[4

-

INTRODUCTION

“This book is not a games book — there are plenty of those on
the market already — THE MAGIC OF MSX is a book for the
person who knows some basic programming and is ready to
advance both in basic and machine code. The book is divided
into two main parts:

PART 1 consists of chapter 1 through to chapter 15. This part
deals with the memory map, the video chip, the system
variables and other useful information for the basic
programmer. A knowledge of the information contained in
part 1 is essential for the machine code programmer.

PART 2 starts at chapter 16 and deals with machine code
programming on the MSX. You will find within these pages
the tools you need to enter the magic world of machine code.
These tools include a full machine code assembler and details
of many ROM routines to assist you in your programs. There
are also many source files to illustrate the SUPER
ASSEMBLER operation and the operation of the ROM
routines.

LISTINGS

How many times have you bought a book full of listings and
then found most of the listings full of errors? -~

Disheartening isn't it?
We have tried to avoid that problem by providing a tape
containing all the listings. You should have received the tape

when you bought the book — if you dld not get the tape then
consult your dealer.

BRICKBATS AND BOUQUETS

This book is written by an MSX USER for other MSX USERS.
We want the ‘book to be accurate and to provide the
information which is required by the reader.

We would apprecuate your comments suggestions, or
criticisms about this book so that future editions can reflect
your needs.

Send your comments to the publishers:
INTERSOFT (PTY) LTD.,
P.O. BOX 5078,
JOHANNESBURG 2000,

THANKS

Thanks are due to iINTERSOFT for publishing and distributing
this book. Thanks also to all the people who phoned me on
the MSX HOTUNE — many of the ideas in the book were
sparked off by the questions you asked. .

A special thank you to BENNIE VAN DER MERWE who wrote
the SUPER ASSEMBLER — wvell done BENNIE.

Finally, & special thank you to my wife DOROTHY and the
children (MATTHEW, MARK, SARAH, and LUKE) for their
ancouragement durﬁn the tong months of writing.

USING THIS BOOK

We suggest that you read through the book falrly qutoklv 10
gain an appreciation of the contents and then start to work
through the chapters thoroughly from the begmnlng

Usa the tape supplied — you will find the listings on the tape in
the same order as they appear in the book. NOTE that for all
listings you type CLOAD followed by ENTER and then PRESS
PLAY ON THE TAPE.

There will be a great temptation to leap immediatsly into
machine code but please cover the earlier sections first — you
need to know about, for example, the memory and the video
chip before doing any serious machine code work.

Finally when you have worked through the book keep it near

the computer for refarence purposes — the appendices will be
of particular use in this regard.

HAPPY COMPUTING

©1985 INTERSOFT (PTY) LTD. All rights reserved.

No part of this book may be reproduced in any form or by any means, clectronic
or mechanical, including photocopying, recording or by any information storage
and retrieval system withour permission in writing from the publisher, with the
following exceptions: any material may be copied or transcribed for the nonprofic
use of the purchaser, and material (not to exceed 300 words and one figurc) may

be quoted in published reviews of this book.

Cover Design: Susan Woolf
Typesetting and Printing: Minit Print, Medical Cenire,

ISBN © 620 09070 7

INTERSOFT
P.O. Box 5078,

~ Johannesburg, 2000,

Tel: (011) 337-5806/7
Telex: 48-3868 SA.

——

-
e e

{h

CHAPTER 1

CHAPTER 2

CHAPTER 3

CHAPTER 4

CHAPTER 5

CHAPTER 6

CHAPTER 7

TABLE OF CONTENTS

NUMBER SYSTEMS

The Decimal, Binary, Hexadecimal
and Octal number systems sare
examined.

BITS BYTES AND OTHER
WONDERFUL THINGS
Some microcomputer terms and
concepts are discussed.

MEMORY MAPS AND
SIGNPOSTS

The MSX memory map is examined
and a table of boundary addresses is
provided.

BASIC PROGRAM AREA

This chapter looks at the BASIC
PROGRAM layout in memory —
several interesting program listings
and a basic word/token table are
provided.

VARIABLES AND ARRAYS
An examination. of the way basic
handles variables and arrays.

STRING SPACE

This chapter looks at STRINGS and
their location in memory.
INPUT/OUTPUT files are also
examined.

THE BASIC STACK
The operation of the STACK is
discussed and some program
illustrations are given.

Page

14

22

30

34

38

CHAPTER 8

CHAPTER 9

CHAPTER 10

CHAPTER 11

CHAPTER 12

CHAPTER 13

CHAPTER 14

MACHINE SYSTEMS AREA

The locations of the more useful
SYSTEM VARIABLES are given in
table form and an AUTORUN
program for CLOAD programs is
prasented.

THE VIDEO-CHIP

The TMS 9918A video chip is fully
described including the warious
control registers and their contents,

DIRECT ACCESS TO THE VIDEO
CHIP AND VIDEO RAM

How to READ from and WRITE to the
video chip registers. Knowledge of
the video RAM is vital information for
the machine code programmer.

TEXT MODE

The video chip in text mode — the
character set and how to access up to
7 different character sets. The
folowing character sets are
presented: '

THE INVERSE SET

THE UNDERLINE SET

THE UPSIDEDOWN SET

THE 32 COLUMN TEXT SCREEN
An exarnination of MSX screen 1
including the use of all 16 colors on
the screen.

THE HIGH RESOLUTION SCREEN
The screen 2 layout in detail including
the 768 USER DEFINED GRAPHICS.
Some interesting programs are
presented.

THE VDP STATUS REGISTER
Explains the use of the register to
detect which sprites have collided.

41

47

53

62

65

75

CHAPTER 156

CHAPTER 16

CHAPTER 17

CHAPTER 18

CHAPTER 19

CHAPTER 20

CHAPTER 21

CHAPTER 22

APPENDIX 1

THE LOW RESOLUTION SCREEN
Explains the layout and use of the
MSX lfow resolution screen — screen
3.

MACHINE CODE

The first chapter in the second part of
the book - an introduction to Z80
machine code.

THE SUPER ASSEMBLER

Complete instructions for the super
assembler which is mcluded on the
tape.

SIMPLE SCREEN ROUTINES
Some "machine code routines for

printing to the screen and getting

characters from the keyboard.

MORE PRINTING ROUTINES
Printing strings, screen formatting, as
well as screen and cursor control
commands.

THE SOUND OF MUSIC

Music and sound routines from
machine code — how to make
continuous sound in your programs.

TRANSFERING VARIABLES
FROM MACHINE CODE TO BASIC
How to create basic variables from
within your machine code routine.

SOME GRAPHICS ROUTINES

A high resolution screen scroll routine
and the machine code version of the
sprite detection routine.

Z80 MACHINE CODE
MNEMONICS

A full list of all the Z30A mstmctnons
with brief explanations of each
instruction group.

78

82

91

96

101

104

107

110

117

APPENDIX 2

APPENDIX 3

APPENDIX 4

APPENDIX 5

APPENDIX 6

APPENDIX 7

APPENDIX 8

MSX BASIC WORD ROM
ROUTINES

ROM addresses for all the basic word
routines.

MORE ROM ROUTINES
ROM entry addresses for the
primitive routines. .

SCREEN FORMATTING AND
EDITING COMMANDS
Useful formatting commands to give
you full control over the screen in
machine code or in basic.

MSX INPUT/OUTPUT PORTS
Full list of the Z80 /O ports used by
the standard MSX computer.

THE BASIC STATEMENT
HANDLER

Shows how 1o use the Basic
statement handler — this enables the
user to execute ANY basic routine
from within a machine code program,

HOOK JUMPS

Shows how to HOOK your own
routines into the ROM. A full list of
basic word hook jumps is provided as
well as a source files which creates a
new basic word.

READING INPUT DEVICES
Shows how to directly read the
keyboard and the joystick.

145

150

161

163

164

165

172

CHAPTER 1
NUMBER SYSTEMS

This chapter has been included to introduce the reader to the
NUMBER SYSTEMS used by the compuiter. If you are already
familiar with the concepts presented here then skip this
chapter and continue -with chapter 2 — you may however
want to glance through chapter 1 to refresh your knowledge
of number systems.

The computer reduces all data (even text, music, and
graphics) to a series of numbers which can be stored in
memory and easily manipulated by the micro processors
which make up the computer.

We are all familiar with the decimal system which is used all
the time by everyone — the computer however finds the
decimal system very difficult to work with, This is because of
the nature of the memory and processor chips within the
computer. :

Your MSX Machine, in common with other computers,
mostly uses the BINARY number system which counts up in
2's (DECIMAL counts in 10's). The MSX ailso uses
HEXADECIMAL (counts in 16's) and OCTAL (counts in 8's) —
the computer makes limited use of the familiar DECIMAL
system. ‘

NOTE that the “COUNT" of a number system is known as the
number BASE — so0, for example, HEXADECIMAL or HEX has
a number BASE of 16 and BINARY has a BASE of 2.
Lets look at NUMBER SYSTEMS:

THE DECIMAL SYSTEM

Consider the following example taken from the packing shed
of a peach distributor. This company used the following
packaging system:

a) Peaches were packed into trays — 10 peaches to the
tray.

b) Trays were packed into boxes — 10 trays 1o the box.

c) Boxes were packed into cartons — 10 boxes 1o the
carton,

d) Cartons were crated — 10 cartons to the crate.

At the end of the day the packing foreman had to report the
number of peaches packed that day — he calculated this by
counting the number of trays packed and multiplying by 10.

One day the foreman made a wondrous discovery — that day
76540 peaches had been packed and he noticed that each
digit of the number had a significance which he had never
before recognised:

7 full crates had been packed.
6 uncrated cartons were full,
5 boxes were full.

4 trays wvere full.

0 peaches left over.

Our hero had discovered the basic principles of the decimal
system — that each digit in a decimal number represents a
number of “LOTS"” and the size of each “LOT"” is indicated by
the position of the digit within the decimal number.

Lets examine this in more detail — we were taught at school
that a number is made up as follows:

TABLE 1.1

ten thousands | thousands hundreds tens units

7 6 5 4 0

Examine table 1.1 closely and you will find that the value of a
“LOT"” is ten times the value of the “LOT"” immediately to the
right of the “LOT” under consideration.

Decimal is a number system with a BASE TEN and so we can
say that in the case of decimal a particular “LOT* value is equal
to the value of the “L.LOT"” on the right times the number BASE.

Nowv consider the following which is another way of depicting
the decimal system:

TABLE 1.2
10000’s 1000's 100’'s 10's 1s
104 103 102 107 100

The value of any “LQT"” is equal to the NUMBER BASE raised
to the power of the NUMBER POSITION. The number
position is counted from right to left with the right hand digit
being in position zero,

NOTE:

a) Any number raised to the power of zero is equal to one
and so the value of the “LOT" in the right hand number
position is always equal to one.

b) The digit in any number position can range from O to the
number base minus 1.

c) The value of any particular number position is equal to the
digit in that position muitiplied by the “LOT’’ value at that
position, '

BINARY NUMBER SYSTEM

The BINARY NUMBER SYSTEM has a BASE of 2 — this
means that a number position will always contain the digit O or
1 (digits range from 0 to the number base minus 1). The binary
system is depicted in the following table:

TABLE 1.3

128's | 64's | 32's | 16" _8’s 4's 2's 1s
27 26 25 24 23 22 21 20
o

TABLE 1.3 describes the 8 smallest “LOTS” of a binary
number — remember that with the binary system a digit can
range from zero tc one and so0 any particular “LOT” is eithar
present or absent. Such a number (8 “LOTS’” OR BITS) can
range from zero to 265, Notice how all the principles which
applied to decimal numbers also apply to binary numbers —
only the number base has changed.

The binary system is particularly suited to the computer
because the computer must only remember whether a BIT is
on {1} or off (0) thus indicating whether a “LOT" is present or
absent.

EXERCISE 1
Lets convert the decimal nurmber 156 into binary: .

To do this we extract binary lots and set the binary bits as
required — starting with the senior {most significant) bit and
moving through to the least significant (unior) bit. Work
through the following table to understand the conversion
method.

TABLE 1.4
decimal remainder binary lot | binary digit
166 128 1
166 — (128*1) = 28 64 0
28 — (64*0) = 28 32 0
28 — (32%0) = 28 186 1
28 — (16*1) = 12 8 1
12 —(8*1) =4 4 1
4—-{4*1) =0 2 0
0—-(2*0)=0 1 0

So decimal 156 = binary 10011100
— 4 —

Now caiculate the binary equivaient of 241 and 65 using the
tabulation method.

BIN$ FUNCTION

MSX basic provides a simple way to convert from decimai to
binary using the BINS function.

try — PRINT BINS (241) — press ENTER

The computer responds with 11110001 — did you get that by
the tabulation method?

now try — PRINT BINS (66) — press ENTER

The computer respénds with 1000001 — only 7 digits! must
ba something wrongl '

The raason for this is that the computer coes not print leading
zeros in a binary number. To get over this problem use the
fotlowing code to convert to 8 bit binary:

AS$ — BINS (BB): AS = STRINGS (B—LEN(A$),48) + A$:
PRINTAS

This time the computer prints 01000001 — thats batter!

The computer does all its internal calculations and storage in
binary format and it is therefore often convenient for the
programmer to work in binary as well. We have sean how
binary numbers consist of long strings of 1‘s and 0's which is
fine for the computer but difficult for humans — because of
this the HEXADECIMAL number system was developed.

HEXADECIMAL NUMBER SYSTEM

HEXADECIMAL or HEX is a number system with a base of 16
which is compatible with the binary system but can represent
larger numbers using less digits. One HEX digit is equivalent
to 4 BINARY digits.

In common with other numbers a HEX digit must range from
zero to the number base minus 1. This means that the hex
digit must range from zero to 15 — seems like a problem for a
single digit. This problem is overcome by using letters A — F
10 represent digits of value 10 to 15.

—5—

TABLE 1.5

4096's 266's 16's 1's
16° 162 16" 160

Table 1.5 describes the “LOTS” of a hex number which can
range from 0 to 66535 decimal or from 0 to FFFF hex.

Table 1.6 shows a comparison of decimal, binary and hex —
please study the table carefully so that you fully understand
the relationship between the different number systems. Note
in particular that a single HEX digit represents a 4 BIT binary
number. Incidentally a single HEX digit is often known as a
NIBBLE. :

TABLE 1.6

DECIMAUHEX/BINARY TABLE

DECIMAL HEX BINARY
0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
10 A 1010
11 B8 1011
12 C 1100
13 D 1101
14 E 1110
15 F 111

-8 —

Using TABLE 1.6 you can convert any binary number into
HEX. Proceed as follows:

a) Using leading zeros ensure that the number of digits in
the binary number is exactly divisible by 4.

b} Separate the binary digits into groups of 4.

c) Using table 1.6 convert each group of 4 binary digits into
a single hex digit,

This method is illustrated in the following example:

EXAMPLE :
decimal 241 = binary 11110001

binary 11110001 = 1111 0001 separate into groups of 4,
binary 11110001 = F 1..... hex conversion from table 1.6.

binary 11110001 = hex F1 solution,

1}
m
-

Now you try to cohvert decimal 138 to binary and then to hex,
You should get the result —

decimal 138 = binary 10001010 = hex BA.
HEXS$ FUNCTION

MSX basic provides the HEXS$ function for conversion of
numbaears into HEX.

try — PRINT HEX$ (201) — resultC9.
The computer does not print leading zeros and so if you
require a hex number with say 4 digits you should use the
following code;
A% = HEX3(201):A% = ST RING${4—LEN(A$),48)+A_$:PRINTA$
Now the result is 00C9 — a hex number of 4 digits as required.

BINARY/HEX TO DECIMAL CONVERSION

binary to decimal — PRINT &B00110111 — result 55
hax to decimal — PRINT &H37 — result 55

-7 —

THE OCTAL NUMBER SYSTEM

The last number system used by the computer is the OCTAL
system which has a base of 8.

TABLE 1.7 describes the OCTAL system.

TABLE 1.7

B12's 64's B's 1's

83 82 g’ | g0

The basic function OCTS$ is used to convert decimal numbers
into octal and the prefix &0 is used 10 convert octal into
decimal.

PRINT OCT$(168) result 234 octal

PRINT E&0361 result 241 decimal

LAE R B E R R EESESEREEZSESRH

That's all about number systems — in the next chapter we wiill
examine some of the well known butlittie explained computer
terms, '

CHAPTER 2

BITS BYTES AND OTHER WONDERFUL THINGS

In CHAPTER 2 we examine a few computer terms and
conduct an interesting little exercise using PEEK and POKE,
but first lets look at how the MSX manufacturers define
machine size. The size of a computer is a measure of its user
memory capacity — the MSX standard calls for a minimum of
8K user Ram and 16K of Video Ram.

Some MSX manufacturers include the Video Ram when
quoting the size of their computer whilst some manufacturers
exclude the Video Ram. In this book we will include the Video
Ram and we will examine machines of two sizes namely 32K
Ram and 80K Ram.

BITS

A bit is the smallest fraction of the computers memory. Bits
can be considered as switches which can be either ON (set) or
OFF (not set or reset). When a bit is set then it contains a 1
whilst reset bits contain a 0. The 80K machines contain
917504 BITS and the 32K machines contain 524288 BITS.
Since bits are a very small unit they are grouped together in
bunches of 8 bits — each bunch is known as a BYTE.

BYTES

A BYTE is the smallest, directly addressable, unit of the
computers memory. The 80K machines have 65536 bytes of
continuous memory with addresses 0 to 65535. In the 32K
machines the address range is the same except that no
memory is provided between addresses 32768 and 49151. All
machines are provided with a separate bank of 16384 bytes of
VIDEO memory which has the address range 0 to 16383.

Each byte consists of 8 bits each of which can represent
either 1 or 0. The computer uses the BINARY NUMBER
SYSTEM for its internal computations and so it sees the
contents of a byte as an 8 digit BINARY number. Such a
number can range between 0 and 255. The significance of the
value of a particular byte depends on:

a) The value.
b} The position of the byte in memory.

-9 —

¢} The way in which the byte is read.

To understand this please switch on your computer and do
the following exercise,

EXERCISE 2

Note that the exercise should be carried out with the
computer in DIRECT mode (ie. type in without line numbers so
that execution is immediate).

type POKE 50000,122 — press ENTER

The computer places the number 122 into byte 50000 and
then returns to command mode with the report OK. Now we
are going to examine the contents of this byte in a number of
different ways.

type PRINT PEEK(50000) — press ENTER

The computer displays the number 122 on screen as you
would expect.

now type PRINT CHRS$(PEEK(50000)} — press ENTER

This time a z is printed because you have told the computer to
consider the value in address 50000 as a character.

Nowv try the following:
1) PRINT BINS(PEEK(S0000)) — press ENTER — BINARY

NUMBER

2) PRINT HEX$(PEEK(50000)) — press ENTER — HEX
NUMBER

3) PRINT OCTS(PEEK(50000)) — press ENTER — OCTAL
NUMBER

Finally try this little experiment:
type in 10 REM MSX — press ENTER

This is a small basic program — LIST it 1o make sure that it is
there.
now type POKE 32773,130 — press ENTER (80K

rmachines)
or type POKE 49157,130 — press ENTER (32K machines)

LIST that basic program again and notice that the line has
changed to:

10 MSX

The reason for this is simply that the computer expects the
value in address 32773 to represent the first basic keyword in
the basic program. 130 is the TOKEN for the keyword FOR —
more about basic program layout and tokens later. -

RANDOM ACCESS MEMORY (RAM)

In EXERCISE 2 we used the basic instructions POKE and PEEK
to change or examine the contents of a byte. You can PEEK
{read) the contents of a RAM byte and you can POKE (change)
the contents of a RAM byte. The RAM address range on your
MSX computer is as follows:

From 32768 to 66535 — 80K machines
From 491562 to 656635 — 32K machines

With all machines the area from 62336 to 65535 is reserved for
SYSTEM VARIABLES and WORK AREAS - you can PEEK in
this area with safety but you should only POKE if you

"understand the effects of your action. The system area is fully
explained later in the book.

READ ONLY MEMORY (ROM)

You can PEEK any ROM byte but POKING in the ROM area
has no effect. The ROM contains the BASIC language and all
the ROUTINES to control the computer, the screen, the
cassette, sound etc. The ROM, which is written in Z80
MACHINE CODE, contains many useful routines (ROM
ROUTINES) which can be used by the machine code
programmer in his own programs.

VIDEO MEMORY

The MSX range of computers are equipped with a TMS
9918A VIDEO DISPLAY PROCESSOR which handles the
video display. This chip has a dedicated RAM of its own — the
video RAM contains 16384 memory bytes for picture display,
sprite handling, etc. The user may directly access the VRAM

- 11 —

using VPEEK and VPOKE. The video chip and the video ram
are examined in more detail later.

KILOBYTES

A byte is a small memory unit and so it is convenient to define
and use a larger unit — the KILOBYTE (KB). The KB does not
contain 1000 bytes as you might expect — 1 KB contains 1024
bytes. The reason for this is that the computer uses the
BINARY number system and controls memory in BLOCKS of
256 bytes each — so there are 4 blocks to the KB, and 64 * 4 =
256 blocks in the main memory area.

CENTRAL PROCESSING UNIT

The CENTRAL PROCESSING UNIT (CPU) is the microchip
which controls all the functions of the computer. The MSX
computers use the Z80A chip as a CPU.

The Z80A has an instruction set which comprises 245 simple
instructions. These instructions can be used in combinations
to give about 700 instructions in all. Direct instructions to the
CPU are given in MACHINE CODE which is the only
“LANGUAGE"” that is understandable to the CPU. The MSX
machine code is Z80 machine code.

Basic program instructions are translated into machine code,
by the routines in the ROM, before they can be executed by
the CPU. This translation takes time and sO basic programs
generally run much slower than machine code programs.

INPUT/OUTPUT PORTS

Input/Output ports are used by the computer for
communication with external devices such as the VDU
SCREEN, THE CASSETTE, THE LINE PRINTER, THE DISC
DRIVE ETC.

The Z80A CPU controls 256 INPUT and 266 OUTPUT ports —

only a few of these ports are used to control the standard
MSX devices. In this book you will find many useful routines

—12 —

which use the I/0 ports and you will iearn how to use the ports
which control the VDU screen.

PROGRAMMABLE SOUND GENERATOR

The MSX computers are fitted with a GENERAL
INSTRUMENT PSG chip AY —-3—8910. This chip is capable of
producing music from-3 channels (3 notes at one time) as well
as generating sound effects from the noise channels. Music .
can be programmed using a basic music macro language —
the chip can also be accessed using the basic SOUND
command. The sound capability of your MSX is discussed
later in the book.

In the next chapter we will examine the MSX memory map.

—13 —

CHAPTER 3
MEMORY MAPS AND SIGNPOSTS

The MSX micros are based on the Z80A microprocessor chip
-— this chip is an 8 bit processor but is provided with a 16 bit
addressing facility. This means that the Z80A can control
65536 memory bytes within the address range 0 to 656535 —
(a computer uses more than 16 bits for addresses greater than
65535).

To overcome this limitation the MSX computers use a
technique known as bank switching — “parcels’” of memory
are switched in and out as required so that the CPU only sees
64K of memory at any one time.

SLOTS

In the MSX system the memory chips are contained in areas
known as SLOTS. Each MSX computer will support 4 slots
and each slot may be expanded to contain a further 4 slots.
The fully expanded machine would therefore contain 16 slots.

Lets pause a moment to examine the slot concept — in this
context a slot does not mean an external slot such as the
cartridge connection. The 4 slots are internal to the computer
and some of the slots may be connected to one or more
external plug assemblies.

Each memory slot can contain 64 K of memory — this memory
can be ROM or RAM. The fully expanded MSX machine can
therefore contain 1024 K bytes of memory in addition to the
16 K of Video Ram.

PAGES

Figure 3.0 shows the basic slot layout. A memory slot is
divided into 4 memory pages each containing 16 K bytes of
memory. At any one time the CPU can handle 4 memory
pages (i.e. page 0, page 1, page 2 and page 3) which can be
selected from any combination of slots.

— 14 —

PAGE SELECTION

Page selection is controlled by Input/Qutput port &HABS.

Switch on your computer and type in the following:

A$ =BINS(NP(&HAB)): A$=STRING$(8—LEN(A$),48)
+As$:PRINT A$

Now press ENTER and the screen will display an 8 bit binary
number — now we will look at what this number means.

Lets assume that you have a SVI 728 or SVI 738 computer —
the binary number in the port &HAS8 would be 01010000.

Now divide the number into fourﬁpairs of digits:

Page 3 Page 2 Page 1 Page 0
0 1 0 1 0] 0 0o 0o

Each pair of digits is a two bit binary number which can
represent a number between 0 and 3. This number is the slot
rnumber from which the respective memory page is selected.

The number 01010000 iells us that the system ROM is
located in page 0 and page 1 of slot 0. The system RAM is
located in page 2 and page 3 of slot 1.

Note that the MSX ROM is always located in page O and page
1 of slot 0 but RAM memory may be stored in any slot.

Note also that the memory configuration may be changed by
outputting a different number to port &HA8 — beware of
switching in basic, because you may loose control of the
machine and have to switch off.

Figures 3.1 to 3.3 shows the installed memory configurations
of three 80 K MSX machines.

BASIC RAM ORGANISATION

Figure 3.4 shows the layout of the BASIC RAM. The most
important part of the RAM is the MACHINE SPACE at the top
end of the memory. In this area the computer keeps all the

—15 —

SYSTEM VARIABLES (eg. screen and character colors,
cursor position, screen mode etc.), FUNCTION KEY
DEFINITIONS, VARIOUS BUFFERS and all the other
information that is needed for proper operation of the
computer. The machine area is fully explained in chapter 8.

BOUNDARY ADDRESSES

The location of each area of the RAM is defined by the
boundary addresses of that area — see figure 3.4 (eg. the
ARRAY TABLE is located from ARRAY TABLE START to
ARRAY TABLE END).

The boundary addresses are 16 bit addresses and each
address is contained in the RAM machine area (SYSTEM
VARIABLES). To read these addresses you must type a
command with the following general format into your
computer,

Z$ = HEX$ (PEEK(X) + 256 * PEEK(Y)) HEX
ADDRESS

or Z = PEEK(X) + 256 * PEEK(Y) DECIMAL ADDRESS

After execution of the command the variable Z (or Z$) wiill
contain the desired address. X and Y are of course different
for each area and you must substitute the correct X and Y
values.

NOTE that the computer stores 16 bit addresses or numbers
in the order low byte followed by high byte (the bytes are
therefore in “reverse order”) and so it is necessary to multiply
the second byte by 256 to read the whole number.

In the next few chapters we examine the different areas of the
RAM in some detail.

— 16 —

0000

PAGE O

4000

PAGE 1

8000

PAGE 2

Co00

PAGE 3

FFFF

FIGURE 3.0

MSX SLOT LAYOUT

SLOTO

SLOT 1

SLOT 2

SLOT 3

—17 —

SVI 728/SVI 738 MEMORY LAYOUT

0000
PAGE O

4000
PAGE | 1

8000
PAGE 2

C000
PAGE 3

FFFF

FIGURE 3.1

SLOT O

SLOT 1

SLOT 2

SLOT 3

ROM

CPM
and

MSX
DOs

. RAM

ROM

CPM
and
MSX
DOS
RAM

BASIC
RAM

BASIC
RAM

—18 —

CANNON V—20 MEMORY LAYOUT

0000

PAGE 0

4000

PAGE 1

8000

PAGE 2

C000

PAGE 3

FFFF

FIGURE 3.3

SLOTO

SLOT 1

SLOT 2

SLOT 3

ROM

CPM
and
MSX
DOS
RAM

ROM

CPM
and
MSX
DOS
RAM

BASIC
RAM

BASIC
RAM

—19 —

FIGURE 3.3

MITSUBISHI ML—F80 MEMORY LAYOUT

0000

PAGE O

4000

PAGE 1

8000

PAGE 2

CO000

PAGE 3

FFFF

SLOT O

SLOT 1

SLOT 2

SLOT 3

ROM

CPM
and
MSX
DOS
RAM

ROM

CPM
and
MSX
DOS
RAM

BASIC
RAM

BASIC
RAM

FIGURE 3.4

RANDOM ACCESS MEMURY MAP UNDER BASIC

BASIC
PROGRAM .

VARIABLES
TABLE

ARRAY
TABLE

WORK
SPACE

BASIC
STACK

STRING-
SPACE

t/0O
BUFFERS

USER MACHINE
CODE AND DISC
WORK AREA

MACHINE
"SPACE

nnnnnnnnnnn

...........

BASIC PROGRAM START
VAFIIABLES TABLE .STAHT
ARRAY TABLE START
ARRAY TABLE END
BASIC STACK POINTER
END OF STRING SPACE
STRING POINTER

START STRING SPACE

TOP OF BASIC MEMORY

EHFFFF

—21 —

CHAPTER 4
BASIC PROGRAM AREA

The start address of the basic program area depends on the
computer model — with the 80 K machines this area starts at
address &HBO00 whilst the basic program area of the
unexpanded 32 K machine starts at &§HC000,

BASIC PROGRAM START X = &gHF676 Y = &HF677

The basic program area is variable in length depending on the
size of the program. The area ends at the start of the variables
table. .

VARIABLES TABLE START X = &HF6C2 Y = &HFEC3

BASIC PROGRAM LAYOQUT

The basic program is held within the computer in
CONDENSED BINARY FORM. This means that basic
KEYWORDS are held as one or two byte tokens, numbers are
held in binary form and textis held in ASCII code. Each lina has
a memory overhead of B bytes which are used as shown in
Table 4.1 — NOTE that “byte number” refers to the byte's
position in any particular basic program line.

TABLE 4.1
byte number| 1 2 3 7 S O last
contents |start address | line number | zero
of naxt lina

Addresses and line numbers always occupy two bytes each
and so no extra memory is gained by only using smail line
nurnbers, The final byte of each line always contains a zero to
indicate the end of line,

—_22 —

HIDING PROGRAM LINES -

You may find it useful to “HIDE"” certain lines or parts of lines
in your program — there is & simple procadure which allows
you to do this. Such lines will not appear in the program list
although they remain in the program.

Program list 4.1 shows an example of the line hiding
procedure 10 protect a password within a program. Note that
the procedure replaces the Z’s (in the REM statements) with
DELETE marks. When the program is listed the hidden lines
are printed and immediately erased — this happens so quickly
that the hidden line cannot be read. You can put this routine at
the start of your own programs.

Type in the program and CSAVE 10 the data recorder. Now
RUN the program and then LIST — notice that only line 130
remains in the list — line 120 and 140 are still in the program
but are hidden in the list. Now you can type in your own
program from jine 1560 onwards. When someone RUNS your
program it will erase if the user does not type in thae comrect
password.

PROGRAM LIST 4.1
HIDDEN LINES ROUTINE

10 * hidden lines routine
20
30 ' by B L BURKE
40"
50 X1 = PEEK(&HF676) + 256 * PEEK(&HFB77)
60 X2 =PEEK(&HFGC2) + 266 * PEEK{EHFEBC3)
70 FORY =X1TQOX2
80 IFPEEK(Y)=143ANDPEEK(Y +1)=90THENC =1: NEXT
90 IFC = 1ANDPEEK(Y) = S0THENPOKEY,127ELSEC =0
100 NEXT
110 DELETE10—-110
.120 As ="EXCALIBER"™: REMZZZZZZZZZZZZZZZZZZZZZZ
" 130 CLS:INPUT”ENTER PASSWORD ;B$
140 IFB8 < > ASTHENNEW:REMZZZZZZ7 727772 3727772777

— 923 —

PROGRAMS WHICH MODIFY THEMSELVES

The line hiding routine is an example of a program which
modifies itself — another example is given in Program list 4.2.
This routine can be used in your programs so that the user can
personalise the program so that it addresses him by name.

The % characters in the DATA statement are replaced with
the users name and then the routine is deleted — the user
must then CSAVE the personalised program. Again you can
start any of your programs with a similar routine.

PROGRAM LIST 4.2
PERSONALISATION ROUTINE

10 ' personalisation routine
20
30 ' by B L. BURKE
40’
50 CLS:INPUT“PLEASE ENTER YOUR NAME ";As$
60 IFLEN(AS$)> 20THENAS = LEFTS$(AS,20)
70 X1 =PEEK(&HF676) + 256 * PEEKI&HF677)
80 X2 =PEEK(&HF6C2) + 256 * PEEK(&HF6C3)
90 FORY =X1TOX2
100 IFPEEK(Y) = 132ANDPEEK(Y + 1)=34THENY =Y + 1:
GOTO110ELSENEXTY
110 FORZ = 1TOLEN(AS$):POKEY + Z,ASC(MID$(AS,Z,1)):
NEXTZ
120 CLS:PRINT“PROGRAM PERSONALISATION COM-
PLETE”
130 PRINT“PLEASE SAVE PROGRAM"
140 DELETE10—140
160 DATA"9%% %% % % % % %% % % % %% % % % % %"
160 READNS$:Z=INSTR(NS$,”%"):N$ = LEFT$(N$,Z—1)
170 CLS:LOCATE(40—6—LEN(NS$))/2,2:PRINT“HELLO "“;N$

ANIMALS
Animals is an interactive program which has been written for

many different computers. My version is presented in
Program list 4.3.

— 24 —

The user must think of an animal and the computer has to
guess the animal based on the answer to a simple question,
The program must be CSAVED every time the game is played
because the computer learns new facts at each game. The
program in its present form can accommodate 20 animals.

Enjoy the ANIMALS program — it is another example of a
program which modifies itself.

NOTE the use of the system variable DATA POINTER in
- Program list 4.3 line 280. This variable always points to the
next set of data in the basic program.

DATA POINTER X = &HF6C8 Y = &HF6C9
PROGRAM LIST 4.3 — ANIMALS

10 ONSTOPGOSUB210:STOPON
20 KEY OFF
30 CLS:LOCATEO,10:PRINT“THINK OF AN ANIMAL AND -
DONT TELL ME”
40 LOCATEO,17:PRINT“PRESS ANY KEY ”;
50 IFINKEY$ < >“THENS0O
60 IFINKEY$ ="“THENG60
70 CLS:LOCATEO,10:PRINT“TELL ME A FEATURE OF
THIS ANIMAL”
80 LOCATEO,14
90 INPUTAAS
100 X=0:RESTORE370
110 READF$,A$
120 P=INSTR(F$,”@"):F$ = LEFT$(F$,P—1)
130 P=INSTR(A$,”@").A$=LEFT$(A$,P-1)
140 IFF$ =""THENZ240
180 IFAAS =F$THENCLS:LOCATEO,10:PRINT THE
ANIMAL IS “;A$:GOTO170
160 X=X+ 1:IFX<20THEN110ELSE220
170 LOCATEQ,17:PRINT”PRESS ANY KEY ”;
180 IFINKEY$ < >““THEN180
190 IFINKEY$ =""THEN190
200 GOTO30
210 RETURNZ220
220 CLS:LOCATEOQ,10:PRINT”l AM TIRED OF GUESSING
ANIMALS"
230 KEY ON:END

PROGRAM LIST 4.3 CONTINUED
&
240 CLS:LOCATEQ,10:PRINT*“I DONT KNOW THAT ONE"
250 PRINT:PRINT:PRINT“PLEASE TELL ME THE ANIMAL"
260 INPUT AB$
270 IFLEN(AB$)>19THENABS =LEFT$(ABS,19)
280 DP=PEEK(&HF6CS8) + 256* PEEK(&HF6C9)
290 DP=DP—-52 .
300 PE=PEEK(&HFB6C2) + 256 *PEEK(&HF6C3)
310 FORPC = DPTOPE:IFPEEK(PC)=132ANDPEEK(PC +1)=
64THEN320ELSENEXTPC

320 FORPK=1TOLEN(AAS$)
330 POKEPC + PK,ASC(MID$(AAS,PK,1))
340 NEXTPK
350 IFAAS< >AB$THENAA$ AB$:GOTO280
360 GOTO30
370 DATARRQQRRCEQRRReRCeRERRRE
380 DATARReRRERRCR@CRRRCER@RE@
390 DATARRQRCERRQRPRCERRRRAQE
400 DATAQRQ@Q@QRRRRReCRRREORRE@
410 DATA@RRQQRRReeReReeReeeee@
420 DATARRRRRRCRERREERREECRR@
430 DATAQRQQQRQ@QQeQRe@eeeeere®
440 DATAQ@RQ@QRCQEReCRREGRRE@
450 DATAQ@Q0QQQRRQECEERREOER@E
460 DATA@QQ@QRQRRRRERCREGRRQRER@E@
470 DATA@QRQRQQRCeeCRRRCeRERRE@
480 DATAQRRQQRRQ@EREERCRACRRE@
490 DATAQQRQ@QRRQORRQRRCREREREREE
500 DATARee@RRQERRERREEEeRee@
510 DATARQ@QRQQRReRReReReReReeE
520 DATARQQ@Q@QeRReeRRReeeCQee@@
530 DATAQRRGRREROCQRRERCRLECEAE
540 DATA@R2@RQRORRRRRRRRECRE®
560 DATARRRQRRRRERERRRERRRRE@
560 DATARQ@@QRCCRReeeReeRRERERE
570 DATA@QR2QQRQRRECeReRereCre®@
580 DATA@RQ@QRRQRRRERREERRER®
590 DATAQQRQQRQRRRQRRRRReeeEeRe@
600 DATAQRQRCRQRQQCQRRRCCECCEeE
610 DATARRRRRRRRRRRRRRCRRRRRE
620 DATAQ@@QRQRRREERCEReRREeCeee

— 26 —

PROGRAM LIST 4.3 CONTINUED

630 DATAQ@QRQERQQQeROCCeOELeee@
640 DATAQRQCCQRQRRCQCQRCCCCeeee
650 DATAQR@QRQRQRRQ@OCRRRCCRE@e@
660 DATAQQRQCQRRQEQQRCGCCGRCCQLC@e@
670 DATARRQRROQRRRRRERECGCELE
680 DATARQRQRQQQR@QRQOORGORLGEE
690 DATARRQRRQRRRRRReCQCeRRLee@
700 DATARRRRe@ERCRRReREReeReLee@
710 DATAQRQ@QRQQRRQGO0RCeGe0@E@
720 DATAQQRQRRRRRERGRRRRRRRRE@
730 DATARRQQ@QRQRQRReRRReeRCQ@E
740 DATAQ@@Qe@oeeeeeeeeeeeee
750 DATARe@QRQeQRReQRee@ROCRCQE@
760 DATAReCeeRreeCReeReRe@CRE@

BASIC KEYWORDS AND TOKENS

The MICROSOFT BASIC LANGUAGE of the MSX computers
has 125 basic commands/operators and 48 basic functions.
The difference between a command and a function is as

foliows:

a) A command tells the computer to DO SOMETHING eg.

PRINT, MOTOR ON etc.

b) A function tells the computer to perform some operation
upon data and to RETURN A RESULT eg. X

INT(23.456) returns X =23.

Commands are held as single byte tokens in a basic program
and functions are held as two byte tokens. This is very
memory efficient — take the word LOCATE which is often
used to position the cursor for printing — the token for
LOCATE is 216 ie. one byte instead of 6 for the full word
LOCATE. The full basic word list and token table is given

overleaf.

—27 —

MSX BASIC WORD AND TOKEN TABLE

AUTO
BSAVE
BASE
COPY
CLOAD
CIRCLE
CMD
DIM
DEFSNG
DEF
ELSE
ERROR
EQV
FILES
GOTO
INPUT
IMP
KH.L
LLIST
LINE
LIST
MERGE
NEXT
NOT
ON
PRINT
PSET
PAINT
READ
REM
RENUM
STOP
SAVE
STRINGS
TRON
TO
USR
VvDP
XOR

<

*

N\

169
208
201

214
165
188
215
134
173
151

161

166
249
183
137
133
250
212
168
175
147
182
131

224
149
145
194
M

135
143
170
144
186
227
162
217
221

200

248

240
243
252

AND
BLOAD
CALL
CONT
CSAVE
COLOR -
DELETE
DEFSTR
DEFDBL
DSKI$
END
ERL
FOR

FN
GOSUB
IF
INKEY$
KEY
LET
LOAD
LFILES
MOD
NAME
OPEN
OR
PUT
PRESET
PLAY
RUN
RESUME
SCREEN
SWAP
SPC(
SOUND
TROFF
TIME
VARPTR
WIDTH
>

+

P

— 28 —

246
207
202
163
154
189
168
171
174
234
129
225
130
222
141
139
236
204
136
181

187

251

21

176
247
179
196
193
138
167
197
164
223
196
163
203
231

160
238
241

244
230

ATTRS
BEEP
CLOSE
CLEAR
CRSLIN
CLS
DATA
DEFINT
DSKO$
DRAW
ERASE
ERR
FIELD
GOTO
GET
INSTR
iPL
LPRINT
LOCATE
LSET
MOTOR
MAX
NEW
ouT
OFF
POKE
POINT
RETURN
RESTORE
RSET
SPRITE
SET
STEP
THEN
TAB

- USING

VPOKE
WAIT

A

233
192
180
146
232
159
132
172
209
190
1656
226
177
137
178
229
213
1567
216
184
206
205
148
156
235
162
237
142
140
185
199
210
220
218
219
228
198
150
239
242
245

BASIC FUNCTIONS WORD AND TOKEN TABLE

NOTE ALL THE TOKENS IN THIS TABLE ARE PREFIXED

WITH 266
ABS 134 ATN 142 ASC 149
BINS 167 CINT 168 CSNG 169
CDBL 160 cvi 168 cvs 169
CvD 170 cos 140 CHRs 150
DSKF 166 EXP 139 EOF 171
FRE 143 FIX 161 FPOS 167
HEX$ 1565 INT 133 _iNP 144
LPOS 166 LOG 138 LOC 172
LEN 146 LEFTS 129 LOF 173
MKI$ 174 MKS$ 175 MKD#$ 176
MID$ 131 OCT$ 154 POS 145
PEEK 151 PDL 164 PAD 165
RIGHTS 130 RND 136 SGN 132
SOR 135 SIN 137 STR$ 147
SPACES 163 STICK 162 STRIG 163
TAN 141 VAL 148 VPEEK 152

NOTES

i) You do not type tokens in to your basic program - you
type in keywords and the tokens are automatically stored -
in the memory instead of the characters of the keyword.

i) Later in the book | will show you how to make use of
basic tokens in your machine code programs,

i) Using a single guote in your program instead of REM
takes up 3 bytes instead of 1. The single quote tokenises
as a colon, REM and the token 230, althaugh you only
see the single quote in the program list.

ivi The basic word ELSE tokenises as a cofon followed by
161. The colon is not displayed in the program list.

CHAPTER S
VARIABLES AND ARRAYS

Variables are small MEMORY BOXES which you can define to
hold wvarious numbers (NUMERIC VARIABLES) or text
(STRING VARIABLES) for use in your programs. Each variable
must be given a name of one or two characters (eg. A or XY
etc.) and a value. You may enter your variables as follows:

LET A = 12345 or A = 123456 NUMERIC
VARIABLE.

LET A$ = “abc” or As$ = “abc’” STRING
VARIABLE. ‘

Variables like these are known as SIMPLE VARIABLES — one
variable value for each variable name. Variables which have
not been given a value are equal to zero in the case of numeric
variables and in the case of string variables they are equal to
() — an empty string.

The computer keeps all information about variables in a
memory area called the variables table.

VARIABLES TABLE

See Figure 3.4 for the relative location of the variables table in
the computer memory map. The memory area starting at the
variables table is controlled by the basic system and the
instructions within the basic program. The variables table
contains entries for each simple variable defined in the basic
program. The values of numeric variables are held within the
table but in the case of string variables oniy the string
descriptor is held in the table. Note that if you STOP a
program the variables table remains intact until you change,
add or re-enter a program line or RUN the program.

The variables table is located in the memory just after the
basic program.

VARIABLES TABLE START X = &HF6C2 Y = gHF6C3

NUMERIC VARIABLES

The space taken up by a variable depends on the precision of
the number concerned:

1)

2)

3)

DOUBLE PRECISION — Double precision variable names
should be suffixed with the 3 sign eg. X3t =
12345678901 234. You can omit this sign if you define the
variable using the DEFDBL instruction eg. DEFDBLX.
Double precision variables can hold a number correct to
13 decimal places with the restriction that the maximum
number of digits is 14. Numbers with more than 14 digits
are rounded and presented in exponential form. Double
precision numbers take up 11 bytes in the variables table:
a) The first byte contains 8 to indicate double precision.
b) Next there.are two bytes for the variable name,

c) Finally there are 8 bytes to contain the value.

SINGLE PRECISION — single precision variable names
should be suffixed with the | sign eg. X| = 1234567. You
can omit the sign if you define the variable with a
DEFSNG instruction eg. DEFSNGX. Single precision
numbers are correct to 6 figures with larger numbers
being rounded. Numbers with more than 14 digits are
presented in exponential form. Single precision numbers
take up 7 bytes in the variable table:

a) The first byte contains 4 to indicate single precision.
b) Next there are 2 bytes to contain the variable name.
c) The last 4 bytes contain the variable value.

INTEGER VARIABLES -~ These variables have names
which are suffixed with the % signeg. X% = 23456. You
may omit the sign if you define the variable using the
DEFINT instruction eg. DEFINTX. Integer variables take
up 5 bytes in the variables table and they can range in
value from —32768 to 32767.

Five byte variables table entry:

a) The first byte contains 2 to indicate an integer.
b) The next 2 bytes contain the variable name.

c) The last 2 bytes contain the integer value.

— 31 —

STRING VARIABLES

String variables are suffixed with the $ sign eg. X$ = “asdfg”.
You may omit the $ sign if you define the variable using the
DEFSTR instruction eg. DEFSTRX. The variables table only
contains a 6 byte string descriptor for each string variable.

ii)

Six byte string descriptor:

a) The first byte contains 3 to indicate a string variable.

b) The next 2 bytes contain the variable name.

c) The next byte contains a number to indicate the
number of characters in the string.

d) The last 2 bytes contain the start address of the
memory area where the string is located.

NOTES

The variables X, X:H;X!, X% and X$ are all different and
can all be used in a program at the same time. -

The length of the variables table will change depending
on the number and type of variables defined by the basic
program — the table ends at the address where the
ARRAY TABLE starts:

ARRAY TABLE START X = gHFB6C4 Y = &HF6CH
ARRAYS

Arrays are collections of variabies all bearing the same
name and containing similar or related data. Different
ELEMENTS of the array are identified by a system of
number subscripts eg. A(1) , A(2) etc.

A single DIMENSION array (vector) is a single column of
numbers or strings. A table of numbers is represented by
a two dimension array eg. the array A(2,2) is a numeric
table with 3 columns and 3 rows.

Arrays must be properly dimensioned before you can use
them. Dimension your array as follows:

DIM A(21,20) numeric array with 22 rows & 21
cols.

DIMAS(10) string array with 1 col & 11 rows.

—32 —

ARRAY TABLE

See Figure 3.4 for the relative location of the array table in the
computer memory map. ARRAYS are subscripted variables
with definitions and type signs the same as for simple
variables. The array table is of variable length depending on
the number and magnitude of the array dimensions. The table
layout is given below:

a)

b)

c)

d)

e)

f)

The first byte in an array descriptor contains a number to
indicate the nature of the array variable:
i) 8 for double precision.

i} 4 for single precision,

i) 2 for integer.

iv) 3 for string.

The next 2 bytes contain the variable name (1 or 2
characters).

The fourth and fifth bytes contain the number of bytes
remaining in the array descriptor.

The sixth byte contains the number of array dimensions.

Next there are a number of 2 byte entries one for each of

- the dimensions — each 2 byte entry contains the size of

the relevant dimension. NOTE that in arrays the element
0 is significant so the array A(1,1) has 4 elements namely
A(0,0), A0,1), A(1,0) and A(1,1).

Finally there are entries for each element of the array as
follows: '

i) 8 byte entries for double precision arrays.

ii) 4 byte entries for single precision arrays.

iii) 2 byte entries for integer arrays.

iv) 3 byte string descriptors for string arrays.

The array table ends at the address stored in the system
variable array table end.

ARRAY TABLE END X = &HF6C6 Y = &HF6C7

LA SRR R B AR E R RN R EEZSEEES]

CHAPTER 6
STRING SPACE

Refer to Figure 3.4 for the relative position of the string space
within the computer memory map. Strings are collections of
characters (words or sentences) which have been assigned to
a string variable. Each character of the string takes up 1 bytein
string space. String space starts high up in the memory and
decends downwards towards the stack area. At power on
your MSX computer allocates 200 bytes of string space but
the user can change this using the CLEAR command.

eg. CLEAR 2000 — allocates 2000 bytes of string
space.

The useful addresses associated with string space are:
START STRING SPACE X = &HF672 Y = &HF673

END STRING SPACE X = &HF674 Y = &HF675
STRING POINTER X = §HF69B Y = &HF69C
NOTES

i) The start of string space is dictated by the current vaiue
of the TOP OF MEMORY marker — more about that just
now.

i) The end of string space is dependent on the start
address and upon the size of the string space allocated
by the CLEAR command. ,

ili) The string pointer contains the address of the next free
byte in string space.

iv) Strings can be any length up to 255 bytes long. When
strings are edited (changed) there is no guarantee that
the resultant string will fit into the old space allocated to
that string. To overcome this problem the new version of
the string is placed into string space starting at the string
pointer and the string descriptor is updated to point to
the new string.

v} Obsolate strings are not erased immediately but remain
in memory until the string space becomes full and the
computer autormatically performs a garbage collection,
The garbage collection consists of erasing all the
ohsolete strings and restacking the current strings from
the start of string space. This procedure can take several
minutes if a large amount of string space has been
aflocated. '

INPUT/OUTPUT FILES

Input/Output files arg used to forrmat and control data input
and output fromi/to various devices eg. the screen, the data
recorder, the disc drive etc, The files asre located in the
computer memory map just above the string space and below
the top of mamory. At power on the computer automatically
allocaetes space for two VO files nemely FILE 0 and FILE 1.

Addresses associated with the file space are:

TOP OF MEMORY X = HFC4A Y = &HFC4B
START OF STRING SPACE X = §HF672 Y = aHF673

Up to 16 files are available an your MSX computer — you can
change the number of files allocated by using the MAXFILES
command;

eg. MAXFILES = 2 — allocate space for one extra file
namely FILE 2.

MAXFILES = 0 — Release file space allocated to FILE 1.

Use MAXFILES = 0 if you do not need any files (eg. if your
program is not doing any /O to cassette or other device) —
this will release 267 bytes for other duties. Each file uses 267
bytes — file 0Oislocated at the start of file space and it cannot
be switched off because it is used by the computer for various
automatic operations.

The actual location of any file in memory is given by:
Z = VARPTR{ F}...... where F is the fila number.

Incidentally you can find the location of any variabie by using
the VARPTR function:

eg. PRINT VARPTR(X) Z = VARPTR(AS) etc.

— 35 —

Notice that the computer always reports a negative number
as the address of a variable (VARPTR) - this is because the
computer uses integers for addresses and you wiill recall that
MSX integers range from —32768 to 32767. When the
computer has to report an address which is greater than
32767 it uses the binary TWO’'S COMPLEMENT FORM ie. all
binary 1’'s become 0's and 0's become 1’s, add 1 and then
change the sign. To read the real address add 65536:

eg. Z = VARPTR(X) + 65536

TOP OF MEMORY

| have spoken a number of times about the TOP OF MEMORY
— let’s look at what this means. The memory area which is
controlled by the basic system is the area between BASIC
PROGRAM START and TOP OF BASIC MEMORY. If the user
POKES in this area the basic program is likely to overwrite the
POKED values — in order to protect such POKES it is
necessary to place them above the top of basic memory. This
however presents another problem because the area above
the top of basic memory is reserved for SYSTEM VARIABLES
and other machine controlled parameters. To get around this
problem the user can lower the top of basic memory to
release a space for special POKES and machine code routines.
This area is shown in Figure 3.4 as USER MACHINE CODE
AND DISC SYSTEM.

To reserve space above the top of memory proceed as
follows:

CLEAR AB where A is the amount of STRING
SPACE required and B is the required
top of memory address.

BASIC HINTS

At the start of your BASIC programme you should have the
various memory reconfiguration commands in the proper
sequence — of course you will not always need all the
commands in every program,

eg. 10 MAXFILES = 2
20 CLEAR 500,56000
30 DEFINTA—-Z
40 DEFSTRY
50 DIMY(200)

The sequence is important because MAXFILES and CLEAR
wipe out several other commands. .

TRANSFERING DATA TO TAPE

Files are used to transfer DATA 10 1ape. A tape DATA FILE is
different from a pragram file in that it does ndt have LINE
NUMBERS and it is saved in ASCIl MQDE ie. each character is
saved as an ASCI! code,

The program code required.to create a data file is in the
following example: '

10 A$ = “THIS IS A DATA FILE TEST”

20 OPEN “CAS:TEST” FOR OUTPUT ASH1
30 PRINTH1,A$

40 CLOSE

To read the file back into your program use the following
code:

50 OPEN “CAS:TEST” FOR INPUT AS#H1 |
60 INPUTH1,AS
70 CLOSE

Note that any variable data can be transferred to tape using
basic code similar to the above.

-

HEEREERRERRREERESER R T

In the next chapter we examine a very important area of the
computers memory — THE BASIC STACK.

CHAPTER 7
THE BASIC STACK

See Figure 3.4 for the relative position of the basic stack in the
computers memory map. The basic stack occupies the
memory area between the end of the string space and the
stack pointer. The stack pointer marks the current top of the
stack which grows downwards from the end of string space.

This may seem a bit of an anomaly or an arror but it is quite
true — the stack grows downwards and so the top of the
stack is at the lowest stack memory address.

The stack is used by the basic command GOSUB and by FOR
NEXT loops. Stacks work on a LAST IN FIRST OUT basis
(LIFO) and items which are left on the stack will simply remain
there. In extreme cases the memory can fill up due to poor
stack management,

Type into your computer the following program line:
10 GOsSUB 10

Now type RUN and press ENTER — notice how .quickly the
computer memory fills up. Each GOSUB puts a 7 byte return
address onto the stack and this address is only removed
when the RETURN command is executed. It is therefore
essential that each GOSUB in your program is matched by a
RETURN.

FOR-NEXT loops use up 25 bytes of stack space which is only
clearad when the loop has run through all its cycles. Itis often
necessary to jump out of FOR-NEXT loops when a desired
condition has been met — this practice ieaves the 25 bytes on
the stack. To avoid problems you should ensure that all FOR-
NEXT loops are contained in sub-routines. The RETURN after
the sub-routine wipes the return address and the FOR-NEXT
lcop off the stack.

The mini programs 7.1 and 7.2 illustrate the stack operation.
Line 10 sets up the user defined function FNSP(X) as a
measure of the stack pointer. The programs then print the
current value of the stack pointer before and after a GOSUB —
‘notice that the stack pointer acdidress has reduced by 7

— 138 —

because the return address is now on thae stack. The
programs then enter the FOR-NEXT loop and agsin print the
stack pointer addraess — this time the pointer has reduced by
25 because the FOR-NEXT loop is on the stack. The programs
now loop until Z = 10 whilst printing the stack pointer at each
loop. When the condition (Z = 10) is met program 7.1 exits the
for/next loop and prints the final stack pointer address whilst
program 7.2 exits the loop and returns before printing the final
stack pointer. ’

PROGRAM LIST 7.1

10 DEF FNSP(X) = PEEK(X) + 2566 * PEEK{X +1)

20 X = 6HFEB1

30 PRINT FNSP(X)

40 GOSUB 70

50 PRINT FNSP(X)

60 END

70 PRINT FNSP(X)

80FORZ =1TO 100
.90 PRINT FNSP(X)
100IF Z < 10 THEN NEXT
110 PRINT FNSP{X}

In program 7,1 there is no RETURN to match the GOSUB in
line 40 and so the FOR-NEXT loop and the return address
remain on the stack. Notice the final value of the stack pointer
ia still 32 less than the first stack pointar address. This is poor
stack management.

PROGRAM LIST 7.2

10 DEF FNSP(X) = PEEK{X) + 256 * PEEK(X+1)
20 X = &HF8B1
30 PRINT FNSP(X)
40 GOSUB 70
60 PRINT FNSP(X)
60 END
70 PRINT FNSP(X})
BOFORZ = 170100
90 PRINT FNSP(X)
100 IF Z < 10 THEN NEXT
110 RETURN

— 39 —

In program 7.2 good stack management is illustrated — the
program returns after exiting the FOR-NEXT loop and the
stack is returned to its original condition. Notice that the final
stack pointer address is equal to the first address.

The computer automatically tooks after the stack but good
programming (eg. list 7.2) will prevent the dreaded OUT OF
MEMORY message from appearing on your scraen due to
poor stack management

LA R A E LR EREEREEEE LS R SR

The next chapter concludes our examination of the computer
memory map with an exposition of the mysteries of the
machine systems area above the top of memory,

— 40 —

CHAPTER 8
MACHINE SYSTEMS AREA

The machine systems area contains all the SYSTEM
VARIABLES which are needed for the computer to function
properly. Things like the cursor position, the softkey
definitions, screen colors, keyboard buffer, etc. etc. etc.

This chapter explores the use and position of the useful
sections of the system area which is located as follows:

SYSTEMS AREA START ADDRESS = 62336 decimal or
F380 hex.

SYSTEMS AREA END ADDRESS = 65535 decimal or FFFF
hex.

TABLES
START NO
OF

ADDRESs NAME o oo DESCRIPTION

&HF39A USRTABLE 20 10 *2BYTE USR
ADDRESSES SET UP BY
DEFUSR STATEMENT

&HF6CA DEF TABLE 26 26 * 1 BYTE ENTRIES
GIVING THE DEFAULT
VARIABLE TYPE 2 =
INTEGER 3 = STRING 4 =
SINGLE 8 = DOUBLE
CHANGE BY DEFINT ETC.

&HF87F FUNCTION 160 10 * 16 BYTE ENTRIES

STRING ONE FOR EACH

TABLE FUNCTION KEY
CONTAINS CURRENT
STRINGS

&HF975 MUSIC A 128 MUSIC QUEUE USED BY
PLAY

&HF9F5 MUSIC B 128 MUSIC QUEUE USED BY
PLAY

— 41 —

TABLES CONTINUED

START NO OF
ADDRESS NAME Lre DESCRIPTION
&HFA75 MUSICC 128 MUSIC QUEUE USED BY
PLAY
EHFB41 VOICEA 36 STATIC DATA FOR
MUSIC A
&HFBBE VOICEB 36 STATIC DATA FOR
MUSIC B
&HFBBB VOICEC 36 STATIC DATA FOR
. MUSIC C
EHFBCE FUNCTION - 10 INDICATES IF FUNCTION
FLAGS ~ KEY TRAPISON = 10R
OFF = 0

&HFC4C TRAP TABLE 30 10 * 3BYTE ENTRIES FOR
F—KEY TRAPS BYTE 1
OFF = OON = 1 BYTES
2/3 ADDRESS OF TRAP
GOSUB LINE

&GHFCBA STOPTRAP 3 BYTE1OFF = CON =1
BYTES 2/3 ADDRESS OF

TRAP GOSUB LINE

&HFC6D SPRITETRAP 3 BYTE1OFF =0ON =1
BYTES 2/3 ADDRESS OF
TRAP GOSUB LINE

&HFC70 STRIG TRAPS 5*3 BYTE 1 OFF = 0ON =1
BYTES 2/3 ADDRESS OF
TRAP GOSUB LINE

8HFC7F INTERVAL 3 BYTE1OFF=00N =1
TRAP BYTES 2/3 ADDRESS OF
TRAP GOSUB LINE

E8HFC82 DEVICE 8*3 TO TRAP EVENTS FROM

TRAP EXTERNAL DEVICES
TABLE e.g. RS232
8HF3B3 TEXT 10 5*2BYTE BASE
ADDRESSES FOR VOP IN

TEXT MODE

— 4D -

TABLES CONTINUED

START NO OF
ADDRESS NAME oo eC DESCRIPTION
&HF3BD 32COL 10 5*2 BYTE BASE

ADDRESSES FOR VDP IN
SCREEN 1

&HF3C7 GRAPHICS

10

5*2 BYTE BASE
ADDRESSES FOR VDP IN
SCREEN 2

&HF3D1

LO RES

10

5*2 BYTE BASE
ADDRESSES FOR VDP IN
SCREEN 3

HFD9A HOOK JUMP 560

TABLE

112*5 BYTE HOOKS USED
TO HOOK YOUR OWN
ROUTINES INTO BASIC

ROM ROUTINES

USEFUL PARTS OF THE MUSIC STATIC DATA TABLE

4

BYTE NO ENTRY FUNCTION
3 LENGTH OF MUSIC STRING
4—-5 ADDRESS OF M STRING

1M1 —12 TONE PERIOD
13 AMPLITUDE/SHAPE

14 — 15 ENVELOPE PERIOD
16 OCTAVE
17 NOTE LENGTH
18 TEMPO
19 VOLUME

— 43 —

USEFUL ADDRESSES

TO READ THE ACTUAL ADDRESS USE:
Z = PEEK(LOW BYTE) + 286 * PEEK(HIGH BYTE)

LOW BYTE HIGH BYTE ADDRESS NAME
&HF674 &HF675 END QF STRING SPACE

&HF676 &HF677 BASIC PROGRAM START
&HF672 &HF673 START OF STRING SPACE
&HF69B &HF69C STRING POINTER

&HF6A1 &HFBA2 POINTER TO END OF FOR LOOP
gHF6AF &HF6B0 RESUME ADDRESS

&HF6B1 &HFEB2 STACK POINTER ADDRESS
&HF6B3 &iHFEB4 LAST ERROR LINE NUMBER
gHF6BS &HFE6B6 CURRENT LINE USED BY LIST.
&HF6B9 &HF6BA ERROR HANDLING LINE NUMBER
8HF6BE &HFEBF LAST LINE WHEN CTRL/STOP
&HF6CO &HF6C1 RESTART ADDRESS USEb BY CONT
gHF6C2 &HF6C3 START OF VARIABLES TABLE
&HFBC4 &HFBC5 START OF ARRAY TABLE -
&HF6C6 &HF6C7 END OF ARRAY TABLE |
’%HFGCB &HF6C9 ADDRESS OF NEXT DATA
&HF862 &HFB863 ADDRESS OF FILEH0 BUFFER
gHF3F8 &HF3F9 END POINTER IN KEY BUFFER
&HF3FA &HF3FB START POINTER IN KEY BUFFER
&HFC4A &HFC4B TOP OF BASIC MEMORY
HFCO9E &HFCO9F COUNTER FROM 0 TO 65535
&HFCAO &HFCA1 CURRENT INTERVAL VALUE
&HFCA2 &HFCA3 INTERVAL COUNT DOWN

MORE SYSTEM VARIABLES AND FLAGS

ADDRESS CONTENTS " POKE
&HF414 LATEST ERROR NUMBER NO
&HF3B0 SCREEN LINE LENGTH ‘ YES
&HFBAA AUTO LINE NUMBERING FLAG YES

1 = ON 0 = OFF
&HFBS5F NUMBER OF FILES — MAXFILES NO

&HF3DB CLICK SWITCH 1 = ON 0 = OFF YES
&HF3DC CURSOR LINE - NO
&HF3DD CURSOR COLUMN NO
&HF3DE FUNCTION KEY DISFLAY SWITCH NO
&HF3E9 FOREGROUND COLOR YES
&HF3EA BACKGROUND COLOR YES
&HF3EB BORDER COLOR YES

NOTE THAT POKED COLORS ONLY BECOME ACTIVE
AFTER A SCREEN INSTRUCTION.

EVEN MORE SYSTEM VARIABLES AND FLAGS

ADDRESS CONTENTS POKE

&HFCAB UPPER CASE CHARACTERS FLAG YES®
1 = ON 0 = OFF

8HFCAF SCREEN MODE NUMBER NO

VDP REGISTERS

ADDRESS CONTENTS
&HF3DF REGISTER 0 OF VDP
&HF3EQ REGISTER 1 OF VDP
&HF3E1 REGISTER 2 OF VDP
&HF3E2 REGISTER 3 OF VDP
&HF3E3 REGISTER 4 OF VDP
&HF3E4 REGISTER 5 OF VDP
EeHF3EDS REGISTER 6 OF VDP
&HF3E6 REGISTER 7 OF VDP
&HF3E7 - REGISTER 8 OF VDFP

— 45 —

AUTO RUN PROGRAM

Here is a short program which uses the systems area to
AUTORUN a CLOAD program.

PROGRAM LIST 8.1

10 FORX =0TO3:READZ:POKE&HFBFO + X,Z:NEXT
20 POKE&HF3FA &HF0:POKE&HF3FB, &HFB

30 POKE&HF3F8,&HF4:POKE&HF3F9,&HFB

40 DATAB2,85,78,13

50 CLOAD

Type in the program and SAVE it to tape in ASCIl MODE ie.
you must SAVE the program and not CSAVE. Save the
program with the following command:

SAVE “AUTO"”

Now CSAVE your own program onto the tape just after the
AUTO program. When you wish to RUN your program you

type in:
RUN “AUTQO”

The program AUTO will load and run and after loading your
program it will automatically RUN.

AUTO works as follows:

1) The word RUN followed by the ENTER code is poked
into the key buffer.

2) The key buffer pointers are reset to point to the start and
end of the instruction RUN.

3) Your program is then CLOADED.
4) After loading is complete the computer returns to
command mode and the instruction RUN is ejected from

the key buffer and immediately executes.

in the next few chapters we take a detailed look at the Video
Chip.

_ 46 —

CHAPTER 9
THE VIDEQO CHIP

The MSX corhputers use the TMS 9918A video chip to handle
all screen output. This chip has 4 different screen modes all of
which are implemented on the MSX machines.

In this chapter we take a look at the way 'phe video chip works.
GENERAL

The MSX picture is made up of 35 different planes stacked
one on top of the other. These planes are numbered from O to
34 with plane 34 being at the bottom of the pile. Images on the
lower planes can only be seen if the upper planes are
transparent at that particular point,

The lowest plane of all is plane 34 — this is the external video
plane., The use of this plane (to display pictures from an
external video chip or other video source) is not implemented
on most MSX machines.

Immediately above the external video plane is the backdrop
plane which is a single color piane and cannot display any
images. This plane provides the border around the graphics
screens.

The next plane is the pattern plane (in screen 3 this is the
multicolor plane). This plane displays all the pattern images
created with PRINT, DRAW, LINE, CIRCLE etc. etc.

All the remaining planes (31 — 0) are for sprites — one sprite
can be displayed on each plane making a total of 32 sprites
displayed at one time. Sprites on the upper planes (lower
plane numbers) will pass in front of sprites on the lower
planes. Only four sprites may be displayed in any honzontal
line — the fifth sprite in a line will disappear.

CONTROL

The MSX machines are provided with a dedicated bank of
16K bytes of video RAM. The video chip controls the display

— 47 —

by maintaining a series of tables in the video RAM memory.
The tables are set up differently for each of the four display
modes — screen 0, screen 1, screen 2 and screen 3. Different
modes are set up using the nine registers of the video chip. .

1)

2)

3)

4)

5)

VDP TABLES

PATTERN GENERATOR — The pattern generator table

is an area of video rami which contains the data for

producing shapes on the pattern plane. The data is held

in binary 8 bit numbers so that when displayed the binary

1 will produce a dot in the foreground color and binary O
will remain in the background color. Patterns are formed

by grauping 8 binary numbers together to form a pattern

block. The character set definitions are held in a pattern

generator table.

COLOR TABLE — The color table is similar to the pattern
generator table except that the data refer to foreground
and background colors rather than display positions.

SPRITE PATTERN GENERATOR TABLE — Same as the
pattern generator table except that the patterns refer to
sprites which can be displayed on the sprite planes.
Sprite patterns are defined in blocks of 8 binary numbers

- — large sprites are formed from 4 such blocks.

NAME TABLE — For the purposes of the name table the
screen is divided up into small squares and the name
table has an entry for each square. These entries define
which pattern block is to be displayed in that particular
square.

SPRITE ATTRIBUTE TABLE — The sprite attribute table
has 32 * 4 byte entries one entry for each of the sprite
display planes. An entry consists of:

a) Y co-ordinate — display position down the screen.
b) X co-ordinate — display position across the screen.

c) Sprite number — 0 to 255 for 8 * 8 sprites.
0 to 255 step 4 for 16 * 16 sprites.

d) Sprite color — Bits 0 to 3 contain the color.
Bit 7 is used to move the sprite to the
left in order to facilitate entry from
behind the left border.

— 48 —

VIDEO CHIP REGISTERS

In order to set up and maintain control over the various tables
the video chip has a set of 9 registers.

REGISTER O
BIT NO. 7 6 5 4 3 2 1 0

ololololololx|!eE

Only two bits of register Q are used namely bit 0 and bit1. BitO
is the EXTERNAL VIDEO ENABLE BIT which is normally set
to zero on the MSX machines. Bit 1 is marked X and wvill be

discussed under register 1.

XL E R EEREELRELESRSEREJESE]

REGISTER 1
BIT NO. 7 6 5 4 3 2 1 0
R B (Y Z 0 S M

All bits are significant with the exception of bit 2 which is
reserved for future expansion. '

BIT 0 — The sprite magnification bit —
0 for normal size.
1 for double size.

BIT 1 — The sprite size bit — O for 8 * 8 sprites.
1 for 16 * 16 sprites.

BIT 2 — Reserved.

BIT 3, BIT 4 AND BIT 1 REGISTER 0 — These 3 bits act
together as in the following table.

X Y Z
TEXT SCREEN O 0 1 0
TEXT SCREEN 1 0 0 0
GRAPHICS SCREEN 2 1 0 0
GRAPHICS SCREEN 3 0 0 1

— 49 —

BIT 6 — The VDP interrupt enable bit — 0O to disable interrupt.
1 to enable interrupt.

‘BIT 6 — The video enable bit — 0 to disable the display.
1 to enable the display.

BIT 7 — The RAM select bit — 0 to select a 4K video RAM.
1 to select a 16K video RAM.

R R R EEEE R E R EEREXREJRES:ES:XE)

REGISTER 2
BIT NO. 7 6 5 4 3 2 1 0
0 0 |name table base address

Register 2 contains a number between 0 and 15 from which
the BASE ADDRESS of the name table can be calculated.

NAME TABLE BASE ADDRESS = (REGISTER 2) * 400 HEX

LR R R R RN R EREEEREEEEXS]

REGISTER 3
BIT NO. 7 6 5 4 3 2 1 0

color table base address

Register 3 contains a number between 0 and 255 — The
COLOR TABLE BASE ADDRESS is calculated as follows:

COLOR TABLE BASE ADDRESS = (REGISTER 3) * 40 HEX

LA R R E R EE R R R R RS X RN N

REGISTER 4
BIT NO. 7 6 5 4 3 2 1 0

0 0 0 0 |pattern generator

Register 4 contains a number between 0 and 7 from which the
PATTERN GENERATOR BASE ADDRESS can be calculated.

PATTERN GENERATOR BASE ADDRESS =
(REGISTER 4) * 800 HEX

— B0 —

REGISTER 5
BIT NO. 7 6 5 4 3 2 1 0

sprite attribute table base address

Register 5 contains a number between 0 and 127 which
defines the SPRITE ATTRIBUTE TABLE position in the video
RAM. .

SPRITE ATTRIBUTE TABLE BASE ADDRESS =
(REGISTER 5) * 80 HEX

LA SRR ERREEESEAEERNENSEXEHE.]

REGISTER 6
BIT NO. 7 | 6 5 4 3 2 1 0

0 0 0 o 0 sprite pattern

Register 6 contains a number in the range O to 7 from which
the SPRITE PATTERN GENERATOR BASE ADDRESS can be

calculated.

SPRITE PATTERN GENERATOR BASE ADDRESS =
(REGISTER 6) * 800 HEX

(B E R EEREEEEREE R ERYE S

REGISTER 7
BIT NO. 7 | 6 5 4 3 2 1 0

text color back drop color

Register 7 controls the global colors. In text mode the
backdrop section of the register contains the background
color whilst in graphics mode register contains the border
color,

LA A SR EREREEEEEEEERERE RS

REGISTER 8
BIT NO. 7 6 5 4 3 2 1 1+ 0
C fifth sprite plane number

— 51 —

The interpretation of Register 8 is as follows:

BIT 7 — This is the interrupt flag which is set to 1 every time
the VDP completes a screen scan.

BIT 6 — This is the FIFTH SPRITE FLAG and is set to 1
whenever there are five sprites in a horizontal line across the
screen. When five sprites are.in a horizontal line across the
screen then the sprite on the lowest plane (highest plane
number) will disappear.

BIT 6 — This is the sprite coincidence flag which is set to 1
whenever two sprites collide.

BITS 0 TO 4 — These bits contain the plane number of the fifth
sprite. .

LA A R E R R R AR S SR EERSES]

This concludes the examination of the VIDEO CHIP - in the
next few chapters you will learn how to use the VDP and its
registers in some advanced ways.

- 52 —

o

CHAPTER 10

DIRECT ACCESS TO THE VIDEO CHIP AND VIDEO RAM

The MSX communicates with the VDP and the VRAM
through 4 INPUT/CUTPUT PORTS. The ports concerned are
as follows:

1) OUTPUT PORT &H98 WRITE VRAM DATA._

2) OUTPUT PORT &H99 WRITE ADDRESS OR
REGISTER NUMBER

3) INPUT PORT &H98 READ VRAM DATA.
4} INPUT PORT &HO9 RESET STATUS REGISTER.

WRITING TO THE VDP REGISTERS
1) Decide on the data to the output to the register and place
the data into variable X, eg. X = 19,

2) Decide on the register to which the data is to be output
and place the register number into variable Y. eg. Y = 7.

3) Output the data in the following way:.

10 Z = INP(&H99)
20 OUTEHE9, X
30 OUTEH99,(YOR&HS0)

- Type RUN followed by ENTER to transfer the data to the VDP
register,

NOTE

a) Z = INPI&H99) resets the STATUS REGISTER to enable
a good transfer to take place.

b) inline 30 data bit 7 is set (ie. register number OR &H80 is
output) to signal to the VDP that we wish to transfer data
10 a register and not to VRAM memory,

c) There is an easier way (in Basic) to write to a VDP register
using the basic word VDP.
e.g. VDP(7) = 19.

READING FROM THE VIDEO RAM MEMORY

1). Decide on the VRAM address from which you want to
start reading data — place this address into variable X —
eg. X = 27b.

2) Convertthe address into a 4 digit hex number = &H0113,

Ce3_

3) Divide the hex address into a low byte = &H13 and a
high byte = &HO1. »

4) Reset the status register.

5) Send the low byte out through port &H99.
6) Send the high byte out through port &H99.
7) Read the data in through port &H98.

SPECIAL NOTE TO PROGRAMMERS

In order to maintain compatibility with all future versions of®
MSX, the port numbers to read and write VDP memory data
have been placed at set addresses in ROM.

VDP read data port number is contained in address &HO00O06.
VDP write data port number is contained in address &H0007.

Your program should read the relevant port number from
these addresses before performing a direct read or write
operation, Future versions of MSX may use different ports but
your program will still operate correctly because the port
numbers were read from the ROM.

PROGRAM LIST 10.1

VRAM DIRECT READ

10 ' example VRAM direct read
20 CLS:DI =PEEK(6)
30 VPOKE&H113,65
40 VPOKEE&H114,78
50 X =INP(&H99)
60 OUT&H99,8H13
70 OUT&H99, &H1
80 Z1 =INP(DI)
90 Z2 =INP(D})
100 PRINTZ1,Z22

Program 10.1 illustrates the method of direct reading of the
video RAM. Two characters are poked onto the screen and
then the VRAM address is output through port &H99. The
character codes are then read directly through the port
contained in variable DI — NOTE that the VRAM address
increments automatically after every read.

— 54 —

WRITING TO THE VIDEO RAM MEMORY

1} Decide on the VRAM address 10 which you want to start
writing data — place this address into variable X — eg. X
= 278.

2) Convert the address into a 4 digit hex number = &H0113.

3) Divide the hex address into a low byte = &H13 and a
high byte = &HO1.

4} Reset tha status register,
B) Send the low byte out through port &H99.

6) Send the high byte or &H40 out through port &H99.
NQTE that bit 6 is set to inform the video chip that we
want to do 8 VRAM WRITE OFPERATION.

7) Write the data out through the output port indicated in
ROM byte 7.

PROGRAM LIST 10.2

VRAM DIRECT WRITE

10 ‘example VRAM direct write
20 CLS:DO = PEEK(7)

30 21=65

40 22=78

50 X = INP{&M99)

60 QUT&H99,6H13

70 OUTEH99,{erH10REH40)
80 OUTDO,Z1

90 OUTDO,Z2

This program illustrates the method of directly writing to the
video RAM memory. Two ASCIl codes are placed in
variables Z1 and Z2. The VRAM destingtion address is output
through port E6H99 — first the low byte and then the high byte
or &H40. The two data bytes are then output through the port
contained in variable DO. NOTE that the destination address
automatically increments with each write operation.

— 65 —

CHAPTER 11

TEXT MODE

The MSX text mode is known as SCREEN 0 — this is the
default mode which is always current when the computer is
switched on. (NB. MSX produced for the Japanese market
defaults 1o screen 1).

TEXT MODE VDP REGISTER CONTENTS

REGISTERO = 0

REGISTER 1 = &HFO

REGISTER 2 = 0.... NAME TABLE STARTS AT 0.

REGISTER 3 = ?7.... NOT SIGNIFICANT iN TEXT MODE.

REGISTER 4 = &H1 PATTERN GENERATOR STARTS AT
&H800. - :

REGISTER 5 = 7 NOT SIGNIFICANT IN TEXT MODE.

REGISTER 6 = ?.... NOT SIGNIFICANT IN TEXT MODE.

REGISTER 7 = &HF4 WHITE TEXT/BLUE BACKGROUND.

REGISTER 8 = 7 DEPENDS ON INTERRUPT STATUS.

1)

2)

3)

4)

NOTES

In text mode the screen is divided into 960 pattern
positions each of which is capable of displaying a
character. There are 40 positions in each row and 24
rows,

The pattern NAME TABLE starts at VRAM address 0 as
defined by (register 2) * &H400 = 0 * &H400 = 0.

Each entry in the name table represents a pattern
position on the screen, Position 0 is in the top left of the
screen. The position numbers increase across the screen
so that the top right hand position is 39 and the second
row ranges from 40 on the left to 79 on the right. Position
mapping is illustrated in figure 11.1.

There is a one 10 one carrespondence between the
screen character position-and the character code
position in the name table. eg. The character in screen
position 167 is contained in VRAM byte 167 which is the
168'th entry in the name table.

— 56 —

FIGURE 11.1

TEXT SCREEN CHARACTER POSITION MAP

0 1 2 | 37 | 38 | 39
40 | 41 | 42 | e, 77 | 78 | 79
80 | 81 | 82 | oo, 117 | 118 | 119
120 | 121 | 122 | oot 167 | 168 | 159
160 | 161 | 162 | wververcereeeenan, 197 | 198 | 199
200 | 201 | 202 | ... S 237 | 238 | 239

240 | 241 | 242 | i 277 | 278 | 279
280 | 281 | 282 | .ccercvereries 317 | 318 | 319
320 | 321 | 322 | oo, 357 | 388 | 359
360 | 361 | 362 | oo, 397 | 398 | 399
400 | 401 | 402 | oo, 437 | 438 | 439
440 | 441 | 442 | o, 477 | 478 | 479
480 | 481 | 482 | oo, 517 | 518 | 519
520 | 521 | 522 | oo 567 | 558 | 559
560 | 561 | 562 | .covcoerorirrrienn, 597 | 598 | 599
600 | 601 | 602 | corvcverererennes 637 | 638 | 639
640 | 641 | 642 | oo, 677 | 678 | 679
680 | 681 | 682 | ccovrcorroorrinnas 717 | 718 | 719
720 | 721 | 722 | s 767 | 758 | 759
760 | 761 | 762 | e 797 | 798 | 799
800 | 801 | 802 | .ooovevrrinrrennns 837 | 838 | 839
840 | 841 | 842 | .o 877 | 878 | 879
880 | 881 | 882 | oo, 917 | 918 | 919
920 [921 | 922 | oo, 957 | 958 | 959

— 57 —

PATTERN GENERATOR TABLE

In text mode the pattern generator table contains the
character set and is located at (register 4) * &H800 = 1 * 2048
decimal — ie. the character set starts at VRAM address 2048.
Each character is defined in an 8 byte block of VRAM memory
and the maximum number of character definitions in the
generator table is 256.

Characters are defined as follows:

CHARACTER A: 2568 00100000 32
2569 01010000 80
2570 10001000 136
2571 10001000 136
2572 11111000 248
2573 10001000 136
25674 10001000 136
2575 00000000 o

CHARACTER S: 2712 01110000 112
2713 10001000 136
2714 10000000 - 128
2715 01110000 112
2716 00001000 8
2717 10001000 136
2718 01110000 112
2719 00000000 0

Program list 11.1 is a short program to display all the character
definitions on the screen. Interpret the display as follows:

a The number on the left is the VRAM address of the byte
containing the relevant piece of character data.

b) The data is displayed in binary form in the middle of the
screen and in decimal form on the right of the screen.
You may change any character by using VPOKE to
change the character data.

c) Notice that the two least significant bits are always zero

for the ASCII characters — this is because the standard
MSX character is defined in a 6*8 block of dots.

— 58 —

i

j
|
i
J
[

PROGRAM LIST 11.1

10 ' character definitions

20 SCREEN 0:FORX =2048T0Q4097STEP8
30 FORY =0TO7.

40 B$ =BINS(VPEEK(X +Y))

50 B$ =STRING$(8—LEN(B$),48) + B$

60 PRINTX +VY,BS; TAB(28)VAL(”&B” +B$)
70 NEXTY

80 PRINT:PRINT.

90 NEXTX

LA R E R SR EE R EEREREERESSEES]

CHARACTER SETS

The video chip will support up to 7 different character sets
held in video memory at the same time. The sets must be
located starting at an 800 hex address boundary and the set

currently in use is selected using the VDP register 4.

CHARACTER SET DEFINITION TABLES START

ADDRESSES

SET NUMBER VRAM START ADDRESS REGISTER 4

2048
4096
6144
8192
10240
12288
14336

NOOMWN -

Set 1 is the standard character set to which the MSX defaults
at power on. The other 6 sets must be user defined or
constructed by modifying set 1. The following 3 program lists
(11.2, 11.3, 11.4) demonstrate the use of the other character
sets. In each of the programs a second character set is
created by modifying the standard set — call the new set
using GOTO 100 and return to the standard set using GOTO

200.

NOTE that you must be in:screen 0 when running these

programs.

— B9 —

NOADPWN-—-

PROGRAM LIST 11.2
'THE INVERSE SET

10’ inverse set located as set 7
20 FORX =0T02047
30 VPOKE 14336 + X,256—-VPEEK{2048 + X)
40 NEXT ’
99 ‘ call inverse set
100 VDP@) =7
110 END
199 ’ restore normal set
200 VDP{4) =1
210 END

LEEEZEE RS EZEEEEEE RN R K]

PROGRAM LIST 11.3

THE UNDERLINE SET

10 * underline set located as set 2
20 FORX =0TO2047 '
30 vPOKE4098 + X,VPEEK{2048 + X)
40 NEXT
50 FORX =15TQ2047STEPS
60 VPOKE4096 + X,255
70 NEXT
99 * call underline set

100 VDP(4)=2

110 END

199 ’ restore normal set

200 VDP{4)=1

210 END

PROGRAM LIST 11.4
THE UPSIDEDOWN SET

10 ' upsidedown set located as set 3

20 FORX=0TQ2047STEPS

30 FORY =7TO0STEP—1

40 VPOKEG144 + X +7—Y ,VPEEK(2048 + X +Y)
50 NEXTY

60 NEXTX

99 ’ call upsidedown set
100 VDP(4)=3
110 END
199 ' restore normal set
200 VDP@4) =1
210 END

LES R EEEREE R E R LR EE N EN]

USING REGISTER 7

In text mode register 7 defines the foreground (ink) and
background (paper) colors. It works like this:

1) Select the fareground color — eg. black = 1.
2) Select the background color — eg. yeljow = 11.

3) Convert the color numbers into HEX - foreground
' background

Wl
w:

4) Join the two hex numbers together = 18.

5) Output this value to register 7 using the following:
10 VDP(7) =&6H1B

Now type RUN followed by ENTER and the colors will
change 1o BLACK TEXT on a YELLOW BACKGROUND.

That concludes the examination of the TEXT MODE — in

the next chapter we look at the VDP in 32 column text
mode {(screen 1).

—~ 61 —

CHAPTER 12

THE 32 COLUMN TEXT SCREEN

The MSX 32 column text screen (SCREEN 1) provides a text’
scraen which can display 15 colors plus transparent — sprites
can also be used on this screen. The screen uses the
GRAPHICS 1 mode of the TMS 8918A video chip which will
support 256 two color characters or user defined graphics (8 *
8 dot picture biocks).

32 COLUMNS TEXT VDP REGISTER CONTENTS

REGISTER 0 = &HOO
REGISTER 1 = &HEO
REGISTER 2 = &H06 NAME TABLE BASE ADDRESS

=" &H1800

REGISTER 3 = &H80 COLOR TABLE BASE ADDRESS

. &H2000
REGISTER 4 = &HO0O0 PATTERN GEN BASE ADDRESS
&HO000
REGISTER 5 = &H36 SPRITE ATTRIBUTE TABLE
' &H1B00
REGISTER 6 = &H07 SPRITE PATTERN TABLE
&H3800
REGISTER 7 = 7 .. DEPENDS ON THE BORDER COLOR
REGISTER 8 = ? ... DEPENDS ON INTERRUPT STATUS
NOTES

1)

2)

3)

Imagine the screen is divided up into 768 blocks and each
block consists of 8 * 8 dots or PIXELS (picture elements).
There are 32 blocks in a rovw and 24 rows on the screen.

The PATERN GENERATOR table is located from 0 to
&H7FF in the video ram — the table is filled with the
standard MSX character set when screen 1 is first
selected. Arw or all of the characters may be redefined by
inserting data bytes using VPOKE.

The NAME TABLE has 768 entries one for each picture
block on the screen. When SCREEN 1 is blank then sach
entry in the name table is 32 which corresponds to the
ASCIH value of the space character. The entry of any ASCII
value in the name table will result in the corrasponding
character being displayed on the screen.

4)

The COLOR TABLE has 32 entries each entry defining a
unique forground and background color for a block of 8
characters or UDG.

To illustrate these concepts switch on your computer
and type in the following mini program:

10 SCREEN 1

20 FOR X = 0 TO 2565
30 VPOKE &H1800+ X, X
40 NEXT -

50 LOCATE 0,12

Now type RUN followed by ENTER.

This little program displays the MSX characters by
placing the ASCII values into the NAME TABLE.

Now for some color — list the program and change it as
follows: :

10 SCREEN 1
20 FOR X = 0 TO 255

30 VPOKE &H1800 +X,X
40 NEXT _
50 VPOKE &H2000,&H18B
60 VPOKE &H2001,&H8B
70 LOCATE 0,12

The new lines 50 and 60 make entries in the first two
positions of the color table — notice that each color table
entry is in two parts the first hex digit refering to the
forground color and the second digit refering to the
background color. Notice also that each color entry
controls the color of a block of 8 characters.

Nowv lets look at defining a UDG — list the program and
modify as follows:

10 SCREEN 1
20 FOR X = 0 TO 2565
30 VPOKE &H1800 + X, X
40 NEXT
60 VPOKE &H2000,&H1B
60 VPOKE &H2001,&H8B
70FORX =0TO 7
80 READ Y
90 VPOKE X,Y
100 NEXT
110 LOCATE 0,12
120 DATA 66,60,90,125
130 DATA 60,24,36,66

— 63 —

RUN the program and notice the new character (a space
invader) in the top left hand corner — this character is of
course defined by the dats in lines 120 and 130.

Screen 1 will support three different pattern genefator tables
or sets of 256 characters (UDG). Only one table may be active
on screen at any one time,

The tables are located as follpws:

TABLE 0 VRAM ADDRESS &H0000 TO &HO7FF
TABLE 1 VRAM ADDRESS &H0800 TO &HOFFF
TABLE 2 VRAM ADDRESS &H1000 TO &H17FF

Table 0 and 1 are initialised to contain the MSX character set
by a SCREEN 1 call. Tabie.2 must be defined by the user. To
select a particular table use the VDP (4) command:

eg. VDP (4) = 2 to select table 2.

MOVEMENT

Before moving on to the graphics screens lets try some
movement on screen 1.

First run the program which defines the space invader in
character position zero. Now type NEW and type in the
following program:

10 CLS

20 FOR X = &H1801 TO &H1AFF
30 VPOKE X—1,32

40 VPOKE X,0
B0FORY = 1TO 100
60 NEXT

70 NEXT

RUN this program — it causes our space invader to move on
the screen. Note that the Y loop slows down the action and
can be changed to change the speed. Note also that when
UDG are moved then the image in the old position has to be
erased — line 30 does this. Delete line 30 and see what
happens.

REMEMBER that screen 1 supports all sprite functions this
together with UDG, color and movement make screen 1 a
very useful screen for games programming.

In the next chapter we look at the high resolution graphics
screen 2.

— 64 —

CHAPTER 13

THE HIGH RESOLUTION SCREEN

The MSX high resolution screen (SCREEN 2) provides a
resolution of 256 dots across the screen and 192 dots down
the screen. The screen uses the GRAPHICS 2 mode of the
TMS 9918A video chip which can display 15 colors plus
transparent in a standard 8 * 8 dot picture block (user defined
graphic).

HI—RES GRAPHICS VDP REGISTER CONTENTS

REGISTER 0 = &H02
REGISTER 1 = &HEO
REGISTER 2 = &HO06 NAME TABLE BASE ADDRESS =
- . &H1800 ~
REGISTER 3 = &H80 COLOR TABLE BASE ADDRESS =
£H2000
REGISTER 4 = &HOO PATTERN GEN BASE ADDRESS =
&H0000
REGISTER 5 = &H36 SPRITE ATTRIBUTE TABLE =
£H1B00
REGISTER 6 = &HO7 SPRITE PATTERN TABLE =
 &H3800
REGISTER 7 = ? ... DEPENDS ON THE BORDER COLOR

REGISTER 8 = 7 DEPENDS ON INTERRUPT STATUS

1)

2)

NOTES

Imagine the screen is divided up into 768 blocks and each
block consists of 8 * 8 dots or PIXELS {picture elements).
Further imagine that the screen is divided horizontaly into
three equal sections — each section contains 256 picture
blocks. There are 32 blocks ineach line and 8 lines in each
section making a total of 24 lines on the screen.

The NAME TABLE has three sections — one for each
section of the screen. Each section of the name tabie has
256 entries — one for each picture block in the screen
section. When SCREEN 2 is first selected the name table
entries correspond to the screen positions — ie. the first
entry in each sectionis 0 the nextis 1 and so on to the last
entry in the section which is 265. This means that any
entry in @ PATTERN GENERATOR TABLE will
immedia: :@come visible on the screen.

— 65 —

3) Léts make an entry into the pattern generator table to
ilustrate these concepts:

10 OPEN “GRP:“"FOR OUTPUT AS#1
20 SCREEN 2

30 PSET(1,0),4

40 PRINTH1,"A"

60 GOTO 50 -

This mini program appears to PRINT an “A” in the top left
hand corner of the screen — in fact we have transfered the 8
pieces of data which define “A” into the first 8 entries of the
pattern genarator table. Further we have shiftad that data one
dot to the right so that the “A” is more central within ths
graphics B * 8 picture block

The first 8 bytes in the pattern generator table now look as
follows:

BYTE &HO000 00010000
BYTE &H0001 00101000
BYTE &H0002 01000100
BYTE &H0003 01000100
BYTE &H0004 - 01111100
BYTE &HO0005 - 01000100
BYTE &H0008 01000100
BYTE &HJO007 00000000

Now press CTRLU/STOP and modify the mini program as
follows:

10 OPEN “GRP:“FOR OUTPUT ASitH
20 SCREEN 2

30 PSET (1,0),4

40 PRINTH,“A”

50 PSET (8,04

60 PRINTZ§1,B”

70 GOTO 70

When you RUN this program we find a “B” next to the “A"” on
the screen — we have now transfered the 8 data bytes which
define “B” into the next 8 entries of the patterm genersator
table. Again we have made the charactaer more central within
the B8 * 8 picture block.

The next B bytes in the pattern generator table now look like
this:

BYTE &H0008 01111000
BYTE &H0009 00100100
BYTE &HO00A 00100100
BYTE &HO00B 00111000
BYTE &HO00C 00100100
BYTE &HOCOD - . 00100100
BYTE &HOOOE 01111000
BYTE &MHOOOF 00000000

4) Now lets introduce some color into our two user defined
graphics. The color table starts at VRAM address
&H2000 and there is one color entry to match each entry
in the pattern generator table. Color table entries are
constructed as, follows:

i} Decide ona foreground color — ie, the color to be
assumed by the 1's in the pattern definition — eg.
RED = 6.

i} Decide on a background color — ie. the color to be
assumed by the 0's in the pattern definition — eg.
YELLOW = 10.

ili) Convert color numbers into hex: —
FOREGROUND = B,
BACKGROUND = A

ivl Join the two hex digits together = B8A,

v} Place the result into the correct place in the color
table:
eg. VPOKE &H2000,&HG6A

Now press CTRUSTOP and modify the mini program as
follows:

10 OPEN “GRP:” FOR OUTPUT ASH1
20 SCREEN 2
30 PSET (1,0),4
40 PRINTH1,“A”
50 PSET (9,0),4
60 PRINT $1,”B”
7J0FORX = 0TO 7
80 VPOKE &+2000 + X, EtHBA
90 VPOKE &H2008 + X, &HA6
100 NEXT
110 GOTO 110

The first few entries in the color table now look like this:
&H2000 &§HBA

£H2007 EHHBA
£H2008 E&HAB

ErH200F EHAB

NOTE that each data entry in the pattern generator table has a
corresponding entry in the color table and the address cf the
color entry is equal to the address of the pattern generator
table entry plus &H2000. ‘

B) Lets now examine the NAME TABLE — at the moment
the name table is set up so that any screen position will
display its corresponding block graphic as defined in the
pattern generator table. So for example screen position O
(top left hand corner) displays the “A’ which is defined in
position 0 of the pattern generator table and in position O
of the color table. Likewise the “B" is in position 1 on the
screen and in the tables.

If we change the name table entries we can move the image
on the screen — to illustrate this press CTRL/STOP and
modify the mini program as follows:

10 OPEN “GRP:” FOR OUTPUT ASH1
20 SCREEN 2
30 PSET (1,0),4
40 PRINTH1,“A”
50 PSET (9,0),4
60 PRINTH1,7B”
70FORX =0TO 7
80 VPOKE &H2000 + X,&H6A
90 VPOKE &H2008 + X, &8HAB
100 NEXT
110 FOR X = 0 TO 265
120 VPOKE &H1800+X,0
130 NEXT
140 FOR X = 0 TO 255
150 VPOKE &H1800 + X,1
160 NEXT
170 FOR X = 0 TO 2556
180 VPOKE &H1800+X,2
190 NEXT
200 VPOKE &H1850,0
210 VPOKE &H18FF 1
220 GOTO 220

— 68 —

NOTES

a) .Lines 110 to 130 fill the top section of the screen with
user defined graphic 0 — the A", ’

b) Lines 140 to 160 fill the top section of the screen with
_user defined graphic 1 — the “B”.

c) Lines 170 to 190 fill the top section of the screen with
user defined graphic 2 — undefined and therefore just
blank.

d} Finally lines 2b0 and 210 place the user defined graphics
at specific locations on the screen section,

USER DEFINED GRAPHICS ARE ONLY ACTIVE IN THE
SCREEN SECTION FOR WHICH THEY WERE DEFINED —
YOU WILL RECALL THAT THE SCREEN IS DIVIDED INTO 3
SECTIONS — TOP THIRD, MIDDLE THIRD, AND BOTTOM
THIRD. EACH SCREEN THIRD HAS ITS OWN SET OF UDG.

NE MUTLU TURKUM DIYENE

SCREEN 2 TABLE ADDRESSES {TOP THIRD)

NAME TABLE (TOP THIRD)

£H1800| &H1801| &H1802]...... |eH181D|&H181E| &H181F
&+H1820| &H1821| ©@H1822|...... {&H183D| &H183E| &rH183F
£H1840| 6H1841| eH1842} |erH185D | &rH1 85E| &rH185F
&H1860|&H1861 | &H1862|...... |eH187D|eH187E| &H187F
£H1880| &rH1881| ErH1882|...... |erH 189D | &rH189E | erH189F
erH18A0ErH18A1|eH18A2)...... lerH18BDjEH18BE|&H18BF
gH18co|erH18C1|&H18C2|...... [eH18DD]EeH18DE|&H18DF
&H18E0|&H18E1| &H18E2]...... |eH18FD|&rH18FE|&H18FF

Each address represents the name table address for that
particular screen location in the top third of the screen.

PATTERN GENERATOR AND COLOR TABLE
ADDRESSES (TOP THIRD)

PATTERN GENERATOR COLOR TABLE
&H0000 £H2000
&H0001 &H2001
&H0002 &H2002
&HO7FD &H27FD
&HO7FE &H27FE
&HO7FF GH27FF

NOTE that the first B entries in the pattern and color tables
refer to user defined graphic 0, the second 8 entries refer to
UDG1, and so on — the last B entries refer to UDG2565. Note
also that each UDG number is unique to the top third of the

scraen,

—70 —

SCREEN 2 TABLE ADDRESSES (MIDDLE THIRD)

NAME TABLE (MIDDLE THIRD)

&H1900| &H1901| &H1902|....... 8H191D|E&H191E| &H191F
&H1920| &H1921| &6H1922]....... &H193D|&H193E| &H193F
&§H1940| &H1941| &H1942|....... &H195D|&8H196E| &H195F
&§H1960| &H1961| &H1962|....... &H197D|&8H197E1 &H197F|
&§H1980(&H1981| &H1982|....... &H199D | &H199E| &H199F
&H19A0/8H19A1|&H19A2]....... &H19BD|&H19BE|&H19BF
&H19C0o|&H19C11&H19C2|....... [ErH19DDI&H19DE|&H19DF
&8H19E0|&H19E1 | &H19E2]....... &H19FD|&H19FE| &H19FF

Each address represents the name table address for that
particular screen location in the middie third of the screen.

PATTERN GENERATOR AND COLOR TABLE
ADDRESSES (MIDDLE THIRD)

PATTERN GENERATOR COLOR TABLE
€HO0800 £rH2800
£rHO801 £H2801
€H0B802 €rH2802
ErHOFFD EH2FFD
ErHOFFE ErH2FFE
ErHOFFF ErH2FFF

NOTE that the first 8 entries in the pattern and color tables
refer to user defined graphic 0, the second 8 entries refer to
UDG1, and so on — the last 8 entries refer to UDG256. Note
also that each UDG number is unique to the middle third of the

screen.

—71 -

SCREEN 2 TABLE ADDRESSES (BOTTOM THIRD)

NAME TABLE (BOTTOM THIRD)

&H1A00|8H1A01|&H1A02)....... SH1ATDIGHTATE{EHT1ATF
&H1A20|8H1A21|&6H1A22]...... |&tH1 A3D[&H1A3E/&H1A3F
&H1A40|5H1A41 1 &H1A42|.......[&H1ASD|&H1 ABE|&H1ASBF
&H1A60|8H1AG1|&H1AB2|....... &H1A7D|&H1A7E|I&H1ATF
SH1A80|&H1A81 &M 1AB2|....... &H1A9D|EH1 AQE|&H1A9F
aH1AAQEHT1AATNEHTAAZ]...... &H1ABD{&H1 ABEE&H1ABH
&H1ACO[EH1ACT|®#HTACZ]....... &H1ADDL&H1ADE&H1A_DF
SH1AEO|&H1AE1|&HTAE2]...... |8H1AFD|E&H1 AFE[&H1AFF

Each address represents the name table address for that
particular screen location in the bottom third of the screen.

PATTERN GENERATOR AND COLOR TABLE
ADDRESSES (BOTTOM THIRD)

PATTERN GENERATOR

COLOR TABLE

£H1000 £H3000
£H1001 £H3001
£H1002 £rH3002
&H17FD &H37FD
EH17FE &H37FE
EH17FF EH37FF

NOTE that the first 8 entries in the pattern and color tables
refer to user defined graphic 0, the second 8 entries refer to
UDGH1, and so on — the last 8 entries refer to UDG2556. Note
also that each UDG number is unique to the bottom third of
the screen.

- The procedure is as follows:

1)

2)

3)

4)

5)

Set the SCREEN mode and then read the current value of
register 1 into a variable (X).

Set the VDP interrupt bit and the video enable/disable bit

to zero by using the binary mask &810011111 (&H9f) in
conjunction with the bitwise AND instruction.

Write the new value to the VDP register 1.

Perform any basic instructions toc draw your picture on
the graphics screen.

Restore the old value in the VDP register 1. The picture is
instantly displayed on the screen.

This procedure is illustrated in program list 13.1.

PROGRAM LIST 13.1

10 COLOR15,4,4

20 SCREEN2
30"
40 ' x=vdp reg1 data
50
60 X = VDP(1)
70"
80 ’ disable screen
80’
100 Z=(X AND &H9F)
110 VDP{(1)=2
120

130 CIRCLE(90,90),20,8
140 PAINT(90,90),8
150 LINE(10,10)—(180,50),11,BF

— 73—

PROGRAM LIST 13.1 (CONTINUED)

160 '

170 ' enable screen
180

190 VPD(1) =X
200

210 GOTO210

Change lines 130 to 150 in order to draw your own picturé
behind the scenes.

IZZE R R E TR R R RN N EEE)

In the next chapter we look at the use of the VDP status
register — register 8.

— 74 —

CHAPTER 14

THE VDP STATUS REGISTER

Tha VDP status register (register B) is a read only register
which can be used to indicate the following:

1) When there are 5 sprites in a line.

2) The plane number of the ﬁfth gprite which bas
disappeared. '

3} When two or more sprites have collided.
Program list 14.1 illustrates the use of the status register:

PROGRAM LIST 14.1

10 SCREEN 2
20 FORX=0TO7
30 A% = A$ + CHR&(20b)
40 NEXT
50 SPRITES(0)=AS$
60 PUTSPRITEQ,{150,50),11,0
70 PUTSPRITE1,(160,501,8,0
80 PUTSPRITES,(170,60),13,0
80 PUTSPRITE4,(180,60),14,0
100 FORX = -20TO150
110 PUTSPRITEZ2,(X,50),3,0
120 NEXT
130 Z=VDP(8B)
140 SCREENO
160 PRINTBINS(Z)

The program places 4 sprites in a line and then introduces a
fifth sprite which moves from the right and collides with one
of the other sprites. The screen then changes 10 screen 0 and
the binary value of the status register is printed.

This value is &811100100. Interpret as follows:

a) Bit5 {third from the left) is @ 1 so there has been a sprite
collision.

b) Bit 6 (second from the left) is also 1 so there are 5 sprites
in a line — the 5 junior bits give the sprite plane of the fifth
sprite = 4. Notice that the sprite on the lowaest plane (of
the five} disappears.

—75 —

Program 14.2 shows another use of the VDP register 8 — to
detect which sprites have collided. The program works like
this:

1) The sprite collision is detected by the normal ON SPRITE
routine with the GOSUB set to line 200.

2) The routine at line 200 performs the following
operations:

i) Switches off each sprite in turn.

i) Allows time for the register 8 to be updated.

iii) Checks if the spritg collision flag is still active.
iv) Switches the sprite back on if flag still activé.
v} Displays plane number of collision sprite.

Note this routine can only be used to detect collisions when
one of the colliding sprites is known — eg. a bullet or missile
sprite.

PROGRAM LIST 14.2

10 ONSTOPGOSUB290:STOPON
20 DEFINTA—Z
30 SCREEN1
40 ONSPRITEGOSUB200
50 FORX =0TO7
60 A$=AS$ + CHR$(255)
70 NEXT
80 DEFFNSC(S) = (VDP(S)AND&BO00100000)
90S=8
100 SPRITES$(0)=A$
110 FORP=1TO15
120 PUTSPRITEP,(60+P*10,P*10),P,0
130 NEXT)
140 PD = (INTU{RND(—-TIME)}*150)/10)*10
150 SPRITEON
160 FORZ = —20T0255

— 76 —

PROGRAM LIST 14.2 (CONTINUED)

170 PUTSPRITEOG,(Z,PD),3,0

180 NEXT

190 GOTO140

200 SPRITEOFF

210 FORX =4TOB0STEP4

220 YP=VPEEK(&H1B00 + X)

230 IFYP=209THENNEXTELSEVPOKE&H1B00 + X,209
240 FORWT =1TOB0:NEXT

260 IFFNSC(S} = 0THENPRINTX/4:RETURN140
260 VPOKE&H1B00 + X,YP

270 NEXTX

280 RETURN140

290 SCREENO

300 END

In the next chapter we examine the VDP in low resolution
graphics mode.

— 77 —

CHAPTER 15

THE LOW RESOLUTION SCREEN

The MSX low resolution screen (SCREEN 3) provides a
resolution of 64 squares across the screen and 48 squares
down the screen. The screen uses the MULTICOLOR mode
of the TMS 9918A video chip which can display 15 colors plus
transparent on the screen; Full sprite facilities are also
provided.

LO-RES GRAPHICS VDP REGISTER CONTENTS

REGISTER 0 = &HOO
REGISTER 1 = &HES8
REGISTER 2 = &HO02 NAME TABLE BASE ADDRESS
= &HO0800
REGISTER 3 = &HO0O0 COLOR TABLE BASE ADDRESS
= &HO0000
REGISTER 4 = &HO0O PATTERN GEN BASE ADDRESS
’ = &H0000
REGISTER 5 = &H36 SPRITE ATTRIBUTE TABLE
= &H1B00
REGISTER 6 = &HO07 SPRITE PATTERN TABLE
= &§H3800
REGISTER 7 = ? ... DEPENDS ON THE BORDER COLOR
REGISTER 8 = ? DEPENDS ON INTERRUPT STATUS
NOTES

1)

2)

3)

Notice that the PATTERN and COLOR tables coincide on
this screen. This is because patterns are generated by
simpy lighting up different squares in different colors.

The screen is divided up into 768 blocks and each block
consists of 2 * 2 squares (each square is made up of 4
pixels). There are 32 blocks in each row and 4 rows in
each section. There are 6 sections and so there are a total
of 24 rows on the screen. Take particular note of the
difference between squares, blocks, and rows.

The blocks are arranged in columns with 4 blocks in a
column and the columns are arranged in sections — 32
columns to the section and 6 sections of columns on the
screen.,

— 78 —

4) The pattern/color table has six sections each containing
266 entries — one entry for each pair of squares in a
section of columns. Each of the entries defines the colors
of two adjacent squares on the screen.

5) The NAME TABLE has six sections and each section has
128 entries — one for each picture block in a section of
columns.

The table layout for the low resolution graphics screen is
rather complicated but the following diagrams and dlscussnon
may help you to understand it:

FIGURE 15.1

ADDRESS LAYOUT OF PATTERN/COLOR TABLE
(TOP SIXTH)

0 1 2 29 30 31
EHO000 &HO008 EHO01O EHOOE8 &HOOFO EHOOF8
&HO001 &HO009 EHO011 ... &HOOE9 &HOOF1 E&HOOF9
E£HO002 EHOOOA EHO012 &HOOEA &HOOF2 EHOOFA
£HO0003 &HO00B &HO013 EHOOEB &HOOF3 &HOOFB
€HO0004 &HO00C &HO014 &HOOED &HOOF4 &HOOFC
£HO005 EHO00D &HO015 &HOOEE &HOOF5 &HOOFD
&HO0006 EHOOOE &HOO16 EHOOEF &HOOF6 &HOOFE
&HO007 &HOOOF EHO017 &H19FD &HOOF7 &HOOFF

Each address represents the pattern/color address for that
particular screen location in the top sixth or section of the
screen.

The following table depicts the entire patterh/color table:

SECTION ADDRESS COLUMN

NUMBER RANGE RANGE
1 &H0000 to &HOOFF 0 to 31
2 &H0100 to &HO1FF 32 to 63
3 &H0200 to &HO2FF 64 to 95
4 &HO0300 to &HO3FF 96 to 127
5 &HO0400 to &HO4FF 128 to 159
6 &§HO0500 to &HO5FF 160 to 191

- 79 —

Each address in the table contains the color definitions for two
squares on the screen (remember that a square is made up of
4 pixels). The color data is best illustrated by a two digit hex
number — the left hand digit defines the color of the left hand
square and the right hand digit defines the color of the right
hand square.

Lets examine these concepts with a little program:

10 SCREEN 3

20FORX =0TO 7

30 READ As

40 VPOKE X, VAL(“&H" + A$)
50 NEXT

60 GOTO 60

70 DATA 1B,2C,3D,6E

80 DATA B1,C2,D3,E6

Type this in your computer and RUN it.
Notice. that the first column in the top row of the screen is
filled with colored squares. If we put color data into VRAM

byte &H0008 then the colors would appear at the top of the
- screen (next columny).

Now lets look at the name table — the name table top section
is illustrated in the following dlagram
FIGURE 15.2.
NAME TABLE ADDRESSES (TOP ROW)

1 2 3 29 30 31
&H0800 &H0801 &HO0802 &HO081D &HO81E &HO81F
&H0820 &H0821 &HO0822 &HO083D &HOB3E &HO83F
&HO0840 &HO841 E&HO0842 &H085D &HOB85E &HO85F
&H0860 &H0861 &HO0862 &H087D &HO87E &HO87F

Each address represents the name table address for that
particular screen block in the top section of the screen.

— 80 —

Notice that there are half as many entries in the name table
section as there were in the pattern/color table — this is
because a name table entry is controlling a pattern block
consisting of four squares whilst the p/c table entry is
controlling only two squares.

NOTE that when screen 3 is first called each name table entry
is the same as the respective column number — soO entries in
the name table column O are all 0 and entries in the name table
column 96 are all 96.

Lets look at the table entries which control the column of
colored squares produced by the little program.

COL.ROW PATTERN/COLOR TABLE NAME TABLE

0.0 &HO0000 aH1B &HO0800 &HO00
&HO0001 &H2C

0,1 &H0002 &H3D &§H0820 &HO00
&HO0003 &§HEE

0,2 - &H0004 &§HBA1 &H0840 &HO00
&HO0005 &HC2

0.3 &HO0006 &HD3 &§H0860 - &HOO

&HO0007 &HEB6

Notice that all the entries in the name table are zero — the zero
refers to the first column in the top section. The video chip
uses the row number (not stored in a table) and the name table
entry to decide which block to display. If you vpoke a zero in
the name table at say column 96 row 2 (vram address
&HO9CO) position then the image displayed will be identical to
that at column zero row 2.

XA E R X AR REEELESERENZSERES]

The layout of the VDP is difficult to explain and understand
but you are urged to spend some time experimenting with the
VDP facilities until you fully understand all the powerful
features of the video chip.

In the next chapter we take a first look at machine code.

—81 —

CHAPTER 16
MACHINE CODE

The remainder of this book is devoted to an introduction to
Z80 MACHINE CODE and its implementation on the MSX
computers. Programs presented include a full Z80 assembler
which the reader can find on the tape supplied with this book.

WHAT IS MACHINE CODE?

The microprocessor which is the heart of your computer
performs its various tasks in response to a set of instructions
— these instructions are called machine code. in the case of
the MSX computers the processor is the Z80A and the
instruction set is known as Z80 machine code.

Machine code is the only language which is understood by the
Z80 chip — high leve! languages such as BASIC are broken
down into raw machine code by the BASIC INTERPRETER in
the ROM before the Z80A chip can execute the instructions.

The machine code programmer has to break every task into
simple steps as he codes a program — he is rewarded for his
efforts by an enormous increase in operating speed. To
ilustrate the concept of breaking a task into parts consider the
following example:

TASK — Make a cup of coffee.
PARTS — Go to kitchen.

Find kettle.

Collect kettle.

Find water.

Collect water in kettle.
Find power point.
Plug in kettle.

Etc.

Etc.

Etc.

- 82 —

in computer terms the Basic (for humans but complex for the
computer} instruction may be — PRINT “MSX"” — but the
machine code equivalent will consist of many smaill individual
steps.

MACHINE CODE INSTRUCTIONS

In machine code the user can instruct the processor to
perform various arithmetic and logical operations on data
stored within the computer memory. Data transfers can also
be performed within the memory and between the computer
and various peripheral devuces

The machine code instructions and program data are stored in
the computer memory and the current instruction is indicated
by a pointer known as the PROGRAM COUNTER. To execute
a given instruction the user must simply point the program
counter at the memory byte containing that instruction.

MACHINE CODE AND THE MSX

When the MSX computer is operating under the standard
basic language the basic system is in control of the whole
memory area. Under these conditions your basic programs
can easily overwrite any machine code you may place in the
memory. To prevent this from happening you must reserve
some space which is safe from the basic system before you
install the machine code program. :

Safe places for a machine code routine are:
"a) In a basic REM statement.
b) [In a string.
¢) Above the top of basic memory.

The best place 1o install your machine code is above the top of
memory after reserving space by lowering the top of memory.
Look back at Chapter 6 to see how the CLEAR command is
used to lower the top of memory before installing a machine
code routine. f

To execute the machine code routine it is necessary to set the
PROGRAM COUNTER to point to the start address of the

— 83 —

routine. This is done using the DEF USR command followed.
by the Z = USR(0) command.

Machine code is just a series of numbers held within an area
of memory — each number is part of a Z80 instruction or a
piece of program data.

NOTE that machine code programs can be operated without
any basic support — such programs can be recorded on tape
using the BSAVE command and RUN using the BLOAD,R
command.

eg. BSAVE “TEST”,START ADDRESS,END ADDRESS,RUN
ADDRESS
BLOAD “TEST”,R.

THE Z80A CHIP

FIGURE 15.1
MAIN REGISTERS ALTERNATE REGISTERS
F A F A’
B C B’ c
D E D’ E’
H L H’ L

16 BIT REGISTERS

IX
Y
SP
PC
R : IV

’

IN ADDITION TO THE ABOVE REGISTERS THE Z80A IS
EQUIPPED WITH 256 INPUT PORTS AND 256 OUTPUT
PORTS FOR COMMUNICATION WITH PERIPHERAL
DEVICES SUCH AS THE SCREEN, TAPE, DISC ETC.

Figure 15.1 is a schematic diagram of the Z80A chip — lets
now look at the method of operation.

— 84 —

THE REGISTERS

There are two sets of working registers labelled MAIN
REGISTERS and ALTERNATE REGISTERS. The user can
select any one set of A,F registers with either set of
B,C,D,E,H,L registers to be active at any one time. The
register set which is not currently in use may be used as
storage because any data contained within those registers is
retained. Each of the registers is an 8 bit register (ie. it can
contain a number between 0 and 255) but under certain
circumstances the registers may be used in pairs as 16 bit
registers.

THE A REGISTER

This register is also known as the ACCUMULATOR and is
used for most arithmetical and logical operations, The status
of the A register {following such an operation) may be tested
by checking the flag register. This information may then be
used for various conditional jumps and calls.

THE F REGISTER

This is the FLAG register which contains various flags to
indicate the condition of the A register following an arithmetic
or logical operation.

THE B AND C REGISTERS

Usually used as loop counters (BC = byte counter) but can
also be used for temporary storage and other operations,

THE D AND E REGISTERS

Used for general work and as the destination address pointer
in block moves (DE = DEstination).

THE H AND L REGISTERS
These registers are generally used together as a 16 bit
address pointer with the HIGH BYTE of the address in

register H (H = High) and the LOW BYTE in the L register (L =
Low). .

— 85 —

THE IX AND Y REGISTERS

These registers are known as the INDEX REGISTERS and are -
used as address pointers. The actual address pointed to is

calculated as the sum of the register contents and a specified

offset or displacement between —128 and + 127.

THE SP REGISTER

The STACK POINTER REGISTER contains the address of the
current top of the stack. The programmer can set aside any
area of the computer RAM memory as a stack area or use the
-area set aside by basic for a stack (provided that the MC
program is called from basic).

All stack operations are 16 bit operations — the stack is used
for RETURN addresses and can be used as a temporary
storage area for register contents. The PUSH command
pushes the contents of a 16 bit register (eg. HL or BC) onto the
stack whilst the POP command pops the value off the stack
into a 16 bit register. NOTE that registers A and F act as a 16
bit register for stack operations.

Remember that the stack grows downward in memory so the
stack pointer is automatically decremented by 2 when a
number is added to the stack. The pointer increments by 2
when a number is removed from the stack.

THE PC REGISTER

The PC register is the program counter which contains the
address of the byte containing the current machine code
instruction. The program counter is automatically
incremented after each instruction is executed. The PC is
changed by each JUMP, CALL or RETURN command.

THE R AND IV REGISTERS

The REFRESH and INTERRUPT VECTOR registers are used in
advanced programming and can be ignored.

THE Z80A INSTRUCTION SET

Z80 machine code consists of over 700 instructions which
~ can be grouped into 8 main groups:

— 86 —

1) LOAD AND EXCHANGE INSTRUCTIONS

Data can be taken from any memory byte or from any register
and LOADED into another register or into any memory byte.
Registers B, C, D, E, H, and L may be used individually (as 8 bit
registers) i in pairs BC, DE, and HL as 16 bit registers.

The exchange instructions are used to exchange the contents
of one register with the contents of another register.
2) BLOCK TRANSFER AND BLOCK SEARCH INSTRUCTIONS

Block transfer instructions transfer a specified number of
bytes from one memory location to another.

Block search instructions search for a specific byte in a
specified area of the computer memory.

3) LOGICAL AND ARITHMETIC INSTRUCTIONS

The logical operations AND, OR, and XOR can be performed
between the A register and another register or memory byte.

Arithmetic operations include ADD, SUBTRACT,
INCREMENT (increase by 1) and DECREMENT (decrease by
1). '

4) ROTATE AND SHIFT INSTRUCTIONS

These instructions are used to ROTATE or SHIFT the bits
within a specified register. A shift to the left effectively
multiplies the register contents by 2 and a shift to the right
divides by 2.

5) BIT MANIPULATION INSTRUCTIONS

These instructions allow the user to SET, RESET, or TEST a
specific bit in a specified register or memory byte.

6) CALL, JUMP and RETURN INSTRUCTIONS

These instructions change the contents of the PROGRAM
COUNTER so the program will continue operating from a
different address. JUMP is similar to a basic GOTO, CALL is
similar to a basic GOSUB and RETURN equates to a basic
RETURN.

— 87 —

Jumps can be to a specified address or can be relative to the
current address up to 127 bytes forward or 128 backward
counting the displacement byte as —1.

7) INPUT/OUTPUT INSTRUCTIONS

The INPUT instructions can read a byte from any INPUT port
into any of the registers. The QOUTPUT instructions send a
byte from any register to any QUTPUT port. There are also
instructions which send or receive a block of bytes through a
specified port.

8) Z80 CONTROL INSTRUCTIONS

HALT and the interrupt control instructions fall into this
category.

L EEREEEEEEEEETEE R N R

MACHINE CODE MNEMONICS

To remember an instruction set which consists of over 700
sets of numbers is a formidable task and so it is fortunate that
THE ZILOG CORPORATION OF CALIFORNIA (the originators
of the Z80 chip) designed a set of mnemonics (memory aids)
to assist the user to write in machine code. A machine code
program which is written in mnemonics is known as a
SOURCE FILE which is made up of SOURCE CODE.

An ASSEMBLER takes a source file and turns it into true
machine code — the machine code file created by the
assembler is known as the OBJECT FILE which consists of
OBJECT CODE.

MACHINE CODE CONVENTIONS

THE BRACKETS RULE

A source code without brackets means that the operation

specified must be carried out upon the contents of the

register concerned.

eg. LD HL,dddd — means load register HL with number
dddd.

DEC DE — means decrement the contents of
register DE.

— 88 —

ADD A,B — means add the contents of register & w
the contents of register A and leave the
result in register A.

A source code with brackets means that the operation must
be carried out on the contents of the memory byte which is
pointed to by the address contained in the bracketed register.

eg. LD A{HL) — means joad the A register with the
contents of the memory byte pointed to
by the address held in the HL register,

DEC{HL) — means decrement the contents of the
memory byte pointed to by the address
_held in the ML register.,

LDADDR}LA - means load the memory address
contained in the brackets with the
contents of the A registar.

THE ORDER RULE

Where an instruction contains two registers or anaddress and
a register the first named register or address will contain the
rasult of the operation.

eg. LD SP.HL. — the Stack Pointer is lcaded with the
contents of the HL register.
ADD SPIY — add the contents of the IY register to the

Stack Pointer and put the result into the
Stack Pointer.

THE IMPLIED “A"” RULE

Where an instruction obviously needs two registers but the
mnemonic only contains one then the other register is always
the ACCUMULATOR.

eg. XOR D — means XOR the D register with the A
' register and put the result into the A

registar.
sUB B — means subtract the contents of the B

register from the contents of the A
register and put the result into the A
register,

THE 16 BIT RULE

When a 16 bit transfer takes place then the LOW BYTE is
placed into the specified address and the HIGH BYTE is
placed into the address + 1. This bit order applies for ail 16 bit
transfer operations — NOTE however that 16 bit registers
contain the high byte in the left hand portion of the register
{eg. B,D or H) and the low byte in the right hand part of the
register (C,E or L).

LA E R EEE EREESESREEE&ERE.

The full list of machine code mnemonics is presented in the
APPENDIX 1 for your convenience.

Do not worry if you dont understand machine code
immediately you will understand more and more as you do the
exercises presented in the next few chapters. The SUPER
ASSEMBLER operating instructions are presented in the next
chapter.

- 90 —

CHAPTER 17
THE SUPER ASSEMBLER

The SUPER ASSEMBLER is a full Z80 machine code
assembler for the MSX computers. The assembler was
written in machine code by my young friend BENNIE VAN
DER MERWE.

NOTE: The Super Assembler will only work with machines
which have at least 48 K RAM (including VRAM).

The assembler is located from address 48000 to 52480 or in
HEX from &HBBB80 to &HCDO00. Machine code programs can
be assembled at addresses above the end of the assembler
but please ensure that you do not assemble in the machine
area at the top of memory.

Do not assemble above 62336 (&tHF380) because this would
interfere with the system variables

LOADING THE ASSEMBLER

To load the assembler you simply type CLOAD “MSX”
followed by ENTER to load the loader program. RUN the
loader program which will then load the super assembler and
initialise KEY (F1) with the “ASSEMBLE” command. NOTE
that all the mini programs and source files in this book will be
found on your SUPER ASSEMBLER tape.

SPECIAL NOTE
If you try to assemble when there is no source file in memory

then an “unprintable error’’ will occur. You can only assemble
properly constructed source files.

I IR R R T RN

SOURCE FILES

Source files. are located from address &H8000 or 32768
Decimal — i.e. the normal basic program position.

—-91 —

Source files are typed into the computer in the same way as
basic programs except that each line is s REM statement. You
may use all the basic editing features (AUTO, RENUM, etc.)
when writing your source file. The SOURCE FILE must be
organised in a special way for the assembler to work properly,
Many examples of source files can be found in the remaining
chapters of this book but the generail rules are laid out below: -

17 NUMBERS — The assambler can deal with numbaers
which are entered in HEX, DECIMAL, BINARY or
OCTAL. It is however necessary to indicate which
number system is used in every instance. For example
the number 165 can be entered in a source file in the
following different ways:

HEX — .ab - prefix = "

BINARY — .n10100101 — prefix = “.n"
DECIMAL -— .m165 - prefix = “.m"
OCTAL — .0245 — prefix = “.0"

2) ASSEMBLER DIRECTIVE : SET ADDRESS POINTER —
The user must set the assembler address pointer in the
first command line of the source file so that the
assembler will know where to start the assembly. This is
done in the following manner:

10 REM [.m&3000

NOTE that the open square bracket means SET THE
ASSEMBLER ADDRESS POINTER TO THE FOLLOWING
ADDRESS and that address can be written in any valid
number system.

3) SOURCE LINE FORMAT — Each line of the source file
must have a line number,. the basic word REM, a space
followed by an assembiler directive or a Z80 MNEMONIC
with appropriate addresses and numbers entered

eg. 200 REM Id a,.10
Multiple statements may be antered in the same line but
the statements must be separated by a single quote.

eg. 150 REM Id a,.m15'ld b,.0a’add a,b ‘

4) ASSEMBLER DIRECTIVE : COMMENT - Comments
may be antered in any line of your source file following a |
sign. The assembler ignores any text after the ! sign and
moves on to the next source line.

eg. 100 REM ! subroutine to print string
110 REM Id a,.mB5’| character code into register A

—~92 —

b)

eg.

6)

eg.
7)
eg.
8)

eg.
9)

eg.

10)

ASSEMBLER DIRECTIVE : LABELS — Labels may be
placed at any point in your source file and the label will be
equivalent to the assembler address pointer at that point.
Such labels may be used to address JUMPS, CALLS,
LOADS or any other Z80 commands which require an
address.

10 REM [.dOOO'Start

NOTE that labels can be a maximum of 5 characters long
and the first character must be a capital letter with the
remaining characters in lower case.

ASSEMBLER DIRECTIVE : NUMBER STORAGE — You
can set aside storage areas for numeric constants and
variables by using the directives db (single byte} or dw
(two bytes).

200 REM Store’db .Oa
210 REM Stor2'dw .m1000

ASSEMBLER DIRECTIVE : STRING STORAGE — You
can set aside a storage area for strings by using the $
prefix.

150 REM Str1'$"This is a string”:

ASSEMBLER DIRECTIVE : END MARKER — The close
square bracket is used to mark the end of the source file.

1000 REM]

SETTING JUMP ADDRESSES — Many assemblers use
the EQU statement to set up labels with external
addresses (ie. addresses outside the current MC
program — eg. ROM routines.). With the SUPER
ASSEMBLER you use the open square bracket to set the
address pointer and then specify the label. This must be
done at the start of the source file. '

-10 REM [.394d'Chput

20 REM [.403d'Chget

TO RUN THE ASSEMBLER — Having entered the source
file type in the following:

~DEFUSR 0 = 51830 followed by ENTER

now type Z = USR 0 (0) to start assembly.

To RUN your MC program DEFUSR 1 = YOUR PROGRAM
START ADDRESS and then Z = USR 1 {0) to execute your
program.

—93 —

1M

egd.

12)
a)

b)

c)
d)

e)

f)

g)

h)

)

SAVING YOUR MC PROGRAMS -~ Use the
standard BSAVE command to save the machine
code and use SAVE or CSAVE to save the source
files.

BSAVE “mcprog” ,start address,end address,run
address
CSAVE “source”

FINAL CAUTIONS:

There MUST be a space between the REM and the
instruction,

All numbers (except the line numbers) MUST be
properly prefixed.

All instructions MUST be in lower case.

All labels MUST have the first letter in upper case
and the remaining letters in lower case.

The first instruction MUST be the open square
bracket. :

The last instruction MUST be the close square
bracket.

BEWARE of overwriting the machine area at the top
of memory.

BEWARE of overwriting the SUPER ASSEMBLER.

Always reserve space before loading your MC
programs.

Always SAVE your source files before assembling
and running — the mc program may crash and you
will have to retype the source from the start.

I Z RS R E R R EEER RS RN Y

Sample source files can be found in the next few chapters.
Work through each of the files and exercises to gain an
appreciation of machine code in general and the SUPER
ASSEMBLER operation in particular.

—94 —

Most of the source files make use of BASIC ROM ROUTINES.
Each time a new routine is used the function of the routine is
highlighted as in the following example:

Chput
USE = print character to screen
ADDRESS = 00a2 hex
ENTRY = character code in A
EXIT = none
. CHANGES = no registers changed

CHAPTER 18
SIMPLE SCREEN ROUTINES

Load up the assembler and then set up as follows:

type DEF USR 0 = 51830
type DEF USR 1 = &HDO000

Now type in the following source file or ioad it from tape:

SOURCE FILE 18.1
10 REM | Chput demo

20 REM |

30 REM |

40 REM [.00a2'Chput’! - print character rom routine
50 REM [.d000’! assembly start address

60 REM Id a,.m65'! code for A into the A register
70 REM call Chput'! print it

80 REM ret’! return to basic

90 REM Y1 end of source

Type:

Z = USR 0(0) to assemble the file at address &HDO00O.
Z = USR 1(0) to run the MC program,

When you run the program you will notice that it prints A on
the-screen.

Notice that the ASCIl code of the character to be printed must
be in the A register before calling the CHPUT routine.

Chput
USE = print character to screen
ADDRESS = 00a2 hex
ENTRY = character code in A
EXIT = none
CHANGES = no registers changed

— 96 —

SOURCE FILE 18.2 is a modified version of SOURCE FILE 18.1
— the program continuously {oops and filis the screen with
characters. Notice the label Loop in line 80 — this label marks
the relative jump destination for the jump in line 110.

SOURCE FILE 18.2

10 REM | perpetual demo

20 REM |

30 REM |

40 REM [.00a2'Chput’i print character rom routine

50 REM [.dO0O"! assembly start address

60 REM Id a,.m&5’! code for A into the A

70 REM | : register

80 REM Loop ! Loop start point

90 REM |)
100 REM call Chput’] print character in A register
110 REM jr Loop’! unconditional relative jump o Loop
120 REM ret’| return to basic
130 REM 1t end of source

Now assemble [Z = USR 0(0)] and run [Z = USR 1(0) Jand
notice how quickly the screen fills up with the letter A,

You have probably noticed also that this program continues to
run on and on and on

In fact this program will run on for ever or until you switch your
computer off. We did not provide for the program to reach an
end either automatically or by a CTRL/STOP.

Switch the computer off and then on again — load up the
- assembler and then load SOURCE FILE 18.2. We will now
modify the file to allow CTRL/STOP to be used.

Source file 18.3 is a modified version of file 18.2 but at each
Loop the computer checks if CTRL/STOP has been pressed
and ends the program if the check is positive.

SOURCE FILE 18.3
10 REM | CTRL/STOP demo
20 REM |
30 REM |

— 97 —

SOURCE FILE 18.3 CONTINUED

40 REM [.00a2'Chput’! print character rom roytine
50 REM [.00b7'Break’! check CTRL/STOP rom routine
60 REM [.d0OO’) assembly start address
70 REM |
80 REM Loop ! Loop start point
90 REM | .
100 REM Id a,.m65°) code for A into the A register
110 REM call Chput! printit
120 REM call Break'i check for CTRUSTOP
130 REM jr nc,Loop’t no CTRL/STOP so Loop
140 REM rat’] CTRL/STOP so return to basic
150 REM]| - end of source

Notice that the relative jurmmp tc Loop has changed to a

conditional relative jump. The routine BREAK sets the carry

fiag if CTRL/STOP has been pressed so we jump to LOOP
. only if the carry flag is not set {jump relative nan carry).

Save the source file, assemble it, and then run the mc
program. Assembly and execution of this (and all other source
files in this book} is performed in the same manner.

Break
USE = check for CTRL/STOF
ADDRESS = 00b7 hex
ENTRY = none
EXIT = carry flag set if CTRL/STOP
CHANGES = A andF registers

Getting a little tired of a screen full of A’s? — then try the next
program — SOURCE FILE 18.4.

SOURCE FILE 18.4

10 REM | Chget demo

20 REM !

30 REM |

40 REM [.00aZ'Chput’] print character rom routine

650 REM [.00b7’'Break’| check CTRUSTOP rom routine

- 908 —

SOURCE FILE 18.4 CONTINUED

60 REM [.009f'Chget’] get character from keyboard
70 REM [.dO0Q’! assembly start address
80 REM call Chget'! get character in A register
90 REM push af’! save A register on stack
100 REM !
110 REM Loop ‘I Loop start point
120 REM | ’
130 REM pop af’! recover A register from stack -
140 REM call Chput'l print character
150 REM push af’! save A register on stack
160 REM call Break'l check for CTRL/STOP
170 REM jr nc,Loop’! no CTRL/STOP so Loop
180 REM pop af’] CTRL/STOP so clear A off stack
190 REM ret’| . return to basic
200 REM]I end of source

This time a new ROM ROUTINE called Chget is used. When
you assemble and run the program nothing will happen until
you press a key. The routine Chget waits until a key is pressed
and our mc program will then print a screen full of your
selected character.

Chget
USE = get character from keyboard
ADDRESS = 009f hex '
ENTRY = none
EXIT = character in the A register
CHANGES = A and F registers

The final source file in this chapter creates a different type of
display which is sometimes known as a BARBER POLE
display. This display prints the character set over and over
again by incrementing the character code at each Loop.

SOURCE FILE 18.5

10 REM | Chsns demo
20 REM |

30 REM | . |
40 REM [.00a2'Chput’l print character rom routine

- 99 —

SOURCE FILE 18.5 CONTINUED

50 REM [.009¢'Chsns’!

60 REM [.d000’!
70 REM |

80 REM Start’|
90 REM |

100 REM Id a,.m31’]

110 REM push af’|
120 REM |

130 REM Loop’!
140 REM |

150 REM pop af'!
160 REM inc a'!

170 REM cp .m126’!
. 180 REM jr 2, Start’|
190 REM call Chput'|

200 REM push af'|

210 REM call Chsns’l
220 REM jr z,Loop’

230 REM pop af’!

- 240 REM ret’!

250 REM ||

To stop the display simply press any key — this feature is
supplied by the ROM ROUTINE Chsns which checks for a key
press at each Loop. The ZERO FLAG is set if there has NOT

been a key press.

!

assembly start address
Start routine address
space code — 1 into A
register

save A register on stack

Loop routine address

recover A register from stack

increase character code
- last ascii character y/n ?

yes so back to Start

no so print character

save A register on stack

key press y/n?

no so Loop

ves so clear A off stack

return to basic

end of source

Chsns
USE = check for a key press
ADDRESS = (009c hex
ENTRY = none
EXIT = zero flag set if no key press
CHANGES = A and F registers

— 100 —

check any key rom routine

CHAPTER 19
MORE PRINTING ROUTINES

The source file 19.1 uses the basic PRINT routine to print a
string on to the screen.

SOURCE FILE 19.1

10 REM ! Prirt routine demo

20 REM |

30 REM !

40 REM [.4a24'Print’ Print routine address

50 REM [.d000O! | assembly start address

60 REM Id hl,Str'] set HL register to point to Str
70 REM call Print’! . Print Str

80 REM ret’| return to basic

90 REM Strs$"This is a string”:’]! set up string Str

Note that the string is printed at the current cursor position
and all other text remains on the screen, The SYNTAX of the
string in line 90 is very important — a string must be enclosed
in double quotes and must end with a colon or a zero byte.
The $ sign at the start of the string is the assembler directive
to indicate that a string follows.

When calling the routine PRINT from basic you should use the
syntax Z$ = USR1(0) and not the usual Z = USR1(0).

Print
USE = print a string to the screen
ADDRESS = 4a24 hex
ENTRY = HL points to string address
EXIT = none

SOURCE FILE 19.2

10 REM | RST 18 hex demo

20 REM |

30 REM | :

40 REM [.4a24'Print’| Print routine address

— 101 —

SOURCE FILE 19.2 CONTINUED

50 REM [.dD0O0O’] - assembly start address
60 REM Id a,.0c¢’l clear screen character into A
70 REM rst .18'] put character in A to screen
80 REM Id hi, St} set HL register 1o point to Str
90 REM call Print’| Print Str

100 REM ret’| retumn to basic

110 REM St'$'This is a sting™}! set up string Str

Source file 18.2 illustrates one of the useful restart
instructions of the MSX computers — rst 1B is a single byte
instruction which is used to print the character in tha A
register onto the screen. In file 18.2 the character printed is
the clear screen character CHR${0C) but you can put any
character into the A register and printit with a rst 18. Note that
the 18 in the rst 18 is in HEX and not decimai.

Rst 18 behaves in the same manner as the rom routine Chput
with no registers affected by the instruction.

Other useful characters to print for screen formatting are:

CHR3$(09) = TAB CURSOR

CHRS$(0A) = LINE FEED

CHRS$(0C) = CLEAR SCREEN

CHRS$(0D) = CARRIAGE RETURN

CHRs{1C) = CURSOR 1 SPACE TO THE RIGHT
CHR$(1D) = CURSOR 1 SPACE TO THE LEFT
CHRS$(1E) = CURSOR 1 LINE UP

CHRS$(1F) = CURSOR 1 LINE DOWN

The final source file in this chapter is file 19.3 — in thia file you
will see how to position the cursor at any point on the screen
befora printing your text. The technique uses the rom routine
“Posit” with the cursor X {across) position in the H register
and the cursor Y position in the L register.

- 102 —~

SOURCE FILE 19.3

10 REM | aursor position demo
20 REM | ‘
30 REM |
40 REM [.00c6B'Posit’|
50 REM [.4a24'Print’|
60 REM |
70 REM [.d000’!
80 REM |
90 REM !
100 REM Id a,.m12’|
110 REM rst .18’!
120 REM Id h,.m12’
130 REM Id |,.m10°]
140 REM call Posit"!
150 REM Id hi,Mesg’!
160 REM call Print’!
170 REM ret’|
- 180 REM Mesg’!
190 REM $"test message.’” |
200 REM db .0’)

cursor position routine
print string

assembly address

clear screen character into A
clear screen

cursor column (across)
cursor row (down)

position cursor

set HL to point to message
print message

return to basic

message address label
message string

message end marker

210 REM 7'l end of source
Posit

USE = locate cursor on the screen
ADDRESS = 00c6 hex
ENTRY = X position in H

Y position in L
EXIT = none
CHANGES = A and F registers changed

- 103 —

CHAPTER 20
THE SOUND OF MUSIC

The first source file in this section shows how to use the basic
command PLAY from machine code. The HL register pair is
used to point to the location of the music string and then the
play routine is called.

Assemble the file in the normal way and then DEF USR1 =
&HDO00O0. To PLAY the music type Z = USR1(0) followed by
ENTER.

SOURCE FiLE 20.1

10 REM | Play routine demo _

20 REM |

30 REM |

40 REM [.73eb'Play’! Play routine address

50 REM [.d000’! assembly start address

60 REM Id hi,Str'] set HL register to point to Str
70 REM caill Play’l Play Str

80 REM ret’ return to basic

90 REM Str'$”abcabcecbd”:’]’! set up music string Str

NOTE that the music string must be written in the same way
as a text string ie. enclosed in double quotes and terminated
with a colon or a zero byte.

Play
USE = play a music string
ADDRESS = 73ebhex
ENTRY = HL points to string address
EXIT = none

One of the more interesting features of the sound chip is the
repeat facility — To make a sound repeat continually you must
set bit 3 of register 13. When such a sound is initialised it will
continue repeating until interrupted by a CTRL/STOP or
another SOUND command. The repeating sound is controlled
completely by the sound chip — the computer may continue
with other activities without disturbing the SOUND.

— 104 —

Source file 20.2 shows how to intitialise a repeating sound
from machine code.

SOURCE FILE 20.2

10 REM | sound demo (steam train)

20 REM !

30 REM |

40 REM [.96'Rdpsg’! read from PSG

50 REM [.93'W1ipsg’! write to PSG

60 REM [.d0O0QO’! assembly start address
70 REM Id a,.m7’! PSG register 7 into A

80 REM call Rdpsg’) read current value (reg 7)

90 REM and .n11000000°! extract bits 6 and 7
100 REM add .n00110111°t add “on switch” noise channel A

110 REM Id e,a’l data into E register

120 REM Id a,.m7’} PSG register 7 into A
130 REM call Wtpsg’l write data to PSG

140 REM Id a,.m8"! PSG register 8 into A
150 REM Id ¢,.n00011111’! volume for noise channel A
160 REM call Wtpsg’! write to PSG

170 REM Id a,.m12'! PSG register 12 into A
180 REM Id e,.n00000011’l envelope period (coarse)
190 REM call Wtpsg’! write to PSG

200 REM Id a,.m13’! PSG register 13 into A
210 REM Id e,.n00001110’! envelope shape

220 REM cail Wtpsg’! write to PSG

230 REM ret'! return to basic

240 REM]! end of source

The sound chip register 7 deserves a special mention — in this
register the 6 lower bits are used to enable the sound and tone
channels whilst the upper two bits are used in conjunction
with the sound chip ports A and B. It is therefore desirable to
preserve these two bits when sound channels are enabled.
Lines 70 — 80 in source file 20.2 preserve the two upper bits
and enable the noise channel A of the sound chip.

— 10

Rdpsg
USE = to read data from PSG
ADDRESS = 0096 hex
ENTRY = A contains PSG register number
EXIT = A contains data

Wtpsg
USE = 1o write data to PSG
ADDRESS = 0093 hex
ENTRY = A contains PSG register

number

EXIT = none

LA S E R R RS EEEEEEEEESRES,]

PROGRAM LIST 20.3

10 REM sound demo

20 REM

30 REM

40 SOUNDO,&B11100000

50 SOUND2,&8B11111111

60 SOUND7,8B00111100

70 SOUNDS,&B00011111

80 SOUNDS,&B00000111

90 SOUND12,8B00000011
100 SOUND1 3,8B00001100

(space ship)

‘tone period channel A (fine)
‘tone period channel B (fine)
‘enable tone channels A and B
‘'volume channel A

‘volume channel B

‘'envelope period

‘envelope shape

Program file 20.3 is another example of repeating sound —
this time using two tone channels. The program is written in
basic but you can convert it to machine code as an exercise
(REMEMBER the rules for register 7).

LA EE R EEE R RS SRR REERSES.]

— 106 —

CHAPTER 21

TRANSFERING VARIABLES FROM MACHINE CODETO
BASIC

Machine code routines are often used to speed up certain
operations which would take a long time in basic. When MC is
used in this way it.is usually necessary to transfer some
results back to the basic program.

Such results can be placed into known memory locations and
then PEEKED by the basic program. A more elegant way of
returning resuits is for the MC program to place the result
directly into a basic variable. Source file 21.1 illustrates this
method of returning results.

The following two new ROM ROUTINES are used:

Eval
USE = evaluate a basic expression
ADDRESS = 4cB64 hex
ENTRY = HL points to expression
EXIT = result type in Vtyp

resuit in Dac

Viyp is the system variable which contains the type of result
returned by the expression evaluator:

Viyp address = 663 hex

Vtyp contents = 2 for.integer result.

3 for string result.

4 for single precision result.
8 for double precision result.

Fac is the fioating point accumulator which contains the result
returned by the expression evaluator:

Fac address = f7f6 hex

Fac contents — integer result contained in Fac + 2 and
Fac + 3

— 107 —

Fac contents — with a string rasult the address of the 3
byte string descriptor is contained in

Fac + 2and Fac + 3.
— single precision result is in Fac to Fac

+ 3.
— double precision result is in Fac to Fac
+ 7.
*i*******;*****!i***
Vget

LUSE = getaddress of variabie
ADDRESS = DHead4 hex
ENTRY = ML pbints to variable name
EXIT = DE points to varieble address
CHANGES = B and C registers

NOTE that if the variable does not exist then Vget will create
it. Default precision will be used for the wvariable unless
_ precision is stated as part of the variable name (eg. Attor B!).
In source file 21.1 the variable used is AD and the variable is
forced to the correct precision by updating the wvariable
definition table.

SOURCE FILE 21.1

10 REM | returning varisbles to basic

20 REM |
30 REM |
40 REM [.4c64'Eval’l exprassion evaluator
50 REM [.Bead'Vget'| get address of variabla
60 REM [.f663'Vityp'l system variable value type
70 REM [.f7/f6'Fac’ fioating point acc.
80 REM [.f8ca’'Vdef't variable definition table
90 REM !
100 REM |
110 REM [.d000"| assembly start addrass
120 REM |d hi,Exp‘! point HL to expression
130 REM call Eval’! evaluate it
140 REM Id a,{Vtyp)'!| value type into A register
150 REM Id (Vdef),a’) force variable to valtype

—~ 108 -

SOURCE FILE 21.1 CONTINUED

160 REM Id b,.0’ld c,a"!
170 REM Id hi,Varn'}
180 REM push bc'l
180 REM call Vget'|
200 REM pop bc’l

210 REM Id hi,Fac’!
220 REM Id a,.2'cp’c’!
230 REM jr nz,Stor’'!
240 REM inc hl'inc hi'l

250 REM |
260 REM ! »
270 REM Stor'!

280 REM |

290 REM Idir)

300 REM ret’l

310 REM Exp'!

320 REM db .ff'db .m148'!1
330 REM $("132435.8866")'|
340 REM db .0!

350 REM |

360 REM !

370 REM Varn'!

380 REM |

390 REM s$AD:’!

400 REM |

410 REM 1!

variable length into BC
point HL to variable name
save BC on the stack

get variable position
recover BC from the stack
point HL to Fac

is the value an integer?

ho so goto Stor

yes so increase Fac pointer
by two

subroutine to move value to
variable

move it '

return to basic

expression Exp

basic tokens for VAL
string for VAL to operate on
expression end marker

variable name label
variable name = AD

end of source file

I E R EREREEREEEERERERE RS

— 109 —

CHAFPTER 22
SOME GRAPHICS ROUTINES

One of the questions | am asked most often is — HOW DO
YOU SCROLL THE GRAPHICS SCREEN?

There is obviously no quick end simple answer to this
question and so my usual reply is — WITH DIFFICULTY — and
then | go on to explain as follows:

1)
2)
3)
4)

Move the graphics name table from the video ram into
the normal ram. '

Rotate the lines of the name table one byte to the right or
left.

Move the adjusted name table from the normal ram back
to its normal position in the video ram.

The procedure in basic is much too slow and so machine
code must be used in order to get a smooth scrolling
effect,)

This procedure is illustrated in source files 22.1 and 22.2.
Notice that the files have a machine code socurce section and a
pure basic section. Assembie the files in the normal way and

‘then type RUN followed by ENTER — the basic saction will

first draw a simple picture on the screen and then repeatadiy
call the mg¢ program to scroll the top twao thirds of the screen,

Ldvm
USE = move a block of data from
memory to VRAM
ADDRESS = (005c hex
ENTRY = Address of source in HL
Address of destination in DE
Number of bytes in BC
EXIT = none
CHANGES = all registers
Ldmv
USE = move a block of data from
VRAM to memory
ADDRESS = 00bY hex
ENTRY = Address of source in HL
Address of destination in DE
Nurmber of bytes in BC
EXIT = none
CHANGES = all registers

~110 —

Source file 22.1 scrolls the screen to the left.
SOURCE FILE 22.1

10 REM |

20 REM |

30 REM |

40 REM |

50 REM | .

60 REM [.Bc'Ldvm’]

70 REM [.59'LdmvV’]

80 REM {.d00Q’!

90 REM Id hl,.1800’!
100 REM Id de,.d100’}
110 REM Id bc,.200°1
120 REM call Ldmv’!
130 REM | :
140 REM Scrol’l
160 REM |
160 REM Id de,.d100’]
170 REM Id hil,.d101’!
180 REM Id bc,.001f!
190 REM Loop
200 REM push bc’!
210 REM Id a,(de)’!
220 REM Idir'i
230 REM Id (de),a’!
240 REM inc de’!
250 REM inc hi’

260 REM pop bc’l
270 REM |d a,.d4’]
280 REM cp h’l

290 REM jr nz,Loop’l
300 REM |

310 REM Send’!

320 REM |

330 REM Id hi,.d100’}

340 REM |d de,.1800"!

350 REM Id bc,.200'!
360 REM call Ldvm’l
370 REM ret']

380 REM 'l

390 REM |

400 REM |

410 REM |

screen 2 left scroll

collect name table

move memory to VRAM
move VRAM to memory
assembly start address
VRAM source

memory destination
number of bytes

fetch data

subroutine to scroll the name table

buffer start
start + 1
line length — 1

save BC on stack

first byte into A

move line one to left

first byte into last position
start of next line

line start + 1

recover line length

end check

is it the end?

no so do it again

yes so send to VRAM

memory source into HL
VRAM destination into DE
byte count

transfer to VRAM

return to basic

end of source

— 111 —

SOURCE FILE 22.1 CONTINUED

420 REM basic supt routine
430 REM |

440 REM |

450 REM |

460 ONSTOPGOSUBG20:STOPON
470 COLOR15,8,8

480 SCREEN 2

490 OPEN""grp: "FOROUTPUTAS:;:M
500 PSET(0,80),1

510 DRAW”e90f45e29f80e30"
52Q PAINT(4,80),1

530 LINE(10,140)—(150,190),11,BF
540 PSET(38,160),11-

550 COLOR4 .

560 PRINTH1,”LEFT SCROLL”
570 DEFUSR2 = &HDO000

580 DEFUSR3=&HD00C

590 Y = USR2(0)

600 Y =USR3(0)

610 GOTO600

620 COLOR15,4,4

630 END

Source file 22.2 scrolls the screen to the right.

SOURCE FIiLE 22.2

10 REM ! screen 2 right scroll
20 REM |
30 REM !
40 REM ! collect name table
50 REM |
60 REM [.Bc’'Ldvm
70 REM [.B9'Ldmv
80 REM [.d00O
90 REM Id hl,.1800
100 REM Id de,.d100
110 REM Id bc,.200
120 REM call Ldmv
130!
140 REM Scroll
150 REM |
160 REM ld de,.d2ff

— 112 —

SOURCE FILE 22.2 CONTINUED

170 REM Id hl,.d2fe
180 REM Id bc,.001f
190 REM Loop
200 REM push bc
210 REM Id a,(de)
220 REM Iddr
230 REM Id (de),a
240 REM dec de
250 REM dec hl
260 REM pop bc
270 REM Id a,.d0
280 REM ¢cp h
290 REM jr nz,Loop
300 REM |
310 REM Send
320 REM |
330 REM Id hl,.d100
340 REM Id de,.1800
360 REM Id bc,.200
360 REM call Ldvm
370 REM ret
380 REM]
390 REM |
400 REM |
410 REM |
420 REM basic support routine
430 REM |
440 REM |
450 REM |
460 ONSTOPGOSUB620:STOPON
470 COLOR15,8,8
480 SCREEN2
490 OPEN"grp:"FOROUTPUTASH1
500 PSET(0,80),1
510 DRAW"e90f45e29f80e30"
520 PAINT(4,80),1
530 LINE(10,140)—(150,190),11,BF
540 PSET(35,160),11
550 COLOR4
560 PRINTH1,”RIGHT SCROLL"
570 DEFUSR2 = &HDO000
580 DEFUSR3 = &HDO00C
530 Y =USR2(0)
600 Y =USR3(0)
610 GOTO600
620 COLOR15,4,4
630 END
— 113 —

Source file 22.3 is a machine code version of the sprite

detection routine which w

as presented earlier in Basic.

The routine is self explanatory if read in conjunction with the
earlier basic version — the sprite which caused the interruptis
returned in the basic variable A.

Source file 22.3 is execute

d in the same way as file 22.2.

SOURCE FILE 22.3

20 REM ! sprite collision
30 REM |
40 REM |
50 REM |
60 REM [.4a’Rdvrm
70 REM [.4d'Wtvrm
80 REM [.87'Calat
90 REM [.d000
100 REM Id b,.m31
110 REM Next
120 REM Id a,b
130 REM call Calat
140 REM push hl
150 REM call Rdvrm
160 REM pop hl
170 REM cp .m209
180 REM jr nz, Test
190 REM Dnext'djnz,Next
200 REM ret
210 REM |
220 REM Test
230 REM |
240 REM push bc
250 REM push af
260 REM Id a,.m209
270 REM push hi
280 REM call Wtvrm
290 REM halt
300 REM Id a,(.f3e7)
310 REM and .n00100000
320 REM pop hl

routine

- 114 —

SOURCE FILE 22.3 CONTINUED

330 REM jr z,Found

340 REM pop af

350 REM push af

360 REM call Wtvrm

370 REM pop af

380 REM pop bc

390 REM jr Dnext

400 REM |

410 REM Found

420 REM |

430 REM pop af

440 REM pop bc .

450 REM Id hi,varn

460 REM push bc -

470 REM call .5ead

480 REM pop bc

490 REM ex de,hl

500 REM Id (hi),b

510 REM inc hi

520 REM Id (h),.0

530 REM ret

540 REM Varn’sA’db .0’]
5560 REM

560 REM

570 REM basic support program
580 REM

590 REM

600 DEFINTA—-Z

610 ONSTOPGOSUBSB820:STOPON
620 SCREEN1
‘630 DEFUSR2 = &HDO000
640 ONSPRITEGOSUB780
650 FORX=0TO7

660 AS$=A$+CHR$(255)
670 NEXT

680 SPRITES$(0)=AS$

690 FORP=1TO15

700 PUTSPRITEP,(50+P*10,P*10),P,0
710 NEXT

720 PD =(INT((RND(—TIME)*180)/10))*10
730 SPRITEON

740 FORZ = —20T{265

.— 116 —

SOURCE FILE 22.3 CONTINUED

750 PUTSPRITEO,(Z,PD),3,0
760 NEXT

770 GOTO720

780 SPRITEOFF

790 Z=USR2(0)

800 PRINTA

810 RETURN720

820 SCREENO

830 END
‘Calat
USE = Find the address of a sprite
attribute entry
ADDRESS = 0087 hex
ENTRY = Sprite plane number in A
EXIT = Attribute address in HL
CHANGES =

AF, DE and HL

EA A AR R R X SRR RS

This book was designed to provide the reader with an
introduction to machine code on the MSX - interested
readers can now build on this grounding using one of the
many good Z80 books which are available in your local book

store.

— 116 —

APPENDIX 1

Z80 MACHINE CODE MNEMONICS

In the next few pages you will find a full list of the Z80
mnemonics which you will use in machine code source files.
In the list the following shorthand is used:

1)

DIS means an 8 bit displacement which can range from
127 to minus 128.

2) NN means an 8 bit number which can range from 0 to
255.

3) HHLL means a 16 bit number which can range from 0 to
6565635 — LL HH is the same number with the. high and
low bytes reversed.

4) ADDR means a memory address or label — DR AD is the
address with the high and low bytes reversed as required
by the Z80.

5) PORT means an input or output port with a number in the
range 0 to 2b5.

8) All mnemonic instructions and register names are in
lower case as required by the assembler. The object
code is given in upper case hex numbers.

REMEMBER that you type the source code into a source

file and the assembler creates the object code.
**********.*****

Add with carry (8 bit)

The content of the carry flag (1 or Q) is added to the value

in the “a” register and then the second named value

(stated value or register contents or memory location

contents) is added to the resuit. The final result is placed

into the “&’”’ register,

SOURCE CODE OBJECT CODE

adc a,(hi) 8E

adc a,lix + DIS) DD 8E DisS

adc a,liy. + DIS) FD 8E DIsS

adc a,a 8F

adc a,.b 88

adc a,c 89

- 117 —

SOURCE CODE
adc a,d

adc a,NN

adc a,e

adc a,h

adc a,l

OBJECT CODE
8A

CENN

88

8C

8D

LA EEE SRS RS EERSE R EENES.]

Add with carry (16 bit)

The content of the carry flag (1 or 0) is added to the contents
of the “hl” register and then the second named value (register
pair contents) is added to the result, The final result is placed

into the “hl” register.

SOURCE CODE
adc hl,bc

adc hi,de

adc hi,hl

adc hl,sp

Add instructions (8 bit)

OBJECT CODE
ED 4A
ED BbA
ED 6A
ED 7A

The second named value (stated value or register contents or
memory location contents) is added to the value in the “a”
register and the result is placed into the “a” register.

SOURCE CODE
add a,(hl)

add a,(ix + DIS)
add a,(iy + DIS)
add a,a

add a,b

add a,c

add a,d

add a,NN

add a,e

add a,h

add a,l

OBJECT CODE
86

DD 86 DIS
FD 86 DIS
87

80

81

82

C6 NN

83

84

85

2 X B R E R EREEEEER XS SRR

Add instruction (16 bit)

The contents of the second named register pair are added to
the contents of the first named register pair. The result is
placed into the first named register pair.

SOURCE CODE OBJECT CODE
add hl,bc 09
add hl,de - ; 19
add hl, hi 29
add hl,sp 39
add ix,bc DD 09
add ix,de ' DD 19
add ix,ix DD 29
add ix,sp ‘ DD 39
add iy,bc . FD 09
add iy,de FD 19
add iy,iy FD 29
add iy,sp FD 39

AR AR R RS R EEREE SR RERERR.]

Logical “and” instructions

A logical “and” operation is performed between the named
value (specified value, register contents or memory location
contents) and the contents of the “a” register. The result is
placed into the “a” register.

SOURCE CODE . OBJECT CODE
and (hl) : AB

and (ix + DIS) DD A6 DIS
and (iy +DIS) FD A6 DIS
and a A7

and b AO

and ¢ A1

and d A2

and NN E6 NN

and e A3

and h A4

and | : A5

LE R E X EE R ERERE S X RN

- 119 —

Logical “and” is a bit by bit comparison between two 8 bit
numbers. If a particular bit is 1 in both numbers then the
corresponding bit in the result will also be one otherwisa the
result bit wilt be zero. ' .

These instructions are useful for extracting selected parts of
numbers — eg, 01010101 and 00001111 = 00000101 — the
lower 4 bits of the first number are extracted by masking off
the upper 4 bits.

ARUAERREREEIRAREREERER

Bit testing instructions

These instructions 1est the condition of a specified bit in a
specified memory location or ragister. The zero flag is set
according to the result of the test and so a zero conditional
instruction usually follows the bit test instruction.

SOURCE CODE OBJECT CODE
bit .0, (hl) CB 46

bit .0,{ix+ DIS) DD CB NN 46
bit .0, (iy + DIS} . FD CB NN 46
bit .0,a CB 47

bit .0,b CB 40

bit .Q,c CB 41

bit .0,d CB 42

bit .0,8 CB 43

bit .0,h CB 44

bit .0, CB 45

bit .1,(hl} CB 4E

bit .1,(ix + DIS) DD CB NN 4E
bit .1,(iy + DIS) FD CB NN 4E
bit .1,8 CB 4F

bit .1,b CB 48

bit .1,c CB 49

bit .1.d CB 4A

bit.1,e CB 4B

bit .1,h CB 4aC

bit .1, CB 4D

— 120 —

_SOURCE CODE OBJECT CODE

- bit .2,(hl) CB 56
bit .2,(ix + DIS) DD CB NN 56
bit .2,(iy + DIS) FD CB NN 56
bit .2,a CB 57
bit .2,b CB 50
bit .2,c ' CB 51
bit .2,d CB 52
bit .2,e) CB 53
bit .2,h CB 54
bit.2,l CB 55
bit .3,(hl) CB 5E
bit .3,(ix + DIS) , DD CB NN 5E
bit .3,(iy +DIS) FD CB NN 5E
bit .3,a . CB 5F
bit .3,b CB 58
bit .3,c CB 59
bit .3,d CB BA
bit .3,e _ CB 5B
bit .3,h CB 5C
bit .3, CB 5D
bit .4,(hl) CB 66
bit .4,(ix + DIS) DD CB NN 66
bit .4,(iy + DIS) FD CB NN 66
bit .4,a CB 67
bit .4,b CB 60
bit .4,c CB 61
bit .4,d ’ "CB 62
bit .4,e CB 63
bit .4,h CB 64
bit..4,1 CB 65
bit .5,(hl) CB 6E
bit .5,(ix + DIS) DD CB NN 6E
bit .6,(iy + DIS) FD CB NN 6E
bit .5,a CB 6F
bit.5,b CB 68
bit .5,c CB 69
bit .5,d CB 6A -
bit .5,e CB 6B
bit .5,h CB 6C
bit .5,1 CB 6D

- 121 —

SOURCE CODE OBJECT CODE

bit .6,(hl) CcB 76

bit .6,(ix + DIS) DD CB NN 76
bit .6,(iy + DIS) FD CB NN 76
bit .6,a cB 77

bit .6,b CB 70

bit .6,c CcB 71

bit .6,d . cB 72

bit .6,e CB 73

bit .6,h CB 74

bit .6,| CB 75

bit .7,(hl) CB 7E

bit .7,(ix + DIS) : DD CB NN 7E
bit .7,{iy + DIS) FD CB NN 7E
bit.7,a : CB 7F

bit.7,b cB 78

bit.7,c cB 79 -
bit .7,d CB 7A -
bit.7,e cB 7B

bit.7,h cB 7C

bit .7,l CB 7D

A A E R EREEREREEREEEEEESEZS.]

Call instructions

Call instructions work like a basic GOSUB — a return address
is automatically pushed onto the stack and the program
counter is set to the call address. At the end of the called
subroutine a return instruction pops the return address off the
stack and into the program counter.

SOURCE CODE OBJECT CODE

cali ADDR CD DR AD — unconditional

call c, ADDR DC DR AD — if carry flag set

call m,ADDR FC DR AD — if sign flag is set

call nc,ADDR D4 DR AD — if carry flag is reset
call nz, ADDR C4 DR AD — if zero flag is reset
call p,ADDR F4 DR AD — if sign flag is reset
call pe,ADDR EC DR AD — if parity flag is set
call po,ADDR E4 DR AD — if parity flag is reset
call z, ADDR CC DR AD — if the zero flag is set

(LA A ERE R EEEERSE B EESESZE.

— 122 —

Compare instructions

A value or the contents of the specified register or memory
location are compared to the contents of the “a” register and
the CPU flags are set as if a subtraction from the “a’’ register
had occurred. Testing the flags after a compare instruction
provides information concerning the compared value.

SOURCE CODE OBJECT CODE
cp (hi) BE

cp (ix + DIS) DD BE DIis
cp (iy + DIS) . FD BE DIS
cp a BF

cpb . B8

cpc B9

cpd . BA

cp NN : FE NN
cpe BB

cp h - BC

cpl 8D

LA E SR R ERERER KRN

Special block search instructions

The “hl” register pair is set up to point to the first byte in the
search area. The register pair “bc” contains the number of
bytes in the search area. The “a” register contains the value
which is to be found in the search area. The contents of the
byte (pointed to by hl) is compared to the contents of the “a”
register and the cpu flags are set accordingly. The “bc”
register decrements and the “hl” registeér increments or
decrements according to which instruction is used. With the
repeat instructions the operations will repeat until the “bc”
register contains zero or until an exact match is found
. between the byte indicated by “hl”” and the contents of the “a”
register.

SOURCE CODE OBJECT CODE

cpd ED A9 — decrement hl and bc
cpdr ED B9 — decrement hl and bc then repeat
cpi ED A1 — increment hl and decrement bc

cpir ‘ ED B1 — as “cpi” but with repeat

—123 —

The decrement instructions

The contents of a memory byte, 8 bit register, or 16 bit
register are decreased by one.

- SOURCE CODE OBJECT CODE

dec (hi) 35

dec (ix + DIS) DD 35 DIsS
dec (iy + DIS) . FD 35 DIS
dec a ' 3D

decb 05

dec bc 0B

dec ¢ 0D

dec d 15

dec de . 1B

dec e 1D

dec h . 25

dec hi 2B

dec ix DD 2B
dec iy FD 2B

dec | 2D

dec sp 3B

AR E R AR ER AR EREERSXLN.

The exchange instructions

Exchanges the contents of the indicated registers with the
contents of the stack at the current stack pointer position. An
instruction is also provided to exchange the contents of the
“de” and “hl” registers.

SOURCE CODE OBJECT CODE
ex (sp),hl E3

ex (sp),ix DD E3

ex (sp),iy FD E3

ex de,hl EB

(AR A R AR EREEREEEREEEEENR]

Register bank exchanges

Two instructions are provided — one to exchange the “af”
register banks and the other to exchange the “hl”, “bc”, and
“de” banks.

SOURCE CODE OBJECT CODE

ex af,af”’ 08 — exchange af

exx D9 — exchange all but af

[E R R A EEEEERAESE SRR SRR,

— 124 —

e e T e — L e

Input instructions

Input an 8 bit value through the spemﬁed input port mto the
specified register. Most of the instrictions require that the
input port number is in the “c” ragister.

SOURCE CODE OBJECT CODE

in a,{c) ED 78

in a,(PORT) DB PORT
in b,{c) ED 40

in c,lc) ED 48

in d,(c) ED B0

in g,{c) ED 58

in h,{c) : ED 60

inl(c) ° . ED 68

EA S A R E EREEEER S EERERSB.J

Block input

Values are input through the port specified in register “c* and
placed into the memory byte pointed to by “hi”. Register “b” is
used as a counter and the valuse in “b” is decremented. The
register pair “hl” is incremented or decremented depending
on which instruction is used. With the repeat instructions the
saquence of repeats will terminate when register “b” contains
zero, :

SOURCE CODE OBJECT CODE

ind ED AA — decrementhli

indr ED BA — decrement hl and repeat
ini ED A2 — increment hi

inir - ED B2 — increment hl and repeat

AR R EEEREEREEEEERNERSZE)]

Increment instructions
The contents of the specified register or memory byte are
increased’'by one.

SOURCE CODE OBJECT CODE

inc (hi) .34
inc (ix+DIS) DD 34 DiS
inc (iy + DIS) -FD 34 DIS
inca - 3C
incb 04
inc be . 03
incc . oC
incd - 14

— 125 —

SOURCE CODE

OBJECT CODE

inc de 13
ince 1C
inc h 24
inc hi 23
inc ix DD 23
inc iy FD 23
inc | 2C

inc sp ~ 33

. [EEEEREEEE EREE EX XK R X X XX J
Some unclassified instructions
SOURCE CODE OBJECT CODE ACTION

ccf 3F flip the carry flag
scf 37 set carry flag to 1
cpl 2F flip the bits in "a”
daa 27 decimal adjust “a”
di F3 disable interrupts
e FB enable interrupts
halt 76 stop operation until
interrupt
im .0 ED 46 interrupt mode O
im .1 ED 56 interrupt mode 1
im .2 ED 5E interrupt mode 2
neg ED 44 flip “a” then add 1
nop 00 Nno operation

A EAE R R A EREEEERE S EEENRDS,]

Jump instructions

The program counter is set t0 the specified jump address if
the flag condition (if any) is fulfilied.

SOURCE CODE OBJECT CODE

jp (hi) E9 — unconditional

jp (ix) DD E9 — unconditional

ip {iy) FD E9Q — unconditional

jp ADDR C3 DR AD — unconditional

jp c,ADDR DA DR AD — if carry flag is set
ip m,ADDR FA DR AD — if sign flag set

jp nc,ADDR D2 DR AD — if carry flag is reset
jp nz, ADDR C2 DR AD — if zero flag is reset
jp p,ADDR F2 DR AD — if sign flag is reset
ip pe,ADDR EA DR AD — if parity flag is set
jp po,ADDR E2 DR AD — if parity flag is reset
ip 2,ADDR CA DR AD — if zero flag is set

— 126 —

NOTE that the parity flag checks the number of bits in “a”
which are set to 1.

Parity odd(po) = odd number of bits.
Parity eventipe) = even number of bits.

Parity checks are often used to detect errors in data transfer
operations.

(IR A XS E RS ERE R X SN

Jump relative instructions

The displacement is added to the address in the program
counter and the program counter is set to the new address if
the flag conditions (if any) are fulfilled.

SOURCE CODE OBJECT CODE

jre,DIS ‘38 DIS — if carry flag is set
jrDIS 18 DIS — unconditional

jir nc,DIS 30 DiIS — if carry flag is reset
jr nz,DIS 20 DIS — if zero flag is reset
jrz,DIS 28 DIS — if zero flag is set

NOTE that the SUPER ASSEMBLER accepts values or lables
as displacements and addresses.

LR X R R RR N R

Instructions to load data into memory bytes

8 bit data is loaded from a register into the specified address.
With 16 bit data the low byte is loaded into the specified
address and the high byte is loaded into the address plus 1.
Addressing is by direct (numeric address or label) or indirect
by using a register pair as a pointer.

SOURCE CODE OBJECT CODE

Id (ADDR),a 32 DR AD — 8 bit direct

Id (ADDR),bc ED 43 DRAD — 16 bit direct
Id (ADDR),de ED 563 DR AD — 16 bit direct
id (ADDR),hi ED 63 DRAD - 16 bit direct
id (ADDR),hl 22 DR AD — 16 bit direct
id (ADDR),ix DD 22 DRAD — 16 bit direct
Id (ADDR),iy FD 22 DRAD — 16 bit direct
id (ADDR),sp ED 73 DRAD — 16 bit direct

—127 -

The remaining instructions in this section are all 8 bit loads
with indirect addressing.

SOURCE CODE OBJECT CODE

Id (bc),a 02

Id (de),a 12

id (hi),a 77

Id (hi),b 70

Id (hi),c 71

Id (hl),d 72

id (hl),NN 36 NN

id (hl),e 73

Id (hi),h 74

id (hi), 1 75

Id (ix + DIS),a DD 77 DIS
Id (ix + DIS),b DD 70 DIS
Id (ix + DIS),c ~ DD 71DIS
Id (ix+DIS),d DD 72DIS
Id (ix + DIS),NN DD 36 DIS NN
Id (ix+ DIS),e DD 73 DIS
Id (ix + DIS),h DD 74 DIS
id (ix + DIS), DD 75 DIS
id (iy + DIS),a FD 77 DIS
Id (iy + DIS),b FD 70 DIS
Id (iy + DIS),c FD 71 DIS
id (iy + DIS),d FD 72 DIS
Id (iy + DIS),NN FD 36 DIS NN
Id (iy + DIS),e FD 73 DIS
Id (iy + DIS),h FD 74 DIS
Id (iy + DIS),| FD 75 DIS

LA R E R E SR EE R ERREENESEESE,]

Register load instructions

Data is loaded from the source (value, memory byte, or
register) into the specified register or register pair.

SOURCE CODE OBJECT CODE

Id a,(ADDR) 3ADRAD
Id a,(bc) _ OA
Id a,(de) 1A
Id a,(hl) 7E
Id a,(ix + DIS) DD 7E SIA
Id a,(iy + DIS) FD 7E DIS

— 128 —

SOURCE CODE
Id a,a
id ab
Id a,c
id a,d
Id a,NN
id a,e.
Id a,h
Id a,l
ida,i .
id a,r

Id b,(hl)

Id b,(ix + DIS)
~ Id b,(iy + DIS)
id b,a

Id b,b

id b,c

Id b,d

Id b,NN

Id b,e

Id b,h

id b,

id be,(ADDR)
Id be,HHLL
Id c,(hl)

Id c,(ix+DIS)
Id c,(iy + DIS)
id c,a

idec,b

Id c,c

idc,d -

Id ¢,NN
Idc,e

id c,h

idc,l

OBJECT CODE
7F

78

79

7A

3E NN
7B
7C

7D

ED 57
ED 5F

— interrupt vector
— refresh register

48
DD 46 DIS

- FD 46 DIS

47
40
41
42
06 NN
43
44
45

ED 4B DR AD
01 LL HH
4E

DD 4E DIS
FD 4E DIS
4F

48

49

4A

OE NN

4B

4C

4D

— 129 —

SOURCE CODE OBJECT CODE
Id d,(hi} 56

Id d,{ix+ DIS) DD 56 DIS

id d {iy + DIS) FD 56 DIS
idd,a 57

idd,b 60

idd,c 51

lddd 52

Id d,NN 16 NN

idd,e 53

idd,h 54

Idd,|l 55

Id de (ADDR) ED 8B DR AD
Id de,HHLL 11 LLHH

Id e,(hl) 6E .

Id a,{ix + DIS}) DD BE DIS

Id e,(iy + DIS) FD BE DIS

Id e,a 5F

Id e,b 58

Id e,c 59

Id e,d BA

Id e,NN 1E NN

id e,e [31=]

ideh 5C

id el 5D

Id h,{hi) 66

Id h,{ix+ DIS) DO 66 DIS

id h,(iy + DIS) FD 66 DIS

Id h,a 67

Id h,b 60

Id h,c 61

Id h,d 62

id h,NN 26 NN

Id h,e 63

Id h,h 64

idh,l 65

id hl,(ADDR]) ED 6B DR AD
Id hl,(ADDR) 2A DR AD

id hl,HHLL 2% LL HH
idi,a ED 47 — interrupt vector
idr,a ED 4F — refresh register

— 130 —

SOURCE CODE
id ix,(ADDR)
Id ix,HHLL

d iy,(ADDR)
Id iy, HHLL

id L, (hi)

Id 1,(ix + DIS)
Id 1, (iy + DIS)
Id l,a

idl,b

Idl,c

idl,d

Id NN

Id l,e

idl,h

Id It

id sp,(ADDR)
Id sp,HHLL
Id sp,hl

Id sp,ix

Id sp,iy

OBJECT CODE
DD 2A DR AD
DD 21 LL HH

FD 2A DR AD
FD 21 LL HH

6E
DD 6E DIS
FD 6E DIS
6F

68

69

6A

2E NN

-6B

6C
6D

ED 7B DR AD
32 LL HH

F9

DD F9

FD F9.

Block move instructions

The “hl” register pair points to the start address of the block of
data to be moved. The register pair “de” points to the first
byte of the destination memory area. The register pair “bc”
contains the number of bytes to be moved.

The byte counter (bc) is decremented each time a byte is
copied from the source byte (pointed by “hl”) to the
destination byte (pointed by “de”). Pointers “hl” and “de’ are
incremented or decremented according to which instruction

is used.

L EZEE R R EREREEREEEEEERSS,]

if the repeat instruction is used then the operation will
continue repeating until the byte count is zero.

SOURCE CODE
idd

Iddr

idi

idir

OBJECT CODE
ED A8
ED B8
ED AO
ED BO

— 131 —

— hl and de decrement
- as ldd with repeat
— hl and de increment
— as Idi with repeat

Logical “or” instructions

These instructions perform a logical “or’ operation between
the stated data (value, register, or memory byte contents) and
the ““a” register. The result is placed into the “a’ register.

The “or” instruction performs a bitwise comparison between
two 8 bit numbers — the corresponding bit in the result
number is set as follows:

1) both compared bits = 0 then result bit = O.
2) any other condition then result bit = 1.

SOURCE CODE OBJECT CODE

or (hi) 86

or (ix+DIS) DD B6 DIS
or (iy + DIS) FD B6 DIS
ora B7

orb BO

orc B1

ord B2

or NN F6 NN
ore B3

orh B4

orl B5

AR ZE A EE X EREERREXREEXSERSE]

Logical “xor” instructions

These instructions work in the same way as the “or”
instructions but the results are as follows:

1). both compared bits the same then result bit = 0.
2) compared bits different then result bit = 1.

SOURCE CODE OBJECT CODE

xor (hl) v AE

xor (ix+ DIS) DD AE DIS
xor (iy + DIS) FD AE DIS
XOr a AF

xor b AB

XOr c AQ

xor d AA

xor NN EE NN

XOor e AB

xor h AC

xor | AD

—132 —

Output instructions

The “out” instructions transfer data through a specified
output port. The output port number is usually specified in
register ““c” and the data is contained in the specified register.

SOURCE CODE OBJECT CODE

out (c),a ED 79
out (c),b -ED 41
out (c),c ED 49
out (c),d ED 51 -
out (c),e ED 59
out {c),h ED 61
out {(c) ! ED 69
out (PORT),a " D3 PORT

KRAEEERERERRRRRRER RN

Block output instructions

The required output port number is placed into register “c”.
The start address of the block of memory to be output is
placed into the “hl” register pair. The “b" register is used as a
counter which decrements as each byte is output. The auto
repeat instructions will terminate when the “b" register
counts down to zero.

SOURCE CODE OBJECT CODE

outd ED AB — hi pointer decrements
otdr ED BB — as outd with repeat
outi ED A3 — hi pointer increments
otir ED B3 — as outi with repeat

R R E R R EEEER EE EEEJESEZX.]

Stack operations (push)

The 16 bit contents of a register pair is pushed onto the stack
and the stack pointer is decremented by two. The low byte of
the 16 bit number is pushed into the address stack pointer
minus 2 and the high byte goes into the address stack pointer
minus 1. NOTE that registers “a” and “f act like a standard
register pair for stack operations.

— 133 —

SOURCE CODE OBJECT CODE

push af F5
push bc Cb
push de D5
push hl ES
push ix DD E5
push iy FD Eb

X R E R R E R EREEXERESKESX]

Stack operations (pop)

A 16 bit value is popped off the stack into the specified
register pair and the stack pointer is incremented by two.
Values need not be popped into the registers from which they
were originally pushed and so push and pop are often used
simply to tranfer data from one register to another.

SOURCE CODE OBJECT CODE

pop af F1
pop bc C1
pop de D1
pop hl E1
pop ix DD E1
pop iy FD E1

(2 AR R EEEEREE R RS EEE SR EESR SN

The bit reset instructions

The specified bit in the specified register or memory location
is reset to zero,

SOURCE CODE OBJECT CODE

res .0,(hl) CB 86
res .0,(ix + DIS) DD CB DIS 86
res .0,(iy + DIS) FD CB DIS 86
res .0,a CB 87
res .0,b CB 80
res .0,c - CB 81
res .0,d CB 82
res .0,e CB 83
res .0,h CB 84
res .0, CB 85

—134 —

SOURCE CODE
,(hi)

1 ix+ DIS)
A,liy + DIS)
res .
res .
res .
res .
res .
res.
res .

res
res
res

res
res
res
res
res
res
res
res
res
res

res
res
res
res
res
res
res
res
res
res

res
res
res
res
res
res
res
res
res
ras

- el wd)) ek
~—Sovaoooo

2,(hl)
.2,{ix+ DIS)
2,(iy + DIS)
2,8

2,b

.2,c

2,d

2,6

2,h

2,1

.3,(hi)
3.(ix+ DIS)
3,(iy + DIS)
3.a

3,b

3,c

3,d

3,e

.3,h

3,1

4,(h

4.(ix + DIS)
4.(iy + DIS)
4,a

4.b

4.c

4,d

4.e

4,h

4,

OBJECT CODE
CB 8E

DD CB DIS 8E
FD CB DIS 8E
CB 8F

CB 88

CB 89

CB 8A

‘CB 88

CB 8C
CB 8D

CB 96
DD CB DIS 96
FD CB DIS 96

- CB 97

CB 90
CB 91
CB 92
CB 93
CB 94
CB 95

CB 9E
DD CB DIS 9E
FD CB DIS 9E
CB 9F
CB 98
CB 99
CB 9A
CB 9B
cB9C
CB 9D

CB A8
DD CB DIS A6
FD CB DIS A6
cB A7
CB A0
CB A1
CB A2
CB A3
CB A4
CB A5

— 136 —

SOURCE CODE OBJECT CODE

res .5,(hl) CB AE

res .5,(ix + DIS) DD CB DIS AE
res .5,(iy + DIS) FD CB DIS AE
ras .5,a CB AF

res .5,b CB AB

res .b,c CB A9

res .5,d CB AA

res .b,e CB AB

res .5,h CB AC

res .5, CB AD

res .6,(hl) CB 86

res .6,(ix+ DIS) DD CB DIS B6
res .6,liy + DIS) FD CB DIS B6
res .6,a CB B7

res .6,b CB B0

res .6,c CcB B1

res .6,d CB B2

res .6,e CB 83

res .6,h CB B4

res .6,! CB B5

res .7,(hl) CB BE

res .7,(ix + DIS) DD CB DIS BE
res .7,(iy + DIS) FD CB DIS BE
res .7,a CB BF

res .7,b CB B8

res .7,c CB8 B9

res .7,d CB BA

res .7,@ CB BB

res .7,h ' CB BC

res .7, CB BD

LA ZE AR R AR SRR R SRR SN

The bit set instructions

The specified bit in the specified register or memory location
is set to one,

— 136 —

SOURCE CODE OBJECT CODE

set .0,(hl) CB C6

set .0,(ix+ DIS) DD CB DIS C6
set .0,(iy + DIS) FD CB DIS C6
set .0,a cB C7

set .0,b CB CO

set .0,c CB C1

set .0,d CB C2

set .0,e "CBC3

set .0,h CB C4

set .0, CB C5

set .1,(hi) CB CE

set . 1,(ix+DIS) DD CB DIS CE
set .1,(iy + DIS) FD CB DIS CE
set.1,a CB CF
set.1,b CB C8

set .1,c CB C9

set .1,d CB CA

set .1,e CB CB
set.1,h CB CC

set .1,l CB CD

set .2,(hi) CB D6

set .2,(ix + DIS) DD CB DIS D6
set .2,(iy + DIS) FD CB DIS D6
set .2,a CB D7
set.2,b CB DO

set .2,c CB D1

set .2,d CB D2
set.2,e CB D3
set.2,h : CB D4

set .2, CB D5

set .3,(hl) CB DE

set .3,(ix + DIS) DD CB DIS DE
set .3,(iy + DIS) FD CB DIS DE
set .3,a CB DF

set .3,b CB D8

set .3,c CB D9

set .3,d CB DA

set 3,e CB DB

set .3,h CB DC

set .3,1 CB DD

— 137 —

SOURCE CODE
4,(hl)

4.(ix+ DIS)
4,(iy + DIS)

set
set
set

set .,
4.b
4.c
4,.d
4,e
4,h
4,1

set
set
set
set
set
set

set
set
set
set
set
set
set
set
set
set

set
set
set
set
set
set
set
set

set

set
set
set
set

4,a

5,(hl)
.B,(ix+ DIS)
.B,liy + DIS)
.b,a

B5,b

.B,c

.5,d

b,e

.5,h

5,

.6,(hi)

.6,(ix + DIS)
.6,(iy + DIS)
.6,a

6,b

.6,c

.6,d

.6,e

.6,h

.6,

7.h
.7,(ix+DIS)
7.y +DIS)
7,8

7b

7,c

.7.d

7.e

.7.h

A

OBJECT CODE
CB E6

DD CB DIS E6
FD CB DIS EB
CB E7

CB EO

CB E1

CB E2

'CBE3

CB E4
CBES

CB EE

DD CB DIS EE
FD CB DIS EE
CB EF -

CB ES8

CB E9

CB EA

CB EB

CBEC

CB ED

CB F6
DD CB DIS F6
FD CB DIS F6
CB F7
CB FO
CBF1
CB F2
CB F3
CB F4
CB F5

CB FE
DD CB DIS FE
FD CB DIS FE
CB FF

- CBF8

CB F9
CB FA
CB FB
CB FC
CB FD

—138 —

et g .

The return instructions

The return address is popped off the stack into the program
counter and the operation continues from that address.
Conditional returns are subject to the condition being fulfilled.

SOURCE CODE OBJECT CODE

ret C9o — unconditional
retc D8 — if carry flag is set
retm F8 — if sign flag is set
ret nc DO — if carry flag is reset
ret nz Co —if zero flag is reset
retp FO — if sign flag is reset
ret pe E8 — if parity flag is set
ret po - EO — if parity flag is reset
retz C8 — if zero flag is set
reti "ED 4D — return from an
interrupt service
routine
retn ED 45 — return from a non

maskable interrupt
service routine

(AR B R R R E R R ERESERRESERE,]

Restart instructions

The Z80 restarts provide single byte instructions to jump to
certain frequently used ROM routines in page 0. The
application on the MSX is given for each restart.

SOURCE CODE OBJECT CODE

rst .00 c7 — reboot computer

rst .08 CF — basic syntax check
rst .10 D7 — get naxt besic cherecter
rst.18 DF — print character in “a”
rst .20 E7 — compares “h” and “de”
rst .28 EF — performs intersiot call
rst .30 F7 - checks type of FAC
rst .38 FF — interrupt routine

LA R AR AR AR EREEEREEEREERR]

— 139 —

The rotate instructions

Rotate left

The bits in the specified register or memory location are
moved one to the left. Bit 7 moves into the carry flag and the
previous contents of the carry flag move into bit 0.

SOURCE CODE OBJECT CODE

rl (hi) CB 16

rl (ix+ DIS) DD CB DIS 16
rl (iy + DIS) FD CB DiS 16
rl a CcB 17

rla 17

rlb CcB 10

rlc , CB 11

rid cCB 12’

rte CB 13

rlh CB 14

ril CB 15

Rotate left with carry

The bits in the specified register or memory location are
moved one to the left. Bit 7 moves into the carry flag and is
copied into bit 0.

SOURCE CODE OBJECT CODE

ric (hl) CB 06

ric (ix + DIS) DD CB DIS 06
ric (iy + DIS) FD CB DIS 06
ric a CB 07 -

rica , 07

ricb : CB 00

ricc CB 01

rcd CB 02

rice CB 03

ric h CB 04

ric | CB 05

Rotate right

The bits in the specified register or memory location are
moved one to the right. Bit 0 moves into the carry flag and the
previous contents of the carry flag move into bit 7.

— 140 —

SOURCE CODE OBJECT CODE

rr (hi) CB 1E

rr (ix + DIS) DD CB DIS 1E
rr (iy + DIS) FD CB DIS 1E
rra CB 1F

rra 1F

b CB 18

rrc .CB 19

rrd CB 1A

rre CcB 1B

rrh CB 1C

rri CB 1D

Rotate right with carry

The bits in the specified register or memory location are
moved one to the right. Bit 0 moves into the carry flag and is
copied into bit 7.

SOURCE CODE OBJECT CODE

rrc (hl) CB OE

rrc (ix + DIS) DD CB DIS OE
rre {iy + DIS) FD CB DIS OE
rrc a CB OF

rrca OF

rrc b CB 08

rrc c CB 09

rrcd CB 0A

rrc e CB OB

rrc h CB 0C

rrc i CB 0D

[EE R E R EREE ERSEEESESSEES:]

Two special rotate instructions

These instructions operate on the memory byte pointed to by
“hl” and the “a” register.

SOURCE CODE OBJECT CODE
rid: ED 6F

The following operations take place:

1) The lower 4 bits in (hl) move into the upper 4 bits.

2) The upper 4 bits in (hl) move into the lower 4 bits of “a”
3) The lower 4 I 1 “a” move into the lower 4 bits in (hi)

—141 —

This instruction can be used to multiply the contents of a
memory byte by 16.

SOURCE CODE OBJECT CODE
rrd ED 67

The following operations take place:

1) The lower 4 bits in (hl) move into the lower 4 bits of “a”
2) The upper 4 bits in (hl) move into the lower 4 bits.

3) The lower 4 bits in “a” move into the upper 4 bits in (hl)

This instruction can be used to divide the contents of a
memory byte by 16.

LR X R EEEEEREREESRERESS.E]

The shift instructions
Shift left arithmetic

The bits in a register or memory location are shifted one to the
left. Bit 7 moves into the carry flag and bit O is reset to zero.

SOURCE CODE OBJECT CODE

sla (hl) CB 26

sla (ix+ DIS) DD CB DIS 26

sla (iy + DIS) FD CB DIS 26
. slaa CB 27

slab CB 20

slac cB 21

sla d CB 22

sla e CB 23

slah CB 24

sla | - CB 26

Shift right arithmetic

The bits in a register or memory location are shifted one to the
right. Bit 0 moves into the carry flag and bit 7 remains
unchanged.

SOURCE CODE OBJECT CODE

sra (hl) CB2E -
sra (ix + DIS) DD CB DIS 2E
sra (iy + DIS) FD CB DIS 2E
sra a CB 2F
srab CB 28
 srac CcB 29
““sra d CB 2A
srae CB 2B
sra h CB 2C
sra | CB 2D

— 142 —

Shift right logical

The bits in a register or memory location are shifted one to the
right. Bit 0 moves into the carry flag and bit 7 is reset to zero.

SOURCE CODE OBJECT CODE

srl (hi) CB 3E
sri (ix + DIS) DD CB DIS 3E
srl (iy + DIS) FD CB DIS 3E
srla CB 3F
srib CB 38
srlc CB 39
srl d CB 3A
srie CB 3B
sri h CB 3C
srl | CB3D

LA R R R E R E R REERLERESSEES.]

Subtract instructions
Subtract without carry

The specified value (actual value, register, or memory location
contents) is subtracted from the contents of the “a” register
and the result is placed into the “a” register. ‘

SOURCE CODE OBJECT CODE

sub (hi) 96

sub (ix+ DIS) DD 96 DIS
sub (iy + DIS) FD 96 DIS
sub a 97

sub b 90

sub c 91

sub d 92

sub NN D6 NN
sub e 93

sub h 94

sub | 95

(L Z S A EEEERE SRS EREERESRS.]

—143 —

Subtract with carry

The contents of the carry flag plus the specified value (actual
" value, register, or memory location contents) are subtracted
from the contents of the “a’” register and the result is placed
into the “a” register.

SOURCE CODE OBJECT CODE

sbc (hl) 9E

sbc (ix+ DIS) DD 9E DIS
sbc (iy + DIS) FD 9E DIS
sbc a OF

sbc b 98

sbc ¢ 99

sbc d 9A

sbc NN DE NN-
sbhc e 9B

sbc h aC

sbc | oD

FR R R R KR K R KRR R R R E X

16 Bit subtract with carry

The carry flag is subtracted from the contents of the HL
register pair. The contents of the second named register pair
are then subtracted from the contents of HL. The result is
stored in HL.

SOURCE CODE OBJECT CODE
sbc hl,bc ED 42
sbc hil,de ED 62
sbc hi,hi ED 62
sbc hi,sp ED 72

Special relative jump

The B register is used as a counter. The B register contents
are decremented each time the instruction executes and if B is
greater than zero the relative jump occurs.

SOURCE CODE
djnz,DIS

OBJECT CODE
10 DIS

— 144 —

APPENDIX 2
- MSX BASIC WORD ROM ROUTINES (version 1.0}

BASIC WORD TOKEN (hex) ROM ADDRESS {(hex)

END 81 63EA
FOR 82 4524
" NEXT . 83 6527
DATA 84 485B
INPUT 85 - 4B6C
DIM 86 BEQF
READ 87 4BOF
LET . 88 4880
GOTO : 89 47E8
RUN 8A 479E
IF * 8B 49ES
RESTORE 8C 63C9
GOSUB 8D 4782
RETURN 8E 4821
REM 8F 486D
STOP 90 63E3
PRINT 91 AA24
CLEAR 92 B4AF
LIST 93 522E
NEW 94 6286
ON - 95 48E4
WAIT 96 401C
DEF 97 501D
POKE 98 5423
CONT 99 6424
CSAVE 9A 6FB7
CLOAD . 9B 703F
ouT ac 4016
LPRINT 9D 4A1D
LLIST 9E 5229
- CLS OF ‘ 00C3
WIDTH A0 ' 51C9
ELSE A1 485D
TRON A2 6438
TROFF A3 6439
SWAP | A4 B43E
ERASE A5 : 6477
ERROR AB | 49AA

— 145 —

MSX BASIC WORD ROM ROUTINES (version 1.0 Cont.)

BASIC WORD TOKEN {hex) ROM ADDRESS (hex)

RESUME A7 _ 495D
DELETE AB ' 53E2
AUTO A9 4985
- RENUM AA 5468
DEFSTR AB - 4718
DEFINT ' AC 471B
DEFSNG AD A71E
DEFDBL AE 4721
LINE AF 4BOE
OPEN BO 6AB7
FIELD B1 - 7C52
GET B2 7758
PUT B3 7758
CLOSE B4 6C14
‘LOAD B5 6B5D
MERGE B6 6B5E
FILES B7 6C2F
LSET B8 7C48
RSET B9 7C4D
SAVE BA 6BA3
LFILES BB 6C2A
CIRCLE BC 5811
COLOR BD 7980
DRAW BE 5D6E
PAINT ' BF 59C5
BEEP co 00CO
PLAY C1 73E5
PSET C2 57EA
PRESET C3 57E6
SOUND C4 - 73CA
SCREEN Cc5 79CC
VPOKE cé 7BE2
SPRITE : c7 7A48
VvOP c8 7837
BASE C9 7BSA
CALL CA 56A8
TIME CB 7911
KEY cc 766C
MAX CcD 7E4B
MOTOR ‘ CE 7387

— 146 —

MSX BASIC WORD ROM ROUTINES (version 1.0 Cont.)

BASIC WORD TOKEN (hex) ROM ADDRESS (hex)

BLOAD CF 6EC6
BSAVE Do 6E92
DSKOs$ D1 7C16
SET D2 7C1B
NAME . D8 7C20
KILL - D4 7C25
1PL D5 7C2A
COPY D6 : 7C2F
CMD D7 7C34
LOCATE D8 7766
USR ' DD 4FD5
FN DE 5040
ERL T E2 4EOB
STRINGS E3 6829
INSTR ED 68EB
VARPTR E7 4E41

CSRLIN E8 790A
ATTRS E9 7CA43
DSKIs EA 7C3E
INKEY$ EC 7347
POINT ED 5803
LEFTS FF81 - 6861

RIGHTS FF 82 6891

MIDs FF 83 ‘ 689A
SGN FF 84 2E97
INT FF 85 30CF
ABS FF 86 2E82
SQR FF 87 2AFF
RND FF 88 2BDF
SIN FF 89 29AC
LOG FF 8A 2A72
EXP FF 8B 2B4A
COos FF 8C 2993
TAN FF 8D 29FB
ATN FF 8E 2A14
FRE FF 8F 69F2
INP FF 90 4001

POS FF 91 4FCC
LEN FF 92 67FF
STR$ FF 93 6604

— 147 —.

MSX BASIC WORD ROM ROUTINES (version 1.0 Cont.)

BASIC WORD TOKEN {(hex) ROM ADDRESS (hex}

VAL FF 94 68BB
ASC - FF 95 6808
CHRs FF 96 6818
PEEK _ FF 97 641C
VPEEK FF98 - 7BF5
SPACES FF 99 6848
OCTs - FF 9A 65F5
HEXS FF 9B 65FA
LPOS FF 9C 4FC7
BINS FF 9D 65FF
CINT _ FF 9E 2F8A
CSNG FF 9F 2FB2
CcDBL FF AQ 303A
FiX FF A1 30BE
STICK FF A2 7940
STRIG FF A3 794C
PDL FF A4. 795A
PAD FF AB 7969
DSKF FF A6 7C39
FPOS FF A7 6039
CVi FF A8 7C66
CVS FF A9 7C6B
~ CVD FF AA 7C70
- EOF FF AB 6D256
LOC FF AC 6D03
LOF FF AD 6D14
MKI$ FF AE 7C57
MKSs ' FF AF 7C5C
MKD$ FF BO 7C61

Certain ROM routines operate without any extra parameters
— eg CLS or STOP. To use these routines you simply CALL
the ROM address from your MC program.

The following source file illustrates the source code to clear
the screen using the basic word CLS: :

SOURCE FILE APPENDIX 2.1.

10 REM [.d00O
20 REM call .c3
30 REM ret
40 REM]
— 148 —

Most ROM routines need input parameters — eg LOCATE
10,1 or PRINT “MSX". To use these routines you must point
the HL register pair to the address of a machine code string
which contains the parameters, and then CALL the routine.
The MC string should not contain the BASIC word itself but
may contain other basic words in tokenised form.

The following source file illustrates the source code required
to perform the basic command COLOR 1,11,8:

SOURCE FILE APPENDIX 2.2

10 REM [.d0OO
20 REM Id hI,Str
30 REM call .7980
40 REM ret

50 REM Str

60 REM $1,11,8:
70 REM]

HINT

To get the correct tokenised form, write the instruction into a
basic line and peek out the tokens.

— 149 —

APPENDIX 3

MORE ROM ROUTINES

In appendix 2 the positions of the BASIC WORD MACRO
ROUTINES were given — in this appendix some of the more
useful PRIMITIVE ROUTINES are given.

ERAFNK

ADDRESS
ENTRY
EFFECT

DSPFNK

ADDRESS
ENTRY
EFFECT

. FNKSB

- ADDRESS
ENTRY
EFFECT

RSTFNK

ADDRESS
ENTRY
EFFECT

DISSCR

ADDRESS
ENTRY
EFFECT

ENASCR

ADDRESS
ENTRY
EFFECT

&HO0O0cc
NONE
ERASES THE FUNCTION KEY DISPLAY

&HOOcf

NONE

DISPLAYS THE
DEFINITIONS

FUNCTION KEY

&HO00c9

NONE

CHECKS IF FUNCTION KEY DISPLAY IS
ACTIVE AND IF SO DISPLAYS THE KEYS
OTHERWISE DOES NOTHING ‘

&H003e

NONE

RESTORES THE FUNCTION KEYS TO
DEFAULT STRINGS

&HO0041
NONE
DISABLES THE SCREEN DISPLAY

&§H0044
NONE
ENABLES THE SCREEN DISPLAY

— 150 —

WRTVDP
ADDRESS
ENTRY
EFFECT

RDVDP

ADDRESS
ENTRY
- EFFECT

RDVRM

ADDRESS
ENTRY
EFFECT

WRTVRAM

ADDRESS
ENTRY

EFFECT

FILVRAM

ADDRESS
- ENTRY

EFFECT

LDIRMV

ADDRESS
ENTRY

-EFFECT

MORE ROM ROUTINES (Cont.)

&§H0047

VDP REGISTER NUMBER IN C
DATAIN B

WRITES DATA TO VDP REGISTER

&H013e

NONE

RETURNS VDP STATUS REGISTER
CONTENTS IN A

&§H004a r ?
VRAM ADDRESS IN HL
READS VRAM DATAINTO A

&H004d

VRAM ADDRESS IN HL
DATAIN A

WRITES DATA TO VRAM BYTE

&HO0056

VRAM ADDRESS IN HL

NUMBER OF BYTES IN BC

DATA IN A

FILLS THE BLOCK OF MEMORY FROM
ADDRESS HL FOR BC BYTES WITH THE
DATA IN A

&HO0059

VRAM SOURCE ADDRESS IN HL

RAM DESTINATION ADDRESS IN DE
NUMBER OF BYTES IN BC

MOVES A BLOCK OF VRAM MEMORY
INTO NORMAL RAM

- 151 —

LDIRVM

ADDRESS
ENTRY

EFFECT

MAPXYC

ADDRESS
ENTRY

EFFECT

SETC

ADDRESS
ENTRY

EFFECT

SETATR

ADDRESS
ENTRY
. EFFECT

READC

ADDRESS
ENTRY
EFFECT

RIGHTC

ADDRESS
ENTRY
EFFECT

LEFTC

ADDRESS
ENTRY
EFFECT

MORE ROM ROUTINES (Cont.)

&HO005¢c

RAM SOURCE ADDRESS IN HL

VRAM DESTINATION ADDRESS IN DE
NUMBER OF BYTES IN BC

MOVES A BLOCK OF RAM MEMORY INTO
VRAM

aHO0111

X CO-ORDINATE IN BC REGISTER

Y CO-ORDINATE IN DE REGISTER
POSITIONS THE GRAPHICS POINTER TO
(X,Y)

&H0120

GRAPHICS POINTER LOCATED AT (X)Y)
REQUIRED COLOR IN ATRBYT (&Hf3f2)
SETS THE PIXEL (X,Y) TO COLOR IN
ATRBYT

&HO11a
COLOR NUMBER IN THE A REGISTER
SET ATRBYT TO THE COLOR IN ‘A’

&H011d
GRAPHICS POINTER AT (X,Y)
READ COLOR OF PIXEL (X,Y) INTO ‘A’

&HO0O0fc
GRAPHICS POINTER AT (X,Y)
GRAPHICS POINTER TO (X+1,Y)

&HOOff

GRAPHICS POINTER AT (X,Y)
GRAPHICS POINTER TO (X-1,Y)

— 162 —

upPC

ADDRESS
ENTRY
EFFECT

TUPC

ADDRESS

ENTRY
EFFECT

DOWNC

ADDRESS
ENTRY
EFFECT

TDOWNC

ADDRESS
ENTRY
EFFECT

CHGCLR

ADDRESS
ENTRY

EFFECT

CLRSPR

ADDRESS
ENTRY
EFFECT

MORE ROM ROUTINES (Cont.)

&H0102
GRAPHICS POINTER AT (X,Y)

GRAPHICS POINTER TO (XY - 1)

&H0105

GRAPHICS POINTER AT (X,Y)

SETS CARRY FLAG AND RETURNS IF TOP
OF SCREEN IS REACHED ELSE SAME AS
UPC '

&Ho108 :
GRAPHICS POINTER AT (X,Y)
GRAPHICS POINTER TO (X,Y +1)

&HO010b

GRAPHICS POINTER AT (X,Y)

SETS CARRY FLAG AND RETURNS IF
BOTTOM OF SCREEN IS REACHED ELSE
SAME AS DOWNC

&§H0062

REQUIRED FOREGROUND COLOR IN &iif3e9
REQUIRED BACKGROUND COLOR IN &iif3ea
REQUIRED BORDER COLOR IN &Hf3eb
CHANGES THE SCREEN COLORS

&H0069

SCREEN NUMBER IN SCRMOD (&Hfcaf)
FILLS SPRITE PATTERN AREA WITH 0O
SETS SPRITE NUMBERS IN ATTRIBUTE
TABLE TO PLANE NUMBERS

SETS SPRITE COLORS TO FOREGROUND
COLOR '

SETS SPRITE VERTICAL POSITIONS TO
209

— 183 —.

INITXT

ADDRESS
ENTRY

EFFECT

INIT32

ADDRESS
ENTRY

. EFFECT

INITGRP

ADDRESS
ENTRY

EFFECT

MORE ROM ROUTINES (Cont.)

&HO06c

BASE ADDRESS OF THE TEXT NAME
TABLE IN &Hf3b3 and &Hf3b4

BASE ADDRESS OF THE TEXT PATTERN
TABLE IN &Hf3b7 and &Hf3b8
INITIALISES THE SCREEN TO TEXT MODE
SCREEN 0

eHoo6f

BASE ADDRESS OF NAME TABLE IN
&Hf3bd and &Hf3be

BASE ADDRESS OF COLOR TABLE IN
&Hf3bf and E&Hf3cO

BASE ADDRESS OF PATTERN TABLE
INEHf3c1 and &Hf3c2

BASE ADDRESS OF SPRITE ATTRIBUTE
TABLE IN &Hf3c3 and &Hf3c4

BASE ADDRESS OF SPRITE PATTERN
TABLE IN &Hf3cht and &Hf3c6
INITIALISES THE SCREEN TO TEXT MODE
SCREEN 1

&H0072

BASE ADDRESS OF NAME TABLE IN
&Hf3c7 and &Hf3c8

BASE ADDRESS OF COLOR TABLE IN
&Hf3c9 and E&Hf3ca

BASE ADDRESS OF PATTERN TABLE IN
&Hf3ch and &Hf3cc

BASE ADDRESS OF SPRITE ATTRIBUTE
TABLE IN &Hf3cd and &Hf3co

BASE ADDRESS OF SPRITE PATTERN

" TABLE IN &Hf3cf and &Hf3d0

INITIALISES THE SCREEN TO GRAPHICS
MODE SCREEN 2 '

— 154 —

INITMLT

ADDRESS
ENTRY

EFFECT

CALPAT

ADDRESS
ENTRY
EFFECT

CALATR

ADDRESS
ENTRY
EFFECT

GSPSIZ

ADDRESS
ENTRY
EFFECT

GRPPRT

ADDRESS
ENTRY
EFFECT

MORE ROM ROUTINES (Cont.)

&HO0075

BASE ADDRESS OF NAME TABLE IN
ErHf3d1 and &MHf3d2

BASE ADDRESS OF COLOR TABLE IN
&Hf3d3 and &Hf3d4

BASE ADDRESS OF PATTERN TABLE IN
&Hf3d5 and &Hf3d6

BASE ADDRESS OF SPRITE ATTRIBUTE
TABLE IN &Hf3d7 and &Hf3d8

BASE ADDRESS OF SPRITE PATTERN
TABLE IN &Hf3d9 and &Hf3da
INITIALISES THE SCREEN TO GRAPHICS
MODE SCREEN 3

&§H0084 :

SPRITE NUMBER IN A

RETURNS THE ADDRESS OF THE SPRITE
PATTERN IN HL

&H0087

SPRITE NUMBER IN A

RETURNS SPRITE ATTRIBUTE ADDRESS
IN HL

&H008a

NONE

RETURNS NUMBER OF BYTES IN SPRITE
DEFINITION IN THE A REGISTER. CARRY
FLAG SET IF SPRITES ARE 16 * 16 AND
RESET IF SPRITES ARES8 * 8

&Hoosd

CHARACTER CODE IN A

PRINTS THE CHARACTER ON THE
GRAPHICS SCREEN '

— 156 —

WRTPSG
ADDRESS
ENTRY

EFFECT

RDPSG

ADDRESS
ENTRY
EFFECT

CHSNS

ADDRESS
ENTRY
EFFECT

CHGET

ADDRESS
ENTRY
EFFECT

POSIT
ADDRESS
ENTRY

EFFECT

CHPUT

ADDRESS
ENTRY
EFFECT

SNSMAT

ADDRESS
ENTRY
EFFECT

MORE ROM ROUTINES (Cont.)

&H0083

PSG REGISTER NUMBER IN A
DATAINE

WRITES DATA TO PSG REGISTER

&H0096

PSG REGISTER NUMBER IN A

RETURNS DATA FROM PSG REGISTER IN
A

&H009¢

NONE '

RESETS ZERO FLAG {F THERE IS A
CHARACTER IN THE KEYBOARD BUFFER

&HO0of

NONE :

WAITS FOR A CHARACTER TO BE TYPED
AND RETURNS WITH THE CHARACTER
CODE IN A

Q0c6

SCREEN COLUMN IN H

SCREEN ROW IN L

LOCATES CURSOR AT ROW L COLUMN H

&HO00a2
CHARACTER CODE IN A
PRINTS CHARACTER ON SCREEN

&HO141

KEYBOARD MATRIX ROW IN A

RETURNS STATUS OF ROW IN A (SEE
APPENDIX 8)

— 156 -

LPTOUT

ADDRESS
ENTRY:
EFFECT

LPTSTT

ADDRESS
ENTRY
EFFECT

GTSTCK

ADDRESS
ENTRY
EFFECT

GTTRIG
ADDRESS
ENTRY

EFFECT

KILBUF

ADDRESS
ENTRY
EFFECT

-

MORE ROM ROUTINES (Cont.)

&HO00ab

CHARACTER CODE IN REGISTER ‘A’
OUTPUTS A CHARACTER TO THE LINE
PRINTER. THE CARRY FLAG IS SET IF THE
OUTPUT IS ABORTED

&HO00a8

NONE

CHECKS THE LINE PRINTER STATUS AND
RETURNS

255 - ‘A’ and ZERO FLAG RESET IF
PRINTER READY

ZERO IN ‘A’ and ZERO FLAG SET IF
PRINTER NOT READY .

- &HO00d5

JOYSTICK IDENTITY IN ‘A’ REGISTER

RETURNS THE JOYSTICK DIRECTION IN
THE ‘A’ REGISTER. JOYSTICK IDENTITY IS
1 FOR JOYSTICK 1 AND 2 FOR JOYSTICK 2

&§H00d8

TRIGGER BUTTON IDENTITY IN ‘A’
REGISTER

RETURNS THE STATUS OF THE TRIGGER
BUTTON IN THE ‘A’ REGISTER. 255 IF
PRESSED AND ZERO IF NOT PRESSED.
TRIGGER IDENTITY IS 1 AND 3 FOR
TRIGGERS ON JOYSTICK 1 — 2 AND 4 FOR
TRIGGERS ON JOYSTICK 2 .

&§H01566
NONE
CLEARS THE KEYBOARD BUFFER

— 157 —

CHGCAP

ADDRESS
ENTRY

EFFECT

TAPION

ADDRESS
ENTRY
EFFECT

TAPIN

ADDRESS
ENTRY

. EFFECT

TAPIOF

ADDRESS
ENTRY
EFFECT
TAPDON

ADDRESS
ENTRY

EFFECT

TAPOUT

ADDRESS
ENTRY
EFFECT

MORE ROM ROUTINES (Cont.)

&H132

ZERO IN THE ‘A’ REGISTER TO TURN THE
CAPS LAMP ON. NON ZERO IN ‘A’ TO
TURN THE LAMP OFF

CHANGES THE STATUS OF THE CAPS
LAMP

&HO00e1

NONE :

STARTS TAPE AND READS LEAD IN
HEADER. SETS CARRY FLAG IF ABORTED

&HOOe4

NONE

READS BYTE FROM TAPE INTO REGISTER
A. CARRY FLAG SET IF ABORTED

&H00e7
NONE
STOPS READING THE TAPE

&HOOea

A = NON ZERO
REQUIRED

A = 0 IF SHORT HEADER REQUIRED
STARTS TAPE AND WRITES HEADER TO
IT

IF LONG HEADER

&HO0Oed
DATA IN REGISTER A
WRITES DATA TO TAPE

- 168 —

T

MORE ROM ROUTINES (Cont.)

TAPOOF

ADDRESS &HOoofo

ENTRY NONE

EFFECT STOPS WRITING TO THE TAPE

STMOTR

ADDRESS &HO0O0f3 '

ENTRY A =0TO STOP TAPE MOTOR
A = 1TO START TAPE MOTOR
A = 266 TO CHANGE TAPE MOTOR
STATUS

EFFECT SETS TAPE MOTOR

MORE TAPE INFORMATION
There are two types of header:
A LONG HEADER WITH A LENGTH OF 16 UNITS.
A SHORT HEADER WITH A LENGTH OF 4 UNITS.

The header contains no specific data but the computer sets
the tape read baud rate according to the frequency of the
header:

1200 BAUD HAS A FREQUENCY OF 2400 Hz.
2400 BAUD HAS A FREQUENCY OF 4800 Hz.

TAPE DATA

The data format is a start bit (0), eight data bits and then two
stop bits (1). The order of data bits is from the least significant
bit to the most significant bit.

FILE FORMATS .

CSAVE FILE

LONG HEADER
10 * D3 hex
FILE NAME (6 characters)

SHORT HEADER
BASIC PROGRAM IN TOKENISED FORM
7 * 00 hex

- 1869 —

FILE FORMATS (Cont.)
SAVE FILE (ASCII)

LONG HEADER
10 * EA hex
FILE NAME (6 characters)

SHORT HEADER
256 DATA BYTES
SHORT HEADER
256 DATA BYTES
SHORT HEADER
256 DATA BYTES

.............

.............
.............

.............

SHORT HEADER
256 DATA BYTES (CONTROL Z MARKS THE END OF FILE)

BSAVE FILE

LONG HEADER
10 * DO hex
FILE NAME (6 characters)

SHORT HEADER
START ADDRESS (2 bytes)
END ADDRESS (2 bytes)
RUN ADDRESS (2 bytes)
MACHINE LANGUAGE FILE

— 160 —

AL

APPENDIX 4
SCREEN FORMATTING AND EDITING COMMANDS

Your MSX machine is equipped with several sets of powerful
screen formatting and editing commands which can be used
in basic or machine code to give complete control over the
text screen. These commands fall into three categories:

1) The IMMEDIATE CONTROL CODES which can be
entered directly at the keyboard and perform their
function immediately.

2) The IMMEDIATE/PROGRAM CONTROL CODES which
can be entered directly or incorporated into a program.

3) The ESCAPE SEQUENCES which can only be used
within program code.

THE IMMEDIATE CONTROL CODES

These codes are obtained by pressing the CTRL key and the
respective character key at the same time.

CODE EFFECT

CTRLB MOVE CURSOR TO THE START OF
PREVIOUS WORD

CTRLE CLEAR TEXT FROM CURSOR POSITION TO
END OF LINE

CTRLF MOVE CURSOR TO THE START OF THE
NEXT WORD

CTRL H BACKSPACE DELETING CHARACTER TO
LEFT OF CURSOR

CTRL N MOVE CURSOR TO THE END OF THE THE
LINE

CTRL R TOGGLES INSERT MODE

CTRL U CLEAR ALL TEXT IN CURRENT LINE

THE IMMEDIATE/PROGRAM CONTROL CODES

These codes can be obtained immediately by pressing the
CTRL key together with the respective character key. To use
the codes within a program you must use the given program
code.

— 161 —

;
o~

THE IMMEDIATE/PROGRAM CONTROL CODES (Cont.)

CODE PROGRAM CODE EFFECT

CTRLG PRINT CHR$(7) SOUND THE BEEP

CTRLI PRINT CHR$(9) MOVE THE CURSOR TO
THE NEXT TAB

CTRLK PRINT CHR$(11) MOVE THE CURSOR TO

' * TOP LEFT (HOME)

CTRLL PRINT CHR$(12) CLEAR THE SCREEN AND
HOME CURSOR

CTRL M PRINT CHR$(13) CARRIAGE RETURN

RIGHT PRINT CHR$(28) CURSOR RIGHT

LEFT PRINT CHR$(29) CURSOR LEFT

UP PRINT CHR$(30) CURSOR UP

DOWN PRINT CHR$(31) . CURSOR DOWN

ESCAPE SEQUENCES

These sequences are obtained by entering the code sequence
within your programs.

CODE SEQUENCE EFFECT

PRINT CHR$(27)")"” CLEAR THE SCREEN AND HOME
THE CURSOR

PRINT CHRs$(27)“E” CLEAR THE SCREEN AND HOME
THE CURSOR '

PRINT CHR$(27)“K” ERASE FROM CURSOR TO END OF
LINE

PRINT CHR$(27)“J” ERASE FROM CURSOR TO END OF
PAGE

PRINT CHR$(27)“1" ERASE ENTIRE LINE AT CURSOR
POSITION

PRINT CHR$(27)“L” INSERT A LINE AT CURSOR
POSITION

PRINT CHR$(27)M” DELETE A LINE AT CURSOR
POSITION

PRINT CHR$(27)"A” CURSOR UP ONE LINE

PRINT CHR$(27)'B” CURSOR DOWN ONE LINE
PRINT CHR$(27)“C” CURSOR RIGHT ONE COLUMN
PRINT CHR$(27)"D” CURSOR LEFT ONE COLUMN
PRINT CHR$(27)'H” CURSOR HOME

— 162 —

APPENDIX 5

INPUT/OUTPUT PORT TABLE

input and Output ports are the channels through which the
Z80A microprocessor communicates with peripheral devices
such as the screen or the printer. The Z80A is equipped with
256 input and 256 output ports — these ports are numbered
from zero to &HFF. °

A table of the functions of the various MSX STANDARD
PORTS is given below. NOTE that the ports used by add on
equipment (eg. disc drive or RS232 interface) are not given —
these details are normally supplied with the equipment.

PORT NUMBER 1/0 DEVICE DESCRIPTION -

&H90 O° PRINTER DATA STROBE (bit 0)

&H90 I PRINTER STATUS (bit1=0 if ready)

&HO91 O PRINTER DATA WRITE PORT

&H98 I VvDP READ DATA

&HO8 O VDF WRITE DATA

&H99 i VvVDP READ STATUS .

&H99 O VDP COMMAND REGISTER

gHAO O PSG REGISTER SELECT LATCH

&HA1 O PSG WRITE DATA

&HAZ2 I PSG READ DATA

&§HAB O PP PORT A DATAWRITE

&HAB I PPl PORT A DATA READ

&HAS O PPI PORT B DATAWRITE

&§HA9 I PPI PORT B DATA READ

HAA O PPI PORT C DATAWRITE

HAA I PPI PORT C DATA READ

SHAB O PPI CONTROL WORD REGISTER
SPECIAL NOTE TO PROGRAMMERS — to maintain

compatibility with future MSX versions you should always
access the peripherals through the primitive |/O routines (in
ROM) and never directly through the ports. The one exception
to this rule is VDP access — the VDP read data port number
will aiways be stored in ROM address &H0006 and the write
data port number will always be stored in address &HO0007.
Your programs should collect the port number from these
addresses. Any direct I/O routines given in this book are
intended for information only.

— 163 —

APPENDIX 6

THE BASIC STATEMENT HANDLER (MSX BASIC version 1.0)

‘This ROM ROUTINE is used by _every basic command and
function to interpret the basic t°oken and call the requirede k
" w”executlon routines. The statement handler is a very useful
routine for the machine code programmer because it gives
access to all basic routines in the ROM. The hl register pair is
pointed to the start of the statement, the “a”’ register is loaded
with the first character of the statement, and the routine is
called at address &H4646.

To illustrate the use of the statement handler lets look at a
short program to print the address of the stack pointer onto
the screen. In basic the program looks like this:

10 PRINT HEXS(PEEK(ErHF6B1) + &H100* PEEK(ErHF6B2))
This routine in machine code uses the following source:
SOURCE FILE APPENDIX 6.1

10 REM [.d00Q! assembly start
20 REM |Id hl,Basic’t Basic address into hl
30 REM Id a,({hi)’! first character into a
40 REM call .4646"! statement handier
50 REM ret’'! return
60 REM Basic'l tokenised basic statement
70 REM db .971’! PRINT
80 REM db .ff'db .9b"! HEXs
90 REM s('! (

100 REM db .ff'db .97"! PEEK

110 REM s$(&gHFB6B1)'! (&HF6B1)

120 REM db .f1'! +

130 REM $&H100’! &H100

140 REM db .f3'! *

150 REM db .ff'db .971 PEEK

160 REM s(&8HFBB2)):"! (&HF6B2))

170 REM])

Assemble the file in the normal way and call the routine with
Z$ = USR1(0). The current address of the stack pointer will be
printed on the screen in hex.

Note that any ASCII characters in the routine must be in upper
case. So the (&HF6B2) and other strings are all in upper case.

Using the statement handler can reduce the most
complicated routines to simple proportions. Remember that
there is 32K of powerful basic ROM in your MSX — using the
built in routines can save vast amounts of space in your
machine code programs.

— 164 —

APPENDIX 7
HOOK JUMPS

in the MSX computers there are many HOOK JUMPS
provided so that the programmer can “HOOK" or attach his
own machine code routine into a basic ROM routine. The
hook jumps are situated in the systems area of memory and
each hook consists of five bytes. Each of the bytes normally
contains the number 201 which is the MC code for return.

At the start of many ROM routines there is a call to a hook
which normally returns immediately. In order to use the hook
you must place a jump to your own routine in the hook — this
is illustrated by the following source file:

SOURCE FILE APPENDIX 7.1

10 REM [.d000"! start address
20 REM Id a,.c3'! code for jump
30 REM Id (.ff43),a’! put it in hook gone
40 REM |d hl,Start’! address for jump
50 REM Id (.ff44),hl'! put it in hook gone + 1
60 REM ret’ return
70 REM Start
80 REM cp .m91’! check for bracket
90 REM ret nz’! no bracket so ret
100 REM inc sp’! remove rom return -
110 REM inc sp’! address from stack
120 REM inc hi’l hl to next instruction
130 REM push hi’l save it
140 REM Id hl,Str] point hl to Str
150 REM call .73e5’| play it
160 REM pop hl'! recover hl
170 REM ret'! back to basic
180 REM Str
190 REM s$"t255cdef’:’| music string
200 REM]! end of source

This little program initialises the hook jump HOOK GONE so
that the open square bracket character “[’ becomes a
command to play a music string. Assemble the file in the
normal way then run it with Z = USR1(0). Now whenever you
press [followed by ENTER the music string will play — this
can be used in command or in program mode.

— 1656 —

HOOCK GONE is a very useful hook which is visited by all basic
statements before syntax check. This means that you can
define your own basic words - as ve did in the given source
file. To avoid problems please remember the following rules
for HOOK GONE:

1) When the hook is called the “‘a” register contains the
token of the current basic word. The first instruction in
the Start routine is a check for our new word i.e. “[", If the
current word is not a “{” then the program returns to the
ROM — this is essential to maintain compatibility with all
existing basic words.

2) When the ROM calls the hook, the return address on the
stack is a return to the ROM. Normally when ycu hook in
your own routine you want to return 1o your basic
program, and not to the ROM, and so you must remove
the ROM return address from the stack. This is done by
incrementing the stack pointer twice thus leaving the
basic return address at the top of the stack.

3) The address in the hl register is a pointer to the current
position in the basic program — this address must be
preserved so that the return to basic is correct. In our
HOOK GONE routine the hi register is incremented so
that hl points to the next basic instruction and not 1o the
“I”. After incrementing the hi register it is saved on the
stack.

4) Finally after execution of the “hooked” routine the hl
register is restored before returning to basic.

NOTE — Whenever you use any hook you must ascertain the
condition of the STACK and the Z80 REGISTERS when the
hook is cafled from the ROM. This knowledge is needed so
that you can avoid a system crash or error condition on returm
1o basic. Remember that the conditions could be different for
each hook so you should disassemble the first section of the
basic routine, which calls the hook, to obtain the necessary
information.

Hook Gone is so useful you may never need any more hooks
however for completeness a list of basic word hooks foliows:

BASIC WORD HOOK ADDRESS
DSKO$ &HFDEF
SET &HFDF4
NAME &HFDF9

— 166 —

BASIC WORD

KILL
IPL
COPY
CMD
DSKF
DSKI$
ATTRS
LSET
RSET
FIELD
MKis$
MKS$
MKD$
CVI
CVS
CvD
MERGE
SAVE
FILES
LOC
LOF
EOF
FPOS
WIDTH
LIST
SCREEN
PLAY

The majority of basic word hooks work as follows:

The basic word calls the basic ROM routine and the ROM
routine calls the hook. When the hook is called there are two
addresses on the stack namely the ROM return address and
the BASIC return address. The stack looks like this:

HOOK ADDRESS

E&HFDFE
EHFEO3
ErHFEOS
&HFEOD
ErHFE12
&HFE17
E&HFE1C
ErHFE21

EHFE26
EHFE2B
E&HFE30
&HFE35
E&HFE3A
E&HFE3F
&HFE44
ErHFE49
&HFE67
ErHFESC
&HFE7B
ErHFEQ9
EHFESE
EHFEA3
EHFEAS
&HFF84
ErHFF89
&HFFCO
EtHFFC5

BASIC return address
TOP ROM return address

The HL register pair contains the address of the character
immediately after the basic word. If the basic instruction is
PRINT “ABC” then the HL register pair would contain the

address of the quotes (“) at the start of “ABC".

— 167 —

To ensure a controlled return to basic it is essential that the
address in HL is preserved.

Here is a simple use for the hook associated with the basic
word LIST. When the hook is called the return address is to
the ROM. If you remove this address from the stack then the
return address is to the basic. This effectively disables the
LIST command and prevents listing of the basic program. To
remove the address from the stack we POP BC at the LIST
HOOK. Use the following basic instruction to disable LIST:

POKE &HFF89,86HC1

OTHER HOOKS
Two hooks associated with the computer interrupts and timer
are:

HKEYl &HFDYA
HTIMI &HFDYF

These hooks are called 50 — 80 times per second when the
computer interrupts are not disabled. A possible software
project for these hooks is a real time clock — NOTE that
interrupts are always disabled during disc or tape /O and so
the clock would stop when loading or saving.

The last hook we are going to examine is:

HCHPU &HFDA4

This is the hook in the Character Put routine — here is a little
program to use this hook to produce inverse characters:

SOURCE FILE APPENDIX 7.2

INVERSE CHARACTER GEN ERATOR

SETUP SECTION

10 REM [.f330"! assembly start address
20'REM Id de,{.4)' address of CHR set

30 REM Id hl,.100"! offset for space CHR

40 REM add hl,de’! add to address

50 REM ex de, hl’l putitin de

60 REM Id hl,.d00’! address of space in VRAM
70 REM Id bc,.2{8’! byte count

— 168 —

CREATE INVERSE CHARACTER SET

80 REM Loop’!

90 REM id a,(de)'}
100 REM cpl'!
110 REM call .4d’!
120 REM cpi’!
130 REM inc de’! i
140 REM jp pe,Loop’!

INITIALISE HOOK

150 REM Init’!

160 REM Id a,.c3'!
170 REM [d (.fda4),a’l
180 REM Id hi,Start'|
190 REM Id (.fdab),h!’l
200 REM Id a,.0"!

210 REM Id (.fda7),a’!
220 REM ret’}

ROUTINE TO TOGGLE THE

230 REM Start't

240 REM cp .18’}
250 REM jr nz,Nott’l
260 REM Id a,(.fda7)'1
270 REM xor .11

280 REM Id (.fda7),a’l
290 REM ret’!

Loop label

byte into a

flip the bits

send byte to VRAM
inc hl & dec bc
increase RAM pointer
if bc > O then Loop

Initialise routine

jump instruction into a
putitinto HCHPU
Start address into hl
putitinto HCHPU + 1
inverse flag into a
putitinto HCHPU + 3
return to basic

INVERSE FLAG

Start routine

is CHR = SELECT

no so goto Nott

yves s0 get inverse flag in a
change flag

put it back .
return to CHPUT

ROUTINE TO CHECK AND INVERSE CHARACTER

300 REM Nott'!
310 REM cp .20
320 REM jr ¢, Tog'!
330 REM Id a,(.fda7)"!
340 REM and a’!
350 REM ret 2’|
360 REM pop bc'!
370 REM pop af’l
380 REM set .7,a'l-
390 REM push af'!
400 REM push bc'!
410 REM ret'!

Nott toggle routine

is CHR = SPACE

less than space so go Tog
get inverse flag

set flag register

no inverse so ret

return address into bc
CHR code into a

convert to inverse

put it back on stack 4
return address onto stack
return to CHPUT

— 169 —

ROUTINE TO SWITCH OFF INVERSE FLAG

420 REM Tog'! subroutine Tog
430 REM Id a,.01 zero into a

440 REM Id (.fda7),a’! reset inverse flag
450 REM ret’]"! return to CHPUT

Lets examine each section of this program source file:

SETUP SECTION

This section collects the address of the ROM character set
from ROM addresses 4 and 5 into the DE register pair. This
address is adjusted so that it points to the definition of the
character SPACE. The HL register pair is set up 1o point to the
VRAM address of CHR$(160) which is to become the first
inverse character (ie. inverse space). The BC register is loaded
-with the number of bytes to be modified.

CREATE INVERSE CHARACTER SET

This section takes each ASCIl character ‘definition byte,
changes binary 1's into 0’s and 0's into 1’s, and places the new
definition into VRAM. NOTE the use of the cpi instruction —
this two byte instruction increments HL, decrements BC, and
sets the parity flag if BC is non zero (the parity flag is reset
when BC is zero).

INITIALISE HOOK
This section sets up the HCHPU hook with a jump to our
character inverse routine Start.

ROUTINE TO TOGGLE THE INVERSE FLAG

The address HCHPU + 3 is the inverse flag — this routine
toggles the flag between 1 and 0 whenever the SELECT key is
pressed.

ROUTINE TO CHECK AND INVERSE A CHARACTER

This routine checks if the current character is valid ASCII (ie.
SPACE or greater), checks if inverse flag is set, inverses the
character if flag is set and then returns to the ROM and puts
the character on the screen. NOTE the stack and register
conditions when the HCHPU is called:

—170 —

STACK BASIC RETURN ADDRESS
AF REGISTER PAIR — A CONTAINS
CHARACTER
TOP ROM RETURN ADDRESS

REGISTERS HL — NEXT CHARACTER POINTER
A — CHARACTER CODE

ROUTINE TO SWITCH OFF INVERSE FLAG

This routine switches off the inverse flag when the character
has a code of less than 32. Each time you ENTER a line the
inverse flag will therefore be switched off.

USING THE INVERSE PROGRAM

Load the source file and assemble in the usual way. Activate
the program by typing:

DEFUSR3 = &HF330
Z = USR3(0)

Now when you want inverse characters you simply press the
SELECT key and then type your characters. You can also
select inverse by the program instruction PRINT CHR$(24)
followed by the text to be printed.

SPECIAL NOTE

The inverse program operates in real time — this means that it
is working away in the background all the time. The computer
will therefore crash if you try to assemble again in the same
memory space. You can abort the inverse program by typing
POKE &HFDA4,6HC9.

FINAL NOTE ON HOOKS

MSX peripherals (eg. disc drive or RS232 card) usually make
use of the hook jumps. It is therefore essential that you check
the contents of a hook jump before you use it for your own
purposes. The hook is unused if the hook address and the
following 4 bytes all contain RET instructions ie. 201 decimal
or C9 hex.

— 171 —

APPENDIX 8

READING INPUT DEVICES

The main input device is the keyboard and most of the keys
produce an ASCIlI value which can be read in basic or in
machine code. Several of the keys produce no ASCIi values ~—
these keys can only be detected by a direct read of the
keyboard matrix. Use the following general code to detect a
keypress of these special keys:

PROGRAM LIST APPENDIX 8.1
10 OUT &HAA (INP(EHAA)AND240)ORY)
20 IF (INP(EEHAS)ANDZ) < >0THEN10

Substitute values for Z and Y in order to select the desired
key. This program will loop until the key, defined by Y and Z, is
‘pressed. :

1) FUNCTION KEY 1: Y =6 Z =32
2) FUNCTION KEY 2: Y =6 Z = 64
3) FUNCTION KEY 3: Y =6 Z =128
4) FUNCTION KEY 4: Y =7 Z =1
5) FUNCTION KEY &: Y =7 Z=2
6) CTRLKEY: Y =6 Z =2
7) SHIFT KEY: Y =6 Z =1
8) GRAPH KEY: Y =6 Z=4
9) CODEKEY: Y =6 Z =16
10) CAPS LOCK: Y=6 Z=8
11) STOP KEY: Y =7 Z =16

Note that shifted keys (and GRAPH/SHIFT or CODE/SHIFT
combinations) produce the same values as unshifted ones —
to detect between shifted and unshifted keys you should first
read the shift key (and the code or graph keys) and then read
the other key.

—172 —

The full keyboard matrix is given below:

MSX KEYBOARD MATRIX (USA)

Yiz 12864 [32 116 {8 [4 | 2 | 1
0 7 |6 |5 }|a|{3|2}11]0
1 sl N =] -9 s
2 b [a | A , a | ea |
3 i i h g f e d c
4 r q p o n m 1
5 z. y X v u t
6 3 | 2 | m1 |coplcar|arr|cTR]|SFT
7 ENT |SEL | BS |sTP [TAB|ESC| FB | F4
8 RGT PWN|CUP | LFT |DEL |iINS | cLs |sPe
9 AR I R (R

a).

b}

c)

d

NOTES

The Y value is the row number and the Z value is the
column number. ' '

The bottom row of the matrix refers to the keypad.

CUP, LFT, DWN and RGT refer 1o the cursor direction
kays. :

To read the keyboard matrix from machine code proceed
as follows:

Load the A register with the Y value,

Call 0141 hex.

256 — 2 is returned in the A register.

255 is returned if no key in row Y has been pressed.

THE JOYSTICK

The joystick is another commonly used input device — the
joystick diraction can be read through PORT A of the PSG.
The following mini-program illustrates the method of directly
reading the joysticks:

— 173 —

PROGRAM LIST APPENDIX 8.2

108 = 191 ’ joystick 1

20 OUT &HAOQ,&HF ’ select PSG port B
30 OUT gHA1 (INP(EHA2)ANDS) select joystick 1
40 OUT &HAO,&HE " select PSG port A
50 Z = INP(&HA2) " read PSG port A
60 PRINT BINS(Z) - ’ print bits '
70 GOTO 20 ‘ do it again

NOTE: Use S = 255 for joystick 2.

The lower six bits of the number Z are significant — interpret
as follows:

BIT O — i bit0
BIT.- 1 — If bit 1
BIT 2 — If bit2
BIT 3 — If bit 3 = 0 then joystick is right.
BIT 4 — if bit 4
BITS — If bits

O then jaystick is forward.

0 then joystick is backward.

i

0 then joystick is left.

I

0 then trigger A is preséed.

O then trigger B is pressed.

When reading the joystick position note that a 1 in any bit
signifies no contact in the relevant direction. Note also that
two directions are possible at one time on the same stick — so
for example forward + left is equivalent to diagonally
upwards to the.left.

—174 —

COMMENTS ON THE MAGIC OF MSX

Send to:

INTERSOFT (PTY) LTD., P.O. Box 5078, Johannesburg, 2000.

-

. ‘
INBITIB, oovvrrsrrenirnrsraieassnssnssnssansansrrssnsesrssssssrrssnssnsnnnsnstssersansatrsnnsnre
Acddress:

ENd

tnereatsrirerensetnsanerstrrserasrrrernssrrsanseersensssorirerses OB eriiearerresrerensons

'
-

My constructive suggestions are:............ecerrinnisiisiissseessossisses

cllollovlococl.o!oilo.llllool.on.ll.c.nll.lloll‘l-nlnu.--n-lllI---.1!.ao‘.--'tnnnotounln-q'ocln-lOIf
LALAR LA L L A L L L L L L L L L T R R R VR AP Y AN R YRS Y Y
eehebesaht b et LY e R ae et R et e ettt saaE e ratan
CeruseiaE Rt bR BRSSO B R b AR RS an e e ee et ekt s e e

L T Ty L Y Y T PP TP T Y

INTERSOFT gives its assurance that all information will be
treated as strictly confidential (if applicable.)

INTERSOFT'S SPECIAL OFFER TO
“THE MAGIC OF MSX"” OWNERS

WORD WIZARD written by B.L.. BURKE

WORD WIZARD is a word‘processing program for the MSX
range of micro computers. The program provides extensive
editing and printer control facilities.

All this for R32.95 (incl. G.S.T.)
FREE! Postage and insurance within R.S.A.

Please send me WORD WIZARD. Please debit my Visa
Card or Master Card No.

Address:.........cccoueens rrterrrrreeraerraes
. Cheque D

...

Postal Orders D

Send the above coupon to: INTERSOFT (PTY) LTD., P.O. Box

5078, Johannesburg, 2000 by registered post and allow 21
days for delivery.

