divided by four as required by the MAPXYC standard routine.

Address... 15D9H

This routine is used to check the current screen node, it
returns Flag Z if the screen is in Gaphics Mde.

Address... 15DFH

Nane. MAPXYC
Entry..... BC=X coordi nate, DE=Y coordinate
Exit...... None

Modifies.. AF, D, HL

Standard routine to convert a graphics coordinate pair into
the current pixel physical address. The location in the
Character Pattern Table of the byte containing the pixel is
placed in CLOC. The bit mask identifying the pixel within that
byte is placed in CMASK. Slightly different conversion nethods
are used for Graphics Mbode and Ml ticol our Mode, equival ent
prograns in BASIC are:

Graphi cs Mode

10 I NPUT" X, Y Coordi nates"; X, Y

20 A=(Y\8)*256+(Y AND 7)+(X AND &HF8)
30 PRI NT" ADDR="; HEX$(Base(12) +A);"H ";
40 RESTORE 100

50 FOR N=0 TO (X AND 7): READ Mb: NEXT N
60 PRI NT" MASK="; M5

70 GOTO 10

100 DATA 10000000

110 DATA 01000000

120 DATA 00100000

130 DATA 00010000

140 DATA 00001000

150 DATA 00000100

160 DATA 00000010

170 DATA 00000001

A 70 A

4. ROM BI OS

Mul ti col our Mode

10 INPUT" X, Y Coordi nates"; X, Y

20 X=X\ 4:Y-Y\4

30 A=(Y\8)*256+(Y AND 7)+(X*4 AND &HF8)

40 PRI NT" ADDR="; HEX$(BASE(17) +A);"H ";

50 IF X MOD 2=0 THEN MS="11110000" ELSE Ms="00001111"
60 PRI NT" MASK="; M5

70 GOTO 10

The al | owabl e i nput range for both programs is X=0 to 255 and
Y=0 to 191. The data statenents in the G aphics Mde program
correspond to the eight byte mask table commencing at 160BH in
the MSX ROM Line 20 in the Milticol our Mode program actually
corresponds to the division by four in the SCALXY standard
routine. It is included to nmake the coordi nate system
consi stent for both prograns.

Address... 1639H

Nane...... FETCHC
Entry..... None
Exit...... A=CMASK, HL=CLOC

Modifies.. A HL

Standard routine to return the current pixel physical
address, register pair HL is |loaded from CLOC and register A
from CMASK.

Address... 1640H

Nane. STOREC
Entry..... A=CVASK, HL=CLOC
Exit...... None

Modi fies.. None

Standard routine to set the current pixel physical address,
register pair HL is copied to CLOC and register Ais copied to
CMASK.

Address... 1647H

Nane. READC
Entry..... None
Exit...... A=Col our code of current pixel

Modi fies.. AF, El

Standard routine to return the colour of the current pixel.
The VRAM physical address is first obtained via the FETCHC
standard routine. If the screen is in G aphics Mde the byte
pointed to by CLOC is read fromthe Character Pattern Table via
the RDVRM standard routine. The required bit is then isolated
by CMASK and used to select either the upper or |lower four bits
of the corresponding entry in the Col our Table.

If the screen is in Milticolour Mbdde the byte pointed to by
CLOC is read fromthe Character Pattern Table via the RDVRM

A71 A

4. ROM BI OS

standard routine. CMASK is then used to select either the upper
or lower four bits of this byte. The value returned in either
case will be a normal VDP col our code fromzero to fifteen.

Address... 1676H

Nane. SETATR
Entry..... A=Col our code
Exit...... Flag Cif illegal code

Modi fies.. Flags

Standard routine to set the graphics ink colour used by the
SETC and NSETCX standard routines. The col our code, from zero
to fifteen, is sinply placed in ATRBYT.

Address... 167EH

Nane. SETC
Entry..... None
Exit...... None

Modi fies.. AF, El

Standard routine to set the current pixel to any colour, the
col our code is taken from ATRBYT. The pixel's VRAM physi ca
address is first obtained via the FETCHC standard routine. In
Graphi cs Mode both the Character Pattern Table and Col our Tabl e
are then nodified (186CH)

In Multicol our Mbde the byte pointed to by CLOC is read from
the Character Pattern Table by the RDVRM standard routine. The
contents of ATRBYT are then placed in the upper or |ower four
bits, as determ ned by CMASK, and the byte witten back via the
WRTVRM st andard routine

Address... 16ACH

This routine nmoves the current pixel physical address one
position right. If the right hand edge of the screen is
exceeded it returns with Flag C and the physical address is
unchanged. In G aphics Mode CMASK is first shifted one bit
right, if the pixel still remains within the byte the routine
termnates. If CLOC is at the rightnost character cell (LSB=F8H
to FFH) then the routine termnates with Flag C (175AH)

O herwise CMASK is set to 80H, the leftnost pixel, and 0008H
added to CLCC.

In Multicolour Mbde control transfers to a separate routine
(1779H) .

Address... 16C5H

Nane. Rl GHTC
Entry..... None
Exit...... None

Modi fies.. AF

Standard routine to nove the current pixel physical address

A 72 A

4. ROM BI OS

one position right. In Gaphics Mode CMASK is first shifted one
bit right, if the pixel still remains within the byte the
routine term nates. Otherwise CMASK is set to 80H, the | eftnost
pi xel , and 0008H added to CLOC. Note that incorrect addresses
will be produced if the right hand edge of the screen is
exceeded.

In Multicol our Mbde control transfers to a separate routine
(178BH).

Address... 16D8H

This routine nmoves the current pixel physical address one
position left. If the left hand edge of the screen is exceeded
it returns Flag C and the physical address is unchanged. In
Graphics Mode CMASK is first shifted one bit left, if the pixel
still remains within the byte the routine ternmnates. If CLOC
is at the leftnost character cell (LSB=00H to O07H) then the
routine termnates with Flag C (175AH). Otherwi se CMASK is set
to 01H, the rightnmost pixel, and 0008H subtracted from CLCC.

In Multicol our Mbde control transfers to a separate routine
(179CH).

Address... 16EEH

Nane. LEFTC
Entry..... None
Exit...... None

Modi fies.. AF

Standard routine to nove the current pixel physical address
one position left. In Gaphics Mbode CMASK is first shifted one
bit left, if the pixel still remains within the byte the
routine terminates. Otherwise CMASK is set to O1H, the |eftnost
pi xel , and 0008H subtracted from CLOC. Note that incorrect
addresses will be produced if the left hand edge of the screen
i s exceeded.

In Multicol our Mbde control transfers to a separate routine
(17ACH) .

Address... 170AH

Name. TDOWNC
Entry..... None
Exit...... Flag Cif off screen

Modi fies.. AF

Standard routine to nove the current pixel physical address
one position down. If the bottom edge of the screen is exceeded
it returns Flag C and the physical address is unchanged. In
Graphics Mode CLOC is first increnented, if it still renmins
within an eight byte boundary the routine termnates. If CLOC
was in the bottom character row (CLOC>=1700H) then the routine
termnates with Flag C (1759H). Ot herwi se O0F8H is added to

A 73 A

4. ROM BI OS

CLQOC.

In Multicol our Mbde control transfers to a separate routine
(17C6H) .

Address... 172AH

Nane. DOWNC
Entry..... None
Exit...... None

Modi fies.. AF

Standard routine to nove the current pixel physical address
one position down. In Gaphics Mode CLOC is first increnented,

if it still remains within an eight byte boundary the routine
term nates. Otherwi se OOF8H is added to CLOC. Note that
i ncorrect addresses will be produced if the bottom edge of the

screen i s exceeded.

In Multicol our Mbde control transfers to a separate routine
(17DCH) .

Address... 173CH

Nane. TUPC
Entry..... None
Exit...... Flag Cif off screen

Modi fies.. AF

Standard routine to nove the current pixel physical address
one position up. If the top edge of the screen is exceeded it
returns with Flag C and the physical address is unchanged. In
Graphics Mode CLOC is first decrenented, if it still renmins
within an eight byte boundary the routine termnates. If CLOC
was in the top character row (CLOC<0100H) then the routine
termnates with Flag C. Ot herwi se O0F8H is subtracted from
CLCC.

In Multicol our Mbde control transfers to a separate routine
(17E3H).

Address... 175DH

Nane. UPC
Entry..... None
Exit...... None

Modi fies.. AF

Standard routine to nove the current pixel physical address
one position up. In Gaphics Mode CLOC is first decremented, if

it still remains within an eight byte boundary the routine
term nates. Otherwi se O0F8H is subtracted from CLOC. Note that
incorrect addresses will be produced if the top edge of the

screen i s exceeded.

In Multicol our Mbde control transfers to a separate routine
(17F8H) .

A 74 A

4. ROM BI OS

Address... 1779H

This is the Multicol our Mode version of the routine at
16ACH. It is identical to the G aphics Mde version except that
CMASK is shifted four bit positions right and becomes FOH if a
cell boundary is crossed.

Address... 178BH

This is the Multicol our Mode version of the R GHTC standard
routine. It is identical to the G aphics Mde version except
that CMASK is shifted four bit positions right and becones FOH
if a cell boundary is crossed.

Address... 179CH

This is the Multicolour Mdde version of the routine at
16D8H. It is identical to the G aphics Mde version except that
CMASK is shifted four bit positions left and becones OFH if a
cell boundary is crossed.

Address... 17ACH

This is the Miulticol our Mbde version of the LEFTC standard
routine. It is identical to the G aphics Mde version except
that CMASK is shifted four bit positions |eft and becones OFH
if a cell boundary is crossed.

Address... 17C6H

This is the Miulticol our Mbde version of the TDOANC st andard
routine. It is identical to the G aphics Mde version except
that the bottom boundary address is 0500H i nstead of 1700H
There is a bug in this routine which will cause it to behave
unpredictably if M.TCGP, the Character Pattern Tabl e base
address, is changed fromits normal val ue of zero. There should
be an EX DE, HL instruction inserted at address 17CEH.

If the Character Pattern Table base is increased the routine
will think it has reached the bottom of the screen when it
actually has not. This routine is used by the "PAINT" statenent
so the followi ng denpnstrates the fault:

10 BASE(17) =&H1000

20 SCREEN 3

30 PSET(200, 0)

40 DRAW D180L100U180R100"
50 PAI NT(150, 90)

60 GOTO 60

Address... 17DCH
This is the Multicol our Mbde version of the DOMC st andard

routine, it is identical to the G aphics Mde version

A 75 A

4. ROM BI OS

Address... 17E3H

This is the Multicol our Mdde version of the TUPC standard
routine. It is identical to the G aphics Mde version except
that is has a bug as above, this tine there should be an EX
DE, HL instruction at address 17EBH.

If the Character Pattern Table base address is increased the
routine will think it is within the table when it has actually
exceeded the top edge of the screen. This may be denpnstrated
by renoving the "R100" part of Line 40 in the previous program

Address... 17F8H

This is the Multicolour Mode version of the UPC standard
routine, it is identical to the G aphics Mde version

Address... 1809H

Nane. NSETCX
Entry..... HL=Pi xel fill count
Exit...... None

Modi fies.. AF, BC, DE, HL, E

Standard routine to set the colour of nultiple pixels
hori zontally rightwards fromthe current pixel physica
address. Although its function can be duplicated by the SETC
and RI GHTC standard routines this would result in significantly
sl ower operation. The supplied pixel count should be chosen so
that the right-hand edge of the screen is not passed as this
wi || produce anonmal ous behavi our. The current pixel physica
address i s unchanged by this routine.

In Graphics Mode CMASK is first exanmined to determne the
nunber of pixels to the right within the current character
cell. Assuming the fill count is |large enough these are then
set (186CH). The remaining fill count is divided by eight to
determ ne the nunber of whole character cells. Successive bytes
in the Character Pattern Table are then zeroed and the
correspondi ng bytes in the Colour Table set from ATRBYT to fil
these whole cells. The remaining fill count is then converted
to a bit mask, using the seven byte table at 185DH, and these
pi xel s are set (186CH)

In Multicol our Mbde control transfers to a separate routine
(18BBH) .

Address... 186CH

This routine sets up to eight pixels within a cell to a
speci fied colour in Gaphics Mdde. ATRBYT contains the col our
code, register pair HL the address of the relevant byte in the
Character Pattern Table and register A a bit mask, 11100000 for
exanpl e, where every 1 specifies a bit to be set.

A 76 A

4. ROM BI OS

I f ATRBYT matches the existing 1 pixel colour in the
correspondi ng Col our Table byte then each specified bit is set
to 1 in the Character Pattern Table byte. If ATRBYT matches the
existing O pixel colour in the corresponding Col our Table byte
then each specified bit is set to 0 in the Character Pattern
Tabl e byte.

I f ATRBYT does not natch either of the existing colours in
the Col our Table Byte then normally each specified bit is set
to 1 in the Character Pattern Table byte and the 1 pixel colour
changed in the Col our Table byte. However if this would result
inall bits being set to 1 in the Character Pattern Table byte
then each specified bit is set to 0 and the 0 pixel col our
changed in the Col our Table byte.

Address... 18BBH

This is the Multicol our Mode version of the NSETCX standard
routi ne. The SETC and RI GHTC standard routines are called unti
the fill count is exhausted. Speed of operation is not so
inportant in Milticolour Mdde because of the | ower screen
resolution and the consequent reduction in the nunber of
operations required.

Address... 18C7H

Nane. GTASPC
Entry..... None
Exit...... DE=ASPCT1, HL=ASPCT2

Modi fies.. DE, HL

Standard routine to return the "ClRCLE" statenent default
aspect ratios.

Address... 18CFH

Nane. PNTI N
Entry..... A=Boundary colour (0 to 15)
Exit...... Flag Cif illegal colour

Modi fies.. AF

Standard routine to set the boundary colour for the "PAI NT"
statenment. In Multicolour Mdde the supplied colour code is
pl aced in BDRATR. I n Graphics Mode BDRATR i s copied from ATRBYT
as it is not possible to have separate paint and boundary
col ours.

Address... 18E4H

Nane. SCANR
Entry..... B=Fill switch, DE=Skip count
Exit...... DE=Ski p remmi nder, HL=Pi xel count

Modi fies.. AF, BC, DE, HL, E

Standard routine used by the "PAINT" statenment handler to
search rightwards fromthe current pixel physical address
until a colour code equal to BDRATR is found or the edge of the

A77 A

4. ROM BI OS

screen is reached. The term nating position becones the current
pi xel physical address and the initial position is returned in
CSAVEA and CSAVEM The size of the traversed region is returned
in register pair HL and FILNAM+1. The traversed region is
normally filled in but this can be inhibited, in Gaphics Mde
only, by using an entry paraneter of zero in register B. The
skip count in register pair DE deternines the maxi mum nunber

of pixels of the required colour that nmay be ignored fromthe
initial starting position. This facility is used by the "PAINT"
statement handler to search for gaps in a horizontal boundary
bl ocking its upward progress.

Address... 197AH

Name. SCANL
Entry..... None
Exit...... HL=Pi xel count

Modi fies.. AF, BC, DE, HL, E

Standard routine to search leftwards fromthe current pixe
physi cal address until a col our code equal to BDRATR is found
or the edge of the screen is reached. The ternm nating position
becones the current pixel physical address and the size of the
traversed region is returned in register pair HL. The traversed
region is always filled in.

Address... 19C7H

This routine is used by the SCANL and SCANR st andard
routines to check the current pixel's colour against the
boundary col our in BDRATR

Address... 19DDH

Nane. TAPOOF
Entry..... None
Exit...... None

Modi fies.. El

Standard routine to stop the cassette notor after data has
been witten to the cassette. After a delay of 550 ns, on MSX
machi nes with one wait state, control drops into the TAPI OF
standard routi ne.

Address... 19E9H

Nane. TAPI OF
Entry..... None
Exit...... None

Modi fies.. El

Standard routine to stop the cassette notor after data has
been read fromthe cassette. The notor relay is opened via the
PPl Mode Port. Note that interrupts, which nust be disabled
during cassette data transfers for tinmng reasons, are enabl ed
as this routine term nates.

A 78 A

4. ROM BI OS

Address... 19F1H

Nane. TAPOON
Entry..... A=Header |l ength switch
Exit...... Flag Cif CTRL-STOP term nation

Modi fies.. AF, BC, HL, D

Standard routine to turn the cassette motor on, wait 550 ns
for the tape to conme up to speed and then wite a header to the
cassette. A header is a burst of H cycles witten in front of
every data block so the baud rate can be determ ned when the
data is read back.

The length of the header is determ ned by the contents of
regi ster A: 00H=Short header, NZ=Long header. The BASIC
cassette statenents "SAVE", "CSAVE' and "BSAVE' all generate a
|l ong header at the start of the file, in front of the
identification block, and thereafter use short headers between
data bl ocks. The nunber of cycles in the header is also
nodi fied by the current baud rate so as to keep its duration
const ant:

1200 Baud SHORT ... 3840 Cycles ... 1.5 Seconds
1200 Baud LONG ... 15360 Cycles ... 6.1 Seconds
2400 Baud SHORT ... 7936 Cycles ... 1.6 Seconds
2400 Baud LONG ... 31744 Cycles ... 6.3 Seconds

After the notor has been turned on and the delay has expired
the contents of HEADER are nultiplied by two hundred and fifty-
six and, if register Ais non-zero, by a further factor of four
to produce the cycle count. H cycles are then generated
(1A4DH) until the count is exhausted whereupon contro
transfers to the BREAKX standard routine. Because the CTRL-STOP
key is only exanined at termination it is inpossible to break
out part way through this routine.

Address... 1A19H

Nane. TAPOUT
Entry..... A=Dat a byte
Exit...... Flag Cif CTRL-STOP term nation

Modi fies.. AF, B, HL

Standard routine to wite a single byte of data to the
cassette. The MSX ROM uses a software driven FSK (Frequency
Shift Keyed) nmethod for storing information on the cassette. At
the 1200 baud rate this is identical to the Kansas City
St andard used by the BBC for the distribution of BASI CODE
programns.

At 1200 baud each 0 bit is witten as one conplete 1200 Hz LO
cycle and each 1 bit as two conplete 2400 Hz H cycles. The data
rate is thus constant as 0 and 1 bits have the sane duration
When the 2400 baud rate is selected the two frequenci es change
to 2400 Hz and 4800 Hz but the format is otherw se unchanged.

A 79 A

4. ROM BI OS

A byte of data is witten with a O start bit (1A50H), eight
data bits with the least significant bit first, and two 1 stop
bits (1A40H). At the 1200 baud rate a single byte will have a
nom nal duration of 11 x 833 as = 9.2 nms. After the stop bits
have been written control transfers to the BREAKX standard
routine to check the CTRL- STOP key. The byte 43H i s shown bel ow
as it would be witten to cassette:

UA:UeUeUe U, UA: UA: UA: UA:UeUe UA¢Ug Ug Ug U,
3 333333333 3 3 3 3 3 3 3 33333 3 333333333

3 3 3 3 3 3 3 3 3 3 3 3

START 0O 1 2 3 4 5 6 7 STOP STOP

1
0

two "short" transitions (as STOP BITS)
one "long" transition (as START BIT)

Fi gure 39: Cassette Data Byte

It is inmportant not to | eave too long an interval between bytes
when witing data as this will increase the error rate. An
inter-byte gap of 80 as, for exanple, produces a read failure
rate of approxinmately twelve percent. If a substantial anount
of processing is required between each byte then buffering
shoul d be used to lunp data into headered bl ocks. The BASIC
"SAVE" format is of this type

Address... 1A39H

This routine wites a single LOcycle with a |l ength of
approximately 816 as to the cassette. The length of each half of
the cycle is taken from LOWand control transfers to the
general cycle generator (1A50H)

Address... 1A40H

This routine wites two H cycles to the cassette. The first
cycle is generated (1A4DH) followed by a 17 as delay and then
the second cycle (1A4DH)

Address... 1A4DH

This routine wites a single H cycle with a I ength of
approximately 396 as to the cassette. The length of each half of
the cycle is taken fromH GH and control drops into the genera
cycl e generator

Address... 1A50H

This routine wites a single cycle to the cassette. The
Il ength of the cycle's first half is supplied in register L and
its second half in register H The first length is counted down
and then the Cas Qut bit set via the PPl Mdde Port. The second
I ength is counted down and the Cas Qut bit reset.

A 80 A

4. ROM BI OS

On all MsSX machines the Z80 runs at a clock frequency of
3.579545 MHz (280 ns) with one wait state during the ML cycle. As
this routine counts every 16T states each unit increment in the
| ength count represents a period of 4.47 as. There is also a
fixed overhead of 20.7 as associated with the routine whatever
the | ength count.

Address... 1A63H

Nane. TAPI ON
Entry..... None
Exit...... Flag Cif CTRL-STOP term nation

Modi fies.. AF, BC, DE, HL, DI

Standard routine to turn the cassette notor on, read the
cassette until a header is found and then deternine the baud
rate. Successive cycles are read fromthe cassette and the
| ength of each one neasured (1B34H). When 1,111 cycl es have
been found with |l ess than 35 as variation in their lengths a
header has been | ocated.

The next 256 cycles are then read (1B34H) and averaged to
determ ne the cassette H cycle length. This figure is
multiplied by 1.5 and placed in LOALI M where it defines the
m ni mum acceptable length of a 0 start bit. The H cycle length
is placed in WNWD and will be used to discrinmnate between LO
and H cycles.

Address... 1ABCH

Nane. TAPI N
Entry..... None
Exit...... A=Byte read, Flag Cif CTRL-STOP or |I/O error

Modi fies.. AF, BC, DE, L

Standard routine to read a byte of data fromthe cassette.
The cassette is first read continuously until a start bit is
found. This is done by locating a negative transition
measuring the follow ng cycle |l ength (1B1FH) and conparing this
to see if it is greater than LOALIM

Each of the eight data bits is then read by counting the
nunber of transitions within a fixed period of tinme (1BO3H). If
zero or one transitions are found it is a O bit, if two or
three are found it is a 1 bit. If nore than three transitions
are found the routine termnates with Flag C as this is
presuned to be a hardware error of some sort. After the val ue
of each bit has been determ ned a further one or two
transitions are read (1B23H) to retain synchronization. Wth an
odd transition count one nmore will be read, with an even
transition count two nore.

Address... 1BO3H

This routine is used by the TAPIN standard routine to count
the nunber of cassette transitions within a fixed period of

A 81 A

4. ROM BI OS

time. The wi ndow duration is contained in WNWD and is
approximately 1.5 tines the length of a H cycle as shown
bel ow.

UAA wi ndow AA¢

3 3

Ag UAAAAAAA;

3 3 3 LO Cycle
3 3 3

AAAAAAAAU AA

AC Uﬂ" AN ; Uﬂ" AN ;
3 3 3 3 3 H Cycles
3 3 3 3 3

ARAAL ARAAL AR

Fi gure 40: Cassette W ndow

The Cas Input bit is continuously sanpled via PSG Regi ster 14
and conpared with the previous reading held in register E. Each
time a change of state is found register Cis increnented. The
sanpling rate is once every 17.3 as so the value in WNWD
whi ch was determ ned by the TAPION standard routine with a
count rate of 11.45 as, is effectively nultiplied one and a half
times.

Address... 1B1FH

This routine nmeasures the tine to the next cassette input
transition. The Cassette Input bit is continuously sanpled via
PSG Regi ster 14 until it changes fromthe state supplied in
register E. The state flag is then inverted and the duration
count returned in register C, each unit increnent represents a
period of 11.45 a&s.

Address... 1B34H

This routine nmeasures the length of a conplete cassette
cycle fromnegative transition to negative transition. The
Cassette Input bit is sanpled via PSG Register 14 until it goes
to zero. The transition flag in register Eis set to zero and
the tine to the positive transition nmeasured (1B23H). The tine
to the negative transition is then neasured (1B25H) and the
total returned in register C

Address... 1B45H

Nane. OUTDO
Entry..... A=Char acter to output
Exit...... None

Modi fies.. El

Standard routine used by the BASIC Interpreter to output a
character to the current device. The I SFLIO standard routine is

A 82 A

4. ROM BI OS

first used to check whether output is currently directed to an
I/O buffer, if so control transfers to the sequential output
driver (6C48H) via the CALBAS standard routine. If PRTFLG is
zero control transfers to the CHPUT standard routine to out put
the character to the screen. Assuning the printer is active
RAWPRT is checked. If this is non-zero the character is passed
directly to the printer (1BABH), otherw se control drops into
the OUTDLP standard routine.

Address... 1B63H

Nane. OQUTDLP
Entry..... A=Char acter to output
Exit...... None

Modi fies.. El

Standard routine to output a character to the printer. If
the character is a TAB code (09H) spaces are issued to the
OUTDLP standard routine until LPTPOS is a nultiple of eight
(0, 8, 16 etc.). If the character is a CR code (ODH) LPTPCS is
zeroed if it is any other control code LPTPOS is unaffected,
if it is a displayable character LPTPOS is increnented.

If NTMSXP is zero, neaning an MSX-specific printer is
connected, the character is passed directly to the printer
(1BABH). Assuning a normal printer is connected the CNVCHR
standard routine is used to check for graphic characters. |If
the character is a header code (01H) the routine term nates
with no action. If it is a converted graphic character it is
repl aced by a space, all other characters are passed to the
printer (1BACH).

Address... 1B97H

This twenty byte table is used by the keyboard decoder to
find the correct routine for a given key nunber:

KEY NUMBER TO FUNCTI ON
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
OOH to 2FH OF83H Rows O to 5

30H to 32H OF10H SHIFT, CTRL, GRAPH
33H OF36H CAP

34H OF10H COCDE

35H to 39H OFC3H F1 to F5

3AH to 3BH OF10H ESC, TAB

3CH OF46H STOP
3DH to 40H OF10H BS, CR, SEL, SPACE
41H OF0O6H HOME

42H to 57H OF10H INS, DEL, CURSOR

Address... 1BABH
This routine is used by the OUTDLP standard routine to pass

a character to the printer. It is sent via the LPTOUT standard
routine, if this returns Flag C control transfers to the

A 83 A

4. ROM BI OS

"Device I/O error"” generator (73B2H) via the CALBAS standard
routine.

Address... 1BBFH

The following 2 KB contains the power-up character set. The
first eight bytes contain the pattern for character code OOH
the second eight bytes the pattern for character code 01H and
so on to character code FFH

Address... 23BFH

Nane. PI NLI N
Entry..... None
Exit...... HL=Start of text, Flag Cif CTRL-STOP term nation

Modi fies.. AF, BC, DE, HL, E

Standard routine used by the BASIC Interpreter Miinloop to
collect a logical line of text fromthe console. Contro
transfers to the INLIN standard routine just after the point
where the previous |ine has been cut (23EOH)

Address... 23CCH

Nane. Q NLI N
Entry..... None
Exit...... HL=Start of text, Flag Cif CTRL-STOP term nation

Modi fies.. AF, BC, DE, HL, E

Standard routine used by the "I NPUT" statement handler to
collect a logical line of text fromthe console. The characters
"? " are displayed via the OUTDO standard routine and contro
drops into the INLIN standard routine.

Address... 23D5H

Nane. I NLI' N
Entry..... None
Exit...... HL=Start of text, Flag Cif CTRL-STOP term nation

Modifies.. AF, BC, DE, HL, E

Standard routine used by the "LINE | NPUT" statenent handl er

to collect a logical line of text fromthe console. Characters
are read fromthe keyboard until either the CR or CTRL- STOP
keys are pressed. The logical line is then read fromthe screen

character by character and placed in the Wrkspace Area text
buf f er BUF.

The current screen coordinates are first taken from CSRX and
CSRY and placed in FSTPOS. The screen row i rmedi atel y above the
current one then has its entry in LINTTB nade non-zero (0C29H)
to stop it extending logically into the current row.

Each keyboard character read via the CHGET standard routine
is checked (0919H) against the editing key table at 2439H
Control then transfers to one of the editing routines or to the
default key handl er (23FFH) as appropriate. This process

A 84 A

4. ROM BI OS

continues until Flag Cis returned by the CTRL-STOP or CR
routines. Register pair HL is then set to point to the start of
BUF and the routine term nates. Note that the carry, flag is
cleared when Flag NZ is also returned to distinguish between a
CR or protected CTRL-STOP term nation and a normal CTRL- STOP
term nation.

Address... 23FFH

This routine processes all characters for the I NLIN standard
routi ne except the special editing keys. If the character is a
TAB code (09H) spaces are issued (23FFH) until CSRX is a
mul ti ple of eight plus one (colums 1, 9, 17, 25, 33). If the
character is a graphic header code (01H) it is sinply echoed to
the OUTDO standard routine. Al other control codes snaller
than 20H are echoed to the OUTDO standard routine after which
I NSFLG and CSTYLE are zeroed. For the displayable characters
INSFLG is first checked and a space inserted (24F2H) if
applicable before the character is echoed to the OUTDO st andard
routine.

Address... 2439H

This table contains the special editing keys recogni zed by
the INLIN standard routine together with the rel evant
addr esses:

CODE TO FUNCTI ON
AA
08H 2561H BS, backspace

12H 24E5H INS, toggle insert node

1BH 23FEH ESC, no action

02H 260EH CTRL-B, previous word

06H 25F8H CTRL-F, next word

OEH 25D7H CTRL-N, end of logical line

O5H 25B9H CTRL-E, clear to end of |ine

03H 24C5H CTRL-STOP, term nate

ODH 245AH CR, term nate

15H 25AEH CTRL-U, clear line

7FH 2550H DEL, del ete character

Address... 245AH

This routine perforns the CR operation for the INLIN
standard routine. The starting coordinates of the logical |ine
are found (266CH) and the cursor renoved fromthe screen
(OA2EH). Up to 254 characters are then read fromthe VDP VRAM
(OBD8H) and placed in BUF. Any null codes (0O0H) are ignored,
any characters snaller than 20H are replaced by a graphic
header code (01H) and the character itself with 40H added. As
the end of each physical rowis reached LINTTB is checked
(OC1DH) to see whether the logical line extends to the next
physical row. Trailing spaces are then stripped fromBUF and a
zero byte added as an end of text marker. The cursor is

A 85 A

4. ROM BI OS

restored to the screen (09E1H) and its coordinates set to the
| ast physical row of the logical line via the POSIT standard
routine. A LF code is issued to the OUTDO standard routi ne,
INSFLG i s zeroed and the routine termnates with a CR code
(ODH) in register A and Flag NZ,C. This CR code will be echoed
to the screen by the INLIN standard routine nainloop just
before it term nates.

Address... 24C5H

This routine perforns the CTRL- STOP operation for the INLIN
standard routine. The | ast physical row of the logical line is
found by exanining LINTTB (OC1lDH), CSTYLE is zeroed, a zero
byte is placed at the start of BUF and all nusic variables are
cleared via the G CINl standard routine. TRPTBL is then
exani ned (0454H) to see if an "ON STOP" statenent is active, if
so the cursor is reset (24AFH) and the routine term nates with
Flag NZ,C. BASROM i s then checked to see whether a protected
ROMis running, if so the cursor is reset (24AFH) and the
routine termnates with Flag NZ,C. Otherw se the cursor is
reset (24B2H) and the routine termnates with Flag zZ, C

Address... 24E5H

This routine performs the INS operation for the INLIN
standard routine. The current state of INSFLG is inverted and
control termnates via the CSTYLE setting routine (242CH)

Address... 24F2H

This routine inserts a space character for the default key
section of the INLIN standard routine. The cursor is renpved
(OA2EH) and the current cursor coordinates taken from CSRX and
CSRY. The character at this position is read fromthe VDP VRAM
(OBD8H) and replaced with a space (OBE6H). Successive
characters are then copied one colum position to the right
until the end of the physical row is reached.

At this point LINTTB is exam ned (OC1IDH) to deterni ne
whether the logical line is extended, if so the process
continues on the next physical row. Oherwi se the character
taken fromthe last colum position is examned, if this is a
space the routine term nates by replacing the cursor (09E1H)
Ot herwi se the physical row s entry in LINTTB is zeroed to
i ndi cate an extended | ogical line. The nunber of the next
physical row is conpared with the nunber of rows on the screen
(OC32H). If the next rowis the |ast one the screen is scrolled
up (0A88H), otherwise a blank rowis inserted (0OAB7H) and the
copyi ng process conti nues.

Address... 2550H

This routine performs the DEL operation for the INLIN
standard routine. If the current cursor position is at the

A 86 A

4. ROM BI OS

ri ghtnost colum and the logical line is not extended no action
is taken other than to wite a space to the VDP VRAM (2595H)

Ot herwi se a RIGHT code (1CH) is issued to the OUTDO standard
routine and control drops into the BS routine.

Address... 2561H

This routine performs the BS operation for the INLIN
standard routine. The cursor is first renoved (OA2EH) and the
cursor colum coordinate decrenented unless it is at the
| eft nost position and the previous row is not extended.
Characters are then read fromthe VDP VRAM (0BD8H) and written
back one position to the left (OBE6H) until the end of the
logical line is reached. At this point a space is witten to
the VDP VRAM (0OBE6H) and the cursor character is restored
(09E1H).

Address... 25AEH

This routine perforns the CTRL-U operation for the INLIN
standard routine. The cursor is renmoved (0OA2EH) and the start
of the logical line |ocated (266CH) and placed in CSRX and
CSRY. The entire logical line is then cleared (25BEH).

Address... 25B9H

This routine perforns the CTRL-E operation for the INLIN
standard routine. The cursor is renoved (0OA2EH) and the
remai nder of the physical row cleared (OAEEH). This process is
repeated for successive physical rows until the end of the
logical line is found in LINTBB (OC1IDH). The cursor is then
restored (09E1H), | NSFLG zeroed and CSTLYE reset to a bl ock
cursor (242DH)

Address... 25D7H

This routine perforns the CTRL-N operation for the INLIN
standard routine. The cursor is renoved (OA2EH) and the | ast
physi cal row of the logical |ine found by exam nation of LINTTB
(OC1DH). Starting at the rightnost colum of this physical row
characters are read fromthe VDP VRAM (0BD8H) until a non-space
character is found. The cursor coordinates are then set one
colum to the right of this position (0A5BH) and the routine
term nates by restoring the cursor (25CDH)

Address... 25F8H

This routine perforns the CTRL-F operation for the INLIN
standard routine. The cursor is renmoved (0A2EH) and nobved
successively right (2624H) until a non-al phanunmeric character
is found. The cursor is then noved successively right (2624H)
until an al phanunmeric character is found. The routine
term nates by restoring the cursor (25CDH)

A 87 A

4. ROM BI OS

Address... 260EH

This routine perforns the CITRL-B operation for the INLIN
standard routine. The cursor is renmoved (0A2EH) and nobved
successively left (2634H) until an al phanuneric character is
found. The cursor is then noved successively left (2634H) unti
a non-al phanuneric character is found and then nobved one
position right (OA5BH). The routine term nates by restoring the
cursor (25CDH).

Address... 2624H

This routine noves the cursor one position right (0OA5BH),
| oads register Dwith the rightnost colum nunber, register E
with the bottomrow nunber and then tests for an al phanuneric
character at the cursor position (263DH)

Address... 2634H

This routine noves the cursor one position left (0A4CH)
| oads register Dwith the | eftnpobst colum nunber and register E
with the top row nunber. The current cursor coordinates are
conmpared with these values and the routine termnates Flag Z if
the cursor is at this position. O herwise the character at this
position is read fromthe VDP VRAM (0BD8H) and checked to see
if it is alphanunmeric. If so the routine ternminates Flag Nz, C
otherwise it termnates Flag NZ, NC

The al phanuneric characters are the digits "0" to "9" and
the letters "A" to "Z" and "a" to "z". Also included are the
graphics characters 86H to 9FH and A6H to FFH, these were
originally Japanese letters and shoul d have been excl uded
during the conversion to the UK ROM

Address... 266CH

This routine finds the start of a logical |line and returns
its screen coordinates in register pair HL. Each physical row
above the current one is checked via the LINTTB table (0ClDH)
until a non-extended row is found. The row i medi ately bel ow
this on the screen is the start of the logical line and its row
nunber is placed in register L. This is then conpared with
FSTPOS, which contains the row nunber when the I NLIN standard
routine was first entered, to see if the cursor is still on the
same line. If so the colum coordinate in register His set to
its initial position from FSTPOS. O herw se register His set
to the leftnost position to return the whole |ine.

Address...2680H, JP to power-up initialize routine (7C76H)
Address...2683H, JP to the SYNCHR standard routine (558CH)
Address. .. 2686H, JP to the CHRGIR standard routine (4666H)
Address...2689H, JP to the GETYPR standard routine (5597H)

A 88 A

5. ROM BASI C | NTERPRETER

M crosoft BASIC has evol ved over the years to its present
position as the industry standard. It was originally witten
for the 8080 M croprocessor and even the MSX version is held in
8080 Assenbly Language form This process of continuous
devel opnment neans that there are | ess Z80-specific instructions
than woul d be expected in a nore nodern program It also nmeans
that nunerous changes have been nmade and the result is a rather
convol uted program The structure of the Interpreter nmakes it
unlikely that an application programw || be able to use its
many facilities. However nmpbst prograns will need to cooperate
with it to some extent so this chapter gives a detailed
description of its operation.

There are four readily identifiable areas of inportance
within the Interpreter, the one nost fanmiliar to any user is
the Mainloop (4134H). This collects nunbered lines of text from
the console and places themin order in the Program Text Area
of menory until a direct statement is received.

The Runl oop (4601H) is responsible for the execution of a
program It exanines the first token of each programline and
calls the appropriate routine to process the renminder of the
statenment. This continues until no nore programtext renmins,
control then returns to the Mainl oop

The analysis of nuneric or string operands within a
statement is performed by the Expression Eval uator (4C64H).
Each expression is conposed of factors, in turn analyzed by the
Factor Eval uator (4DC7H), which are |inked together by dyadic
infix operators. As there are several types of operand, notably
| 'ine nunbers, which cannot formpart of an expression in
M crosoft BASIC the term"evaluated"” is only used to refer to
those that can. Otherwise a termsuch as "conputed" wll be
used.

One point to note when exam ning the Interpreter in detai
is that it contains a lot of trick code. The witers seem
particularly fond of junping into the nmddle of instructions to
provide nmultiple entry points to a routine. As an exanple take
the instruction:

3E D1 Normal : LD A, OD1H
When encountered in the usual way this will of course |oad the
accunul ator with the value D1IH However if it is entered at
"Normal" then it will be executed as a POP DE instruction

The Interpreter has many sinilarly obscure sections.

A 89 A

5. ROM BASI C | NTERPRETER

Address... 268CH

This routine is used by the Expression Evaluator to subtract
two doubl e precision operands. The first operand is contained
in DAC and the second in ARG the result is returned in DAC
The second operand's mantissa sign is inverted and contro
drops into the addition routine.

Address... 269AH

This routine is used by the Expression Evaluator to add two
doubl e precision operands. The first operand is contained in
DAC and the second in ARG the result is returned in DAC. |If
the second operand is zero the routine termnates with no
action, if the first operand is zero the second operand is
copied to DAC (2F05H) and the routine terninates. The two
exponents are conpared, if they differ by nore than 10715 the
routine ternminates with the |arger operand as the result.

O herwi se the difference between the two exponents is used to
align the manti ssae by shifting the smaller one rightwards
(27A3H), for exanple:

19. 2100
+ . 7436

.1921*1072
. 7436*10"0

. 192100
. 007436

If the two manti ssa signs are equal the nantissae are then
added (2759H), if they are different the nantissae are
subtracted (276BH). The exponent of the result is sinply the
| arger of the two original exponents. If an overflow was
produced by addition the result mantissa is shifted right one
digit (27DBH) and the exponent increnmented. |f |eading zeroes
were produced by subtraction the result mantissa is
renornmalized by shifting left (2797H). The guard byte is then
exani ned and the result rounded up if the fifteenth digit is
equal to or greater than five.

Address... 2759H

This routine adds the two doubl e precision manti ssae
contained in DAC and ARG and returns the result in DAC
Addi ti on commences at the |east significant positions, DAC+7
and ARG+7, and proceeds two digits at a tinme for the seven
byt es.

Address... 276BH

This routine subtracts the two doubl e precision nmantissae
contained in DAC and ARG and returns the result in DAC
Subtraction comences at the guard bytes, DAC+8 and ARG+8, and
proceeds two digits at a tinme for the eight bytes. If the
result underflows it is corrected by subtracting it fromzero
and inverting the nantissa sign, for exanple:

0.17-0.85 = 0.32 = -0.68

A 90 A

5. ROM BASI C | NTERPRETER

Address... 2797H

This routine shifts the double precision manti ssa contai ned
in DAC one digit left.

Address... 27A3H

This routine shifts a double precision mantissa right. The
nunber of digits to shift is supplied in register A the
address of the mantissa's npbst significant byte is supplied in
register pair HL. The digit count is first divided by two to
separate the byte and digit counts. The required nunber of
whol e bytes are then shifted right and the nobst significant
bytes zeroed. |If an odd nunber of digits was specified the
manti ssa is then shifted a further one digit right.

Address... 27E6H

This routine is used by the Expression Evaluator to nultiply
two doubl e precision operands. The first operand is contained
in DAC and the second in ARG the result is returned in DAC. |If
either operand is zero the routine termnates with a zero
result (2E7DH). Otherwi se the two exponents are added to
produce the result exponent. If this is smaller than 10"-63 the
routine ternminates with a zero result, if it is greater than
10763 an "Overflow error" is generated (4067H). The two
manti ssa signs are then processed to yield the sign of the
result, if they are the same the result is positive, if they
differ it is negative.

Even though the mantissae are in BCD format they are
mul tiplied using the normal binary add and shift nethod. To
acconplish this the first operand is successively multiplied by
two (288AH) to produce the constants X*80, X*40, X*20, X*10,
X*8, X*4, X*2, and X in the HOLD8 buffer. The second operand
remains in ARG and DAC is zeroed to function as the product
accurmul ator. Multiplication proceeds by taking successive pairs
of digits fromthe second operand starting with the | east
significant pair. For each 1 bit in the digit pair the
appropriate nultiple of the first operand is added to the
product. As an exanple the single nultiplication 1823*96 woul d
produce:

1823*10010110=(1823*80) +(1823* 10) +(1823*4) +(1823* 2)

As each digit pair is completed the product is shifted two
digits right. \Wen all seven digit pairs have been processed
the routine term nates by renornalizing and rounding up the
product (26FAH)

The tine required for a multiplication depends |largely upon
the nunber of 1 bits in the second operand. The worst case,
when all the digits are sevens, can take up to 11 ns conpared to
the average of approximately 7 ns.

A 91 A

5. ROM BASI C | NTERPRETER

Address... 288AH

Thi s routine doubles a double precision mantissa three
successive tinmes to produce the products X*2, X*4 and X*8. The
address of the mantissa's least significant byte is supplied in
regi ster pair DE. The products are stored at successively |ower
addresses commenci ng i nmedi ately bel ow t he operand.

Address... 289FH

This routine is used by the Expression Evaluator to divide
two doubl e precision operands. The first operand is contained
in DAC and the second in ARG the result is returned in DAC. If
the first operand is zero the routine ternmnates with a zero
result if the second operand is zero a "Division by zero"
error is generated (4058H). Otherwi se the two exponents are
subtracted to produce the result exponent and the two mantissa
signs processed to yield the sign of the result. If they are
the sane the result is positive, if they differ it is negative.

The manti ssae are divided using the normal |ong division
met hod. The second operand is repeatedly subtracted fromthe
first until underflow to produce a single digit of the result.
The second operand is then added back to restore the renmai nder
(2761H), the digit is stored in HOLD and the first operand is
shifted one digit left. When the first operand has been
conpletely shifted out the result is copied fromHOLD to DAC
then renornalized and rounded up (2883H). The tine required for
a division reaches a maxi num of approximately 25 ns when the
first operand is conposed largely of nines and the second
operand of ones. This will require the greatest nunber of
subtractions.

Address... 2993H

This routine is used by the Factor Evaluator to apply the
"COS" function to a double precision operand contained in DAC
The operand is first multiplied (2C3BH) by 1/(2*Pl) so that
unity corresponds to a conplete 360 degree cycle. The operand
then has 0.25 (90 degrees) subtracted (2C32H), its mantissa
sign is inverted (2E8DH) and control drops into the "SI N
routine.

Address... 29ACH

This routine is used by the Factor Evaluator to apply the
"SIN' function to a doubl e precision operand contained in DAC
The operand is first multiplied (2C3BH) by 1/(2*Pl) so that
unity corresponds to a conplete 360 degree cycle. As the
function is periodic only the fractional part of the operand is
now required. This is extracted by pushing the operand (2CCCH)
obtaining the integer part (30CFH) and copying it to ARG
(2CADH), popping the whol e operand to DAC (2CE1H) and then
subtracting the integer part (268CH)

A 92 A

5. ROM BASI C | NTERPRETER

The first digit of the mantissa is then exam ned to
determ ne the operand' s quadrant. If it is in the first
quadrant it is unchanged. If it is in the second quadrant it is
subtracted fromO0.5 (180 degrees) to reflect it about the Y
axis. If it is in the third quadrant it is subtracted fromO0.5
(180 degrees) to reflect it about the X axis. If it is in the
fourth quadrant 1.0 (360 degrees) is subtracted to reflect it
about both axes. The function is then conputed by pol ynoni al
approxi mation (2C88H) using the list of coefficients at 2DEFH
These are the first eight terns in the Taylor series X-
(X~3/3V)+(XA5/51)-(Xr7/71) ... with the coefficients nultiplied
by successive factors of 2*PlI to conpensate for the initial
scal i ng.

Address... 29FBH

This routine is used by the Factor Evaluator to apply the
"TAN' function to a double precision operand contained in DAC
The function is conmputed using the trigononetric identity
TAN(X) = SI N(X)/ COS(X)

Address... 2A14H

This routine is used by the Factor Evaluator to apply the
"ATN' function to a double precision operand contained in DAC
The function is conputed by polynom al approximtion (2C88H)
using the list of coefficients at 2E30H. These are the first
eight ternms in the Taylor series X-(x"3/3)+(X"5/5)-(Xr7/7)
with the coefficients nmodified slightly to tel escope the
series.

Address... 2A72H

This routine is used by the Factor Evaluator to apply the
"LOG'" function to a double precision operand contained in DAC
The function is conputed by polynom al approximtion using the
list of coefficients at 2DA5SH

Address... 2AFFH

This routine is used by the Factor Evaluator to apply the
"SQR"' function to a double precision operand contained in DAC
The function is conputed using the Newton-Raphson process, an
equi val ent BASI C program i s:

10 | NPUT" NUMBER' ; X
20 GUESS=10

30 FOR N=1 To 7

40 GUESS=(GUESS+X/ GUESS) / 2
50 NEXT N

60 PRI NT GUESS

70 PRI NT SQR(X)

The above programuses a fixed initial guess. Wiile this is

A 93 A

5. ROM BASI C | NTERPRETER

accurate over a linmted range maxi mum accuracy will only be
attained if the initial guess is near the root. The nmethod used
by the ROMis to halve the exponent, w th rounding up, and then
to divide the first two digits of the operand by four and
increnment the first digit.

Address... 2B4AH

This routine is used by the Factor Evaluator to apply the
"EXP" function to a double precision operand contained in DAC
The operand is first nmultiplied by 0.4342944819, which is
LOG(e) to Base 10, so that the probl em becones conputing 107X
rather than e*"X. This results in considerable sinplification as
the integer part can be dealt with easily. The function is then
comput ed by pol ynoni al approxi mation using the |ist of
coefficients at 2D6BH

Address... 2BDFH

This routine is used by the Factor Evaluator to apply the
"RND" function to a double precision operand contained in DAC
If the operand is zero the current random nunber is copied to
DAC from RNDX and the routine ternminates. If the operand is
negative it is copied to RNDX to set the current random nunber.
The new random nunber is produced by copying RNDX to HOLD, the
constant at 2CF9H to ARG, the constant at 2CF1H to DAC and then
mul tiplying (282EH). The fourteen | east significant digits of
the double length product are copied to RNDX to formthe
manti ssa of the new random nunmber. The exponent byte in DACis
set to 1070 to return a value in the range 0 to 1.

Address... 2C24H

This routine is used by the "NEW, "CLEAR' and "RUN'
statenent handlers to initialize RNDX with the constant at
2D01H.

Address... 2C2CH

This routine adds the constant whose address is supplied in
register pair HL to the doubl e precision operand contained in
DAC.

Address... 2C32H

This routine subtracts the constant whose address is
supplied in register pair HL fromthe double precision operand
contained in DAC

Address... 2C3BH

This routine multiplies the double precision operand

contained in DAC by the constant whose address is supplied in
register pair HL.

A 94 A

5. ROM BASI C | NTERPRETER

Address... 2C41H

This routine divides the double precision operand contai ned
in DAC by the constant whose address is supplied in register
pair HL.

Address... 2CA7H

This routine performs the relation operation on the double
preci sion operand contained in DAC and the constant whose
address is supplied in register pair HL.

Address... 2CADH

This routine copies an ei ght byte doubl e precision operand
from DAC to ARG

Address... 2C59H

This routine copies an eight byte double precision operand
from ARG to DAC.

Address... 2C6FH

This routine exchanges the eight bytes in DAC with the eight
bytes currently on the bottom of the Z80 st ack.

Address... 2C80H

This routine inverts the manti ssa sign of the operand
contained in DAC (2E8DH). The sane address is then pushed onto
the stack to restore the sign when the caller termn nates.

Address... 2C88H

This routine generates an odd series based on the double
preci sion operand contained in DAC. The series is of the form

XAL* (Kn) +XA3* (Kn- 1) +x75* (Kn- 2) +XA5% (Kn- 3)

The address of the coefficient list is supplied in register
pair HL. The first byte of the list contains the coefficient
count, the double precision coefficients followwith K1 first
and Kn last. The even series is generated (2C9AH) and
nmul tiplied (27E6H) by the original operand.

Address... 2C9AH

This routine generates an even series based on the double
preci sion operand contained in DAC. The series is of the form

XA0* (Kn) +x72* (Kn- 1) +x"4* (Kn- 2) +x76* (Kn- 3)

The address of the coefficient list is supplied in register

A 95 A

5. ROM BASI C | NTERPRETER

pair HL. The first byte of the Iist contains the coefficient
count, the double precision coefficients followwith K1 first
and Kn last. The nethod used to conpute the polynomal is known
as Horner's nethod. It only requires one nultiplication and one
addition per term the BASIC equival ent is:

10 X=X*X

20 PRODUCT=0

30 RESTORE 100

40 READ COUNT

50 FOR N=1 TO COUNT
60 READ K

70 PRODUCT= (PRODUCT*X) +K
80 NEXT N

90 END

100 DATA 8

110 DATA Kn-7

120 DATA Kn-6

130 DATA Kn-5

140 DATA Kn-4

150 DATA Kn-3

160 DATA Kn-2

170 DATA Kn-1

180 DATA Kn

The polynonial is processed fromthe final coefficient through
to the first coefficient so that the partial product can be
used to save unnecessary operations.

Address... 2CC7H

This routine pushes an ei ght byte doubl e precision operand
from ARG onto the Z80 stack

Address... 2CCCH

This routine pushes an ei ght byte doubl e precision operand
from DAC onto the Z80 stack.

Address... 2CDCH

This routine pops an ei ght byte doubl e precision operand
fromthe Z80 stack into ARG

Address... 2CE1H

This routine pops an ei ght byte double precision operand
fromthe Z80 stack into DAC

Address... 2CF1lH
This table contains the double precision constants used by

the math routines. The first three constants have zero in the
exponent position as they are in a special internmediate form

A 96 A

5. ROM BASI C | NTERPRETER

used by the random nunber generator

ADDR. CONSTANT ADDR. CONSTANT
AAA
2CF1H .14389820420821 RND 2DAEH 6.2503651127908
2CF9H . 21132486540519 RND 2DB6H - 13. 682370241503
2D01H .40649651372358 2DBEH 8.5167319872389
2D09H . 43429448190324 LOG e) 2DC6H 5 LOG
2D11H .50000000000000 2DC7/H 1. 0000000000000
2D13H .00000000000000 2DCFH -13. 210478350156
2D1BH 1. 0000000000000 2DD7/H 47.925256043873
2D23H . 25000000000000 2DDFH - 64. 906682740943
2D2BH 3.1622776601684 SQR(10) 2DE7H 29. 415750172323
2D33H . 86858896380650 2"LOJ e) 2DEFH 8 SI'N
2D3BH 2.3025850929940 1/LOJ e) 2DFOH -.69215692291809
2D43H 1.5707963267949 PI/2 2DF8H 3.8172886385771

2D4BH . 26794919243112 TAN(PI/12) 2EOOH -15. 094499474801
2D53H 1.7320508075689 TAN(PI/3) 2E08H 42.058689667355

2D5BH . 52359877559830 PI/6 2E10H -76. 705859683291
2D63H . 15915494309190 1/ (2"PI) 2E18H 81.605249275513
2D6BH 4 EXP 2E20H -41. 341702240398
2D6CH 1. 0000000000000 2E28H 6.2831853071796
2D74H 159. 37415236031 2E30H 8 ATN
2D7CH 2709. 3169408516 2E31H -.05208693904000
2D84H 4497. 6335574058 2E39H .07530714913480
2D8CH 3 EXP 2EA1H -.09081343224705
2D8DH 18. 312360159275 2E49H .11110794184029
2D95H 831.40672129371 2E51H -.14285708554884
2DODH 5178. 0919915162 2E59H . 19999999948967
2DASH 4 LOG 2E61H -.33333333333160
2DA6H -.71433382153226 2E69H 1. 0000000000000

Address... 2E71H

This routine returns the manti ssa sign of a Floating Point
operand contai ned in DAC. The exponent byte is tested and the
result returned in register A and the flags:

Zero A=00H, Flag Z, NC
Positive ... A=01H, Flag Nz, NC
Negative ... A=FFH, Flag Nz, C

Address... 2E7DH
This routine sinply zeroes the exponent byte in DAC
Address... 2E82H

This routine is used by the Factor Evaluator to apply the
"ABS" function to an operand contai ned in DAC. The operand's
sign is first checked (2EALH), if it is positive the routine
sinply term nates. The operand's type is then checked via the
GETYPR standard routine. If it is a string a "Type m smatch”
error is generated (406DH). If it is an integer it is negated

A 97 A

5. ROM BASI C | NTERPRETER

(322BH). If it is a double precision or single precision
operand the mantissa sign bit in DAC is inverted.

Address... 2E97H

This routine is used by the Factor Evaluator to apply the
"SGN' function to an operand contai ned in DAC. The operand's
sign is checked (2EA1H), extended into register pair HL and
then placed in DAC as an integer:

Zero 0000H
Positive ... O0001H
Negative ... FFFFH

Address... 2EALH

This routine returns the sign of an operand contained in
DAC. The operands type is first checked via the GETYPR standard
routine. If it is a string a "Type msmatch" error is generated
(406DH). If it is a single precision or double precision
operand the mantissa sign is examned (2E71H). If it is an

integer its value is taken from DAC+2 and translated into the
flags shown at 2E71H

Address... 2EB1H

This routine pushes a four byte single precision operand
from DAC onto the Z80 stack

Address... 2EC1H

This routine copies the contents of registers C, B, E and D
to DAC.

Address... 2ECCH

This routine copies the contents of DACto registers C, B, E
and D.

Address... 2ED6H

This routine |loads registers C, B, E and D from upwardly
sequential | ocations starting at the address supplied in
register pair HL.

Addr ess... 2EDFH

This routine |loads registers E, D, C and B from upwardly
sequential | ocations starting at the address supplied in
regi ster pair HL.

Address... 2EE8H

This routine copies a single precision operand from DAC to

A 98 A

5. ROM BASI C | NTERPRETER

the address supplied in register pair HL.
Address... 2EEFH

This routine copies any operand fromthe address supplied in
register pair HL to ARG The length of the operand is contained
in VALTYP: 2=Integer, 3=String, 4=Single Precision, 8=Double
Preci si on.

Address... 2FO05H

This routine copies any operand from ARG to DAC. The length
of the operand is contained in VALTYP: 2=Integer, 3=String,
4=Si ngl e Precision, 8=Doubl e Precision

Address... 2FODH

This routine copies any operand from DAC to ARG The |l ength
of the operand is contained in VALTYP: 2=Integer, 3=String,
4=Si ngl e Precision, 8=Double Precision

Address... 2F21H

This routine is used by the Expression Evaluator to find the
relation (<>=) between two single precision operands. The first
operand is contained in registers C, B, E and D and the second in
DAC. The result is returned in register A and the flags:

Operand 1=Cperand 2 ... A=00H, Flag Z, NC
Operand 1<Operand 2 ... A=01H, Flag NZ, NC
Operand 1>Cperand 2 ... A=FFH, Flag Nz, C

It should be noted that for relational operators the Expression
Eval uat or regards mexi mally negative nunbers as small and
mexi mal |y positive numbers as | arge.

Address... 2F4DH

This routine is used by the Expression Evaluator to find the
relation (<>=) between two integer operands. The first operand
is contained in register pair DE and the second in register
pair HL. The results are as for the single precision version
(2F21H).

Address... 2F83H

This routine is used by the Expression Evaluator to find the
relation (<>=) between two doubl e precision operands. The first
operand is contained in DAC and the second in ARG The results
are as for the single precision version (2F21H)

Address... 2F8AH

This routine is used by the Factor Evaluator to apply the

A 99 A

5. ROM BASI C | NTERPRETER

"CINT" function to an operand contained in DAC. The operand
type is first checked via the GETYPR standard routine, if it is
already integer the routine sinply termnates. If it is a
string a "Type mismatch" error is generated (406DH). If it is a
singl e precision or double precision operand it is converted to
a signed binary integer in register pair DE (305DH) and then

pl aced in DAC as an integer. Qut of range values result in an
"Overflow' error (4067H)

Address... 2FA2H

This routine checks whether DAC contains the single
preci sion operand -32768, if so it replaces it with the integer
equi val ent 8000H. This step is required during nuneric input
conversion (3299H) because of the asymretric integer nunber
range.

Address... 2FB2H

This routine is used by the Factor Evaluator to apply the
"CSNG' function to an operand contained in DAC. The operand's
type is first checked via the GETYPR standard routine, if it is
al ready single precision the routine sinply terninates. If it
is astring a "Type mismatch" error is generated (406DH). If it
is doubl e precision VALTYP is changed (3053H) and the mantissa
rounded up fromthe seventh digit (2741H). |f the operand is an
integer it is converted frombinary to a nmaxi nrumof five BCD
digits by successive divisions using the constants 10000, 1000,
100, 10, 1. These are placed in DAC to formthe single
preci sion manti ssa. The exponent is equal to the nunber of
significant digits in the nantissa. For exanple if there are
five the exponent would be 1075.

Address... 3030H

This table contains the five constants used by the "CSNG'
routine: -10000, -1000, -100, -10, -1

Address... 303AH

This routine is used by the Factor Evaluator to apply the
"CDBL" function to an operand contained in DAC. The operand's
type is first checked via the GETYPR standard routine, if it is
al ready double precision the routine sinply terninates. If it
is a string a "Type mismatch” error is generated (406DH). If it
is an integer it is first converted to single precision
(2FC8H), the eight least significant digits are then zeroed and
VALTYP set to 8.

Address... 3058H

This routine checks that the current operand is a string
type, if not a "Type m smatch" error is generated (406DH)

- 100 -

5. ROM BASI C | NTERPRETER

Address... 305DH

This routine is used by the "CINT" routine (2F8AH) to
convert a BCD single precision or double precision operand into
a signed binary integer in register pair DE, it returns Flag C
if an overflow has occurred. Successive digits are taken from
the manti ssa and added to the product starting with the npst
significant one. After each addition the product is nultiplied
by ten. The nunber of digits to process is determ ned by the
exponent, for exanple five digits would be taken with an
exponent of 1075. Finally the mantissa sign is checked and the
product negated (3221H) if necessary.

Address... 30BEH

This routine is used by the Factor Evaluator to apply the
"FI X" function to an operand contai ned in DAC. The operand's
type is first checked via the GETYPR standard routine, if it is
an integer the routine sinply term nates. The mantissa sign is
then checked (2E71H), if it is positive control transfers to
the "INT" routine (30CFH). Otherwise the sign is inverted to
positive, the "INT" function is perfornmed (30CFH) and the sign
restored to negative.

Address... 30CFH

This routine is used by the Factor Evaluator to apply the
"I NT" function to an operand contained in DAC. The operand's
type is first checked via the GETYPR standard routine, if it is
an integer the routine sinply term nates. The nunber of
fractional digits is determ ned by subtracting the exponent
fromthe type's digit count, 6 for single precision, 14 for
doubl e precision.

If the mantissa sign is positive these fractional digits are
sinply zeroed. If the nantissa sign is negative each fractiona
digit is exam ned before it is zeroed. If all the digits were
previously zero the routine sinply term nates. Oherwise -1.0
is added to the operand by the single precision addition
routine (324EH) or the double precision addition routine
(269AH). It should be noted that an operand's type is not
normal |y changed by the "CI NT" function

Address... 314AH

This routine multiplies the unsigned binary integers in
regi ster pairs BC and DE, the result is returned in register
pair DE. The standard shift and add nethod is used, the product
is successively multiplied by two and regi ster pair BC added to
it for every 1 bit in register pair DE. The routine is used by
the Variable search routine (5EA4H) to conpute an elenent's
position within an Array, a "Subscript out of range" error is
generated (601DH) if an overfl ow occurs.

- 101 -

5. ROM BASI C | NTERPRETER

Address... 3167H

This routine is used by the Expression Evaluator to subtract
two integer operands. The first operand is contained in
register pair DE and the second in register pair HL, the result
is returned in DAC. The second operand is negated (3221H) and
control drops into the addition routine.

Address... 3172H

This routine is used by the Expression Evaluator to add two
i nteger operands. The first operand is contained in register
pair DE and the second in register pair HL, the result is
returned in DAC. The signed binary operands are normally just
added and placed in DAC. However, if an overflow has occurred
both operands are converted to single precision (2FCBH) and
control transfers to the single precision adder (324EH). An
overfl ow has occurred when both operands are of the same sign
and the result is of the opposite sign, for exanple:

30000+15000=- 20536

Address... 3193H

This routine is used by the Expression Evaluator to nultiply
two integer operands. The first operand is contained in
register pair DE and the second in register pair HL, the result
is returned in DAC. The two operand signs are saved tenporarily
and both operands nade positive (3215H). Miltiplication
proceeds using the standard binary shift and add nethod with
register pair HL as the product accunul ator, register pair BC
containing the first operand and regi ster pair DE the second.

If the product exceeds 7FFFH at any tine during nultiplication
both operands are converted to single precision (2FCBH) and
control transfers to the single precision rmultiplier (325CH)

O herwise the initial signs are restored and, if they differ,
the product negated before being placed in DAC as an integer
(321DH) .

Address... 31E6H

This routine is used by the Expression Evaluator to integer
divide (\) two integer operands. The first operand is contai ned
in register pair DE and the second in register pair HL, the
result is returned in DAC. |If the second operand is zero a
"Division by zero" error is generated (4058H), otherw se the
two operand signs are saved and both operands nade positive
(3215H). Division proceeds using the standard binary shift and
subtract method with register pair HL containing the renainder,
regi ster pair BC the second operand and register pair DE the
first operand and the product. Wen division is conplete the
initial signs are restored and, if they differ, the product is
negat ed before being placed in DAC as an integer (321DH).

- 102 -

5. ROM BASI C | NTERPRETER

Address... 3215H

This routine is used to nake two signed binary integers, in
register pairs HL and DE, positive. Both the initial operand
signs are returned as a flag in bit 7 of register B: 0=Sane,
1=Di fferent. Each operand is then exanmined and, if it is
negative, made positive by subtracting it from zero.

Address... 322BH

This routine is used by the "ABS" function to nake a
negative integer contained in DAC positive. The operand is
taken from DAC, negated and then placed back in DAC (3221H). If
the operand's value is 8000H it is converted to single
precision (2FCCH) as there is no integer of value +32768.

Address... 323AH

This routine is used by the Expression Evaluator to "MOD"
two integer operands. The first operand is contained in
register pair DE and the second in register pair HL, the result
is returned in DAC. The sign of the first operand is saved and
the two operands divided (31E6H). As the remainder is returned
doubl ed by the division process register pair DE is shifted one
place right to restore it. The sign of the first operand is
then restored and, if it is negative, the remainder is negated
bef ore being placed in DAC as an integer (321DH).

Address... 324EH

This routine is used by the Expression Evaluator to add two
singl e precision operands. The first operand is contained in
registers C, B, E, D and the second in DAC, the result is
returned in DAC. The first operand is copied to ARG (3280H)
the second operand is converted to double precision (3042H) and
control transfers to the double precision adder (269AH)

Address... 3257H

This routine is used by the Expression Evaluator to subtract
two single precision operands. The first operand is contained
inregisters C, B, E, D and the second in DAC, the result is
returned in DAC. The second operand is negated (2E8DH) and
control transfers to the single precision adder (324EH)

Address... 325CH

This routine is used by the Expression Evaluator to nultiply
two single precision operands. The first operand is contained
inregisters C, B, E, D and the second in DAC, the result is
returned in DAC. The first operand is copied to ARG (3280H)
the second operand is converted to double precision (3042H) and
control transfers to the double precision multiplier (27E6H)

- 108 -

5. ROM BASI C | NTERPRETER

Address... 3265H

This routine is used by the Expression Evaluator to divide
two single precision operands. The first operand is contained
inregisters C, B, E, D and the second in DAC, the result is
returned in DAC. The first and second operands are exchanged so
that the first is in DAC and the second in the registers. The
second operand is then copied to ARG (3280H), the first operand
is converted to double precision (3042H) and control transfers
to the doubl e precision divider (289FH)

Address... 3280H

This routine copies the single precision operand contai ned
inregisters C B, E and Dto ARG and then zeroes the four
| east significant bytes.

Address... 3299H

This routine converts a nunmber in textual formto one of the
standard internal nuneric types, it is used during tokenization
and by the "VAL", "INPUT" and "READ' Statenent handlers. On
entry register pair HL points to the first character of the
text string to be converted. On exit register pair HL points to
the character following the string, the nuneric operand is in
DAC and the type code in VALTYP. Exanples of the three types
are:

UAAAAAAAAAAAAAAAAAAAAAAAAAAAARAARARRARAARAARAARA ;
3 3 3 FFHS 7FH3 3 3 3 3
AAAAAAAAAAAAAAAAAAAAAAAAARAAAAAAAAAAAAAAARAAAAAAL
I nt eger +32767

UAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARAARAAAAAAARA
3 42H 3 17H 3 39H 3 04H 3 3 3 3 3
AAARAAAAAAL
Singl e Precision .173904*10"2

UAAAAAAAAAAAAAAAARAAARAAARAARAAARAAAAAARRAARRARR,;
3 C2H® 17H ® 39H ® 04H ® 62H 3 70H 3 93H 3 13H 3
AAL
Doubl e Precision -.17390462709313*10"2

Figure 41: Nuneric Types in DAC

An integer is a sixteen bit binary nunber in twd's
conplement form it is stored LSB first, MSB second at DAC+2.
An integer can range from 8000H (-32768) to 7FFFH (+32767).

A floating point nunber consists of an exponent byte and a
three or seven byte manti ssa. The exponent is kept in signed
binary formand can range from O1lH (-63) through 40H (0) up to
7FH (+63), the special value of O0OH is used for the nunber
zero. These exponent values are for a normalized manti ssa. The
Interpreter presents exponent-form nunbers to the user with a

- 104 -

5. ROM BASI C | NTERPRETER

leading digit, this results in an asymetric exponent range of
E-64 to E+62. Bit 7 of the exponent byte holds the mantissa
sign, O for positive and 1 for negative, the mantissa itself is
kept in packed BCD formwith two digits per byte. It should be
noted that the Interpreter uses the contents of VALTYP to
determ ne a nunber's type, not the format of the nunber itself.

Conversion starts by exam ning the first text character. |If
this is an "&" control transfers to the special radix
conversion routine (4EB8H), if it is a |eading sign character
it is tenmporarily saved. Successive nuneric characters are then
taken and added to the integer product with appropriate
mul tiplications by ten as each new digit is found. If the val ue
of the product exceeds 32767, or a decinal point is found, the
product is converted to single precision and any further
characters placed directly in DAC. If a seventh digit is found
the product is changed to double precision, if nore than
fourteen digits are found the excess digits are read but
i gnor ed.

Conversi on ceases when a non-nuneric character is found. If
this a type definition character ("%, "#" or "!") the
appropriate conversion routine is called and control transfers
to the exit point (331EH). If it is an exponent prefix ("E",
"e", "D'" or "d") one of the conversion routines will also be
used and then the following digits converted to a binary
exponent in register E. At the exit point (331EH) the product's
type is checked via the GETYPR standard routine. If it is
singl e precision or double precision the exponent is calcul ated
by first subtracting the fractional digit count, in register B
fromthe total digit count, in register D, to produce the
|l eading digit count. This is then added to any explicitly
stated exponent, in register E, and placed at DAC+0 as the
exponent .

The | eading sign character is restored and the product
negated if required (2E86H), if the product is integer the
routine then termnates. If the product is single precision
control term nates by checking for the special value of -32768
(2FA2H). If the product is double precision control term nates
by rounding up fromthe fifteenth digit (273CH)

Address... 340AH

This routine is used by the error handler to display the
message " in " (6678H) followed by the line nunmber supplied in
register pair HL (3412H)

Address... 3412H

This routine displays the unsigned binary integer supplied

in register pair H.. The operand is placed in DAC as an integer
(2F99H), converted to text (3441H) and then displayed (6677H)

- 105 -

5. ROM BASI C | NTERPRETER

Address... 3425H

This routine converts the nuneric operand contained in DAC
to textual formin FBUFFR. The address of the first character
of the resulting text is returned in register pair HL, the text
is termnated by a zero byte. The operand is first converted to
doubl e precision (375FH). The BCD digits of the nmantissa are
t hen unpacked, converted to ASCI|I and placed in FBUFFR (36B3H)
The position of the decimal point is determ ned by the
exponent, for exanple:

.999*%10 N 42 = 99.9
.999*10 M +1 = 9.99
.999*10 ~ +0 = .999
.999*10 ~ -1 = .0999

If the exponent is outside the range 10"-1 to 10714 the nunber
is presented in exponential form In this case the decinal
point is placed after the first digit and the exponent is
converted from binary and follows the nmantissa.

An alternative entry point to the routine exists at 3426H
for the "PRINT USING' statenent handler. Wth this entry point
the nunber of characters to prefix the decimal point is
supplied in register B, the nunber of characters to point fix it
inregister Cand a format byte in register A

7 6 5 4 3 2 1 0
UAAA
3 1 3 , 3 * 3 $ 3 + 3Sign 3 0 3AAAA 3
AAL

Figure 42: Format Byte

Operation in this node is fairly simlar to the normal node but
with the addition of extra facilities. Once the operand has
been converted to doubl e precision the exponential formw Il be
assumed if bit 0 of the format byte is set. The nmantissa is
shifted to the right in DAC and rounded up to | ose unwanted
postfix digits (377BH). As the mantissa is converted to ASCI
(36B3H) commmas will be inserted at the appropriate points if
bit 6 of the format byte is set. During post-conversion
formatting (351CH) unused prefix positions will be filled with
asterisks if bit 5 is set, a pound prefix may be added by
setting bit 4. Bit 3 enables the "+" sign for positive numbers
if set, otherwise a space is used. Bit 2 places any sign at the
front if reset and at the back if set.

The entry point to the routine at 3441H is used to convert
unsi gned integers, notably line nunbers, to their textual form
For exanpl e 9000H, when treated as a nornmal integer, would be
converted to -28672. By using this entry point 36864 would be
produced instead. The operand is converted by successive

- 106 -

5. ROM BASI C | NTERPRETER

division with the factors 10000, 1000, 100, 10 and 1 and the
resulting digits placed in FBUFFR (36DBH).

Address... 3710H

This table contains the five constants used by the nuneric
out put routine: 10000, 1000, 100, 10, 1.

Address... 371AH

This routine is used by the "BIN$" function to convert a
nuneric operand contained in DAC to textual form Register Bis
| oaded with the group size (1) and control transfers to the
general conversion routine (3724H)

Address... 371EH

This routine is used by the "OCT$" function to convert a
nuneric operand contained in DAC to textual form Register Bis
| oaded with the group size (3) and control transfers to the
general conversion routine (3724H)

Address... 3722H

This routine is used by the "HEX$" function to convert a
nuneri c operand contained in DAC to textual form Register Bis
| oaded with the group size (4) and the operand converted to a
binary integer in register pair HL (5439H). Successive groups
of 1, 3 or 4 bits are shifted rightwards out of the operand,
converted to ASCI| digits and placed in FBUFFR \When the
operand is all zeroes the routine term nates with the address
of the first text character in register pair HL, the string is
termnated with a zero byte.

Address... 3752H

This routine is used during numeric output to return an
operand's digit count in register B and the address of its
| east significant byte in register pair HL. For single
preci sion B=6 and HL=DAC+3, for double precision B=14 and
HL=DAC+7.

Address... 375FH

This routine is used during numeric output to convert the
nuneric operand in DAC to doubl e precision (303AH)

Address... 377BH

This routine is used during nuneric output to shift the
manti ssa in DAC rightwards (27DBH), the inverse of the digit
count is supplied in register A The result is then rounded up
fromthe fifteenth digit (2741H)

- 107 -

5. ROM BASI C | NTERPRETER

Address... 37A2H

This routine is used during numeric output to return the
inverse of the fractional digit count in a floating point
operand. This is conputed by subtracting the exponent fromthe
operand's digit count (6 or 14).

Address... 37B4H

This routine is used during nunmeric output to |locate the
| ast non-zero digit of the mantissa contained in DAC. Its
address is returned in register pair HL.

Address... 37C8H

This routine is used by the Expression Evaluator to
exponentiate (") two single precision operands. The first
operand is contained in registers C, B, E, D and the second in
DAC, the result is returned in DAC. The first operand is copied
to ARG (3280H), pushed onto the stack (2CCrH) and exchanged
wi th DAC (2C6FH). The second operand is then popped into ARG
and control drops into the double precision exponentiation
routine.

Address... 37D7H

This routine is used by the Expression Evaluator to
exponentiate (") two doubl e precision operands. The first
operand is contained in DAC and the second in ARG the result
is returned in DAC. The result is usually conputed using:

XAP=EXP(P* LOG(X))

An alternative, nmuch faster, nethod is possible if the power
operand is an integer. This is tested for by extracting the
i nteger part of the operand and conparing for equality with the
original value (391AH). A positive result to this test neans
that the faster nethod can be used, this is described bel ow

Address... 383FH

This routine is used by the Expression Evaluator to
exponentiate (") two integer operands. The first operand is
contained in register pair DE and the second in register pair
HL, the result is returned in DAC. The routine operates by
breaki ng the problem down into sinple nultiplications:

6713=671101=(6"8) * (6°4) *(6"1)

As the power operand is in binary forma sinple right shift is
sufficient to determ ne whether a particular internmediate
product needs to be included in the result. The internedi ate
products thensel ves are obtained by cunulative multiplication
of the operand each tine the conputation loop is traversed. |If

- 108 -

5. ROM BASI C | NTERPRETER

the product overflows at any tine it
Upon conpl etion the power operand is checked, if it
is reciprocated as X"-P=1/ X"P.

preci sion.
i s negative the product

Addr ess. . .

390DH

is converted to single

This routine is used during exponentiation to nultiply two

integers (3193H), it

overflowed to single precision.

Addr ess. .

391AH

returns Flag NZ if the result has

This routine is used during exponentiation to check whet her
a doubl e precision power operand consists only of an integer
returns Flag NC

part,

Addr ess. . .

This table of addresses is used by the Interpreter
to find the handler for a statenent token

if soit

392EH

Runl oop

Al t hough not part of

the table the associ ated keywords are included bel ow

- 109 -

TO STMT TO STMT TO STMT
AAA
63EAH END 00C3H CLS 5B11H CI RCLE
4524H FOR 51C9H W DTH 7980H COLOR
6527H NEXT 485DH ELSE S5D6EH DRAW
485BH DATA 6438H TRON 59C5H PAINT
4B6CH | NPUT 6439H TROFF 00COH BEEP
5E9FH DI M 643EH SWAP 73E5H PLAY
4B9FH READ 6477H ERASE 57EAH PSET
4880H LET 49AAH ERROR 57E5H PRESET
47E8H GOTO 495DH RESUME 73CAH SOUND
479EH RUN 53E2H DELETE 79CCH SCREEN
49E5H I F 49B5H AUTO 7BE2H VPCKE
63C9H RESTORE 5468H RENUM 7A48H SPRI TE
47B2H GOSUB 4718H DEFSTR 7B37H VDP
4821H RETURN 471BH DEFI NT 7B5AH BASE
485DH REM 471EH DEFSNG 55A8H CALL
63E3H STOP 4721H DEFDBL 7911H TIME
4A24H PRI NT 4BOEH LI NE 786CH KEY
64AFH CLEAR 6AB7H OPEN 7TE4BH MAX
522EH LI ST 7C52H FIELD 73B7H MOTOR
6286H NEW 775BH GET 6EC6H BLOAD
48E4H ON 7758H PUT 6E92H BSAVE
401CH WAI'T 6Cl14H CLOSE 7Cl16H DSKO$
501DH DEF 6B5DH LOAD 7C1BH SET
5423H POKE 6BSEH MERGE 7C20H NAME
6424H CONT 6C2FH FI LES 7C25H KILL
6FB7H CSAVE 7C48H LSET 7C2AH | PL
703FH CLOAD 7CADH RSET 7C2FH COPY
4016H OUT 6BA3H SAVE 7C34H CMD
4A1DH LPRI NT 6C2AH LFI LES 7766H LOCATE
5229H LLI ST

5. ROM BASI C | NTERPRETER

Address... 39DEH

This table of addresses is used by the Factor Evaluator to
find the handler for a function token. Although not part of the
tabl e the associ ated keywords are included with the addresses
shown bel ow.

TO FUNCTI ON TO FUNCTI ON TO FUNCTI ON
AAA
6861H LEFT$ 4FCCH PGS 30BEH FI X
6891H RI GHT$ 67FFH LEN 7940H STICK
689AH M D$ 6604H TR$ 794CH TRIG
2E97H SGN 68BBH VAL 795AH PDL
30CFH I NT 680BH ASC 7969H PAD
2E82H ABS 681BH CHR$ 7C39H DSKF
2AFFH SR 541CH PEEK 6D39H FPCS
2BDFH RND 7BF5H VPEEK 7C66H CV

29ACH SIN 6848H SPACE$ 7C6BH CVS
2A72H LOG 7C70H OCT$ 7C70H CVD
2B4AH EXP 65FAH HEX$ 6D25H EOF
2993H CGs 4FC7/H LPCS 6D03H LOC
29FBH TAN 6FFFH BI N$ 6D14H LOCF
2A14H ATN 2F8AH CI NT 7C57H MKI' $
69F2H FRE 2FB2H CSNG 7C5CH MKS$
4001H I NP 303AH CDBL 7C61H MKD$

Address... 3A3EH

This table of addresses is used during programtokenization
as an index into the BASIC keyword table (3A72H). Each of the
twenty six entries defines the starting address of one of the
keyword sub-bl ocks. The first entry points to the keywords
beginning with the letter "A", the second to those begi nning
with the letter "B" and so on.

3A72H ... A 3B9FH ... J 3C8EH ... S
3A88H ... B 3BAOH ... K 3CDBH ... T
3AOFH ... C 3BA8H ... L 3CF6H ... U
3AF3H ... D S3BESH ... M 3CFFH ... V
3B2EH ... E 3C09H ... N 3D16H ... W
3B4FH ... F 3C18H ... O 3D20H ... X
3B69H ... G 3C2BH ... P 3D24H ... Y
3B7BH ... H 3C5DH ... Q 3D25H ... Z
3B80OH ... | 3C5EH ... R

Address... 3A72H

This table contains the BASI C keywords and tokens. Each of
the twenty-six blocks within the table contains all the
keywords beginning with a particular letter, it is term nated
with a zero byte. Each keyword is stored in plain text with bit
7 set to mark the last character, this is followed i mediately
by the associ ated token. The first character of the keyword
need not be stored as this is inplied by its position in the

- 110 -

5. ROM BASI C | NTERPRETER

tabl e’ The keywords and tokens are listed belowin full, note
that the "J", "Q', "Y' and "Z" blocks are enpty:

AUTO A9H DSKF 26H LI ST 93H REM 8FH
AND F6H DRAW BEH LFILES BBH RESUVE A7H
ABS 06H ELSE AlH LOG OAH RSET B9H
ATN OEH END 81H LOCC 2CH RIGHT$ O02H
ASC 15H ERASE A5SH LEN 12H RND 08H
ATTR$ E9H ERROR A6H LEFT$ 01H RENUM AAH
BASE COH ERL ElH LOF 2DH SCREEN C5H

BSAVE DOH ERR E2H MOTOR CEH SPRITE C7H
BLOAD CFH EXP O0BH MERGE B6H STOP 90H
BEEP COH ECF 2BH MCOD FBH SWAP A4H
Bl N$ 1DH EQV FOH MKI $ 2EH SET D2H
CALL CAH FOR 82H MKS$ 2FH SAVE BAH
CLCSE B4H FIELD B1H MKD$ 30H SPC(DFH
CoPY D6H FILES B7H M D$ 03H STEP DCH

CONT 99H FN DEH MAX CDH SGN 04H
CLEAR 92H FRE OFH NEXT 83H SR 07H
CLOAD 9BH FIX 21H NAME D3H SIN 09H
CSAVE 9AH FPOS 27H NEW 94H STR$ 13H
CSRLIN EBH GOro 89H NOT EOH STRING$ E3H
ClI NT 1EH GO TO 89H OPEN BOH SPACE$ 19H
CSNG 1FH GOsuB 8DH OUT 9CH SCOUND C4H
CDBL 20H GET B2H ON 95H STICK 22H
Cvi 28H HEX$ 1BH OR F7H STRIG 23H
CvS 29H INPUT 85H OCT$ 1AH THEN DAH
CvD 2AH | F 8BH OFF EBH TRON A2H
CGs OCH INSTR E5H PRI NT 91H TROFF A3H
CHR$ 16H I NT 05H PUT B3H TAB(DBH
CI RCLE BCH INP 10H POKE 98H TO D9H
COLOR BDH I M FAH PGS 11H TIME CBH
CLS 9FH | NKEY$ ECH PEEK 17H TAN ODH
CVD D7rH |1 PL D5H PSET C2H USING E4H
DELETE A8H KILL D4AH PRESET C3H USR DDH
DATA 84H KEY CCH PO NT EDH VAL 14H
DI M 86H LPRINT 9DH PAI NT BFH VARPTR E7H
DEFSTR ABH LLIST 9EH PDL 24H VDP C8H
DEFI NT ACH LPGS 1CH PAD 25H VPOKE CoH

DEFSNG ADH LET 88H PLAY ClH VPEEK 18H
DEFDBL AEH LOCATE D8H RETURN 8EH WDTH AOH
DSKCs D1H LINE AFH READ 87H WAIT 96H
DEF 97H LOAD B5H RUN 8AH XOR F8H
DSKI$ EAH LSET B8H RESTORE 8CH

Address... 3D26H
This twenty-one byte table is used by the Interpreter during

program tokeni zation. It contains the ten single character
keywords and their tokens:

+ ... Fl1H * ... F3H ~ ... F5H ... E6H= ... EFH
- ... F2H /... F4H \ ... FCH >... EEH< ... FOH

- 111 -

5. ROM BASI C | NTERPRETER

Address... 3D3BH

This table is used by the Expression Evaluator to determ ne
the precedence level for a given infix operator, the higher the
tabl e value the greater the operator's precedence. Not included
are the precedences for the relational operators (64H), the
"NOT" operator (5AH) and the negation operator (7DH), these are
defined directly by the Expression and Factor Eval uators.

79H ... + 46H ... OR
79H ... - 3CH ... XOR
7CH ... * 32H ... EQV
7CH ... [/ 28H ... I WP
7FH ... 7 7TAH ... MOD
50H ... AND 7BH \

Address... 3D47H

This table is used to convert the result of a user defined
function to the same type as the Variable used in the function
definition. It contains the addresses of the type conversion
routines:

303AH ... CDBL

0000H ... Not used

2F8AH ... CINT

3058H ... Check string type
2FB2H ... CSNG

Address... 3D51H

This table of addresses is used by the Expression Eval uator
to find the handler for a particular infix math operator when
both operands are doubl e precision:

269AH ... +
268CH ... -
27E6H ... *
289FH ... [/
37D7/H ... ~
2F83H ... Relation

Address... 3D5DH

This table of addresses is used by the Expression Eval uator
to find the handler for a particular infix math operator when
both operands are single precision:

324EH ... +
3257H ... -
325CH ... *
3267H ... /
37C8H ... 7
2F21H ... Rel ation

- 112 -

5. ROM BASI C | NTERPRETER

Address... 3D69H

This table of addresses is used by the Expression Eval uator
to find the handler for a particular infix math operator when
both operands are integer:

3172H ... +
3167H ... -
3193H ... *
4DB8H ... /
383FH ... ~
2F4DH ... Rel ation

Address... 3D75H

This table contains the Interpreter error nmessages, each one
is stored in plain text with a zero byte ternminator. The
associ ated error codes are shown bel ow for reference only, they
do not formpart of the table:

01 NEXT without FOR 19 Device I/O error

02 Syntax error 20 Verify error

03 RETURN wi t hout GOSUB 21 No RESUME

04 CQut of DATA 22 RESUME wi t hout error
05 Illegal function call 23 Unprintable error

06 Overflow 24 M ssing operand

07 Qut of nenory 25 Line buffer overfl ow
08 Undefined |ine nunber 50 FI ELD overfl ow

09 Subscript out of range 51 Internal error

10 Redi mensi oned array 52 Bad file nunber

11 Division by zero 53 File not found

12 Il legal direct 54 File already open

13 Type mi smatch 55 I nput past end

14 Qut of string space 56 Bad file nane

15 String too | ong 57 Direct statenment in file
16 String fornula too conpl ex 58 Sequential /0 only
17 Can't CONTI NUE 59 File not OPEN

18 Undefi ned user function

Address... 3FD2H

This is the plain text nmessage in

byt e.

terminated by a zero

Address... 3FD7H

This is the plain text nessage "Ok", CR, LF ternminated by a
zero byte.

Address... 3FDCH

This is the plain text nmessage "Break" term nated by a zero
byt e.

- 113 -

5. ROM BASI C | NTERPRETER

Address... 3FE2H

This routine searches the Z80 stack for the "FOR' | oop
par aneter bl ock whose | oop Variable address is supplied in
register pair DE. The search is started four bytes above the
current Z80 SP to allow for the caller's return address and the
Runl oop return address. |If no "FOR' token (82H) exists the
routine terninates Flag Nz, if one is found the | oop Variable
address is taken fromthe paraneter block and checked. The
routine termnates Flag Z upon a successful match with register
pair HL pointing to the type byte of the paranmeter bl ock
Ot herwi se the search noves up twenty-two bytes to the start of
the next paraneter bl ock.

Address... 4001H

This routine is used by the Factor Evaluator to apply the
"I'NP" function to an operand contained in DAC. The port nunber
is checked (5439H), the port read and the result placed in DAC
as an integer (4FCFH).

Address... 400BH

This routine first evaluates an operand in the range -32768
to +65535 (542FH) and places it in register pair BC. After
checking for a commm, via the SYNCHR standard routine, it
eval uates a second operand in the range 0 to 255 (521CH) and
pl aces this in register A

Address... 4016H

This is the "OUT" statenent handler. The port nunber and
data byte are evaluated (400BH) and the data byte witten to
the rel evant Z80 port.

Address... 401CH

This is the "WAIT" statement handler. The port nunber and
"AND" operands are first evaluated (400BH) followed by the
optional "XOR' operand (521CH). The port is then repeatedly
read and the operands applied, XOR then AND, until a non-zero
result is obtained. Contrary to the information given in sone
MSX manual s the | oop can be broken by the CTRL-STOP key as the
CKCNTC standard routine is called frominside it.

Address... 4039H

This routine is used by the Runloop when it encounters the
end of the programtext while in program node. ONEFLAG i s
checked to see whether it still contains an active error code.
If so a "No RESUME" error is generated, otherw se program
term nation continues nornmally (6401H). The idea behind this
routine is to catch any "ON ERROR' handl ers wi thout a " RESUME"
statement at the end.

- 114 -

5. ROM BASI C | NTERPRETER

Address... 404FH

This routine is used by the "READ' statenent handler when an
error is found in a "DATA" statement. The |ine nunber contai ned
in DATLIN is copied to CURLIN so the error handler will flag
the "DATA" line as the illegal statenment rather than the
program line. Control then drops into the "Syntax error"
gener at or.

Address... 4055H

This is a group of nine error generators, register Eis
| oaded with the relevant error code and control drops into the
error handl er:

ADDR. ERROR
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
4055H Syntax error

4058H Di vi sion by zero

405BH NEXT without FOR

405EH Redi nensi oned array
4061H Undefi ned user function
4064H RESUME wi t hout error
4067H Overfl ow error

406AH M ssi ng oper and

406DH Type mni smatch

Address... 406F

This is the Interpreter error handler, all error generators
transfer to here with an error code in register E. VLZADR is
first checked to see if the "VAL" statenment handl er has changed
the programtext, if so the original character is restored from
VLZDAT. The current line nunber is then copied from CURLIN to
ERRLI N and DOT and the Z80 stack is restored from SAVSTK
(62F0H). The error code is placed in ERRFLG for use by the
"ERR' function, and the current programtext position copied
from SAVTXT to ERRTXT for use by the "RESUVE" st atenent
handl er. The error |line nunber and programtext position are
al so copied to OLDLIN and OLDTXT for use by the " CONT"
statenment handler. ONELIN is then checked to see if a previous
"ON ERROR" statenent has been executed. |f so, and providing no
error code is already active, control transfers to the Runl oop
(4620H) to execute the BASIC error recovery statenents.

O herwi se the error code is used to count through the error
nmessage table at 3D75H until the required one is reached. A
CR,LF is issued (7323H) and the screen forced back to text nopde
via the TOTEXT standard routine. A BELL code is then issued and
the error nessage displayed (6678H). Assuning the Interpreter
is in program node, rather than direct node, this is followed
by the |ine nunber (340AH) and control drops into the "OK"
poi nt .

- 115 -

5. ROM BASI C | NTERPRETER

Address... 411FH

This is the re-entry point to the Interpreter Mainloop for a
term nating program The screen is forced to text node via the
TOTEXT standard routine, the printer is cleared (7304H) and 1/0O
buffer 0 closed (6D7BH). A CR LF is then issued to the screen
(7323H), the nessage "OK" is displayed (6678H) and contro
drops into the Mainl oop

Address... 4134H

This is the Interpreter Mainloop. CURLIN is first set to
FFFFH to indicate direct node and AUTFLG checked to see if
"AUTO' npbde is on. If so the next line nunber is taken from
AUTLI N and di spl ayed (3412H). The Program Text Area is then
searched to see if this line already exists (4295H) and either
an asterisk or space displayed accordingly.

The |1 SFLIO standard routine is then used to determn ne
whet her a "LOAD' statenent is active. If so the programline is
collected fromthe cassette (7374H), otherwise it is taken from
the console via the PINLIN standard routine. If the line is
enpty or the CTRL- STOP key has been pressed control transfers
back to the start of the Mainloop (4134H) with no further
action. If the Iine comences with a line nunber this is
converted to an unsigned integer in register pair DE (4769H)
The line is then converted to tokenized form and placed in KBUF
(42B2H). If no line number was found at the start of the line
control then transfers to the Runl oop (6D48H) to execute the
statenent.

Assuming the line commences with a line nunber it is tested
to see if it is otherwise enpty and the result tenporarily
saved. The line nunber is copied to DOT and AUTLIN increased by
the contents of AUTINC, if AUTLIN now exceeds 65530 the "AUTO'
nmode is turned of f. The Program Text Area is then searched
(4295H) to find a matching line nunber or, failing this, the
position of the next highest |line nunber. If no matching |ine
nunber is found and the line is enpty and "AUTO' node is off an
"Undefined |line nunber" error is generated (481CH). If a
mat ching |ine nunmber is found and the line is enpty and "AUTO'
node is on the Mainloop sinply skips to the next statenent
(4237H).

O herwi se any pointers in the Program Text Area are
converted back to line nunbers (54EAH) and any existing program
l'ine del eted (5405H). Assum ng the new programline is non-
enpty the Program Text Area is opened up by the required anpunt
(6250H) and the tokenized program|ine copied from KBUF.

The Program Text Area links are then recal cul ated (4257H)

the Variable Storage Areas are cleared (629AH) and contro
transfers back to the start of the Minl oop.

- 116 -

5. ROM BASI C | NTERPRETER

Address... 4253H

This routine recal cul ates the Program Text Area |links after
a program nodification. The first two bytes of each program
line contain the starting address of the following line, this
is called the link. Although the link increases the anount of
storage required per programline it greatly reduces the tine
required by the Interpreter to locate a given |ine.

An exanple of a typical programline is shown below, in this
case the line "10 PRINT 9" situated at the start of the Program
Text Area (8001H)

¢ 09H 80H * OAH OOH 3 91H 3 20H 3 1AH 3 OOH 3
AAAAAAAAAAAAAAAAAAAAAR A AAAAAAAAAARAAAAARAAAL

Fi gure 43: Program Line

In the above exanple the link is stored in Z80 word order
(LSB,MSB) and is immediately followed by the binary line
nunber, also in word order. The statenent itself is conposed of
a "PRINT" token (91H), a single space, the nunber nine and the
end of line character (OOH). Further details of the storage
format can be found in the tokenizing routine (42B2H)

Each link is recal culated sinply by scanning through the
line until the end of |line character is found. The process is
conpl ete when the end of the Program Storage Area, narked by
the special link of 0000H, is reached.

Address... 4279H

This routine is used by the "LIST" statenment handler to
collect up to two line nunber operands fromthe programtext.
If the first line nunber is present it is converted to an
unsigned integer in register pair DE (475FH), if not a default
val ue of O0OOH is returned. If the second |line nunber is
present it nust be preceded by a "-" token (F2H) and is
returned on the Z80 stack, if not a default value of 65530 is
returned. Control then drops into the programtext search
routine to find the first referenced programli ne.

Address... 4295H

This routine searches the Program Text Area for the program
| ine whose |ine nunber is supplied in register pair DE
Starting at the address contained in TXTTAB each program|line
is exam ned for a match. If an equal line nunber is found the
routine terninates with Flag Z, C and register pair BC pointing
to the start of the programline. |f a higher |ine nunber is
found the routine term nates Flag NZ,NC and if the end link is
reached the routine term nates Flag Z, NC

- 117 -

5. ROM BASI C | NTERPRETER

Address... 42B2H

This routine is used by the Interpreter Minloop to tokenize
aline of text. On entry register pair HL points to the first
text character in BUF. On exit the tokenized line is in KBUF,
register pair BC holds its length and register pair HL points
to its start.

Except after opening quotes or after the "REM', "CALL" or
"DATA" keywords any string of characters matching a keyword is
repl aced by that keyword' s token. Lower case al phabetics are
changed to upper case for keyword comparison. The character "?"
is replaced by the "PRINT" token (91H) and the character "'" by
":" (3AH), "REM' token (8FH), "'" token (E6H). The "ELSE" token
(AlH) is preceded by a statenent separator (3AH). Any other
nm scel | aneous characters in the text are copi ed wi thout
alteration except that |ower case al phabetics are converted to
upper case. Those tokens smaller than 80H, the function tokens,
cannot be stored directly in KBUF as they will conflict with
ordinary text. Instead the sequence FFH, token+80H is used.

Nurmeric constants are first converted into one of the
standard types in DAC (3299H). They are then stored in one of
several ways dependi ng upon their type and nmgnitude, the
general idea being to nmininize menory usage:

OBHLSB MSB Oct al nunber

OCHLSB MSB Hex nunber

11Hto 1AH Integer 0 to 9

OFH LSB Integer 10 to 255
ICHLSB MSB I nteger 256 to 32767
IDHEEDD DD DD Si ngl e Precision

1FH EE DD DD DD DD DD DD DD ... Doubl e Precision

There is no specific token for binary nunbers, these are |eft
as character strings. This would appear to be a | egacy from
earlier versions of Mcrosoft BASIC. Any sign prefixing a
number is regarded as an operator and is stored as a separate
token, negative nunbers are not produced during tokenization
As doubl e precision nunbers occupy so nuch space a line
containing too many, for exanple PRI NT 1#, 1#, 1# etc. nmmy cause
KBUF to fill up. If this happens a "Line buffer overflow' error
i s generat ed.

Any nunber followi ng one of the keyword tokens in the table
at 43B5H is considered to be a line nunber operand and is
stored with a different token

ODH LSB MSB Poi nt er
OEH LSB MSB Li ne nunber

During tokenization only the normal type (OEH) is generated,
when a program actually runs these |ine nunber operands are
converted to the address pointer type (ODH)

- 118 -

5. ROM BASI C | NTERPRETER

Address... 43B5H

This table of tokens is used during tokenization to check
for the keywords which take |ine nunber operands. The keywords
thensel ves are listed bel ow

RESTCORE RUN

AUTO LI ST
RENUM LLI ST
DELETE GOro
RESUNME RETURN
ERL THEN
ELSE GOsuB

Address... 4524H

This is the "FOR' statenent handler. The | oop Variable is
first located and assigned its initial value by the "LET"
handl er (4880H), the address of the loop Variable is returned
in register pair DE. The end of the statenent is found (485BH)
and its address placed in ENDFOR. The Z80 stack is then
searched (3FE6H) for any paranmeter bl ocks using the sane | oop
Vari abl e. For each one found the current ENDFOR address is
conpared with that of the parameter block, if there is a match
that section of the stack is discarded. This is done in case
there are any inconplete |loops as a result of a "GOTO' back to
the "FOR' statenment frominside the |oop

The term nation operand and optional "STEP' operand are then
eval uated and converted to the sanme type as the | oop Vari abl e.
After checking that stack space is available (625EH) a twenty-
five byte paraneter block is pushed onto the Z80 stack. This is
made up of the follow ng:

2 bytes ... ENDFOR address

2 bytes ... Current |ine nunber

8 bytes ... Loop ternmination val ue

8 bytes ... STEP val ue

1 byte ... Loop type

1 byte ... STEP direction

2 bytes ... Address of | oop Variable
1 byte ... FOR token (82H)

The paraneter block remains on the stack for use by the "NEXT"
statement handler until termnation is reached, it is then
di scarded. The size of the bl ock remains constant even though
for integer and single precision |oop Variables, the full eight
bytes are not required for the ternination and STEP val ues. In
these cases the least significant bytes are packed out with
gar bage.

It should be noted that the type of arithnmetic operation

performed by the "NEXT" statenment handl er, and hence the | oop
execution speed, depends entirely upon the |oop Variable type

- 119 -

5. ROM BASI C | NTERPRETER

and not the operand types. For the fastest program execution
i nteger type Variables, N for exanple, should be used.

Address... 4601H

This is the Runl oop, each statenent handler returns here
upon conpletion so the Interpreter can proceed to the next
statenent. The current Z80 SP is copied to SAVSTK for error
recovery purposes and the CTRL- STOP key checked via the | SCNTC
standard routine. Any pending interrupts are processed (6389H)
and the current programtext position, held in register pair HL
t hroughout the Interpreter, is copied to SAVTXT.

The current program character is then exanined, if this is a
stat ement separator (3AH) control transfers inmediately to the
execution point (4640H). If it is anything else but an end of
line character (OOH) a "Syntax error" is generated (4055H) as
there is spurious text at the end of the statenent. Register
pair HL is advanced to the first character of the new program
line and the Iink exanmined, if this is zero the programis
term nated (4039H). Otherwi se the line nunber is taken fromthe
new line and placed in CURLIN. If TRCFLG is non-zero the |ine
nunber is displayed (3412H) encl osed by square brackets,
control then drops into the execution point.

Address... 4640H

This is the Runl oop execution point. Areturn to the start
of the Runl oop (4601H) is pushed onto the Z80 stack and the
first character taken fromthe new statenment via the CHRGIR
standard routine. If it is an underline character (5FH) contro
transfers to the "CALL" statenent handler (55A7H). If it is
smal l er than 81H, the smallest statenent token, contro
transfers to the "LET" handler (4880H). If it is larger than
D8H, the largest statenent token, it is checked to see if it is
one of the function tokens allowed as a statenent (51ADH)

O herwi se the handl er address is taken fromthe table at 392EH
and pushed onto the stack. Control then drops into the CHRGIR
standard routine to fetch the next program character before
control transfers to the statenent handler.

Address... 4666H

Nane. CHRGTR
Entry..... HL points to current program character
Exit...... A=Next program character

Modi fies.. AF, HL

Standard routine to fetch the next character fromthe
programtext. Register pair HL is incremented and the character
placed in register A If it is a space, TAB code (09H) or LF
code (OAH) it is skipped over. If it is a statenent separator
(3AH) or end of line character (O0OH) the routine term nates
with Flag Z,NC. If it is a digit from"0" to "9" the routine
termnates with Flag NZ,C. If it is any other character apart

- 120 -

5. ROM BASI C | NTERPRETER

fromthe nuneric prefix tokens the routine term nates Fl ag
NZ,NC. If the character is one of the nuneric prefix tokens
then it is placed in CONSAV and the operand copied to CONLO.
The type code is placed in CONTYP and the address of the
trailing program character in CONTXT.

Address... 46E8H

This routine is used by the Factor Evaluator and during
det okeni zation to recover a nuneric operand when one of the
prefix tokens is returned by the CHRGIR standard routine. The
prefix token is first taken from CONSAV, if it is anything but
a line nunber or pointer token the operand is copied from CONLO
to DAC and the type code copied from CONTYP to VALTYP. If it is
a line nunber it is converted to single precision and placed in
DAC (3236H). If it is a pointer the original line nunber is
recovered fromthe referenced programline, converted to single
preci sion and placed in DAC (3236H)

Address... 4718H

This is the "DEFSTR' statenent handler. Register E is | oaded
with the string type code (03H) and control drops into the
general type definition routine.

Address... 471BH

This is the "DEFINT" statement handler. Register E is |oaded
with the integer type code (02H) and control drops into the
general type definition routine.

Address... 471EH

This is the "DEFSNG' statenent handler. Register E is | oaded
with the single precision type code (04H) and control drops
into the general type definition routine.

Address... 4721H

This is the "DEFDBL" statenent handler. Register E is | oaded
with the double precision type code (08H) and the first range
definition character checked (64A7H). If this is not upper case
al phabetic a "Syntax error" is generated (4055H). If a "-"
token (F2H) follows the second range definition character is
taken and checked (64A7H), the difference between the two
determ nes the nunber of entries in DEFTBL that are filled with
the type code.

Address... 4755H

This routine evaluates an operand and converts it to an
integer in register pair DE (520FH). |If the operand is negative
an "lllegal function call" error is generated.

- 121 -

5. ROM BASI C | NTERPRETER

Address... 475FH

This routine is used by the statement handl ers shown in the
table at 43B5H to collect a single Iine nunber operand fromthe
programtext and convert it to an unsigned integer in register
pair DE. If the first character in the text is a "." (2EH) the
routine termnates with the contents of DOT. If it is one of
the |ine nunber tokens (ODH or OEH) the routine terminates with
the contents of CONLO. O herw se successive digits are taken
and added to the product, with appropriate nultiplications by
ten, until a non-nuneric character is found.

Address... 479EH

This is the "RUN' statenent handler. If no |ine nunber
operand is present in the programtext the systemis cleared
(629AH) and control returns to the Runloop with register pair
HL pointing to the start of the Program Storage Area. If a |line
nunber operand is present the systemis cleared (62A1H) and
control transfers to the "GOTO' statenent handler (47E7H)

O herwise a following filenane is assuned, for exanple RUN
"CAS: FI LE", and control transfers to the "LOAD" statenent
handl er (6B5BH)

Address... 47B2H

This is the "GOSUB" statenent handler. After checking that
stack space is available (625EH) the |ine nunber operand is
collected and placed in register pair DE (4769H). The seven
byte paraneter block is then pushed onto the stack and contro
transfers to the "GOTO' handl er (47EBH). The parameter block is
made up of the follow ng:

2 bytes ... End of statenent address
2 bytes ... Current |ine nunber

2 bytes ... 0000H

1 byte ... GOSUB token (8DH)

The paraneter block remains on the stack until a "RETURN'
statement is executed. It is then used to determine the
original programtext position after which it is discarded.

Address... 47CFH

This routine is used by the Runloop interrupt processor
(6389H) to create a "GOSUB" type paraneter block on the Z80
stack. An interrupt block is identical to a nornal block except
that the two zero bytes shown above are replaced by the address
of the device's entry in TRPTBL. This address will be used by
the "RETURN' statenent handl er to update the device's interrupt
status once a subroutine has term nated. After pushing the
paraneter block control transfers to the Runloop to execute the
program |ine whose address is supplied in register pair DE

- 122 -

5. ROM BASI C | NTERPRETER

Address... 47E8H

This is the "GOTQ' statement handler. The |ine nunber
operand is collected (4769H) and placed in register pair HL. If
it is a pointer control transfers imediately to the Runloop to
begi n execution at the new programtext position. Otherw se the
l'ine nunber is conpared with the current |ine nunber to
deternmine the starting position for the programtext search. If
it is greater the search starts fromthe end of this |ine
(4298H), if it is smaller it starts fromthe begi nning of the
Program Text Area (4295H). If the referenced |ine cannot be
found an "Undefined |ine nunber" error is generated (481CH)

O herwi se the line nunber operand is replaced by the referenced
programline's address and its token changed to the pointer
type (5583H). Control then transfers to the Runloop to execute
the referenced programli ne.

Address... 481CH
This is the "Undefined |ine nunber” error generator.
Address... 4821H

This is the "RETURN' statenent handler. A dunmy | oop
Variabl e address is placed in register pair DE and the Z80
stack searched (3FE2H) to find the first paraneter block not
bel onging to a "FOR" | oop, this section of stack is then
di scarded. If no "GOSUB" token (8DH) is found at this point a
"RETURN wi t hout GOSUB" error is generated.

The next two bytes are then taken fromthe block, if they
are non-zero the block was generated by an interrupt and the
tenporary "STOP" condition is renmoved (633EH). The program text
is then exanined, if anything follows the "RETURN' token itself
it is assunmed to be a |line nunmber operand and control transfers
to the "GOTO' handler (47E8H). Otherwi se the old line nunber
and program text address are taken fromthe bl ock and contro
returns to the Runl oop

Address... 485BH

This is the "DATA" statenent handler. The programtext is
ski pped over until a statenent separator (3AH) or end of line
character (0O0OH) is found. This routine is also the "REM and
"ELSE" statenent handler via the entry point at 485DH, in this
case only the end of line character acts as a term nator

Address... 4880H

This is the "LET" statenent handler. The Variable is first
| ocated (5EA4H), its address saved in TEMP and t he operand
eval uated (4C64H). |If necessary the operand's type is then
changed to match that of the Variable (517AH). Assuning the
operand is one of the three nuneric types it is sinply copied

- 123 -

5. ROM BASI C | NTERPRETER

fromDAC to the Variable in the Variable Storage Area (2EF3H)
If the operand is a string type the address of the string body
is taken fromthe descriptor and checked. If it is in KBUF, as
woul d be the case for an explicit string in a direct statenent,
the body is first copied to the String Storage Area and a new
descriptor created (6611H). The descriptor is then freed from
TEMPST (67EEH) and copied to the Variable in the Variable

St orage Area (2EF3H)

Address... 48E4H

This is the "ON ERROR', "ON DEVI CE GOSUB" and "ON
EXPRESSI ON' statenent handler. If the next programtext
character is not an "ERROR' token (A6H) control transfers to
the "ON DEVI CE GOSUB" and "ON EXPRESSI ON' handl er (490DH). The
programtext is checked to ensure that a "GOTO' token (89H)
follows and then the |line nunber operand collected (4769H). The
programtext is searched to obtain the address of the
referenced line (4293H) and this is placed in ONELIN. If the
Iine nunber operand is non-zero the routine then term nates. |f
the line nunber operand is zero ONEFLG is checked to see if an
error situation already exists (inplying that the statenent is
inside a BASIC error recovery routine). If so control transfers
to the error handler (4096H) to force an i mediate error,
otherwi se the routine term nates normally.

Address... 490DH

This is the "ON DEVI CE GOSUB" and "ON EXPRESSI ON' st at enent
handler. If the next programtext character is not a device
token (7810H) control transfers to the "ON EXPRESSI ON' handl er
(4943H). After checking the programtext for a "GOSUB" token
(8DH) each of the line nunber operands required for a
particular device is collected in turn (4769H). Assuming a
given line nunber operand is non-zero the programtext is
searched to find the address of the referenced line (4293H) and
this is placed in the device's entry in TRPTBL (785CH). The
routine term nates when no nore |ine nunber operands are found.

Address... 4943H

This is the "ON EXPRESSI ON' statenent handler. The operand
is evaluated (521CH) and the follow ng "GOSUB" token (8DH) or
"GOTO" token (89H) placed in register A. The operand is then
used to count along the programtext until register pair HL
points to the required |ine nunber operand. Control then
transfers back to the Runl oop execution point (4646H) to decode
the "GOSUB" or "GOTO' token

Address... 495DH
This is the "RESUVE" statenent handler. ONEFLG is first

checked to make sure that an error condition already exists, if
not a "RESUME without error” is generated (4064H). If a non-

- 124 -

5. ROM BASI C | NTERPRETER

zero line nunber operand follows control transfers to the
"GOro' handler (47EBH). If a "NEXT" token (83H) follows the
position of the error is restored from ERRTXT and ERRLIN, the
start of the next statenent is found (485BH) and the routine
termnates. If there is no |ine nunber operand or if it is zero
the position of the error is found from ERRTXT and ERRLIN and
the routine term nates.

Address... 49AAH

This is the "ERROR" statenent handler. The operand is
evaluated and placed in register E (521CH). If it is zero an
"lIllegal function call" error is generated (475AH), otherw se
control transfers to the error handl er (406FH)

Address... 49B5H

This is the "AUTO' Statenment handler. The optional start and
increnment |ine nunber operands, both with a default val ue of
ten, are collected (475FH) and placed in AUTLI N and AUTI NC
After maki ng AUTFLG non-zero the Runloop return is destroyed
and control transfers directly to the Mainloop (4134H)

Address... 49E5H

This is the "I F' statement handl er. The operand is eval uated
(4C64H) and, after checking for a "GOTO' token (89H) or "THEN"
token (DAH), its sign is tested (2EA1H). If the operand is non-
zero (true) the following text is executed either by an
i medi ate transfer to the Runloop (4646H) or, for a line nunber
operand, the "GOTO' handler (47E8H). If the operand is zero
(false) the statenment text is scanned (485BH) until an "ELSE"
token (AlH) is found not bal anced by an "IF" token (8BH) and
execution re-conmences.

Address... 4A1DH

This is the "LPRINT" statement handler. PRTFLG is set to
O1H, to direct output to the printer, and control transfers to
the "PRINT" handl er (4A29H)

Address... 4A24H

This is the "PRINT" statenent handler. The programtext is
first checked for a trailing buffer number and, if necessary,
PTRFIL set to direct output to the required I/O buffer (6D57H)
If no nore programtext exists a CR LF is issued (7328H) and
the routine term nates (4AFFH). O herw se successive characters
are taken fromthe programtext and analyzed. If a "USING'
token (E4H) is found control transfers to the "PRI NT USI NG
handl er (60B1H). If a ";" character is found control just
transfers back to the start to fetch the next item (4A2EH). |If
a comma is found sufficient spaces are issued to bring the
current print position, from TTYPOS, LPTPCS or an |/ O buffer

- 125 -

5. ROM BASI C | NTERPRETER

FCB, to an integral nultiple of fourteen. If output is directed
to the screen and the print position is equal to or greater
than the contents of CLMLST or if output is directed to the
printer and it is equal to or greater than 238 then a CR LF is
i ssued instead (7328H). If a "SPC(" token (DFH) is found the
operand is evaluated (521BH) and the required nunber of spaces
are output. If a "TAB(" token (DBH) is found the operand is
eval uated (521BH) and sufficient spaces issued to bring the
current print position, from TTYPCOS, LPTPCS or an |/ O buffer
FCB, to the required point.

If none of these characters is found the programtext
contains a data itemwhich is then evaluated (4C64H). If the
operand is a string it is sinply displayed (667BH). If it is
nuneric it is first converted to text in FBUFFR (3425H) and a
string descriptor created (6635H). If output is directed to an
I /O buffer the resulting string is then displayed (667BH). |If
output is directed to the screen or printer the current print
position, from TTYPOS or LPTPOS, is conpared with the |ine
I ength and a CR LF issued (7328H) if the output will not fit on
the line. The maximumline length is 255 for the printer and is
taken from LINLEN for the screen. Once the string has been
di spl ayed control transfers back to the start of the handler.

Address... 4AFFH

This routine zeroes PRTFLG and PTRFIL to return the
Interpreter's output to the screen

Address... 4BOEH

This is the "LINE I NPUT", "LINE INPUT#" and "LINE" statenent
handler. If the foll owing programtext character is anything
other than an "I NPUT" token (85H) control transfers to the
"LINE" statenent handler (58A7H). If the follow ng programtext
character is a "#" (23H) control transfers to the "LINE | NPUT#"
statement handl er (6D8FH)

Any follow ng pronpt string is evaluated and di spl ayed
(4B7BH) and the Variable |ocated (5EA4H) and checked to ensure
that it is a string type (3058H). The line of text is
collected fromthe console via the INLIN standard routine, if
Flag C (CTRL-STOP) is returned control transfers to the "STOP"
st at enent handl er (63FEH). Ot herwi se the input string is
anal yzed and a descriptor created (6638H), control then
transfers to the "LET" statenent handler for assignnment
(4892H). It should be noted that the screen is not forced to
text node before the input is collected.

Address... 4B3AH

This is the plain text nessage "?Redo fromstart", CR, LF
term nated by a zero byte.

- 126 -

5. ROM BASI C | NTERPRETER

Address... 4B4DH

This routine is used by the "READ/ I NPUT" statenent handl er
if it has failed to convert a data itemto nuneric form If in
"READ' node (FLG NP is non-zero) a "Syntax error" is generated
(404FH). Otherwi se the nessage "?Redo fromstart"” is displayed
(6678H) and control returns to the statenment handl er.

Address... 4B62H

This is the "I NPUT#" Statenment handler. The buffer nunber is
eval uated and PTRFIL set to direct input fromthe required I/0O
buffer (6D55H), control then transfers to the conbi ned
"READ/ | NPUT" st atenent handl er (4B9BH)

Address... 4B6CH

This is the "I NPUT" statenent handler. If the next program
text character is a "#" control transfers to the "I NPUT#"
statement handl er (4B62H). Otherwi se the screen is forced to
text node, via the TOTXT standard routine, and any pronpt
string anal yzed (6636H) and di spl ayed (667BH). A question nmark
is then displayed and a line of text collected fromthe console
via the Q NLIN standard routine. If this returns Flag C (CTRL-
STOP) control transfers to the "STOP" handler (63FEH). If the
first character in BUF is zero (null input) the handler
term nates by skipping to the end of the statenent (485AH)
ot herwi se control drops into the conbined "READ/ | NPUT* handl er

Address... 4B9FH

This is the "READ' statement handler, a large section is
al so used by the "INPUT" and "I NPUT#" statenents so the
structure is rather awkward. Each Variable found in the program
text is located in turn (5EA4H), for each one the corresponding
data itemis obtained and assigned to the Variable by the "LET"
handl er (4893H). When in "READ' npode the data itens are taken
fromthe programtext using the initial contents of DATPTR
(4C4A0H). When in "INPUT" or "INPUT#" nmpde the data itens are
taken fromthe text buffer BUF.

If the data items are exhausted in "READ' node an "CQut of
DATA" error is generated. |f they are exhausted in "INPUT" nopde
two question marks are displayed and another line fetched from
the console via the Q NLIN standard routine. If they are
exhausted in "I NPUT#" npde another line of text is copied to
BUF fromthe relevant 1/0O buffer (6D83H). If the Variable |ist
is exhausted while in "I NPUT" npde the nessage "Extra ignored”
is displayed (6678H) and the handler term nates (4AFFH). In
"1 NPUT#" npde no nessage is displayed while in "READ' node
control term nates by updating DATPTR (63DEH). If a data item
cannot be converted to nuneric form (3299H) to match a nuneric
Vari abl e control transfers to the "?Redo fromstart" routine
(4B4DH) .

- 127 -

5. ROM BASI C | NTERPRETER

Address... 4C2FH

The is the plain text nessage "7?Extra ignored", CR, LF
term nated by a zero byte.

Address... 4C40H

This routine is used by the "READ' handler to |locate the
next "DATA" statenent in the programtext, the address to start
fromis supplied in register pair HL. Each program statenent is
exam ned until a "DATA" token (84H) is found whereupon the
routine termnates (4BD1H). If the end link is reached an "CQut
of DATA" error is generated. As the search proceeds the line
nunber of each programline is placed in DATLIN for use by the
error handl er.

Address... 4C5FH

This routine checks that the next character in the program
text is the "=" token (EFH) and then drops into the Expression
Eval uator. When entered at 4C62H it checks for "(".

Address... 4C64H

This is the Expression Evaluator. On entry register pair HL
points to the first character of the expression to be
evaluated. On exit register pair HL points to the character
followi ng the expression, the result is in DAC and the type
code in VALTYP. For a string result the address of the string
descriptor is returned at DAC+2. The descriptor itself
conprising a single byte for the string length and two bytes
for its address, will be in TEMPST or inside a string Variable.

An expression is a list of factors (4DC7H) |inked together
by operators with differing precedence |levels. To process such
an expression correctly the Expression Evaluator nust be able
to tenporarily stack an internediate result, if the next
operator has a higher precedence than the current operator, and
start afresh on a new calculation. It therefore has two basic
operations, STACK and APPLY. For exanpl e:

3+250\ 27 2* 37 3+1,

STACK: 3+ (\ follows)
STACK: 250\ (follows)
APPLY: 2n2=4 (* follows)
STACK: 4* (follows)
APPLY: 3n3=27 (+ fol l ows)
APPLY: 4*27=108 (+ follows)
APPLY: 250\ 108=2 (+ foll ows)
APPLY: 3+2=5 (+ fol l ows)
APPLY: 5+1=6 (, follows)

Eval uati on term nates when the next operator has a precedence

- 128 -

5. ROM BASI C | NTERPRETER

equal to or lower than the initial precedence and the stack is
enpty. The expression delimter, shown as a commma in the
exanple, is regarded as having a precedence of zero and so wl|
al ways halt evaluation. Normally the Expression Eval uator
starts off with an initial precedence of zero but the entry
point at 4C67H may be used to supply an alternative value in
register D. This facility is used by the Factor Evaluator to
restrict the range of eval uation when applying the nonadic
negati on and "NOT" operators.

Address... 4D22H

This routine is used by the Expression Evaluator to apply an
infix math operator (+-*/) to a pair of numeric operands.
There are separate routines for the relational operators
(4F57H) and the | ogical operators (4F78H). The first operand,
its type code, and the operator token are supplied on the Z80
stack, the second operand and its type code are supplied in DAC
and VALTYP. The types of both operands are first conpared, if
they differ the | owest precision operand is converted to match
the higher. The operands are then noved to the positions
required by the math routines. For integers the first operand
is placed in register pair DE and the second in register pair
HL. For single precision the first operand is placed in
registers C, B, E, D and the second in DAC. For double precision
the first operand is placed in DAC and the second in ARG The
operator token is then used to obtain the required address from
the table at 3D51H, 3D5DH or 3D69H, dependi ng upon the operand
type, and control transfers to the relevant math routine.

Address... 4DB8H

This routine is used by the Expression Evaluator to divide
two integer operands. The first operand is contained in
register pair DE and the second in register pair HL, the result
is returned in DAC. Both operands are converted to single
preci sion (2FCBH) and control transfers to the single precision
di vision routine (3265H)

Address... 4DC7H

This is the Factor Evaluator. On entry register pair HL
points to the character before the factor to be evaluated. On
exit register pair HL points to the character follow ng the
factor, the result is in DAC and the type code in VALTYP. A
factor may be one of the follow ng:

(1) A nuneric or string constant
(2) A nuneric or string Variable
(3) A function

(4) A nonadic operator (+-NOT)
(5) A parenthesized expression

The first character is taken fromthe programtext via the

- 129 -

5. ROM BASI C | NTERPRETER

CHRGTR standard routine and examined. If it is an end of

St atenent character a "M ssing operand” error is generated
(406AH). If it is an ASCII digit it is converted fromtextua
formto one of the standard nuneric types in DAC (3299H)

If it is upper case al phabetic (64A8H) it is a Variable and
its current value is returned (4E9BH). If it is a nunmeric token
the nunber is copied from CONLO to DAC (46B8H). If it is one of
the FFH prefixed function tokens shown in the table at 39DEH it
is decoded to transfer control to the relevant function handl er
(4ECFH). If it is the nmonadic "+" operator it is sinply skipped
over, only the nonadic "-" operator (4E8DH) and npnadi c " NOT"
operator (4F63H) require any action

If it is an opening quote the following explicit string is
anal yzed and a descriptor created (6636H). If it is an "&" it
is a non-decimal nuneric constant and it is converted to one of
the standard nuneric types in DAC (4EB8H). If it is not one of
the functions shown below then it nust be a parenthesized
expression (4E87H), otherwise a "Syntax error"” is generated.
The followi ng function tokens are tested for directly and
control transferred to the address shown:

ERR 4DFDH ATTR$ 7CA43H
ERL 4EOBH VARPTR ... 4E4A1H
PO NT .. 5803H USR 4FD5H
TIME ... 7900H INSTR 68EBH
SPRITE . 7A84H I NKEY$... 7347H
VDP 7B47H STRING$.. 6829H
BASE ... 7BCBH I NPUT$... 6C87H
PLAY ... 791BH CSRLIN ... 790AH
DSKI$.. 7C3EH FN 5040H

Address... 4DFDH

This routine is used by the Factor Evaluator to apply the
"ERR' function. The contents of ERRFLG are placed in DAC as an
i nt eger (4FCFH)

Address... 4EOBH

This routine is used by the Factor Evaluator to apply the
"ERL" function. The contents of ERRLIN are copied to DAC as a
singl e precision nunmber (3236H)

Address... 4E41H

This routine is used by the Factor Evaluator to apply the
"VARPTR" function. |If the function token is followed by a "#"
the buffer nunber is evaluated (521BH), the I/O buffer FCB
| ocated (6A6DH) and its address placed in DAC as an integer
(2F99H). Otherwi se the Variable is located (5F5DH) and its
address placed in DAC as an integer (2F99H)

- 130 -

5. ROM BASI C | NTERPRETER

Address... 4E8DH

This routine is used by the Factor Evaluator to apply the
monadic "-" operator. Register Dis set to a precedence val ue
of 7DH, the factor evaluated (4C67H) and then negated (2E86H)

Address... 4E9BH

This routine is used by the Factor Evaluator to return the
current value of a Variable. The Variable is first |ocated
(5EAdH). If it is a string Variable its address is placed in
DAC to point to the descriptor. Otherwi se the contents of the
Variabl e are copied to DAC (2F08).

Address... 4EA9H

This routine returns the single character pointed to by
register pair HL in register A if it is a |ower case
al phabetic it converts it to upper case.

Address... 4EB8H

This routine is used by the Factor Evaluator and the nuneric
i nput routine (3299H) to convert an anpersand ("&") Prefixed
nunber fromtextual formto an integer in DAC. As each | ega
character is found the product is nmultiplied by 2, 8 or 16
dependi ng upon the character which initially followed the
anpersand, and the new digit added to it. If the product
overflows an "Overflow' error is generated (4067H). The routine
term nates when an unacceptabl e character is found.

Address... 4EFCH

This routine is used by the Factor Evaluator to process the
FFH prefixed function tokens. If the token is either "LEFT$",
"Rl GHT$" or "M D$" the string operand is evaluated (4C62H), the
address of its descriptor pushed onto the Z80 stack and the
foll owi ng numeric operand al so eval uated (521CH) and stacked.
Ot herwi se the function's parenthesized operand is eval uated
(4E87H) and, for "SQR', "RND', "SIN', "LOG', "EXP', "COS"
"TAN' or "ATN' only, converted to double precision (303AH). The
function token is then used to obtain the required address from
the table at 39DEH and control transfers to the function
handl er.

Address... 4F47H

This routine is used by the nuneric input conversion routine
(3299H) to test for a "+" or "-" character or token. It returns
register D=0 for positive and regi ster D=FFH for negative.

Address... 4F57H

This routine is used by the Expression Evaluator to apply a

- 131 -

5. ROM BASI C | NTERPRETER

rel ati onal operator (<>= or conbinations) to a pair of

operands. |If the operands are nunmeric the Expression Eval uator
first uses the math operator routine (4D22H) to apply the
general relation operation to the operands. If the operands are
strings the string conparison routine (65C8H) is used first.
VWhen control arrives here the relation result is in register A
and the Z80 FIl ags:

Operand 1=Cperand 2 ... A=00H, Flag Z, NC
Operand 1<Operand 2 ... A=01H, Flag Nz, NC
Operand 1>Operand 2 ... A=FFH, Flag Nz, C

The Expression Evaluator also supplies a bit mask defining the
original operators on the Z80 stack. This has a 1 in each
position if the associated operation is required: 00000<=>. The
mask is applied to the relation result producing zero if none
of the conditions is satisfied. This is then placed in DAC as a
true (-1) or false (0) integer (2E9AH)

Address... 4F63H

This routine is used by the Factor Evaluator to apply the
monadi ¢ "NOT" operator. Register Dis set to an initial
precedence | evel of 5AH and the expression eval uated (4C67H)
and converted to an integer (2F8AH). It is then inverted and
restored to DAC.

Address... 4F78H

This routine is used by the Expression Evaluator to apply a
| ogi cal operator ("OR', "AND', "XOR', "EQV" and "IMP") or the
"MOD' and "\" operators to a pair of nuneric operands. The
first operand, which has already been converted to an integer,
is supplied on the Z80 stack and the second is supplied in DAC
The operator token (actually its precedence level) is supplied
in register B. After converting the second operand to an
i nteger (2F8AH) the operator is exam ned. There are separate
routines for "MOD' (323AH) and "\" (31E6H) but the logica
operators are processed locally using the correspondi ng Z80
| ogical instructions on register pairs DE and HL. The result is
stored in DAC as an integer (2F99H)

Address... 4FC7H

This routine is used by the Factor Evaluator to apply the
"LPOS" function to an operand contained in DAC. The contents of
LPTPCS are placed in DAC as an integer (4FCFH).

Address... 4FCCH

This routine is used by the Factor Evaluator to apply the

"POS" function to an operand contained in DAC. The contents of
TTYPCS are placed in DAC as an integer (2F99).

- 132 -

5. ROM BASI C | NTERPRETER

Address... 4FD5H

This routine is used by the Factor Evaluator to apply the
"USR" function. The user nunber is collected directly fromthe
programtext, it cannot be an expression, and the associated
address taken from USRTAB (4FF4H). The foll owi ng parenthesized
operand is then evaluated (4E87H) and |l eft in DAC as the passed
paraneter. If it is a string type its storage is freed (67D3H)
The current programtext position is pushed onto the Z80 stack
followed by a return to 3297H, the routine at this address wll
restore the programtext position after the user function has
term nated. Control then transfers to the user address with
register pair HL pointing to the first byte of DAC and the type
code, from VALTYP, in register A Additionally, for a string
paraneter, the descriptor address is taken from DAC and pl aced
in register pair DE.

The user routine may nodify any register except the Z80 SP
and should termnate with a RET instruction, interrupts may be
| eft disabled if necessary as the Runloop will re-enable them
Any nuneric paraneter to be returned to the Interpreter should
be placed in DAC. Strictly speaking this should be the sane
nuneric type as the passed paraneter, however if VALTYP is
nodi fied the Interpreter will always accept it.

Returning a string type is nore difficult. Using the same
met hod as the Factor Evaluator string functions, which involves
copying the string to the String Storage Area and pushing a new
descriptor onto TEMPST, is conplicated and vul nerable to
changes in the MSX system A sinpler and nore reliable method
is to use the passed paraneter to create the space for the
result. This should not be an explicitly stated string as the
programtext will have to be nodified, instead an inplicit
paraneter should be used. This nust be done with care however,
it is very easy to gain the inpression that the Interpreter has
accepted the string when in fact it has not. Take the foll ow ng
exanpl e whi ch does nothing but return the passed paraneter:

10 POKE &H9000, &HC9
20 DEFUSR=&H9000

30 A$=USR(STRI NG$(12,"!"))
40 PRI NT A$

50 B$=STRI NG$(9, " X")

60 PRI NT A$

At first it seenms that the passed string has been correctly
assigned to A$. When line 60 is reached however it becones
apparent that A$ has been corrupted by the subsequent
assignment of a string to B$. \Wat has happened is that the
tenporary storage allocated to the passed paraneter was
reclainmed fromthe String Storage Area before contro
transferred to the user routine. This region was then used to
store the string belonging to B$ thus nodifying AS$.

- 1338 -

5. ROM BASI C | NTERPRETER

This situation can be avoided by assigning the parameter to
a Variabl e beforehand and then passing the Variable, for
exanpl e:

10 A$=STRING$(12,"!")
20 A$=USR(A$)

Line 10 results in twelve bytes of the String Storage Area
bei ng permanently allocated to A$. When the user function is
entered the descriptor, which is pointed to by register pair
DE, will contain the starting address of the twelve byte region
where the result should be placed. If the returned string is
shorter than the passed one the length byte of the descriptor
may be changed without any side effects. For further details on
string storage see the garbage collector (66B6H)

A point worth noting is that a "CLEAR' operation is not
strictly necessary before a machi ne | anguage programis | oaded.
The regi on between the top of the Array Storage Area and the
base of the Z80 stack is never used by the Interpreter. A
program can exist in this region provided that the two
encl osing areas do not overlap it.

Address... 500EH

This is the "DEFUSR' statenent handl er. The user nunber is
collected directly fromthe programtext, it cannot be an
expression, and the associated entry in USRTAB | ocated (4FF4H)
The address operand is then evaluated (542FH) and placed in
USRTAB.

Address... 501DH

This is the "DEF FN' and "DEFUSR' statenment handler. If the
follow ng character is a "USR' token (DDH) control transfers to
t he "DEFUSR' statenment handler (500EH), otherw se the program
text is checked for a trailing "FN' token (DEH). The function
nanme Variable is |ocated (51A1H) and, after checking that the
Interpreter is in program nmode (5193H), the current program
text position is placed there. Each of the Variables in the
formal paranmeter list is then located in succession (5EA4H)
this is sinply to ensure that they are created. The routine
term nates by skipping over the rermai nder of the statenent
(485BH) as the function body is not required at this tine.

Address... 5040H

This routine is used by the Factor Evaluator to apply the
"FN' function. The function nane Variable is first |ocated
(51A1H) to obtain the address of the function definition in the
program text. Each formal Variable fromthe function definition
is located in turn (5EA4H) and its address pushed onto the Z80
stack. As each one is found the correspondi ng actual paraneter
is evaluated (4C64H) and pushed onto the stack with it. If

- 134 -

5. ROM BASI C | NTERPRETER

necessary the type of the actual paraneter is converted to
match that of the formal parameter (517AH)

When both lists are exhausted each formal Variable address
and actual paranmeter are popped fromthe stack in turn. Each
Variable is then copied fromthe Variable Storage Area to PARM2
with its value replaced by the actual paraneter. It should be
noted that, because PARM2 is only a hundred bytes long, a
maxi mum of nine doubl e precision paraneters is allowed. \Wen
all the actual paraneters have been copied to PRV the entire
contents of PARML (the current paraneter area) are pushed onto
the Z80 stack and PARMR is copied to PARML (518EH). Regi ster
pair HL is then set to the start of the function body in the
program text and the expression is evaluated (4C5FH). The old
contents of PARML are popped fromthe stack and restored.
Finally the result of the evaluation is type converted if
necessary to natch the function nane type (517AH)

A user defined function differs froma normal expression in
only one respect, it has its own set of |ocal Variables. These
Variables are created in PARML when the function is invoked and
di sappear when it term nates. When a nornml Variable search is
initiated by the Expression Evaluator the region examned is
the Variable Storage Area. However, if NOFUNS is non-zero,

i ndicating at |east one active user function, PARML will be
searched instead, only if this fails will the search nove on to
the global Variables in the Variable Storage Area. Using a

| ocal Variable area specific to each invocation of a function
means that the same Vari abl e names can be used throughout

wi t hout the Variables overwiting each other or the globa
Vari abl es.

It is worth noting that a user defined function is sl ower
than an inline expression or even a subroutine. The search
carried out to find the function nane Variable, plus the |large
anount of stacking and destacking, are significant overheads.

Address... 5189H

This routine nmoves a bl ock of nenory fromthe address
pointed to by register pair DE to that pointed to by register
pair HL, register pair BC defines the |ength.

Address... 5193H

This routine generate an "lllegal direct” error if CURLIN
shows the Interpreter to be in direct node.

Address... 51A1H

This routine checks the programtext for an "FN' token (DEH)
and then creates the function nanme Variable (5EA9H). These are
di stingui shed fromordinary Variables by having bit 7 set in
the first character of the Variable's nane.

- 135 -

5. ROM BASI C | NTERPRETER

Address... 51ADH

Control transfers to this routine fromthe Runl oop execution
point (4640H) if a token greater than D8H is found at the start
of a statenent. If the token is not an FFH prefixed function
token a "Syntax error" is generated (4055H). If the function
token is one of those which double as statenents contro
transfers to the rel evant handler, otherwi se a "Syntax error"
is generated. The statenents in question are "M D$" (696EH)
"STRIG' (77BFH) and "I NTERVAL" (77B1H). There is actually no
separate token for "INTERVAL", the "INT" token (85H) suffices
with the remaining characters being checked by the statenent
handl er.

Address... 51C9H

This is the "WDTH" statenent handler. The operand is
eval uated (521CH) and its nmagnitude checked. If it is zero or
greater than thirty-two or forty, depending upon the screen
node held in OLDSCR an "Illegal function call" error is
generated (475AH). If it is the same as the current contents of
LINLEN the routine terminates with no further action. Oherw se
the current screen is cleared with a FORMFEED control code
(OCH) via the OUTDO standard routine in case the screen is to
be made snaller. The operand is then placed in LI NLEN and
either LINL32 or LINL40, depending upon the screen node held in
OLDSCR, and the screen cleared again in case it has been nade
| arger. Because the line length variable to be changed is
sel ected by OLDSCR, rather than SCRMOD, the width can still be
changed even if the screen is currently in Gaphics Mde or
Mul ticol our Mode. In this case the change is effective when a
return is nmade to the Interpreter Minloop or an "I NPUT"
statement is executed

Address... 520EH

This routine evaluates the next expression in the program
text (4C64H), converts it to an integer (2F8AH) and pl aces the
result in register pair DE. The nagnitude and sign of the MSB
are then tested and the routine term nates.

Address... 521BH

This routine evaluates the next operand in the programtext
(4C64H) and converts it to an integer (5212H). If the operand
is greater than 255 an "lIllegal function call" error is
gener ated (475AH)

Address... 5229H

This is the "LLIST" statement handler. PRTFLG is set to 01H

to direct output to the printer, and control drops into the
"LI ST" statenent handler.

- 136 -

5. ROM BASI C | NTERPRETER

Address... 522EH

This is the "LIST" statement handl er. The optional start and
term nation |ine nunber operands are collected and the starting
position found in the programtext (4279H). Successive program
lines are listed until the end link is found, the CTRL-STOP key
is pressed or the termnation |ine nunber is reached, contro
then transfers directly to the Minloop "OK" point (411FH)

Each programline is listed by displaying its |ine nunber
(3412H), detokenizing (5284H) and displaying (527BH) the |ine
itself and then issuing a CR LF (7328H)

Address... 5284H

This routine is used by the "LIST" statement handler to
convert a tokenized programline to textual form On entry
register pair HL points to the first character of the tokenized
line. On exit the line of text is in BUF and is ternmi nated by a
zero byte.

Any nornmal or FFH prefixed token is converted to the
correspondi ng keyword by a sinple linear search of the tokens
in the table at 3A72H. Exceptions are nade if either an opening
quote character, a "REM' token, or a "DATA" token has
previ ously been found. Normally these tokens will be followed
by plain text anyway, the check is made to stop graphics
characters being interpreted as tokens. The three byte sequence
":" (3AH), "REM' token (8FH), " " token (E6H) is converted to
the single " " character (27H) and the statenment separator
(3AH) preceding an "ELSE" token (AlH) is scrubbed out.

If one of the nuneric tokens is found its value and type are
first copied from CONLO and CONTYP to DAC and VALTYP (46E8H)
It is then converted to textual formin FBUFFR by the deci nal
(3425H), octal (371EH) or hex (3722H) conversion routines. For
octal and hex types the nunber is prefixed by an anpersand and
an "O' or "H' letter. A type suffix, """ or "#", is added to
singl e precision or double precision nunbers only if there is
no decimal part and no exponent part ("E' or "D").

Address... 53E2H

This is the "DELETE" statenent handler. The optional start
and term nation |ine nunber operands are collected and the
starting position found in the programtext (4279H). If any
pointers exist in the programtext they are converted back to
l'ine nunbers (54EAH). The term nating programline is found by
a search of the programtext (4295H), if this address is
snaller than that of the starting programline an "Il ega
function call" error is generated (475AH), otherw se the
message "OK" is displayed (6678H). The bl ock of nmenmory fromthe
end of the termnating line to the start of the Variable
Storage Area is copied down to the beginning of the starting
l'ine and VARTAB, ARYTAB and STREND are reset to the new (| ower)

- 137 -

5. ROM BASI C | NTERPRETER

end of the programtext. Control then transfers directly to the
end of the Mainloop (4237H) to reset the remaining pointers and
to relink the Program Text Area. Note that, because contro

does not return to the normal "OK" point, the screen will not
be returned to text nmode. If the screen is in G aphics Mde or
Mul ticol our node when a "DELETE" is executed, which is
admittedly rather unlikely, the systemw |l crash.

Address... 541CH

This routine is used by the Factor Evaluator to apply the
"PEEK" function to an operand contained in DAC. The address
operand is checked (5439H) then the byte read from nenory and
pl aced in DAC as an integer (4FCFH)

Address... 5423H

This is the "POKE" statenment handler. The address operand is
eval uated (542FH) then the data operand eval uated (521CH) and
witten to nenory.

Address... 542FH

This routine evaluates the next operand in the programtext
(4C64H) and places it in register pair DE as an integer
(5439H) .

Address... 5439H

This routine converts the nuneric operand contained in DAC
into an integer in register pair HL. The operand nust be in the
range -32768 to +65535 and is nornmally an address as required
by "POKE", "PEEK", "BLOAD', etc. The operand's type is first
checked via the GETYPR standard routine, if it is already an
integer it is sinply placed in register pair HL (2F8AH)
Assumi ng the operand is single precision or double precision
its sign is checked, if it is negative it is converted to
i nteger (2F8AH). Otherwise it is converted to single precision
(2FB2H) and its magnitude checked (2F21H). If it is greater
than 32767 and small er than 65536 then -65536 is added (324EH)
before it is converted to integer (2F8AH)

Address... 5468H

This is the "RENUM' statenent handler. If a newinitial |ine
nunmber operand exists it is collected (475FH), otherw se a
default value of ten of taken. If an old initial |ine nunber

operand exists it is collected (475FH), otherwi se a default
val ue of zero is taken. If an increnent |ine nunber operand
exists it is collected (4769H), otherwi se a default val ue of
ten is taken.

The programtext is then searched for existing |line nunbers
equal to or greater than the newinitial |ine nunber (4295H)

- 138 -

5. ROM BASI C | NTERPRETER

and the old initial Iine nunber (4295H), an "Illegal function
call” error is generated (475AH) if the new address is smaller
than the old address. This is to catch any attenpt to renunber
hi gh program|ines down to existing | ow ones.

A dunmmy renunbering run of the programtext is first carried
out to check than no new line nunber will be generated with a
val ue greater than 65529. This nust be done as an error m dway
through the conversion would | eave the programtext in a
confused state. Assuming all is well any |ine nunber operands
in the programtext are converted to pointers (54F6H). This
neatly solves the problem of |line nunber references, GOTO 50
for exanple, as the programtext is not noved during
renunbering. Starting at the old initial programtext position
each existing program|line nunmber is replaced with its new
val ue. When the end link is reached any programtext pointers
are converted back to |ine nunmber operands (54F1H) and contro
transfers directly to the Mainloop "OK" point (411EH).

Address... 54F6H

VWhen entered at 54F6H this routine converts every |ine
nunber operand in the programtext to a pointer. \Wen entered
at 54F7H it perforns the reverse operation and converts every
pointer in the programtext back to a |ine nunmber operand.
Starting at the beginning of the Program Text Area each line is
examned for a pointer token (ODH) or a line nunber operand
token (OEH) dependi ng upon the node. In pointer to |line nunber
operand node the pointer is replaced by the line nunber from
the referenced programline and the token changed to OEH 1In
| i ne nunber operand to pointer node the programtext is
searched (4295H) to find the relevant line, its address
repl aces the line nunmber operand and the token is changed to
ODH. If the search is unsuccessful a nessage of the form
"Undefined Iine NNNN in NNNN' is displayed (6678H) and the
conversi on process continues. A special check is made for the
"ON ERROR GOTO 0" statenent, to prevent the generation of a
spurious error message, but no check is nmade for the simlar
"RESUME 0" statenent. In this case an error nessage will be
di spl ayed, this should be ignored.

Address... 555AH

This is the plain text nessage "Undefined line term nat ed

by a zero byte.

Address... 558CH

Nane...... SYNCHR
Entry..... HL points to character to check
Exit...... A=Next program character

Modi fies.. AF, HL

Standard routine to check the current programtext
character, whose address is supplied in register pair HL,

- 139 -

5. ROM BASI C | NTERPRETER

agai nst a reference character. The reference character is
supplied as a single byte imediately followi ng the CALL or RST
instruction, for exanple:

RST 08H
DEFB ", "

If the characters do not match a "Syntax error" is generated
(4055H), otherwi se control transfers to the CHRGIR standard
routine to fetch the next program character (4666H)

Address... 5597H

Nane. GETYPR
Entry..... None
Exit...... AF=Type

Modi fies.. AF

Standard routine to return the type of the current operand,
determ ned by VALTYP, as follows:

Integer.............. A=FFH, Flag M Nz, C
String............... A=00H, Flag P,Z,C

Single Precision ... A=01H, Flag P,Nz C
Doubl e Precision ... A=05H, Flag P, NZ, NC

Address... 55A8H

This is the "CALL" statement handl er. The extended statenent
nanme, which is an unquoted string up to fifteen characters |ong
termnated by a "(", ":" or end of line character (00H), is
first copied fromthe programtext to PROCNM any unused bytes
are zero filled. Bit 5 of each entry in SLTATR is then exam ned
for an extension ROMwith a statement handler. If a suitable
ROMis found its position in SLTATR is converted to a Slot ID
in register A and a ROM base address in register H (7E2AH). The
statement handl er address is read from ROM | ocations four and
five (7ELAH) and placed in register pair I X. The Slot IDis
pl aced in the high byte of register pair IY and the ROM
statenment handler called via the CALSLT standard routine.

The ROM wi Il exami ne the statenent nane and return Flag Cif
it does not recognize it, otherwise it perforns the required
operation. If the ROMcall fails the search of SLTATR conti nues
until the table is exhausted whereupon a "Syntax error" is
generated (4055H). If the ROMcall is successful the handler
term nat es.

Address... 55F8H

This routine is used by the device nanme parser (6F15H) when
it cannot recognize a device nanme found in the programtext.
Upon entry register pair HL points to the first character of
the nane and register B holds its length. The nane is first
copied to PROCNM and terminated by a zero byte. Bit 6 of each

- 140 -

5. ROM BASI C | NTERPRETER

entry in SLTATR is then exam ned for an extension ROMwith a
device handler. If a suitable ROMis found its position in
SLTATR is converted to a Slot IDin register A and a ROM base
address in register H(7E2AH). The device handl er address is
read from ROM | ocations six and seven (7E1AH) and placed in
register pair I X. The Slot IDis placed in the high byte of
register pair |Y, the unknown device code (FFH) in register A
and the ROM device handler called via the CALSLT standard
routine.

The ROM wi Il exam ne the device nanme and return Flag Cif it
does not recognize it, otherwise it returns its own interna
code fromzero to three. If the ROMcall fails the search of
SLTATR continues until the table is exhausted whereupon a "Bad
file name" error is generated (6E6BH). If the ROMcall is
successful the ROMs internal code is added to its SLTATR
position, nmultiplied by a factor of four, to produce a gl oba
devi ce code' The base code for each entry in SLTATR i s shown
bel ow i n hexadeci mal. The "SS" and "PS" narkers show the
correspondi ng Secondary and Primary Sl ot nunbers, each slot is
conposed of four pages:

] SSO SS1 SS2 SS3
UAAA
> 00 04 08 0C ° 10 14 18 1C ° 20 24 28 2C ° 30 34 38 3C° PSO

AA

. >0 .54 58 5C ° 60 64 68 6C 3 70 74 78 7C > PSL

AA

90 94 98 9C ° A0 Ad A8 AC S BO B4 B8 BC * PS2

AAA

240 44 48 4C 2

> 80 84 88 8C 2

3 O c4C8CC:® DO D4 D8 DC® EO E4 E8 EC® FO F4 F8 FC 3 PS3
AAL

Figure 44: Devi ce Codes

The gl obal device code is used by the Interpreter until the
time comes for the ROMto perform an actual device operation
It is then converted back into the ROMs Slot ID, base address
and internal device code to performthe ROM access. Note that
the codes fromO to 8 are reserved for disk drive identifiers
and those fromFCH to FFH for the standard devices GRP, CRT,
LPT and CAS. Wth the current MSX hardware structure these
codes correspond to physically inprobabl e ROM configurations
and are therefore safe to be used for specific purposes by the
Interpreter.

Address... 564AH

This routine is used by the function di spatcher (6F8FH) when
it encounters a device code not belonging to one of the
standard devices. The device code is first converted to a
SLTATR position and then to a Slot IDin register A and ROM
base address in register H (7E2DH). The ROM devi ce handl er

- 141 -

5. ROM BASI C | NTERPRETER

address is read from ROM | ocati ons six and seven (7E1AH) and
placed in register pair IX. The Slot IDis placed in the high
byte of register pair 1Y, the ROMs internal device code in
DEVI CE and the ROM device handler called via the CALSLT
standard routine.

Address... 566CH

This entry point to the macro | anguage parser is used by the
"DRAW statenent handler, a later entry point (56A2H) is used
by the "PLAY" statenent handl er. The conmand string is
eval uated (4C64H) and its storage freed (67DOH). After pushing
a zero termnation block onto the Z80 stack the length and
address of the string body are placed in MCLLEN and MCLPTR and
control drops into the parser nminl oop

Address... 56A2H

This is the macro | anguage parser mainloop, it is used to
process the command string associated with a "DRAW or "PLAY"
statement’ On entry the string length is in MCLLEN, the string
address is in MCLPTR and the address of the rel evant conmmand
table is in MCLTAB. The command tables contain the |ega
command |l etters, together with the associ ated command handl er
addresses, for each statenent. The "DRAW table is at 5D83H and
the "PLAY" table at 752EH

The parser mainloop first fetches the next character from
the conmand string (56EEH). If there are no nore characters
| eft the next string descriptor is popped fromthe stack
(568CH). If this is zero the parser term nates (5709H) if
MCLFLG shows a "DRAW statenment to be active, otherw se control
transfers back to the "PLAY" statenment handl er (7494H)

Assum ng a command character exists the current comrand
table is searched to check its legality, if no match is found
an "lllegal function call" error is generated (475AH). The
command table entry is then exam ned, if bit 7 is set the
command takes an optional nuneric paraneter. If this is present
it is collected and placed in register pair DE (571CH)
otherwi se a default value of one is taken. After pushing a
return to the start of the parser nminloop onto the Z80 stack
control transfers to the command handl er at the address taken
fromthe conmand table.

Address... 56EEH

This routine is used by the macro | anguage parser to fetch
the next character fromthe comand string. If MCLLEN is zero
the routine termnates with Flag Z, there are no characters
left. Otherwi se the next character is taken fromthe address
contained in MCLPTR and returned in register A if the
character is lower case it is converted to upper case. MCLPTR
is then incremented and MCLLEN decrenent Ed.

- 142 -

5. ROM BASI C | NTERPRETER

Address... 570BH

This routine is used by the macro | anguage parser to return
an unwanted character to the command string. MCLLEN is
i ncrenented and MCLPTR decr enent ed.

Address... 5719H

This routine is used by the macro | anguage parser to coll ect
a nuneric paraneter fromthe command string. The result is a
signed integer and is returned in register pair DE, it cannot
be an expression. The first character is taken and exami ned, if
it isa"+" it is ignored and the next character taken (5719H)
If it is a"-" areturnis set up to the negation routine
(5795H) and the next character taken (5719H). If it is an "="
the value of the following Variable is returned (577AH)
Ot herwi se successive characters are taken and a binary product
accunul ated until a non-nuneric character is found.

Address... 575AH

This routine is used by the macro | anguage parser "=" and
"X" handl ers. The Variable name is copied to BUF until the ";"
delimter is found, if this takes nore than thirty-nine
characters to find an "lllegal function call" error is
generated (475AH). Ot herwi se control transfers to the Factor
Eval uat or Vari abl e handl er (4E9BH) and the Variable contents

are returned in DAC
Address... 577AH

This routine is used by the nmacro | anguage parser to process
the "=" character in a commnd paraneter. The Variabl e's val ue
is obtained (575AH), converted to an integer (2F8AH) and pl aced
in register pair DE.

Address... 5782H

This routine is used by the nmacro | anguage parser to process
the "X" conmand. The Variable is processed (575AH) and, after
checking that stack space is avail able (625EH), the current
contents of MCLLEN and MCLPTR are stacked. Control then
transfers to the parser entry point (5679H) to obtain the
Vari abl e' s descriptor and process the new command string.

Address... 579CH

This routine is used by various graphics statenents to
evaluate a coordinate pair in the programtext. The coordi nates
must be parenthesized with a comma separating the conponent
operands. |If the coordinate pair is preceded by a "STEP" token
(DCH) each conponent value is added to the correspondi ng
conmponent of the current graphics coordinates in GRPACX and
GRPACY, otherwi se the absolute values are returned. The X

- 143 -

5. ROM BASI C | NTERPRETER

coordinate is returned in GRPACX, GXPOS and register pair BC
The Y coordinate is returned in GRPACY, GYPOS and register pair
DE.

There are two entry points to the routine, the one which is
used depends on whether the caller is expecting nore than one
coordinate pair. The "LINE" statenent, for exanple, expects two
coordinate pairs the first of which is the nore flexible. The
entry point at 579CH is used to collect the first coordinate
pair and will accept the characters "-" or "@" as representing
the current graphics coordinates. The entry point at 57ABH is
used for the second coordinate pair and requires an explicit
oper and.

Address... 57E5H

This is the "PRESET" statenment handler. The current
background col our is taken from BAKCLR and control drops into
the "PSET" handl er.

Address... 57EAH

This is the "PSET" statenent handler. After the coordinate
pair has been evaluated (57ABH) the current foreground col our
is taken from FORCLR and used as the default when setting the
i nk colour (5850H). The current graphics coordinates are
converted to a physical address, via the SCALXY and MAPXYC
standard routines, and the colour of the current pixel set via
the SETC standard routi ne.

Address... 5803H

This routine is used by the Factor Evaluator to apply the
"PO NT" function. The current contents of CLOC, CMASK, GYPGCS,
GXPCS, GRPACY and GRPACX are stacked and the coordinate pair
operand eval uated (57ABH). The col our of the new pixel is read
via the SCALXY, MAPXYC and READC standard routines and placed
in DAC as an integer (2F99H), the old coordinate values are
then popped and restored. Note that a value of -1 is returned
if the point coordinates are outside the screen

Address... 5850H

This graphics routine is used to evaluate an optional col our
operand in the programtext and to nake it the current ink
colour. After checking the screen node (59BCH) the col our
operand is evaluated (521CH) and placed in ATRBYT. If no
operand exists the colour code supplied in register Ais placed
i n ATRBYT i nst ead.

Address... 5871H

This graphics routine returns the difference between the
contents of GXPOS and register pair BCin register pair HL. If

- 144 -

5. ROM BASI C | NTERPRETER

the result is negative (GXPOS<BC) it is negated to produce the
absol ute magni tude and Flag C is returned.

Address... 5883H

This graphics routine returns the difference between the
contents of GYPOS and register pair DE in register pair HL. |f
the result is negative (GYPOS<DE) it is negated to produce the
absol ute magni tude and Flag C is returned.

Address... 588EH

Thi s graphics routine swaps the contents of GYPOS and
regi ster pair DE

Address... 5898H

This graphics routine first swaps the contents of GYPOS and
register pair DE (588EH) then swaps the contents of GXPOS and
register pair BC. When entered at 589BH only the second
operation is perforned.

Address... 58A7H

This is the "LINE" statenent handler. The first coordinate
pair (X1,Y1l) is evaluated (579CH) and placed in register pairs
BC, DE. After checking for the "-" token (F2H) the second
coordinate pair (X2,Y2) is evaluated (57ABH) and left in
GRPACX, CRPACY and GXPCS, GYPCS. After setting the ink col our
(584DH) the programtext is checked for a following "B" or "BF"
option and either the box (5912H), boxfill (58BFH) or |inedraw
(58FCH) operation perforned. None of these operations affects
the current graphics coordinates in GRPACX and GRPACY, these
are left at X2,Y2

Address... 58BFH

This routine perforns the boxfill operation. Gven that the
supplied coordinate pairs define diagonally opposed points of
the box two quantities nust be derived fromthem The
hori zontal size of the box is obtained fromthe difference
between X1 and X2, this gives the nunber of pixels to set per
row. The vertical size is obtained fromthe difference between
Y1l and Y2 giving the nunber of rows required. Starting at the
physi cal address of X1,Y1l, and noving successively |ower via
the DOWNC standard routine, the required nunber of pixel rows
are filled in by repeated use of the NSETCX standard routine.

Address... 58FCH
This routine perforns the |inedraw operation. After draw ng

the line (593CH) GXPOS and GYPCS are reset to X2,Y2 from GRPACX
and GRPACY.

- 145 -

5. ROM BASI C | NTERPRETER

Address... 5912H

This routine performs the box operation. The box is produced
by drawing a Iine (58FCH) between each of the four corner
poi nts. The coordi nates of each corner are derived fromthe
initial operands by interchanging the relevant conponent of the
pair. The draw ng sequence is:

(1) X1,Y2 to X2, Y2
(2) X1,Y1l to X2,VY1
(3) X2,Y1 to X2, Y2
(4) X1,Y1l to X1i,Y2

Address... 593CH

This routine draws a |line between the points X1, Y1, supplied
in register pairs BC and DE and X2, Y2, supplied in GXPOS and
GYPOS. The operation of the drawi ng mainloop (5993H) is best
illustrated by an exanple, say LINE(O,0)-(10,4). To reach the
end point of the line fromits start ten horizontal steps (X2-
X1) and four downward steps (Y2-Y1l) nust be taken altogether.
The best approximation to a straight line therefore requires
two and a half horizontal steps for every downward step (X2-
X1/Y2-Y1). While this is inpossible in practice, as only
integral steps can be taken, the correct ratio can be achieved
on aver age.

The met hod enployed is to add the Y difference to a counter
each time a rightward step is taken. \Wien the counter exceeds
the value of the X difference it is reset and one downward step
is taken, this is in effect an integer division of the two

di fference val ues. Sonetinmes downward steps will be produced
every two rightward steps and sonetines every three rightward
steps. The average, however, will be one downward step every

two and a half rightward steps. An equival ent BASIC programis
shown below with a slightly offset BASIC |ine for conparison

10 SCREEN 0

20 | NPUT" START X, Y"; X1, Y1

30 I NPUT"END X, Y", X2, Y2

40 SCREEN 2

50 X=X1:Y=Y1l: L=X2- X1: S=Y2- Y1: CTR=L/ 2
60 PSET(X,Y)

70 CTR=CTR+S: | F CTR<L THEN 90
80 CTR=CTR-L: Y=Y+1

90 X=X+1:1F X<=X2 THEN 60

100 LI NE(X1, Y1+5)- (X2, Y2+5)
110 GOTO 110

The above exanple suffers fromthree Iimtations. The |ine nust
sl ope downwards, it nust slope to the right and the sl ope
cannot exceed forty-five degrees fromthe horizontal (one
downward step for one rightward step).

- 146 -

5. ROM BASI C | NTERPRETER

The routine overcones the first limtation by exanm ning the
Y1 and Y2 coordi nates before drawi ng commences. If Y2 is greater
than or equal to Y1, showing the line to slope upwards or to be
hori zontal, both coordinate pairs are exchanged. The line is
now sl opi ng downwards and will be drawn fromthe end point to
the start.

The second limtation is overcone by exam ning X1 and X2
bef orehand to determine which way the line is sloping. If X2 is
greater than or equal to X1 the line slopes to the right and a
Z80 JP to the RIGHTC standard routine is placed in
M NUPD/ MAXUPD (see below) for use by the draw ng mainl oop,
otherwise a JP to the LEFTC standard routine is placed there.

The third linmtation is overcone by conparing the X
coordinate difference to the Y coordinate difference before
drawing to deternine the slope steepness. |If X2-X1 is smaller
than Y2-Y1 the slope of the line is less than forty-five
degrees fromthe horizontal. The sinple method shown above for
LINE(O,0)-(10,4) will not work for slopes greater than forty-
five degrees as the maxi numrate of descent is achieved when
one downward step is taken for every horizontal step. It will
wor k however if the step directions are exchanged. Thus
LI NE(O,0)-(4,10) requires one rightward step for every two and
a hal f downward steps. M NUPD holds a Z80 JP to the "normal"
step direction standard routine for the drawi ng nai nl oop and
MAXUPD hol ds a JP to the "slope" step direction standard
routine. For shallow angles M NUPD will vector to DOANC and
MAXUPD to LEFTC or RIGHTC. For steep angles MNUPD wi || vector
to LEFTC or RIGHTC and MAXUPD to DOWNC. For steep angles the
counter values nust also be exchanged, the X difference nust
now be added to the counter and the Y difference used as the
counter limt. The variables M NDEL and MAXDEL are used by the
drawi ng mai nl oop to hold these counter val ues, M NDEL hol ds the
smal l er end point difference and MAXDEL the | arger.

An interesting point is that the reference counter, held in
CTR in the above programand in register pair DE in the ROM is
prel oaded with half the | argest end point difference rather
than being set to zero. This has the effect of splitting the
first "stair" in the line into two sections, one at the start
of the line and one at its end, and inproving the line's
appear ance.

Address... 59B4H

This graphics routine shifts the contents of register pair
DE one bit to the right.

Address... 59BCH
This routine generates an "lIllegal function call" error

(475AH) if the screen is not in Graphics Mdde or Milticol our
Mbde.

- 147 -

5. ROM BASI C | NTERPRETER

Address... 59C5H

This is the "PAINT" statement handl er. The starting
coordinate pair is evaluated (579CH), the ink col our set
(584DH) and the optional boundary col our operand eval uated
(521CH) and placed in BDRATR. The starting coordinate pair is
checked to ensure that it is within the screen (5E91H) and is
made the current pixel physical address by the MAPXYC standard
routi ne. The distance to the right hand boundary is then
measured (5ADCH) and, if it is zero, the handler term nates.
O herwi se the distance to the |eft hand boundary is nmeasured
(5AEDH) and the sum of the two placed in register pair DE as
the zone width. The current position is then stacked tw ce
(5ACEH), first with a termnation flag (00H) and then with a
down direction flag (40H). Control then transfers to the paint
mai nl oop (5A26H) with an up direction flag (COH) in register B

Address... 5A26H

This is the paint mainloop. The zone width is held in
register pair DE, the paint direction, up or down, in register
B and the current pixel physical address is that of the pixel
adj acent to the | eft hand boundary. A vertical step is taken to
the next line, via the TUPC or TDOMNC standard routines, and
the distance to the right hand boundary nmeasured (5ADCH). The
distance to the | eft hand boundary is then neasured and the
line between the boundaries filled in (5AEDH). If no change is
found in the position of either boundary control transfers to
the start of the mainloop to continue painting in the sane
direction. If a change is found an inflection has occurred and
the appropriate action nust be taken

There are four types of inflection, LH or RH incursive,
where the rel evant boundary noves inward, and LH or RH
excursive, where it noves outward. An exanple of each type is
shown bel ow wi th nunbered zones indicating the order of
pai nting during upward novenent. A secondary zone i s shown
wi thin each inflective region for conpl eteness:

UA; UA¢ UAAAAAAAAAA; UAAAAAAAAAA;
3 3 3 3 3 3 3 3 3 3
UA¢ 3923 333 UA¢ 3 3 3 3
,“““%3%““% 3 3 %““%2%“““ ,"""é UAA¢ 3 3 UAA¢ UAAAU
UAAAU AAAU 3 3 AAAU AAAA; 328 3 3 3 3 328
3 3 3 3 AAU 313 313 AAU
3 1 3 3 1 3 3 3 3 3

LH I ncursi on

RH | ncur si on

LH Excursi on

RH Excur si on

Fi gure 45: Boundary Inflections

A LH excursion has occurred when the distance to the |left hand
boundary is non-zero, a RH excursion has occurred when the

- 148 -

5. ROM BASI C | NTERPRETER

current zone width is greater than that of the previous I|ine.
Unl ess the excursion is less than two pixels, in which case it
will be ignored, the current position (the bottomleft of zone
3 in figure 45) is stacked (5AC2H), the paint direction
reversed and painting restarts at the top left of the excursive
region .

A RH incursion has occurred when the current zone width is
smaller than that of the previous line. If the incursion is
total, that is the current zone width is zero, a dead end has
been reached and the | ast position and direction are popped
(5AIFH) and painting restarts at that point. O herw se the
current position and direction are stacked (5AC2H) and pai nting
restarts at the bottomleft of the incursive region

A LH incursion is dealt with automatically during the search
for the right hand boundary and requires no explicit action by
t he pai nt nminl oop.

Address... 5AC2H

This routine is used by the "PAINT" statement handler to
save the current paint position and direction on the Z80 stack
The six byte parameter block is made up of the follow ng:

2 bytes ... Current contents of CLOC
1 byte ... Current direction

1 byte ... Current contents of CMASK
2 bytes ... Current zone wi dth

After the paraneters have been stacked a check is nade that
sufficient stack space still exists (625EH)

Address... 5ADCH

This routine is used by the "PAINT" statement handler to
| ocate the right hand boundary. The zone wi dth of the previous
line is passed to the SCANR standard routine in register pair
DE, this determ nes the maxi mum nunber of boundary col our
pi xels that may initially be skipped over. The returned
skip count remminder is placed in SKPCNT and the nunber of non-
boundary col our pixels traversed in MOVCNT

Address... 5AEDH

This routine is used by the "PAINT" statement handler to
| ocate the left hand boundary. The end point of the right hand
boundary search is tenporarily saved and the starting point
taken from CSAVEA and CSAVEM and nade the current pixe
physi cal address. The |left hand boundary is then |located via
the SCANL standard routine, which also fills in the entire
zone, and the right hand end point recovered and placed in
CSAVEA and CSAVEM

- 149 -

5. ROM BASI C | NTERPRETER

Address... 5BOBH

This routine is used by the "CI RCLE" statenent handler to
negate the contents of register pair DE

Address... 5B11H

This is the "CIRCLE" statenent handler. After evaluating the
centre coordinate pair (579CH) the radius is evaluated (520FH)
mul tiplied (325CH) by SIN(PI/4) and placed in CNPNTS. The ink
colour is set (584DH), the start angle evaluated (5D17H) and
pl aced in CSTCNT and the end angl e evaluated (5D17H) and pl aced
in CENCNT. If the end angle is smaller than the start angle the
two val ues are swapped and CPLOTF is nade non-zero. The aspect
ratio is evaluated (4C64H) and, if it is greater than one, its
reci procal is taken (3267H) and CSCLXY is nade non-zero to
i ndicate an X axis squash. The aspect ratio is nultiplied
(325CH) by 256, converted to an integer (2F8AH) and placed in
ASPECT as a single byte binary fraction. Register pairs HL and
DE are set to the starting position on the circle perineter
(X=RADI US, Y=0) and control drops into the circle mainloop

Address... 5BBDH

This is the circle mainloop. Because of the high degree of
symmetry in a circle it is only necessary to conpute the
coordinates of the arc fromzero to forty-five degrees. The
ot her seven segnents are produced by rotation and reflection of
these points. The parametric equation for a unit circle, with T
the angle fromzero to PI/4, is:

X=COS(T)
Y=SI N(T)

Direct conputation using this equation, or the corresponding
functional form X=SQR(1-Y"2), is too slow, instead the first
derivative is used:

dx
AAAA = - Y/ X

dy

G ven that the starting position is known (X=RADI US, Y=0), the X
coordi nate change for each unit Y coordinate change may be
conput ed using the derivative. Furthernore, because graphics
resolution is limted to one pixel, it is only necessary to
know when the sum of the X coordi nate changes reaches unity and
then to decrement the X coordinate. Therefore:

Decrement X when (Y1/ X)+(Y2/ X)+(Y3/X)+... =>1
Therefore decrement when (Y1+Y2+Y3+...)/ X => 1
Therefore decrenment when Y1+Y2+Y3+. .. => X

All that is required to identify an X coordinate change is to
totalize the Y coordinate values fromeach step until the X

- 150 -

5. ROM BASI C | NTERPRETER

coordi nate value is exceeded. The circle mainloop holds the X
coordinate in register pair HL, the Y coordinate in register
pair DE and the running total in CRCSUM An equival ent BASIC
program for a circle of arbitrary radius 160 pixels is:

10 SCREEN 2

20 X=160: Y=0: CRCSUM=0

30 PSET(X, 191-Y)

40 CRCSUMECRCSUMHY : Y=Y+1
50 | F CRCSUMKX THEN 30

60 CRCSUMECRCSUM X: X=X- 1
70 1 F X>Y THEN 30

80 Cl RCLE(O, 191), 155

90 GOTO 90

The coordinate pairs generated by the mainloop are those of a
"virtual" circle, such tasks as axial reflection, elliptic
squash and centre translation are handled at a | ower |eve
(5C06H) .

Address... 5CO6H

This routine is used to by the circle mainloop to convert a
coordinate pair, in register pairs HL and DE, into eight
symetric points on the screen. The Y coordinate is initially
negated (5BOBH), reflecting it about the X axis, and the first
four points produced by successive clockw se rotations through
ninety degrees (5C48H). The Y coordinate is then negated again
(5BOBH) and a further four points produced (5C48H)

Cl ockwi se rotation is perforned by exchanging the X and Y
coordi nates and negating the new Y coordinate, thus a point
(40, 10) woul d beconme (10,-40). Assum ng an aspect ratio of 0.5,
for exanple, the conplete sequence of eight points would
t herefore be:

(1) X, -Y*0.5
(2) -Y,-%X*0.5
(3) -X, Y*0.5
(4) Y, X*0.5
(5) Y,-X*0.5
(6) -X, -Y*0.5
(7) -Y, X*0.5
(8) X, Y*0.5

It can be seen fromthe above that, ignoring the sign of the
coordi nates for the nonent, there are only four terns invol ved.
Therefore, rather than performng the relatively slow aspect
ratio nmultiplication (5CEBH) for each point, the terms X*0.5
and Y*0.5 can be prepared in advance and the conpl ete sequence
generated by interchanging and negating the four ternms. Wth
the aspect ratio shown above the initial conditions are set up
so that register pair HL=X, register pair DE= -Y*0.5, CXOFF=Y
and CYOFF=X*0.5 and successive points are produced by the

- 151 -

5. ROM BASI C | NTERPRETER

oper ations:

(1) Exchange HL and CXCFF, negate HL.
(2) Exchange DE and CYCFF, negate DE.

In parallel with the conputation of each circle coordinate the
nunber of points required to reach the start of the segnent
containing the point is kept in CPCNT8. This will initially be
zero and will increase by 2*RADI US*SIN(PI/4) as each ninety
degree rotation is made. As each of the eight points is
produced its Y coordinate value is added to the contents of
CPCNT8 and conpared to the start and end angles to determ ne
the appropriate course of action. If the point is between the
two angles and CPLOTF is zero, or if it is outside the angles
and CPLOTF is non-zero, the coordinates are added to the circle
centre coordinates (5CDCH) and the point set via the SCALXY,
MAPXYC and SETC standard routines. If the point is equal to
either of the two angles, and the associated bit is set in
CLI NEF, the coordinates are added to the circle centre
coordi nates (5CDCH) and a line drawn to the centre (593CH). If
none of these conditions is applicable no action is taken other
than to proceed to the next point.

Address... 5CEBH

This routine rmultiplies the coordinate value supplied in
register pair DE by the aspect ratio contained in ASPECT, the
result is returned in register pair DE. The standard binary
shift and add nethod is used but the operation is perforned as
two single byte nultiplications to avoid overfl ow probl ens.

Address... 5D17H

This routine is used by the "Cl RCLE" statenment handler to
convert an angle operand to the formrequired by the circle
mai nl oop, the result is returned in register pair DE. Wiile the
met hod used is basically sound, and elim nates one
trigononmetric conputation per angle, the results produced are
i naccurate. This is denonstrated by the follow ng exanple which
draws a line to the true thirty degree point on a circle's
perinmeter:

10 SCREEN 2

20 Pl = 4 * ATN(1)

30 ClI RCLE(100, 100), 80, , Pl /6

40 LI NE(100, 100) - (100+80* COS(Pl / 6) , 100- 80* SI N(Pl / 6))
50 GOTO 50

The result that the routine should produce is the nunber of
poi nts that nust be produced by the circle mainloop before the
required angle is reached. This can be conputed by first noting
that there will be INT(ANGLE/ (PI/4)) forty-five degree segnents
prior to the segment containing the required angle. Furthernore
each forty-five segment will contain RADI US*SIN(PI/4) points as

- 152 -

5. ROM BASI C | NTERPRETER

this is the value of the terminating Y coordinate. Therefore
the nunber of points required to reach the start of the segnent
containing the angle is the product of these two nunbers. The
total count is produced by adding this figure to the nunber of
points required to cover any renmining angle within the fina
segnent, that is RADI US*SI N(REMAI Nl NG ANGLE) poi nts.

Unfortunately the routine conputes the nunber of points
within a segnent by linear approximation fromthe total segment
size on the m staken assunption that successive points subtend
equal angles. Thus in the above exanple the point count
conputed for the angle is 30/45*(80*0.707107)=37 instead of the
correct value of forty. The error produced by the routine is
therefore at a maximum at the centre of each forty-five degree
segnent and reduces to zero at the end points.

Address... 5D6EH

This is the "DRAW statenment handler. Register pair DE is
set to point to the conmand table at 5D83H and contro
transfers to the macro | anguage parser (566CH)

Address... 5D83H

This table contains the valid command | etters and associ at ed
addresses for the "DRAW statenent conmands. Those commands
whi ch takes a paraneter, and consequently have bit 7 set in the
table, are shown with an asterisk

CVMD TO
AAAAAAAAAAA
u* 5DB1H
D* 5DB4H
L* 5DB9H
R* 5DBCH
M 5DD8H
E* 5DCAH
F* 5DC6H
G+ 5DD1H
H* 5DC3H
A* 5EAEH
B 5E46H
N 5E42H
X 5782H
C- 5E87H
S* 5E59H

Address... 5DB1H

This is the "DRAW statenent "U' conmand handl er. The
operation of the "D', "L", "R', "E", "F', "G' and "H' commands is
very simlar so no separate description of their handlers is
given. The optional nuneric paraneter is supplied by the nmacro
| anguage parser in register pair DE. This initial paranmeter is

- 158 -

5. ROM BASI C | NTERPRETER

nmodi fied by a given handler into a horizontal offset in
register pair BC and a vertical offset in register pair DE. For
exanple if leftward or upward novenent is required the
paraneter is negated (5BOBH), if diagonal novenent is required
the paraneter is duplicated so that equal horizontal and
vertical offsets are produced. Once the offsets have been
prepared control transfers to the line drawi ng routine (5DFFH)

Address... 5DD8H

This is the "DRAW statement "M conmand handl er. The
character followi ng the conmand letter is exanined then the two
paraneters collected fromthe conmand string (5719H). If the
initial character is "+" or "-" the paraneters are regarded as
of fsets and are scaled (5E66H), rotated through successive
ni nety degree steps as determ ned by DRWANG and then added to
the current graphics coordinates (5CDCH) to determ ne the
term nation point. |If DRWLG shows the "B" npode to be inactive
aline is then drawmn (5CCDH) fromthe current graphics
coordinates to the term nation point. If DRWLG shows the "N
node to be inactive the termination coordinates are placed in
GRPACX and GRPACY to becone the new current graphics
coordinates. Finally DRWLG is zeroed, turning the "B" and "N
nodes of f, and the handl er term nates.

Address... 5E42H

This is the "DRAW statenment "N' command handl er, DRWLG i s
sinply set to 40H

Address... 5E46H

This is the "DRAW statenent "B" command handl er, DRWLG i s
sinmply set to 80H

Address... 5E4EH

This is the "DRAW statement "A" conmand handl er. The
paraneter is checked for magnitude and placed i n DRWANG.

Address... 5E59H

This is the "DRAW statement "S" conmand handl er. The
paraneter is checked for magnitude and placed i n DRWSCL.

Address... 5E66H

This routine is used by the "DRAW statenment
"y, "D, "L", "R', "E', "F", "G', "H'" and "M (in offset npde)
command handl ers to scale the offset supplied in register pair
DE by the contents of DRWSCL. Unless DRWSCL is zero, in which
case the routine sinply termnates, the offset is nmultiplied
usi ng repeated addition and then divided by four (59B4H). To
elimnate scaling an "S0" or "S4" command shoul d be used.

- 154 -

5. ROM BASI C | NTERPRETER

Address... 5E87H

This is the "DRAW statement "C' conmand handl er. The
paraneter is placed in ATRBYT via the SETATR standard routine.
There is no check on the MsB of the parameter so illegal values
such as "C265" will be accepted wi thout an error nessage.

Address... 5E91H

This routine is used by the "PAINT" statement handler to
check, via the SCALXY standard routine, that the coordinates in
register pairs BC and DE are within the screen. If not an
"lIllegal function call" error is generated (475AH)

Address... 5E9FH

This is the "DIM statenent handler. Areturn is set upto
5E9AH, so that multiple Arrays can be processed, DI MFLG i s made
non-zero and control drops into the Variable search routine.

Address... 5EA4H

This is the Variable search routine. On entry register pair
HL points to the first character of the Variable name in the
programtext. On exit register pair HL points to the character
following the nane and register pair DE to the first byte of
the Variable contents in the Variable Storage Area. The first
character of the nanme is taken fromthe programtext, checked
to ensure that it is upper case al phabetic (64A7H) and pl aced
in register C. The optional second character, with a default
val ue of zero, is placed in register B, this character may be
al phabetic or nuneric. Any further al phanuneric characters are
then sinply skipped over. If a type suffix character
("%, "$", "!" or "#") follows the name this is converted to the
correspondi ng type code (2, 3, 4 or 8) and placed in VALTYP
O herwi se the Variable's default type is taken from DEFTBL
using the first letter of the nane to | ocate the appropriate
entry.

SUBFLG i s then checked to determ ne how any parenthesized
subscript followi ng the nane should be treated. This flag is
normal ly zero but is nodified by the "ERASE" (01H), "FOR'

(64H), "FN' (80H) or "DEF FN' (80H) statenment handlers to force
a particular course of action. In the "ERASE" case contro
transfers straight to the Array search routine (5FE8H), no

par ent hesi zed subscript need be present. In the "FOR', "FN' and
"DEF FN' cases control transfers straight to the sinmple

Vari abl e search routine (5F08H), no check is made for a

par ent hesi zed subscript. Assuming that the situation is nornal
the programtext is checked for the characters "(" or "[". If
either is present control transfers to the Array search routine
(5FBAH), otherwi se control drops into the sinple Variable
search routine.

- 155 -

5. ROM BASI C | NTERPRETER

Address... 5F08H

This is the sinple Variable search routine. There are four
types of sinple Variable each conposed of a header followed by
the Variable contents. The first byte of the header contains
the type code and the next two bytes the Variable nane. The
contents of the Variable will be one of the three standard
nunmeric forns or, for the string type, the |l ength and address
of the string. Each of the four types is shown bel ow

UAAAAAAAAAAAAAAAARAAARAARAARAAA ;

3 02Hs3 "A" 3 "B" 3 LSB 3 MSB 3

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAU

| nt eger

3 03H3 "A" 3 "B" 3 LEN 3 LSB 3 MSB 3

3 04H3 "A" 3 "B" 3 EE 3 DD3 DD3 DD 3
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAU
Si ngl e Precision

UAAAAAAAAAAAAAAAAAAAAAAAARAAARAAAAAAAAAARAAARAAAAAARRAARAA ;
3 08H3 "A" 3 "B" 3 EE3 DD DD*® DD3 DD3 DD® DD3 DD?3
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARAAAAAAAAAAAAAAAAARAL
Doubl e Preci sion

Fi gure 46: Sinple Variables

NOFUNS is first checked to determ ne whether a user defined
function is currently being evaluated. If so the search is
carried out on the contents of PARML first of all, only if this
fails will it nove onto the nmain Variable Storage Area. A
linear search nmethod is used, the two nanme characters and type
byte of each Variable in the storage area are conpared to the
reference characters and type until a match is found or the end
of the storage area is reached. If the search is successful the
routine terminates with the address of the first byte of the
Variable contents in register pair DE. If the search is
unsuccessful the Array Storage Area is nmoved upwards and the
new Variable is added to the end of the existing ones and
initialized to zero

There are two exceptions to this automatic creation of a new
Variable. If the search is being carried out by the "VARPTR
function, and this is determ ned by exam ning the return

address, no Variable will be created. Instead the routine
term nates with register pair DE set to zero (5F61H) causing a
subsequent "Illegal function call" error. The second exception

occurs when the search is being carried out by the Factor

Eval uator, that is when the Variable is newly declared inside
an expression. In this case DAC is zeroed for nuneric types,
and | oaded with the address of a dummy zero | ength descriptor
for a string type, thus returning a zero result (5FA7H). These

- 156 -

5. ROM BASI C | NTERPRETER

actions are designed to prevent the Expression Eval uator
creating a new Variable ("VARPTR') is the only function to take
a Variable argument directly rather than via an expression and
SO requires separate protection). If this were not so then
assignment to an Array, via the "LET" statenent handler, would
fail as any sinple Variable created during expression

eval uati on woul d change the Array's address.

Address... 5FBAH

This is the Array search routine. There are four types of
Array each conposed of a header plus a nunber of elenents. The
first byte of the header contains the type code, the next two
bytes the Array name and the next two the offset to the start
of the following Array. This is followed by a single byte
containing the dinensionality of the Array and the el ement
count list. Each two byte el enment count contains the maxi mum
nunber of el enents per dinmension. These are stored in reverse
order with the first one corresponding to the |ast subscript.
The contents of each Array elenment are identical to the
contents of the corresponding sinple Variable. The integer
Array AB% 3,4) is shown below with each el enment identified by
its subscripts, high menory is towards the top of the page:

UARAAAAARAAAAARAAAAARAAA,
3(0,4) (1,4) (2,4) (3,4)°3
3(0,3) (1,3) (2,3) (3,3)°
$(0,2) (1,2) (2,2) (3,2)3
3(0,1) (1,1) (2,1) (3,1)3
3(0,0) (1,0) (2,0) (3,0)3
AAAAAAAAAAAARAAAAARAAAAAL

UAAAAAAAAAAAAAAAAAAAARAAARAAARAAAAAAAAAARAAARAARAAARRAARRAAR,;
3 3 3 3 Ofset 3 Dims3 Count 3 Count 3
3 02H 3 "A" 3 "B" 3 2DH O0H 3 02H 3 O05H O0H 3 04H OO0H 3
AAL

Figure 47: Integer Array

Each subscript is evaluated, converted to an integer (4755H)
and pushed onto the Z80 stack until a closing parenthesis is
found, it need not match the opening one. A linear search is
then carried out on the Array Storage Area for a match with the
two nane characters and the type. |If the search is successful
DI MFLG i s checked and a "Redi nensi oned array" error generated
(405EH) if it shows a "DIM statenent to be active. Unless an
"ERASE" statenent is active, in which case the routine
termnates with register pair BC pointing to the start of the
Array (3297H), the dinensionality of the Array is then checked
agai nst the subscript count and a "Subscript out of range"
error generated if they fail to match. Assunming these tests are
passed control transfers to the el enent address conputation
poi nt (607DH)

If the search is unsuccessful and an "ERASE" statenent is
active an "Illegal function call” error is generated (475AH)

- 157 -

5. ROM BASI C | NTERPRETER

otherwi se the new Array is added to the end of the existing
Array Storage Area. Initialization of the new Array proceeds by
storing the two nane characters, the type code and the

di mensionality (the subscript count) foll owed by the el ement
count for each dinension. |If DI MFLG shows a "D M statement to
be active the elenment counts are determ ned by the subscripts.
If the Array is being created by default, with a statenment such
as "A(1,2,3)=5" for exanple, a default value of eleven is used.
As each elenent count is stored the total size of the Array is
accurmul ated in register pair DE by successive multiplications
(314AH) of the elenent counts and the el enent size (the Array
type). After a check that this ampbunt of nenory is available
(6267H) STREND is increased the new area is zeroed and the
Array size is stored, in slightly nodified form immediately
after the two nane characters. Unless the Array is being
created by default, in which case the el enent address nust be
conmput ed, the routine then termni nates.

This is the el ement address conputation point of the Array
search routine. The location of a particular elenent within an
Array involves the multiplication (314AH) of subscripts,
el ement counts and el enent sizes. As there are a variety of
ways this could be done the actual nethod used is best
illustrated with an exanple. The location of element (1,2,3) in
a 4*5*6 Array would initially be conputed as (((3*5)+2)*4)+1.
This is then multiplied by the elenment size (type) and added to
the Array base address to obtain the address of the required
el ement. The conputation nethod is an optimnm zed form which
m nimzes the nunber of steps needed, it is equivalent to
evaluating (3*(4*5))+(2*4)+(1). The el enent address is returned
in register pair DE.

Address... 60B1H

This is the "PRINT USING' statenment handler. Contro
transfers here fromthe general "PRINT" statenent handler after
the applicable output device has been set up. Upon term nation
control passes back to the general "PRINT" statenent exit point
(4AFFH) to restore the normal video output. The format string
is evaluated (4C65H) and the address and | ength of the string
body obtained fromthe descriptor. The programtext pointer is
then tenporarily saved. Each character of the format string is
exani ned until one of the possible tenplate characters is
found. If the character does not belong in a tenplate it is
sinply output via the OUTDO standard routine. Once the start of
a tenplate is found this is scanned along until a non-tenplate
character is found. Control then passes to the nuneric output
routine (6192H) or the string output routine (6211H)

In either case the programtext pointer is restored to
register pair HL and the next operand eval uated (4C64H). For
nunmeric output the information gained fromthe tenplate scan is
passed to the nuneric conversion routine (3426H) in registers
A, B and C and the resulting string displayed (6678H). For

- 158 -

5. ROM BASI C | NTERPRETER

string output the required character count is passed to the
"LEFT$" statenent handler (6868H) in register C and the
resulting string displayed (667BH). For either type of output
the programtext and format string are then exanmined to
determ ne whether there are any further characters. If no
operands exist the handler termnates. If the format string has
been exhausted then it is restarted fromthe begi nning (60BFH)
ot herwi se scanning continues fromthe current position for the
next operand (60f6H)

Address... 6250H

This routine is used by the Interpreter Minloop and the
Vari abl e search routine to nove a block of menory upwards. A
check is first nmade to ensure that sufficient nmenory exists
(6267H) and then the block of nenory is noved. The top source
address is supplied in register pair BC and the top destination
address in register pair HL. Copying stops when the contents of
regi ster pair BC equal those of register pair DE

Address... 625EH

This routine is used to check that sufficient nenory is
avail abl e between the top of the Array Storage Area and the
base of the Z80 stack. On entry register C contains the nunber
of words the caller requires. If this would narrow the gap to
| ess than two hundred bytes an "OQut of nenory" error is
gener at ed.

Address... 6286H

This is the "NEW statenent handl er. TRCFLG AUTFLG and
PTRFLG are zeroed and the zero end link is placed at the start
of the Program Text Area. VARTAB is set to point to the byte
following the end Iink and control drops into the run-clear
routine.

Address... 629AH

This routine is used by the "NEW, "RUN' and " CLEAR"
statenment handlers to initialize the Interpreter variables. Al
interrupts are cleared (636EH) and the default Variable types
in DEFTBL set to double precision. RNDX is reset (2C24H) and
ONEFLG, ONELI N and OLDTXT are zeroed. MEMSIZ is copied to
FRETOP to clear the String Storage Area and DATPTR set to the
start of the Program Text Area (63C9H). The contents of VARTAB
are copied into ARYTAB and STREND, to clear any Variables, al
the I/O buffers are closed (6C1CH) and NLONLY is reset. SAVSTK
and the Z80 SP are reset from STKTOP and TEMPPT is reset to the
start of TEMPST to clear any string descriptors. The printer is
shut down (7304H) and output restored to the screen (4AFFH)
Final |y PRMLEN, NOFUNS, PRMLN2, FUNACT, PRMSTK and SUBFLG are
zeroed and the routine term nates.

- 159 -

5. ROM BASI C | NTERPRETER

Address... 631BH

This routine is used by the "DEVICE ON' statenent handlers
to enable an interrupt source, the address of the rel evant
device's TRPTBI. status byte is supplied in register pair HL.
Interrupts are enabled by setting bit 0 of the status byte.
Bits 1 and 2 are then exanmined and, if the device has been
stopped and an interrupt has occurred, ONGSBF is increnented
(634FH) so that the Runloop will process it at the end of the
statement. Finally bit 1 of the status byte is reset to rel ease
any existing stop condition.

Address... 632EH

This routine is used by the "DEVI CE OFF" statenent handlers
to disable an interrupt source, the address of the rel evant
device's TRPTBL status byte is supplied in register pair HL.
Bits O and 2 are exami ned to determ ne whether an interrupt has
occurred since the end of the last statenent, if so ONGSBF is
decremented (6362H) to prevent the Runloop frompicking it up
The status byte is then zeroed.

Address... 6331H

This routine is used by the "DEVICE STOP" statenent handl ers
to suspend processing of interrupts froman interrupt source,
the address of the relevant device's TRPTBL status byte is
supplied in register pair HL. Bits 0 and 2 are exam ned to
determ ne whether an interrupt has occurred since the end of
the last statenent, if so ONGSBF is decrenmented (6362H) to
prevent the Runloop frompicking it up. Bit 1 of the status
byte is then set.

Address... 633EH

This routine is used by the "RETURN' statenment handler to
rel ease the tenporary stop condition inposed during interrupt
driven BASIC subroutines, the address of the relevant device's
TRPTBL status byte is supplied in register pair HL. Bits O,
and 2 are exanined to determ ne whether a stopped interrupt has
occurred since the subroutine was first activated. |If so ONGSBF
is incremented (634FH) so that the Runloop will pick it up at
the end of the statenment. Bit 1 of the status byte is then
reset. It should be noted that any "DEVI CE STOP" Statenent
within an interrupt driven subroutine will therefore be
i neffective.

Address... 6358H

This routine is used by the Runloop interrupt processor
(6389H) to clear an interrupt prior to activating the BASIC
subroutine, the address of the relevant device's TRPTBL status
byte is supplied in register pair HL. ONGSBF is decrenented and
bit 2 of the status byte is reset.

- 160 -

5. ROM BASI C | NTERPRETER

Address... 636EH

This routine is used by the run-clear routine (629AH) to
clear all interrupts. The seventy-eight bytes of TRPTBL and the
ten bytes of FNKFLG are zeroed.

Address... 6389H

This is the Runloop interrupt processor. ONEFLG is first
exam ned to determ ne whether an error condition currently
exists. If so the routine term nates, no interrupts will be
processed until the error clears. CURLIN is then exam ned and,
if the Interpreter is in direct node, the routine term nates.
Assuming all is well a search is nade of the twenty-six status
bytes in TRPTBL to find the first active interrupt. Note that
devices near the start of the table will consequently have a
hi gher priority than those | ower down. Wen the first active
status byte is found, that is one with bits 0 and 2 set, the
associ ated address is taken from TRPTBL and pl aced in register
pair DE. The interrupt is then cleared (6358H) and the device
st opped (6331H) before control transfers to the "GOSUB" handl er
(47CFH) .

Address... 63C9H

This is the "RESTORE" statenent handler. |If no |ine nunber
operand exists DATPTR is set to the start of the Program
Storage Area. Ot herwi se the operand is collected (4769H), the
program text searched to find the relevant line (4295H) and its
address placed i n DATPTR

Address... 63E3H

This is the "STOP" statenent handler. |f further text exists
in the statenment control transfers to the "STOP OV OFF/ STOP"
statenment handl er (77A5H). Otherw se register Ais set to O1H
and control drops into the "END' statement handl er

Address... 63EAH

This is the "END" statenent handler. It is also used, with
differing entry points, by the "STOP" statenent and for CTRL-
STOP and end of text programternination. ONEFLG is first
zeroed and then, for the "END' statenment only, all 1/0O buffers
are closed (6CLCH). The current programtext position is placed
in SAVTXT and OLDTXT and the current line nunber in OLDLIN for
use by any subsequent "CONT" statenent. The printer is shut
down (7304H), a CR LF issued to the screen (7323H) and register
pair HL set to point to the "Break" nessage at 3FDCH. For the
"END" statement and end of text cases control then transfers to
the Mainloop "OK" point (411EH). For the CTRL-STOP case contro
transfers to the end of the error handler (40FDH) to display
the "Break" nessage.

- 161 -

5. ROM BASI C | NTERPRETER

Address... 6424H

This is the "CONT" statenment handler. Unless they are zero,
in which case a "Can't CONTINUE" error is generated, the
contents of OLDTXT are placed in register pair HL and those of
OLDLIN in CURLIN. Control then returns to the Runloop to
execute at the old programtext position. A program cannot be
continued after CTRL-STOP has been used to break from WTHI N a
statement, via the CKCNTC standard routine, rather than from
bet ween statements.

Address... 6438H

This is the "TRON' statenent handler, TRCFLG is sinply made
non- zero.

Address... 6439H

This is the "TROFF" statenent handler, TRCFLG is sinply nade
zero.

Address... 643EH

This is the "SWAP" statenent handler. The first Variable is
| ocated (5EA4H) and its contents copied to SWPTMP. The | ocation
of this Variable and of the end of the Variable Storage Area
are tenporarily saved. The second Variable is then |ocated
(5EAdH) and its type conmpared with that of the first. If the
types fail to match a "Type mi smatch" error is generated
(406DH). The current end of the Variable Storage Area is then
conmpared with the old end and an "Illegal function call" error
generated (475AH) if they differ. Finally the contents of the
second Variable are copied to the location of the first
Vari abl e (2EF3H) and the contents of SWPTMP to the | ocation of
the second Vari abl e (2EF3H)

The checks performed by the handler nmean that the second
Variable, if it is sinple and not an Array, nust always be in
exi stence before a "SWAP" Statement is encountered or an error
will be generated. The reason for this is that, supposing the
first Variable was an Array, then the creation of a second
(sinple) Variable would nove the Array Storage Area upwards
invalidating its saved |l ocation. Note that the perfectly |ega
case of a sinple first Variable and a newmy created sinple
second Variable is also rejected.

Address... 6477H

This is the "ERASE" statenent handler. SUBFLG is first set
to 01H, to control the Variable search routine, and the Array
| ocated (5EA4H). All the followi ng Arrays are noved downward
and STREND set to its new, |ower value. The programtext is
then checked and, if a conma follows, control transfers back to
the start of the handler.

- 162 -

5. ROM BASI C | NTERPRETER

Address... 64A7H

This routine checks whether the character whose address is
supplied in register pair HL is upper case al phabetic, if so it
returns Flag NC

Address... 64AFH

This is the "CLEAR" statenent handler. |If no operands are
present control transfers to the run-clear routine (62A1H) to
remove all current Variables. Otherw se the string space
operand is evaluated (4756H) followed by the optional top of
menory operand (542FH). The top of nmenory value is checked and
an "lllegal function call" error generated (475AH) if it is
| ess than 8000H or greater than F380H. The space required by
the I/O buffers (267 bytes each) and the String Storage Area is
subtracted fromthe top of nmenory value and an "Qut of nenory"
error generated (6275H) if there is |l ess than 160 bytes
remai ning to the base of the Variable Storage Area. Assum ng
all is well HHMEM MEMSIZ and STKTOP are set to their new
val ues and the remining storage pointers reset via the run-
clear routine (62A1H). The I/O buffer storage is re-allocated
(7E6BH) and the handl er termn nates.

Unfortunately the conputation of MEMSIZ and STKTOP, when a
new top of nenory is specified, is incorrect resulting in the
top of the String Storage Area being set one byte too high
This can be seen with the followi ng where an illegal string is
accept ed:

10 CLEAR 200, &HF380
20 A$=STRI NG$(201, "A")
30 PRINT FRE("")

Because there should be an extra DEC HL instruction at 64EBH
the new val ues of MEMSIZ and STKTOP are initially set one byte
too high. When the run-clear routine is called MEMSIZ is copied
into FRETOP, the top of the String Storage Area, which results
in this being one byte too high as well. Although MEMSI Z and
STKTOP are correctly reconputed when the file pointers are
reset, FRETOP is left with its incorrect value. \When the "FRE"
statenent is executed in line thirty, and string garbage
collection initiated, FRETOP is restored to its correct val ue
but, because the string overflows the String Storage Area by
one byte, the ampbunt of free space displayed is -1 byte. To
correctly set all the systempointers any alteration of the top
of menory should be followed i medi ately by anot her "CLEAR"
statenment with no operands.

Address... 6520H
This routine conmputes the difference between the contents of

register pairs HL and DE. It is a duplicate of the short
section of code from 64ECH to 64F1H and is conpletely unused.

- 163 -

5. ROM BASI C | NTERPRETER

Address... 6527H

This is the "NEXT" statement handler. Assum ng further text
is present in the statenent the |loop Variable is |ocated
(5EA4H), otherwi se a default address of zero is taken. The
stack is then searched for the correspondi ng "FOR" paraneter
bl ock (3FE2H). If no paraneter block is found, or if a "GOSUB"
paraneter block is found first, a "NEXT without FOR' error is
generated (405BH). Assuming the parameter block is found the
i ntervening section of stack, together with any "FOR" bl ocks it
may contain, is discarded. The | oop Variable type is then taken
fromthe paranmeter block and exam ned to determ ne the
precision required during subsequent operations.

The STEP value is taken fromthe paraneter block and added
(3172H, 324EH or 2697H) to the current contents of the |oop
Variabl e which is then updated. The new val ue is conpared
(2F4DH, 2F21H or 2F5CH) with the ternination value fromthe
paranmeter block to deternine whether the | oop has term nated
(65B6H). The loop will term nate for a positive STEP if the new
| oop value is CGREATER than the term nation value. The |oop wll
termnate for a negative step if the new | oop value is LESS
than the ternination value. If the |oop has not terninated the
original programtext position and |line nunber are taken from
the paraneter block and control transfers to the Runl oop
(45FDH). If the loop has terminated the paranmeter block is
di scarded fromthe stack and, unless further programtext is
present in which control transfers back to the start of the
handl er, control transfers to the Runloop to execute the next
statement (4601H)

Address... 65C8H

This routine is used by the Expression Evaluator to find the
relation (<>=) between two string operands. The address of the
first string descriptor is supplied on the Z80 stack and the
address of the second in DAC. The result is returned in
register A and the flags as for the nuneric relation routines:

String 1=String 2 ... A=00H, Flag Z, NC
String 1<String 2 ... A=01H, Flag NZ, NC
String 1>String 2 ... A=FFH, Flag Nz, C

Conpari son commences at the first character of each string and
continues until the two characters differ or one of the strings
i s exhausted. Control then returns to the Expression Eval uator
(4F57H) to place the true or false nunmeric result in DAC

Address... 65F5H

This routine is used by the Factor Evaluator to apply the
"OCT$" function to an operand contained in DAC. The nunber is
first converted to textual formin FBUFFR (371EH) and then the
result string is created (6607H)

- 164 -

5. ROM BASI C | NTERPRETER

Address... 65FAH

This routine is used by the Factor Evaluator to apply the
"HEX$" function to an operand contained in DAC. The nunber is
first converted to textual formin FBUFFR (3722H) and then the
result string is created (6607H)

Address... 65FFH

This routine is used by the Factor Evaluator to apply the
"BI N$" function to an operand contained in DAC. The nunber is
first converted to textual formin FBUFFR (371AH) and then the
result string is created (6607H)

Address... 6604H

This routine is used by the Factor Evaluator to apply the
"STR$" function to an operand contained in DAC. The nunber is
first converted to textual formin FBUFFR (3425H) then analyzed
to determine its |l ength and address (6635H). After checking
that sufficient space is available (668EH) the string is copied
to the String Storage Area (67C7H) and the result descriptor
created (6654H)

Address... 6627H

This routine first checks that there is sufficient space in
the String Storage Area for the string whose length is supplied
in register A (668EH). The string |l ength and the address where
the string will be placed in the String Storage Area are then
copi ed to DSCTWP

Address... 6636H

This routine is used by the Factor Evaluator to analyze the
character string whose address is supplied in register pair HL.
The character string is scanned until a term nating character
(OOH or ") is found. The length and starting address are then
pl aced in DSCTMP (662AH) and control drops into the descriptor
creation routine.

Address... 6654H

This routine is used by the string functions to create a
result descriptor. The descriptor is copied from DSCTMP to the
next avail able position in TEMPST and its address placed in
DAC. Unless TEMPST is full, in which case a "String forrmula too
conmpl ex" error is generated, TEMPPT is increased by three bytes
and the routine term nates.

Address... 6678H

This routine displays the nessage, or string, whose address
is supplied in register pair HL. The string is analyzed (6635H)

- 165 -

5. ROM BASI C | NTERPRETER

and its storage freed (67D3H). Successive characters are then
taken fromthe string and displayed, via the OUTDO standard
routine, until the string is exhausted.

Address... 668EH

This routine checks that there is roomin the String Storage
Area to add the string whose length is supplied in register A
On exit register pair DE points to the starting address in the
String Storage Area where the string should be placed. The
I ength of the string is first subtracted fromthe current free
| ocation contained in FRETOP. This is then conpared with
STKTOP, the |owest allowable |location for string storage, to
determ ne whether there is space for the string. If so FRETOP
is updated with the new position and the routine ternminates. |If
there is insufficient space for the string then garbage
collection is initiated (66B6H) to try and elim nate any dead
strings. If, after garbage collection, there is still not
enough space an "CQut of string space" error is generated.

Address... 66B6H

This is the string garbage collector, its functionis to
elimnate any dead strings fromthe String Storage Area. The
basic problemwi th string Variables, as opposed to nuneric
ones, is that their lengths vary. |If string bodies were stored
with their Variables in the Variable Storage Area even such
apparently sinple statenments as A$=A$+"X" would require the
movement of thousands of bytes of nenory and sl ow execution
speeds dramatically. The method used by the Interpreter to
overconme this problemis to keep the string bodies separate
fromthe Variables. Thus strings are kept in the String Storage
Area and each Variable holds a three byte descriptor containing
the Il ength and address of the associated string. Whenever a
string is assigned to a Variable it is sinply added to the heap
of existing strings in the String Storage Area and the
Vari abl e’ s descriptor changed. No attenpt is nmade to elim nate
any previous string belonging to the Variable, by restructuring
the heap, as this would w pe out any throughput gains.

If sufficient Variable assignnments are nade it is inevitable
that the String Storage Area will fill up. In a typical program
many of these strings will be unused, that is the result of
previ ous assignnents. Garbage collection is the process whereby
these dead strings are renmoved. Every string Variable in
menory, including Arrays and the |ocal Variables present during
eval uati on of user defined functions, is exanm ned until the one
is found whose string is stored highest in the heap. This
string is then noved to the top of the String Storage Area and
the Variable contents nodified to point to the new | ocation
The owner of the next highest string is then found and the
process repeated until every string belonging to a Variable has
been conpact ed

- 166 -

5. ROM BASI C | NTERPRETER

If a large nunber of Variables are present garbage
collection may take an appreciable tine. The process can be
seen at work with the followi ng program which repeatedly
assigns the string "AAAA" to each element of the Array A$. The
programw Il run at full speed for the first two hundred and
fifty assignnents and then pause to elinmnate the fifty dead
strings. A further fifty assignments can then be nade before a
further garbage collection is required:

10 CLEAR 1000

20 DI M A$(200)

30 FOR N=0 TO 200

40 A$(N) =STRI NG(4, "A")
50 PRINT".";

60 NEXT N

70 GOTO 30

The String Storage Area is also used to hold the intermediate
strings produced during expression evaluation. Because so nany
string functions take nultiple arguments, "M D$" takes three
for exanple, the managenent of internmediate results is a mmjor
problem To deal with it a standardi zed approach to string
results is taken throughout the Interpreter. A producer of a
string sinply adds the string body to the heap in the String
Storage Area, adds the descriptor to the descriptor heap in
TEMPST and places the address of the descriptor in DAC. It is
up to the user of the result to free this storage (67DOH) once
it has processed the string. This rule applies to all parts of
the system fromthe individual function handlers back through
the Expression Evaluator to the statenent handlers, with only
two exceptions.

The first exception occurs when the Factor Eval uator finds
an explicitly stated string, such as "SOVETH NG' in the
programtext. In this case it is not necessary to copy the
string to the String Storage Area as the original will suffice.

The second exception occurs when the Factor Evaluator finds a
reference to a Variable. In this case it is not necessary to
pl ace a copy of the descriptor in TEMPST as one already exists
i nside the Variabl e.

Address... 6787H

This routine is used by the Expression Evaluator to
concatenate two string operands. Control transfers here when a
"+" token is found following a string operand so the first
action taken is to fetch the second string operand via the
Factor Eval uator (4DC7H). The lengths are then taken from both
string descriptors and added together to check the | ength of
the conbined string. If this is greater than two hundred and
fifty-five characters a "String too long" error is generated.
After checking that space is available in the String Storage
Area (6627H) the storage of both operands is freed (67D6H). The
first string is then copied to the String Storage Area (67BFH)

- 167 -

5. ROM BASI C | NTERPRETER

and foll owed by the second one (67BFH). The result descriptor
is created (6654H) and control transfers back to the Expression
Eval uator (4C73H)’

Address... 67DOH

This routine frees any storage occupi ed by the string whose
descriptor address is contained in DAC. The address of the
descriptor is taken from DAC and exani ned to determ ne whet her
it is that of the last descriptor in TEMPST (67EEH), if not the
routine term nates. O herwi se TEMPPT is reduced by three bytes
clearing this descriptor from TEMPST. The address of the string
body is then taken fromthe descriptor and conpared with FRETOP
to see if this is the lowest string in the String Storage Area,
if not the routine term nates. Otherwi se the | ength of the
string is added to FRETOP, which is then updated with this new
val ue, freeing the storage occupied by the string body.

Address... 67FFH

This routine is used by the Factor Evaluator to apply the
"LEN' function to an operand contained in DAC. The operand's
storage is freed (67D0OH) and the string length taken fromthe
descriptor and placed in DAC as an integer (4FCFH).

Address... 680BH

This routine is used by the Factor Evaluator to apply the
"ASC' function to an operand contained in DAC. The operand's
storage is freed and the string |l ength exam ned (6803H), if it
is zero an "lllegal function call" error is generated (475AH)
O herwise the first character is. taken fromthe string and
pl aced in DAC as an integer (4FCFH)

Address... 681BH

This routine is used by the Factor Evaluator to apply the
"CHR$" function to an operand contained in DAC. After checking
that sufficient space is available (6625H) the operand is
converted to a single byte integer (521FH). This character is
then placed in the String Storage Area and the result
descriptor created (6654H)

Address... 6829H

This routine is used by the Factor Evaluator to apply the
"STRI NG$" function. After checking for the open parenthesis
character the length operand is evaluated and placed in
regi ster E (521CH). The second operand is then eval uated
(4C64H). If it is nuneric it is converted to a single byte
i nteger (521FH) and placed in register A If it is a string the
first character is taken fromit and placed in register A
(680FH). Control then drops into the "SPACE$" function to
create the result string.

- 168 -

5. ROM BASI C | NTERPRETER

Address... 6848H

This routine is used by the Factor Evaluator to apply the
"SPACE$" function to an operand contained in DAC. The operand
is first converted to a single byte integer in register E
(521FH). After checking that sufficient space is avail able
(6627H) the required nunber of spaces are copied to the String
Storage Area and the result descriptor created (6654H)

Address... 6861H

This routine is used by the Factor Evaluator to apply the
"LEFT$" function. The first operand's descriptor address and
the integer second operand are supplied on the Z80 stack. The
slice size is taken fromthe stack (68E3H) and conpared to the
source string length. If the source string length is |ess than
the slice size it replaces it as the length to extract. After
checking that sufficient space is available (668EH) the
requi red nunmber of characters are copied fromthe start of the
source string to the String Storage Area (67C7/H). The source
string's storage is then freed (67D7H) and the result
descriptor created (6654H)

Address... 6891H

This routine is used by the Factor Evaluator to apply the
"Rl GHT$" function. The first operand's descriptor address and
the integer second operand are supplied on the Z80 stack. The
slice size is taken fromthe stack (68E3H) and subtracted from
the source string length to deternine the slice starting
position. Control then transfers to the "LEFT$" routine to
extract the slice (6865H)

Address... 689AH

This routine is used by the Factor Evaluator to apply the
"M D$" function. The first operand's descriptor address and the
i nteger second operand are supplied on the Z80 stack. The
starting position is taken fromthe stack (68E6H) and checked,
if it is zero an "lIllegal function call" error is generated
(475AH). The optional slice size is then evaluated (69E4H) and
control transfers to the "LEFT$" routine to extract the slice
(6869H) .

Address... 68BBH

This routine is used by the Factor Evaluator to apply the
"VAL" function to an operand contained in DAC. The string
length is taken fromthe descriptor (6803H) and checked, if it
is zero it is placed in DAC as an integer (4FCFH). The |length
is then added to the starting address of the string body to
give the location of the character imediately following it.
This is tenporarily replaced with a zero byte and the string is
converted to nunmeric formin DAC (3299H). The origina

- 169 -

5. ROM BASI C | NTERPRETER

character is then restored and the routine term nates. The
tenporary zero byte delimter is necessary because strings are
packed together in the String Storage Area, without it the
nuneric converter would run on into succeeding strings.

Address... 68E3H

This routine is used by the "LEFT$", "M D$" and "Rl GHT$"
function handlers to check that the next programtext character
is ")" and then to pop an operand fromthe Z80 stack into
regi ster pair DE.

Address... 68EBH

This routine is used by the Factor Evaluator to apply the
"I NSTR" function. The first operand, which nay be the starting
position or the source string, is evaluated (4C62H) and its
type tested. If it is the source string a default starting
position of one is taken. If it is the starting position
operand its value is checked and the source string operand
eval uated (4C64H). The pattern string is then eval uated (4C64H)
and the storage of both operands freed (67DOH). The | ength of
the pattern string is checked and, if zero, the starting
position is placed in DAC (4FCFH). The pattern string is then
checked agai nst successive characters fromthe source string,
commenci ng at the starting position, until a nmatch is found or
the source string is exhausted. Wth a successful search the
character position of the substring is placed in DAC as an
i nteger (4FCFH), otherwi se a zero result is returned.

Address... 696EH

This is the "M D$" statenent handler. After checking for the
open parenthesis character the destination Variable is |ocated
(5EA4H) and checked to ensure that it is a string type (3058H)
The address of the string body is then taken fromthe Variabl e
and exanmined to determ ne whether it is inside the Program Text
Area, as would be the case for an explicitly stated string. If
this is the case the string body is copied to the String
Storage Area (6611H) and a new descriptor copied to the
Variable (2EF3H). This is done to avoid nmodifying the program
text. The starting position is then evaluated (521CH) and
checked, if it is zero an "lIllegal function call" error is
generated (475AH). The optional slice length operand is
eval uated (69E4H) foll owed by the replacenent string (4C5FH)
whose storage is then freed (67DOH). Characters are then copied
fromthe replacenent string to the destination string unti
either the slice length is conpleted or the replacenment string
i s exhausted.

Address... 69E4H

This routine is used by various string functions to evaluate
an optional operand (521CH) and return the result in register

- 170 -

5. ROM BASI C | NTERPRETER

E. If no operand is present a default value of 255 is returned.
Address... 69F2H

This routine is used by the Factor Evaluator to apply the
"FRE" function to an operand contained in DAC. If the operand
is nuneric the single precision difference between the Z80
Stack Pointer and the contents of STREND is placed in DAC
(4FClH). If the operand is a string type its storage is freed
(67D3H) and garbage collection initiated (66B6H). The single
precision difference between the contents of FRETOP and those
of STKTOP is then placed in DAC (4FClH).

Address... 6AOEH

This routine is used by the file 1/O handlers to analyze a
filespec such as "A: FI LENAME. BAS'. The fil espec consists of
three parts, the device, the filenane and the type extension
On entry register pair HL points to the start of the fil espec
in the programtext. On exit register D holds the device code,
the filenane is in positions zero to seven of FILNAM and the
type extension in positions eight to ten. Any unused positions
are filled with spaces.

The filespec string is evaluated (4C64H) and its storage
freed (67DOH), if the string is of zero length a "Bad file
name" error is generated (6E6BH). The device nane is parsed
(6F15H) and successive characters taken fromthe fil espec and
placed in FILNAM until the string is exhausted, a "." character
is found or FILNAM is full. A "Bad file name" error is
generated (6E6BH) if the filespec contains any contro
characters, that is those whose value is smaller than 20H |If
the filespec contains a type extension a "Bad file nanme" error
is generated (6E6BH) if it is |onger than three characters or
if the filenane is |onger than eight characters. If no type
extension is present the filename nmay be any |length, extra
characters are sinply ignored.

Address... 6A6DH

This routine is used by the file I/O handlers to |locate the
I/ O buffer FCB whose nunber is supplied in register A The
buffer nunber is first checked against MAXFIL and a "Bad file
nunber" error generated (6E7DH) if it is too large. Otherw se
the required address is taken fromthe file pointer block and
pl aced in register pair HL and the buffer's node taken from
byte 0 of the FCB and placed in register A

Address... 6A9EH

This routine is used by the file I/O handlers to evaluate an
I /O buffer nunber and to locate its FCB. Any "#" character is
ski pped (4666H) and the buffer nunmber evaluated (521CH). The
FCB is located (6A6DH) and a "File not open" error generated

- 171 -

5. ROM BASI C | NTERPRETER

(6E77H) if the buffer node byte is zero. OGtherwi se the FCB
address is placed in PTRFIL to redirect the Interpreter's
out put .

Address... 6AB7H

This is the "OPEN' statenent handler. The filespec is
anal yzed (6A0EH) and any follow ng node converted to the
correspondi ng node byte, these are: "FOR I NPUT" (01H), "FOR
QUTPUT" (02H) and "FOR APPEND' (08H). If no node is explicitly
stated random node (04H) is assuned. The "AS - characters are
checked and the buffer nunber evaluated (521CH), if this is
zero a "Bad file nunber"” error is generated (6E7DH). The FCB is
then located (6A6DH) and a "File already open" error generated
(6E6EH) if the buffer's node byte is anything other than zero.
The device code is placed in byte 4 of the FCB, the open
function dispatched (6F8FH) and the Interpreter's output reset
to the screen (4AFFH).

Address... 6B24H

This routine is used by the file I/O handlers to close the
I/ O buffer whose nunber is supplied in register A The FCB is
| ocated (6A6DH) and, provided the buffer is in use, the close
function dispatched (6F8FH) and the buffer filled with zeroes
(6CEAH). PTRFIL and the FCB npde byte are then zeroed to reset
the Interpreter's output to the screen.

Address... 6B5BH

This is the "LOAD', "MERGE" and "RUN fil espec" statenent
handl er. The fil espec is analyzed (6A0OEH) and then, for "LOAD"
and "RUN' only, the programtext exami ned to determ ne whether
the auto-run "R' option is specified. |I/O buffer 0 is opened
for input (6AFAH) and the first byte of FILNAM set to FFH if
auto-run is required. For "LOAD' and "RUN' only any program
text is then cleared via the "NEW statenent handler (6287H).
As this will reset the Interpreter's output to the screen the
buffer FCB is again |located and placed in PTRFIL (6AAAH).
Control then transfers directly to the Interpreter Mainloop
(4134H) for the programtext to be loaded as if typed fromthe
keyboard. Note that no error checking of any sort is carried
out on the data read.

Address... 6BA3H

This is the "SAVE" statement handler. The filespec is
anal yzed (6A0EH) and the programtext exanined to determn ne
whether the ASCII "A" suffix is present. This is only rel evant
under Disk BASIC, it makes no difference on a standard MSX
machine. 1/0O buffer 0 is opened for output (6AFAH) and control
transfers to the "LIST" statenent handler (522EH) to output the
programtext. Note that no error checking information of any
sort acconpani es the text.

- 172 -

5. ROM BASI C | NTERPRETER

Address... 6BDAH

This routine is used by the file I1/O handlers to return the
device code for the currently active I/O buffer. The FCB
address is taken from PTRFIL then the device code taken from
byte 4 of the FCB and placed in register A

Address... 6BE7H

This routine is used by the file 1/O handlers to perform an
operation on a number of 1/0O buffers. The address of the
relevant routine is supplied in register pair BC and the buffer
count in register A For exanple if register pair BC contained
6B24H and register A contained O3H buffers 3, 2, 1 and 0 would be
closed. The routine has a slightly different function if it is
entered with FLAG NZ. In this case the |/O buffer nunbers are
taken sequentially fromthe programtext and evaluated (521CH)
before the operation is perforned, a typical case m ght be
“H1, #2".

Address... 6Cl4H

This is the "CLOSE" statenent handler. Register pair BCis
set to 6B24H, register Ais |loaded with the contents of MAXFIL
and the required nunber of buffers closed (6BE7H)

Address... 6CI1CH

This routine is used by the file I1/O handlers to close every
I1/O buffer. Register pair BCis set to 6B24H, register Ais
| oaded with the contents of MAXFIL and all buffers closed
(6BETH) .

Address... 6C2AH

This is the "LFILES" statenment handler. PRTFLG is nade non-
zero, to direct output to the printer, and control drops into
the "FILES" statenment handl er.

Address... 6C2FH

This is the "FILES" statenent handler, an "Illegal function
call" error is generated (475AH) on a standard MSX machi ne.

Address... 6C35H

Control transfers here fromthe general "PUT" and "CGET"
handl ers (7758H) when the programtext contains anything other
than a "SPRI TE" token. A "Sequential 1/0O only" error is
generated (6E86H) on a standard MSX machi ne.

Address... 6C48H

This routine is used by the file I/O handlers to

- 173 -

5. ROM BASI C | NTERPRETER

sequentially output the character supplied in register A The
character is placed in register C and the sequential output
function di spatched (6F8FH)

Address... 6C71H

This routine is used by the file I/O handlers to
sequentially input a single character. The sequential input
function is dispatched (6F8FH) and the character returned in
register A, FLAG C indicates an EOF (End Of File) condition

Address... 6C87H

This routine is used by the Factor Evaluator to apply the
"I NPUT$" function. The programtext is checked for the "$" and
"(" characters and the | ength operand evaluated (521CH). If an
I /O buffer nunber is present it is evaluated, the FCB | ocated
(6A9EH) and the npde byte exami ned. An "Ilnput past end" error
is generated (6E83H) if the buffer is not in input or random
node. After checking that sufficient space is avail able (6627H)
the required nunmber of characters are sequentially input
(6C71H), or collected via the CHGET standard routine, and
copied to the String Storage Area. Finally the result
descriptor is created (6654H)

Address... 6CEAH

This routine is used by the file I/O handlers to fill the
buffer whose FCB address is contained in PTRFIL with two
hundred and fifty-six zeroes.

Address... 6CFBH

This routine is used by the file I/O handlers to return, in
register pair HL, the starting address of the buffer whose FCB
address is contained in PTRFIL. This just involves adding nine
to the FCB address.

Address... 6DO3H

This routine is used by the Factor Evaluator to apply the
"LOC" function to the I/0O buffer whose number is contained in
DAC. The FCB is located (6A6AH) and the LOC function dispatched
(6F8FH). An "lllegal function call" error is generated (475AH)
on a standard MSX machi ne.

Address... 6D14H

This routine is used by the Factor Evaluator to apply the
"LOF" function to the I/O buffer whose number is contained in
DAC. The FCB is located (6A6AH) and the LOF function dispatched
(6F8FH). An "lllegal function call" error is generated (475AH)
on a standard MsSX machi ne.

- 174 -

5. ROM BASI C | NTERPRETER

Address... 6D25H

This routine is used by the Factor Evaluator to apply the
"EOF" function to the I/0O buffer whose nunmber is contained in
DAC. The FCB is located (6A6AH) and the ECF function dispatched
(6F8FH) .

Address... 6D39H

This routine is used by the Factor Evaluator to apply the
"FPOS" function to the 1/0O buffer whose nunber is contained in
DAC. The FCB is |l ocated (6A6AH) and the FPOS function
di spatched (6F8FH). An "lllegal function call" error is
generated (475AH) on a standard MSX machi ne.

Address... 6D48H

Control transfers to this routine when the Interpreter
Mai nl oop encounters a direct statenment, that is one with no
I'ine nunber. The I SFLI O standard routine is first used to
determ ne whether a "LOAD' statenment is active. If input is
coming fromthe keyboard control transfers to the Runl oop
execution point (4640H) to execute the statenent. If input is
coming fromthe cassette buffer 0 is closed (6B24H) and a
"Direct statenment in file" error generated (6E71H). This could
happen on a standard MSX machi ne either through a cassette
error or by attenpting to load a text file with no line
nunbers.

Address... 6D57H

This routine is used by the "I NPUT", "LINE INPUT" and
"PRI NT" statenent handlers to check for the presence of a "#"
character in the programtext. If one is found the 1/0O buffer
nunber is evaluated (521BH), the FCB |l ocated and its address
pl aced in PTRFIL (6AAAH). The npde byte of the FCB is then
conpared with the node nunber supplied by the statement handl er
in register C, if they do not match a "Bad file nunber” error
is generated (6E7DH). Wth "PRINT" the all owabl e nbdes are
out put, random and append. Wth "I NPUT" and "LINE | NPUT" the
al | owabl e nbdes are input and random Note that on a standard
MSX machi ne not all these npbdes are supported at |ower |evels.
Sonme sort of error will consequently be generated at a | ater
stage for illegal nopdes.

Address... 6D83H

This routine is used by the "I NPUT" statenment handler to
input a string froman I/O buffer. Areturnis first set up to
the "READ/ | NPUT" statenent handl er (4BF1H). The characters
which delinit the input string, comma and space for a nuneric
Variable and comma only for a string Variable, are placed in
registers D and E and control transfers to the "LINE I NPUT"
routi ne (6DA3H)

- 175 -

5. ROM BASI C | NTERPRETER

Address... 6D8FH

This is the "LINE I NPUT" statement handl er when input is
froman I/O buffer. The buffer nunber is evaluated, the FCB
| ocated and the nmpbde checked (6D55H). The Variable to assign to
is then located (5EA4H) and its type checked to ensure it is a
string type (3058H). A return is set up to the "LET" statenent
handl er (487BH) to perform the assignment and the input string
col l ected.

Characters are sequentially input (6C71H) and placed in BUF
until the correct delimter is found, EOF is reached or BUF
fills up (6E41H). When the term nating condition is reached and
assignment is to a nuneric Variable the string is converted to
nunmeric formin DAC (3299H). When assignnent is to a string
Variable the string is analyzed and the result descriptor
created (6638H)

For "LINE I NPUT" all characters are accepted until a CR code
is reached. Note that if this CR code is preceded by a LF code
then it will not function as a delimter but will nerely be
accepted as part of the string. For "INPUT" to a nuneric
Vari abl e | eadi ng spaces are stripped then characters accepted
until a CR code, a space or a conma is reached. Note that as
for "LINE INPUT" a CR code will not function as a delimter
when preceded by a LF code. In this case however the CR code
will not be placed in BUF but ignored. For "INPUT" to a string
Vari abl e | eadi ng spaces are stripped then characters accepted
until a CR or comm is reached. Note that as for "LINE I NPUT" a
CR code will not function as a delimter when preceded by a LF
code. In this case however neither code will be placed in BUF
both are ignored. An alternative node is entered when the first
character read, after any spaces, is a double quote character.
In this case all characters will be accepted, and stored in
BUF, until another double quote delimter is read.

Once the input string has been accepted the term nating
delimter is exanined to see if any special action is required
with respect to trailing characters. If the input string was
delimted by a double quote character or a space then any
succeedi ng spaces will be read in and ignored until a non-space
character is found. If this character is a coma or CR code
then it is accepted and ignored. O herwi se a putback function
is dispatched (6F8FH) to return the character to the I/0O
buffer. If the input string was delinited by a CR code then the
next character is read in and checked. If this is a LF code it
will be accepted but ignored. If it is not a LF code then a
put back function is dispatched (6F8FH) to return the character
to the 1/0O buffer.

Address... 6E6BH

This is a group of ten file I/Orelated error generators.
Regi ster Eis |loaded with the relevant error code and contro

- 176 -

5. ROM BASI C | NTERPRETER

transfers to the error handler (406FH)

ADDR. ERROR
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
6E6BH Bad file nane

6E6EH Fil e al ready open

6E71H Direct statenent in file
6E74H Fil e not found

6E77H Fil e not open

6E7AH Field overfl ow

6E7DH Bad fil e nunber

6ES8OH I nternal error

6E83H | nput past end

6E86H Sequential 1/0 only

Address... 6E92H

This is the "BSAVE" statenent handler. The fil espec is
anal yzed (6A0EH) and the start address evaluated (6FOBH). The
stop address is then evaluated (6FOBH) and placed i n SAVEND
foll owed by the optional entry address (6FOBH) which is placed
in SAVENT. If no entry address exists the start address is
taken instead. The device code is checked to ensure that it is
CAS, if not a "Bad file nane" error is generated (6E6BH), and
the data witten to cassette (6FD7H). Note that no buffering is
involved, data is witten directly to the cassette, and no
error checking information acconpani es the data.

Address... 6EC6H

This is the "BLOAD' statenent handler. The filespec is
anal yzed (6A0EH) and RUNBNF nade non-zero if the auto-run "R
option is present in the programtext. The optional |oad
offset, with a default value of zero, is then eval uated (6FO0BH)
and the device code checked to ensure that it is CAS, if not a
"Bad file nane" error is generated (6E6BH). Data is then read
directly fromcassette (7014H), as with "BSAVE" no buffering or
error checking is involved.

Address... 6EF4H

Control transfers to this routine when the "BLOAD" statenment
handl er has conpleted |oading data into nmenory. If RUNBNF is
zero buffer 0 is closed (6B24H) and control returns to the
Runl oop. Ot herw se buffer 0 is closed (6B24H), a return address
of 6CF3H is set up (this routine just pops the programtext
poi nter back into register pair HL and returns to the Runl oop)
and control transfers to the address contai ned in SAVENT.

Address... 6FOBH
This routine is used by the "BLOAD' and "BSAVE" handlers to

eval uate an address operand, the result is returned in register
pair DE. The operand is eval uated (4C64H) then converted to an

- 177 -

5. ROM BASI C | NTERPRETER

i nteger (5439H)
Address... 6F15H

This routine is used by the filespec analyzer to parse a
devi ce name such as "CAS:". On entry register pair HL points to
the start of the filespec string and register E contains its
length. If no device nane is present the default device code
(CAS=FFH) is returned in register Awith FLAG Z. If a lega
device nane is present its code is returned in register Awth
FLAG NZ.

The filespec is examined until a ":" character is found then
the nane conpared with each of the |egal device nanes in the
device table at 6F76H. If a match is found the device code is
taken fromthe table and returned in register A If no match is
found control transfers to the external ROM search routine
(55F8H). Note that any | ower case characters are turned to
upper case for conparison purposes. Thus crt and CRT, for
exanpl e, are the sane device.

Address... 6F76H

This table is used by the device nane parser, it contains
the four device nanes and codes avail able on a standard MSX
machi ne:

CAS ... FFH LPT ... FEH CRT ... FDH GRP ... FCH

Address... 6F87H

This table is used by the function di spatcher (6F8FH), it
contains the address of the function decoding table for each of
the four standard MSX devi ces:

CAS ... 71C7/H LPT ... 72A6H CRT ... 71A2H GRP ... 7182H

Address... 6F8FH

This is the file I/O function dispatcher. In conjunction
with the Interpreter's buffer structure it provides a
consi stent, device independent nmethod of inputting or
outputting data. The required function code is supplied in
register A and the address of the buffer FCB in register pair
HL.

The device code is taken frombyte 4 of the FCB and exani ned
to deternmine whether it is one of the four standard devices, if
not control transfers to the external ROM function di spatcher
(564AH). Otherwi se the address of the device's function
decoding table is taken fromthe table at 6F87H, the required
function's address taken fromit and control transferred to the
rel evant function handl er

- 178 -

5. ROM BASI C | NTERPRETER

Address... 6FB7H

This is the "CSAVE" statenent handler. The filename is
eval uated (7098H) followed by the optional baud rate operand
(7A2DH). The identification block is then witten to cassette
(7125H) with a filetype byte of D3H The contents of the
Program Text Area are witten directly to cassette as a single
data block (713EH). Note that no error checking information
acconpani es the data.

Address... 6FD7H

Control transfers to this routine fromthe "BSAVE" statenment
handler to wite a block of nenory to cassette. The
identification block is first witten to cassette (7125H) with
a filetype byte of DOH. The notor is then turned on and a short
header written to cassette (72F8H) The starting address is
popped fromthe Z80 stack and written to cassette LSB first,
MSB second (7003H). The stop address is taken from SAVEND and
witten to cassette LSB first, MSB second (7003H). The entry
address is taken from SAVENT and written to cassette LSB first,
MSB second (7003H). The required area of nenory is then witten
to cassette one byte at a tinme (72DEH) and the cassette notor
turned of f via the TAPOOF standard routine. Note that no error
checking i nformati on acconpani es the data.

Address... 7003H

This routine wites the contents of register pair HL to
cassette with register L first (72DEH) and regi ster H second
(72DEH) .

Address... 700BH

This routine reads two bytes from cassette and pl aces the
first in register L (72D4H), the second in register H (72D4H)

Address... 7014H

Control transfers to this routine fromthe "BLOAD" statenment
handl er to | oad data fromthe cassette into menory. The
cassette is read until an identification block with a file type
of DOH and the correct filename is found (70B8H). The data
bl ock header is then | ocated on the cassette (72E9H). The
of fset value is popped fromthe Z80 stack and added to the
start address fromthe cassette (700BH). The stop address is
read from cassette (700BH) and the offset added to this as
well. The entry address is read fromcassette (700BH) and
pl aced in SAVENT in case auto-run is required. Successive data
bytes are then read from cassette (72D4H) and pl aced in nenory,
at the start address initially, until the stop address is
reached. Finally the notor is turned off via the TAPIOF
standard routine and control transfers to the "BLOAD"
term nation point (6EF4H)

- 179 -

5. ROM BASI C | NTERPRETER

Address... 703FH

This is the "CLOAD' and "CLOAD?" statenent handler. The
programtext is first checked for a trailing "PRINT" token
(91H) which is how the "?" character is tokenized. The fil enane
is then evaluated (708CH) and the cassette read until an
identification block with a filetype of D3H and the correct
filenane is found (70B8H). For "CLOAD' a "NEW operation is
then perforned (6287H) to erase the current programtext. For
"CLOAD?" all pointers in the Program Text Area are converted to
I'ine nunbers (54EAH) to match the cassette data.

The data bl ock header is |ocated on the cassette and
successive data bytes read fromcassette and placed in nenory
or conpared with the current nenory contents (715DH). \Wen the
data bl ock has been conpletely read the nessage "OK" is
di spl ayed (6678H) and control transfers directly to the end of
the Interpreter Miinloop (4237H) to reset the Variable storage
poi nters. For "CLOAD?" reading of the data block will term nate
if the cassette byte is not the sane as the programtext byte
in menory. If the address where this occurred is above the end
of the Program Text Area then the handler termnates with an
"OK" nmessage as before. Oherwise a "Verify error" is
gener at ed.

Address... 708CH

This routine is used by the "CLOAD" and "CSAVE" st atenent
handl ers to evaluate a filename in the programtext. The two
handl ers use different entry points so that a null filenane is
al l owed for "CLOAD' but not for "CSAVE'. The filename string is
eval uated (4C64H), its storage freed (680FH) and the first six
characters copied to FILNAM |f the filenane is |onger than six
characters the excess is ignored. If the filenane is shorter
than six characters then FILNAM is padded with spaces.

Address... 70B8H

This routine is used by the "CLOAD" and "BLOAD' statenent
handl ers and for the dispatcher open function (when the device
is CAS and the npde is input) to locate an identification block
on the cassette. On entry the filenanme is in FILNAM and the
file type in register C, D3H for a tokenized BASIC (CLOAD) file,
DOH for a binary (BLOAD) file and EAH for an ASCI|I (LOAD or
data) file.

The cassette motor is turned on and the cassette read unti
a header is found (72E9H). Each identification block is
prefixed by ten file type characters so successive characters
are read fromcassette (72D4H) and conpared to the required
file type. If the file type characters do not match contro
transfers back to the start of the routine to find the next
header. Otherwi se the next six characters are read in (72D4H)
and placed in FILNAM If FILNAMis full of spaces no filenane

- 180 --

5. ROM BASI C | NTERPRETER

match is attenpted and the identification block has been found.
Ot herwi se the contents of FILNAM and FILNM2 are conpared to
determ ne whether this is the required file. If the match is
unsuccessful, and the Interpreter is in direct node, the
message "Skip:" is displayed (710DH) foll owed by the fil enane.
Control then transfers back to the start of the routine to try
the next header. If the match is successful, and the
Interpreter is in direct node, the nmessage "Found:" is

di spl ayed (710DH) followed by the filename and the routine
term nat es.

Address... 70FFH

This is the plain text nessage "Found:" ternminated by a zero
byt e.

Address... 7106H

This is the plain text nessage "Skip :
byt e.

term nated by a zero

Address... 710DH

Unl ess CURLIN shows the Interpreter to be in program node
this routine first displays (6678H) the nmessage whose address
is supplied in register pair HL, followed by the six characters
cont ai ned i n FI LENAMR.

Address... 7125H

This routine is used by the "CSAVE" and "BSAVE" statenment
handl ers and for the dispatcher open function (when the device
is CAS and the npde is output) to wite an identification block
to cassette. On entry the filenanme is in FILNAM and the
filetype in register A, D3H for a tokenized BASIC (CSAVE) file,
DOH for a binary (BSAVE) file and EAH for an ASCI| (SAVE or
data) file. The cassette notor is turned on and a | ong header
witten to cassette (72F8H) The filetype byte is then witten
to cassette (72DEH) ten tines followed by the first six
characters from FILNAM (72DEH). The cassette notor is turned
of f via the TAPOOF standard routine and the routine termninates.

Address... 713EH

This routine is used by the "CSAVE" statement handler to
wite the Program Text Area to cassette as a single data bl ock
Al'l pointers in the programtext are converted back to |ine
nunbers (54EAH) to nmake the text address independent. The
cassette notor is turned on and a short header witten to
cassette (72F8H) The entire Program Text Area is then witten
to cassette a byte at a tinme (72DEH) and followed with seven
zero bytes (72DEH) as a term nator. The cassette notor is then
turned of f via the TAPOCOF standard routine and the routine
term nat es.

- 181 -

5. ROM BASI C | NTERPRETER

Address... 715DH

This routine is used by the "CLOAD' and "CLOAD?" st atenent
handl ers to read a single data block into the Program Text Area
or to conpare it with the current contents. On entry register A
contains a flag to distinguish between the two statenments, OOH
for "CLOAD' and FFH for "CLOAD?". The cassette notor is turned
on and the first header |ocated (72E9H). Successive characters
are read from cassette (72D4H) and placed in the Program Text
Area or conpared with the current contents. If the current
statement is "CLOAD?" the routine will termnate with FLAG NZ
if the cassette character is not the same as the nenory
character. Otherwise data will be read until ten successive
zeroes are found. This sequence of zeroes is conposed of the
| ast programline end of line character, the end |link and the
seven term nator zeroes added by "CSAVE". Note that the routine
will probably term nate during this sequence, when used by
"CLOAD?", as nmenory conparison is still in progress. This
accounts for the rather peculiar coding of the "CLOAD?" handl er
term nating conditions.

Address... 7182H

This table is used by the dispatcher when decodi ng function
codes for the GRP device. It contains the address of the
handl er for each of the function codes, npbst are in fact error
gener at ors:

TO FUNCTI ON
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
71B6H 0, open
71C2H 2, close
6E86H 4, random
7196H 6, sequential output
475AH 8, sequential input
475AH 10, loc

475AH 12, | of

475AH 14, eof

475AH 16, fpos

475AH 18, put back

Address... 7196H

This is the dispatcher sequential output routine for the CRP
device. SCRMOD is first checked and an "Illegal function call"™
error generated (475AH) if the screen is in either text node.
The character to output is taken fromregister C and control
transfers to the GRPPRT standard routine.

Address... 71A2H
This table is used by the DEVI CE DI SPATCHER when decodi ng

function codes for the CRT device. |t contains the address of
the handler for each of the function codes, npbst are in fact

- 182 -

5. ROM BASI C | NTERPRETER

error generators:

TO FUNCTI ON
o

71B6H 0, open

71C2H 2, close

6E86H 4, random

71C3H 6, sequential output
475AH 8, sequential input

475AH 10, loc
475AH 12, | of
475AH 14, eof
475AH 16, fpos
475AH 18, put back

Address... 71B6H

This is the dispatcher open routine for the CRT, LPT and CRP
devices. The required node, in register E, is checked and a
"Bad file nane" error generated (6E6BH) for input or append.
The FCB address is then placed in PTRFIL, the node in byte 0 of
the FCB and the routine terninates. Note that the Z80 RET
instruction at the end of this routine (71C2H) is the
di spatcher close routine for the CRT, LPT and CRP devi ces.

Address... 71C3H

This is the dispatcher sequential output routine for the CRT
device. The character to output is taken fromregister C and
control transfers to the CHPUT standard routine.

Address... 71C7H

This table is used by the dispatcher when decoding function
codes for the CAS device. It contains the address of the
handl er for each of the function codes, several are error
gener at ors:

To FUNCT]I ON.

71DBH 0, open
7205H 2, close
6E86H 4, random
722AH 6, sequential output
723FH 8, sequential input
475AH 10, 1oc

475AH 12, | of

726DH 14, eof

475AH 16, fpos

727CH 18, putback

Address... 71DBH

This is the dispatcher open routine for the CAS device. The

- 183 -

5. ROM BASI C | NTERPRETER

current 1/0O buffer position, held in byte 6 of the FCB, and
CASPRV, which holds any putback character are both zeroed. The
required node, supplied in register E, is examned and a "Bad
file nane" error generated (6E6BH) for append or random nodes.
For output nopde the identification block is then witten to
cassette (7125H) while for input node the correct
identification block is |ocated on the cassette (70B8H). The
FCB address is then placed in PTRFIL, the npode in byte 0 of the
FCB and the routine term nates.

Address... 7205H

This is the dispatcher close routine for the CAS device.
Byte 0 of the FCB is examined and, if the node is input, CASPRV
is zeroed and the routine terminates. Otherw se the renai nder
of the I1/O buffer is filled with end of file characters (1AH)
and the I/O buffer contents witten to cassette (722FH). CASPRV
is then zeroed and the routine terninates.

Address... 722AH

This is the dispatcher sequential output routine for the CAS
device. The character to output is taken fromregister C and
pl aced in the next free position in the I/0O buffer (728BH)
Byte 6 of the FCB, the I1/O buffer position, is then
increnented. If the |/O buffer position has wapped round to
zero this means that there are two hundred and fifty-six
characters in the 1/O buffer and it has to be witten to
cassette. The cassette motor is turned on, a short header is
witten to cassette (72F8H) followed by the I/O buffer contents
(72DEH), and the notor is turned off via the TAPOOF standard
routine.

Address... 723FH

This is the dispatcher sequential input routine for the CAS
device. CASPRV is first checked (72BEH) to determ ne whether it
contains a character which has been putback, in which case its
contents will be non-zero. If so the routine termnates with
the character in register A Oherwise the I/0O buffer position
is checked (729BH) to determ ne whether it contains any
characters. If the I/O buffer is enpty the cassette nmotor is
turned on and the header |ocated (72E9H). Two hundred and
fifty-six characters are then read in (72D4H), the cassette
nmotor turned off via the TAPION standard routine and the 1/0O
buffer position reset to zero. The character is then taken from
the current 1/0O buffer position and the position incremented.
Finally the character is checked to see if it is the end of
file character (1AH). If it is not the routine term nates with
the character in register A and FLAG NC. Ot herwi se the end of
file character is placed in CASPRV, so that succeedi ng
sequential input requests will always return the end of file
condition, and the routine term nates with FLAG C

- 184 -

5. ROM BASI C | NTERPRETER

Addr ess. .

This is the dispatcher eof
next character

726DH

routi ne for the CAS devi ce.
is input (723FH) and placed in CASPRV. It

The
is

then tested for the end of file code (1AH) and the result

pl aced in DAC as an integer,
Address. ..

This is the dispatcher

The character

next sequenti al

Addr ess. . .

727CH

zero for false,

FFFFH f or true.

put back routine for the CAS device.

is sinply placed in CASPRV to be picked up at the

i nput

request.

7281H

This routine is used by the dispatcher close function to
check if there are any characters in the I/O buffer and then

zero the I/0O buffer
Addr ess. .
This routine is used by the dispatcher sequenti al
function to place the character
at the current
Address. ..
This routine is used by the dispatcher sequenti al

function to collect the character at the current
which is then increnented

posi tion,

Addr ess. .

728BH

1/ 0O buffer

posi tion,

729BH

72A6H

position byte in the FCB.

out put

inregister Ain the I/0O buffer
which is then increnmented

i nput
1/ 0O buffer

This table is used by the dispatcher when decoding function

codes for the LPT device.

handl er for each of the function codes, npst
gener at ors:
TO FUNCTI ON
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
71B6H 0, open
71C2H 2, close
6E86H 4, random
72BAH 6, sequential output
475AH 8, sequential input
475AH 10, 1oc
475AH 12, | of
475AH 14, eof
475AH 16, fpos
475AH 18, put back
Address... 72BAH
This is the dispatcher sequential output

- 185 -

It contains the address of the

are in fact error

routine for the LPT

5. ROM BASI C | NTERPRETER

device. The character to output is taken fromregister C and
control transfers to the OUTDLP standard routi ne.

Address... 72BEH

This routine is used by the dispatcher sequential input
function to check if a putback character exists in CASPRV, and
if not to return Flag Z. Otherwi se CASPRV is zeroed and the
character tested to see if it is the end of file character
(1AH). If not it returns with the character in register A and
FLAG NZ, NC. Otherwise the end of file character is placed back
in CASPRV and the routine returns with FLAG Z, C

Address... 72CDH

This routine is used by various dispatcher functions to
check if the nmbde in register Eis append, if so a "Bad file
nane" error is generated (6E6BH).

Address... 72D4H

This routine is used by various dispatcher functions to read
a character fromthe cassette. The character is read via the
TAPI N standard routine and a "Device I/O error" generated
(73B2H) if FLAG C is returned.

Address... 72DEH

This routine is used by various dispatcher functions to
wite a character to cassette. The character is witten via the
TAPOUT standard routine and a "Device |I/O error" generated
(73B2H) if FLAG C is returned.

Address... 72E9H

This routine is used by various dispatcher functions to turn
the cassette nmotor on for input. The notor is turned on via the
TAPI ON standard routine and a "Device I/O error" generated
(73B2H) if FLAG C is returned.

Address... 72F8H

This routine is used by various dispatcher functions to turn
the cassette nmotor on for output, control sinply transfers to
the TAPOON standard routine.

Address... 7304H

This routine is used by the Interpreter Minloop "OK" point,
the "END' statenment handl er and the run-clear routine to shut
down the printer. PRTFLG is first zeroed and then LPTPOS tested
to see if any characters have been output but |left hanging in
the printer's Iine buffer. If so a CR LF sequence is issued to
flush the printer and LPTPOS zeroed.

- 186 -

5. ROM BASI C | NTERPRETER

Address... 7323H

This routine issues a CR LF sequence to the current out put
device via the OUTDO standard routine. LPTPOS or TTYPOS is then
zeroed dependi ng upon whether the printer or the screen is
active.

Address... 7347H

This routine is used by the Factor Evaluator to apply the
"I NKEY$" function. The state of the keyboard buffer is exam ned
via the CHSNS standard routine. If the buffer is enpty the
address of a dummy null string descriptor is returned in DAC
O herwi se the next character is read fromthe keyboard buffer
via the CHGET standard routine. After checking that sufficient
space is available (6625H) the character is copied to the
String Storage Area and the result descriptor created (6821H)

Address... 7367H

This routine is used by the "LIST" statement handler to
output a character to the current output device via the OUTDO
standard routine. If the character is a LF code then a CR code
is also issued.

Address... 7374H

This routine is used by the Interpreter Minloop to collect
a line of text when input is froman I/O buffer rather than the
keyboard, that is when a "LOAD' statenment is active. Characters
are sequentially input (6C71H) and placed in BUF until BUF
fills up, a CRis detected or the end of file is reached. Al
characters are accepted apart from LF codes which are filtered
out. If BUF fills up or a CRis detected the routine sinply
returns the line to the Mainloop. If the end of file is reached
whil e sone characters are in BUF the line is returned to the
Mai nl oop. When end of file is reached with no characters in BUF
then 1/0O buffer 0 is closed (6D7BH) and FILNAM checked to
determ ne whether auto-run is required. If not control returns
to the Interpreter "OK'" point (411EH). Otherwi se the systemis
cleared (629AH) and control transfers to the Runloop (4601H) to
execute the program

Address... 73B2H
This is the "Device I1/O error"” generator
Address... 73B7H

This is the "MOTOR" statenent handler. If no operand is
present control transfers to the STMOIR standard routine with
FFH in register A If the "OFF" token (EBH) follows contro
transfers with OOH in register A |If the "ON' token (95H)
follows control transfers with OlH in register A

- 187 -

5. ROM BASI C | NTERPRETER

Address... 73CAH

This is the "SOUND" statenent handler. The register nunber
operand, which nust be less than fourteen, is evaluated (521CH)
and placed in register A The data operand is evaluated (521CH)
and bit 7 set, bit 6 reset to avoid altering the PSG auxiliary
I/ O port nmodes' The data operand is placed in register E and
control transfers to the WRTPSG st andard routine.

Address... 73E4H

This is a single ASCI|I space used by the "PLAY" statenent
handl er to replace a null string operand with a one character
bl ank string.

Address... 73E5H

This is the "PLAY" statenent handler. The address of the
"PLAY" command table at 752EH is placed in MCLTAB for the macro
| anguage parser and PRSCNT zeroed. The first string operand,
which is obligatory, is evaluated (4C64H), its storage freed
(67D0OH) and its length and address placed in VCBA at bytes 2, 3
and 4. The channel's stack pointer is initialized to VCBA+33
and placed in VCBA at bytes 5 and 6' If further text is present
in the statenment this process is repeated for voices B and C
until a maximum of three operands have been eval uated, after
this a "Syntax error" is generated (4055H). If there are |less
than three string operands present an end of queue mark (FFH)
is placed in the queue (7507H) of each unused voice. Register A
is then zeroed, to select voice A and control drops into the
pl ay nami nl oop.

Address... 744DH

This is the play mainloop. The nunber of free bytes in the
current queue is checked (7521H) and, if |ess than eight bytes
remai n, the next voice is selected (74D6H) to avoid waiting for
the queue to enpty. The remaining | ength of the operand string
is then taken fromthe current voice buffer and, if zero bytes
remain to be parsed, the | oop again skips to the next voice
(74D6H). Otherwi se the current string length and address are
taken fromthe voice buffer and placed in MCLLEN and MCLPTR for
the macro | anguage parser. The old stack contents are copied
fromthe voice buffer to the Z80 stack (6253H), MCLFLG i s nade
non-zero and control transfers to the macro | anguage parser
(56A2H)

The macro | anguage parser will normally scan al ong the
string, using the "PLAY" statement conmand handl ers, until the
string is exhausted. However, if a nusic queue fills up during
note generation an abnormal termnation is forced back to the
pl ay mai nl oop (748EH) so that the next voice can be processed
wi thout waiting for the queue to enpty. \Wen control returns
normal |y an end of queue mark is placed in the current queue

- 188 -

5. ROM BASI C | NTERPRETER

(7507H) and PRSCNT is increnmented to show the nunmber of strings
completed. If control returns abnormally then anything left on
the Z80 stack is copied into the current voice buffer (6253H)
Because of the recursive nature of the macro |anguage parser
where the "X" conmand is involved there may be a nunber of four
byte string descriptors, marking the point where the original
string was suspended, |left on the Z80 stack at term nation
Saving the stack contents in the voice buffer neans they can be
restored when the | oop gets around to that voice again. Note
that as there are only sixteen bytes available in each voice
buffer an "lllegal function call"” error is generated (475AH) if
too nmuch data remains on the stack. This will occur when a
queue fills up and nmultiple, nested "X' conmmands exist, for
exanpl e:

10 A$="XBS; "

20 B$="XC$; "

30 C$="XD§; "

40 D$=STRI NGS(150, "A")
50 PLAY A$

There seens to be a slight bug in this section as only fifteen
bytes of stack data are allowed, instead of sixteen, before an
error is generated.

When control returns fromthe macro | anguage parser register
Ais increnented to select the next voice for processing. \Wen
all three voices have been processed INTFLG is checked and, if
CTRL- STOP has been detected by the interrupt handler, contro
transfers to the GCINI standard routine to halt all nusic and
term nate. Assuming bit 7 of PRSCNT shows this to be the first
pass through the mainloop, that is no voice has been
tenporarily suspended because of a full queue, PLYCNT is
i ncrenented and interrupt dequeueing started via the STRTMS
standard routine. PRSCNT is then checked to determine the
nunber of strings conpleted by the macro | anguage parser. |f
all three operand strings have been compl eted the handl er
term nates, otherw se control transfers back to the start of
the play mainloop to try each voice again.

Address... 7507H

This routine is used by the "PLAY" statenment handler to
pl ace an end of queue mark (FFH) in the current queue via the
PUTQ standard routine. If the queue is full it waits unti
space becones avail abl e.

Address... 7521H

This routine is used by the "PLAY" statenment handler to
check how nmuch space remains in the current queue via the LFTQ
standard routine. If less than eight bytes remain (the |argest
possi bl e nusic data packet is seven bytes long) FLAGCis
returned.

- 189 -

5. ROM BASI C | NTERPRETER

Address... 752EH

This table contains the valid command | etters and associ at ed
addresses for the "PLAY" statenent conmmands. Those commands
whi ch take a paranmeter, and consequently have bit 7 set in the
table, are shown with an asterisk:

v TO

%

763EH
763EH
763EH
763EH
763EH
763EH
763EH
759EH
7586H
75BEH
7621H
75EFH
75FCH
75E2H
75C8H
5782H

XLFRQzQssOTMMOUO®>

Address... 755FH

This table is used by the "PLAY" statenment "A" to "G
command handler to translate a note nunber from zero to
fourteen to an offset into the tone divider table at 756EH. The
note itself, rather than the note nunber, is shown bel ow with
each of fset val ue:

16 ... A-

18 ... A

20 ... A+ or B-
22 ... Bor G

00 ... B+

oo ... C

02 ... C+ or D
04 ... D

06 ... D+ or E-
08 ... E or F-

10 ... E+

10 ... F

12 ... F+ or G
14 ... G

16 ... Gt

Address... 756EH

This table contains the twelve PSG di vider constants
required to produce the tones of octave 1. For each constant

- 190 -

5. ROM BASI C | NTERPRETER

the correspondi ng note and frequency are shown:

3421 ... C 32.698 Hz
3228 ... C+ 34.653 Hz
3047 ... D 36.712 Hz
2876 ... D+ 38.895 HzZ
2715 ... E 41.201 Hz
2562 ... F 43.662 Hz
2419 ... F+ 46.243 Hz
2283 ... G 48.997 Hz
2155 ... G+ 51.908 Hz
2034 ... A 54.995 Hz
1920 ... A+ 58.261 Hz
1812 ... B 61.773 Hz

Address... 7586H

This is the "PLAY" statenent "V' conmand handl er. The
paranmeter, with a default value of eight, is placed in byte 18
of the current voice buffer without altering bit 6 of the
exi sting contents. No nusic data is generated.

Address... 759EH

This is the "PLAY" statenent "M conmand handl er. The
paranmeter, with a default value of two hundred and fifty-five,
is conpared with the existing nodul ati on period contained in
bytes 19 and 20 of the current voice buffer. If they are the
same the routine terninates with no action. Otherw se the new
nmodul ation period is placed in the voice buffer and bit 6 set
in byte 18 of the voice buffer to indicate that the new val ue
must be incorporated into the next nusic data packet produced.
No nusic data is generated.

Address... 75BEH

This is the "PLAY" statement "S" conmand handl er. The
paraneter is placed in byte 18 of the current voice buffer and
bit 4 of the sane byte set to indicate that the new val ue nust
be incorporated into the next nusic data packet produced. No
musi c data is generated. Because of the PSG characteristics the
shape and vol une paraneters are nmutually exclusive so the sane
byte of the voice buffers is used for both.

Address... 75C8H

This is the "PLAY" statenent "L" conmand handl er. The
paraneter, with a default value of four, is placed in byte 16
of the current voice buffer where it is used in the conputation
of succeeding note durations. No nusic data is generated.

Address... 75E2H

This is the "PLAY" statenment "T" conmmand handl er. The

- 191 -

5. ROM BASI C | NTERPRETER

paranmeter, with a default value of one hundred and twenty, is
pl aced in byte 17 of the current voice buffer where it will be
used in the conputation of succeeding note durations. ho nusic
data i s generated

Address... 75EFH

This is the "PLAY" statement "O' conmand handl er. The
paranmeter, with a default value of four, is placed in byte 15
of the current voice buffer where it is used in the conputation
of succeeding note frequencies. No nusic data is generated.

Address... 75FCH

This is the "PLAY" statenment "R' conmand handl er. The |ength
paraneter, with a default value of four, is left in register
pair DE and a zero tone divider value placed in register pair
HL. The existing volune value is taken frombyte 18 of the
current voice buffer, tenporarily replaced with a zero val ue
and control transferred to the note generator (769CH)

Address... 7621H

This is the "PLAY" statenent "N' conmand handl er. The
obligatory paraneter is first examned, if it is zero a rest is
generated (760BH). If it is greater than ninety-six an "Illega
function call"” error is generated (475AH). Otherwise twelve is
repeatedly subtracted fromthe note nunber until underflow to
obtain an octave nunber fromone to nine in register E and a
note nunber fromzero to eleven in register C. Control then
transfers to the note generator (7673H)

Address... 763EH

This is the "PLAY" statement "A" to "G' command handl er. The
note letter is first converted into a note nunber fromzero to
fourteen, this extended range being necessary because of the
redundancy inplicit in the notation. The table at 755FH i s then
used to obtain the offset into the tone divider table and the
di vider constant for the note placed in register pair DE. The
octave value is taken frombyte 15 of the current voice buffer
and the divider constant halved until the correct octave is
reached. The string operand is then exam ned directly (56EEH)
to deternine whether a trailing note | ength paraneter exists.

If so it is converted (572FH) and placed in register C. If no
paranmeter exists the default length is taken from byte 16 of
the current voice buffer. The duration of the note is then
conputed from

Duration (Interrupt ticks) = 12,000/ (LENGTH* TEMPO)

Wth the nornal Iength value (4) and tenpo value (120) this
gives a note duration of twenty-five interrupt ticks of 20 ns
each or 0.5 seconds. The string operand is then exani ned

- 192 -

5. ROM BASI C | NTERPRETER

(56EEH) for trailing "." characters and, for each one, the
duration nultiplied by one and a half. Finally the resulting
duration is checked and, if it is less than five interrupt
ticks, it is replaced with a value of five. Thus the shortest
note that can be generated on a UK machine is 0.10 seconds
what ever the tenpo or note | ength.

The nusic data packet, which will be three, five or seven
bytes long, is then assenbled in bytes 8 to 14 of the current
voi ce buffer prior to placing it in the queue. The duration is
pl aced in bytes 8 and 9 of the voice buffer. The volume and
flag byte is taken frombyte 18 and placed in byte 10 of the
voi ce buffer with bit 7 set to indicate a volune change to the
i nterrupt dequeuing routine. If bit 6 of the volune byte is set
then the nodul ation period is taken frombytes 19 and 20 and
added to the data packet at bytes 11 and 12. If the tone
divider value is non-zero then it is added to the data packet
at bytes 11 and 12 (without a nodul ation period) or bytes 13
and 14 (with a nodul ation period). Finally the byte count is
m xed into the three highest bits of byte 8 of the voice buffer
to conplete the preparation of the nusic data packet.

If the tone divider value is zero, indicating a rest, the
contents of SAVWOL are restored to byte 18 of the static
buffer. The nusic data packet is then placed in the current
queue via the PUTQ standard routine and the nunber of free
bytes renmmi ning checked (7521H). If |ess than eight bytes
remain control transfers directly to the "PLAY" statenent
handl er (748EH), otherw se control returns normally to the
macr o | anguage parser.

Address... 7754H

This is the single precision constant 12,000 used in the
conmput ati on of note duration.

Address... 7758H

This is the "PUT" statenent handler. Register Bis set to
80H and control drops into the "GET" statenent handl er.

Address... 775BH

This is the "GET" statenent handler. Register B is zeroed,
to distinguish "GET" from"PUT" and the next programtoken
exam ned. Control then transfers to the "PUT SPRI TE" statenment
handl er (7AAFH) or the Di sk BASIC "CET/ PUT" statenent handl er
(6C35H)

Address... 7766H
This is the "LOCATE" statenment handler. |f a columm

coordinate is present it is evaluated (521CH) and placed in
register D, otherwise the current colum is taken from CSRX. If

- 193 -

5. ROM BASI C | NTERPRETER

a row coordinate is present it is evaluated (521CH) and pl aced
in register E, otherwise the current rowis taken from CSRY. I|f
a cursor switch operand exists it is evaluated (521CH) and
register A loaded with 78H for a zero operand (OFF) and 79H for
any non-zero operand (ON). The cursor is then switched by
outputting ESC, 78H 79H, "5" via the OUTDO standard routine.
The row and colum coordinates are placed in register pair HL
and the cursor position set via the POSIT standard routi ne.

Address... 77A5H

This is the "STOP ON OFF/ STOP" statenent handl er. The
address of the device's TRPTBL status byte is placed in
register pair HL and control transfers to the "ONV OFF/ STOP"
routine (77CFH).

Address... 77ABH

This is the "SPRITE OV OFF/ STOP" statenent handler. The
address of the device's TRPTBL status byte is placed in
register pair HL and control transfers to the "O\V OFF/ STOP"
routine (77CFH).

Address... 77B1H

This is the "I NTERVAL OV OFF/ STOP" statenent handler. As
there is no specific "INTERVAL" token (control transfers here
when an "I NT" token is found) a check is first made on the
program text for the characters "E' and "R" then the "VAL"
token (94H). The address of the device's TRPTBL status byte is
pl aced in register pair HL and control transfers to the
"ON/ OFF/ STOP" routine (77CFH).

Address... 77BFH

This is the "STRIG OV OFF/ STOP* statenent handl er. The
trigger nunber, fromzero to four, is evaluated (7C08H) and the
address of the device's TRPTBL status byte placed in register
pair HL. The "ON OFF/ STOP" token is exam ned and the TRPTBL
status byte nodified accordingly (77FEH). Control then
transfers directly to the Runloop (4612H) to avoid testing for
pending interrupts until the end of the next statenent.

Address... 77D4H

This is the "KEY(n) ON OFF/ STOP" statement handl er. The key
number, fromone to ten, is evaluated (521CH) and the address
of the devices' TRPTBL status byte placed in register pair HL.
The "ON OFF/ STOP" token is exam ned and the TRPTBL status byte
nmodi fied accordingly (77FEH). Bit 0 of the TRPTBL status byte,
the ON bit, is then copied into the corresponding entry in
FNKFLG for use during the interrupt keyscan and control
transfers directly to the Runloop (4612H).

- 194 -

5. ROM BASI C | NTERPRETER

Address... 77FEH

This routine checks for the presence of one of the interrupt
switching tokens and transfers control to the appropriate
routine: "ON' (631BH), "OFF" (632BH) or "STOP'" (6331H). If no
token is present a "Syntax error" is generated (4055H)

Address... 7810H

This routine is used by the "ON DEVI CE GOSUB" st at enment
handl er (490DH) to check the programtext for a device token
Unl ess none of the device tokens is present, in which case Flag
Cis returned, the device's TRPTBL entry nunber is returned in
regi ster B and the maxi num al | owabl e |i ne nunber operand count
in register C

DEVICE TRPTBL# LINE NUMBERS
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
KEY 00 10
STOP 10 01
SPRI TE 11 01
STRI G 12 05
| NTERVAL 17 01

Additionally, for "INTERVAL" only, the interval operand is
eval uated (542FH) and placed in I NTVAL and | NTCNT

Address... 785CH

This routine is used by the "ON DEVI CE GOSUB" st at enent
handl er (490DH) to place the address of a programline in
TRPTBL. The TRPTBL entry nunber, supplied in register B, is
mul tiplied by three and added to the table base to point to the
rel evant entry. The address, supplied in register pair DE, is
then placed there LSB first, MSB second.

Address... 786CH

This is the "KEY" statenent handler. If the follow ng
character is anything other than the "LIST" token (93H) contro
transfers to the "KEY n" statenent handl er (78AEH). Each of the
ten function key strings is then taken from FNKSTR and
di spl ayed via the OUTDO standard routine with a CR LF (7328H)
after each one. The DEL character (7FH) or any contro
character smaller than 20H is replaced with a space.

Address... 78AEH

This is the "KEY n", "KEY(n) ON CFF/ STOP", "KEY ON' and "KEY
OFF" statenent handler. If the next programtext character is
"(" control transfers to the "KEY(n) OV OFF/ STOP" st atenent
handler (77D4H). If it is an "ON' token (95H) control transfers
to the DSPFNK standard routine and if it is an "OFF" token
(EBH) to the ERAFNK standard routine. Oherw se the function

- 195 -

5. ROM BASI C | NTERPRETER

key nunber is evaluated (521CH) and the key's FNKSTR address
placed in register pair DE The string operand is eval uated
(4C64H) and its storage freed (67DOH)' Up to fifteen characters
are copied fromthe string to FNKSTR and unused positions
padded with zero bytes. If a zero byte is found in the operand
string an "lllegal function call" error is generated (475AH)
Control then transfers to the FNKSB standard routine to update
the function key display if it is enabled.

Address... 7900H

This routine is used by the Factor Evaluator to apply the
"TI ME" function. The contents of JIFFY are placed in DAC as a
singl e precision nunber (3236H)

Address... 790AH

This routine is used by the Factor Evaluator to apply the
"CSRLIN* function. The contents of CSRY are decrenented and
pl aced in DAC as an integer (2E9AH)

Address... 7911H

This is the "TIME" statenment handl er. The operand is
eval uated (542FH) and placed in JIFFY.

Address... 791BH

This routine is used by the Factor Evaluator to apply the
"PLAY" function. The nuneric channel selection operand is
evaluated (7C08H). If this is zero the contents of MJSICF are
pl aced in DAC as an integer of value zero or FFFFH. O herw se
the channel nunber is used to select the appropriate bit of
MJUSI CF and this is then converted to an integer as before.

Address... 7940H

This routine is used by the Factor Evaluator to apply the
"STICK" function to an operand contained in DAC. The stick
nunber is checked (521FH) and passed to the GISTCK standard
routine in register A The result is placed in DAC as an
i nteger (4FCFH)

Address... 794CH

This routine is used by the Factor Evaluator to apply the
"STRIG'" function to an operand contained in DAC. The trigger
nunber is checked (521FH) and passed to the GITRI G standard
routine in register AL The result is placed in DAC as an
i nteger of value zero or FFFFH

Address... 795AH

This routine is used by the Factor Evaluator to apply the

- 196 -

5. ROM BASI C | NTERPRETER

"PDL" function to an operand contained in DAC. The paddle
number is checked (521FH) and passed to the GIPDL standard
routine in register A The result is placed in DAC as an

i nteger (4FCFH).

Address... 7969H

This routine is used by the Factor Evaluator to apply the
"PAD" function to an operand contained in DAC. The pad nunber
is checked (521F) and passed to the GIPAD standard routine in
register A. The result is placed in DAC as an integer for pads
1, 2, 5 o0or 6. For pads 0, 3, 4 or 7 the result is placed in DAC as
an integer of value zero or FFFFH

Address... 7980H

This is the "COLOR" statenent handler. If a foreground
col our operand exists it is evaluated (521CH) and placed in
register E, otherwi se the current foreground col our is taken
from FORCLR. |f a background col our operand exists it is
eval uated (521CH) and placed in register D, otherw se the
current background colour is taken from BAKCLR |f a border
col our operand exists it is evaluated (521CH) and placed in
BDRCLR. The foreground colour is placed in FORCLR and ATRBYT,
t he background col our in BAKCLR and control transfers to the
CHGCLR standard routine to nodify the VDP

Address... 79CCH

This is the "SCREEN' statenent handler. If a npde operand
exists it is evaluated (521CH) and passed to the CHGVOD
standard routine in register A If a sprite size operand exists
it is evaluated (521CH) and placed in bits 0 and 1 of RGLSAV
the Workspace Area copy of VDP Mode Register 1. The VDP sprite
paraneters are then cleared via the CLRSPR standard routine. |If
a key click operand exists it is evaluated (521CH) and pl aced
in CLIKSW zero to disable the click and non-zero to enable it.
If a baud rate operand exists it is evaluated and the baud rate
set (7A2DH). If a printer npode operand exists it is eval uated
(521CH) and placed in NTMSXP, zero for an MSX printer and non-
zero for a general purpose printer.

Address... 7A2DH

This routine is used to set the cassette baud rate. The
operand is evaluated (521CH) and five bytes copied from CS1200
or CS2400 to LOW as appropri ate.

Address... 7A48H

This is the "SPRITE" statenent handler. |If the next
character is anything other than a "$" control transfers to the

"SPRI TE ON OFF/ STOP" statenent handler (77ABH). SCRMOD i s then
checked and an "Illegal function call" error generated (475AH)

- 197 -

5. ROM BASI C | NTERPRETER

if the screen is in 40x24 Text Mode. The sprite pattern nunber
is evaluated and its location in the VRAM Sprite Pattern Table
obt ai ned (7AAOH). The string operand is then eval uated (4C5FH)
and its storage freed (67DOH). The sprite size, obtained via
the GSPSI Z standard routine, is conpared with the string length
and, if the string is shorter than the sprite, the Sprite
Pattern Table entry is first filled with zeroes via the FILVRM
standard routine. Characters are then copied fromthe string
body to the Sprite Pattern Table via the LD RVM standard
routine until the string is exhausted or the sprite is full. If
the string is longer than the sprite size any excess characters
are ignored.

Address... 7A84H

This routine is used by the Factor Evaluator to apply the
"SPRI TE$" function. The sprite pattern number is evaluated and
its location in the VRAM Sprite Pattern Tabl e obtai ned (7A9FH)
The sprite size, obtained via the GSPSI Z standard routine, is
then placed in register pair BC to control the nunber of bytes
copied. After checking that sufficient space is available in
the String Storage Area (6627H) the sprite pattern is copied
fromVRAM via the LDI RW standard routine and the result
descriptor created (6654H). Note that as no check is nade on
the screen node during this function sone interesting side
ef fects can be found, see bel ow

Address... 7A9FH

This routine is used by the "SPRITE$" statement and function
to locate a sprite pattern in the VRAM Sprite Pattern Tabl e.
The pattern nunber operand is evaluated (7C08H) and passed to
the CALPAT standard routine in register A The pattern address
is placed in register pair DE and the routine term nates.

Note that no check is nmade on the pattern nunber magnitude
for differing sprite sizes. Pattern nunmbers up to two hundred
and fifty-five are accepted even in 16x16 sprite node when the
maxi mum pattern nunber should be sixty-three. As a result VRAM
addresses greater than 3FFFH will be produced which will wap
around into low VRAM Wth the "SPRI TE$" statenment this will
corrupt the Character Generator Table, for exanple:

10 SCREEN 3, 2
20 SPRI TE$(0) =STRI NG$(32, 255)
30 PUT SPRITE 0,(0,0), ,0

40 SPRI TE$(65) =STRI NG$(32, 255)
50 GOTO 50

The above puts a real sprite in the top left of the screen and
then uses an illegal statenent in line 40 to corrupt the VRAM
just to the right of it. The "SPRITE$" function can al so be
mani pul ated in this way and, as there is no screen node check
up to thirty-two bytes of the Nane Table can be read in 40x24

- 198 -

5. ROM BASI C | NTERPRETER

Text Mode, for exanple:

10 SCREEN 0, 2

20 PRI NT"son®et hi ng"
30 A$=SPRI TE$(64)
40 PRI NT A$

Address... 7AAFH
This is the "GET/ PUT SPRI TE" statenent handler, control is

transferred here fromthe general "GET/PUT" statenment handl er
(775BH). Register Bis first checked to make sure that the

statenment is "PUT" and an "lllegal function call" error
generated (475AH) if otherwi se. SCRMOD is then checked and an
"Illegal function call" error generated (475AH) if the screen

is in 40x24 Text Mode. The sprite nunber operand, fromzero to
thirty-one, is evaluated (521CH) and passed to the CALATR
standard routine to |ocate the four byte attribute block in the
Sprite Attribute Table. If a coordinate operand exists it is
evaluated and the X coordinate placed in register pair BC, the
Y coordinate in register pair DE (579CH)

The Y coordinate LSBis witten to byte 0 of the attribute
bl ock in VRAM via the WRTVRM standard routine. Bit 7 of the X
coordinate is then exam ned to determ ne whether it is
negative, that is off the left hand side of the screen. If so
thirty two is added to the X coordinate and register B is set
to 80H to set the early clock bit in the attribute bl ock. For
exanpl e an X coordinate of -1 (FFFFH) woul d be changed to +31
with an early clock. The X coordinate LSBis then witten to
byte 1 of the attribute block via the WRTVRM standard routine.
Byte 3 of the attribute block is read in via the RDVRM st andard
routine, the new early clock bit is nixed in and it is then
witten back to VRAM via the WRTVRM standard routine.

If a colour operand is present it is evaluated (521CH), byte
3 of the attribute block is read in via the RDVRM standard
routine the new colour code is mxed into the | owest four bits
and it is witten back to VRAM via the WRTVRM st andard routi ne.
If a pattern nunber operand exists it is evaluated (521CH and
checked for magnitude against the current sprite size provided
by the GSPSI Z standard routine. The naxi nrum al | owabl e pattern
nunber is two hundred and fifty-five for 8x8 sprites and sixty-
three for 16x16 sprites. The pattern nunber is witten to byte
2 of the attribute block via the WRTVRM standard routine and
the handl er term nates.

Address... 7B37H

This is the "VDP" statenent handler. The register nunber
operand, fromzero to seven, is evaluated (7CO08H) followed by
the data operand (521CH). The register nunber is placed in
register C, the data value in register B and contro
transferred to the WRTVDP standard routine.

- 199 -

5. ROM BASI C | NTERPRETER

Address... 7B47H

This routine is used by the Factor Evaluator to apply the
"VDP" function. The register nunber operand, fromzero to
eight, is evaluated (7C08H) and added to RGOSAV to | ocate the
correspondi ng register inage in the Workspace Area. The VDP
register image is then read and placed in DAC as an integer
(4FCFH) .

Address... 7B5AH

This is the "BASE" statenment handler. The VDP table nunber
operand, fromzero to nineteen, is evaluated (7C08H) foll owed
by the base address operand (4C64H). After checking that the
base address is |less than 4000H (7BFEH) the VDP table nunber is
used to locate the associated entry in the masking table at
7BA3H. The base address is ANDed with the mask and an "Il ega
function call" error generated (475AH) if any illegal bits are
set. The VDP table nunber is then added to TXTNAMto | ocate the
current base address in the Wrkspace Area and the new base
address placed there. The VDP table nunber is divided by five
to deternmine which of the four screen nodes the table bel ongs
to. If this is the sane as the current screen node the new base
address is also witten to the VDP (7B99H)

Address... 7B99H

This routine is used by the "BASE' statenment handler to
update the VDP base addresses. The current screen node, in
register A is exam ned and control transfers to the SETTXT,
SETT32, SETGRP or SETM.T standard routine as appropriate. Note
that this is not a full VDP initialization and that the four
current tabl e addresses (NAMBAS, CGPBAS, PATBAS and ATRBAS)
which are the ones actually used by the screen routines, are
not updated. This can be denpbnstrated with the foll owi ng, where
the Interpreter carries on outputting to the old VRAM Nane
Tabl e:

10 SCREEN 0

20 BASE(0) =&H400

30 PRI NT"sonet hi ng"

40 FOR N=1 TO 2000: NEXT
50 BASE(0) =0

Note al so that this routine contains a bug. While SETTXT is
correctly used for 40x24 Text Mdde, SETGRP is used for 32x24
Text Mode and SETMLT for Graphics Mdde and Ml ticol our Mode.
Any "BASE" statenment should therefore be i mediately foll owed
by a "SCREEN' statenent to performa full initialization

Address... 7BA3H

This masking table is used by the "BASE" statenent handler
to ensure that only | egal VDP base addresses are accepted. The

- 200 -

5. ROM BASI C | NTERPRETER

tabl e nunber and correspondi ng Workspace Area variable are
shown wi th each nask

MASK TABLE
AAAAAAAAAAAAAAAAAAAAA
O03FFH 00, TXTNAM
003FH 01, TXTCOL
O7FFH 02, TXTCGP
007FH 03, TXTATR
O7FFH 04, TXTPAT
O03FFH 05, T32NAM
003FH 06, T32COL
O7FFH 07, T32CGP
007FH 08, T32ATR
O7FFH 09, T32PAT
O03FFH 10, GRPNAM
1FFFH 11, GRPCCL
1FFFH 12, GRPCGP
007FH 13, GRPATR
O7FFH 14, GRPPAT
O03FFH 15, M.TNAM
003FH 16, M.TCOL
O7FFH 17, M.TCGP
007FH 18, M.TATR
O7FFH 19, M.TPAT

Address... 7BCBH

This routine is used by the Factor Evaluator to apply the
"BASE" function. The VDP tabl e nunber operand, fromzero to
ni neteen, is evaluated (7C08H) and added to TXTNAM to | ocate
the required Wirkspace Area base address. This is then placed
in DAC as a single precision nunber (3236H)

Address... 7BE2H

This is the "VPOKE" statenment handl er. The VRAM address
operand is evaluated (4C64H) and checked to ensure that it is
| ess than 4000H (7BFEH). The data operand is then eval uated
(521CH) and passed to the WRTVRM standard routine in register A
to wite to the required address.

Address... 7BF5H

This routine is used by the Factor Evaluator to apply the
"VPEEK" function to an operand contai ned in DAC. The VRAM
address operand is checked to ensure it is |ess than 4000H

(7BFEH). VRAM is then read via the RDVRM standard routine and
the result placed in DAC as an integer (4FCFH)

Address... 7BFEH

This routine converts a nuneric operand in DAC to an integer
(2F8AH) and places it in register pair HL. If the operand is

- 201 -

5. ROM BASI C | NTERPRETER

equal to or greater than 4000H, and thus outside the allowable
VRAM range, an "Illegal function call" error is generated
(475AH) .

Address... 7CO8H

This routine evaluates (521CH) a parenthesi zed nuneric
operand and returns it as an integer in register A |f the
operand is greater than the maxi mum all owabl e value initially
supplied in register A an "lllegal function call"” error is
gener ated (475AH)

Address... 7Cl6H

This is the "DSKO$" statement handler. An "Illegal function
call" error is generated (475AH) on a standard MSX machi ne.

Address... 7C1BH

This is the "SET" statenent handler. An "lllegal function
call" error is generated (475AH) on a standard MSX machi ne.

Address... 7C20H

This is the "NAME" statenment handler. An "Illegal function
call" error is generated (475AH) on a standard MSX machi ne.

Address... 7C25H

This is the "KILL" statenment handler. An "Illegal function
call" error is generated (475AH) on a standard MSX machi ne.

Address... 7C2AH

This is the "I PL" statenent handler. An "Illegal function
call" error is generated (475AH) on a standard MSX machi ne.

Address... 7C2FH

This is the "COPY" statenment handler. An "Illegal function
call" error is generated (475AH) on a standard MSX machi ne.

Address... 7C34H

This is the "CVMD' statenent handler. An "Illegal function
call" error is generated (475AH) on a standard MSX machi ne.

Address... 7C39H

This routine is used by the Factor Evaluator to apply the
"DSKF" function to an operand contained in DAC. An "Illega
function call" error is generated (475AH) on a standard MSX
machi ne.

- 202 -

5. ROM BASI C | NTERPRETER

Address... 7C3EH

This routine is used by the Factor Evaluator to apply the
"DSKI $" function. An "Illegal function call" error is generated
(475AH) on a standard MsSX nachi ne.

Address... 7C43H

This routine is used by the Factor Evaluator to apply the
"ATTR$" function. An "Illegal function call" error is generated
(475AH) on a standard MSX machi ne.

Address... 7CA8H

This is the "LSET" statenment handler. An "Illegal function
call" error is generated (475AH) on a standard MSX machi ne.

Address... 7CADH

This is the "RSET" statement handler. An "Illegal function
call" error is generated (475AH) on a standard MSX machi ne. L

Address... 7C52H

This is the "FIELD' statenent handler. An "Illegal function
call" error is generated (475AH) on a standard MSX machi ne.

Address... 7C57H

This routine is used by the Factor Evaluator to apply the

"MKI $" function to an operand contained in DAC. An "Il ega
function call" error is generated (475AH) on a standard MSX
machi ne.

Address... 7C5CH

This routine is used by the Factor Evaluator to apply the

"MKS$" function to an operand contained in DAC. An "Il ega
function call" error is generated (475AH) on a standard MSX
machi ne.

Address... 7C61H

This routine is used by the Factor Evaluator to apply the

"MKD$" function to an operand contained in DAC. An "Il ega
function call"” error is generated (475AH) on a standard MSX
machi ne.

Address... 7C66H

This routine is used by the Factor Evaluator to apply the

"CVl" function to an operand contained in DAC. An "Il ega
function call"” error is generated (475AH) on a standard MSX
machi ne.

- 208 -

5. ROM BASI C | NTERPRETER

Address... 7C6BH

This routine is used by the Factor Evaluator to apply the

"CVS" function to an operand contained in DAC. An "Il ega
function call" error is generated (475AH) on a standard MSX
machi ne.

Address... 7C70H

This routine is used by the Factor Evaluator to apply the

"CVD" function to an operand contained in DAC. An "Il|ega
function call" error is generated (475AH) on a standard MSX
machi ne.

Address... 7C76H

This routine conpletes the power-up initialization. At this
point the entire Wrkspace Area is zeroed and only EXPTBL and
SLTTBL have been initialized. A tenporary stack is set at F376H
and all one hundred and twel ve hooks (560 bytes) filled with
Z80 RET opcodes (CO9H). HIMEM is set to F380H and the | owest RAM
| ocation found (7D5DH) and placed in BOTTOM The one hundred
and forty-four bytes of data comencing at 7F27H are copied to
the Workspace Area from F380H to F40FH The function key
strings are initialized via the I NIlFNK standard routine, ENDBUF
and NLONLY are zeroed and a conma is placed in BUFM N and a
colon in KBFM N. The address of the MSX ROM character set is
taken from | ocati ons 0004H and 0005H and pl aced in CGPNT+1 and
PRVPRV is set to point to PRMSTK. Dummy val ues are placed in
STKTOP, MEMSI Z and VARTAB (their correct values are not known
yet), one I/O buffer is allocated (7E6BH) and the Z80 SP set
(62E5H). A zero byte is placed at the base of RAM TXTTAB i s
set to the following |location and a "NEW executed (6287H).

The VDP is then initialized via the INNTIO [N T332 and
CLRSPR standard routines, the cursor coordinates are set to row
11, columm 10 and the sign on nessage "MSX systemetc." is
di spl ayed (6678H). After a three second delay a search is
carried out for any extension ROVs (7D75H) and a further "NEW
executed (6287H) in case a BASIC program has been run from ROM

Finally the identification nessage "MsSX BASIC etc." is
di spl ayed (7D29H) and control transfers to the Interpreter
Mai nl oop "OK" point 411FH

Address... 7D29H

This routine is used during power-up to enable the function
key display, place the screen in 40x24 Text Mode via the I NI TXT
standard routine, and display (6678H) the identification
message "MSX BASIC etc.". The amobunt of free nmenory is then
conmput ed by subtracting the contents of VARTAB fromthe
contents of STKTOP and displ ayed (3412H) foll owed by the "Bytes
free" nessage.

- 204 -

5. ROM BASI C | NTERPRETER

Address... 7D5DH

This routine is used during power-up to find the | owest RAM
| ocation. Starting at EFOOH each byte is tested until one is
found that cannot be witten to or an address of 8000H is
reached. The base address, rounded upwards to the nearest 256
byte boundary, is returned in register pair HL.

Address... 7D75H

This routine is used during power-up to perform an extension
ROM search. Pages 1 and 2 (4000H to BFFFH) of each slot are
exanm ned and the results placed in SLTATR An extensi on ROM has
the two identification characters "AB" in the first two bytes
to distinguish it fromRAM Infornmation about its properties is
al so present in the first sixteen bytes as foll ows:

3 Reserved 3 Byte 10-15
3 BASIC Text Address MsSB 3 Byte 9
3 BASIC Text Address LSB 3 Byte 8
3 DEVI CE Address MsB 3 Byte 7
3 DEVI CE Address LSB 3 Byte 6
3 STATEMENT Address MSB 3 Byte 5
3 STATEMENT Address LSB 3 Byte 4
3 INITIALI ZE Address MSB 3 Byte 3
3 INITIALI ZE Address LSB 3 Byte 2
3 42H (" B") 3 Byte 1
3 41H (T A") 3 Byte O

e AAAAAAAL

Fi gure 48: ROM Header

Each page in a given slot is exam ned by reading the first two
bytes (7EL1AH) and checking for the "AB" characters. If a ROMis
present the initialization address is read (7ELAH) and contro
passed to it via the CALSLT standard routine. Wth a games ROM
there may be no return to BASIC fromthis point. The "CALL"
extended statenent handler address is then read (7ELAH) and bit
5 of register Bset if it is valid, that is non-zero. The
ext ended devi ce handl er address is read (7E1AH) and bit 6 of
register Bset if it is valid. Finally the BASIC programtext
address is read (7E1AH) and bit 7 of register Bset if it is
valid. Register Bis then copied to the relevant position in
SLTATR and the search continued until no nore slots remain.

SLTATR i s then exam ned for any extension ROM fl agged as
containing BASIC programtext. If one is found its position in
SLTATR is converted to a Slot ID (7E2AH) and the ROM
permanently switched in via the ENASLT standard routi ne. VARTAB
is set to COOOH, as it is not known how | arge the Program Text
Area is, TXTTAB is set to 8008H and BASROM made non-zero to
di sabl e the CTRL-STOP key. The systemis cleared (629AH) and
control transfers to the Runloop (4601H) to execute the BASIC
program

- 205 -

5. ROM BASI C | NTERPRETER

Address... 7E1AH

This routine is used to read two bytes from successive
|l ocations in an extension ROM The initial address is supplied
inregister pair HL and the Slot IDin register C. The bytes
are read via the RDSLT standard routine and returned in
register pair DE. If both are zero FLAG Z i s returned.

Address... 7E2AH

This routine converts the SLTATR position supplied in
register Binto the corresponding Slot IDin register C and ROM
base address in register H The position is first nodified so
that it runs fromO to 63 rather than from64 to 1, so that
the required information is present in the form

oro 6 o5 o4 3 2 10
UAAA,,
3 0 3 0 * PSLOT# 3 SSLOT # ° PAGE # 3

AAU

Fi gure 49

Bits 0 and 1 are shifted into the highest two bits of register
Hto formthe address. Bits 4 and 5 are shifted to bits 0 and 1
of register Cto formthe Primary Slot nunmber. Bits 2 and 3 are
shifted to bits 2 and 3 of register Cto formthe Secondary
Sl ot nunber and bit 7 of the corresponding EXPTBL entry copied
to bit 7 of register C

Address... 7E4BH

This is the "MAXFILES" statenent handler. As contro
transfers here when a "MAX" token (CDH) is detected the program
text is first checked for a trailing "FILES" token (B7H). The
buffer count operand, fromzero to fifteen, is then eval uated
(521CH) and any existing buffers closed (6C1CH). The required
nunber of 1/0O buffers are allocated (7E6BH), the systemis
cleared (62A7H) and control transfers directly to the Runl oop
(4601H).

Address... 7E6BH

This is the 1/O buffer allocation routine. It is used during
power-up and by the "MAXFILES" and "CLEAR' statenment handl ers
to allocate storage for the nunber of 1/0O buffers supplied in
register A. Two hundred and sixty-seven bytes are subtracted
fromthe contents of H MEM for every buffer to produce a new
MEMSI Z val ue. The size of the existing String Storage Area
(initially two hundred bytes) is conmputed by subtracting the
old contents of STKTOP fromthe old contents of MEMSIZ, this is
then subtracted fromthe new MEMSI Z val ue to produce the new
STKTOP val ue. A further one hundred and forty bytes are

- 206 -

5. ROM BASI C | NTERPRETER

subtracted for the Z80 stack and an "Qut of menory" error
generated (6275H) if this address is |lower than the start of
the Variable Storage Area. Oherwise the buffer count is placed
in MAXFIL and MEMSI Z and STKTOP set to their new val ues. The
caller's return address is popped, the Z80 SP set to the new
position and the return address pushed back onto the stack
FILTAB is then set to the start of the I/O buffer pointer block
and each pointer set to point to the associated FCB. Finally
the address of |/O buffer O, the Interpreter's "LOAD' and
"SAVE" buffer, is placed in NULBUF and the routine term nates.

Address... 7ED8H

This is the plain text nessage "MSX systenl ternminated by a
zero byte

Address... 7EE4H

This is the plain text nessage "version 1.0" CR LF
term nated by a zero byte.

Address... 7EF2H

This is the plain text nessage "MSX BASIC " ternminated by a
zero byte.

Address... 7EFDH

This is the plain text nessage "Copyright 1983 by M crosoft”
CR LF terminated by a zero byte.

Address... 7F1BH

This is the plain text nmessage
zero byte.

Bytes free" term nated by a

Address... 7F27H

This bl ock of one hundred and forty-four data bytes is used
to initialize the Wrkspace Area from F380H to F40FH

Address... 7FB7H

This seven byte patch fixes a bug in the external device
parsing routine (55F8H). It checks for a zero | ength device
name in register A and changes it to one if necessary.

Address... 7FBEH

This section of the ROMis unused and filled with zero
byt es.

- 207 -

6. MEMORY MAP

A maxi mum of 32 KB of RAMis available to the BASIC
Interpreter to hold the programtext, the BASIC Variables, the
Z80 stack, the 1/O buffers and the internal workspace. A nmenory
map of these areas in the power-up state is shown bel ow

3 Wor kspace Area 3
HI MEM=F380HAAAAAAA "3~ 3
s I1/O Buffer 1 3
3 FCB 1 3
3 I /O Buffer 0O 3
NULBUF=F177 HAAAAL ..3~ .
3 FCB 0 3
3 F277H (FCB 1) 3
FI LTABzFlGAHAAAAAA{ F16EH (FCB 0) 3
3 00OH 3
MENVSI Z=F168HAAAAAAS 3
FRETOP=F168HAAAU 3 String Storage Area 3
3 3
STKTOP=FOAQHAAAAAA "3~ 3
3 780 Stack 3

3 3

STREND=8003 HAAAAAA S

UAAAAAAAAAAAAAAAAAAAAAAA,

3 Array Storage Area 3

ARYTAB=8003HAAAAAA "3~ 3

3 Variable Storage Area 3

VARTAB=8003HAAAAAA "3~ 3
3 Program Text Area

TXTTAB=8001 HAAAA ..3~ .

'b“““““‘.””””””””””””””””””””””V

3 0OH 3

Fi gure 50: Menory Map 8000H to FFFFH

The Program Text Area is conposed of tokenized programlines
stored in line nunber order and term nated by a zero end I|ink,
when in the "NEW state only the end Iink is present. The zero
byte at 8000H is a dummy end of |ine character needed to
synchroni ze the Runloop at the start of a program

- 208 -

6. MEMORY MAP

The Variable and Array Storage Areas are conposed of string
or nuneric Variables and Arrays stored in the order in which
they are found in the programtext. Execution speed inproves
marginally if Variables are declared before Arrays in a program
as this reduces the amount of menory to be nobved upwards.

The Z80 stack is positioned inmediately below the String
Storage Area, the structure of the stack top is shown bel ow

STKTOPAAAAAAAS s

E 'ﬂ' .ﬂ. 'ﬂ' '9' 'n'r

3 Q0H 3

Mai nl oop SPAAAAAAA® OOH 3
E .ﬂ. .ﬂ. .ﬂ. .ﬂ. 'n'/
3 46H 3

St atement SPAMAARL 01H 3

Fi gure 51: Z80 Stack Top

VWhenever the position of the stack is altered, as a result of
"CLEAR"' or "MAXFILES" statenment, two zero bytes are first
pushed to function as a term nator during "FOR' or "GOSUB"
paraneter bl ock searches. Assuning no paraneter blocks are
present the Z80 SP will therefore be at STKTOP-2 within the
Interpreter Mainloop and at STKTOP-4 when control transfers
fromthe Runloop to a statenent handler

The String Storage Area is conposed of the string bodies
assigned to Variables or Arrays. During expression evaluation a
nunber of internediate string results nay al so be tenporarily
present under the permanent string heap. The zero byte
following the String Storage Area is a tenporary delimter for
the "VAL" function.

The region between the String Storage Area and H MEM is used
for 1/0O buffer storage. I/0O buffer 0, the "SAVE" and "LOAD"
buffer, is always present but the nunber of user buffers is
determ ned by the "MAXFILES" statement. Each 1/O buffer
consists of a 9 byte FCB, whose address is contained in the
tabl e under FCB 0, followed by a 256 byte data buffer. The FCB
contains the status of the I/O buffer as bel ow

oo L2 3. 4 5 6 7 8

UAAA

3 Mod 3 OOH 3 OOH3® OOH 3 DEV 3 OOH 3 POS 3 OOH 3 PPS 3

AAL
Figure 52 : File Control Bl ock

The MOD byte holds the buffer node, the DEV byte the device
code, the POS byte the current position in the buffer (0 to
255) and the PPS byte the "PRINT" position. The remmai nder of
the FCB is unused on a standard MSX nmechi ne.

- 209 -

6. MEMORY MAP

Wor kspace Area

The section of the Wirkspace Area from F380H to FD99H hol ds
the BIOS/Interpreter variables. These are listed on the
foll owi ng pages in standard assenbly | anguage form

F380H RDPRIM OUT (0A8H), A ; Set new Prinary Sl ot
F382H LD E, (HL) ; Read nenory
F383H JR V\RPRML ; Restore old Prinmary Sl ot

This routine is used by the RDSLT standard routine to switch
Primary Slots and read a byte from nenory. The new Prinmary Sl ot
Regi ster setting is supplied in register A the old setting in
register D and the byte read returned in register E.

F385H WVRPRIM OUT (0A8H), A ; Set new Prinary Sl ot

F387H LD (HL), E ; Wite to nenory

F388H WRPRML: LD A, D ; Cet old setting

F389H OUT (OA8H),A ; Restore old Prinmary Sl ot
F38BH RET

This routine is used by the WRSLT standard routine to switch
Primary Slots and wite a byte to nenory. The new Primary Sl ot
Regi ster setting is supplied in register A the old setting in
register D and the byte to wite in register E.

F38CH CLPRIM OUT (OA8H), A ; Set new Prinmary Sl ot

F38EH EX AF, AF' ; Swap to AF for call
F38FH CALL CLPRML ; Do it

F392H EX AF, AF' ; Swap to AF

F393H POP AF ; Get old setting

F394H OUT (OA8H), A ; Restore old Prinary Sl ot
F396H EX AF, AF' ; Swap to AF

F397H RET

F398H CLPRML: JP (I X)

This routine is used by the CALSLT standard routine to switch
Primary Slots and call an address. The new Prinmary S| ot
Regi ster setting is supplied in register A the old setting on

the Z80 stack and the address to call in register pair |IX
F39AH USRTAB: DEFW 475AH ; USR O
F39CH DEFW 475AH ; USR 1
F39EH DEFW 475AH ; USR 2
F3AQH DEFW 475AH ; USR 3
F3A2H DEFW 475AH ; USR 4
F3A4H DEFW 475AH ; USR 5
F3A6H DEFW 475AH ; USR 6
F3A8H DEFW 475AH ; USR 7
F3AAH DEFW 475AH ; USR 8
F3ACH DEFW 475AH ; USR 9

These ten variables contain the "USR' function addresses. Their
values are set to the Interpreter "Illegal function call" error

- 210 -

6. MEMORY MAP

generator at power-up and thereafter only altered by the
" DEFUSR" st at enent.

F3AEH LI NL40: DEFB 37

This variable contains the 40x24 Text Mdde screen width. Its
value is set at power-up and thereafter only altered by the
"W DTH' statenent.

F3AFH LI NL32: DEFB 29

This variable contains the 32x24 Text Mdde screen width. Its
value is set at power-up and thereafter only altered by the
"W DTH' st atenent.

F3BOH LI NLEN: DEFB 37

This variable contains the current text nobde screen width. Its
value is set from LINL40 or LINL32 whenever the VDP is
initialized to a text nobde via the INITXT or I NI T32 standard
routines.

F3B1H CRTCNT: DEFB 24

This variable contains the nunmber of rows on the screen. Its
value is set at power-up and thereafter unaltered.

F3B2H CLMLST: DEFB 14

Thi s variabl e contains the nm ni num nunber of columms that nust
still be available on a line for a data itemto be "PRI NT"ed,
if less space is available a CR LF is issued first. Its value
is set at power-up and thereafter only altered by the "WDTH'
and " SCREEN' st at enents.

F3B3H TXTNAM DEFW 0000H ; Nanme Tabl e Base

F3B5H TXTCOL: DEFW 0000H ; Col our Tabl e Base
F3B7H TXTCGP: DEFW 0800H ; Character Pattern Base
F3B9H TXTATR: DEFW 0000H ; Sprite Attribute Base
F3BBH TXTPAT: DEFW 0000H ; Sprite Pattern Base

These five variables contain the 40x24 Text Mde VDP base
addresses. Their values are set at power-up and thereafter only
altered by the "BASE" statenent.

F3BDH T32NAM DEFW 1800H ; Nanme Tabl e Base

F3BFH T32COL: DEFW 2000H ; Col our Tabl e Base
F3C1H T32CGP: DEFW 0000H ; Character Pattern Base
F3C3H T32ATR: DEFW 1BOOH ; Sprite Attribute Base
F3C5H T32PAT: DEFW 3800H ; Sprite Pattern Base

These five variables contain the 32x24 Text Mde VDP base
addresses. Their values are set at power-up and thereafter only
altered by the "BASE" statenent.

- 211 -

6. MEMORY MAP
F3C7H GRPNAM DEFW 1800H Nane Tabl e Base
F3C9H GRPCOL: DEFW 2000H Col our Tabl e Base
F3CBH GRPCGP: DEFW 0000H Character Pattern Base
F3CDH GRPATR: DEFW 1BOOH Sprite Attribute Base
F3CFH GRPPAT: DEFW 3800H Sprite Pattern Base

These five variables contain the G aphics Mde VDP base
addresses. Their values are set at power-up and thereafter only
altered by the "BASE" statenent.

F3D1H M_LTNAM DEFW 0800H Nanme Tabl e Base

F3D3H MLTCOL: DEFW 0000H Col our Tabl e Base

F3D5H MLTCGP: DEFW 0000H Character Pattern Base

F3D7H MLTATR: DEFW 1B0OOH Sprite Attribute Base

F3DOH M.TPAT: DEFW 3800H ; Sprite Pattern Base

These five variables contain the Miulticol our Mbode VDP base
addresses. Their values are set at power-up and thereafter only
altered by the "BASE" statenent.

F3DBH CLI KSW DEFB 01H

This variable controls the interrupt handler key click
O0H=0OFf, NZ=On. Its value is set at power-up and thereafter
only altered by the "SCREEN' st atenent.

F3DCH CSRY: DEFB 01H

This variable contains the row coordinate (from1l to CTRCNT) of
the text node cursor.

F3DDH CSRX: DEFB 01H
This variable contains the colunnm coordinate (from1 to LINLEN)

of the text nobde cursor. Note that the BI OGS cursor coordinates
for the hone position are 1,1 whatever the screen wi dth.

F3DEH CNSDFG. DEFB FFH

This variable contains the current state of the function key
di splay: 00H=Of f, NZ=On.

F3DFH RGOSAV:
F3EOH RGLSAV:
F3E1H RG2SAV:
F3E2H RG3SAV:
F3E3H RASAV:
F3E4H RG5SAV:
F3E5H RGGSAV:
F3E6H RG7SAV:

DEFB OOH
DEFB FOH
DEFB OOH
DEFB OOH
DEFB O1H
DEFB O0OH
DEFB OOH
DEFB F4H

These eight variables nmimc the state of the eight wite-only
VDP Mode Regi sters. The val ues shown are for 40x24 Text Mode.

- 212 -

6. MEMORY MAP

F3E7H STATFL: DEFB CAH

This variable is continuously updated by the interrupt handler
with the contents of the VDP Status Register.

F3E8H TRGFLG. DEFB F1H

This variable is continuously updated by the interrupt handler
with the state of the four joystick trigger inputs and the
space key.

F3E9H FORCLR: DEFB OFH ; Wiite

This variable contains the current foreground colour. Its value
is set at power-up and thereafter only altered by the "COLOR'
statenment. The foreground colour is used by the CLRSPR standard
routine to set the sprite colour and by the CHGCLR standard
routine to set the 1 pixel colour in the text nodes. It also
functions as the graphics ink colour as it is copied to ATRBYT
by the GRPPRT standard routine and used throughout the
Interpreter as the default value for any optional col our
oper and.

F3EAH BAKCLR: DEFB 04H ; Dark blue

This variable contains the current background colour. Its val ue
is set at power-up and thereafter only altered by the "COLOR'
statenment. The background colour is used by the CLS standard
routine to clear the screen in the graphics nmodes and by the
CHGCLR standard routine to set the 0 pixel colour in the text
nodes.

F3EBH BDRCLR: DEFB 04H ; Dark blue

This variable contains the current border colour. Its value is
set at power-up and thereafter only altered by the "COLOR"
statement. The border colour is used by the CHGCLR standard
routine in 32x24 Text Mde, G aphics Mdde and Milticol our Mode
to set the border col our.

F3ECH MAXUPD: DEFB C3H
F3EDH DEFW 0000H

These two bytes are filled in by the "LINE" statenment handl er
to forma Z80 JP to the RIGHTC, LEFTC, UPC or DOWC standard
routines.

F3EFH M NUPD: DEFB C3H
F3FOH DEFW 0000H

These two bytes are filled in by the "LINE" statenment handl er
to forma Z80 JP to the RIGHTC, LEFTC, UPC or DOWC standard
routines.

- 213 -

6. MEMORY MAP

F3F2H ATRBYT: DEFB OFH

This variable contains the graphics ink colour used by the SETC
and NSETCX standard routines.

F3F3H QUEUES: DEFW F959H

This variable contains the address of the control blocks for
the three nusic queues. Its value is set at power-up and
thereafter unaltered.

F3F5H FRCNEW DEFB FFH

This variable contains a flag to distinguish the two statenents
in the "CLOAD/ CLOAD?" statenent handl er: O0H=CLOAD, FFH=CLOAD?

F3F6H SCNCNT: DEFB 01H

This variable is used as a counter by the interrupt handler to
control the rate at which keyboard scans are perforned.

F3F7H REPCNT: DEFB 01H

This variable is used as a counter by the interrupt handler to
control the key repeat rate.

F3F8H PUTPNT: DEFW FBFOH

This variable contains the address of the put position in
KEYBUF.

F3FAH GETPNT: DEFW FBFOH

This variable contains the address of the get position in
KEYBUF.

F3FCH CS1200: DEFB 53H ; LO cycle 1st half
F3FDH DEFB 5CH ; LO cycle 2nd hal f
F3FEH DEFB 26H ; H cycle 1st half
F3FFH DEFB 2DH ; H cycle 2nd half
F400H DEFB OFH ; Header cycle count

These five variables contain the 1200 baud cassette paraneters.
Their values are set at power-up and thereafter unaltered.

F401H CS2400: DEFB 25H ; LO cycle 1st half
F402H DEFB 2DH ; LO cycle 2nd hal f
F403H DEFB OEH ; H cycle 1st half
F404H DEFB 16H ; H cycle 2nd half
F405H DEFB 1FH ; Header cycle count

These five variables contain the 2400 baud cassette paraneters.
Their values are set at power-up and thereafter unaltered.

- 214 -

6. MEMORY MAP

F406H LOW DEFB 53H ; LO cycle 1st half
F407H DEFB 5CH ; LO cycle 2nd hal f
F408H HI GH: DEFB 26H ; H cycle 1st half
F409H DEFB 2DH ; H cycle 2nd half
FA0AH HEADER: DEFB OFH ; Header cycle count

These five variables contain the current cassette paraneters.
Their values are set to 1200 baud at power-up and thereafter
only altered by the "CSAVE" and "SCREEN' statenents.

F40BH ASPCT1: DEFW 0100H

This variable contains the reciprocal of the default "Cl RCLE"
aspect ratio nmultiplied by 256. Its value is set at power-up
and thereafter unaltered.

F4A0DH ASPCT2: DEFW 01COH

This variable contains the default "ClIRCLE" aspect ratio
multiplied by 256. Its value is set at power-up and thereafter
unal tered. The aspect ratio is present in tw fornms so that the
"Cl RCLE" statenent handler can select the appropriate one
i medi ately rather than needing to exam ne and possibly
reciprocate it as is the case with an operand in the program
text.

F40FH ENDPRG. DEFB ":"
F410H DEFB OOH

F411H DEFB O00H
FE12H DEFB O0OH
F413H DEFB OOH

These five bytes forma dummy programline. Their values are
set at power-up and thereafter unaltered. The line exists in
case an error occurs in the Interpreter Miinloop before any
tokeni zed text is available in KBUF. If an "ON ERROR GOTO' is
active at this time then it provides sone text for the "RESUVE"
statement to term nate on.

F414H ERRFLG DEFB 0O0H

This variable is used by the Interpreter error handler to save
the error numnber.

F415H LPTPOS: DEFB OOH

This variable is used by the "LPRI NT" statement handler to hold
the current position of the printer head.

FA416H PRTFLG DEFB OOH
Thi s vari abl e determ nes whet her the OUTDO standard routine

directs its output to the screen or to the printer: OOH=Screen
OlH=Printer.

- 215 -

6. MEMORY MAP

F417H NTMSXP: DEFB OOH

This variabl e determ nes whether the OUTDO standard routine
will replace headered graphics characters directed to the
printer with spaces: 00H=Graphics, NZ=Spaces. Its value is set
at power-up and thereafter only altered by the "SCREEN'
st at ement .

F418H RAWPRT: DEFB OOH

This variabl e determ nes whether the OUTDO standard routine
will nodify control and headered graphics characters directed
to the printer: 00H=Modify, NZ=Raw. Its value is set at power-
up and thereafter unaltered.

F419H VLZADR: DEFW 000OH
F41BH VLZDAT: DEFB 0OOH

These variables contain the address and val ue of any character
tenporarily renmoved by the "VAL" function

F41CH CURLI N: DEFW FFFFH

This variable contains the current Interpreter line nunber. A
val ue of FFFFH denotes direct npde.

FA1EH KBFM N. DEFB ":"
This byte provides a dummy prefix to the tokenized text
contained in KBUF. Its function is simlar to that of ENDPRG

but is used for the situation where an error occurs within a
direct statenent.

FA1FH KBUF: DEFS 318

This buffer contains the tokenized formof the input line
collected by the Interpreter Muinloop. Wien a direct statenent
is executed the contents of this buffer formthe programtext.

F55DH BUFM N: DEFB ", "

This byte provides a dummy prefix to the text contained in BUF.
It is used to synchronize the "I NPUT" statenent handler as it
starts to analyze the input text.

F55EH BUF: DEFS 259

This buffer contains the text collected fromthe console by the
I NLI N standard routi ne.

F661H TTYPOS: DEFB 0OOH

This variable is used by the "PRI NT" statenment handler to hold
the current screen position (Teletypel).

- 216 -

6. MEMORY MAP

F662H DI MFLG. DEFB OOH

This variable is normally zero but is set by the "D M
statenent handler to control the operation of the variable
search routine.

F663H VALTYP: DEFB 02H

This variable contains the type code of the operand currently
contained in DAC. integer, 3=String, 4=Single Precision
8=Doubl e Preci sion.

F664H DORES: DEFB 00H

This variable is normally zero but is set to prevent the
t okeni zation of unquoted keywords follow ng a "DATA" token

F665H DONUM DEFB OOH
This variable is normally zero but is set when a numeric
constant follows one of the keywords GOTO, GOSUB, THEN, etc.
and rmust be tokenized to the special |ine nunber operand form
F666H CONTXT: DEFW 0000H
This variable is used by the CHRGIR standard routine to save
the address of the character following a nuneric constant in
the programtext.

F668H CONSAV: DEFB O0H

This variable is used by the CHRGIR standard routine to save
the token of a nunmeric constant found in the programtext.

F669H CONTYP: DEFB OOH

This variable is used by the CHRGIR standard routine to save
the type of a nuneric constant found in the programtext.

F66AH CONLO. DEFS 8

This buffer is used by the CHRGIR standard routine to save the
val ue of a numeric constant found in the programtext.

F672H MEMSI| Z: DEFW F168H

This variable contains the address of the top of the String
Storage Area. Its value is set at power-up and thereafter only
altered by the "CLEAR' and "MAXFI LES" statenents.

F674H STKTOP: DEFW FOAOH

This variable contains the address of the top of the Z80 st ack.
Its value is set at power-up to MEMSI Z- 200 and thereafter only

- 217 -

6. MEMORY MAP

altered by the "CLEAR' and "MAXFI LES" statenents.

F676H TXTTAB: DEFW 8001H

This variable contains the address of the first byte of the
Program Text Area. Its value is set at power-up and thereafter
unal tered

F678H TEMPPT: DEFW F67AH

This vari abl e contains the address of the next free |location in
TEMPST.

F67AH TEMPST: DEFS 30

This buffer is used to store string descriptors. It functions
as a stack with string producers pushing their results and
string consuners popping them

F698H DSCTMP: DEFS 3

This buffer is used by the string functions to hold a result
descriptor while it is being constructed.

F69BH FRETOP: DEFW F168H

This variable contains the address of the next free location in
the String Storage Area. \Wen the area is enpty FRETOP i s equa
to MEMSI Z.

F69DH TEMP3: DEFW 0000H

This variable is used for tenporary storage by various parts of
the Interpreter.

F69FH TEMP8: DEFW O000H

This variable is used for tenporary storage by various parts of
the Interpreter.

F6A1H ENDFOR: DEFW 0000H

This variable is used by the "FOR' statenment handler to hold
the end of statenent address during construction of a paraneter
bl ock.

F6A3H DATLI N: DEFW 0000H

This variable contains the |ine nunber of the current "DATA"
itemin the programtext.

F6A5H SUBFLG. DEFB 00OH

This variable is normally zero but is set by the "ERASE"

- 218 -

6. MEMORY MAP

"FOR', "FN' and "DEF FN' handlers to control the processing of
subscripts by the variable search routine.

F6A6H FLG NP: DEFB OOH

This variable contains a flag to distinguish the two statenents
in the "READ/ | NPUT" statenent handl er: 00H=I NPUT, NZ=READ

F6A7TH TEMP: DEFW 0000H

This variable is used for tenporary storage by various parts of
the Interpreter.

F6A9H PTRFLG DEFB 0OH

This variable is normally zero but is set if any line nunber
operands in the Program Text Area have been converted to
poi nters.

F6AAH AUTFLG DEFB OOH

This variable is normally zero but is set when "AUTO' node is
turned on.

F6ABH AUTLI N: DEFW 0000H
This vari able contains the current "AUTO' |ine nunber.
F6ADH AUTI NC: DEFW 0000H

This variable contains the current "AUTO' |ine nunber
i ncrement.

F6AFH SAVTXT: DEFW 0000H

This variable is updated by the Runloop at the start of every
statement with the current location in the programtext. It is
used during error recovery to set ERRTXT for the "RESUME"
statenment handl er and OLDTXT for the "CONT" statement handl er.

F6B1H SAVSTK: DEFW FO9EH

This variable is updated by the Runloop at the start of every
statenent with the current Z80 SP for error recovery purposes.

F6B3H ERRLI N: DEFW 0000H

This variable is used by the error handler to hold the line
nunber of the programline generating an error.

F6B5H DOT: DEFW 0000H

This variable is updated by the Miinloop and the error handl er
with the current line nunmber for use with the "." paraneter.

- 219 -

6. MEMORY MAP

F6B7H ERRTXT: DEFW 0000H

This variable is updated from SAVIXT by the error handler for
use by the "RESUMVE" statenent handl er.

F6BO9H ONELI N: DEFW 0000H

This variable is set by the "ON ERROR GOTO' statenment handl er
with the address of the programline to execute when an error
occurs.

F6BBH ONEFLG DEFB 00OH

This variable is normally zero but is set by the error handler
when control transfers to an "ON ERROR GOTO' statenent. This is
to prevent a | oop developing if an error occurs inside the
error recovery statenments.

F6BCH TEMP2: DEFW O000H

This variable is used for tenporary storage by various parts of
the Interpreter.

F6BEH OLDLI N: DEFW 0000H

This variable contains the |ine nunmber of the termnating
programline. It is set by the "END' and "STOP" statenent
handl ers for use with the "CONT" statenent.

F6COH OLDTXT: DEFW O0000H

This variable contains the address of the terminating program
st at ement .

F6C2H VARTAB: DEFW 8003H

This variable contains the address of the first byte of the
Vari abl e Storage Area.

F6C4AH ARYTAB: DEFW 8003H

This variable contains the address of the first byte of the
Array Storage Area.

F6C6H STREND: DEFW 8003H

This variable contains the address of the byte follow ng the
Array Storage Area.

F6C8H DATPTR: DEFW 8000H

This variable contains the address of the current "DATA" item
in the programtext.

- 220 -

6. MEMORY MAP

F6CAH DEFTBL: DEFB 08H ;A
F6CBH DEFB 08H ; B
F6CCH DEFB 08H ; C
F6CDH DEFB 08H ; D
F6CEH DEFB 08H ; E
F6CFH DEFB 08H . F
F6DOH DEFB 08H ;G
F6D1H DEFB 08H N
F6D2H DEFB 08H ;o

F6D3H DEFB 08H N

F6D4AH DEFB 08H ;K
F6D5H DEFB 08H ;L
F6D6H DEFB 08H ;M
F6D7H DEFB 08H ;7 N
F6D8H DEFB 08H ;O
F6DOH DEFB 08H ;P
F6 DAH DEFB 08H ;o Q
F6DBH DEFB 08H 7 R
F6DCH DEFB 08H ;S
F6DDH DEFB 08H T
F6DEH DEFB 08H ;U
F6DFH DEFB 08H Vv
F6EOH DEFB 08H ;W
F6E1H DEFB 08H ;X
F6E2H DEFB 08H Y
F6E3H DEFB 08H 4

These twenty-six variables contain the default type for each
group of BASIC Variables. Their values are set to double
precision at power-up, "NEW and "CLEAR' and thereafter altered
only by the "DEF" group of statenents.

F6E4AH PRMSTK: DEFW 0000H

This variable contains the base address of the previous "FN'
paranmeter block on the Z80 stack. It is used during string
garbage collection to travel fromblock to block on the stack

F6E6H PRMLEN: DEFW 0000H

This variable contains the |l ength of the current "FN' paraneter
bl ock in PARML.

F6ES8H PARML : DEFS 100

This buffer contains the |ocal Variables belonging to the "FN'
function currently being eval uated.

F74CH PRVPRV: DEFW F6E4H

This variable contains the address of the previous "FN'
paraneter block. It is actually a constant used to ensure that
string garbage collection conmences with the current paraneter
bl ock before proceeding to those on the stack

- 221 -

6. MEMORY MAP

F74EH PRMLN2: DEFW O000H

This variable contains the Iength of the "FN' paraneter Dbl ock
bei ng constructed i n PARM2

F750H PARM2: DEFS 100

This buffer is used to construct the | ocal Variables owned by
the current "FN' function

F7B4H PRMFLG. DEFB OOH

This variable is used during a Variable search to indicate
whet her | ocal or gl obal Variables are being exan ned.

F7B5H ARYTA2: DEFW 000OH

This variable is used during a Variable search to hold the
term nation address of the storage area being exam ned.

F7B7H NOFUNS: DEFB 0OH

This variable is normally zero but is set by the "FN' function
handl er to indicate to the variable search routine that |oca
Vari abl es are present.

F7B8H TEMP9: DEFW O000H

This variable is used for tenporary storage by various parts of
the Interpreter.

F7BAH FUNACT: DEFW 000OH

This variable contains the nunber of currently active "FN
functions.

F7BCH SWPTMP: DEFS 8

This buffer is used to hold the first operand in a "SWAP"
st at enent .

F7CAH TRCFLG. DEFB 0O0H

This variable is normally zero but is set by the "TRON'
statement handler to turn on the trace facility.

F7C5H FBUFFR: DEFS 43

This buffer is used to hold the text produced during nuneric
out put conversi on.

F7FOH DECTMP: DEFW 000OH

This variable is used for tenporary storage by the double

- 222 -

6. MEMORY MAP

preci sion division routine.
F7F2H DECTMR2: DEFW O000H

This variable is used for tenporary storage by the double
preci sion division routine.

F7F4AH DECCNT: DEFB OOH

This variable is used by the double precision division routine
to hold the nunmber of non-zero bytes in the mantissa of the
second oper and.

F7F6H DAC: DEFS 16

This buffer functions as the Interpreter's primary accumrul ator
during expression eval uation.

F806H HOLD8: DEFS 65

This buffer is used by the double precision nultiplication
routine to hold the multiples of the first operand.

F847H ARG DEFS 16

This buffer functions as the Interpreter's secondary
accurul at or during expression eval uation.

F857H RNDX: DEFS 8

This buffer contains the current double precision random
nunber .

F85FH MAXFI L: DEFB 01H

Thi s variable contains the nunber of currently allocated user
I/O buffers. Its value is set to 1 at power-up and thereafter
only altered by the "MAXFILES" statenent.

F860H FI LTAB: DEFW F16AH

This variable contains the address of the pointer table for the
I/ O buffer FCBs.

F862H NULBUF: DEFW F177H

This variable contains the address of the first byte of the
data buffer belonging to I/O buffer O.

F864H PTRFI L: DEFW 000OH

This variable contains the address of the currently active I/0
buf f er FCB.

- 2283 -

6. MEMORY MAP

F866H FI LNAM DEFS 11

This buffer holds a user-specified filenane. It is eleven
characters long to allow for disc file specs such as
" FI LENAME. BAS".

F871H FI LNM2: DEFS 11

This buffer holds a filenanme read froman |I/O device for
conparison with the contents of FILNAM

F87CH NLONLY: DEFB OOH

This variable is normally zero but is set during a program
"LOAD'. Bit 0 is used to prevent |/O buffer 0 being closed
during loading and bit 7 to prevent the user 1/0 buffers being
closed if auto-run is required.

F87DH SAVEND: DEFW 0000H

This variable is used by the "BSAVE" statenment handler to hold
the end address of the nenory block to be saved.

F87FH FNKSTR: DEFS 160

This buffer contains the ten sixteen-character function key
strings. Their values are set at power-up and thereafter only
altered by the "KEY" statenent.

FO91FH CGPNT: DEFB OOH ; Slot ID
F920H DEFW 1BBFH ; Addr ess

These variables contain the location of the character set
copied to the VDP by the INITXT and | Nl T32 standard routines.
Their values are set to the MSX ROM character set at power-up
and thereafter unaltered.

F922H NAMBAS: DEFW 0000H

This variable contains the current text node VDP Nanme Tabl e
base address. Its value is set from TXTNAM or T32NAM whenever
the VDP is initialized to a text npde via the I NITXT or | N T32
st andard routi nes.

F924H CGPBAS: DEFW 0800H

This vari able contains the current text node VDP Character
Pattern Tabl e base address. Its value is set from TXTCGP or
T32CGP whenever the VDP is initialized to a text npde via the
INl TXT or INIT32 standard routines.

F926H PATBAS: DEFW 3800H

This variable contains the current VDP Sprite Pattern Table

- 224 -

6. MEMORY MAP

base address. Its value is set from T32PAT, GRPPAT or M.TPAT
whenever the VDP is initialized via the INIT32, IN GRP or
I Nl LT standard routines.

F928H ATRBAS: DEFW 1BOOH

This variable contains the current VDP Sprite Attribute Table
base address. Its value is set from T32ATR, GRPATR or M.TATR
whenever the VDP is initialized via the INIT32, I N GRP or
I Nl MLT standard routines.

F92AH CLOC: DEFW 0000H ;. Pixel |ocation
F92CH CMASK: DEFB 80H ;. Pixel Mask

These variables contain the current pixel physical address used
by the RI GHTC, LEFTC, UPC, TUPC, DOWC, TDOWNC, FETCHC, STOREC
READC, SETC, NSETCX, SCANR and SCANL standard routines. CLOC
hol ds the address of the byte containing the current pixel and
CVASK defines the pixel within that byte.

F92DH M NDEL: DEFW 0000H

This variable is used by the "LINE" statenment handler to hold
the m ninum di fference between the end points of the line.

F92FH MAXDEL: DEFW 000OH

This variable is used by the "LINE" statement handler to hold
the maxi num di fference between the end points of the I|ine.

F931H ASPECT: DEFW 0000OH

This variable is used by the "CIRCLE" statenment handler to hold
the current aspect ratio. This is stored as a single byte
binary fraction so an aspect ratio of 0.75 would becone 00COH
The MSB is only required if the aspect ratio is exactly 1.00,
that is 0100H

FO33H CENCNT: DEFW 0000H

This variable is used by the "CI RCLE" statement handler to hold
the point count of the end angle.

F935H CLI NEF: DEFB 0OO0OH

This variable is used by the "CIRCLE" statement handler to hold
the two line flags. Bit O is set if aline is required fromthe
start angle to the centre and bit 7 set if one is required from
the end angl e.

F936H CNPNTS: DEFW 0000H

This variable is used by the "CI RCLE" statenment handler to hold
the nunber of points within a forty-five degree segment.

- 225 -

6. MEMORY MAP

F938H CPLOTF: DEFB OOH

This variable is normally zero but is set by the "Cl RCLE"
statenment handler if the end angle is smaller than the start
angle. It is used to detern ne whether the pixels should be set
"inside" the angles or "outside" them

F939H CPCNT: DEFW 00OOH

This variable is used by the ' CIRCLE" statement handler to hold

the point count within the current forty-five degree segnent,
this is in fact the Y coordinate.

F93BH CPCNT8: DEFW 0000H

This variable is used by the "CI RCLE" statenment handler to hold
the total point count of the present position

F93DH CRCSUM DEFW 0000H

This variable is used by the "CI RCLE" statenent handler as the
poi nt conputation counter.

FO93FH CSTCNT: DEFW 0000H

This variable is used by the "CI RCLE" statement handler to hold
the point count of the start angle.

F941H CSCLXY: DEFB 00H

This variable is used by the "CIRCLE" statenment handler as a
flag to determine in which direction the elliptic squash is to
be applied: 00H=Y, 01H=X.

F942H CSAVEA: DEFW 0000H

This variable is used for temporary storage by the SCANR
standard routi ne.

F944H CSAVEM DEFB 00h

This variable is used for tenporary storage by the SCANR
standard routine.

F945H CXOFF: DEFW O0000H

This variable is used for tenmporary storage by the "Cl RCLE"
st at ement handl er.

F947H CYOFF: DEFW 00OOH

This variable is used for tenporary storage by the "Cl RCLE"
statement handl er.

- 226 -

6. MEMORY MAP

F949H LOHMSK: DEFB OOH

This variable is used by the "PAINT" statenent handler to hold
the | eftnost position of a LH excursion.

F94AH LOHDI R: DEFB 0OH

This variable is used by the "PAINT" staterment handler to hold
the new paint direction required by a LH excursion

F94BH LOHADR: DEFW O0000H

This variable is used by the "PAINT" statement handler to hold
the | eftnpst position of a LH excursion.

F94DH LOHCNT: DEFW 000OH

This variable is used by the "PAINT" statenent handler to hold
the size of a LH excursion.

FO94FH SKPCNT: DEFW 0000H

This variable is used by the "PAINT" statement handler to hold
the skip count returned by the SCANR standard routi ne.

F951H MOVCNT: DEFW 000OH

This variable is used by the "PAINT" statenent handler to hold
the novenent count returned by the SCANR standard routine.

F953H PDI REC. DEFB 00H

This variable is used by the "PAINT" statement handler to hold
the current paint direction: 40H=Down, COH=Up, OOH=Terni nate.

F954H LFPROG. DEFB OO0OH

This variable is normally zero but is set by the "PAINT"
statenment handler if there has been any |eftwards progress.

F955H RTPROG. DEFB 0O0H

This variable is normally zero but is set by the "PAINT"
statenent handler if there has been any rightwards progress.

F956H MCLTAB: DEFW 0000H

This variabl e contains the address of the conmand table to be
used by the macro | anguage parser. The "DRAW table is at 5D83H
and the "PLAY" table at 752EH.

F958H MCLFLG DEFB OO0OH

This variable is zero if the nacro | anguage parser is being

- 227 -

6

used by the "DRAW,

MEMORY MAP

bei ng used by "PLAY".

FO59H QUETAB:
F95AH
F95BH
F95CH
FO5DH

FO5FH
F960H
F961H
F962H
F963H

F965H
F966H
F967H
F968H
F969H

F96BH
F96CH
F96DH
FO96EH
FO96FH

DEFB O00H
DEFB OOH
DEFB OOH
DEFB 7FH
DEFW F975H

DEFB OOH
DEFB O00H
DEFB O00H
DEFB 7FH
DEFW F9F5H

DEFB OOH
DEFB OOH
DEFB OOH
DEFB 7FH
DEFW FA75H

DEFB OOH
DEFB OOH
DEFB OOH
DEFB OOH
DEFW 0000H

AQ Put positi
AQ Get positi
AQ Put back fl
AQ Size

AQ Addr ess

BQ Put positi
BQ Get positi
BQ Put back fl
BQ Si ze

BQ Addr ess

CQ Put positi
CQ Get positi
CQ Put back fl
CQ Si ze

CQ Address

RQ Put positi
RQ Get positi
RQ Put back fl
RQ Si ze

RQ Addr ess

on
on

ag

on
on

ag

on
ag

statenment handl er and non-zero if it is

These twenty-four variables formthe control blocks for the
three nusic queues (VO CAQ VO CBQ and VA CCQ and the RS232
queue. The three nusic control blocks are initialized by the
G CINI standard routine and thereafter nmaintained by the

i nterrupt handler and the PUTQ standard routine. The RS232
control block is unused in the current MSX ROM
F971H QUEBAK: DEFB OOH ;. AQ Put back character
FO972H DEFB O00H ; BQ Put back character
F973H DEFB O0OH ; CQ Put back character
F974H DEFB OOH ; RQ Put back character

These four variables are used to hold any unwanted character
returned to the associ ated queue. Although the putback facility
is inplenmented in the MSX ROMit is currently unused.

F975H VO CAQ DEFS 128 ; Voice A queue
FOF5H VO CBQ DEFS 128 ; Voice B queue
FA75H VO CCQ DEFS 128 ; Voice C queue
FAF5H RS21 Q@ DEFS 64 ; RS232 queue

These four buffers contain the three nusic queues and the RS232
queue, the latter is unused.

FB35H PRSCNT: DEFB OOH
This variable is used by the "PLAY" statenent handler to count

- 228 -

6. MEMORY MAP

the nunber of conpleted operand strings. Bit 7 is also set
after each of the three operands has been parsed to prevent
repeated activation of the STRTMS standard routine.

FB36H SAVSP: DEFW 0000H

This variable is used by the "PLAY" statenment handler to save
the Z80 SP before control transfers to the macro | anguage
parser. Its value is conpared with the SP on return to
determ ne whether any data has been |l eft on the stack because
of a queue-full termnation by the parser

FB38H VO CEN: DEFB O0H

This variable contains the current voice nunber being processed
by the "PLAY" statenent handler. The values 0, 1 and 2
correspond to PSG channels A, B and C

FB39H SAVVOL: DEFW 0000H

This variable is used by the "PLAY" statenent "R' conmand
handl er to save the current volune setting while a zero-
anplitude rest is generated.

FB3BH MCLLEN: DEFB OOH

This variable is used by the macro | anguage parser to hold the
Il ength of the string operand bei ng parsed.

FB3CH MCLPTR: DEFW 0000H

This variable is used by the macro | anguage parser to hold the
address of the string operand bei ng parsed.

FB3EH QUEUEN: DEFB OOH

This variable is used by the interrupt handler to hold the
number of the nusic queue currently being processed. The val ues
0, 1 and 2 correspond to PSG channels A, B and C

FB3FH MJSI CF: DEFB 0O0OH

This variable contains three bit flags set by the STRTMS
standard routine to initiate processing of a nusic queue by the
interrupt handler. Bits 0, 1 and 2 correspond to VO CAQ VO CBQ
and VO CCQ

FB40OH PLYCNT: DEFB OOH

This variable is used by the STRTMS standard routine to hold
the nunber of "PLAY" statenent sequences currently held in the
musi ¢ queues. It is exanmi ned when all three end of queue narks
have been found for one sequence to determ ne whether
dequeuei ng shoul d be restarted.

- 229 -

6. MEMORY MAP

FB41H VCBA: DEFW 0000H ; Duration counter
FB43H DEFB O00H ; String length

FB44H DEFW 0000H ; String address
FB46H DEFW 0000H ; Stack data address
FB48H DEFB OOH ; Music packet |ength
FB49H DEFS 7 ; Music packet

FB50H DEFB 04H ; COctave

FB51H DEFB 04H ; Length

FB52H DEFB 78H ; Tenpo

FB53H DEFB 88H ; Vol une

FB54H DEFW O0OFFH ; Envel ope peri od
FB56H DEFS 16 ; Space for stack data

This thirty-seven byte buffer is used by the "PLAY" statenent
handl er to hold the current paraneters for voice A

FB66H VCBB: DEFS 37

This buffer is used by the "PLAY" statenment handler to hold the
current paraneters for voice B, its structure is the sane as
VCBA.

FB8BH VCBC: DEFS 37

This buffer is used by the "PLAY" statenent handler to hold the
current paraneters for voice C, its structure is the same as
VCBA.

FBBOH ENSTOP: DEFB OO0OH

This variabl e determ nes whether the interrupt handler wll
execute a warmstart to the Interpreter upon detecting the keys
CODE, CGRAPH, CTRL and SHI FT depressed together: 00H=Di sabl e,
NZ=Enabl e.

FBB1H BASROM DEFB OO0H

Thi s variabl e determ nes whether the | SCNTC and | NLI N standard
routines will respond to the CTRL-STOP key: 0OH=Enabl e,
NZ=Di sable. It is used to prevent term nation of a BASI C ROM
| ocated during the power-up ROM search

FBB2H LI NTTB: DEFS 24

Each of these twenty-four variables is normally non-zero but is
zeroed if the contents of the correspondi ng screen row have
overflowed onto the next row. They are maintained by the BlIOS
but only actually used by the INLIN standard routine (the
screen editor) to discrininate between | ogical and physica
I'ines.

FBCAH FSTPOS: DEFW 0000H

This variable is used to hold the cursor coordinates upon entry

- 230 -

6. MEMORY MAP

to the INLIN standard routine. Its function is to restrict the
extent of backtracking perfornmed when the text is collected
fromthe screen at term nation.

FBCCH CURSAV: DEFB 00H

This variable is used to hold the screen character replaced by
the text cursor.

FBCDH FNKSW : DEFB OO0H

This variable is used by the CHSNS standard routine to
determ ne whether the shifted or unshifted function keys are
currently displayed: 00H=Shifted, 0lH=Unshifted.

FBCEH FNKFLG DEFS 10

Each of these ten variables is normally zero but is set to O1H
if the associated function key has been turned on by a "KEY(n)
ON' statenment. They are used by the interrupt handler to
determ ne whether, in program node only, it should return a
character string or update the associated entry in TRPTBL.

FBD8H ONGSBF: DEFB 00H

This variable is normally zero but is incremented by the
i nterrupt handl er whenever a device has achieved the conditions
necessary to generate a programinterrupt. It is used by the
Runl oop to deternmi ne whether any programinterrupts are pending
wi t hout having to search TRPTBL.

FBDO9H CLI KFL: DEFB 0OH

This variable is used internally by the interrupt handler to
prevent spurious key clicks when returning multiple characters
froma single key depression such as a function key.

FBDAH OLDKEY: DEFS 11

This buffer is used by the interrupt handler to hold the
previ ous state of the keyboard matri x, each byte contains one
row of keys starting with row 0.

FBESH NEWKEY: DEFS 11

This buffer is used by the interrupt handler to hold the
current state of the keyboard matrix. Key transitions are
detected by conparison with the contents of OLDKEY after which
OLDKEY is updated with the current state.

FBFOH KEYBUF: DEFS 40

This buffer contains the decoded keyboard characters produced
by the interrupt handler. Note that the buffer is organized as

- 231 -

6. MEMORY MAP

a circular queue driven by GETPNT and PUTPNT and consequently
has no fixed starting point.

FC18H LI NW\RK: DEFS 40

This buffer is used by the BIOS to hold a conplete line of
screen characters.

FC40H PATWRK: DEFS 8
This buffer is used by the BIOS to hold an 8x8 pixel pattern
FC48H BOTTOM DEFW 8000H

This variable contains the address of the | owest RAM I ocati on
used by the Interpreter. Its value is set at power-up and
t hereafter unaltered.

FCAAH H MEM DEFW F380H

This variable contains the address of the byte follow ng the
hi ghest RAM | ocation used by the Interpreter. Its value is set
at power-up and thereafter only altered by the "CLEAR"
statenent.

FC4CH TRPTBL: DEFS 3 ;. KEY 1
FC4FH DEFS 3 ;. KEY 2
FC52H DEFS 3 ;. KEY 3
FC55H DEFS 3 ;. KEY 4
FC58H DEFS 3 . KEY 5
FC5BH DEFS 3 ;. KEY 6
FC5EH DEFS 3 ;. KEY 7
FC61H DEFS 3 ;. KEY 8
FC64H DEFS 3 ;. KEY 9
FC67H DEFS 3 ;. KEY 10
FC6AH DEFS 3 ;. STOP
FC6DH DEFS 3 ;. SPRITE
FC70H DEFS 3 ; STRIG O
FC73H DEFS 3 ;. STRIG 1
FC76H DEFS 3 ;. STRIG 2
FC79H DEFS 3 . STRIG 3
FC7CH DEFS 3 ;. STRIG 4
FC7FH DEFS 3 ;| NTERVAL
FC82H DEFS 3 ; Unused
FC85H DEFS 3 ; Unused
FC88H DEFS 3 ;. Unused
FC8BH DEFS 3 ; Unused
FC8EH DEFS 3 ; Unused
FC91H DEFS 3 ; Unused
FC94H DEFS 3 ; Unused
FCO7H DEFS 3 ; Unused

These twenty-six three byte variables hold the current state of
the interrupt generating devices. The first byte of each entry
contains the device status (bit 0=On, bit 1=Stop, bit 2=Event

- 232 -

6. MEMORY MAP

active) and is updated by the interrupt handler, the Runl oop
i nterrupt processor and the "DEVI CE 0=0ON OFF/ STOP" and " RETURN'
statement handl ers. The renmmining two bytes of each entry are
set by the "ON DEVI CE GOSUB" statenent handl er and contain the
address of the programline to execute upon a program
interrupt.

FCOAH RTYCNT: DEFB OOH

This variable is unused by the current MSX ROM

FCO9BH | NTFLG: DEFB 00H

This variable is normally zero but is set to O3H or 04H if the
CTRL- STOP or STOP keys are detected by the interrupt handl er.

FCOCH PADY: DEFB OOH

This variable contains the Y coordinate of the |last point
detected by a touchpad.

FCODH PADX: DEFB OOH

This variable contains the X coordinate of the |last point
detected by a touchpad.

FCOEH JI FFY: DEFW 000O0H

This variable is continually incremented by the interrupt
handler. Its value may be set or read by the "TIME" statenent
or function.

FCAOH | NTVAL: DEFW 000OH

This variable holds the interval duration set by the "ON
| NTERVAL" st atenent handl er

FCA2H | NTCNT: DEFW 0000H

This variable is continually decremented by the interrupt
handl er. \When zero is reached its value is reset from I NTVAL
and, if applicable, a programinterrupt generated. Note that
this variable always counts irrespective of whether an
"I NTERVAL ON' statenent is active.

FCA4H LOALI M DEFB 31H

This variable is used to hold the mninmum all owable start bit
duration as determ ned by the TAPION standard routine.

FCASH W NW D: DEFB 22H

This variable is used to hold the LOH cycle discrimnation
duration as determ ned by the TAPI ON standard routine.

- 238 -

6. MEMORY MAP

FCA6H GRPHED: DEFB OO0OH

This variable is normally zero but is set to O1H by the CNVCHR
standard routine upon detection of a graphic header code.

FCA7TH ESCCNT: DEFB 00OH

This variable is used by the CHPUT standard routine ESC
sequence processor to count escape paraneters.

FCA8H | NSFLG. DEFB OO0OH

This variable is normally zero but is set to FFH by the INLIN
standard routine when insert node is on

FCA9H CSRSW DEFB 0OH

If this variable is zero the cursor is only displayed while the
CHGET standard routine is waiting for a keyboard character. If
it is non-zero the cursor is permanently displayed via the
CHPUT standard routine.

FCAAH CSTYLE: DEFB 0OH

This variable determ nes the cursor style: 00H=BIl ock
NZ=Under | i ne.

FCABH CAPST: DEFB OOH

This variable is used by the interrupt handler to hold the
current caps lock status: 00H=Off, NzZ=On.

FCACH KANAST: DEFB 0O0H

This variable is used to hold the keyboard Kana | ock status on
Japanese machi nes and the DEAD key status on European nachi nes.

FCADH KANAMD: DEFB 00H
This variable holds a keyboard nbde on Japanese nmachi nes only.
FCAEH FLBVEM DEFB 00H

This variable is set by the file I/O error generators but is
ot herw se unused.

FCAFH SCRMOD: DEFB OO0OH

This variable contains the current screen npde: 0=40x24 Text
Mode, 1=32x24 Text Modde, 2=Graphics Mde, 3=Multicol our Mode.

FCBOH OLDSCR: DEFB 00H

This variable holds the screen node of the |ast text npde set.

- 234 -

6. MEMORY MAP

FCB1H CASPRV: DEFB OO0H

This variable is used to hold any character returned to an 1/0O
buffer by the cassette putback function.

FCB2H BDRATR: DEFB 0OH

Thi s variable contains the boundary col our for the "PAI NT"
statement handler. Its value is set by the PNTIN standard
routi ne and used by the SCANR and SCANL standard routines.

FCB3H GXPCOS: DEFW 0000H

This variable is used for tenporary storage of a graphics X
coordi nat e.

FCB5H GYPOS: DEFW 000OH

This variable is used for tenporary storage of a graphics Y
coordi nat e.

FCB7H GRPACX: DEFW 0000H

This variable contains the current graphics X coordinate for
the GRPPRT standard routine.

FCBO9H GRPACY: DEFW 0000H

This variable contains the current graphics Y coordinate for
the GRPPRT standard routine.

FCBBH DRWFLG: DEFB 00H

Bits 6 and 7 of this variable are set by the "DRAW statenent
"N' and "B" command handlers to turn the associ ated npde on

FCBCH DRWSCL: DEFB OOH

This variable is used by the "DRAW statenent "S" conmand
handl er to hold the current scale factor.

FCBDH DRWANG: DEFB 0O0H

This variable is used by the "DRAW statenment "A" conmand
handl er to hold the current angle.

FCBEH RUNBNF: DEFB OOH

This variable is normally zero but is set by the "BLOAD'
st at ement handl er when an auto-run "R' paraneter is specified.

FCBFH SAVENT: DEFW 000O0H

This variable contains the "BSAVE'" and "BLOAD' entry address.

- 235 -

6

possi bl e Secondary Sl ot Regi sters.

MEMORY MAP

FCC1H EXPTBL:
FCC2H
FCC3H
FCCAH

DEFB OOH
DEFB OOH
DEFB O00H
DEFB O00H

1
1
1

Primary Sl ot
Primary Sl ot
Primary Sl ot
Primary Sl ot

W NPk O

Each of these four variables is normally zero but is set to 80H
during the power-up RAM search if the associated Primary Sl ot
is found to be expanded.

FCCSH SLTTBL:
FCC6H
FCCTH
FCC8H

DEFB OOH
DEFB OOH
DEFB O00H
DEFB O00H

1
1
1

Primary Sl ot
Primary Sl ot
Primary Sl ot
Primary Sl ot

WNEFLO

These four variables duplicate the contents of the four

The contents of each

vari abl e should only be regarded as valid if EXPTBL shows the
associated Primary Slot to be expanded.

FCCO9H SLTATR:
FCCDH
FCD1H
FCD5H

FCDOH
FCDDH
FCE1H
FCESH

FCE9H
FCEDH
FCF1H
FCF5H

FCFOH
FCFDH
FDO1H
FDO5H

These sixty-four variabl es

DEFS
DEFS
DEFS
DEFS

ArDADMDA

DEFS
DEFS
DEFS
DEFS

DD

DEFS
DEFS
DEFS
DEFS

A BADAD

DEFS
DEFS
DEFS
DEFS

DD D

;. PSO, SS0
; PSO, SS1
;. PSO, SS2
;. PSO, SS3
;. PS1, SSO
; PS1, SS1
;. PS1, SS2
; PS1, SS3
;. PS2, SSO
;. PS2, SS1
;. PS2, SS2
;. PS2, SS3
;. PS3, SS0
;. PS3, SS1
;. PS3, SS2
; PS3, SS3
cont ai

n the attributes of any

extension ROV found during the power-up ROM search. The
characteristics of each 16 KB ROM are encoded into a single byte

so four

is:

Bit 7 set=BASIC program

Bit 6 set=Device handler

Bit 5 set=Statenent handl er

Note that the entries for
(CO00H to FFFFH) will

bytes are required for each possible slot.

The encodi ng

page 0 (0000OH to 3FFFH) and page 3

al ways be zero as only page 1 (4000H to

7FFFH) and page 2 (8000H to BFFFH) are actually exam ned. The
MSX convention is that nachine code extension ROVs are placed
in page 1 and BASIC program ROVs in page 2.

236 -

6

the sixty-four

exani nati on by an extensi on ROM

MEMORY

FDO9H SLTWRK: DEFS 128

MAP

Thi s buffer

FD89H PROCNM DEFS 16

Thi s buffer

FDO9H DEVI CE: DEFB OO0H

provi des two bytes of

| ocal workspace for each of
possi bl e ext ensi on ROVs.

is used to hold a device or statenent nane for

This variable is used to pass a device code, fromO to 3, to an
ext ensi on ROM

The Hooks

Di sk BASI C. Each hook has sufficient

The section of the Wirkspace Area from FDOAH to FFCOH
contai ns one hundred and twel ve hooks,
with five Z80 RET opcodes at power-up. These are called from

strategic locations within the BIOS/Interpreter so that the ROM
can be extended, particularly so that

any slot:
RST 30H
DEFB Slot ID
DEFW Addr ess
RET

each of which is filled

it can be upgraded to
roomto hold a far call to

The hooks are listed on the follow ng pages together with the
address they are called fromand a brief note as to their
function.

FDOAH
FDOFH
FDA4H
FDA9H
FDAEH
FDB3H
FDB8H
FDBDH
FDC2H
FDC7H
FDCCH
FDD1H
FDD6H
FDDBH
FDEOH
FDESH
FDEAH
FDEFH
FDF4H
FDFOH

237 -

HKEYI :
HTI M :
HCHPU:
HDSPC:
HERAC:
HDSPF:
HERAF:
HTOTE:
HCHGE:
HI NI P;
HKEYC:
HKYEA:
HNM :
HPI NL:
HQ NL:
HI NLI :
HONGO:
HDSKO:
HSETS:
HNANME

DEFS
DEFS
DEFS
DEFS
DEFS
DEFS
DEFS
DEFS
DEFS
DEFS
DEFS
DEFS
DEFS
DEFS
DEFS
DEFS
DEFS
DEFS
DEFS
DEFS

ool 11 o1o1o1o1010101 01010101 o1 a1

0C4AAH
0C53H
08COH
09E6H
0A33H
0B2BH
0B15H
0842H
10CEH
071EH
1025H
OF10H
1398H
23BFH
23CCH
23D5H
7810H
7Cl6H
7C1BH
7C20H

Interrupt handl er

I nterrupt handl er

CHPUT st andard routine
Di spl ay cursor

Erase cursor

DSPFNK st andard routi ne
ERAFNK st andard routi ne
TOTEXT standard routine
CHGET standard routine
Copy character set to VDP
Keyboar d decoder
Keyboar d decoder

NM standard routine

PI NLI N standard routine
Q NLI N standard routine
I NLI N standard routine
"ON DEVI CE GOsuUB"

" DSKCs"

" SET"

" NAVE"

MEMORY MAP

FDFEH HKI LL: DEFS ; 7C25H "KI LL"
FEO3H HI PL: DEFS ; 7TC2AH "I PL"
FEO8H HCOPY: DEFS ; 7C2FH " COPY"
FEODH HCMD: DEFS ; 7C34H " CWD"
FE12H HDSKF: DEFS ; 7C39H " DSKF"

FE17H HDSKI: DEFS
FE1ICH HATTR: DEFS

; 7C3EH " DSKI $"
; 7TC4A3H "ATTR$"

FE21H HLSET: DEFS ; 7CA8H " LSET"
FE26H HRSET: DEFS ; 7CADH " RSET"
FE2BH HFI EL: DEFS ; 7C52H "FI ELD"
FE3OH HWKI $: DEFS ; 7C57H " MKI $"
FE35H HWKS$: DEFS ; 7TC5CH " MKS$"
FESAH HWKD$: DEFS ; 7C61H " MKD$"
FE3FH HCVI : DEFS ; 7C66H "CVI'
FE44H HCVS: DEFS ; 7C6BH " CVS"
FE49H HCVD: DEFS ; 7C70H " CVvD'

FEAEH HGETP: DEFS
FE53H HSETF: DEFS
FES8H HNOFO DEFS
FESDH HNULO DEFS
FE62H HNTFL: DEFS
FE67H HVERG DEFS

; 6A93H Locate FCB

; 6AB3H Locate FCB

;. 6AF6H " OPEN'

;. 6BOFH " OPEN"

;. 6B3BH Close |/O buffer 0
;. 6B63H " MERGE/ LOAD"

FE6CH HSAVE: DEFS ; 6BAGH " SAVE"
FE71H HBINS: DEFS ; 6BCEH " SAVE"
FE76H HBI NL: DEFS ; 6BD4H " MERGE/ LOAD"
FE7BH HFI LE: DEFS ; 6C2FH " FI LES"

FE8OH HDGET: DEFS
FE85H HFI LO. DEFS
FESAH HI NDS: DEFS
FES8FH HRSLF: DEFS
FE94H HSAVD: DEFS

; 6C3BH " GET/ PUT"

; 6C51H Sequential out put

; 6C79H Sequenti al i nput

; 6CD8H "I NPUT$"

; 6DO3H "LOC', 6D14H "LOF",
; 6D25H "EOF", 6D39H " FPOS"

oo oToToTololololo1ololrororororololol ool

FE99H HLOC: DEFS ; 6DOFH "LOC'
FE9EH HLOF: DEFS ; 6D20H " LOF"
FEA3H HEOF: DEFS ; 6D33H " ECF"
FEA8H HFPOS: DEFS ; 6D43H " FPOS"

FEADH HBAKU: DEFS
FEB2H HPARD: DEFS
FEB7H HNODE: DEFS
FEBCH HPOSD: DEFS
FEC1IH HDEVN:. DEFS
FEC6H HGEND: DEFS
FECBH HRUNC: DEFS
FEDOH HCLEA: DEFS
FED5SH HLOPD: DEFS
FEDAH HSTKE: DEFS
FEDFH HI SFL: DEFS
FEE4AH HOUTD: DEFS
FEEOH HCRDO. DEFS
FEEEH HDSKC: DEFS
FEF3H HDOGR: DEFS
FEF8H HPRGE: DEFS
FEFDH HERRP: DEFS
FFO2H HERRF: DEFS

; 6E36H "LI NE | NPUT#"

; 6F15H Parse devi ce nane

;. 6F33H Parse devi ce nane

;. 6F37H Parse devi ce nane

; This hook is not used.

; 6F8FH 1/ 0O function dispatcher
;. 629AH Run-cl ear

;. 62A1H Run-cl ear

;. 62AFH Run-cl ear

; 62FOH Reset stack

; 145FH | SFLI O st andard routi ne
; 1B46H OUTDO st andard routine
; 7328H CR, LF to QUTDO

; 7374H Mai nl oop |ine input

; 593CH Li ne draw

; 4039H Program end

; 40DCH Error handl er

; 40FDH Error handl er

oo ororororor ool o1 o1 oo ool al

238 -

MEMORY MAP

FFO7H HREAD: DEFS
FFOCH HVAI N: DEFS
FF11H HDI RD: DEFS
FF16H HFI NI : DEFS
FF1BH HFI NE: DEFS
FF20H HCRUN: DEFS
FF25H HCRUS: DEFS
FF2AH H SRE: DEFS
FF2FH HNTEN: DEFS
FF34H HNOTR: DEFS
FF39H HSNGF: DEFS
FF3EH HNEWS: DEFS
FF43H HGONE: DEFS
FF48H HCHRG DEFS
FF4DH HRETU. DEFS
FF52H HPRTF: DEFS
FF57H HCOWP: DEFS
FF5CH HFI NP: DEFS
FF61H HTRMN: DEFS
FF66H HFRME: DEFS
FF6BH HNTPL: DEFS
FF70H HEVAL: DEFS
FF75H HOKNO. DEFS
FF7AH HFI NG DEFS
FF7FH H SM : DEFS
FF84H HW DT: DEFS
FF89H HLI ST: DEFS
FF8EH HBUFL: DEFS
FFO3H HFRQ : DEFS
FFO8H HSCNE: DEFS
FFODH HFRET: DEFS
FFA2H HPTRG. DEFS
FFA7TH HPHYD: DEFS
FFACH HFORM DEFS
FFB1H HERRO. DEFS
FFB6H HLPTO DEFS
FFBBH HLPTS: DEFS
FFCOH HSCRE: DEFS
FFC5H HPLAY: DEFS

; 4128H Mai nl oop " K"

7 4134H Mai nl oop

; 41A8H Mai nl oop direct statenent
; 4237H Mai nl oop finished

; 4247H Mai nl oop finished

;. 42B9H Tokeni ze

; 4353H Tokeni ze

; 437CH Tokeni ze

i 43A4H Tokeni ze

;. 44EBH Tokeni ze

; 45D1H " FOR"

; 4601H Runl oop new st at enent

; 4646H Runl oop execute

;. 4666H CHRGIR st andard routine
; 4821H " RETURN'

;. 4A5EH " PRI NT"

i 4A54H " PRI NT"

;. 4AFFH " PRI NT"

; 4B4ADH "READ/ | NPUT" error

; 4C6DH Expressi on Eval uator

; 4CA6H Expressi on Eval uator

;. 4DDO9H Fact or Eval uat or

;. 4F2CH Fact or Eval uat or

;. 4F3EH Fact or Eval uat or

; 51C3H Runl oop execute

; 51CCH "W DTH'

; 522EH " LI ST"

; 532DH Det okeni ze

; 543FH Convert to integer

; 5514H Line nunber to pointer

; 67EEH Free descriptor

;. 5EA9H Vari abl e search

;. 148AH PHYDI O st andard routi ne
;. 148EH FORMAT standard routine
; 406FH Error handl er

; 085DH LPTOUT standard routine
; 0884H LPTSTT standard routine
;. 79CCH " SCREEN"

. 7T3E5H " PLAY" st at enment

oo oToToT oo orororol ool ololoror ool oo ool

The Workspace Area from FFCAH to FFFFH i s unused. (on MsX 1)

239 -

"ABS" 97

Angl es 152

ARG 90, 223

Array storage 155, 162, 208
ARYTAB 137, 208, 220

"ASC' 168

ASPCT1 77, 215

ASPEC2 77, 215

ASPECT 150, 225

"ATN" 93

ATRBAS 34, 225

ATRBYT 69, 72, 76, 144, 214
"ATTR$" 203

AUTFLG 116, 219

AUTI NC 116, 219

AUTLI N 116, 219

"AUTO" 125

BAKCLR 39, 213

"BASE" 200, 201
BASROM 32, 86, 230
Baud rate 79, 197
BDRATR 77, 235
BDRCLR 40, 213

"BEEP" 60

"Bl N$" 165

"BLOAD" 177

BOTTOM 204, 232
Boundary inflections 148
"BSAVE" 177

BUF 85, 127, 176, 216

" CALL" 140

Caps LED 6, 57

CAPST 57, 234

CASPRV 184, 235

Cassette input 24, 81
Cassette nmotor 6, 65, 78
Cassette output 6, 79

" CDBL" 100

CENCNT 150, 225

CGPBAS 34, 224

CGPNT 38, 204, 224, 256
Character set 38, 84, 256
"CHR$" 168

"ClI NT" 99

"Cl RCLE" 150

"CLEAR" 163

Ail A

I NDEX

CLI KFL 57, 231

CLI KSW 57, 197, 212
CLI NEF 152, 225
Clipping 70

CLM.ST 126, 211
"CLOAD' 180

CLOC 70, 225

"CLOSE" 173

CLPRI M 31, 210

"CLS" 41

CMASK 70, 225

"CVD' 202

CNPNTS 150, 225
CNSDFG 49, 212

Coi nci dence 9, 52
"COLOR" 197

Col ours 12, 39, 40, 77
CONLO 121, 217

Control codes 44
CONSAV 121, 217

"CONT" 162

CONTXT 121, 217

CONTYP 121, 217

Coordi nates, graphic 70, 143
Coordi nates, text 42, 47, 51
"COoPY" 202

"COs" 92

CPCNT8 152, 226

CPLOTF 150, 226

Crash 30

CRCSUM 151, 226

CRTCNT 47, 51, 211
CS1200 197, 214

CS2400 197, 214
"CSAVE" 179

CSAVEA 78, 149, 226
CSAVEM 78, 149, 226
CSCLXY 150, 226

"CSNG' 100

"CSRLI N' 196

CSRSW 45, 234

CSRX 43, 212

CSRY 43, 212

CSTCNT 150, 226

CSTYLE 45, 85, 234
CTRL- STOP 32, 33, 42, 57, 59
CURLI N 56, 115, 116, 216
CURSAV 46, 231

I NDEX

Cursor 13, 32, 42, 43, 46

"CVvD' 204
"Cvl" 203
"CVvS" 204
CXOFF 152, 226
CYOFF 152, 226

DAC 90, 223
"DATA" 123

Dat a areas 26
DATLI N 115, 128, 218
DATPTR 161, 220
Dead key 56, 58
"DEFDBL" 121
"DEFFN" 134
"DEFI NT" 121
"DEFSNG' 121

" DEFSTR" 12|
DEFTBL 121, 221
"DEFUSR" 134
"DELETE" 137
Dequeuei ng 60
DEVI CE 142, 237
Devi ce 140, 171, 178
"Dl M 155

DI MFLG 155, 217
DOT 115, 219
"DRAW 153
DRWANG 154, 235
DRWFLG 154, 235
DRWSCL 154, 235
"DSKF" 202

" DSKI $" 203
"DSKO$" 202

Edi tor 84

Edit keys 85

"ELSE" 123, 125
"END" 161

ENDFOR 119, 218
ENSTOP 53, 230

"ECF" 175

"ERASE" 162

"ERL" 130

"ERR' 130

ERRFLG 115, 130, 215
ERRLIN 115, 125, 130,
"ERROR" 125

Error generators 115,
Error handl er 115
Error nessages 113
ERRTXT 115, 125, 220
ESCCNT 43, 234

"EXP" 94

Ai2 A

219

176

Expander 4

Ext ensi on ROM 30, 140, 178,
Expressi on Eval uator 128
EXPTBL 5, 32, 236

Factor Eval uator 129
FBUFFR 106, 137, 222

"FI ELD" 203

File Control Block 66, 209
"FI LES" 173

Fil espec 171

FI LNAM 171, 180, 224
FILNVR 181, 224

FI LTAB 208, 223

"FI X" 101

FLG NP 127, 219

"FEN' 134

FNKFLG 56, 231

FNKSTR 65, 224

"FOR' 119

FORCLR 40, 213

"FPOS" 175

"FRE" 171

FRETOP 159, 208, 218
FSTPOS 84, 88, 230

FUNACT 159, 222

Function addresses 110, 130
Function key display 49, 53
Function keys 56, 58, 65

"CET" 193

GETPNT 33, 59, 214
"GosuB" 122

"GOrTOo' 123

Graphic characters 42
Graphi ¢ out put 69
GRPACX 69, 143, 235
GRPACY 69, 143, 235
GRPATR 36, 212
GRPHED 42, 234
GRPNAM 36, 212
GRPPAT 36, 212
GXPOS 144, 235
GYPOS 144, 235

HEADER 79, 215

"HEX$" 165

H MEM 163, 204, 206, 232
Hooks 30, 204, 237

"I'F" 125
"1 NKEY$" 187
"I'NP" 114
"I NPUT" 127

205

I NDEX

"1 NPUT$" 174

I nput, keyboard 53, 59

| NSFLG 85, 234

"I NSTR" 170

"I NT" 101

I NTCNT 52, 233

I nterrupt node 32
Interrupts 9, 52, 56, 161
"I NTERVAL" 194

I NTFLG 32, 57, 233

I NTVAL 52, 233

I/ O Buffer 66, 125, 130, 171
I/ O Di spatcher 178

"I PL" 202

Japanese 4, 26, 58, 88
JI FFY 52, 196, 233
Joystick 24, 52, 63

KANAMD 33, 234
KANAST 58, 234
Kansas City 79

KBUF 116, 118, 216
"KEY" 195

Keyboard 5, 53, 55, 66
KEYBUF 33, 231

Key click 6, 57, 58
Key numbers 54
Keywor ds, BASIC 110
"KILL" 202

"LEFT$" 169
"LEN' 168

"LET" 123

"LFI LES" 173

"LI NE" 145

"LI NE | NPUT" 126
Li ne nunbers 117, 118, 119,
Li nks 117

LI NL32 34, 211
LI NL40 34, 211
LI NLEN 34, 211
LI NTTB 39, 84, 230
LI N\RK 46, 232
"LI ST" 137

"LLI ST" 136
"LOAD" 172

"LOC' 174
"LOCATE" 193
"LOF" 174

"LOG' 93

LOALI M 81, 233
"LPOS" 132

"LPRI NT" 125

Ai3 A

122

LPTPOS 83, 125, 132, 215
"LSET" 203

Macro parser 142
Mai nl oop 116

Mat h constants 97
Mat h operators 112
MAXDEL 147, 225
MAXFI L 171, 223

" MAXFI LES" 206
MAXUPD 147, 213
MCLFLG 142, 188, 227
MCLLEN 142, 188, 229
MCLPTR 142, 188, 229
MCLTAB 142, 188, 227
MEMSI Z 159, 163, 208, 217
"MERGE" 172

"M D$" 169, 170

M NDEL 147, 225

M NUPD 147, 213

" MKD$" 203

"MKl $" 203

" MKS$" 203

ML.TATR 36, 212
MLTNAM 36, 212
MLTPAT 36, 212
"MOTOR" 187

MOVCNT 149, 227
MUSI CF 52, 62, 229
Musi ¢ packet 61, 193

NAMBAS 34, 224
"NAMVE" 202

"NEW 159

NEVKEY 53, 231
Newt on- Raphson 93
"NEXT" 164

NLONLY 159, 224
NOFUNS 135, 156, 222
NTMSXP 83, 197, 216
NULBUF 208, 223
Nuneric output 106
Nuneric types 104

"OCT$" 164
OLDKEY 33, 53, 231
OLDLI N 115, 162, 220

OLDSCR 34, 136, 234

OLDTXT 60, 115, 159,

"ON' 124

ONEFLG 124, 159, 220
ONELI N 115, 124, 159, 220
ONGSBF 56, 160, 231
"OPEN" 172

162, 220

I NDEX

"ouT" 114
Qut put, Interpreter 82
Cut put, screen 43, 69

"PAD' 197
Paddl e 25, 64
PADX 65, 233

PADY 65, 233
Page 3
" PAI NT" 148

PARML 135 156, 221
PARM2 135 222
PATBAS 34, 224
PATWRK 69, 232
"PDL" 196

"PEEK" 138

"PLAY" 188, 196
PLYCNT 62, 189, 229
"PO NT" 144
Pointers 118, 139
"POKE" 138

Pol ynom al 95

"POS" 132

Power -up 32, 204
Precedence 112, 129
"PRESET" 144
Primary Slot 3, 30, 32,
"PRI NT" 125

Printer 33, 41, 83
PRMLEN 159, 221
PRMLN2 159, 222
PRMSTK 159, 221
PROCNM 140, 237
Program st orage 117, 208
PRSCNT 188 228
PRTFLG 83, i25, 215
"PSET" 144

PSG 21, 33, 34, 60, 190
PTRFI L 66, 125, 223
"PUT" 193

PUTPNT 33, 59, 214

QUEBAK 68, 228
QUETAB 34, 67, 228
Queue 60, 67, 68, 189
QUEUEN 62, 229
QUEUES 68, 214

RDPRI M 30 210
"READ" 12;
"REM' 123
"RENUM' 138
REPCNT 53, 214
"RESTORE" 161

Aida A

66

"RESUME" 124
"RETURN" 123
RGOSAV 35, 212
"Rl GHT$" 169
"RND" 94

RNDX 94, 159, 223
"RSET" 203

"RUN" 122

RUNBNF 177, 235
Runl oop 120

"SAVE" 172

SAVENT 179, 235

SAVSTK 115, 120, 159, 219
SAVTXT 120, 219

SCNCNT 52, 214

" SCREEN' 197

SCRMOD 34, 136, 234
Secondary Slot 4, 30, 32
"SET" 202

" SGN' 98

"SIN' 92

SKPCNT 149, 227

Slot I D 29, 140, 205
SLTATR 140, 205, 236
SLTTBL 32, 236

" SOUND" 188

" SPACE$" 169

"SPRI TE" 194, 197, 198
Sprites 9, 18, 37, 199
"SQR' 93

St ack space 159

Standard routines 26

St at enent addresses 109, 136
STATFL 52, 213

"STI CK" 196

STKTOP 159, 163, 209, 217
"STOP' 161, 194

"STR$" 165

STREND 137, 208, 220
"STRIG' 194, 196

" STRI NG$" 168

String storage 133, 163, 166, 168
SUBFLG 155, 218

"SWAP" 162

SWPTMP 162, 222

T32ATR 34, 211
T32CGP 34, 211
T32NAM 34, 211
T32PAT 34, 211
"TAN" 93

TEMPPT 159, 218
TEMPST 124, 218

I NDEX

"TI ME" 196

Tokens 111, 117, 118, 121, 137
Touchpad 25, 64

TRCFLG 120, 222

TRGFLG 52, 213

"TROFF" 162

"TRON' 162

TRPTBL 32, 56, 160, 194, 232
TTYPOS 43, 125, 132, 216
TXTCGP 34, 211

TXTNAM 34 211

TXTTAB 117, 204, 208, 218
Types 140

"USR" 133
USRTAB 133, 210

"VAL" 169

VALTYP 104, 217

Vari abl e storage 135, 155, 208
"VARPTR" 130

VARTAB 137, 208, 220

VCBA 34, 61, 67, 230

"VDP" 199, 200

VDP Address Register 8, 40
VDP Mode Registers 9, 35

VDP Modes 10, 13, 34, 41

VDP Status Register 9, 52, 65
VDP Tim ng 39

"VPEEK" 201

"VPOKE" 201

VLZADR 115, 216

VLZDAT 115, 216

"WAI T 114

Wait state 81

Warm start 53

"W DTH" 136

W NW D 81, 233

Wor kspace Area 32, 208
VWRPRI M 30, 210

Z80 Cl ock 81

Ais A

