

Chapter Four
Strings Attached

In Chapter 3, we took a look at number functions. If numbers turn you on,
that’s fine, but string functions are in many ways more interesting. What
makes them so is that the really eyecatching and fascinating actions that the
computer can carry out are so often done using string functions. A string
means any collection of up to 255 characters - the sort of thing that we put
between quotes in a PRINT action, or assign to a string variable name like
A$, or BC$. What’s a string function, then? As far as we are concerned, a
string function is any action that can be carried out with strings. That
definition doesn’t exactly help you, I know, so let’s look at an example, in
Fig. 4.1.

1o CLS

29 AS="0ONE"

30 Bs="TwOo"

49 PRINTAS+BS$

50 A$="12":B$="34"
60 C3$=A%+B3%

7@ PRINTCS

Fig. 4.1. Assigning and concatenating (joining) strings. This is not the same
action as addition of numbers.

This shows two strings, A$ and B$, being assigned in lines 20 and 30. A§ is
assigned to “ONE” and B$ to “TWO” - remember that you must use quotes
in an assignment like this. Line 40 shows what you get for A$+BS$. What is
printed on the screen is ONETWO; the two strings run together. The + sign,
then, is a kind of operator for strings, but the operation is not addition in the
way that we add numbers. To distinguish it, this use is called concatenation.
The rest of the program shows that concatenation works in the same way
even if the strings are of number quantities. If you PRINT A$ or PRINT B$
after line 50 has been run, you will see 12 for A$ and 34 for BS, but CS is
1234, not 46. The + is not an addition sign as far as strings are concerned; it
is a joining sign. Concatenation can be useful if you have carried out actions
on two different strings and you then want to join them. Suppose, for

Strings Attached 45

example, that you have a mailing list program, and to save on memory space
you allow names of up to ten characters only. When a name is entered, you
don’t chop off all the characters after the tenth. This would result in
JONATHAN MILKMAN being chopped to JONATHAN M because the
space counts as a character. The more sensible method is to separate the
surname from the forename, and chop each to ten characters. Both parts of
JONATHAN MILKMAN then can be joined again. If the surname is long,
as with SILAS PREPONDERANCE, then the name appears as SILAS
PREPONDERA, which is enough to recognise it.

Now for some other string functions. Figure 4.2 shows a program that
prints MSX COMPUTER as a title. What makes it more eyecatching is the
fact that the word is printed with twelve asterisks on each side. The asterisks
are produced by a string function whose instruction word is STRINGS.

1¢ REM Remember CLEAR!

20 CLS

390 A=STRINGS(12,"*")

49 PRINTTAB(1)As$+"MSX COMPUTER"+A%

Fig. 4.2. Using concatenation to make a frame of asterisks for a title.

STRINGS$ means make a string out of, and it has to be followed by two
items placed within brackets and separated by a comma. The first of these
items is the number of identical characters that you want to put into this
string. The second item is the character itself. In this example, we’ve used the
* character, and it has had to be placed between quotes.

STRINGS is a useful way of creating strings of one character, and it’s
particularly useful when we come to look at graphics characters. There are,
however, strings attached, as it were. One is string space. When your MSX
computer is switched on, it reserves a small amount of memory for storing
strings. The amount is fairly small, only enough for 200 characters, because
a surprising number of programs will use less than this. When you use the
STRINGS instruction a great deal, however, you can bite deeply into this
small allocation, and this will cause your program to stop with an error
message when the allocation is used up. The message is ‘Out of string space
in 30, and it requires you to reserve more space and try again. You can
reserve more string space by the CLEAR instruction, which is hinted at in
line 10 of Fig. 4.2. By using CLEAR 300, for example, we would reserve
enough memory for 300 string characters. We don’t need this much for this
program, but it’s as well to be on the safe side. Incidentally, this works both
ways. If your program uses no string space at all, you could type CLEAR 0
at the beginning, and so get a little more memory space for other things.

There are two more points about the use of STRINGS. The first is that
you can’t create a string of more than 255 characters, so the first numberin a
STRINGS expression has to be 255 or less. If you attempt to use a larger
number you will get the ‘Illegal function call’ error message. The other point

46 Working with MSX BASIC

about STRINGS is that the second item in the brackets can be a number,
with no quotes. Each character used by the MSX computer is represented by
a code number, using what we call ASCII code. The letters stand for
American Standard Code for Information Interchange, and the ASCII
(pronounced Askey) code is one that is used by most computers. Figure 4.3

32 33 ' 34 " 3I5 #36 %
37 % 38 % 39 ' 48 (41
42 % 43 + 44 , 45 - 34 .

47 / 48 o 49 1 5 2 51 3
52 4 53 S 54 6 59 7 56 8

57 9 58 = 59 60 < 61 =

62 > 63 ? 64 @ 65 A 66 B
67 C 68 D 69 E 76 F 71 6
72 H 73 I 74 J 75 K 76 L
77 M 78 N 79 O ge P 81 @
82 R 83 S 84 T 85 U 86 V

87 W 88 X 89 VY 90 7 91 [

92 \ 93 1 94 -~ 95 96 -

97 a 98 b 99 c 190 d 101 e
102 § 103 g 104 h 105 i 106 j
107 k 108 1 109 m 110 n 111 o
112 p 113 g 114 r 115 s 116 t
117 u 118 v 119 w 120 x 121 vy

122 z 123 { 124 125 » 126 ~

127 N

Fig. 4.3. The standard ASCIl code numbers.

shows a printout of the ASCII code numbers and the characters that they
produce on my printer (Epson RX-80). In place of the asterisk we used
between quotes in Fig. 4.2, then, we could have used the number 42, making
the instruction into STRING$(12,42), which is shorter.

The number characters of normal ASCII code extend only from 32 to

Strings Attached 47

127. The code numbers above 127 are used by the MSX computer for other
purposes, and we can select how we make use of them. Figure 4.4 gives a
flavour of this; it is something that we’ll investigate in much more detail in
Chapter 7. By using the number 215 in the STRING$ command in line 20,

10 CLS
20 A$=STRING$(12,215)
30 PRINTTAB(1)A%$+"MSX COMPUTER"+A$

Fig. 4.4. Using other ASCII codes.

we select a chequer pattern rather than a letter character. This same pattern
can be typed by pressing the SHIFT, GRAPH and the P keys together. The
effect is to produce a more effective looking frame for the name this time.

The long and the short of it

String variables allow us to carry out many operations that can’t be done
with number variables. One of these operations is finding out how many
characters are contained in a string. Since a string can contain up to 255
characters, an automatic method of counting them is rather useful, and
LEN is that method. LEN has to be followed by the name of the string
variable, within brackets, and the result of using LEN is always a number so
we can print it or assign it to a number variable. Since the number is always
an integer, it should be assigned to an integer variable unless the program is
a very short and simple one.

Figure 4.5 shows a useful example of LEN in use. This program uses LEN

10 T$="MSX Computing"
290 TB=(37-LEN(T$))/2
39 CLS:PRINTTAB(TB) TS
49 REM Now print your text.

Fig. 4.5. Using LEN to print titles centred.

as a way of printing a string called T$ centred on a line. This is an extremely
useful routine to use in your own programs because it can save you a lot of
tedious counting when you write your programs. The principle is to use
LEN to find out how any characters are present in the string T$. This
number is subtracted from 37, and the result is then divided by two. If the
number of characters in the string is an even number, the number TB will
contain a .5, but this is completely ignored by TAB when the string is
printed. Note how brackets have been used in line 20. The easiest way of
writing a line like this is to start az the innermost brackets. For example, you
know that you need to find the length of the string, T$, so you write

48 Working with MSX BASIC

LEN(TS) first. You have to subtract this from 37, so you then add this item,
to get 37 — LEN(TS$). The whole of this, not just LEN(T$), must be divided
by two, so you must place brackets around it, to get (37—LEN(T$))/2, which
is then assigned to TB. You will find that this ‘inside to outside’ approach
pays off when you have to work with lots of brackets. If you are uncertain
about using brackets, be thankful that you are programming in BASIC, and
not in the language called LISP! The whole process of centring could be
done in one line, but I have shown it in three lines so that you can see the
steps. In Chapter 6 we’ll look at ways of rewriting actions like this so that
they can be called up when we want them, just like another instruction word.

By the left, slice!

The next group of string operations that we’re going to look at is called
slicing operations. The result of slicing a string is another string — a piece
copied from the longer string. Note that this is a copying process - nothing is
removed from the longer string when the copy is made. The piece that is
copied can be printed or assigned as you please. String slicing is a useful way
of finding what letters or other characters are present at different places ina
string.

All this might not sound terribly interesting, so take a look at Fig. 4.6, The

10 CLS

20 A%$="Middlesex"

30 B$="Sugical®

49 Cs="X-Ray Unit"

50 S$=SPACE$(1)

690 PRINTA$+S5$+B$+S+CS$

70 PRINT:PRINTLEFT$ (A%, 1)+LEFT$(B%,1)
+LEFT$(C%,1)+" Computing."

Fig. 4.6. Using SPACES$ to make a space of the correct size, along with the
string slicing action LEFT$A

strings A$, B$ and C$ are assigned in lines 20, 30 and 40. There’s a new
instruction in line 50, in the form of SPACES. SPACES is a way of assigning
a string which consists of spaces; as many as the number enclosed in the
brackets. It’s a simple and useful way of creating spaces, which saves having
to use lines like:

100 SP$=* ~

which are not easy to follow because you have to count the number of spaces
for yourself. In this example, line 50 assigns just one space to the variable S$,
so that we can use it to space words. Line 60 then prints a phrase on the
screen and line 70 prints some slices from A$, B$ and C$ on the screen. Now

Strings Attached 49

how did the letters MSX appear? The instruction LEFT$ means copy part
of a string starting at the left-hand side. LEFTS has to be followed by two
quantities within brackets and separated by a comma. The first of these
quantities is the variable name for the string that we want to slice, A$ in the
first example. The second is the number of characters that we want to slice
(copy, in fact) from the left-hand side. The effect of LEFTS$(AS,1) is
therefore to copy the first letter from Middlesex, giving M. The next
LEFTS$(BS,1) copies the S from Surgical, and the last slice action of line 70
adds the X from X-Ray Unit. The last part of line 70 then adds the word
Computing to these letters. How about trying for yourself a program which
asks for your forename and surname, and then prints your initials?

You aren’t confined to printing or assigning just one letter, of course.
Suppose that you are working on a mailing list program for the local Darts
Club. The names and addresses which are printed on the letters will be
complete, but to save your typing finger(s), you want to be able to list the
names on the screen using just the first five letters. You can then command
the computer to find an address by just typing the first five letters of the
surname. The part of this problem that we can solve easily now is the first
five letters bit. Figure 4.7 shows how this is arranged. Line 20 asks for a

19 CLS

29 INPUT"Surname, please ";A$
30 B$=LEFT$(A%.5)

49 PRINT"Short form is "“:B%
S¢ GOTO 20

Fig. 4.7. Entering a surname which is sliced to five letters. This action
continues until you press CTRL STOP.

surname to be typed, and line 30 then uses LEFT$(AS$,5) to copy the first
five letters of the name. In this example no attempt has been made todo any
more, and the program repeats endlessly because of the GOTO 20 in line 50.
You will have to press CTRL STOP to make it halt. Later on, we’ll look at
ways of controlling this more effectively, so that all of the names can be kept
in a list, and the first five letters copied as required. One thing at a time, if
you please.

Eyes right

String slicing isn’t confined to copying a selected piece of the left-hand side
of a string. We can also take a copy of characters from the right-hand side of
a string. This particular facility isn’t used quite so much as the LEFTS$ one,
but it’s useful none the less. Figure 4.8 illustrates a simple use of this
instruction to avoid having to use the whole of a complicated code number.
Take a look, for example, at the code number on your telephone bill. There

50 Working with MSX BASIC

19 CLS

290 READ D%

30 PRINT"Part No. is "3RIGHT$(D%,6)
40 DATA PD1R-747-164027

Fig. 4.8. Using RIGHT$ to extract letters from the right-hand side of a string.

are other serious uses like this. You can, for example, extract the last four
figures from a string of numbers like 010-242-7016. I said a string of
numbers deliberately, because something like this has to be stored as a string
variable rather than as a number. If you try to assign this to a number
variable you’ll get a silly answer. Why? Because when you type N =
010 -242-7016 the computer assumes that you want to subtract 242 from 10
and 7016 from that result. The value for N is —7248, which is not exactly
what you had in mind! If you use N§=“010-242-7016” then all is well.

Middle cut

There’s another string slicing instruction which is capable of much more
than either LEFT$ or RIGHTS. The instruction word is MID$, and it has to
be followed by three items within brackets, using commas to separate the
items. Item 1 is the name of the string that you want to slice, as you might
expect by now. The second item is a number which specifies where you want
slicing to start. This number is the number of the characters counted from
the left-hand side of the string, counting the first character as 1. The third
item is another number; the number of characters that you want to slice,
going from left to right and starting at the position that was specified by the
first number.

It’s a lot easier to see in action than to describe, so try the program in Fig.
4.9. Line 20 assigns AS$ to the phrase Using Common putty. Line 30 then

10 CLS

20 A%$="Using Common putty."”

30 B$=MID$(A%,7,3)+MID$ (A%, 14,3)+MID$
(A$,3,3)

49 PRINTB%

Fig. 4.9. Using MID$, which can extract from any part of a string, and can, like
LEFT$ and RIGHT$, be controlled by variables.

assigns a new string, B$, which is made out of slices from A$. The first slice
uses MID§(AS,7,3). If you count the characters in A$, including spaces,
yowll find that the seventh character is the C of Common. Remember that
the counting for MIDS$ starts at 1, not at 0 like so many other counting
actions. The slice starts with the C, and is of three characters - Com from
this part of the phrase. The other two slices also take three characters each,
to make up the word Computing, and this is what appears on the screen.

Strings Attached 51

1¢ CLS

20 X=RND(-TIME)

30 INFUT"Your surname, please ";N$
49 L7Z=LEN(NS$)

50 RZ=RND (1)*L%+1

690 CD$=MID$(N$,R%Z. 1)

79 PRINT"Your code letter is ";CD$

Fig. 4.10. Using a number expression along with slicing instructions.

One of the features of all these string slicing instructions is that we can use
variable names or expressions in place of numbers. Fig. 4.10 shows a more
elaborate piece of slicing, which uses an expression along with a random
number. Line 20 ensures that the numbers are truly random, and the action
all starts innocently enough in line 30 with a request for your surname.
Whatever you type is assigned to variable N$, and in line 40 the length of this
string is found and assigned to L.%. Line 50 then generates a number, at
random, which will lie between 1 and 1.9%. We saw how this was done in
Chapter 3, so the principles should be familiar by now. This random
number, assigned to R%, will be a whole number because an integer variable
can hold only a whole number. It is used in line 60 to select one of the letters
from your name, and line 70 informs you that this letter is your code letter
for today. It’s a simple example, but the point is important — that whatever
appears in the number part of MIDS$ (or LEFT$ or RIGHTS) can be a
number variable. Could you now take this piece of program and alter it so
that you get a group of letters of random length? The number of letters
should not be more than half the number of letters of your name, so for
SINCLAIR, I might get IN or CLA or INCL, for example.

Tying up more strings

It’s time now to look at some other types of string functions, starting with
two that are important when your program handles numbers. The first of
these is VAL, and it’s used to convert a number that is in string form back
into ordinary number form so that we can carry out arithmetic. Suppose, for
example, that we have NR$=“3.4". NRS is a string, and if we carry out
PRINT NR$+“2” the result is 3.42, not 5.4. This is because numbers which
are in string form cannor be added, and no other form of arithmetic is
possible with them either. If you have a number in this form you can convert
it by using VAL. You can, for example, use A!=VAL(NRS) to convert the
number from its string form in NR$ to single-precision variable form as A!.
As usual, you can choose whether to use an integer, single-precision or
double-precision number variable. Remember that if you don’t specify, the
form will always be double-precision.

There’s an instruction that performs the opposite conversion; STRS.
When we follow STR$ by a number, number variable, or expression within

52 Working with MSX BASIC

10 N$="22.5":y=2

20 CLS:FRINT

36 PRINTN&:" times ";V:" is ";UxVAL (N
%)

40 PRINT

599 V$=8STR% (V)

69 PRINT"There are ";LEN(V$);" charac
ters in "sVes '

70 PRINT

80 PRINTN%;:;" added to ":V$;" is not *©
5 N$+V$

Fig.4.11. How VAL and STR$ are used toconvert numbersto differentforms.

brackets, we carry out a conversion to a string variable. We can then print
this as a string, or assign it to a string variable name, or use string functions
like LEN, MIDS$ and all the others. Figure 4.11 illustrates these processes
with a warning! Lines 10 to 30 show that we can perform arithmetic on N§ if
we use VAL with it. Line 50 converts the number variable V into string form,
using the string name of V$. Now V has been assigned to the number 2 in line
10, and we would expect just one character to be present in the string. Line
60 reveals that there are two! The reason is that when we use STRS to
convert a number into string form, a space is left at the left-hand side of the
string in case we want to put in a sign (+ or —). This space is, of course, an
invisible extra character, which explains why 2 appears to consist of two
characters, and 42 of three characters. Line 80 shows the strings being
concatenated, just to emphasise the difference between string variables and
number variables.

The reason why

You may now be wondering why on earth we might want to use numbers in
string form, when we have all this carry-on about converting between string
form and number form. One reason is that string form is often very
convenient. Just to give an example, you can enter anything in string form,
using something like INPUT XS$. If you have INPUT X, then what you enter
must be a number, and only a number. You can’t, for example, enter 27A. If
you do, then you’ll just get the usual ‘Redo from start’ message to remind
you that only a number is acceptable, and 27A isn’t an ordinary number.
Now if only you will be using the program this might be acceptable, but if a
non-programmer may use it this error message might cause a lot of
confusion. If you use an input which is assigned to a string variable, then
items like 27A will be accepted. You can then use VAL to extract the
number part. This use of VAL, however, works only if the string starts with
a number. You can extract the number 27 from 27A, but not from A27. If
you type A27 as your answer, then VAL will give the number 0. When a

Strings Attached 53

reply consists of mixed numbers and letters, you will have to make use of
MIDS$ or RIGHTS to get rid of the letters before you-use VAL. That'’s
something that we’ll come back to when we deal with loops in Chapter 5.

There’s another reason for needing VAL. Up until now, we’ve used
INPUT as our only way of getting a valueinto a program when it is running,.
INPUT, you remember, causes the program to hang up until you press the
RETURN key. There’s another way of getting a character from the
keyboard, though, which uses a different instruction word; INKEYS. The
important point about this one is that it has to be assigned to a string
variable. You can use K$=INKEYS$, but not K=INKEYS$. The other point
about INKEY$ is that it ‘scans the keyboard’. This means that at the instant
when the line that contains K$=INKEY$ is executed, the computer checks
to find if any key is being pressed. If no key is pressed, the computer makes
K$ equal to a blank string and goes on its merry way. If you want to make
use of K$=INKEYS to get something from the keyboard, then, you have to
arrange for the instruction to be repeated until a key is pressed. Figure 4.12

1e CLS

20 PRINT"Press any key....."
30 K$=INKEY$:IF K%=""THEN 30
40 PRINT"Your key was "3K$

5¢ PRINT"Number value ";VAL (K%$)

Fig. 4.12. The INKEY$ loop, which will always give a string. This can be
converted by using VAL.

shows this in action. Line 30 assigns K$ to INKEYS$, so that the computer
will test the keyboard at this point. If K$ is a blank string we want this action
to repeat, and this is done by the rest which reads:

IF K$=“"THEN 30

This means that if K$ is a blank string because no key was pressed, the next
line should be line 30. This makes line 30 repeat until K§$ is no longer a blank.
Note how a blank string is typed as a pair of quotes with nothing between
them - you just tap the quotes key twice to obtain this. The program will
therefore hang up, repeating line 30, until you press a key. You need to press
only one key, and unlike INPUT you don’t have to follow it by pressing the
RETURN key. Lines 40 and 50 then show the effect of what you have done.
This is where VAL is really essential, because K$ is a string. If you want to
use a number value here, then you can assign something like Vo=V AL(K$).
V% must be an integer, because INKEY$ allows you one key only, and one
digit key can’t give you a fraction!

Why should we need STR$? Let me give you just one example. Suppose
you have a program which accepts numbers. These might be catalogue
numbers of gifts, for example. Now when the computer lists are printed, we
might want numbers like 1, 12, 123 to be printed out as 0001, 0012 and 0123
respectively, using four characters. It’s quite difficult to arrange this if the

54 Working with MSX BASIC

1e CLS

20 INPUT"Number, please ":V
39 V$=S5TR$ (V)

49 L=LEN(VS$)-1

30 VE="0000"+RIGHT$ (V$,L)
60 V$=RIGHT$(V$,4)

70 PRINTVS

Fig. 4.13. Using STR$ to print numbers with leading (left hand) zeros.

program prints number variables, but it’s simple if you use strings. Figure
4.13 illustrates what I mean. Line 20 obtains a number from you, and you
should try the effect of numbers like 3, 45, 624, 1234 and so on, keeping to
numbers of four digits or less. In line 30, the number is converted to string
form as V$. Line 40 takes the length of this string and subtracts 1. This,
remember, is because STRS always places a blank space before the first digit
of the number. We don’t want this when we print the number, so we subtract
1 from L. The string is then concatenated with the string “0000” in line 50,
and only the number part of V§ is added. This is done by using
RIGHTS(VS,L). For example, if N=23, then LEN(V$) is 3, and L=2. Line
50 then takes the last two characters of V$, “23” and adds them to “0000”, to
get “000023”. Line 60 then takes the last four digits of this, which are “0023”,
and this is printed in line 70. Note how a variable name like V§ can be
reassigned several times in the course of a program like this. You could, of
course, use different variable names at each stage of the process, but it’s
more economical to reassign the same name, and it makes things easier to
follow. This is because you know that V§ is always being used to hold the
quantity that you are working with. There are lots of other manipulations
like this that become easy when STRS is used. Another example would be
adding letters to a number. Could you design part of a programthat asks for
your name and your age, then takes the first three letters of your name and
joins them to your age to give a code like SIN52 ?

ASC and CHR$

If you look back to Fig. 4.3 now, you’ll remember that we introduced the
idea of ASCII code. This is the number code used to represent each of the
characters that we can print on the screen. We can find out the code for any
letter by using the function ASC followed, within brackets, by a string
character or a string variable. The result of ASC is a number; the ASCII
code number for that character. If you use ASC(“MSX™), you’ll get the code
for the M only, because the action of ASC includes rejecting more than one
character. Figure 4.14 shows this in action. Line 20 asks you to press any
key, and line 30 contains an INKEY$ to get the character from the
keyboard. Line 40 then prints the ASCII code for whatever key has been
pressed by using ASC(K$). When you run this you will find that keys which

Strings Attached 55

1@ CLS

290 FRINT"Press a key, please "j;
390 K$=INKEY®$: IF K$=""THEN 30

40 PRINT"ASCII code is "iASC(K$)
50 GOTO 2@

Fig. 4.14. Using ASC to find the ASCII code for letters.

don’t produce anything on the screen will still give an ASCII code. Keys
such as the spacebar, the ESC, TAB and HOME keys, for example, all give
their own codes. You will also find that the CTRL key gives no code of its
own, but when it 1s pressed along with another key a new code is generated.
Try the effect of SHIFT and CODE along with letter keys as well.

ASC has an opposite function, CHR$. What follows CHRS$, within
brackets, has to be a code number, and the result is the character whose code
number is given. The instruction PRINT CHR$(65), for example, will cause
the letter A to appear on the screen, because 65 is the ASCII code for the
letter A. Figure 4.151s ashort program that allows you to enter numbers and

ie CLS

26 LOCATEZ2, 1o

30 INPUT"Number, please “iN

40 PRINT:PRINT"Character is ";CHR$(N)
50 PRINT:PRINT"Press any key to proce
ed"

&0 kK$=INKEY$: IF K3=""THEN &9

79 B0TO1e

Fig. 4.15. Using CHR$ to find what character shape corresponds to a number
code.

see what their effect is on the screen. The numbers that can be used for this
CHRS action extend from 0 to 255. The numbers from 0 to 31 do not
produce any visible character on the screen. These are ‘action’ code
numbers, which produce effects like backspacing the cursor, clearing the
screen and so on. Figure 4.16 lists these effects. The number 32 is the ASCI1
code for the spacebar, and the numbers from 33 to 255 will all produce
various characters.

One of the main uses of CHRS, which we shall investigate in Chapter 7, is
in producing graphics shapes, the other is for coding messages. Every now
and again it’s useful to be able to hide a message in a program so that it’s not
too obvious to anyone who reads the listing. Using ASCII codes is not a
particularly good way of hiding a message from a skilled programmer, but
for non-skilled users it’s good enough. The codes can be kept in a DATA
line, read in one by one, converted to characters by using CHRS, and
printed. This is something that we’ll look at when we come to the subject of
loops in the next chapter.

56 Working with MSX BASIC

Code Effect

Make next character a graphic.

1

2 Move cursor to first character of word to the left.
3 Stop program.

4 Nil.

5 Delete rest of line.

6 Move cursor to first character of next word.
7 Sound beep.

8 Backspace cursor by one step and delete character,
9 Move cursor eight spaces to the right.

10 Move cursor to first position on next line.
11 Move cursor to top left corner of screen.

12 Clear the screen.

13 As for RETURN Kkey.

14 Cursor to end of line.

15-17 Nil.

18 Insert character at cursor position.

19,20 Nil.

21 Delete line.

22-27 Nil.

28 Cursor right.

29 Cursor left.

30 Cursor up.

31 Cursor down.

Fig. 4.16. The effects of the ASCII codes O to 31.

The law about order

We saw earlier in Fig. 3.9, and we’ll look again in Fig. 5.12, how numbers
can be compared. We can also compare strings, using the ASCII codes as
the basis for comparison. Two letters are identical if they have identical
ASCII codes, so it’s not difficult to see what the identity sign = means when
we apply it to strings. If two long strings are identical, then they must
contain the same letters in the same order. It’s not so easy to see how we use
the > and < signs until we think of ASCII codes. The ASCII code for A is
65, and the code for B is 66. In this sense, A is ‘less than’ B, because it has a
smaller ASCII code. If we want to place letters into alphabetical order, then,
we simply arrange them in order of ascending ASCII codes.

This process can be taken one stage further, though, to compare complete
words, character by character. Figure 4.17 illustrates this use of comparison
using the = and > symbols. Line 20 assigns a nonsense word - it’s just the
first six letters on the top row of letter keys. Line 30 then asks you to type a

Strings Attached 57

1o CLS

26 A$="QWERTY"

39 PRINT: INPUT"Type a word (capitals)
"i:B%

49 IF B%=A% THEN PRINT "Same as mine!
":END

o9 IF A%>B% THEN SWAFP A%$,B$

60 PRINT"Correct order is "iA%;" then
";B%

76 END

Fig. 4.17. Comparing words to decide on their alphabetical order.

word, using upper-case (capital) letters. The comparisons are then carried
out in lines 40 and 50. If the word that you have typed, which is assigned to
BS, is identical to QWERTY, then the message in line 40 is printed and the
program ends. If QWERTY would come later in an index than your word,
then line 50 is carried out. If, for example, you typed PERIPHERAL, then
since Q comes after P in the alphabet and has an ASCII code that is greater
than the code for P, your word BS$ scores lower than AS, and line 50 swaps
them round. MSX computers do this by using the useful command SWAP.
When SWAP is followed by two variable names, separated by a comma, it
will do what the name suggests — swap the values. This is the command that
has been used in line 50 following the IF test. Line 60 will then print the
words in the order A$ and then B$, which will be the correct alphabetical
order. If the word that you typed comes later than QWERTY, for example
TAPE, then AS$ is not ‘greater than’ B$, and the test in line 50 fails. No swap
is made, and the order AS, then BS, is still correct. Note the important point
though, that words like QWERTZ and QWERTX will be put correctly into
order —it’s not just the first letter that counts. The SWAP command applies
to number variables as well as to string variables.

String arrays

We looked briefly at the idea of number arrays in Chapter 3, showing how a
single variable name could be used for a set of numbers. The same
arrangement can be used for strings, and the only change that needs to be
made is that a string variable name has to be used. We can, for example, use
AS(1), A$(2), A$(3) and so on, to represent a set of strings, which might be
the names of the members of the local Music Society (or the violinists,
perhaps). A string array like this also has to be dimensioned so that the
computer can set aside memory for storing the strings. If, for example, you
want to use the array A$ for up to item A$(100), then you need a line that
reads: DIM AS$(100). This line would have to be carried out before you start
assigning values to these A$ elements. If you find in the course of a program
that you need more array items and you haven’t dimensioned enough, hard

58 Working with MSX BASIC

luck! You cannot dimension the same array a second time while the
program is running. If your early line was DIM A$(100), you cannot have a
later line of DIM AS$(200). This is because the computer has set aside
memory for the first dimensioning, and will have made use of the memory
around this reserved piece. Attempting to re-dimension A$ would cause the
computer to clear some of the other parts of its memory, and this could
result in the program being completely destroyed. When the computer
comes across a second DIM statement about the same variable name, then,
you get a ‘Re-dimensioned array’ error message, and the program stops. The
MSX machines allow you to use subscript numbers up to 10 without
needing to use DIM. This allows you eleven items, because A$(0) can be
used as well as A$(1) and so on. What you have to watch if you take
advantage of this is that you do not use an array like this and then try to
dimension it by a command like DIM A$(20). This also will cause the ‘Re-
dimensioned array’ message. We'll look at examples of string arrays in use in
Chapter 5.

String ends

There are, inevitably, a few commands that we haven’t looked at yet, mainly
because they haven’t fitted in with the others. One of these is the interesting
and useful one, INPUTS. This is not quite like INPUT, because it allows you
to enter a preset number of characters, and they are not shown on the screen
when you enter them. It’s ideal for security codes, as Fig. 4. 18 shows. Line 30

1@ CLS

29 PRINT"Please type the S-letter cod
E"

39 AS=INPUTH(3)

40 IF A< >"QSRBN"THEN FRINT "Incorrec
t- no entry*:50T019

59 PRINT"Pass, friend.”

Fig. 4.18. How INPUT$ is used for 'security entry’.

contains the step AS=INPUTS$(5). This means that only five characters can
be accepted for this input, and the string of characters will be assigned to AS.
The computer hangs up and waits for you when line 30 runs, but you don't
need to press ENTER. Immediately you press the fifth key, the entry is
complete, but without anything appearing on the screen. In this example,
line 40 then checks that what you have entered is the correct password. It’s a
very useful way of getting an entry of the right number of characters. There’s
no need to count characters and use a test to detect the entry of the wrong
number of characters. An extension to INPUTS allows entry from tape or
disk.

Another pair of useful commands uses FRE. If you type PRINT

Strings Attached 59

FRE(AS), then the machine will print the number of bytes of memory that
you can use for strings. You can use any variable name in place of A$, and it
doesn’t need to be a variable name that is used or assigned in your program.
A variable name used in this way is called a dummy variable. You will find
that when you switch on the machine, 200 bytes of memory are reserved for
strings; space for 200 characters. This isn’t a lot, but a surprising number of
programs use even less than this. You already know how to extend the string
space using CLEAR. If you use a dummy number variable with FRE, as for
example PRINT FRE(A), then the computer will print the tozal amount of
memory that is available. This may give you a nasty shock if you thought
that your machine had 64K (=65536 bytes) of free memory! You can use
FRE(A) to decide if you have to stop using a program because of lack of
memory. By having a line such as:

IF FRE(A)<1000 THEN PRINT “No room - please record
data”:GOSUB 5000

you can detect when memory is running short, and then record your data.

Finally, MSX machines can make use of an excellent command, INSTR.
This i1s used to find if one string is contained in another. It’s used in the
simple form:

X%=INSTR (AS, BS)

to find if B$ is contained in A$. Ifitis, then X% is the position number of the
first letter of B$ that is found in AS$. If BS is nor contained in A$, then X% is
zero. X% will always be zero if BS is longer than A$. You can, of course, use
the form:

PRINT INSTR(A$,BS)

if you just want to see the number.

Figure 4.19 shows a simple example of this function in action. Lines 20 to
40 allocate names to strings, and lines 50 to 70 make the tests, so that you can
see how they work out. Notice that the strings have to be exact for the
function to work - it’s no good looking for Bert if what is contained in the

1o CLS

20 A%="Albert Hali"

3@ Be="Richardson, Bertram"

49 C$="Sinclair, I"

S0 PRINT"In "3A%:" bert is located at
"3 INSTR (A%, "bert")

60 PRINT"In ";B%:" Bert is located at
*$ INSTR(B%, "Rert")

70 PRINT"In ";3;C%$:" BERT is located at
"$ INSTR(C$, "BERT"}

Fig. 4.19. Using INSTR to find if a group of letters is contained within another
group.

60 Working with MSX BASIC

string is bert or BERT, for example. To leave you with a thought, suppose
you had a string A$=“YESyesYUPyupSUREsureOKok”, and you asked
for a yes/no answer. You could get INSTR to look through this. If the result
of X%=INSTR(Answer$,A$) is zero, then the answer wasn’t any form of
YES! The other point about INSTR is that you can specify at which
character in the string you start the search. This is done by putting in a
number as the first item within the brackets. The other items are used as
before, with commas between them. For example, if you had:

X%=INSTR(5,A$,BS)

the computer would start at character number 5 of A$, and look from that
position to find if B$ was present. This can be useful if, for example, you are
looking for a space between a forename and a surname. The program might
be misled if there was a space just before the name, so using
INSTR(2,A$,B$) would skip over this first space and concentrate on
looking for the second one. The number X% that you obtain from this can
then be used in MID$, LEFT$ or RIGHTS commands to separate out the
words. Magic!

Chapter Five
Repeating Yourself

One of the activities for which a computer is particularly well suited is
repeating a set of instructions, and every computer is well equipped with
keywords that will cause repetition. The MSX computers are no exception
to this rule. We’ll start with the simplest of these ‘repeater’ actions, one
which we have already used, GOTO.

GOTO means exactly what you would expect it to mean - go to another
line number. Normally a program is carried out by executing the
instructions in ascending order of line number. In plain language that means
starting at the lowest numbered line, working through the lines in order and
ending at the highest numbered line. Using GOTO can break this
arrangement, so that a line or a set of lines will be carried out in the ‘wrong’
order, or carried out over and over again.

Figure 5.1 shows an example of a very simple repetition or ‘loop’, as we

10 PRINT"MSX COMPUTING FILLS YOUR SCR
EEN"
20 607010

Fig. 5.1. A very simple loop. You can stop this by pressingthe CTRLand STOP
keys.

call it. Line 10 contains a simple PRINT instruction. When line 10 has been
carried out, the program moves on to line 20, which instructs it to go back to
line 10 again. This is a never-ending loop, and it will cause the screen to fill
with the words:

MSX COMPUTING FILLS YOUR SCREEN

until you press the CTRL and STOP keys to ‘break the loop’. Anyloop that
appears to be running forever can be stopped by pressing the STOP key.
This does what it says, stops the program running, but not completely. If
you press the STOP key again, the program will take over from where it left
off. We'll see later that this is very useful if you are chasing faults in a
program. If you want to stop the program completely, so that you can
record it or change it, then you have to press the CTRL key and the STOP
key together.

62 Working with MSX BASIC

10 CLS:N=0

20 FRINT N

30 N=N+1

40 GOTO 20

59 REM Use CTRL and STOP again.

Fig. 5.2. A'loop which carries out a count-up action very rapidly. You will also
have to use the CTRL and STOP keys to stop this one.

Now try a loop in which there is slightly more noticeable activity. Figure
5.2 shows a loop in which a different number is printed out each time the
computer goes through the actions of the loop. We call this ‘each pass
through the loop’. Line 10 sets the value of the variable N at 0. This is printed
in line 20, and then line 30 increments the value of N. Line 40 forms the loop,
so that the program will cause a very rapid count-up to appear on the screen.
Once again, you’ll have to use the STOP key to stop it, and this gives you a
chance to see how the program will carry on the next time that you press the
STOP key. As before, pressing CTRL and STOP together will break out of
the program.

Now an uncontrolled loop like this is not exactly good to have, and
GOTO is a method of creating loops that we prefer not to use! We don’t
always have an alternative, but there is one - the FOR.. NEXT loop. As the
name suggests, this makes use of two new instruction words, FOR and
NEXT. The instructions that are repeated are the instructions that are
placed between FOR and NEXT. Figure 5.3 illustrates a very simple

10 CLS

29 FOR N=1 TO 1o

30 FRINT"MSX COMPUTERS RULE O.K."
40 NEXT

Fig. 5.3. Using the FOR...NEXT loop for a counted number of repetitions.

example of the FOR.. . NEXT loop in action. The line which contains FOR
must also include a number variable which is used for counting, and
numbers which control the start of the count and its end. In the example, N
is the counter variable, and its limit numbers are 1 and 10. The NEXT is in
line 40, and so anything between lines 20 and 40 will be repeated.

As it happens, what lies between these lines is simply the PRINT
instruction, and the effect of the program will be to print MSX
COMPUTERS RULE O.K. ten times. At the first pass through the loop,
the value of N is set to 1, and the phrase is printed. When the NEXT
instruction is encountered, the computer increments the value of N, from 1
to 2 1n this case. It then checks to see if this value exceeds the limit of 10 that
has been set. If it doesn’t, then line 301is repeated, and this will continue until
the value of N exceeds 10 — we’ll look at that point later. The effect in this
example is to cause ten repetitions.

You don’t have to confine this action to single loops either. Figure 5.4

Repeating Yourself 63

i9 CLS

20 FOR N=1 T0O 106

3@ PRINT"Count is “s5N
40 FOR J=1 TO S09:NEXT
09 CLS:NEXT

Fig. 5.4. A program that uses nested loops, with one loop inside another. The
inner loop is a delay loop.

shows an example of what we call ‘nested loops’, meaning that one loop is
contained completely inside another one. When loops are nested in this way,
we can describe the loops as ‘inner’ and ‘outer’. The outer loop starts in line
20, using variable N which goes from 1 to 10 in value. Line 30 is part of this
outer loop, printing the value that the counter variable N has reached. Line
40, however, is another complete loop. This must make use of a different
variable name, and it must start and finish again before the end of the outer
loop. We have used variable J, and we have put nothing between the FOR
part and the NEXT part to be carried out. All that this loop does, then, is to
waste time, making sure that there is some measurable time between the
actions in the main loop. The last action of the main loop is clearing the
screen in line 50. The overall effect, then, is to show a count-up on the screen,
slowly enough for you to see the changes, and wiping the screen clear each
time. In this example we have used NEXT to indicate the end of each loop.
We could use NEXT Jinline 40 and NEXT N in line 50 if we liked, but this is
not essential. It also has the effect of slowing the computer down, though the
effect is not important in this program. When you do use NEXT J and
NEXT N, you must be absolutely sure that you have put the correct variable
names following each NEXT. If you don’t, the computer will stop with a
NEXT without FOR error - meaning that the NEXTs don’t match up with
the FORs in this case. You would also get this message if you had omitted a
NEXT.

Even at this stage it’s possible to see how useful this FOR...NEXT loop
can be, but there’s more to come. To start with, the loops that we have
looked at so far count upwards, incrementing the number variable. We
don’t always want this, and we can add the instruction word STEP to the
end of the FOR line to alter this change of variable value. We could, for
example, use a line like:

FOR N=1 TO 9 STEP 2

which would cause the values of N to change in the sequence 1,3,5,7.9. When
we don’t type STEP, the loop will always use increments of 1.

Figure 5.5 illustrates an outer loop which has a step of —1, so that the
count is downwards. N starts with a value of 10, and is decremented on each
pass through the loop. Line 40 once again forms a time delay so that the
count-down takes place at a civilised speed. This is a particularly useful way
of slowing the count-down. If we want to speed the rate up, the easiest way is

64 Working with MSX BASIC

19 CLS

20 FOR N=1© 7O 1 STEF -1

39 PRINT N3" seconds and counting.”
49 FOR J=1 TO 500:NEXT

50 CLS:NEXT

60 PRINT"BLASTOFF!"

Fig. 5.5. A count-down program, making use of STEP.

to use an integer variable such as N9 in place of N. If we do this, however,
we can’t use steps that contain fractions, like .1.

Every now and again, when we are using loops, we find that we need to use
the value of N (or whatever variable name we have used) after the loop has
finished. It’s important to know what this will be, however, and Fig. 5.6

10 CLS

20 FOR N=1 TO 5

30 PRINT N

42 NEXT

3@ PRINT "N is now “:iN
69 FOR N=5 TO 1 STEPFP -1
70 PRINT N

80 NEXT

99 PRINT "N is now ";

Fig. 5.6. Finding the value of the loop variable after a loop action is completed.

brings it home. This contains two loops, one counting up, the other counting
down. At the end of each loop, the value of the counter variable is printed.
This reveals that the value of N is 6 in line 50, after completing the FOR N =
1 TO S loop, and is 0 in line 90 after completing the FOR N=5TO 1 STEP
—1 loop. If you want to make use of the value of N, or whatever variable
name you have selected to use, you will have to remember that it will have
changed by one more step at the end of the loop.

One of the most valuable features of the FOR...NEXT loop, however, is
the way in which it can be used with number variables instead of just
numbers. Figure 5.7 illustrates this in a simple way. The letters A, Band C
are assigned as numbers in the usual way in line 20, but they are then used in
a FOR...NEXT loop in line 30. The limits are set by A and B, and the step is
obtained from an expression, B/C. The rule is that if you have anything that
represents a number or can be worked out to give a number, then you can
use it in a loop like this.

10 CLS

20 A=2:B=5:C=10

30 FOR N=A TO B STEFP R/C
49 PRINT N

S0 NEXT

Fig. 5.7. A loop instruction that is formed with number variables.

Repeating Yourself 65

Loops and decisions

It’s time to see loops being used rather than just demonstrated. A simple
application is in totalling numbers. The action that we want is to enter
numbers while the computer keeps a running total, adding each number to
the total of the numbers so far. From what we have done so far, it’s easy to
see how this could be done if we wanted to use numbers in fixed quantities,
like ten numbers in a set. The program of Fig. 5.8 does just this.

1o TT=9:CLS

20 PRINTTAB(6)"Totalling Numbers Prog
ram"

39 PRINT:PRINT"Enter each number as r
equested. "

49 PRINT"The program will give the to
tal."

50 FOR N=1 TO 10

69 PRINT"Number "3;N3 “"please ";

70 INPUT J:TT=TT+J

80 PRINT"Total so far is";TT

90 NEXT

Fig. 5.8. A number-totalling program for ten numbers.

The program starts by setting a number variable TT to zero. This is the
number variable that will be used to hold the total, and it has to start at zero.
As it happens, the MSX computer arranges this automatically at the start of
a program, but it’s a good habit to ensure that everything that has to start
with some value actually does. We can’t, incidentally, use TO for this
variable, because TO is a reserved word, part of the FOR...NEXT set of
words. You will get a ‘Syntax error’ message when the program runs if you
have used a ‘reserved word’ as a variable name.

Lines 20 to 40 issue instructions, and the action starts in line 50. This is the
start of a FOR...NEXT loop which will repeat the actions of lines 60 to 80
ten times. Line 60 reminds you of how many numbers you have entered by
printing the value of N each time, and line 70 allows you to INPUT a
number which is then assigned to variable name J. This is then added to the
total in the second half of line 70, and line 80 prints the value of this total.
The loop then repeats. At the end of the program, the final total has been
printed.

It’s all good stuff, but how many times would you want to have just ten
numbers? It would be a lot more convenient if we could just stop the action
by signalling to the computer in some way, perhaps by entering a value like 0
or 999. A value like this is called a terminaror, something that is obviously
not one of the normal entries that we would use, but just a signal. For a
number-totalling program, a terminator of 0 is very convenient, because if it
gets added to the total it won’t make any difference. To do this, we have to

66 Working with MSX BASIC

10 TT=0:CLS
20 PRINTTAB(4) "Totalling Numbers Prog

ram"

30 PRINT:PRINT"Enter each number as r
equested. "

40 PRINT"The program will give the to
tal."

50 FOR N=1 TO 100

&0 PRINT"Number "iN; "please ";j
79 INPUT J:TT=TT+J

80 IF J=0© THEN N=1¢9©

99 PRINT"Total so far is"3TT
100 NEXT

Fig. 5.9. How to break out of a FOR...NEXT loop if you want to.

test the number that is input, and change the action of the loop if the input is
0. Figure 5.9 shows one way of doing this. The program is very much as
before, but a new line 80 has been added. This uses the keyword IF to make
the test: [F J=0 THEN N=100. What this amounts to is that if the number
which was entered in line 70 was 0, then the counter number of the
FOR...NEXT loop, N, is set to its final value. This will stop the loop, and so
stop this program. '

You might wonder why we don'’t just make line 80 read: IF J=0 THEN
200 and place a line 200 END at the end of the program. The answer is that
you can, in a simple example like this, and it works. In a longer and more
complicated program, though, jumping out of a loop in this way can cause
trouble. The trouble manifests itself in the form of the program suddenly
going haywire at some later time, usually after you have entered a lot of data
and taken a lot of time over it. The principle that is illustrated in Figure 5.9 is
the safe way of ending a FOR...NEXT loop before the normal limit of
loops.

There are other ways, however, and Fig. 5.10 shows an example of one of

10 CLS:PRINTTAB(12) "Running Total"
20 PRINT:2RINT"The program will total
numbers for":PRINT"vyou."

30 PRINT"Enter © to stop."

42 TT=9:N=0

59 N=N+1:PRINT"Item "iN:" is ";

6@ INFUT J

79 IF J=9 THEN 110

80 TT=TT+J

99 PRINT"Total is "3TT

190 GOTOS9

119 PRINT"Final total is “;37TT

Fig. 5.710. A running total program which doesn’t use FOR...NEXT. The
number is tested near the start of the loop.

Repeating Yourself 67

them in action. We don’t use a FOR...NEXT loop, because we don’t know
in advance how many times we might want to go through the loop, so we
have to go back to using GOTO. This time, however, we’ll keep GOTO
under closer control - the word won’t even appear in the program! This time
the instructions appear first, but we still have to make the total variable TT
equal to zero in line 40. In the same line, a variable N is also set to zero. Line
50 increments the value of N, so that when line 50 runs for the first time, it
prints:

[tem [is ?

and waits for you to type the number and press RETURN. Each time you
type a number, then, in response to the request in line 50, the number that
you type is tested in line 70. If the number is zero, then the program jumps to
line 110, where the final total is printed, and the program ends. If the number
is not zero, though, it is added to the total in line 80, and line 90 prints the
running total. In line 100, the program is forced to return to line 50 for the
next number entry.

A loop of this type is called a WHILE...DO loop, and some computers
allow you to make the loop using these words instead of using GOTO. The
reason for the name is that while J is not zero, the loop does the totalling
action. The test is made before the number is added. When we use 0 to
terminate the loop, this is not important, but if we were using a number such
as —1, then it would be important not to add in this value.

There 1s another form of loop, called the REPEAT.. .UNTIL loop. Some
computers allow these words to be used but, on MSX machines, we once
again have to use GOTO (or THEN) to form the loop. Anexample is shown
in Fig. 5.11. Inthis one, the total variable TT is set to zero in line 40, and then

19 CLS:PRINTTAB{(12) "Running Total"
20 PRINT:FRINT"The program will total
numbers for":PRINT"you."

3@ PRINT"Enter @ to stop."”

49 TT=9

5@ INPUT"Number, please ":J

6@ TT=TT+J '

79 PRINT"Total so far is ";7TT

89 IF J<>@ THEN 50

9 PRINT"End of totalling."”

Fig. 5.17. Another running total loop, with the number tested near the end of
the loop.

line 50 gets the input number and assigns it to variable J. This is added to the
total in line 60, and line 70 prints the value of the total so far. Line 80 is the
loop controller, with the IF test. The test inline 80 is to see if the value of N is
not equal to zero. The odd-looking sign that 1s made by combining the less

68 Working with MSX BASIC

than and the greater than signs, <>, is used to mean not equal, so the line
reads: ‘if N is not equal to zero, then (GOTO) line 50°’. We can put the GOTO
in, or leave it out. Since it’s just a few more letters to type, I've left it out.

The effect, then, is that if the number which you typed in line 50 was not a
zero, line 80 will send the program back to repeat line 50. This will continue
until you do enter a zero. When this happens, the test in line 80 fails (N is
zero), and the program looks for a line 90. This line announces the end of the
program, and since there are no more lines, the program stops. When this
type of loop is used, the actions of the loop will always run at least once,
because the test is placed at the end of the loop. There’s just one thing that
you have to be careful about in programs of this type. When the program
starts, enter a number, say 2. From then on, don’t press a number key, just
the ENTER key. You’ll see the number 2 entered automatically each time!
This is because the machine keeps each INPUT in a special piece of memory,
and it's only altered by another INPUT. You have to be careful with
totalling programs because of this; if no key is pressed, then pressing
ENTER will still have an effect - it will enter the previous number once
again. Getting round this one is not quite so easy. You have to write a loop
which contains INKEYS, and which adds characters to a variable name
until RETURN is pressed. You'll know how to do that by the time you finish
this book. These types of loops allow you much more freedom than a
FOR...NEXT loop, because you are not confined to a fixed number of
repetitions. The key to it is the use of I Fto make a decision —and that’s what
we need to look at more closely now.

Decisions, decisions

We can make a number of types of comparisons between number variables
or numbers, and these are listed in Fig. 5.12. The mathematical signs are
used for convenience, and you have to remember which way round the

4
@
=3

Meaning

Quantities are identical.
Quantity on left is greater than quantity on right.
Quantity on left is less than quantity on right.
Quantity on left is greater than or equal to quantity on right.
Quantity on left is less than or equal to quantity on right.
> Quantities are not equal.

ANV AV I

Fig. 5.12. The mathematical signs used for comparing numbers and number
variables.

Repeating Yourself 69

greater than and less than signs have to be. It's important to note that the
equals sign means identical to when it is used in a test like this. If A is
4.9999999 and B is 5.0000000 then a test such as IF A = B will fail. A is not
identical to B, even though it is close enough to be equal to our eyes. The
important point here is that the numbers we see on the screen have been
rounded, so that PRINT A in the example above might give the result 5. The
test, however, is made on the numbers which have not been rounded.
Figure 5.13 shows another test — this time on string variables. The
instruction is in line 20, you are asked to type the y or n key. Line 30 gets

10 CLS

20 PRINT"Type y or n"

390 K$=INKEY$:IF K$=""THEN 30

40 IF K$="y" THEN 109 ELSE IF K$="n"
THEN 200

90 PRINT"Your answer "3;K$3;" is not vy
or n...":PRINT"Please try again."”

&9 GOTO 3o

7 END

10@ PRINT"That was y for YES.":END
200 PRINT"That was n for NO":END

Fig. 5.13. Testing string variables, in this example to find whether a reply is y
or n. ELSE has been used to provide a mugtrap.

your answer; you have only to press the y or n key without touching
RETURN. The key that you have pressed has its value assigned to K$, so
that K$ should Be y or n. Line 40 then analyses this result. If the key that you
pressed was neither y nor n, then the program ignores the THEN 100 and
THEN 200 instructions of line 40, and goes on to line 50 and 60. This tells
youthat you didn’t press either y or n,and you musttryagain. A line like thisis
called a mugtrap.

The tests in line 40 of this example are for identity. Only if K$ is absolutely
identical to y will the program jump to line 100, and print the phrase: That
was y for YES. Using INKEYS$ in place of INPUT does not allow you to
make such mistakes as typing a space ahead of y, or a space following it. You
could, of course, type Y in place of y, in which case K$ will nor be identical,
and the test fails. If the first test failed, however, then ELSE forces the
second test to be tried. This time, the answer is tested for the letter n and if
this is found the program jumps to line 200. This line then prints: That was n
for NO, and the program ends once again. It’s up to you to form these tests
so that they behave in the way that you want! You can use AND and OR to
make the tests apply to more than one thing, so you can use IF K$=Y OR
K$=y, for example, to test either form of the Y key.

The MSX computer is one of a select group of computers that allows you
to use the instruction word ELSE, and it offers an alternative to the test that
is carried out by IF. In the example of Fig. 5.13, two tests were combined.

70 Working with MSX BASIC

You can, however, combine much more than this. You can use lines like IF
X=3 THEN 100 ELSE IF X=4 THEN 200 ELSE IF X=5 THEN 300 ...
and so on. When lines get as complicated as this, though, they become hard
to follow, and there are easier ways of achieving the same effect as we shall
see.

Looping to a purpose

So far, we have been looking at short examples of loops which were
designed to show how loops are constructed. It's time now to look at
examples of loops in use, and to see how a program which includes aloop is
designed. All loops are intended to carry out a set of actions over and over
again. What you have to decide before you try to write the BASIC of a
looping program is what actions you want to repeat, and what will make the
loop stop. If it is possible to design the loop so that it repeats some definite
number of times, this should be done. The reason is that this would allow
you to use a FOR...NEXT loop, rather than trying to make up a loop with
GOTO. The trouble with GOTO loops is twofold. First of all, the start of the
loop is not marked. When you read a program listing, you can see where a
FOR...NEXT loop starts - in the line which contains FOR. You don’t know
where a GOTO loop starts, because the only thing that indicates it is the line
number that follows GOTO (or THEN). If you see a line that reads:

200 GOTO 100

then it’s a fair bet that there is a loop that starts at line 100, but you have had
to read a lot of the program to find it! The other difficulty about GOTO
loops is that it’s very easy to make a mistake and go to the wrong line. The
result might be a program that doesn’t work. Even worse, the result can be a
program that looks as if it works, but doesn’t give the correct results.
We'll look, then, at a very simple number-guessing game and how it is
designed. The listing is shown in Fig. 5.15. Fig. 5.14 shows the plan which
was used to design it. This plan consists of a set of steps, with brackets used
to expand some steps into more detail. The description contains no
keywords and, in fact, it should not because the use of keywords makes it
more difficult to follow. The plan starts with the words Ten times, to show
that we want the steps of the program to be repeated this number of times.
This allows us to make use of a FOR...NEXT loop, which is the best type of
loop to use in MSX BASIC. The next step is selecting a number at random.
This is the first of the steps that will be repeated ten times, and it is followed
by Input guess. This is where the user of the program enters the number that
is guessed. The next steps are concerned with scoring. If the guess is exactly
correct, then two points are scored, and the arrow shows that the next step
must be the pause. As an alternative, if the guess is close, one point is added
to the score, and again the program moves to the pause stage. If the guess is

Repeating Yourself 71

Ten times Clear screen
| Title
Random number Instructions

|
Input guess
|
Equal - score 2 _—

Almost - score |

No - no score
|

Pause -
l

Next

Fig. 5.14. The design steps for the number-guessing game in Fig. 5.15.

completely out, then some message will be printed (‘No score’, perhaps), and
once again, the program pauses. The pause will be about a couple of
seconds, and after the pause, the program moves to repeat the loop.

The next step is to fill in some details. This is done on the right-hand side
of the set of steps of the plan, using brackets to show where several more
detailed steps have to be inserted. The points that have been put in here are
where the CLS, heading, and instructions steps are placed. We also make
notes about messages, and the length of time of the pause. For a simple
program like this, that’s all we need to start writing the BASIC lines. You
don’t necessarily have to write numbered lines yet, though. At this stage, it
makes more sense to write BASIC for one step at a time, and the order of
running the steps is not usually the best order for writing. For example, there
isn’t much point in writing a heading and instructions until we’re sure that
the program works. The steps that we should concentrate on first are the
selection of a random number and the scoring steps because, unless these are
correct, the rest of the program is of little use.

Start with the random number, then. Since we are dealing with numbers
that will all be integers, we can assign an integer dealing with numbers that
will all be integers, we can assign an integer variable, and use:

X=INT(RND(1)*10+1)

to get a random number as X%. This, remember, will get a random number
which lies between | and 10. To make sure that the sequence of numbers is
different each time the program runs, we will have to use X%—=RND

(—TIME) early in the program before the loop starts. Make a note of it! The
testing for equality is easy enough, and we can settle a variable name for the

72 Working with MSX BASIC

guessed number - N%,. There will be a GOTO at the end of this line to lead to
the Pause step. Testing for near equality can be done by using
ABS(N%—X%). ABS will make whatever lies between the brackets into a
positive quantity, so if N% happens to be less than X%, the result will be the
difference, but with a positive sign. Once again, this step has to be ended
with a GOTO to make the Pause step come next.

We can then look at the Pause step. MSX BASIC provides for a variable
which is called TIME. This can be assigned like any other variable, but its
value is incremented 50 times per second (60 times per second in the USA).
This incrementing action is completely automatic, and needs no attention. If
we set TIME=0, and in the next line keep testing to find when TIME
exceeds 100, we shall have achieved a two-second pause (in the European
version). Now there’s a last minute thought. It looks odd to have the bottom
line of the screen always showing the function key words while this program
is running. We can shut off this display when our program starts by using
KEY OFF. At the end of the program, we can restore the Key display by
using KEY ON. Now we need only make a few notes at the side of the plan
about where on the screen we want the messages to appear and we're ready
to write the final version in Fig. 5.15.

Line 10 in Fig. 5.15 switches off the KEY display, sets the score variable
SC% to zero, carries out the RND(—TIME) step, and starts the loop.

10 KEY OFF:SC7Z=0: X%Z=RND(-TIME):FOR J%

=1 TO 1o

20 CLS:PRINTTAB(10) "GUESS THE NUMBER"

32 PRINT:PRINT"If you get near, 1711
tell you":FRINT“Number is between 1 a
nd 19."

49 PRINT:PRINT"Attempt “;J%Z:PRINT

S50 X%Z=INT{(RND(1)*10+1)

&2 INPUT"YOUR GUESS — "iN%

70 1IF NZ=X7 THEN FPRINT"Spot on. Score
2" :SCL=5C%Z+2: 6070 100

80 IF ABS(NZ-XXL)<3 THEN FRINT"Near- i
t was "3X%;" .Score 1":SC¥%=SCZ+1:G0TO
100

90 PRINT:PRINT"No score."

160 LOCATE 9,20:PRINT"SCORE TOTAL 1S
"sSC4

110 TIME=0O

12¢ IF TIME<109 THEN 120

130 NEXT

149 KEY ON

Fig. 5.15. Asimple number-guessing game which uses number comparisons.

Because the FOR J%=1 to 10 step is the last one in this line, the first three
steps are not repeated on each pass through the loop. The steps of the loop

Repeating Yourself 73

start with line 20. This clears the screen, and prints the heading. Line 30 then
provides brief instructions. Line 40 prints the attempt number, so that the
user knows how many shots have been used up. .

The real action starts in line 50, where the X% = INT(RND(1)*10+ 1) step
causes variable X% to take a whole-number value that lies between 1 and 10.
You enter your number at line 60, and the tests are made in lines 70 and 80. If
the number that you picked is identical to the random number, then you get
the ‘Spot on’ message in line 70, two points are added to the score variable
SC%, and the GOTO 100 skips over the other tests to get to the Pause stage.
The less obvious test is in line 80. If the difference between your guess and
the actual number is less than 3 (meaning 1 or 2) then the message in line 80 is
printed, the score is bumped up by one point, and you move to the Pause. If
you don't get anywhere near, the program moves to line 90 to announce ‘No
score’. The pause is then carried out, using TIME, and then line 130 contains
the NEXT that will make the loop repeat. It's very simple, but quite
effective.

Many of the commands that we have looked at in previous chapters take
on much more meaning when we carry them out inside loops. This is
particularly true when the counter variable of the loop can be used as part of
the action. Take a look at Fig. 5.16, forexample, which makes use of the fact

1e CLS

20 INPUT"Your name, please ";NM$

30 LZL=LEN(NMS$) :CU=(L%L/2) +1

40 FOR NZ=1 TO C%

S PRINTTAB(ZI—NZ)HIDS(NM$,CZ—NZ+1,NZ
#2—-1)

69 NEXT

Fig. 5.16. Using loop variables to make a letter pyramid to show the action of
MID$ with a formula.

that we can use variable names or expressions in place of numbers in string-
slicing actions. It all starts innocently enough in line 20 with a request for
your name. Whatever you type is assigned to variable NM$, and in line 30 a
bit of mathematical juggling is carried out. How does it work? Suppose you
type as your name DONALD. This has six letters, so in line 30, L% is
assigned to 6, and C% is the whole number part of L%/ 2 (equal to 3), plus I,
making 4. Line 40 then starts a loop of 4 passes. In the first pass you print at
TAB(20) because N%=1. What you print is the MID$ of the name using
C%—N9%+1, which is 4—1+1=4, and N¢*2—1, which is also 1. What you
print is therefore MID$(NMS$,4, 1), which is A in this example. On the next
run through the loop, N%is 2, C9%—N%+1is 3, and N%*2—1is also 3. What
is printed in MID$(NM$,3,3), which is NAL. The loop goes on in this way.
and the result is that you see on the screen a pyramid of letters formed from
your name. It’s quite impressive if you have a long name! If your name is

74 Working with MSX BAS/IC

short, try making up a longer one. Could you try designing a variation on
this which worked in the opposite way, starting with the full name and
cutting a letter off each side on each pass through the loop?

We looked briefly in Chapter 4 at the idea of coding messages in ASCI],
and reading them from data lines. Figure 5.17 illustrates this use. Line 50
contains an INKEYS loop to make the program wait for you. When you

1o CLS:PRINT

20 PRINT"What does MSX mean?"

39 PRINT

49 PRINT"Press any key to find out"®
90 K$=INKEY%: IF K#%=""THEN S0

60 FRINT

79 FOR J%=1 TO 23:READ NZ

80 PRINTCHR® (N%) ;5

9o NEXT

19006 END

116 DATA77,97,114,118,101,108,108,111
«117,115,32,83, 108, 105,99,107,32,88,9
7,199,112,108, 191

Fig. 5.17.Using ASCli codes to carry a coded message, and then using CHR$
in a loop to obtain the character that corresponds to a code number.

press a key, the loop that starts in line 70 prints 23 characters on the screen.
Each of these is read as an ASCII code from a list, usinga READ...DATA
instruction in the loop. The PRINT CHR$(N%) in line 80 then converts the
ASCII codes into characters and prints the characters, using a semicolon to
keep the printing in a line. Try it! If you wanted to conceal the letters more
thoroughly, you could use quantities like one quarter of each code number,
or 5 times each code less 20, or anything else you like. These changed codes
could be stored in the list, and the conversion back to ASCII codes made
in the program. This will deter all but really persistent de-coders! This
example, incidentally, illustrates the use of READ and DATA inaloop. We
would normally use READ and DATA only for information that we
particularly wanted to keep stored in a program like this.

While we are on the subject of READ and DATA, there’s another twist to
this instruction in the form of RESTORE. RESTORE means that the
DATA list will start again from the beginning. If you READ all of the data,
and then want to read it all again, you will have to have a RESTORE
instruction before the second READ loop. If you didn’t, you would get an
‘Out of data’ error message. RESTORE, however, can do more than this.
Take a look at Fig. 5.18. This offers a kind of menu choice of headings, but
it’s done by using RESTORE followed by a line number. When you pick a
number, it is used in line 40 to carry out a RESTORE command which hasa
line number following it. RESTORE 2000, for example, means start reading
DATA at line 2000. Each DATA line contains four items, so that when line

Repeating Yourself 75

1@ PRINT"Which list do you want?"

20 PRINT: INPUT"Number 1 to 3, please
";AV-

39 IF A%<1 OR A%L>3 THEN PRINT"Retween
1 and 3 only, please":6G070 1o

49 IF A%Z=1 THEN RESTORE 199® ELSE IF

A7Z=2 THEN RESTORE 2000 ELSE RESTORE 3

200

5S¢ FOR NZ=1 TO 4:READ A$:PRINTA$:NEXT

69 END

199¢ DATA Austin, Rover, Triumph,Jagu

ar

2000 DATA BMW, Porsche,Mercedes, Opel

3000 DATA Alfa Romeo, Lancia, Fiat, F

errari

Fig. 5.18. How RESTORE can be used to select different DATA lines.

50 is carried out, four items will be read from whichever line has been picked.
It’s a useful way of selecting from a number of lists which will be used each
time the program is used.

Loops and arrays

The loop commands of any computer are particularly useful when you have
to deal with array variables. The reason is that you canset up aloop, such as
a FOR N%=1 TO 100 loop, and make the array items use the counter
variable N%, as, for example, A%(N%). This can make the actions of filling
or printing an array look very simple pieces of programming. Figure 5.19

10 CLS

20 DIM AJL(20):FOR N%=1 TO 20

30 AL(NZ)=RND (1) ®100+]1

40 NEXT

50 PRINT

60 PRINTTAB(13)"Marks List*™

79 PRINT:FOR NZ%Z=1 TO 20

80 PRINT"Item";i;N%Z;" received";AL(NZL);
" marks."

90 NEXT

Fig. 5.19. An array of subscripted number variables being assigned in a loop.

illustrates this. Lines 10 to 40 generate an (imaginary) set of twenty
examination marks. This is done simply to avoid the hard work of entering
the real thing! Line 20 dimensions the integer number array A% to a
maximum of twenty items. If we had needed only up to ten items, we could

76 Working with MSX BASIC

have dispensed with this DIM line, but it’s always better to include it even
Sfor small arrays, just to remind yourself that you're dealing with an array.
The array variable in line 30 is a subscripted number variable, and the
subscript is the number that is represented by N%. Each item is obtained by
finding a random number between | and 100, and is then assigned to
A9(N%). Twenty of these ‘marks’ are assigned in this way, and then lines 60
to 90 print the list. It makes for much neater programming than you would
have to use if you needed a separate variable name for each number.
Figure 5.20 extends this another step further. This time you are invited to
type a name and a mark for each of ten items. When the list is complete, the
screen is cleared and a total variable is set to zero in line 70. The list is then

19 CLS:PRINT:CLEAR 500
20 PRINT"Please enter names and marks

3¢ DIM N$(10),A%Z(10):FOR N%Z=1 TD 1e
49 PRINT"Name - "3:INPUT N$(NZ)

5S¢ PRINT"Mark - ";5:INPUT AZ(NZ)

69 NEXT

70 CLS:TZ=0

100 PRINTTAB(13)"MARKS LIST":PRINT

110 FOR NZ=1 TO 1o

120 PRINTTAB(2)NS$ (NZ) ; TAB(22) AZ (NYL)
130 T4=TL+AL(NZL)

140 NEXT

150 PRINT

160 PRINT"AVERAGE IS"“3T%Z/ (N%-1)

Fig. 5.20. Using strings in one array and numbers in another.

printed neatly, and on each pass through the loop the total is counted up (in
line 130) so that the average value can be printed at the end. The important
point here is that it’s not just numbers that we can keep in this array form.
This example uses both a string array (names) and a number array (marks).
Remember that in any program like this, the arrays will have to be
dimensioned correctly. If you don’t know what number to expect when you
write the program, you will have to add a line early in the program which
reads, for example:

INPUT“How many items ";A%:DIM N9%(A%),NMS$(A%)

so that the user has to specify how many items there will be in the array. The
only way that an array can be created without dimensioning it is when the
array is created on tape or on disk, and that's something quite different
which we shall look at later in Chapter 11.

Repeating Yourself 77

Rows and columns

You can imagine an array as a list of items, one after the other, but thereis a
variety of array which allows a different kind of list, called a marrix. A
matrix is a list of groups or items, with all the items in a group related. We
could think of a matrix as a set of rows and columns, with each group taking
up a row, and the items of a group in separate columns. Take a look at Fig.
5.21 to see how this works. We use here a variable N§ which has two

1@ CLS

26 FOR NZ=1 TO 3

30 FOR J%=1 TO 2

49 READ N$(N%,J%)

50 NEXT J%.N%

66 FOR NZ=1 TO 3

76 PRINTTAB(S)N$ (N%Z, 1) ; TAB{25) N$ (N%, 2

)

80 NEXT

19¢ DATA Horse,Foal,Cow,Calf,.Daog,Pupp
Y

Fig. 5.21. Making a matrix of rows and columns.

subscript numbers. The first number is the row number, the second is the
column number, and we need two FOR...NEXT loops to read data into this
matrix. This is carried out in lines 20 to 50. Notice the shortened NEXT
J%,N% in line 50, which is a way of writing NEXT J9%:NEXT N%. The
items are then printed in columns by the loop in lines 60 to 80. In this loop,
the variable N9 is used as the row number and we use the column numbers |
and 2. The rows contain animal names, and the columns separate the
different names that we use for adult and for young animals respectively.
Figure 5.22 shows a much more ambitious matrix program. This one uses
a row number for matrix A$ which is 50, and so it has to be dimensioned in
line 10. The idea 1s to store sets of names and telephone numbers which are
fed in by you in the course of the loop in lines 20 to 60. Once the matrix has
been filled, you can pick an initial letter for a name, and ask the computer to
print out the name and number that it has located. I've left out tests of inputs
(mugtraps) just to keep this example reasonably short, but you would
certainly need some sort of mugtraps, even if only to avoid things like
entering two letters or a whole name at line 100. The choice here is the entry
of a first (capital) letter, and we should really check that this is a capital
letter. If a lower-case letter is entered, it can easily be tested for because its
ASCII code will be more than 96. We can convert a lower-case letter into an
upper-case letter if we subtract 32 from the ASCII code. A step like:

J$=CHRS$(ASCJ$)-32)

will carry out the conversion.

78 Working with MSX BASIC

10 CLS:DIM A%(59,2)

20 FOR NZ=1 TO 5@

30 PRINT"Name “j3:INPUT A$(NZ,1)

49 PRINT"Tel. No. "3i:INPUT A$(N%,2)
50 PRINT:PRINT

&9 NEXT

70 CLS:PRINT

80 PRINT"List Complete"

7?9 PRINT:PRINT"Pick an initial letter
«==":PRINT"Use X to end program.":@=9
100 INFPUT J%:= IF J$="X" THEN 160

119 FOR N¥%=1 T0O Seo

120 IF J$=LEFT$(A$(N%,1),1)THEN PRINT
"Name is "3A%(NZ,1):PRINT"Number is "
3AS(NZL,2):0=1

130 NEXT

149 IF Q=0THEN PRINT"Not found...":FPR
INT

150 GOTO 20

160 PRINT"End of program"

Fig. 5.22. Using a name and number matrix for a simple telephone directory
application.

The next part of the program deals with picking a name by specifying an
initial letter. The important point here is that if we specify J, for example, it
should not just pick out the first name that starts with J. That way you
always get Jim, and never get John! In addition, if there is no name in the list
which starts with the letter that you want, you should be told about this. You
should also be told how to leave the loop, because this is a GOTO type of
loop. Line 100 deals with the input, and a choice of X here will end the
program. If any other letter has been selected, a loop starts in line 110. Each
name is selected in turn by the loop, and the first letter of the name is
compared with the letter which was selected. If the two match, then the
whole name and telephone number will be printed. At the same time, a
variable Q (shouldn’t it have been Q9%?) is set to 1. This variable was made
equal to 0 before the loop started, and it is used as a signal that a name has
been found. The NEXT in line 130 marks the limit of this loop.

When line 140 runs, Q will be zero if no names have been found. The
message will then be printed. If a name has been found then Q will be 1, and
the message is not printed. In either case, the GOTO 90 in line 150 forces this
selection part of the program to repeat until you type X in response to the
INPUT step.

The next thing that you might need to do with sets of names and numbers
of this type is to record them. You can do this easily with the cassette
recorder, and that’s a subject that we shall look at in the course of Chapter
11. If you have a disk system, however, you automatically have a set of extra
commands which will open up a whole new world of data processing to you.

Chapter Six
Menus and Subroutines

We have seen how RESTORE can be used to make a choice of items that are
to be read from a list. Very often, though, we want to present a user with a
menu on the screen. A menu is a list of choices, usually of program actions.
By picking one of these choices, we can cause a section of the program to be
run. One way of making the choice is by numbering the menu items, and
typing the number of the one that you want to use. We could use a set of lines
such as:

IF K =1 THEN 1000
IF K =2 THEN 2000

and so on. There is a much simpler method, however, which uses a new
instruction ON N% GOTO, where N% is a number variable, an integer in
this example. You can use any number variable, of course, not just NG,

Figure 6.1 shows a typical menu that uses this instruction. Line 10
removes the KEY display, and clears the screen. Lines 20 to 80 then present
the menu items on the screen, and line 100 invites you to pick one item by
typing its number. The INKEYS$ loop in line 110 keeps the program looking
for a key until you make your choice, and then line 120 tests your choice with
a mugtrap. VAL has to be used, remember, because INKEY$ produces a
string variable, and you can’t compare a string with a number (nor a rose
with a carrot). By using K%=VAL(KS$) you get an integer number variable
K% which will hold a number that is in the correct form to be compared. If
you had pressed a letter key then K% would be zero.

The choice is then made in line 130, with the ON K% GOTO instruction.
Now what happens here? If K% equals 1, then the first line number that
follows GOTO is used. If K% equals 2, then the second line number
following GOTO is used, and so on. All that you have to do is to arrange the
line numbers in the same order as your choices. You needn’t have a list that
looks neat. A line such as ON K% GOTO 50,216,484,714,1000 would be just
as satisfactory so long as these numbers contained the start of routines that
dealt with the menu choices. In this example, the line numbers simply lead to
PRINT instructions so as to keep the example reasonably short. Note that
the last item in a menu like this should always be a QUIT option, meaning

80 Working with MSX BASIC

10 KEY OFF:CLS

20 PRINTTAB(16) "MENU"

390 PRINT:PRINT

49 PRINT"1. Enter names."

50 PRINT"2. Enter phone numbers."

60 PRINT"3. List all names."

79 PRINT"4. List local numbers."

80 PRINT"S. End program."”

99 PRINT

100 PRINT"Please select by number 1 t
o 5"

119 K$=INKEY$: IF K$=""THEN 110

120 K7Z=VAL (K$):IF K%<{1 OR KZ>3 THEN P
RINT"Incorrect choice— please try aga
1n":60T0 109

130 ON K%Z GOTO 1996,2090,3090, 4000,50
(=17

149 KEY ON:END

150 PRINT"Names here”:60T0O 140

1000 PRINT"Names here”:60T0O 140

2000 PRINT"Numbers here":60T0 140
3009 PRINT"List of names.":60T0O 140
49000 PRINT"Local numbers here":607T0 1
49

5009 FRINT"END":G0TO 140

Fig. 6.7. A menu choice which uses the ON K% GOTO instruction.

one that lets you leave the program. There is nothing quite so frustrating as a
program that won’t let you get away!

This type of menu selection is useful, but an even more useful method
makes use of subroutines. A subroutine is a section of program which can be
inserted anywhere that you like in a longer program. A subroutine is
inserted by typing the instruction word GOSUB, followed by the line
number in which the subroutine starts. When your program comes to this
instruction, it will jump to the line number that follows GOSUB, just as if
you had used GOTO. Unlike GOTO, however, GOSUB offers an auromatic
return. The word RETURN is used at the end of the subroutine lines, and it
will cause the program to return to the point immediately following the
GOSUB. Figure 6.2 illustrates this. When the program runs, line 20 assigns
a phrase to the string variable TS$. The next line is GOSUB 1000, which
means that the program must jump to the routine which starts at line 1000.
In this line L%, the number of characters in T$, is found. The following line
1010 then prints T$ centred on the screen. Line 1020 consists of the word
RETURN. As the name suggests, this means that the program must return
to a position that is immediately following the GOSUB. In this first case,
that means to line 40. This carries out another assignment of T$, this time to
a string of underline dashes. Once again, calling GOSUB 1000 in line 50 will

Menus and Subroutines 81

12 CLS

20 T$="MSX Computing"”

39 GOSUB 1090

40 TH=STRINGS$ (LEN(T$),"_")
50 GOSUB 1090

69 LOCATE 2,4

79 PRINT"Neat, isn’t it?"
89 END

1000 L%L=LEN(T%)

1010 PRINTTAB((37-L%L)/2):T$
1020 RETURN

Fig. 6.2. Using a subroutine - this is the key to more advanced programming.

cause this new value of T$ to be printed centred, and the RETURN this time
makes the program return to line 60. With a GOTO, you are stuck with just
one destination line number, but the RETURN at the end of a GOSUB
makes sure you return to the command which follows the GOSUB. Even if
you have a multistatement line like:

T$=“MENU”:GOSUB 1000:PRINT“NOTES”

then the subroutine will return correctly, in this case to perform the PRINT
action.

Now for its application to menus, Fig. 6.3shows subroutines in use as part
of a (totally imaginary) games program. Lines 10 to 80 offer a choice, and
line 90 invites you to choose. The familiar INKEY$ and mugtrap actions
follow, and then line 120 causes the choice to be carried out. This time,
however, the program will return to whatever follows the choice. For
example, if you pressed key I, then the subroutine that starts at line 1000 is
carried out, and the program returns to line 120 to check if you might also
want subroutines 2000, 3000, 4000 or 5000. Since the value of K% is still 1,
the program then goes to line 130 and ends. If line 1000 had altered the value
of K%, however, you could find that a second subroutine was selected
following the first one. Never make any other use of the variable name that
you have selected for ON K% GOSUB.

A subroutine is extremely useful in menu choices, but it’s even more
useful for pieces of program that will be used several times in a program.
Take a look at Fig. 6.4 by way of an example. The subroutine is an
elaboration on the INKEYS$ routine. The trouble with INKEYS is that it
doesn’t remind you that it’s in use; there’s no question mark printed as there
is when you use INPUT. The subroutine in lines 1000 to 1040 remedies that
by causing an asterisk to flash while you are thinking about which key to
press. The asterisk is flashed by alternately printing the asterisk and some
delete step. According to some of the MSX manuals, CHR $(8) should make
the cursor backspace and delete the character under it. On the machine
which 1 used, the cursor backspaced but did not delete. The line 1030

82 Working with MSX BAS/IC

19 CLS:PRINT

20 PRINTTAB(B) "Choose your monster."
3@ PRINT

49 PRINTTAB(2)"1. Vampire."

59 PRINTTAB(Z2)"2. Werewolf."

6@ PRINTTAB(2)"3. Zombie.™ -
7@ PRINTTAB(2)"4. Sgt. Major."

80 PRINTTAB(2)"5. Flying picket."

79 PRINT:PRINT"Select by number, plea
se":PRINT:PRINT

1090 GOSUB 19006: REM INKEY$ ROUTINE
11@ IF K¥<1 OR KZ>5 THEN PRINT"Faulty
selection— 1 to S only—-":FPRINT"Pleas
e try again.":60T0O100

120 ON K% GOSUB 10900,26000,3000,4000,5
200

130 PRINT:PRINT"Want another choice?
Type vy or n"

149 GOSUB 19000: IF K$="y" OR K$="Y" T
HEN 10

15e END

1000 PRINT"Blood, blood, bootiful bilo
od" : RETURN

2000 PRINT"Howl, snarl, gnash":RETURN
3090 PRINT"I obey, master, I obey":RE
TURN

4000 PRINT"You “orrible little man":R
ETURN

S009 PRINT"Blood, howl, I obey, smash”
:RETURN

10000 K$=INKEY%$: IF K$=""THEN 10000 EL
SE KZ%Z=VAL (K$)

109019 RETURN

Fig. 6.3. Amenuchoice for animaginary game that makes use of subroutines.

therefore uses CHRS$(8) to backspace, CHR$(32) to print a space, and
CHRS$(29) to backspace again. On this machine, I found that CHR$(8) and
CHR$(29) had exactly the same effect. To make the rate of flashing

reasonably slow, I've added another subroutine, a delay in line 2000.
While we’re on the subject of menus, there’s another subroutine, in Fig.

6.5, which can make a menu look a lot more interesting. This is a visual
menu choice, and its use brings several advantages to your menus. One is
that you don’t need to have the items of the menu numbered, because you
don’t choose by number. Instead, a little arrow flashes next to the first item
of the menu. This arrow can be shifted by using the cursor keys, the ones
which are marked with the vertical up or down arrows. Since the program
makes it impossible to shift the arrow beyond the menu items, no sort of
testing or mugtrapping of the answer is needed. The choice is passed back to

10
20
0
40
S0

Menus and Subroutines

CLS

PRINT"Choose 1 or 2,please"
GOSUB 1996

PRINT"Your choice was "ik#$
END

1909 K$=INKEYS

101 IF K$<{>""THEN RETURN

1020 FRINT"*"; : GOSUBZ0O09

1030 PRINT CHR$(8)3CHR$ (32);3;CHR$ (293
: BOSUB 2090

140 GOTO 1006

2000 FOR J=1 TO 200:NEXT:RETURN

83

Fig. 6.4. Aflashing asterisk subroutine. The asterisk flashes until you press a

key.

10
20
30
40
1

CLS: KEY OFF

T$="Your Choice"

ST%Z=2:NR%=4

GOSUB 10900

LOCATEZ,12:PRINT"You chose option

"3 CHL

(=12

KEY ON:END

10000 PRINTTAB((3I7-LEN(T$))/2):T%
19916 FOR J%=1 TO NRZ%Z

1020 LOCATE 3,STi+J%-1

190039 READ MENU$: PRINT MENUS$

19940 NEXT:PSZ=GT%L

10059 LOCATE 1,PSZ:PRINTCHR%(175)
190460 FOR J7%Z=1 TO 200:NEXT

199070 LOCATE 1,PSZ:PRINTCHR% (32)
10080 FOR J%=1 TO 200:NEXT

19990 K$=INKEY$

10199 JF K$=CHR%$(32) THEN CHZ=PSZ-S5T%Z+
1:RETURN

10110 IF K$=CHR$ (36) THEN PSZ=PS%-1
190120 1IF K#$=CHR$(31)THEN PS%Z=PS5%Z+1
1¢13@ IF PSL>STZ+NRZ—-1 THEN PSZ=ST%
19140 IF PSYZ<{STALTHEN PSZ=STL+NRZ-1
16150 GOTO 10050

19169® DATA Input Data,Output Data,Che

ck

Data,Alter Data

Fig. 6.5. A visual menu subroutine. You use the cursor keys to move the
arrow, then press the spacebar when the arrow points to the item that you
want. The subroutine has been written so that you can easily use this in your
own programs.

the main routine as a number CH%, which you can then use in a line such as :
ON CH9% GOSUB 1000,2000,3000,4000 and so on. Try it for yourself, and
see how much better it looks as compared to the traditional menu.

84 Working with MSX BASIC

The subroutine needs to have some values passed to it. The title is passed
as T$, and two integer numbers are needed also. One of these is ST%, which
is the line at which the first item of the menu will appear. The other is NR%,
which is the number of items on the menu. The actual menu items are placed
in a DATA line which can be anywhere in the program. If you have more
than one menu, you can use RESTORE to get the correct set of data items.
Once these quantities have been assigned, the subroutine can be called. In
the example, the numbers have been set up to start on line 2 and use four
items only.

The subroutine starts in line 10000 to 10040 by printing the title, centred,
and then reading the menu items and printing them. Variable ST%is used to
make sure that the items are placed on the correct lines. The LOCATE
command makes sure that the items are all tabbed to column number 3 (the
fourth column, since counting starts at 0, remember). At the end of line
10040, using PS%=ST% passes the value of ST% (four in this example) to
another variable PS9% which will be used to control the position of the
arrow-head. Line 10050 then starts a loop which will print the arrow-head,
wait, delete the arrow, wait, and then look for a key being pressed. If this key
is the spacebar, then the program assigns CH% and returns. If the key is a
cursor key, the arrow-head is moved. The movement is then checked to
make sure that it cannot be above or below the menu items.

Line 10050 to 10080 print the arrow-head, wait, print a space, and wait
again. The pause could have been put into another subroutine, and if you
have a pause subroutine in your program anyway you would use it in place
of lines 10060 and 10080. Line 10090 is the INKEY$ line - note that we don’t
use IF K$=“” THEN 10090 here, because we do not want the program to
hang up at this point. If the program hangs up, then the arrow-head doesn’t
flash! The next three lines 100100 to 10120, test K$. If this was the spacebar
(ASCII code 32) then the value of CH% is obtained from PS%—ST%+1.
The idea is that ST is the number of the first screen line which contains a
menu item, and PSY% is the one that the arrow points to. If the arrow is still
on the first line, PS%—ST%+1 is 1—1+1=1; if the arrow is on the second
line, then PS%—ST%+1 is 2—1+1=2 and so on. If you only use the menu
subroutine once, then you can substitute numbers in place of ST% and
NR%. Moving on, lines 10110 and 10120 test for the cursor keys, and alter
the value of PS9% accordingly. Lines 10130 and 10140 then test the value of
PS%. If this has gone out of limits, then it is returned to the opposite limit. If
PS% would place the arrow above the top menu item, it’s placed instead at
the bottom item. If the value of PS% is such that it would put the arrow
below the bottom item, then it is returned to the top. This sort of action is
called wraparound. Finally, line 10150 is the GOTO which completes the
loop. The loop is broken only when the spacebar is pressed. You could, of
course, alter this so that the ESC or TAB or any other key operated this
action. Now try it out in your own programs!

Menus and Subroutines 85

Rolling your own

You can get a lot of enjoyment from your MSX computer when you use it to
enter programs from cassettes that you have bought, or from plug-in
cartridges. You can obtain even more enjoyment from typing in programs
that you have seen printed in magazines. Even more rewarding is modifying
one of these programs so that it behaves in a rather different way, making it
do what suits you. The pinnacle of satisfaction as far as computing is
concerned, however, is achieved when you design your own programs.
These don’t have to be masterpieces. Just to have decided what you want,
written it as a program, entered it and made it work is enough. It’s 100%
your own work, and you’ll enjoy it all the more for that. After all, buying a
computer and not programming it yourself is like buying a BMW and
getting someone else to drive it for you.

Now I can’t tell in advance what your interests in programs might be.
Some readers might want to design programs that will keep tabs on a stamp
collection, a record collection, a set of notes on food preparation or the
technical details of vintage steam locomotives. Programs of this type are
called database programs, because they need a lot of data items to be typed
in and recorded. On the other hand, you might be interested in games,
colour patterns, drawings, sound, or other programs that require shapes to
move across the screen. Programs of that type need instructions that we
shall be looking at in detail in the next few chapters. What we are going to
look at in this section is how a program can be designed using subroutines
because this is a design method that can be used for all types of programs.
Once you can design simple programs of this type you can progress, using
the same methods, to design your own graphics and sound programs.
Remember, though, that most of the very fast moving or elaborate graphics
programs that you see are not written in BASIC. The reason is that BASIC
is too slow to allow fast movement, or the control of lots of moving objects.
These arcade-type programs that you can buy are written in machine code. a
set of number-coded instructions direct to the microprocessor that is the
heart of the computer. This bypasses BASIC altogether, and is very much
more difficult. If you learn how to design programs in BASIC, however, you
will be able to learn machine code later. All you need is experience - a lot of
it.

Two points are important here. One is that experience counts in this
design business. If you make your first efforts at design as simple as possible,
you’ll learn much more from them. That’s because you’re more likely to
succeed with a simple program first time round. You’'ll learn more from
designing a simple program that works than from an elaborate program that
never seems to do what it should. We have already dabbled with the design
of simple programs, and I want to show you that this is al/ you ever need!
The second point is that program design has to start with the computer
switched off, preferably in another room! The reason is that program design

86 Working with MSX BASIC

needs planning, and you can’t plan properly when you have temptation in
the shape of a keyboard in front of you. Get away from it!

Put it on paper

We start, then, with a pad of paper. I use a student’s pad of A4 which is
punched so that I can put sheets into a file. This way, I can keep the sheets
tidy, and add to them as I need. 1 can also throw away any sheets I don’t
need, which is just as important. Yes, I said sheets! Even a very simple
program is probably going to need more than one sheet of paper for its
design. If you then go in for more elaborate programs, you may easily find
yourself with a couple of dozen sheets of planning and of listing before you
get to the keyboard. Just to make the exercise more interesting, I'll take an
example of a program, and design it as we go. This will be a very simple
program, but it will illustrate all the skills that you need.

Start, then, by writing down what you expect the program to do. You
might think that you don’t need to do this, because you know what you
want, but you’d be surprised. There’s an old saying about not being able to
see the wood for the trees, and it applies very forcefully to designing
programs. If you don’t write down what you expect a program to do, it’s
odds on that the program will never do it! The reason is that you get so
involved in details when you start writing the lines of BASIC that it’s
astonishingly easy to forget what it’s all for. If you write it down, you’ll have
a goal to aim for, and that’s as important in program design as it is in life.
Don’t just dash down a few words. Take some time about it, and consider
what you want the program to be able to do. If you don’t know, you can’t
program it! What is even more important is that this action of writing down
what you expect a program to do gives you a chance to design a properly
structured program. Structured in this sense means that the program is put
together in a way that is a logical sequence, so that it is easy to add to,
change, or redesign. If you learn to program in this way, your programs will
be easy to understand, take less time to get working, and will be easy to
extend so that they do more than you intended at first.

As an example, take a look at Fig. 6.6. This shows a program outline plan
for a simple game. The aim of the game is to become familiar with the names
of animals and their young. The program plan shows what I expect of this
game. It must present the name of an animal, picked at random, on the
screen, and then ask what the name of its young is. A little bit more thought
produces some additional points. The name of the young animal will have to
be correctly spelled. A little bit of trickery will be needed to prevent the user
(son, daughter, brother, or sister) from finding the answers by typing LIST
and looking for the DATA lines. Every game must have some sort of scoring
system, so we allow one point for each correct answer. Since spelling is
important, perhaps we should allow more than one try at each question.

Menus and Subroutines 87

Aims

Present the name of an animal on the screen.

Ask what its young is called.

Reply must be correctly spelled.

User must not be able to read the answer from a listing.

Give one point for each correct answer.

Allow two chances at each question.

Keep a track of the number of attempts.

Present the score as the number of successes out of the number of attempts.
Pick animal names at random.

R ARl B

Fig. 6.6. A program outline plan. This is your starter!

Finally, we should keep track of the number of attempts and the number of
correct answers, and present this as the score at the end of each game. Now
this is about as much detail as we need, unless we want to make the game
more elaborate. For a first effort, this is quite enough. How do we start the
design from this point on?

The answer 1s to design the program in the way that an artist paints a
picture or an architect designs a house. That means designing the outlines
first, and the details later. The outlines of this program are the steps that
make up the sequence of actions. We shall, for example, want to have a title
displayed. Give the user time to read this, and then show instructions.
There’s little doubt that we shall want to do things like assign variable
names, dimension arrays, and other such preparation. We then need to play
the game. The next thing is to find the score, and then ask the user if another
game is wanted. Yes, you have to put it all down on paper! Figure 6.7 shows
what this might look like at this stage.

Foundation stones

Now, at last, we can start writing a chunk of program. This will just be a
foundation, though. What you must avoid at all costs is filling pages with
BASIC lines at this stage. As any builder will tell you, the foundation counts
for a lot. Get it right, and you have decided how good the rest of the
structure will be. The main thing you have to avoid now is building a wall
before the foundation is complete!

Figure 6.8 shows what you should aim for at this stage. There are only
fourteen lines of program here, and that’s as much as you want. This is a
foundation, remember, not the Empire State Building! It’s also a program
that is being developed. so we’ve hung some ‘danger — men at work’ signs
around. These take the form of the lines that start with REM. REM means
REMinder, and any line of a program that starts with REM will be ignored

88 Working with MSX BASIC

Title

Instructions

Repeat —

Name of animal

Pick random number
Use to select from array

Ask for name of young { Use INPUT

Select ASCII codes from array
Compare with correct name Decode to answer

Compare

+1 if correct

Score Try again if not
Abandon after second attempt
Ask if another wanted { YorN

Until answer not ‘Y’ or 'y’

End

Fig. 6.7. The next stage in expanding the outline.

by the computer. This means that you can type whatever you like following
REM, and the point of it all is to allow you to put notes in with the program.
These notes will not be printed on the screen when you are using the
program, and you will see them only when you LIST. In Fig. 6.8, I have put
the REM notes on lines which are numbered just | more than the main lines.

10
11
20
21
30
31
40
41
59
St
60
61
70
ge

CLS: GOSUB 1000
REM Title

GOSUB 1200

REM Instructions
GOSUB 1400

REM Setup

GOSUB Zooo

REM FPlay

GOSUB 3voa

REM Score

GOSUB 4009

REM Another?

IF INSTR("YESyes",k$)<>9 THEN 40
END

Fig. 6.8. A core or foundation program for the example.

Menus and Subroutines 89

This way, I can remove all the REM lines later. How much later? When the
program is complete, tested, and working perfectly. REMs are useful, but
they make a program take up more space in memory, and run slightly
slower. I always like to keep one copy of a program with the REMs in place,
and another ‘working’ copy which has no REMs. That way | have a fast and
efficient program for everyday use, and a fully-detailed versionthat I can use
if I want to make changes.

Let's get back to the program itself. As you can see, it consists of a set of
GOSUB instructions, with references to lines that we haven’t written yet.
That’s intentional. What we want at this point, remember, is foundations.
The program follows the plan of Fig. 6.7 exactly, and the only part that is
not committed to a GOSUB is the IF in line 70. What we shalldo isto writea
subroutine which will use INKEYS$ to look for a y or Y being pressed, and
line 70 deals with the answer. What’s the question? Why, it’s the Do you
want another game step that we planned for earlier.

Line 70 makes use of that INSTR keyword which we looked at earlier. By
testing with INSTR(“YESyes”,K$), we will get 1if Y is pressed and 4 if y is
pressed. If K$ is neither y nor Y, then INSTR gives 0, meaning that the string
we are seeking is not contained in YESyes. Simple, but very useful. We
could have used INSTR(“Yy”,K$) in this example, since only one letter is
being tested. I have used the full form here, because it makes the subroutine
more generally useful.

Take a good long look at this fourteen-line piece of program, because it’s
important. The use of all the subroutines means that we can check this
program easily - there isn’t much to go wrong with it. We can now decide in
what order we are going to write the subroutines. The wrong order, in
practically every example, is the order in which they appear. Always write
the title and instructions last, because they are the least important to you at
this stage. In any case, if you write them too early, it’s odds on that you will
have some bright ideas about improving the game soon enough, and you
will have to write the instructions all over again. A good idea at this stage is
to write a line such as:

9 GOTO 30

which will cause the program to skip over the title and instructions. This
saves a lot of time when you are testing the program, because youdon’t have
the delay of printing the title and instructions each time you run it.

The next step is to get to the keyboard (at last, at last!) and enter this core
program. If you use the GOTO step to skip round the title and instructions
temporarily, you can then put in simple PRINT lines at each subroutine line
number. We did this, you remember, in the program of Fig. 6.1, so you
know how to go about it. This allows you to test your core program and be
sure that it will work before you go any further.

The next step is to record this core program and then keep adding to the
core. If you have the core recorded, then you can load this into your

90 Working with MSX BASIC

computer, add one of the subroutines, and then test. When you are satisfied
that it works, you can record the whole lot on another cassette. Next time
you want to add a subroutine, you start with this version, and so on. This
way, you keep tapes of a steadily growing program, with each stage tested
and known to work. Again, this is important. Very often, testing takes
longer than you expect, and it can be a very tedious job when you have a
long program to work with. By testing each subroutine as you go, you know
that you can have confidence in the earlier parts of the program, and you can
concentrate on errors in the new sections.

Subroutine routine

The next thing we have to dois to design the subroutines. Now some of these
may not need much designing. Take, for example, the subroutine that is to
be placed in line 4000. This is just our familiar INKEY$ routine, along with a
bit of PRINT, so we can deal with it right away. Figure 6.9 shows the form it
might take. The subroutine is straightforward, and that’s why we can deal
with it right away! Type it in, and now test the core program with this
subroutine in place.

49000 PRINT"Would you like another one
'?II

4910 PRINT"Please answer y or n."

4020 K$=INKEY$:IF K$=""THEN 4020
4939 RETURN

Fig. 6.9. The INKEY$ subroutine for line 4000.

Now we come to what you might think is the hardest part of the job — the
subroutine which carries out the Play action. Infact, youdon’t have to learn
anything new to do this. The Play subroutine is designed in exactly the same
way as we designed the core program. That means we have to write down
what we expect it to do, and then arrange the steps that will carry out the
action. If there’s anything that seems to need more thought, we can relegate
it to a subroutine to be dealt with later.

As an example, take a look at Fig. 6.10. This is a plan for the Play
subroutine, which also includes information that we shall need for the
setting-up steps. The first item is the result of a bit of thought. We wanted,
you remember, to be sure that some smart user would not cheat by looking
up the answers in the DATA lines. The simplest deterrent is to make the
answers in the form of ASCII codes. It won’t deter the more skilled, but it
will do for starters. I've decided to put one answer in each DATA line in the
form of a string of ASCII codes, with each code written as a three-figure
number. Why three figures? Well, the capital letters will use two figures only,
the small letters three, so making them all into three figures simplifies things.

Menus and Subroutines 91

Start
)
Find number (random)
|
Select array item = animal name

Print it
|
@ Ask for voung
|

Tal.¢ input
|
Select answer array item

1 Read array in sets of 3 digits

Select 3 digits
Decode with CHR$
Repeat until word build up

Decode it
|

Compare
|
If GO = () and correct SC=SC+1:TR+1
|
IF GO = ¢ and not correct, GO=1, repeat from @
|

If GO =1 and correct SC=SC+1:TR=TR+1
|
If Go=1 and not correct : TR=TR+1
|
End

Fig. 6.10. Planning the Play subroutine.

You’ll see why later — what we do is to write a number like 86 as 086, and so

on. That’s the first item for this subroutine.
The next one is that we shall keep the names of the animals in an array.

This has several advantages. One is that it’s beautifully easy to select the
name of an animal at random if we do this. The other is that it also makes it
easy to match the answers to the questions. If the questions are items of an
array whose subscript numbers are | to 10, then we can place the answers in
DATA lines, one set of numbers in each data line, and read these also as a
string array. The alternative would be to keep the names and the answers in
DATA lines, and use RESTORE. This is not quite so neat, however.
The next thing that the plan settles is the names that we shall use for
variables. It always helps if we can use names that remind us of what the

92 Working with MSX BASIC

variables are supposed to represent. In this case, using SC% for the score
and TR% for the number of tries look self-explanatory. The third one,
GO% is one that we shall use to count how many times one question is
attempted. Finally, we decide on a name for the array that will hold the
animal names - QS.

Play for today

Figure 6.11 shows what I've ended up withas a result of the plan in Fig. 6.10.
The steps are to pick a random number, use it to print an animal name, and

2000 G0%=9:V7/.=INT (10#RND(1))+1

2010 CLS:PRINT"The animal is - ";Q%(V
%)

2020 PRINT:PRINT"The young is called
— ll;

2030 INPUT X$:TRZ=TRZ+1

2049 GOSUB S000

2041 REM Find correct answer

20590 RETURN

Fig. 6.11. The program lines for the Play subroutine.

then find the answer. That’s all, because the checking of the answer and the
scoring is dealt with by another subroutine. Always try to split up the
program as much as possible, so that you don’t have to write huge chunks at
a time. Asitis, I've had to put another subroutine into this one to keep things
short.

We start the subroutine at line 2000 by ‘clearing a variable’. The size of
GO% is set to 0, to make sure that this variable has the correct size each time
this subroutine is started. The second part of line 2000 then picks a number,
at random, lying between 1 and 10. Lines 2010 to 2030 are straightforward
stuff. We print the name of the animal that corresponds to the random
number, and ask for an answer, the young of that animal. The last section of
line 2030 counts the number of attempts. This is the logical place to put this
step, because we want to make the count each time there is an answer. Now
it’s chicken-out time. I don’t want to get involved in the reading of ASCII
codes right now, so I'll leave it to a subroutine, starting in line 5000, which
I'll write later. The REM in line 2041 reminds me what this new subroutine
will have to do, and the Play subroutine ends with the usual RETURN.

Down among the details

With the Play subroutine safely on tape, we can think now about the details.
The first one to look at should be one that precedes or follows the Play step,

Menus and Subroutines 93

and I've chosen the Score routine. As usual, it has to be planned, and Fig.
6.12 shows the plan. Each time there is a correct answer, the number
variable SC% will be incremented, and we can go back to the main program.

Increment SC

Answer correct Increment TR { Next question
GO=0

Answer incorrect GO=0 Make GO=1
Get another answer

Make GO=0

Answer incorrect GO=1 .
Move to next question

Fig. 6.12. Planning the Score subroutine.

More is needed if the answer does not match exactly. We need to print a
message, and allow another go. If the result of this next go is not correct,
that’s an end to the attempts. At this point, you might later want to include
some sound. We could have a short beep to announce a mistake, and a long
one for a correct answer. Write it down!

Figure 6.13 shows the program subroutine that has been developed from
this plan. Line 3000 deals with a correct answer. Since we need to print a
message which would not fit in a line, we use GOTO 3200 to finish the job.
The GOTO 3040 in line 3210 ensures that if the answer was correct, the rest
of the subroutine is skipped, and the subroutine returns. If the answer is not
correct, though, line 3010 swings into action. This tests the value of GO%
and if it is zero causes a jump to line 3300 to print its message and give

3000 PRINT:IF X$=A% THEN SCI/=5Ci+1:GO0

TO 3200

39019 IF GO/Z=9 THEN GOTO 3300

3020 60%=0:PRINT"No luck - try the ne
xt one."

3030 FOR G=1 TO 1000:NEXT

3049 RETURN

3200 FRINT"Correct— your score is now
"3s5C%

3210 PRINT"in "5TRZ;" attempts. ":60S

UB 7000:60T0 049

3309 PRINT"Not correct— but it might

be your"

3319 PRINT"spelling! You get another

go free.":TRZ=TRY-1

3320 GOSUB 79900:G60%=1:6G05UB 2010:60T0
3000

Fig. 6.13. The Score subroutine written.

94 Working with MSX BASIC

further instructions. Line 3320 calls the subroutine at line 2010 again so that
the user can make another answer entry. The GOTO 3000 at the end of line
3320 then tests this answer again.

Now there’s a piece of cunning here. The number variable GOY; starts
with a value of 0. When there is a correct answer, however, and GOY is still
0, line 3010 is carried out. One of the actions of line 3320, however, is to set
GOY% to 1. When you answer again, with GO%=1, line 3000 will be used,
and if your second answer is wrong, line 3010 cannot be used, because GOY,
is not zero. The next line that is tried, then, is 3020. This puts GOY% back to
zero for the next round, prints a sympathetic message, pauses, and then lets
the subroutine return in line 3040.

Now that we’ve got the bit between our teeth, we can polish off the rest of
the subroutines. Figure 6.14 shows the subroutine that deals with

14990 TRZ=9:SC%=0:060%=0:V%Z=RND (-TIME)
1419 DIM @%(19),A%$(10)

1420 FOR J%=1 TO 10:READ Q%{(J%L):NEXT
1430 FOR J%=1 TO 10:READ A$(JZL) :NEXT
1440 RETURN

Fig. 6.14. The dimensioning and array subroutine.

dimensioning and arrays. Line 1400 sets all the variables for the scoring
system to zero, and makes sure that the same sequence is not repeated each
time you use the program. Line 1410 dimensions the array QS that will be
used for the names of the animals, and A$ which will be used for the
numbers that give the answers. Line 1420 then reads the names from a data
list into the array Q$, and line 1430 reads the numbers into A$ - and that’s it!
We can write the DATA lines later, as usual.

Next comes the business of finding the answer. We have planned this, so it
shouldn’t need too much hassle. Figure 6.15 shows the program lines. The
variable V% is the one that we have selected at random, and it’s used to select
one of the strings of ASCII numbers, A$(V%). Since each number consists
of three digits, we want to slice this string three digits at a time, and that’s
why we use STEP 3 in the FOR.. . NEXT loop in line 5000. Line 5010 then
builds up the answer string, which we call A$. Remember that A$, used
alone, is not confused with the A$(V9%) array. A$ is set to a blank in the first
part of line 5000 to ensure that we always start with a blank string, not with

S0ee A$="":FOR J%Z=1 TO LEN(A%$(V%))STE
P3

S010 AS=A%$+CHR$ (VAL {MID$ (A% (VL) . J%,)
Y aNEXT

5020 RETURN

Fig. 6.15. Checking the answer.

Menus and Subroutines 95

the previous answer, which would also be A$. The string A$ is then built up
by selecting three digits, converting to the form of a number by using VAL,
then to a character by using CHRS. Remember that when you have a lot of
brackets like this, you read from the innermost set to the outermost. This
character is then added to A$, and then continues until all the numbers in
the string have been dealt with. That’s the hard work over. Figure 6.161is the

1200 CLS:PRINTTAB(12) "INSTRUCTIONS"
1219 PRINT:PRINTTAB(2) "The computer w
ill supply you with"

1220 PRINT"the name of an animal. You

should "

1230 PRINT"type the name of its young
- and "

1249 PRINT"make sure that your spelli
ng is "

1250 PRINT "correct, and that you sta
rt each "

1260 PRINT "name with a capital lette
r. The"

1279 PRINT"computer will keep score f
or you."

1280 PRINT"You get two shots at each

name."

1290 PRINT:PRINT"Press the spacebar t
o start."”

1300 IF INKEY$<>" " THEN 1300 ELSE RE
TURN

Fig. 6.16. The instructions. Always leave these until almost finished.

subroutine for the instructions, and Fig. 6.17 is the title subroutine. The title
lines include a pause, and have been written with a SCREEN [type of
display. We'll deal with this in more detail in Chapter 7 - it gives slightly
larger letters which are more suited to a heading. Finally, Fig. 6.18 shows the
DATA lines.

Now we can put it all together and try it out. Because it’s been designed in
sections like this, it’s easy for you to modify it. 1 have chosen a very simple
theme just for this purpose. You can use different DATA, for example. You
can use a lot more data - but remember to change the DIM inline 1410. You
can make it a question-and-answer game on something entirely different,
just by changing the data and the instructions. You can add some sound

1000 SCREEN 1

1019 PRINTTAB(8)"Young Animals"
19020 GOSUB 7000:SCREEM @: RETURNM

Fig. 6.17. The title program lines.

96 Working with MSX BASIC

&009 DATA Dog,Cat,Cow,Horse,Hen,Fox,K
angaroo, Goose,Lion,Pig

6091 DATA 086117112112121

6002 DATA 9751451146116101110
6003 DATA 067097108102

6904 DATA 070111097108

6005 DATA 067104105097107101110
6006 DATA ©67117098

6007 DATA @74111101121

6098 DATA ©71111115108105110103
6909 DATA 967117098

6010 DATAGB@105103108101116

7000 FOR @=1 TO 300@:NEXT:RETURN

Fig. 6.18. The DATA lines that are needed, along with a time delay subroutine.

effects, for example, or add more interesting graphics. One major fault of
the program is that once an item has been used, it can be picked again,
because that’s the sort of thing that RND can cause. You can get round this
by swapping the item that has been picked with the last item (unless it was
the last item), and then cutting down the number that you can pick from.
For example, if you picked number 5, swap numbers 5 and 10, then pick
from 9. This means that the 10*RND(1)+1 step will become D%*RND
(1)+1, where DY starts at 10, and is reduced by | each time a question has
been answered correctly.

There’s a lot, in fact, that you can do to make this program into something
much more interesting. The reason that 1 have used it as an example is to
show what you can design for yourself at this stage. Take this as a sort of
BASIC ‘construction set’ to rebuild any way you like. It will give you some
idea of the sense of achievement that you can get from mastering your MSX
computer. As your experience grows, you will then be able to design
programs that are very much longer and more elaborate than this one by a
long way. By that time, you’ll be thinking of adding a printer and a disk drive
to your MSX computer. Go ahead; they will open up a whole new world of
MSX computing to you.

Chapter Seven

Special Effects and
Geometrical Shapes

Any modern computer is expected to be able to produce dazzling displays of
colour and other special effects. The MSX computer is no exception, and in
this chapter, we'll start to look at some of the effects that are possible. To
start with, we have to know some of the terms that are used, and the first of
these is graphics. Graphics means pictures that can be drawn on the screen,
and all modern computers have instructions that allow you to draw such
patterns. In connection with these patterns, you’ll see the words low
resolution and high resolution used. Resolution isn’t such an easy term to
explain. Imagine that you are creating pictures on a paper sheet about eleven
inches across by eight inches deep. That’s roughly the size of a TV screen that
is described as being a 14 inch screen (it’s about 14 inches diagonally!).

Now if you are asked to create the pictures by using rectangles of coloured
paper, you are dealing with picture-making in a way that is very similar to
the way that the computer operates. Suppose that you are allowed only 888
pieces of paper, of such a size that all 888 put into place will fill the screen.
You couldn’t draw very finely detailed pictures with this comparatively
small number of large pieces, and this is what we mean by low resolution. On
the other hand, if you were provided with pieces so small that you would
need 49152 of them to fill an entire screen size, you could produce very much
more detailed pictures. This is what we mean by high resolution. The MSX
computer has both low and high resolution graphics available, and the
figures that I have used correspond to the size of the blocks that the MSX
computer uses. In this chapter, we're going to deal with the low resolution
graphics, and some of the commands for the high resolution graphics of the
MSX computer. There are three points in particular that we have to look at.
These are how to obtain graphics characters, how to place them on the
screen, and how to make shapes of our own design.

Keyboard graphics

The graphics shapes that are illustrated in the MSX computer manuals can
all be obtained by pressing keys on the keyboard. The difference is that you

98 Working with MSX BASIC

have to press the graphics key, labelled GRAPH, as well. You can obtain
another set of graphics characters if you press the SHIFT key in addition to
the GRAPHICS key and a letter/number key. These graphics characters
can be printed in the same way as you print words, by using the PRINT
command, followed by a quote, then typing the graphics characters, then
ending with another quotemark. If you want to use the characters to make
fancy underlining, or to provide shapes to identify menu choices, this is one
way to do it. Unfortunately, I can’t illustrate this in a program, because
printers generally won’t display these shapes as they appear on the screen.

The character codes

The alternative method, which allows us a lot more scope for illustration is
to use the ASCII codes for the characters. These are shown in the MSX
computer manuals as well, but it’s not very easy to see in some manuals what
numbers give you the graphics shapes. The program in Fig. 7.1 will remind

10 CLS:FOR N%Z=192 TO 223 STEP 16

20 FOR J%=0 TO 15

30 PRINTCHR$ (J%+NZ) 3" “3:NEXT

40 PRINT: PRINT:NEXT

50 FOR NZ=64 TO 95 STEP 16

40 FOR J7%=0 TO 15

7¢ PRINTCHR$ (1) 5CHR$ (JZ+NZ)3 " "3 :zNEXT
80 PRINT:PRINT:NEXT

Fig. 7.1. A program which prints the graphics shapes on to the screen.

you of them. Only certain code numbers are used for graphics, and there are
two sets. One set uses ASCII code numbers 192 to 223 (32 characters
altogether), and the other set uses ASCII codes 64 to 95, another 32
characters. These codes, 64 to 95 are normally used for letters, and to get the
graphics shapes you have to precede each code with CHRS$(1). The effect of
PRINT CHRS(1) is to make the computer switch to graphics for a code in
the range 64 to 95, and this is the effect of pressing the GRAPHICS key. If
you look at this second set of graphics closely, though, you'll find that some
of the shapes look incomplete. In particular, the face shapes seem to have a
slice taken out of the right-hand side. This is because the computer, when it
is switched on, defaults to a ‘text screen’. In other words, it automatically
sets up the screen so as to print words and numbers, rather than graphics
symbols. Since the letters and digits do not need so much memory for each
character, they can be displayed fully, but the graphics shapes cannot. You
can get round this by switching to a different screen layout, one which allows
fewer characters per line, but which displays the graphics characters fully.
This is done by typing SCREEN 1. Try it before you run the program of Fig.

Special Effects and Geometrical Shapes 99

7.1, and see the difference. From now on, then, each graphics program will
use SCREEN 1 (or one of the others which we’ll come to later) in place of the
‘text screen’, which is SCREEN 0. If you want to switch back to the text
screen, you need only type SCREEN 0 (then RETURN). A SCREEN
command will have the effect of clearing the screen as well as changing it, so
CLS isn’t needed after a SCREEN | or SCREEN 0.

You can do some ornamental work with these shapes if you use the grid of
Fig. 7.2 for planning. It shows 32 squares across the screen because it is

Normal width

|

DONDPBrNNTNONDODD
SrNOIwor0orrdRIRERR22ZRIIRIRRIRKSS

P G i G G G g Y
CONONDBWN-SOONOINLWN=SS

Normal 29
depth 21
22
23

Fig. 7.2. A planning grid for the graphics shapes.

possible to choose to have up to 32 characters of screen width with
SCREEN 1. You get 27 characters per line each time you first select
SCREEN 1 on the MSX computer, but you can make this 32 by typing:
WIDTH 32. You can, incidentally, also alter the text screen to up to 40
characters per line with the WIDTH command. The choice exists so as to
allow you to use practically any TV with the MSX computer, including ones
which put the 32nd character on the SCREEN 1 display right at the edge of
the screen! You will have to find out for yourself what limits of width you
can use. If you are in any doubt, simply leave it alone, and the computer will
select 37 characters per line for SCREEN 0 and 27 characters per line for

SCREEN 1.
Each square in the grid is the position for a character, and if you draw

what you want on a piece of tracing paper placed over this grid, then you can
plan what the shape will look like on the screen. There are three ways of
programming this. One is to print each line of shapes separately. Another

100 Working with MSX BASIC

way is to print in a loop, using code numbers that are stored ina DATA line.
A third way is to place all of the characters into a string, just as you can type
words into a string.

Yes, an illustration would help. Figure 7.3 shows a design, and how it is
planned. It might be an emblem which you want to show on the screen. Now

93 94
N/

93,68 — — 68, 94
94, 68 — — 68, 93
7/ \

94 93

Fig. 7.3. A design which uses the graphics shapes.

you can simply write a program which prints each CHRS value in the right
place, as Fig. 7.4 shows. This works, but it's clumsy programming, because
you have to type CHRS$(1) so many times. You can make this easier by using

1o SCREEN 1

20 CLS:PRINT:PRINT

3@ FRINTTAB(S)5CHR$ (1) 5 CHR$ (93) 5 CHRS (
1) ;CHR% (94)

42 PRINTTAB(4);;CHRS$ (1) s CHR$ (93) s CHR% (
1)5CHR$ (68) sCHR$ (1) 5 CHR$(468) CHR$ (1) 5
CHR%$ (24)

5@ FPRINTTAB(4);CHR$ (1) ; CHRS (94) 3 CHR%$ ¢
1) 5CHR$ (68) sCHR$ (1) CHR$ (68) 5CHR$ (1 3
CHR$ (93)

6@ PRINTTAB(S) ;CHR$ (1) ;CHR$ (94) ; CHR% (
1) 5CHR$ (93)

Fig. 7.4. A simple program to produce the shape.

one of the F-keys to give you CHR$(1), but it still looks clumsy on the
screen. Now take a look at Fig. 7.5. This may not look neater to you - it
needs more lines, for example, but it is better. There is only one PRINT
TAB(4);CHRS$(1);CHRS$(K%) instruction, instead of three lines of them.
Two loops are used, one for each line of characters, and another loop for
each column. All of the number variables are integer variables (using the %

Special Effects and Geometrical Shapes 101

10 SCREEN1:FOR J%=1 TO 4
20 FOR N%=1 TO 4:READ K%

3@ PRINTTAB(4);CHR$ (1) ;CHRS$ (K%) 3
40 NEXT:PRINT:NEXT

5@ DATA3Z,93,94,32

&2 DATAT3, 68, 68,94

79 DATA94,48,468,93

B0 DATA32,94,93,32

Fig. 7.5. A neater method, using a loop.

sign) so that the program can run fast. The advantage of this method is that
you can see the data clearly, and it’s easy to alter the data while keeping the
program the same. Note that I've used TAB(4) in each line, and this has
meant putting in blanks - CHR$(32) - to pad out the first and last lines. The
use of CHR$(1) has no effect when it is followed by CHR$(32).

Figure 7.6 illustrates an even better method, however. It starts by defining
a string called BS. This consists of four characters whose code is 29. If you

10 SCREEN1:B$=STRINGS (4,29) : GR$=""
20 FOR J%=1 TD4:FOR NZ%=1 TO 4:READ K%
30 GR$=GR$+CHR$ (1) +CHR$ (K%) : NEXT

40 GR$=GR$+CHR$ (31) +B$:NEXT

S0 PRINTTAB(4) ;GRS

6@ DATA32,93,94,32

70 DATA93,68,68,94

8@ DATA94,68, 68,93

90 DATA3Z2,94,93,32

Fig. 7.6. Placing all of the graphics characters and the cursor codes into a
single string.

look this up in the Manual, you'll see that it is the cursor left character. The
effect of printing B$, then, will just be to put the cursor four places to the left.
In line 10 also, the string GR$ is equated to a blank. The next thingis to start
two loops, one for the lines, another for the columns. After a line of data has
been read and added to GRS in line 30, CHR$(31) is added. This will cause
the cursor to move down one line. Then B$ is added, which causes the cursor
to move four spaces left. The total effect, then, is to print four characters,
and then move the cursor to the correct position in the next line. Each line is
added to the string, and then the complete string is printed in line 40. When
you enter this,incidentally, you can save yourself some time if you already
have the program of Fig. 7.5 in the memory. Just type:

DELETE 10-40

and press ENTER. This will remove the old lines 10 to 40, leaving the
DATA lines 50 to 80, so that you don’t have to type them again. You can

102 Working with MSX BASIC

then renumber them as 60 to 90 to use in the new program. To do this, type
RENUM 60,50,10 and press RETURN.

The great advantage of the method that is illustrated in Fig. 7.6 is that the
shape can be printed anywhere on the screen without anything special
having to be added to the program. Any PRINT GRS instruction will print
the shape, placed wherever the cursor starts out. You have to be careful, of
course, that you don’t place the cursor too far over to the right, or too near
the bottom of the screen. Armed with this ability to produce patterns, let’s
see now how we can make them appear in colour.

Vivid impressions

The best place to start on our exploration of colour is with the character
shape that we have been using. Figure 7.7 uses the same program to create

1@ SCREEN1:B$=STRINGS (4,29) : GR$=""

20 FOR J7Z=1 TO4:FOR N%=1 TO 4:READ K%
30 GR$=GR$+CHR$ (1) +CHRS$ (K%) : NEXT

40 GR$=GR$+CHR$ (31) +B$:NEXT

60 DATA32,93,94,32

70 DATA93,68,68,94

80 DATA94, 68, 68,93

99 DATA32,94,93,32

160 PRINT:PRINT:PRINT

116 COLOR 11,12

120 FOR X%=0 TO 23 STEP 6

130 PRINTTAB(XZ) ; STRINGS (S, 30) ; GR$: NE
XT

150 GOSUB 1000

170 FOR BGZ=6 TO 15:PRINT“BG= "3;BGZiC
HR$ (3@)

180 COLOR 4,BG%

190 GOSUB 10@©:NEXT

200 GOSUB 1900

216 FOR FG%=0 TO 1S:PRINT"FG= ":FG%;C
HR$ (30)

220 COLOR FB%, 1:GOSUB 100@:NEXT

390 END

1000 TIME=0

1910 IF TIME<190 THEN 1010

1026 RETURN

Fig. 7.7. Using the COLOR command to change foreground and background
colours.

the shape GRS, and then prints a set of four shapes across the screen. This is
done in line 130, and the reason for printing STRING$(5,30) is to get the

Special Effects and Geometrical Shapes 103

cursor up the screen in the right position for printing the next shape. Lines
170 to 190 then demonstrate how we can change the colour of the whole
screen, the background, by itself. Each colour is assigned to a number, and
the screen is forced to take the colour corresponding to the number when the
COLOR 4,BGY% instruction is carried out. The numbers that are assigned to
the colours are shown in Fig. 7.8. The program runs through all of the
possible background colours, with the pattern displayed always in its dark
blue colour, colour 4. It’s at this stage that you really need a colour TV to
show the results, but you may be disappointed in some of the colours. Red in
particular always gives a very ‘smeary’ appearance on a TV screen, and to
see the colours as crisp and clear as they can be, you need to use a colour
monitor. As usual, something that is correctly designed for a job is always
better than something that is not. TVs are for soap operas; colour monitors
are for computer graphics.

Number Colour

0 Clear

| Black

2 Green

3 Light green
4 Dark blue
5 Light blue
6 Dark red

7 Sky blue

8 Red

9 Bright red
10 Yellow
11 Light yellow
12 Dark green
13 Purple
14 Grey
15 White

Fig. 7.8. The numbers that are used to produce colours.

The lines 210 to 220 then run through the range of foreground colours,
with the background colour set to black. Once again, you will find that some
colours appear much more satisfactory than others. Retuning the TV can
help a little. Notice that colour 0 is always invisible, and when you make the
foreground and the background colours have the same value, all you can see
is a blank screen of that value. A very quick way of making a pattern
disappear, for example, is to switch its colour to the colour of the
background. Notice, by the way, that COLOR affects everything on the
screen, whether it was printed before or after the COLOR command. If you
find yourself with a screen colour that makes it difficult or impossible to see
a listing, then the computer has a ‘panic button’. Pressing key F6 (SHIFT
F1) restores normal colours, and you don’t have to press RETURN to
activate the command.

104 Working with MSX BASIC

Pixel patterns and high resolution

Up to now, we have produced text on the what is called the rexr screen,
SCREEN 0, or on the low resolution graphics screen SCREEN 1, by using
the PRINT instruction. We can produce a letter or graphics shape in two
ways. Taking A as an example, we could use PRINT “A”, or we could use
PRINT CHRS$(65). The first method is available for the characters that you
can see marked on the keys, and for the characters that can be obtained
along with the CODE and GRAPHICS keys, but the second method can be
used for a larger range which includes the ‘control’ characters that can shift
the cursor, or delete part of a line. The MSX computer, however, allows us
to place both letters and graphics characters on to another two varieties of
screens, called graphics screens.

The differences are important, and the sooner that you can get used to
them the better. The text screen (SCREEN 0) is the one that you see when
you switch the machine on. It is used, as the name suggests, mainly for text.
If all that you want to do is to display figures or words, then the text screen is
ideally suited. For the built-in graphics characters, SCREEN 1 is better,
because there is more space for each character and bits don’t get chopped
off. For most of the graphics commands, however, including much more
advanced graphics than we have looked at so far, there are two more of these
SCREEN numbers that we can use. If we want to make letters and graphics
characters appear on these screens, then we need a different method,
because PRINT cannot be used. Of the two graphics screens, the one that
can be used for the highest resolution of graphics is called screen 2. It can be
made to appear simply by including the command SCREEN 2 in your
program, but you cannot simply type SCREEN 2, then RETURN, and
expect to see it appear. The reason is that the computer a/ways switches back
to SCREEN 0, or SCREEN 1, whichever was previously in use, whenever a
program or command is finished. The only way that you can get enough
time to look at the graphics screen is by causing a delay before the program
ends. This can be done most easily by programming an endless loop, a line
like:

50 GOTO 50
With that in mind, take a look at the program of Fig. 7.9. It starts by

1@ SCREENZ2:COLOR®, 4,5:CLS
2@ OPEN"GRP:" AS 1

30 FOR N%=0 TO 15

40 COLOR N%,4,5

5@ PRINT#1,CHRS (NZ+65) 3
50 NEXT

70 GOTO7@

Fig. 7.9. Using the high resolution screen, with the COLOR instruction.

Special Effects and Geometrical Shapes 105

calling up the high resolution graphics screen, using SCREEN 2. This is then
followed by a COLOR statement, and CLS. The COLOR statement uses
three numbers this time. Of these, the first is the foreground colour, the
second is the background colour, and the third is the border. The border is
the outside portion of the screen, where we don’t usually place any text or
drawings. It can be used in the text screens also, and if you use a small value
of WIDTH, you can make the border as big as you like. Getting back to the
program, the next line uses OPEN“GRP:” AS I. This is a way of allowing
text letters or numbers to be placed on the high resolution graphics screen.
OPEN is a command that we shall look at in detail in Chapter 11. It is
normally used for recording data on to cassettes, or reading data from
cassettes. In this case, it makes connections that allow text to be sent to the
graphics screen. By typing “GRP:”, we specify that we want to use the
graphics screen. The AS | section means that we will use the number | as an
identifier for this connection. We cannot use PRINT with the graphics
screen, but when we specify that we want to print to channel number 1, the
computer will look for an OPEN command which uses this number. In this
example, it will find that channel number 1 means the graphics screen. The
instruction to print on this screen, then, is PRINT #1,“TEXT”, with
whatever you want to print placed between the quotes.

The next part is a loop, which uses numbers 0 to 15. These are the colour
numbers, and they are used in line 40 to set the foreground colour on each
pass through the loop. In line 50, we print characters. Because we have used
PRINT#I1,CHRS$(N9%65), these will be the letters of the alphabet, because
ASCII code 65 is the code for A. What you will find unexpected is the
different colour of each letter! Run this, and just look at it.

Obviously, the high resolution graphics screen does not behave like the
text screen! For one thing, each letter can be printed in a different colour,
controlled by the foreground colour that is selected in the COLOR
command. Another curious point is that if you run this, stop it with CTRL
and STOP, and then run again, you will find that the letters appear at a
different place along the top line. This is because the high resolution
graphics screen (HRG screen, to avoid so much typing!) does not use the
ordinary text cursor. You can imagine that there is a graphics cursor, but it is
invisible. Unlike the text cursor, it is not placed at the top left of the screen by
the CLS or SCREEN commands. The result is that the second set of letters
appear to start where the first one left off, but the cursor then returns to the
left-hand side for the next set. To make the letters appear starting from the
left-hand side each time, put the command PRESET(0,0) between the
SCREEN and the COLOR commands in the first line. PRESET affects the
‘graphics cursor’, and we are just about to move on to that topic.

106 Working with MSX BASIC

PSET graphics

The MSX computer offers another way of producing graphics, however.
These are now high resolution in the sense that they use very small blocks,
or, to give them their proper name, pixels. The pixels of the SCREEN 2are,
in fact, the smallest units that we can place on to the graphics screen. We can
place up to 256 pixels across the screen, and up to 192 down the screen, a
total of 49152 pixels. The MSX computers allow you to specify the colour of
each of these pixels, but there are snags. The main snag is that you will not
get pixels which are immediately next to each other to appear in several
different colours. The pixels are grouped in sets of eight across the screen. In
any group of eight you are allowed only two colours, one background and
one foreground. If you attempt to use a third colour for either background
or foreground, the other pixels in the group will turn to this colour.

The key instructions now are PSET and PRESET. PSET has to be
followed by two numbers within brackets, and its effect is to make a pixel
appear in a selected place. By adding another number, outside the brackets,
we can also select a colour. If this colour code is omitted, the pixel will
appear in whatever foreground colour was selected by the COLOR
command earlier in the program. The position of the pixel is specified by
two numbers. The first of these, called the X co-ordinate, is the number of
units across from the left-hand side of the screen. The screen is divided (in
our imagination) into 256 units across and 192 down. We can use numbers 0
to 255 to control the position across the screen, the X-position. We can use
numbers of 0 to 191 to control the position down the screen, the Y-position.
X=0 means the left-hand side, and Y=0 means the top of the screen. These
are very tiny pixels, as you can see from the program in Fig. 7.10. This sets
SCREEN 2, then the colours, with a CLS to make the screen change colour.
In line 20 a loop starts which will print pixels in a line across the screen. By
choosing 95 as the Y-number, we will make this line appear about half-way
down the screen. Using N% for the X-number allows us to PSET a number
of positions, 15 units apart. The distance apart is measured from the left-
hand side of each pixel. Lines 50 to 70 show the effect of using STEP 2. The
pixels appear almost joined, and the line of pixels takes noticeably longer to
draw.

The effect of PRESET is, as you might guess, to ‘reset’ the pixel, changing
it to background colour so that it disappears. This is used mainly to make
pixels appear to move, and we’ll look at that point later on.

It’s time for another example. The main use of PSET and PRESET is in
drawing graphs, so that’s what we’ll illustrate. Figure 7.11 shows, to start
with, a PSET-PRESET planning grid, with the numbers I to 255 and 1 to
190 to indicate the positions of each pixel. We ought to use 0to 255and 0to
191, but this makes the graph awkward to draw. The important point is that
you can draw this grid for yourself. If you buy a pad of graph paper which is
scaled in cms and mms, then you can put the numbers on to each sheet for

Special Effects and Geometrical Shapes 107

10 SCREEN2:COLDR11,1,13:CLS
20 FOR N%=9 TO 255 STEP 1S
30 PSET (NZ,95),9

40 NEXT

50 FOR N%=0 TO 255 STEP 2
&0 PSET(N%,120),4

70 NEXT

g0 GOTO8®

Fig. 7.10. Lighting up pixels with PSET. This shows how small the pixels are
on the high resolution screen.

250

[ejeNolooNoloNoloNoloNoNoNoNo
COO0O000O0COQOO~—ANMNMTLONDODOO - AN®M
TNOTDOMNDOD T rrrrrrrrrrr AN ANANNAN

(a)

12 3 456 7 8

1

Size of pixel,

2 E
SCREEN 3 \3

o N OO O

=3 _ Size of pixel,
SCREEN 2

(b)

Fig. 7.11. (a) A PSET-PRESET planning grid. (b) Detailed section of the main
planning grid.

108 Working with MSX BAS/C

yourself. You can then shade in the squares that you need to PSET, and so
work out the numbers that you need to use. It’s even easier if you number the
lines of the graph, and represent each pixel position by the places where the
lines cross, rather than the squares themselves. Figure 7.12 shows a graph-
drawing program. This draws several graphs at the same time, using

19 SCREEN2:COLOR 4,11,11:CLS

20 FOR X%=Q TO 255

30 PSET (X%, 6+SIN(.1%X%) #30),1
49 PSET (X%, F6+SIN(.1#X%) "2#90),9
S50 PSET(X%,P6+SIN(. 1%X%)"3*90) ,4
&0 NEXT

70 GOTO 7@

Fig. 7.12. A graph-drawing program. Graphs do not look very effective in low
resolution.

different colours. Because the pixels of the high resolution screen are so
small, however, it's not easy to see the colours of the dots. You can also see
that where several dots are very close to each other, they all appear in the
same colour. This is the effect of the limitation that only one foreground and
one background colour can appear in a group of eight pixels. Line 20 starts
the loop which makes use of all the permitted values of X%. The graphshapes
are achieved by using the SIN function, with one used as it is, one squared,
and one cubed. The multiplying factors are put in to make the shape fill a
reasonable amount of the screen in the Y direction. The sine or cube of the
sine of an angle cannot have a value less than—1 or more than +1, so we have
to ‘amplify’ it a bit by multiplying by 90. The square cannot have a value of
more than +1 or less than 0. The value of X% has to be multiplied by .1to
make the range of angles suitable. The MSX computer does not use angles
in units of degrees. Instead, it uses a more natural unit, the radian. One
radian is about 57 degrees. The program has an endless loop in line 70 to
prevent the text screen from reappearing to spoil the picture, so you will
have to press the CTRL and STOP keys together to stop the program.

Sometimes, instead of specifying the exact position on the screen by
means of X and Y numbers, you just want to specify a shift, or
‘displacement’ of a number of pixels. You can do this by using STEP X in
place of X and STEP Y in place of Y. Any of the instructions that make use
of X and Y (usually in the form of X% and Y%) can use STEP X% and
STEP Y% instead.

Lines, boxes, circles and paints!

PSET and PRESET have their uses, when you may want to use a few pixels.
It would be hard work, however, to design a program which used PSET and

Special Effects and Geometrical Shapes 109

PRESET to draw lines. Fortunately, the BASIC of the MSX computer
allows you to draw lines, boxes, and circles without having to resort to any
special effort. This is because of the use of the LINE and CIRCLE
commands.

The LINE command, used at full power, can be quite a lot to take in, so
we’ll start simply. Try the program in Fig. 7.13. This draws a diagonal line,
using the small pixels that you should have become used to by now. The

19 SCREENZ2
20 LINE(10,10)—-(240,180),11
30 GOTO 30

Fig. 7.13. How the LINE command is used to produce a straight line.

LINE command is followed by two sets of numbers. The first pair, in
brackets, are the X and Y numbers for the starting point of the line. By using
X=10and Y=10, we have chosen a position very near the left-hand side and
the top of the screen. After the second bracket, there must be a hyphen sign
(-). This is followed by the finishing point of the line, in another set of
brackets. This uses numbers X=240 and Y=180 to ensure that this point is
near the bottom of the screen and at the right-hand side. The result is a
diagonal line from top left to bottom right. How about drawing for yourself
a line from top right to bottom left?

Now take a deep breath, because there are a lot of extras that can be
tacked on to this command. Special offer number one is that once you have
drawn one line, you can make the LINE commands simpler. Suppose that
you want to draw another line which starts where the first one left off. You
don’t have to type the starting position all over again; simply omit the first
bracket. Figure 7.14 shows what is needed, with line 30 containing LINE —

160 SCREEN2

20 COLOR1,1,1:CLS

30 LINE(10Q,10)-(240,180),11
40 LINE-(10,150),11

50 GOTOSO

Fig. 7.14. Shortening the LINE instruction for joined lines.

(10,150),11 causing another line to join on to the end of the first one. You
must not omit the colour command in this LINE, because if you do, the
computer will use the colour which was specified in the COLOR statement -
and that’s black! This extension to LINE is particularly useful if you want to
draw squares - and for random patterns it's essential. Just try Fig. 7.15,
which draws a starter line, and then uses a loop in which random numbers
are used to place the finishing point of the next lines. You'll see, incidentally,
just how fast the MSX computer draws these lines when you run this one.

110 Working with MSX BASIC

10 SCREEN2:COLOR1,1,1:CLS

20 LINE(20,20)-(150,159),%

30 FOR N%Z=1 TO S9o

40 XZ=RND(1)#255: YZ=RND(1) %171
S50 LINE—(XZL,Y4).9

69 NEXT

70 GOTO70

Fig. 7.15. A random lines program.

You could exhibit these at the Hayward Gallery and make your fortune,
incidentally, if they weren’t so well-drawn.

The next one is quite an astonishment. Try the program in Fig. 7.16, in
which the letter B has been added after the rest of the LINE command. The
effect is to draw a box - hence the letter B. When you want to draw a box in

10 SCREEN2:COLOR11,1,4:CLS
20 LINE(30,30)-(219,140),13,B
30 GOTO3e

Fig. 7.16. Drawing a box with the LINE instruction.

this way, you must either use the colour number, or the correct number of
commas, then the B. You cannot place the B immediately following the last
bracket, because this will not be taken as a box command when it is in the
place where the computer expects to find a colour command. If you want
your box to be in the same colour as the other foreground (colour 11 in this
case), then you have to make the command look like: LINE (30,30)<(210,
140),,B. The colour number is omitted, but its comma is not.

The two points in the LINE command form the opposite corners of the
box, so you will always get neatly rectangular boxes when you use this
command. If any of the sides looks bent, it’s time to get your TV serviced!
Figure 7.17 shows something of the speed of this command. It chooses two
sets of X and Y numbers at random, and then draws a box in a random
colour. The number 3 has been added to the random number to make sure

160 SCREENZ:COLOR11,1,4:CLS

20 FOR NZ=1 TO 10

30 X7Z=RND(1)%255: YZ=RND (1) #1291

409 X17=RND(1)%255:Y1%Z=RND(1) %191

50 LINE(XZ,YL)—(X1Z,Y1%) ,3+RND (1) #13,
B

69 NEXT

7@ GOTO7e

Fig. 7.17. A random boxes program.

Special Effects and Geometrical Shapes 111

that none of the boxes is drawn in transparent or black, and RND(1)*13 is
used to make sure that the random number for colour does not exceed 15.
The colour number ignores fractions, so that if RND(1)*13 gave 12.99 and
we added 3 to get 15.99, then the computer takes this as being 15.

No, we haven’t finished, because there is one more twist to LINE. Take a
look at the simple program in Fig. 7.18. This draws two boxes, using LINE in

1@ SCREEN2:COLOR4,1,5:CLS

20 LINE(10,10)-(10@,100),11,BF
30 LINE(150,20)-(250,199),7,BF
40 GOTO40

Fig. 7.18. Filling the box with colour, using the F addition.

the way that you have seen earlier, but with F added to the B. You don’t need
any commas or other dividers here, just the F at the end. Now the effect of
the F is to fill the rectangle with colour. The colour that is used is the colour
that you have specified in the LINE command, not the colour that is used for
the other foreground drawing. You’ll see from Fig. 7.18 that more than one
box can be drawn and filled in this way. Figure 7.19 shows how this can be

19 SCREEN2:COLOR1,1,1:CLS:A%Z=RND(-TIM
E) :FORNY%Z=1 TOle@

290 XZ=RND(1)*255: YZ=RND(1)*191

3@ X1%Z=RND(1)*235:Y1%Z=RND (1) %191

49 LINE(XZL,YZ)—(X1%Z,Y1%) ,3+RND (1) *13,

BF
50 GOSUB 1009:NEYT
&0 GOTO 60

19000 TIME=0
1010 IF TIME<1909 THEN 1010
10290 RETURN

Fig. 7.19. A random box and fill program to show how one box will cover
another.

used in a random box and fill program. Line 10 contains the instruction;
A%=RND(-TIME)

This is the ‘seeding’ expression for random numbers which we have used
before to avoid generating the same sequence each time the program runs.
TIME is a number that is read from the internal ‘clock’ of the MSX
computer, and by using this number as a negative number with RND, we
ensure that the sequence of numbers that we use in the program does not
repeat. If you omit this step, you will see the same boxes being drawn each
time you run the program. RND is not quite as random as it should be unless
you take this extra step.

112 Working with MSX BASIC

Moving in better circles

Drawing straight lines and boxes is useful, but being able to draw circles
greatly extends our artistic range. MSX computers, as you might expect by
now, have a very useful CIRCLE instruction. As usual, we’ll keep it simple
for starters. CIRCLE has to be followed by a pair of co-ordinate numbers,
in brackets, and then by another number outside the brackets. As usual,
commas separate the numbers. The co-ordinate numbers are of the centre of
the circle. The number that follows the brackets is the radius of the circle. In
case you’ve forgotten, that’s the distance from the centre to the outside. It’s
measured in screen units, these 256 by 192 units that we work in all the time.
If you want to show the whole of a circle on the screen, the largest number
that you can use for the radius is 95, assuming that the centre of the circle is
the centre of the screen. Following the radius number we can, if we like, have
another number, the colour number for the circle.

After that introduction, take a look at Fig. 7.20. Line 10 sets up the
familiar SCREEN 2 conditions, and the loop that starts in line 20 causes a
set of circles to be drawn. You may find that they don’t look very circular.

16 SCREEN2

20 FOR NZ=10 TO Be STEP 20
3¢ CIRCLE(127,96) N%,11

40 NEXT

Se GOTOSO

Fig. 7.20. The CIRCLE instruction in action.

This is something that depends very much on how well adjusted your TV is.
If your TV has a HEIGHT control outside the cabinet, try adjusting it until
the circles look more like circles. An alternative to this is to adjust the
WIDTH control, but few TV receivers nowadays have an adjustable width
control, one that you can adjust for yourself. A lot of modern TV receivers
have no controls that you can adjust apart from brightness, colour and
contrast, and the controls for width and height are inside the cabinet. You
must not on any account attempt to adjust internal controls unless you
know exactly what you are doing. TV receivers are full of high electrical
voltages, and only a service engineer knows exactly how to avoid trouble.

We’re not finished with circles, though. What you know of MSX
computers so far might lead you to believe that there could just be more to
this CIRCLE command. There is. Try Fig. 7.21, which shows how you can
draw part-circles! The key to this is the provision of start and stop numbers.
The number 0 is taken as the 3 o’clock position on the screen, and the circle is

10 SCREEN2
20 CIRCLE(127,96),80,11,0,3.14
30 GOTO3@

Fig. 7.27. Drawing partial circles.

http:CIRCLE(127,9b),80,11,0,3.14

Special Effects and Geometrical Shapes 113

drawn, going anti-clockwise from this position. The end-point is specified
by the second number. I have made this 3. 14, which is the value of PI. Using
this number gives a semicircle and, for other parts of a circle, just use the
appropriate fraction. Figure 7.22 shows how you can design your part-
circles for yourself.

End of arc Dra_wn t_his
direction
1
)
1
R
, /Start of arc
7
Finish angle - Start angle
(radians) (radians)
Zero angle

Fig. 7.22. How to design part-circles.

Don’t square it, squash it!

MSX computers also allow you to draw shapes which are ellipses -
squashed circles. The reshaping of a circle is done by adding yet another
number to the circle instruction. If this number is 1, then we simply get a
circle. If this extra number is less than 1, however, we get an ellipse which 1s
wider than it is high. If the extra number is greater than one, the ellipse is
higher than it is wide. We can even make ellipses which are stretched out so
much that they look like straight lines! We can also correct the shape of
circles that look elliptical because of the TV receiver. This gives the MSX
computer unparalleled power to create all sorts of curved shapes. One of the
features of the CIRCLE command is that it allows the use of numbers which
take the cursor beyond the screen area, so that what you see on the screen is
only part of a drawing.

Take a look at Fig. 7.23. Lines 10 to 60 are used to illustrate the ellipses
that we can create. The range of the number that we can use, following the
radius number (don’t forget the comma) is 0to 255, but the range that [have
illustrated here is the most useful part. The only problem with this command
is that it comes after the start and finish commands which we use to draw a
part-circle. If you want a complete ellipse, you won’t want to use these
numbers. We can get round this, as the program indicates, by omitting the
start and finish numbers, but putting in their commas. It makes the

http:CIRCLE(127,9b),80,11,0,3.14

114 Working with MSX BASIC

10 SCREENZ2
20 FOR E=1 TO .1 STEP —-.1

30 CIRCLE(128,96),100,11,,,E:NEXT
40 GOSUB 1009:CLS

S0 FOR E=1 TO 3 STEP .2

60 CIRCLE(128,96),80,11,,,E:NEXT

70 GOTO70

1000 TIME=0

1010 IF TIME<100THEN1@10ELSE RETURN

Fig. 7.23. Producing ellipses. This can also be used to correct the shape of a
circle, if your TV does not produce perfect circles.
command look rather odd, but it works! Notice how the circles are drawn
starting from the two horizontal ends.

Meantime, there’s another command to look at. Figure 7.24 demonstrates
another amazing feature of the MSX computers, the PAINT instruction.

10 SCREEN2
20 CIRCLE(127,96),88,11
30 CIRCLE(127,96),30,11
40 PAINT(127,50),11

50 GOTOSe

Fig. 7.24. The amazing PAINT instruction.

This will fill a space with colour, providing that you have enclosed the space
with lines. Lines 20 and 30 draw two circles, one within the other. The
PAINT instruction in line 40 then fills with colour the space between the
circles. PAINT needs the usual pair of co-ordinate numbers following it, in
brackets. You have to choose these numbers so that they will act as a starting
point for the painting operation. They must, therefore, be somewhere inside
the area that you want to paint. Odd things may happen if you select a point
on the edge of the area that you want to paint. You will certainly not get
what you want if you pick a point which is outside the area you want to
paint! Following the starting point, we’ve used one other number. Thisis the
number of the colour that we want to use for painting. We don’t have much
choice about this colour, it has to be the same as the colour we have used as a
boundary. Both of the circles are drawn in yellow, so we have to paint in
yellow. If you ignore this, you may find that the colour splashes all over the
screen.

In this chapter, we have looked at some of the MSX commands that draw
geometrical shapes on the high resolution screen. The examples have all
been simple ones which were designed to let you see how the commands
worked, and encourage you to try variations. In the following chapter, we’re
going to look at more complicated examples, and also at the ‘free-range’
drawing methods that MSX computers allow you to use. We'll also look at
the multi-colour screen which is created by SCREEN 3. Even Chapter 8
does not exhaust the capabilities of these amazing machines, however, and
Chapter 9 is devoted to animated shapes, or sprites. Hang on to your hats!

Chapter Eight
DRAW Graphics

Before we get on to the main themes for this chapter, there’s another type of
graphics screen to look at, SCREEN 3. This is a lower resolution screen,
which uses much larger pixels. The pixel size allows only 64 pixels across the
screen by 48 down. If you try some of the line and circle commands of the
previous chapter using SCREEN 3 in place of SCREEN 2, you willsee how
much coarser the lines look. The reason for having this type of display is that
it permits the whole range of colours to be used. Figure 8.1 shows this in
action, using SCREEN 3 to draw a thick line which has a different colourin
each large pixel. The program is straightforward except for the use of MOD

10 SCREEN3

20 FOR X%=1 TO 255 STEP 4
30 PSET(X%,96),X%ZMOD15

49 NEXT

S50 60T0S0

Fig. 8.1. Using SCREEN 3 for more colour choice, but thicker lines.

in line 30. This command is used in the form XMODY, and it means the
remainder when X is divided by Y, using integer division. For example,
SMOD?2 would give 1, because 5 divided by 2 is 2 with a remainder of 1.
Similarly 14MODS is 4 because 5 into 14 is 2 and 4 remaining. In line 30,
then, using X9%MOD 15 will give remainders which are equal to the value of
X% until X% is 15, when the value becomes 0. The value of X9%MOD 15 will
then increment up to 14, and then switch back to zero when X9 reaches 30.
The point of this is that the colour number will not exceed 14 no matter what
value X% takes.

The reason for the differences between SCREEN 2 and SCREEN 3 is
memory. The computer can deal, at any given time, with 64K of memory. Of
this, 32K is taken by the BASIC interpreter, the part which allows the
computer to be programmed in BASIC. Of the 32K that remains, only
about 28K is actually available to you for writing and running a program,
because a chunk of memory is reserved for the machine to store quantities
that will be needed when a program runs. These are items like the cursor
position, cassette data speed, function key commands and so on. On some

116 Working with MSX BASIC

machines, yet more memory is taken out of this for the screen display!

Fortunately, the MSX machines use a separate section of memory for the
screen display. This screen memory is of a fixed size, however. Using high
resolution with two colours takes as much memory as using low resolution
with sixteen colours, and you can’t have high resolution with sixteen colours
without using very much more memory. Since the drawing commands of the
MSX machines look so much better on the high resolution screen, we’ll keep
to that one for most of this book. The low resolution screens will come into
their own again in Chapter 9, however, when we look at sprite graphics. The
sprite graphics capability allows you to use a low resolution graphics screen,
with its full colour range, as a background. In front of this background,
shapes which are called sprites can be superimposed and moved. These
shapes are in high resolution, but because they are comparatively small, they
don’t eat up too much of the memory. The combination of low resolution
background along with sprites provides a very effective way of
programming animated games and displays.

POINT the way!

There’s another command which fits along with PSET and PRESET, and
which gives me a chance to show you PRESET in action. The command is
POINT, and it’s a way of reporting what’s going on. POINT gives you the
colour of a pixel. It has to be followed by the usual X and Y location
numbers, and you can find what it does by using something like PRINT
POINT(X,Y) or A=POINT(X,Y). What is printed or assigned to A by these
commands will be a number between 0 and 15. It is the colour number for
the pixel, so that you can tell whether the pixel is at background or at
foreground colour.

Now that description makes it sound quite simple, but it’s not quite so
simple as it seems, as the program in Fig. 8.2 will illustrate. Remember in
this program, and in the next few, that you will need to press F6 to get back

10 SCREEN2:COLOR®,1,1:CLS

20 FOR Y%Z=0 TO 191:PSET(10,Y%),11:NEX
T

30 FOR YZ=0 TO 191:PSET(254,Y%4),11:NE
XT

40 KZ4=1:X7%=11:Y%=1

50 PSET (XZ,Y%4),S

60 IF POINT(XZ+KZ,YZ)<>1THEN KZ=-KZ:Y
%=Y7+1

79 PRESET(X%Z,YZ)

80 Xi=X%L+K%4

90 IF YZ=199THEN END

100 GOTOSO

Fig. 8.2. A bouncing ball routine to illustrate the use of POINT.

DRAW Graphics 117

to normal screen colours afterwards. The program sets a black background,
and draws a vertical line down each side. A dot is placed at the top left-hand
side, and it moves across the screen. This is done by using PSET(X%,Y %),5.
The future position of the dot is tested by using POINT, and if this point is
background, the point is PRESET, the value of X% is increased, and the
new point is PSET. When the wall is found from POINT, then the variable
K% is made negative, so that X%+K% will have the effect of subtracting 1
instead of adding 1. This causes the point to move left rather than right. At
the same time, Y%—Y %+ | has the effect of moving the point one step down.

What is not quite so expected is the colour finding action of POINT. If
you use:

[F POINT (X%+K%,Y%)=11

then the dot simply zips through the ‘wall’ and disappears! This is because
the colour of the ‘wall’ is affected by the colour of the dot when the dot gets
too near. This is also the reason that holes appear in the wall after the dot has
bounced. We can get round this problem very simply, as Fig. 8.3 shows. If
you make sure that the dot is the same colour as the wall, then the system
works nicely. You can also use the IF POINT(X%, Y%)=11test if you like, it

10 SCREEN2:COLOR@,1,1:CLS
20 FOR Y%=0 TO 191:PSET(10,Y%),11:NEX
T

30 FOR Y%=0 TO 191:PSET(254,Y%),11:NE
XT

40 K%=1:X%=11:Y%=1

S0 PSET (X%, Y%),11

60 IF POINT (X%+K%Z,Y%)=11THEN KZ%Z=—K%Z:Y
%=Y7%+1

70 PRESET (X%, Y%)

8O XZ=X%+K%

90 IF Y%Z=190THEN END

100 GOTOS®

Fig. 8.3. How a change of colour allows you to use POINT more effectively.

works now. I have added the command PRESET(X%,Y%) to line 70 to
prevent a dot being left at the wall.

In these examples, of course, there was no need to use POINT, because we
knew exactly where the walls were. In maze games, however, the walls are
drawn at random, and you can’t put their X and Y numbers so easily into a
POINT command. It’s then that POINT really comes into its own. Another
reason for using POINT is that if you have two objects moving on the
screen, it’s easier to detect any kind of collision (object to object or object to
background) with POINT. Just one POINT test will detect any type of
collision, but if you were testing values of X% and Y%, you might have to
use a lot of tests.

The moving point in these two examples is very small, just the size of one

118 Working with MSX BASIC

pixel on the screen. Try the effect, then, of using SCREEN 3in both of these
programs. You will have to make some adjustments to the numbers, because
SCREEN 3 uses only 64 pixels across. As well as SCREEN 3in line 10, then
you will need to use X%=15 and K%=4 in line 40, and Y%=Y%*4 in line
60. When you run this, you’ll see the effect of the larger pixels, and also that
the speed of the action is much greater. Take your pick!

MSX computer drawing

The ability for drawing lines and circles is just the start of the MSX
computer’s amazing graphics capabilities. We’re going to look at another
way of drawing now, one which uses the instruction word DRAW. DRAW
has to be followed by a string variable name, like DRAW A$ or DRAW
GRS, and it's what you put into this string variable that decides what is
drawn. Figure 8.4 shows a list of the letters that can be used. What you have

Letter Use

Angle

Blank (no trace left)

Colour

Down

Diagonally up and right

Diagonally down and right
Diagonally down and left

Diagonally up and left

Left

Move (needs two position numbers)
Move, then return to original position
Right

Scale (numbers | to 64)

Up

Execute substring. A semicolon must follow the name of the
substring

XCcnmZZrIQTMmoO® >

Fig. 8.4. The command letters for graphics strings.

to do is to chart your drawing in terms of a starting point, then as up, down,
left, right, or diagonal movements. The amount of each movement can be
small, just one pixel, so that it’s possible to make very detailed patterns in
this way when you use SCREEN 2. You can also move to a new starting
point without drawing a line. The very considerable advantage of using
DRAW is that a complete pattern can be put on to the screen by just one
simple instruction like DRAW GS$.

DRAW Graphics 119

Now to the nitty-gritty. Figure 8.5 illustrates just how we go about
creating a drawing in this way. Line 10 is familiar stuff, but line 20is new. In
this line, a string is defined. It’s a funny-looking sort of string which consists
of command letters and numbers. The command letters are the letters of the
draw commands, and the numbers are the units of screen size. As you know

1o SCREENZ2:COLOR11,1,1:CLS

290 GR$="BM20,180;C11U196R20D100R20Ul0
JR20D1 00"

39 DRAW GR%$

49 GOTO40

Fig. 8.56. A drawing program which uses DRAW.

by now, these are 0 to 255 in the X direction, and 0to 191 inthe Y direction.
The string starts with BM. B means blank and it’s used to ensure that no line
is drawn, and M means move. The letter M has to be followed by two
numbers, which are the X and Y numbers for the place where you want the
drawing to start. [have chosen a point near the bottom left-hand side of the
screen. Following the BM step, you need to indicate what colour you want
for your drawing. This is done by using the letter C, followed by the colour
number. In this case, I'm using colour 11. The next parts are movements —
100 up, 20 right, 100 down, 20 right and so on. The string ends with a quote
mark as usual.

Now all that we have to do to draw this in line 30 is the command DRAW
GRS. It’s delightfully simple, but a very fast and powerful way of creating a
drawing. It’s particularly easy to make repetitive drawings in this way
because we can include a sort of subroutine, This is called a substring, and
Fig. 8.6 shows how it is used. What it amounts to is that you can define a

12 SCREEN2:COLOR11,1,1:CLS

20 SB$="U100R20D190RZ6"

30 XS$="":FOR NZ=1 TO S5:XS$=XS$+5E%: N
EXT

49 GR$="BM20,1803:C11XXS%$s:"

59 DRAW GR$

60 GOTOGO

Fig. 8.6. Using a substring for a repeated pattern.

string which is part of a pattern, then ‘execute’ this substring inside the main
string. In this case, I have illustrated only the substring being used. The
calling command is X (eXecute), and it must be followed by the string name
and then a semicolon. If you miss out the semicolon, you will get an error
message, but the error will be reported in line 50, where the DRAW GRS
instruction is. This can be confusing, because the error is not actually in this
line, it’s just that it’s been found when this line was run. In this example, I
have used SB$ to contain a simple up, across, down, across, set of
instructions. The loop in line 30 then packs five of these patterns into a

120. Working with MSX BASIC

longer string, and line 40 calls for this string to be called as a substring of
GRS. The result is five sets of the pattern on the screen.

Now try something different, using the program of Fig. 8.7. In line 30, in
place of FOR N=1 TO 5, this uses FOR N9% = 1 TO 8. This packs eight
patterns into the string, and it’s effect will be to move the drawing off the
screen. Try it without line 5, though, and that’s not what you find when you

S CLEAR 1000

10 SCREEN2:COLOR11,1,1:CLS

20 SB$="U100R20D100R20"

30 XS$="":FOR NZ=1 TO 8: XS$=XS$+SB$:N
EXT

49 BER$="BM20, 1803C11XXS%:"

S5© DRAW GR$

60 60TO6O

Fig. 8.7. The need for CLEAR, and how you can draw off-screen.

try to run it! When we use DRAW, we will be using quite long strings, so we
have to clear more memory space for strings than the amount which the
MSX computer allows. By having CLEAR 1000 in line 5, we allocate a lot
more room. Now you can run the program, and you will find that the boxes
disappear off the edge of the screen. The DRAW command does not bother
about the edges of the screen, and you will not get an error message if your
drawing goes off the screen. This can be very useful, because it’s easy to
forget just how far you have moved from your original starting place when
you have programmed a lot of ups, downs, lefts and rights.

Now for a much more elaborate drawing, in Fig. 8.8, that makes use of all
of the commands so far. Lines 10 and 20, as usual, set up the screen
conditions, and lines 30 to 50 then define the strings. M$ is the main string,

10 CLEAR 1000

20 SCREEN2:COLORO,1,1:CLS

30 M$="BM49,203C11D10R10D&OL10USD20US
R200U&601L 10U1035 XC3$35 D10L 665 XD$; LS0U20L6
0“

40 Cs="U21 U2LU2LU2L 2U2]1 SUZR3I6D2L5D2L2
- D2LD2LD2LD2L "

506 Ds="USLUSLUZLU3L2U2L 4U3L 4UL2DL 4D3L
4D2L.2D3L D21 DSLD3"

&0 DRAW Ms$

70 FOR X7=100 TO 200 STEP 50

80 CIRCLE(X%Z, 100),20,11:NEXT

90 LINE(100,110)-(200,110),11

100 G0T0100

200 SCREENZ2:DRAWCS

210 60T0210

Fig. 8.8. A more elaborate drawing which needs to be planned. The LINE and
CIRCLE commands can be used along with DRAW.

DRAW Graphics 121

and it starts with BM40,20. Two substrings are used. In this example, C$ is
the chimney, and D$ is the dome. Using XC$ and XDS$ in the main string
therefore draws these details in the correct places. If you aren’t pleased with
these places, it’s easy to move position. Allyou have to do is to alter the place
where the substring is called. Incidentally, I typed this with the CAPS
LOCK pressed, because in the graphics strings, a capital L is less likely to be
confused with a | than a lower-case 1.

I have used semicolons after BM40,20, and before and after each
substring. The semicolon must be used after the string ($) sign, but it doesn’t
have to be used in the other positions. I have put in the extra semicolons just
to make it easier to read the items in the string by marking out the positions
of the substrings. The main body of the drawing is then carried out at an
astonishing speed by DRAW MS in line 60.

The next point in this example is that you can mix the familiar LINE and
CIRCLE commands along with the DRAW! The circle commands are used
for drawing the driving wheels, because there is nothing ina DRAW string
that can do this. The LINE could have been replaced bya DRAW, but it’s
easier to use LINE in this case, because it needs only one instruction. When
you have started with the colour 0 chosen as the foreground colour (0 means
invisible!), then you won’t see anything drawn unless you specify a colour.
This has to be done in the main DRAW string, in the CIRCLE command,
and in the LINE command also.

Now for some more DRAW magic. As well as the up, down, left and right

u

D

Fig. 8.9. The letters which are used to draw diagonally.

122 Working with MSX BASIC

commands, there are letters which indicate diagonal directions. These are
illustrated in Fig. 8.9, and a program which uses them is shown in Fig. 8.10.
This uses a string which draws a diamond pattern, and then chooses ten
randomly selected places on the screen. Now you have to be careful here as
to how you get to these places. Using LOCATE works only for the

190 SCREEN2:COLOR11,1,1:CLS

20 A%Z=RND(-TIME)

30 DMs="G1oH1oE10F 10"

49 FOR NZ%=1 TO 1le

5@ PYL=INT(RND(1)#220+20) : @Z=INT (RND (1
) #150+29)

&@ PSET (P%,Q%) : DRAW DM$

70 NEXT

80 GOTOBO

Fig. 8.710. Using the diagonal commands in arandom diamond program. PSET
is used to locate the cursor, because LOCATE does not work with the graphics
screens.

instructions of the text screen, like PRINT, but does not move the DRAW
position. The command that you have to use is PSET (or PRESET). By
picking P% and QY% values at random, followed by PSET (P%,Q%), the
invisible graphics cursor is in the correct place to draw the diamond pattern.
You might think that you could use “BM P%, Q%" for this, but you can’t.
You are not allowed to use variable names inside a graphics string, except in
ways that we’ll come to later. The BM command is not one of the commands
that can make use of variables.

Artistic creations

The DRAW command is a very useful way of making straight line drawings
with less effort than is needed by LINE. You can use the LINE commands as
well, and all the varieties of CIRCLE, along with box fill and PAINT to
create any shape you want. What we have to look at now is how to plan these
shapes. Trying to make a program that creates shapes on the screen is
difficult enough; without planning it’s almost impossible! The planning
must start, as always, with a piece of graph paper.

You will have to start with a sheet of A4 graph paper. Pads of graph paper
made by firms like Chartwell and Guildhall are ideal. They should be A4 size
and scaled in centimetres and millimetres. In addition, you will need a pad of
tracing paper from the same suppliers. These items are not cheap, but they
will last you for a long time. The principle is to mark out on the graph paper
the co-ordinate numbers for your graphics screen, place the tracing paper
over the graph paper, and then to make drawings on to the tracing paper.
Because the tracing paper is transparent, you can see through it to the grid of
co-ordinates underneath, and you can read off the values. Figure 7.11

DRAW Graphics 123

showed the way that you should mark out your graph paper. Strictly
speaking, you should use scales of 0 to 255 and 0 to 191, but it’s unusual to
have to draw right to the edges of the screen, and using 1 to 250 and 10to 190
is much more convenient - it fits the paper better!
How do we go about designing a DRAW pattern on this? Figure 8.11
indicates how. You count each square on the graph paper as having sides of
10
20
30
40
50
60
70 A0 R50 o
80
90 ©

100 (2 !
110 // A % L30§ L

120 f

130 Stair—ti [,s,\
140
150
160
170
180
190

>
| &

>
S

U25

1
-
H
o
/
V.
\\\6:30
R
i

>.

AN
7
e

D
N
A
@0\\
Q
S

3
pus
o
=)
[9)

10 30 50 70 90 110 130 150 170 190 210 230 250
Fig. 8.17. How to use the chart to plan a pattern.

ten pixels, and diagonals also of ten pixels. That point about the diagonals is
very important, because it saves a lot of awkward calculations or
measurements. You draw your patterns on the paper, remembering that you
can use up, down, left and right. When it comes to diagonals, remember that
these must be 45 degree diagonals. This makes some shapes look distorted,
like the M in this example. If the distortion is unacceptable, then you will
have to use LINE instructions for these parts. When you make the drawing,
you will make life a lot easier if you keep to simple dimensions, like multiples
of five and ten. It is a lot more difficult to follow a pattern that goes
UI13L27D17R29 and so on! Working with the tracing paper over the graph
paper makes it much easier to see what you are doing, and to check your
measurements,

The next step, once the drawing is to your satisfaction, is to obtain any
distances and co-ordinates that you need. If you are using LINE and
CIRCLE, you will need to read the X and Y co-ordinates of points such as
the start and end of a line or the centre of a circle. These are easily read from
the graph paper underneath the tracing paper. DRAW graphics are just as
easy, and the illustration in Fig. 8.11 shows how. You simply count sides of
squares or complete diagonals as ten pixels each, and then write the

124 Working with MSX BASIC

numbers against the lines. It helps if you write the letters like U,D,G.H and
so on as well. You can then program directly from this. Programming is
made easier if you program a section at a time, and join the strings up for
final drawing. Figure 8.12 shows the MSX shape done in this way. | have
used M 15 to hold the upper part of the M, then S1$ for the upper part of the
S. The string X$ then holds both parts of the X shape, and strings S2$ and
M2§ hold the lower parts of these letter shapes. The whole lot is then put
into a string GRS in line 70, and drawn in line 80. Line 90 then fills the shape
with colour, using PAINT. Watch this in action, incidentally, because it
gives you a good idea of how complicated the PAINT action is. Note how
the paint follows straight line shapes, leaving the corners of the M until last.
How about working on your own initials now?

190 CLEAR1990:SCREEN2:COLOR11,1,1:CLS
20 Mi%="BM2Z0, 126;C11;E45F10E10F435"

30 S1$="R40U20L30U25RS0"

40 X$="F20E20FSG20F 20G5H20G20HSE20H20

599 S2%="0L40D15SR360D3IOL50"
690 M24$="H40G10H10G40HS"
70 GR$=M1$+S1$+X$+526+M2%
80 DRAW GRS

99 PAINT(3@,115),11

100 GOTO1@Q

Fig. 8.12. Th'é program which has been written from the plan in Fig. 8.12.

Shrink, grow, and turn

The possibilities for creating drawings with the DRAW instruction are
made even greater by the options of altering both the size and the angle of
patterns. These actions are carried out by using the letters S (for scale) and A
(for angle) within the DRAW string. We can also add these instruction
letters to a string, and we can put numbers in along with them by using
STR$(number). MSX BASIC allows another way of putting variables into
these DRAW strings. If you have a variable, such as J%, which carries a
value, then you can put something like S=J9%; into the string. The semicolon
is essential and you will get an error message if you omit it. The effects which
can be produced with this scale command are spectacular - most other
machines could do these actions only with a lot of very complicated
programming.

Try the program of Fig. 8.13 now. This, up to line 40, is a simple piece of
programming that draws a box. After the delay in line 50, though, things
start to happen. The fancy business starts in line 60, with the loop that uses
variable J%. The range of the counter J%is | to 60, and you can use up to
255. This figure of 255 is the whole of the permitted range for the scale

DRAW Graphics 125

10 CLEARGO@: SCREENZ2

20 COLOR11,1,.1:CLS

30 G$="USORS0D50oLSo"

40 DRAW"BM128,96"+G$

50 FOR N=1 T0100@:NEXT

69 FOR J%=1 TO 60:CLS

70 DRAW"BM12B,965"+5STR$(J%) +6%
80 FOR Z=1 TO 200:NEXT:NEXT

990 GOTO%0

Fig. 8 13. Using S for scaling a drawing.

instruction, which uses the letter S. The scale which will be used for drawing
1s one eighth of the number which follows S. For example, if you use S2,
then the drawing is 2/8, which is 1/4 size. Using S16 would make the
drawing 16/8, which is double size. This letter S has been put into the
DRAW instruction in line 70, so that the pattern is drawn with a different
scale number each time. Watch these scale effects carefully. They are very
easy to use, but the effects may not be exactly what you want. One point is
that the start which is given by the BM part of the command is one edge of
the square. The square will always start at this edge and grow from that
point. The other problem occurs if the pattern ‘grows’ too much. The reason
is that the pattern will not grow beyond the edges of the screen. If your
pattern hits a screen edge, it will, from then on, grow in the other directions
only. This can cause the pattern to shift from where you thought it would be
and also to change shape. Some careful planning, with graph paper and
tracing paper, is needed when you start to work with these Incredible Hulk
graphics! You will also find that if you stop the program, using CTRL and
STOP, then when it starts again, it will draw one shape of the size it was
drawing when it was stopped. It will then restart normally. This is because
the S size is stored in the memory, and unless you clear it with NEW (which
will clear out the program also) it will stay put. When you use several
drawings in a program, you will need to prevent a scale factor from one from
affecting the others. This can be done by including S8 in each drawing that
you want to be normal size.

Take a quick look now at a small change which makes a big difference.
The program is in Fig. 8.14, and lines 10 and 20 should be familiar territory
for you now. Line 301s a short and simple string for a shape. Notice that this

10 CLEARS0©: SCREEN2

20 COLOR 11,1,1:CLS

30 G$="BUSL10FS5GSR2OHSESL 10"

40 DRAW"BM140,80"+G%:FORN=1 TO 1006:N
EXT

50 FOR J%=1 TO &O:CLS

&9 DRAW"BM140,80S"+STR% (J%Z) +G%

79 FOR Z=1 TO 200:NEXT:NEXT

80 GOTO Be

Fig. 8.14.Starting adrawing atthe centre, so that it expandsround the centre.

126 Working with MSX BASIC

shape has no defined starting point, and it starts with a blank move
upwards. The reason, as you’ll see later is so that the starting point is the
centre of the shape. When we expand the shape, the expansion is always
around the starting point. If this now is the centre, the centre of the shape
stays put. In the previous example, because the starting point was at a
corner, the shape expanded from that corner outwards. Line 40 then draws
this shape, but with astarting point added at 140,80. Notice how this is done,
using the + sign to join the strings.

Angle antics

The use of the command letter S to make the drawing take different scales is
a splendid feature of MSX BASIC, but there is another command letter that
we can use. This timeit’s A, and its effect is to alter the angle at which a shape
is seen. With A0, the shape is shown just as it has been drawn. With A1, the
shape is turned through 90 degrees anticlockwise. Using A2 makes the shape
turn through 180 degrees, and A3 makes it turn through 270 degrees. The
number which is used with A must not exceed 3, otherwise the program will
stop with the ‘Illegal function call’ error message. Figure 8.15 shows an
example of this command in action. The shape is drawn, using S8A0 to

19 CLEARSQQ: SCREEN2

20 COLDR 11,1,1:CLS

30 G$="BUSL10D10R20HSESL 10"

49 DRAW"BM149,80S8A0"+G$:FORN=1 TO 10
P NEXT:CLS

59 FOR J%=9 TO 3

6© DRAW"BM140, 80A"+S5TR$ (JZ) +G%

790 FOR Z=1 TO 1900:NEXT:CLS:NEXT

80 GOTOB8o

Fig. 8.15. Using the angle-turning command letter A.

make sure that its size and angle will be unaffected by any previous program
that was running. It is then rotated by using values of J% ranging from 0 to
3, with the value put into the graphics string in the same way as before, using
STRS$. Some MSX machines used with some TV receivers will make the
shape appear to alter as it turns. This is the same problem as is manifested by
the shape of circles. If your TV can be adjusted so as to show perfectly round
circles, it will also show no change in a shape which is being rotated.

Multiple shapes

Now take a look at Fig. 8.16. This illustrates how a number of shapes can be
joined up easily. The key to this is the use of the + or — signs along with M or

DRAW Graphics 127

190 CLEAR 500:SCREENZ

20 COLOR 11,1,1:CLS:DRAW"BM109,B80"
30 G$="BUSL10FSGSR2OHSESL 10"

49 FOR X%=1 TO 8

50 DRAW"BM"+"+"+5TR$ (20)+",5"+G%
69 FORN=1 TO1000:NEXT:NEXT

7@ 601079

Fig. 8.16. Shifting a pattern position so as to join patterns with the + sign.

BM. Adding the sign + to a BM or M instruction will cause a movement of
as many spaces as you specify. This is an important difference. BM 10,10,
for example, means move to position X+ 10, Y+ 10. If we use BM +10,+ 10,
we mean a move of ten places right and ten places down from where the last
piece of drawing finished. Note that if you have been using angle and scale
commands, you can sometimes find that + gives movement left or up, and —
gives movement right or down. It’s advisable to reset all scale and angle
commands before you use the + and — markers. The tricky bit here is adding
the + or — signs to the string, and line 50 shows two ways of doing this. The
+ sign which is enclosed by quotes is the one that is put into the string; the
others are there only to provide the joining action. The method that uses
STR$(20) is more useful when the quantity that is being added is a variable
value. The method that uses “,5” is more suitable when the value is a fixed
and known number.

Chapter Nine

Identifiable Flying
Objects

Animation of a shape on the screen can be a tedious process. We have seen
something of it in the ‘bouncing ball’ program of Fig. 8.2 to know what’s
involved. You have to print your object at a place on the screen, wait a short
time, then wipe out the object. This can be done by using PRESET, or by
changing its colour to transparent. You then have to shift the (invisible)
graphics cursor, and repeat the process. This has to be done in a loop, with X
and Y position values chosen so that the object follows the path that you
want. It’s bad enough to have to animate a point, but animating a shape with
the ordinary commands of your average computer is like hacking salt from
the Siberian mines with less pleasure in the work. Nevertheless, this is about
all that the average computer can do with BASIC language commands.
Fortunately, we’re not dealing with a computer that is ‘average’ in any
respect. The MSX computer has the ability to create and control moving
objects, called sprites. You can determine the shape, and to some extent the
size, of these sprites for yourself. They are controlled by BASIC instruction
words, which makes the MSX computer one of a select bunch of computers
- for many computers use number codes to control sprites, and this makes it
very hard to remember what you have to do. MSX computer sprites can be
created and controlled, once you have some practice in the art, without the
need to keep the manual in one hand all the time! It’s because sprite graphics
are available that I have not described animation in any detail until now.

Sprite creation

Working with sprites means that you have to determine the shape and size of
the sprites, and then arrange for instructions that will move them. The point
of sprite graphics is that you don’t have to go through the process of printing
and wiping; this is done automatically. Keeping to the policy of one thingat
a time, we'll start this chapter by looking at how a sprite is created. As we go
on, you’ll become more familiar with the ideas of sprites, and you will be
able to take on the job for yourself, using your own ideas.

To create a sprite shape, we have to start on paper, and our starting place

Identifiable Flying Objects 129

is the 8 X 8 grid that is shown in Fig. 9.1. You can see that each column of
this grid is numbered, starting with 1 on the right-hand side, and ending with
128 on the left-hand side. These numbers are very important, because they
decide what your sprite shape will look like. You create a shape by pencilling
in squares on the grid. You must shade complete squares, not part-squares.
Once you have done this, you can work out a set of 8 code numbers, one for
each row of the grid. This is done by looking along a line, and adding up the
column numbers for each square that is shaded. If only the square on the
right-hand side is shaded, then the number is 1. If only the square on the left-
hand side is shaded, then the number is 128. If both of these squares are
shaded, the number is 129 - we just add 128 and 1.

128

ﬁﬁ‘ﬁwvm—

Fig. 9.7. The 8 X 8 sprite planning grid.

What we need now is an illustration, and Fig. 9.2shows the first step, the 8
X 8 grid drawing, a shape drawn over it, and the set of numbers. The best
way of doing this is to place a piece of tracing paper over the grid, and then
shade on to the tracing paper. That way, you only have to draw your grid
once. It’s also a lot easier to change your mind if you use tracing paper. Once
the shape is drawn, we can work out the eight code numbers and these have
been shown at the side of the drawing, which is of the dreaded Flying Wotsit
of Argalia. The next step is to make these numbers into the form of a string.
This means using a loop which will read each number from a DATA line,
and add the CHRS of each number to a string variable. I've used the name
SP$ for this variable.

]
=] 128+ 64 +2+1=195
32+4=36
16+8=24
32+16+8+4=60
51 | 64+2=66

] 128 +1=129
(]

Fig. 9.2. How to plan a sprite, and find its eight code numbers.

130 Working with MSX BASIC

This, however, doesn’t make the shape appear on the screen. This is dealt
with by another instruction word, SPRITES$. SPRITES has to be followed
by a number within brackets. This number is a reference number for this
sprite shape, so that you can call it up when you want it. This is the point at
which the sprite is actually created. It’s still invisible, however, until we
deliberately place it on the screen by usinga PUT SPRITE command. This
command has to be followed by five numbers. The first of these is a sprire
plane. This is a sort of priority order of sprites, and it’s important only if you
have more than one sprite. If you have two sprites, one on plane 0 and the
other on plane 1, then when the sprites meet, the one on plane 0 will always
appear to pass in front of the sprite on plane 1. All sprites will appear to pass
in front of anything else that is drawn on the screen (the ‘playfield’).
Following the sprite plane number i1s a comma, then two numbers in
brackets, also separated by a comma. These are the familiar X and Y
position numbers. They refer to the screen position in the usual way. A
comma follows, then a colour number, because you can have your sprite in
any colour that you like. The final number in the PUT SPRITE command is
the reference number for your sprite, the number that you gave it in the
SPRITES$ command. You can use for background any screen in the range |
to 3. Only the text screen, SCREEN 0, cannot be used with sprites.

Now take a look at the program in Fig. 9.3. This starts with SCREEN 2,0.

16 SCREENZ,@:CLS:SP$=""

20 FOR N%=1 TO B:READ KZ%

30 SP$=SP$+CHR$ (K%) : NEXT

4@ SPRITES$(1)=SP$

50 PUT SPRITE @, (128,9&),11,1

60 GOTO6O

100 DATA 0,195,36,24,60,66,129,0

Fig. 9.3. Creating a sprite and placing it on the screen.

The SCREEN 2 part is the familiar command to select the high resolution
screen, but the extra 0 is a new feature. What this does is to select the size of
all the sprites on the screen. Using a 0 here selects small sprites, a | selects
larger sprites. You can also use the numbers 2 or 3 for gigantic sprites, but
that needs rather more preparation - we’ll look at it later. Line 10 also clears
the screen, and prepares an empty string SP$ ready for use. Lines 20 and 30
then fill this string, reading numbers from the DATA line (line 100),
converting each into CHRS form, and adding to the string. In line 40,
SPRITES(1) is then equated to the shape-string, SP$, and your sprite is
formed. Line 50 then places the sprite on the screen. We’re using plane 0, a
position around the centre of the screen, colour 11, and the reference
number of | which matches the number we used in the SPRITES$
instruction. Line 60 then keeps things steady so we can look at the shape.
That's it!

Identifiable Flying Objects 131

Frankenstein’s fun

Now that we have created this object, what about using it. The first thing to
try is to move it. We'll start the object off at one corner of the screen and
move it from there. Figure 9.4 shows the program modified so as to do this.

10 SCREENZ2,@:CLS:SP$=""

20 FOR N%Z=1 TO 8:READ K%

30 SP$=SP$+CHR$ (K%) : NEXT

40 SPRITE$(1)=SP$

S50 X%Z=1:Y%Z=1

&0 PUT SPRITE @, (X%Z,Y%Z), 11,1

79 XZ=X%Z+1:YZ=YZ%+1:IF Y%<191 THEN 60
80 GOTOSO

160 DATA 0,195,36,24,60,66,129,0

Fig. 9.4. Animating a sprite. This is done by changing X and Y position
numbers. You don’t need any commands for printing or deleting the shape.

To start with, we have to change the PUT SPRITE instruction. By using the
editing commands, I changed the line number of this command from 50 to
60. Line 50 now assigns values to X% and Y%, which will be used as position
numbers. These are now put into the PUT SPRITE command in line 60.
Line 70 then tests for the Y% value reaching 191, and loops back to the sprite
command if this value has not been reached. In addition, the values of both
X% and Y% are incremented so that the sprite will move diagonally, down
and right until it vanishes from sight.

Now is the time to play with this simple program. To start with, try the
effect of different numbers in line 70. Instead of Y%<191, try Y%<200.
This, as you can see, does not cause any problems. Now for a real surprise,
try Y%<1024. Instead of the frantic error messages that you get from some
computers, the MSX computer interprets this as an instruction to make the
sprite appear four times. The rule here is that a number of 256 corresponds
to a complete ‘lap’ of the screen in whatever direction the sprite is travelling.
The number 1024 is four laps of the screen, and that’s what it does! It’s very
neat, and so simple to program.

Interruptions welcome!

Now for something really interesting. So far, we've tied up the action of the
computer when we have been using sprites. When you move your sprites by
means of a FOR.. . NEXT loop, you can’t have the computer doinganything
else. The MSX computer, however, provides for doing two things at once -
or so it appears. It’s all done by what are called interrupts. You can instruct
the machine to break off whatever else it’s doing fifty times a second, and run
a subroutine. (In the USA, the value is sixty times per second.) This

132 Working with MSX BASIC

subroutine could be a sprite-moving subroutine, and the result will be that
the sprites are moved automatically in each interrupt, but that other actions
can be carried out in the rest of the time! Take a look at Fig. 9.5. I have
shifted the sprite-moving commands to a subroutine which starts at line
1000, and which ends with the usual RETURN. In line 60, now, is the

10 SCREENZ2,@:CLS:SP$=""

20 FOR N%=1 TO 8:READ K%

30 SP$=GP$+CHR$ (K%) : NEXT

40 SPRITES$(1)=SP$%

S50 X%=1:Y%=1

60 INTERVAL ON

70 ON INTERVAL=1 GOSUB 1000
86 GOTOS@

100 DATA @, 195,36,24,60,66,129,9
1000 PUT SPRITE O, (X%,Y%),11,1
1010 X%=X%+1:YZ=Y%+1

1020 RETURN

Fig. 9.5. Using INTERVAL in sprite animation. This allows the computer to
animate the sprite and still do other things!

command INTERVAL ON. This is needed to start the interrupting process.
In line 70, we instruct the computer what is to be done at each interrupt. ON
INTERVAL =1 means that something is to be done at each interrupt. The
‘something’ is GOSUB 1000, the line that moves the sprite.

Try it - and be surprised. This time, the movement does not stop after just
one lap. The sprite will be moved across the screen each time an interrupt
takes place, and the value of X% and Y% will keep increasing. If you want to
put a limit on it, Fig. 9.6 shows how. The value of one of the position
numbers, Y% in this case, is tested. If this exceeds a fixed value (1024 in this
example), then the INTERVAL OFF command stops the interrupts from
having any effect. The added line is numbered 1015 in Fig. 9.6. Try also the
effect of ON INTERVAL =2 or ON INTERVAL =4 and so on.

Now just in case you’re not convinced that INTER VAL allows two things

1@ SCREEN2,0:CLS:SP$=""

20 FOR N%=1 TO B:READ KZ%

30 SP$=SP$+CHRS (K%Z) : NEXT

40 SPRITES$(1)=SP$%

50 X%=1:Y%=1

6@ INTERVAL ON

70 ON INTERVAL=1 GOSUB 1000

80 GOTOS@

100 DATA 0, 195,36,24,59,54,129,90
1000 PUT SPRITE @, (X%,Y%),11,1
10190 XZ=X%U+1:Y%=YZ%+1

1015 IF YZ%Z>1024 THEN INTERVAL OFF
1020 RETURN

Fig. 9.6. Stopping sprite animation with INTERVAL OFF.

/dentifiable Flying Objects 133

at once, try Fig. 9.7. There are a number of small changes in this program,
and they all have an effect. The first point is that we use SCREEN 2,1 to get
the larger size of sprite. Then, in line 40, we make a variable N% equal to 0.
Line 80 prints the value of this variable, then increments it. Remember that
you have to use OPEN“GRP:” AS 1 if you are to be able to use PRINT#1
on the graphics screen. Line 90 puts in a short time delay, and then goes back

1© SCREENZ, 1:CLS: SP$=""

15 OPEN"GRP:" AS 1

20 FOR N%=1 TO B:READ K%

30 SP%=5P$+CHRS$ (K%Z) : NEXT

409 SPRITE$(1)=SP$:NZ=0

99 X%4=1:Y%=1

60 INTERVAL ON

79 ON INTERVAL=1 GOSUB 1000

80 PRINT#1,N%Z:NZ=NZ+1

9@ FOR J=1TO0 20:NEXT:60T0OB0o

100 DATA 0,195,36,24,60,66,129,0
1000 PUT SPRITE @, (XZ,YZ),11,1
1010 XV/=XZ+1:Yi=YZ+1

1015 IF YZ>255STHEN INTERVAL OFF
1020 RETURN

Fig. 9.7. Yes, you can do two things at once!

to line 80 to keep the printing going. When you run it, you’ll get quite a
number of surprises. The first one is that the numbers are printed at the
position of the sprite. This is because the PRINT# | instruction will cause a
number to be printed at the graphics cursor position, and that’s also where
the sprite is. Once the sprite has been across once, though, you will see the
numbers start to increment on the left-hand side of the screen. All of this
proves that the computer is capable of printing the numbers and moving the
sprite. When the screen fills with numbers, you get your second surprise.
Instead of scrolling upwards as it usually does, the screen stays filled with
numbers, and the printing starts all over again on the top of the screen.
Furthermore, the numbers print over the odd ones instead of replacing them.
The rules about how the screen displays things are quite different when you
are displaying sprites in this way! It is designed so that any background that
you have drawn for your sprites will not scroll off the screen.

It's the pecking order that counts

One of the features of sprites is that they have a system of priorities. Priority
means that you will always see a sprite pass across the screen even when
other graphics are present. Itappears, in other words, to move in front of the
other graphics. On a SCREEN | type of display, it can even move in front of
text. Figure 9.8 demonstrates this, and also shows that the action of a sprite

134 Working with MSX BASIC

10
20
30
40
50
&0
70
80
E_
)
99

SCREEN1, 1:CLS: 5P%=""

FOR NZ=1 TO 8:READ K%L
SP$=5P4$+CHR% (K%Z) : NEXT
SPRITE$(1)=8P%:N%Z=0
X7%=1:Y7%=1

INTERVAL ON

ON INTERVAL=1 GOSUB 1000
FORN=1TO20: PRINT"THE NAME IS SPRIT
MSX VARIETY":NEXT
GOTO%0

601086

10@ DATA @,195,36,24,60,66,129,9

100
101
101
102

is not affected by the scrolling of a text screen. The printing is being carried
the sprite is moving, and the sprite appears to continue tomove in
front of the letters after printing has stopped. It can be a very effective way to

out while

point out

More important, though, one sprite will appear to move in front of
Take a look at the program in Fig. 9.9. This creates a blue

another.

10
20
30
40
S50
60
25 n
70
80
90
100
110
120
130
149
150
160

® PUT SFRITE 0, (X%, YZ),11,1

@ XU=X%+1:YZ=Y%+1

S IF YZ>1924THEN INTERVAL OFF
@ RETURN

Fig. 9.8. lllustrating sprite priority over the background.

the items of your menu!

SCREENZ, 1 :CLS: SP$=""

FOR NZ%=1 TO 8:READ K%
SP$=SP$+CHR%$ (KZ) : NEXT
SPRITE% (1) =5P%

X%=1:YZ=96: PL=235: Q%=96
GR$="BM110, 190; C1358A60U170R235D190L

DRAW GR$
PAINT (120, 1900) , 13

INTERVAL ON

SP$="":FOR N%=1 TO 8:READ K%
SP$=5P$+CHR$ (K%) : NEXT
SPRITES (2) =5P%

ON INTERVAL=1 GOSUB 1009
GOTO140

DATA 0,195,36,24,60,66,129,0
DATA 24,24,24,255,255,24,24, 24

1000 PUT SPRITE O, (X4,YX),11,1
1919 X7=X%+1

1029 PUT SPRITE 1,{P%4,Q%),1,2
1930 PZ=P7%—1:RETURN

Fig. 9.9. Priority of one sprite over another.

Identifiable Flying Objects 135

background, and then draws a magenta column which is almost the full
height of the screen. Two sprites then pass across. One is the Wotsit we have
used before, colour yellow, but the other is a black cross. Now both of these
sprites, as you would expect, pass in front of the column, but you’ll see that
the yellow Wotsit also passes in front of the black cross. This is because the
yellow Wotsit is a sprite on plane 0, but the black cross is a sprite on plane 1.
Plane zero has a higher priority than plane 1, so its sprite always appears in
front of anything else. A sprite on plane 1 will be behind a sprite on plane 0,
but it will always be in front of a sprite on plane 2, or any higher numbered
plane. You can use plane numbers from 0 (top priority) to plane 31 (end of
the line), but no more. This makes it possible to have a total of 32 moving
(or fixed) sprite objects on the screen at the same time!

Figure 9.10 summarises the rules about sprites so far. It’s important to
remember that you can’t use a sprite until it has been created, so all lines like

1. Sprite shapes should be defined early in a program, using SPRITES.
2. The PUT SPRITE should also be used before any ON INTERVAL or
similar lines.

3. Sprite numbers can be 0 to 255 for small and medium size sprites, 0 to
63 for large sprites.

4. Sprite planes are numbered 0 to 31, and the lower the number, the
higher the priority.

Fig. 9.10. A summary of the sprite rules.

ON INTERVAL = | GOSUB 1000 must follow the lines that allocate
SPRITES$ number and shape. There’s more to come, though. It’s useful to
have each sprite on a different plane, but it leaves one problem. Suppose we
want sprites to collide? We might, for example, have one sprite which was a
missile and another which was an aircraft. Now you can have more than one
sprite on a plane - but they can’t be controlled independently. If, in the
program of Fig. 9.9 you alter line 1020 so that the sprite plane is 0, you will
see that only one sprite appears. This will be one that was most recently
defined, the one in line 1020. If you want to have sprites moving in different
paths, you must allocate them to different planes - so how do we get
collisions?

The answer lies in another interrupt type of instruction. It has to be
prepared for by the instruction SPRITE ON, which we can add to line 90.
This allows collisions to be detected by a line that reads:

ON SPRITE GOSUB 3000

You can, of course use any line number you like for the subroutine. In this

136 Working with MSX BASIC

subroutine, you can then put in whatever you want to happen when the
sprites collide. Suppose, for example, that we just freeze everything by using
INTERVAL OFF. Figure 9.11 shows the effect of this. When you run this
one, the sprites meet — and then freeze!

10 SCREENZ2, 1:CLS:SP$=""
20 FOR N%=1 TO B:READ K%

30 SP$=SP$+CHR$ (K%) : NEXT

49 SPRITE%(1)=5P$

50 X%=1:Y%=96:P%L=255: Q%=96

60 GR$="BM119, 190;C135S8A0U190R25D190L
25 "

70 DRAW GR$

80 PAINT(120,100),13

90 INTERVAL ON:SPRITE ON

100 SP$="":FOR NZ%Z=1 TO 8:READ K%
11@ SP$=SP$+CHR$ (KZ) : NEXT

120 SPRITES$ (2)=SP$

130 ON INTERVAL=1 GOSUB 1000

146 ON SPRITE GOSUB 3000

1Se GOTO150

16@ DATA 9,195,36,24,60,466,129,0
17@ DATA 24,24,24,255,255,24,24,24
1000 PUT SPRITE 9, (XZ,Y%),11,.1
1010 X%Z=X%+1

1020 PUT SPRITE 1, (P%,0%),1,2

1030 PZ%Z=PZ%-1:RETURN

3000 INTERVAL OFF

3010 RETURN

Fig. 9.17. How sprites can be made to collide.

If you're not keen on frozen sprites, how about Fig.9.12. This does rather
more when the collision is detected. The sprites which have collided are
removed. You must do this before you attempt to put anything else on this
piece of the screen, because sprites always appear in front of anything else.
You don’t, in fact, have to move the sprites if you make their colour
transparent, but since it’s one and the same command, PUT SPRITE, we
might as well do both. We can then draw the circle, and print the word
SPLAT! in the collision space. This has to be done carefully. If any of the
letters of the word come too close to the edge of the circle, they will appear
‘smeared’. | have avoided this by using a fairly large circle. If you try a radius
of 20, you’ll see what I mean.

Bigger and better

Sprite sizes are not confined to the 8 X 8 grid that we have worked with so

Identifiable Flying Objects 137

10 SCREENZ,1:CLS:SP$=""

15 OPEN"GRP:" AS 1

26 FOR N%=1 TO 8:READ K%

3@ SP$=SP$+CHRS (K%) : NEXT

40 SPRITES$(1)=SP$

S0 X%=1:Y%=96:P%=255: Q1=96

60 GR$="BM11@, 190;C13S8A0U190R25D190L
25"

7@ DRAW GR$

80 PAINT(120,100),13

90 INTERVAL ON:SPRITE ON

10@ SP$="":FOR N%=1 TO 8:READ K%

110 SP$=SP$+CHR$ (K%) : NEXT

120 SPRITES$ (2)=SP$

130 ON INTERVAL=1 GOSUB 10900

140 ON SPRITE GOSUB 300

15e GOTO150

160 DATA 9,195,36,24,460,66,129,0

170 DATA 24,24,24,255,255,24,24,24
1000 PUT SPRITE @, (X%,Y%),11,1

1010 X%Z=XZ%+1

1020 PUT SPRITE 1, (P%,Q%),1,2

1030 PZ=P%-1:RETURN

3000 INTERVAL OFF

3010 PUT SPRITE @, (254,254),0,1:PUT S
PRITE 1, (254,254),0,2

3020 XX%Z=(PZ%Z+X%Z) /2: CIRCLE (XXZ, YZ) , 30,
15

3030 PAINT (XXZ,Y%L),15

3040 PRESET (XX%—2@, YZ) : COLOR1, @: PRINT
#1,"SPLAT!"

3050 RETURN

Fig. 9.12. Programming a more dramatic collision.

far. The MSX computers provide for mammoth sprites (spritephants?)
which are planned on a 16 X 16 grid. This consists of four 8 X 8 grids
arranged as shown in Fig. 9.13, and it provides a new challenge. How do we
design sprites on this grid?

To start with, we have to draw the shape on the grid. Figure 9.14
illustrates how this is done. As far as the drawing goes, this is much the same
as before, but with more squares to shade. What you need to remember
carefully is the order in which the four 8 X 8 pieces of the 16 X 16 grid are
filled. The program of Fig. 9.15 drives this home. The shapes that are
dictated by the DATA lines 100 to 130 consist, in order, of a George cross,
St. Andrew’s cross, large square, and diamond. When the sprite appears on
the screen, you will see these in the positions that are indicated in Fig. 9.14.
When you design a large sprite, then, you have to put the lines of data into

138 Working with MSX BASIC

i:é::::::
O NWO®OTN -
N© ™~
-

Fig. 9.714. A shape planned on the large grid. You have to be careful of the
order in which DATA lines are written.

the correct order. That means the order of top left, bottom left, top right,
and then bottom right. Figure 9.16 shows whatis involved as far as planning
is concerned, and Fig. 9.17 shows a program which will produce this shape.
Note how the DATA lines 100 to 130 have been arranged in the order of the
four sections of the sprite.

At this stage we have to look at a few more rules. When you use the small
sprites, size 0 or 1, then you can use a large range of sprite numbers, 0 to 255
in the SPRITE$(n) instruction. When you use the large sprites, you are
restricted to numbers 0 to 63. Since you can’t have more than 32 sprite

Identifiable Flying Objects 139

1@ SCREENZ,2:S5P$=""

20 FOR N*%=1 TO 32

30 READ K%

409 SP$=SP$+CHRS$ (KZX) : NEXT

50 SPRITE%(1)=5P%

69 PUT SPRITE o, (128,96),11,1

70 60TO 70

19@ DATA 24,24,24,255,255,24,24,24
119 DATA 129,66,36,24,24,36,66,129
120 DATA 255,129,129,129,129,192,129,2
93

139 DATA 24,36,66,129,129,66,36,24

Fig. 9.15. A giant sprite made out of four shapes to show the order of placing
the shapes.

T NOWWOTNT
oM

[+]
o
Fig. 9.16. Planning a large sprite shape.

10 SCREENZ,2:SP$=""
20 FOR N/=1 TO 32
3@ READ K%
40 SP3$=SP$+CHRS (K%) : NEXT
50 SPRITE%(1)=SP%
60 PUT SPRITE 0, (128,96),.11,1
706 G0TO 79
10@ DATA 8,4,3,67,129,65,563,15
1190 DATA 27,35,198,10,18,34,64, 66
120 DATA 16,32,192,192,135,137,240,22
4
130 DATA 216,198,193,160,144,136,132,
132
Fig. 9.17. The large sprite program. Try this with SCREEN 2,3 also.

140 Working with MSX BASIC

planes, it makes sense to keep to numbers 0 to 31, and you can then use
either size of sprite with no worries.

More control

As a final touch, what about more direct control of our sprites? We could
use joystick control, and a method for doing this is illustrated in the MSX
computer manual. There is another interrupt control ON STRIG GOSUB,
which causes a subroutine to be carried out when the spacebar, or ajoystick
firing button, is pressed. This has to be ‘loaded’ by having a STRIG
command earlier in the program. STRIG has to be followed by a number
within brackets, and this number specifies which control carries out the
action. STRIG(0) is the spacebar on the keyboard, and numbers 1 to 4 are
values for the four trigger buttons on the MSX joysticks. Figure 9.18

10 SCREEN2,2:SP$=""

20 FOR N%Z=1 TO 32

30 READ K%

40 SP$=SP$+CHR$ (K%) : NEXT

50 SPRITES$ (1)=SP%:STRIG(@) ON

&0 PUT SPRITE @, (128,96),11,1

70 ON STRIG GOSUB 200

g0 GOTO 8o

200 PUT SPRITE 0, (256,200),11,1

210 CIRCLE (128,96),10,5

220 RETURN

1000 DATA 8,4,3,67,129,65,63,15

1910 DATA 27,35,198,19, 18,34, 66,66
1026 DATA 16,32,192,192,135,137,240,2
24

1030 DATA 216,198,193,160,144,136,132
,132

Fig. 9.18. The use of STRIG for spacebar of joystick trigger control.

illustrates this command in action, with a sprite being zapped by pressing the
spacebar. The command is ‘armed’ in line 50 by using STRIG(0) ON. It is
then used in line 70 to make the program jump to the subroutine at line 200
when the spacebar is pressed. This subroutine moves the sprite out of sight,
and puts a faint circle in its place. Alas, poor sprite ...

Another instruction of the same type is the ON KEY command. This
operates rather like ON K GOSUB. You enable it with KEY ON, and then
follow this with ON KEY GOSUB 1000,2000,3000... using as many
subroutine numbers as you want to use the F keys. Since you have ten F keys
(F1to F10), you could have up to ten subroutines here. When you press F1,
the first subroutine in the list will run; when you press F2, the second

Identifiable Flying Objects 141

subroutine will run, and so on. Since these are operated by interrupts, it
doesn’t matter what the rest of the program is doing at the time.

Figure 9.19 illustrates an example. This sets up the 16 X 16 sprite, and uses
two subroutines to move. The subroutine which starts in line 1000 moves the

10 SCREENZ2,2:SP$=""

20 FOR N%Z=1 TO 32

30 READ KY%

40 SP$=SP$+CHR$ (K%) : NEXT

50 SPRITES(1)=SP$

60 X%=128:Y%=175

76 KEY(1) ON:KEY(2) ON

80 ON KEY GOSUB 1000, 2000

90 GOTO 9@

100 DATA 8.4,3,67,129,65,63,15
110 DATA 27,35,198,10,18,34,66,66
120 DATA 16,32,192,192,135,137,240,22

4

136 DATA 216,196,193, 160, 144,136, 132,
132

1000 Y7=Y%Z-1:PUT SFRITE 0, (X%Z,Y%Z),11,
1

1019 RETURN

2000 X7%=X7Z—-1:FUT SPRITE 0, (X%Z,Y%4),11,
1

2010 RETURN

Fig. 9.19. Controlling sprites with the F keys.

sprite up the screen, the subroutine in line 2000 moves it left. When the
program runs, pressing F1 will move the sprite up, and pressing F2 will
move it left. Since there is no PUT SPRITE command available until you
press one of these keys, the screen stays blank until an F key is pressed. This
can be put to use in a ‘guess where it is’ type of game. Note also that line 70
has been used to specify what keys will be used in this way. Each key that you
want to use like this must be specified. If you don’t do this, the key behaves in
its normal way as a function key. If you want to be able to use the same keys
as function keys or for other purposes later in the program, you will have to
use commands like KEY(1) OFF.

Now it’s up to you. The use of sprite graphics allows much more
interesting programming to be done without having to resort to controlling
the machine directly using machine code. This means that with your MSX
computer, you can program easily, in BASIC, games that owners of other
machines have to spend weeks over. The most important things are planning
and practice. This chapter has introduced you to a number of points that
you don’t find in the computer manual and which make the use of sprites

142 Working with MSX BASIC

much simpler. Try out a few ideas of your own, and before you know it,
you’ll be up and away, making your own programs. For a sound in your ear
- read on!

Chapter Ten
Sounds Unlimited

The ability to produce sound is an essential feature of all modern computers.
The sound of the MSX computer comes from the loudspeaker of the TV
receiver that you use to see the display, so you have more control over the
volume of this sound than is possible with a lot of other computers. In
addition, the MSX computer allows you a number of different ways of
creating sound effects, depending on whether you want just a reminder, a
melody, or a pistol shot.

What we call sound is the result of rapid changes of the pressure of the air
round our ears. Everything that generates a sound does so by altering the air
pressure, and Fig. 10.1 shows how the skin of a drum does this. All other

Drum

Drumskin at rest

Drumskin pressed in

\ Air sucked in

\ Drumskin bounces out, forcing air out
/ ™~ Air compressed
High pressure

\ Low pressure

;

Several bounces later

Sound waves

Fig. 10.7. How a vibrating drum skin creates sound waves.

144 Working with MSX BASIC

musical instruments also rely on the principle of something which vibrates,
and pushes the air around. Air pressure, however, is invisible, and we don’t
notice these pressure changes unless they are fairly fast, and we measure the
rate in terms of cycles per second, or hertz. A cycle of any wave is a set of
changes, first in one direction, then in the other and back to normal, which
we can illustrate by the graph in Fig. 10.2. The reason that we talk about a
sound wave is because the shape of this graph is a wave shape.
- Direction of Wave

(41T g R (O

High pressure Low pressure

ins ﬂUﬂUf

Smali amplitude Larger amplitude
- 1second >
Frequency = Number of

waves passing a fixed
point in one second

Fig. 10.2. Sound waveforms, showing how the air pressure changes with
time. The number of changes per second is called the frequency. The
amplitude is the maximum change of air pressure from its normal value.

The frequency of sound is its number of hertz - the number of cycles of
changing air pressure per second. If this amount is less than about 20 hertz,
we simply can’t hear it, though it can still have disturbing effects. We can
hear the effect of pressure waves in the air at frequencies above 20 hertz,
going up to about 15000 hertz. The frequency of the waves corresponds to
what we sense as the pirch of a note. A low frequency of 80 to 120 hertz
corresponds to a low-pitch bass note. A frequency of 400 or above
corresponds to a high-pitch treble note. Human ears are not sensitive to

Sounds Unlimited 145

sounds whose frequency is above 20000 hertz (called 20 kilohertz), but
many animals can hear sounds in this range.

The amount of pressure change determines what we call the loudness of a
note. This is measured in terms of amplitude, which is the maximum change
of pressure of the air from its normal value. For complete control over the
generation of sound, we need to be able to specify the amplitude, frequency,
shape of wave, and also the way that the amplitude of the note changes
during the time when it sounds.

The MSX computer has three sound instructions, BEEP, SOUND and
PLAY. In addition, there is the sound that you hear when you press a key.
This ‘keyclick’ sound can be turned off or on with a SCREEN instruction.
This can be done along with other SCREEN commands, like SCREEN 2. or
SCREEN 2,1, by following the sprite number with another comma and then
aOora l. A zero will turn off the keyclick; a 1 will turn it on. If you want to
do this at a time when no other changes have to be made, then you can use
SCREEN,,0 to turn off the clicks, and SCREEN,, | to turn them on again.
The commas are essential in these commands.

Of the three instructions, BEEP, SOUND and PLAY, BEEP is a simple
instruction, and the notes from it have fixed pitch and amplitude. As 1
mentioned earlier, this amplitude is controlled by the volume control of
your TV receiver, so that you can have it as loud or as soft as the TV receiver
permits. The SOUND instruction is a much more complicated one, though
it needs only two numbers following it. What makes it more complicated is
that several SOUND instructions are needed to set up one sound, and it’s
designed mainly to produce sound effects that can’t be produced by the
other commands. We’ll keep SOUND until later, and concentrate on the
other two for the moment, starting with BEEP.

BEEP doesn’t have to be followed by numbers, it simply causes a short
sound, the same as the one which you hear along with an error message.
Figure 10.3 illustrates how you might use BEEP. There is a message

10 CLS:PRINT"Message coming...."
20 FOR N=1 TO 1000:NEXT

30 PRINT"Hey, vou......"

49 FOR N¥%=1 TO 10:BEEP:NEXT

Fig. 10.3. A program which uses BEEP to produce a sound.

appearing on the screen, and you want to make sure that the user looks at it.
A long beep is produced by using a loop of ten beeps, and it makes a ringing
type of noise which is quite an effective attention-getter, especially if the
volume control of the TV is turned up.

You shall have music ...

The BEEP instruction is very useful for its purpose, but the MSX computer

146 Working with MSX BASIC

has a lot more in store for you. A lot of computers are not really suited to
working with music, because they require all of the instructions to be in
number form. If you read music, or can work with sheet music, this is the last
thing that you want. The ideal method of programming music would be to
work with the named notes of music — and this is what the MSX computer
does. It might appear to be the obvious thing to do, but very few computers
do it!

If you have no experience of music, however, this may seem rather
puzzling to you. How do we go about writing down music? For each note,
we have to specify what the note is (its pitch), how loud it must be, and for
how long it is to be played. In written music, this is done by using a type of
chart for the pitch, and different shapes of markings (notes) for the duration.
Loudness is indicated by using letters such as f(loud) and p (soft). More than
one letter can be used, so that fff means very loud, and ppp means very soft.
Each sound is indicated by a note, a shape on the chart, and the shape of the
note gives some information about the duration of the note. In addition to
this, each piece of music will start with some advice about the speed at which
the notes are to be played. One of these methods is a metronome reading.
The metronome is a gadget which ticks at regular intervals, and the
metronome reading for a piece of music is the number of metronome ticks
per minute. A more ancient way of indicating speed is the use of italian
words like allegro (fast), lento (slow) and so on. What these speed settings
decide is how many unit notes will be played in a minute. The unit note is the
crochet, so if a piece of music is marked at a metronome speed of 60 (pretty
slow), then there will be 60 crochets played per minute. The durations of all
the other notes are decided in comparison to this unit, the crochet. A mimim
sounds for twice as long as the crochet; a semibreve sounds for twice as long
as a minim, which is four times as long as the time of a crochet. The quaver
sounds for only half the time of the crochet. A semiquaver sounds for only
half the time of a quaver, which is a quarter of the time of a crochet. The
crochets and other timed notes are indicated by the shapes of the written
notes, as Fig. 10.4 shows. In addition, symbols are used to indicate silences

Symbol Time Name LNo.
f Vs Demisemiguaver L64
J Y Semiquaver 132
J %) Quaver L16
J 1 Crotchet L8
J 2 Minim L4
° 4 Semibreve L2

Fig. 10.4. The symbols that are used in written music to indicate the time of
each note, along with the MSX L number.

Sounds Unlimited 147

in the music, and these are based on the same idea of a unit duration of
silence, and others which are twice, four times, half, or quarter. These rest
symbols are shown in Fig. 10.5.

The pitch of a note is indicated in written music by placing it on to a kind
of musical map which is called the stave (Fig. 10.6). Piano music uses two of
these staves, each consisting of five lines and four spaces. The upper stave is
the treble stave, and it is used for writing the higher notes which will be
played on the piano with your right hand. The lower stave is the bass stave,

S;‘r:sl‘:ol Time RNo.
y Y, R32
y 1 R16
3 1 R8
—— 2 R4
—— 4 R2

Fig. 10.5. The symbols for silences in written music, with MSX R numbers.

) :
X E D
C
TREBLE 7\—\ B <—End 04
(4) A
N F e
v Start 04 —» C-&
A
N\ G F
. E
BASS vl oD == Start03
4 A (83

Fig. 10.6. The treble and bass staves, with the names of the notes written in.

the lower notes, played with the left hand. Instruments which do not use a
keyboard will normally have music written with only one stave. In addition
to this representation of notes by position on staves, we also use the letters of
the alphabet from A to G to name the notes.

The piano is the most familiar type of musical instrument, and its
keyboard is set out so as to make it very easy to play one particular series of
notes, called the ‘scale of C Major’. The scale starts on a note that is called

148 Working with MSX BASIC

Middle C, and ends on a note that is also called C but which is the eighth
note above Middle C. A group of eight notes like this is called an ocrave, so
the note you end with in this scale is the C which is one octave above Middle
C. Because music (in the Western hemisphere, at least) is based on this group
of eight notes, we use only the first seven letters of the alphabet in naming the
notes. Why 7?7 Well, the eighth note is the end of one octave and the start of
the next, so it bears the same name. The scientific basis of all this is that if
you take Middle C, and find the frequency of the sound of this note, then the
C which is the next octave above Middle C has precisely double the
frequency value of Middle C. The C below Middle C has half the frequency
of Middle C, and so on. That’s why the ancient Greeks always thought that
music was a branch of mathematics.

The appearance of these keys on the piano keyboard is illustrated in Fig.
10.7. Middle C is, logically enough, at the centre of the keyboard, and we

DIE]JFJ]G|A|B|C|DJE|IF|IG|IAIB]JCIDIEJF]GC

Ry N E— : -
03 Middle C 04 05

Fig. 10.7. Part of the piano keyboard, showing Middle C. There is only one
semitone between B and C, and one between E and F.

move right for higher notes and left for lower notes. One ofthe complications
of music, however, is that the frequencies of the notes of a scale are not
evenly spaced out. The ‘normal’ full spacing is called a rone and the smaller
spacing is called a semirone. Each scale will contain two semitones. On
written music, Middle Cappears midway between the treble and bass staves.

The key instruction for playing music on your MSX computer is the
PLAY instruction. Like DRAW, PLAY has to be followed by a string
name. The string then contains all the information that is needed to produce
the music. The notes are specified simply by their names, as used in music.
These are the letters A to G, and we also use thesigns + and —. The + sign or
sign means a semitone higher than the note indicated by the letter, so that
A+ or A# is a semitone above A, the note a musician would call A sharp.
Similarly, A— would mean a semitone below A, or A flat. In addition to the
letter names of the notes, we can use other control letters to indicate the
octave, volume, length, tempo and pauses. The octave letter is O, and it has
to be followed by a number whose range is 0 to 7. If you don’t specify any O
value, the computer will set itself to O4. O0 means the lowest range of MSX
computer notes; O7 gives the highest. This means that the MSX computers
can play eight octaves of notes, which is more than the range of any ordinary
musical instrument. The volume control letter, V, can be followed by a

Sounds Unlimited 149

number whose range is 0 to 15. This lets us make music whose volume can
change during the playing of the music. As you might expect, VO gives the
lowest volume, V15 the greatest. The computer sets to V8 if you don’t
specify anything different. We can, of course, still set the volume control of
the TV to suit our own tastes. The letter L controls the length of a note, and
has to be followed by a number in the range | to 255. This number does not
behave in the way you might expect, because the low numbers give the long
notes, and the high numbers give the short notes. Figure 10.4 shows how
these length numbers relate to the marked length of musical notes on sheet
music. The pause or rest is a silent interval, and uses the letter R. It follows
the same number scheme as note length, as shown in Fig. 10.5. If you don’t
specify any other values, the computer uses L4 and R4.

It’s time now for some illustrations. We’'ll start with Fig. 10.8. This starts
by defining a string AS$. It consists of the notes that start at Middle C. How

19 A%="04CDEFGABOSC"
20 PLAY A$

Fig. 10.8. The scale of C Major, by your MSX computer.

do I know? Well, Middle C on the MSX computer is the first note in octave
number 4, so by starting with O4 and C, the first note that we get is C. We
don’t have to put in the O4, because this is the ‘default’ setting anyway, but
it’s a good habit to get into. The other notes have been written in sequence,
but we need to put OS5 before the next C. If we don’t, then we’ll get Middle C
again instead of the C above. The scale uses the default values of volume and
speed (tempo).

This is a simple scale, but it’s a good piece of music to illustrate what can
be done with this MSX command. Try Fig. 10.9 now, to see what we can do

10 A$="T12004V1CDEFV7L506ABOSV1SL1C"
20 PLAY AS

Fig. 10.9. Using the volume and length command letters.

with the volume V command, and the length L. The first thing that you have
to know at this point is that L cannot be used in a string unless T has also
been used. T means tempo, and it controls the speed of playing the string.
The setting of tempo is always equal to 120 unless you change it. The range
of T is a curious one, 32 to 255. The fastest tempo is obtained by using 32, the
slowest by using 255. In the example, we have used the ordinary tempo, 120,
but changed the volume and length of note settings. The reason for having
separate tempo and length control letters is that you can get the tune
sounding right by using L to select the length of notes, and then use T right at
the start to set whatever tempo you like. If you want to speed things up, usea
low value for T; if you want a funeral march, use a high value. You caneven

150 Working with MSX BASIC

write the string without a T, and then add it in later by a command like:
PLAY “T100"+A$

It’s time now to look at some more revelations. What’s the difference
between the sounds of a violin and a clarinet? You can tell which of these
instruments is playing a note, even if it’s the same note at the same volume.
The answer is that the shape of the waves is different. Some method of
controlling the shape of the waves, then, is an essential part of any music
synthesiser. The odd thing is that very few computers have any simple way
of doing this. The MSX computer does so in the shape of the S control letter.
S can take a value between 0 and 15, and some of these values, along with a
value for M, can make a note sound very different. The reason is that these
two letters control the envelope of a note.

The word envelope needs some explanation. It means the pattern of a
note. A musical note does not consist of just one sound wave, but of many.
While a note is sounding, this volume need not be constant, though it is for
the traditional electric organ type of note. For example, when you strike a
piano key, the note starts very loud, and its volume then dies away as the
string vibration dies away. Its envelope is therefore like the shape that is
shown in Fig. 10.10 - rising very sharply, then fading away. Each musical

Volume

T

—_—

T Time

Note Note
struck ends

Fig. 10.710. The envelope of a piano note. This shows how the amplitude
(loudness) of a single note changes during the time while it can be heard.

instrument produces its own type of envelope, and for some instruments, the
effort of the player can alter the shape of the envelope. It’s never easy to
design your own shapes of envelopes with a computer, so the MSX
computer allows you a choice of standard shapes. These are illustrated in
Fig. 10.11, along with the values of S which produce them.

Used on its own, S doesn’t seem to do much, but when it is combined with

Sounds Unlimited 151

0,1,2,3or9[\
4,5,6,7and15A
- NNNANNAN
0 \/\/
= MV
13 /

Fig. 10.11. The MSX standard envelope shapes, with the values of S that
produce them.

M, it really becomes interesting. S, you see, overrides all the T and V
instructions, and the combination of S and M has to be used in place of
these. M can take values up to 65535, but the lower numbers from 100 to
2000 are more useful, and you have to change value by at least one hundred
to hear much difference. Figure 10.12 illustrates the effect that these two
have when used together. The screen prints up the values as you hear the
sounds. This is a slow business, because of the time delays that are built into
the program. The time delays are essential, however. The reason is that the
sound generator is a little computer in its own right, and if you issue it with a
PLAY command, it gets on with it independently. If you do not use a time
delay in the program of Fig. 10.12, then you can find the screen displaying
values of S and M well ahead of what the loudspeaker is playing. This is
because the display is fast, but the music has been forced to play at a slower

162 Working with MSX BASIC

10 A$="04C":FOR TM!=200 TO 2000' STEP
200

2@ CLS:PRINT"M value is ";TM!

30 FOR SHZ=0© TO 15

49 PRINT"S is "sSHZ

S0 PLAY "M"+STR$(TM!)+"S"+5TR$ (SHXL) +A
3

6@ FOR N=1 TO 1600:NEXT

70 NEXT

80 FOR N=1 TO 1009:NEXT

9@ NEXT

Fig. 10.12. Using S and M to produce more interesting notes.

pace. This can be very useful, because it means that if you mix music with
other computing actions, you will not be held up while the music plays. You
will find, as you run Fig. 10.12, that several of the S values sound pretty
much the same. There are in theory only eight different wave shapes inthe 16
values of S, and not all of these can be easily distinguished unless you have a
good ear for sound. In particular, if you use large values of M, you will not
hear the effect of the ‘repeater’ notes that you get with S values of 8, 10, 12
and 14. You will find, in fact, that for a lot of notes, you can hear only two
main types. One type is obtained by using S values of 0 to 3, or 8 to 11. The
other type of note is obtained by using 4 to 7 or 12 to 15. The sound of
musical notes is very much a matter of sound-it-and-see, and you always
have to experiment to get exactly what you want. As you might expect from
Chapter 8, there is an alternative way of incorporating variable values into a
music string. Figure 10.13 shows this. The loops are both started before A$
is defined, and the definition of A$ starts with “M=TM!;S=SH%; which

10 FOR TM'=200 TO 2000! STEF 200
20 CLS:PRINT"M value is "3TM!

30 FOR SHZ=9 TO 15

49 PRINT"S is "3SHZ

45 A$="M=TM! ; S=GH%L:;04C"

S© PLAY As
60 FOR N=1 TO 10@@:NEXT
70 NEXT

Fig. 10.13. Putting loop counter values into S and M.

has the effect of allocating the values of the variables to the command letters
M and S. Note that there musr be a semicolon following each assignment of
this type.

Figure 10.14 shows an example of a tune written using the PLAY
instruction. Points to watch for here are the use of # for sharp notes, and the

Sounds Unlimited 153

1o CLEAR 200

20 M3$="04L4CR16CR6403L8BR3I2Z204CR32L4D0O
3L4AR16L45. R146LAFR16FLBEFGL2DRBL2EL 4F
#GL4A. 04L4D.03L4G04R3I2Z2CRIZCR32CLBO3B.
LBAL4G"

30 PLAY "T100"+M$

Fig. 10.14. A tune written using PLAY. Listen to the effect of the dotfollowing
a note, and to the effect of the # sign.

use of a dot following a note letter. When you use, for example, C., then this
note will play for one and a half times as long as C with no dot. The dot is
used in written music in the same way, so that being able to do this with the
MSX computer as well makes it all the easier to transfer written music to the
form of PLAY strings. The easiest way of getting music is to use the ordinary
‘organ’ note to start with. You can then add the envelope commands at the
start of the string. Try, for example, adding S1;M10000 at the start of the
string in Fig. 10.14, then try S4;M1000 to hear the difference.

Sweet harmony

One of the many remarkable features of the MSX computersis that you can
apply PLAY strings to three notes at a time, using three separate channels of
sound. Three channels means that you can play up to three notes at once,
and this feature allows you to have harmony. Needless to say, it requires a
lot more thought, and you have to be careful to keep the three channels in
step, or else what you get will certainly not be harmony. You might, of
course, win a modern music prize.

Figure 10.15 shows a simple example of two-part harmony in action. The

10 A$="04DR16ER166"
20 B$="04BR14603GR14B"
30 PLAY A%,B%

Fig. 10.15. A touch of harmony, using two channels.

two strings are written so that the notes will remain in time with each other,
and the PLAY instruction uses both strings, separated by a comma. If you
want to play all three channels, you simply need to add another comma and
another string. What is a lot less simple is writing music for this extended
PLAY routine. You should, unless you have some skills in composing, work
from sheet music. Music for violin and piano, or soprano voice and piano, is
particularly suitable. Figure 10.16 illustrates a snatch of three-part harmony
which was written from a music score. The difficulty here was to keep the
notes in step, using different rest positions. You'll find that a single unit of
rest, R, is enough for all but the slowest music, and often seems rather too

154 Working with MSX BASIC

19 A$="T20004CRL2CRCOSRC.04RBRBL4A. "
20 B$="T20003RL2604CEO3G04CEO3SAD4CF"

30 Cs="T200L803CROZ2CRFRF"
40 PLAY A$,B%,.C%

Fig. 10.16. A piece of three-part harmony.

long. Now the next thing to do is to put M4000S1 at the beginning of each of
your music strings, and start experimenting. When you do this, you may
find that you run into problems. If you have used M and S, and you then
remove the commands by editing, you'll find that the effects do not stop!
The reason is that the music computer portion of your MSX machine stores
these values. To delete them, try PLAY“MO0S0” (then RETURN). This
produced the ‘Illegal function call’ error message with the machine that [was
using at the time, but it sorted out the music, restoring the ordinary organ
note. This can be an annoying problem if you want to run a number of
different sound instructions, and it’s something you will have to be careful
about. It’s always wise to test your final version of a PLAY routine by saving
it on tape, switching off the machine, loading back and then testing. In this
way, you can be certain that your sounds are not being affected by some
command that you entered ten programs ago!

Finally, remember that the PLAY instruction can be used for sound
effects as well. It’s particularly useful for this, because you have control of
many more features, like volume. Using N in a string, followed by a number
between 0 and 84, will play a note corresponding to that number. Figure
10.17 illustrates the idea. If you have reset the sound commands, then you

10 FOR J%4=0 TO 84
29 PLAY"N=J%Z:"

30 NEXT

49 FOR J%=0 TO 84
50 PLAY"LG4TIZ2N=Jd%;"
&0 NEXT

Fig. 10.17. Using N to produce sound effects.

will get the first sequence playing slowly, and the second fast. Using N can be
useful if you have a program that makes use of loops and you need
something like a different note in each loop. Because of the way that you can
assign a music command number to a variable value, there’s scope for
interesting effects here.

Sounds unlimited

PLAY is the MSX computer’s gift to the musician computer owner; now

Sounds Unlimited 155

let’s look at what MSX can offer to games enthusiasts who want sound
effects. A sound effect is a variety of noise, something that can’t be written
into a musical score so easily as a tune. The MSX computer uses the
SOUND instruction to allow you a range of effects which go far beyond the
boundaries of written music and ordinary instruments. The instructions in
most of the manuals don’t exactly help you with this difficult command, so 1
have dealt with it in a lot more detail here.

The instruction word SOUND has to be followed by two numbers,
separated by a comma, but with no brackets. The first numberis a register
number. A register is a miniature memory, and it can be used to hold
numbers which are usually in the range of 0 to 255 in value. The sound of the
MSX computer is obtained from a separate chip, the Programmable Sound
Generator (PSG) which is like a miniature computer in its own right. It uses
a total of sixteen registers to store information about each sound, and the
SOUND command allows us to get access directly to these registers. The
PLAY instruction also makes use of these same registers, but only in fixed
ways that we can’t alter easily.

Each register, then, is used for controlling some aspect of the sound
system, though we shall not need to make any use of registers 14 and 15. The
registers are numbered 0 to 15, and the ones that we use are 0to 13. The next
step is to find what part of sound production each register controls. This is
summarised in Fig. 10.18, and you will be able to make more sense of this
brief reminder as we go through this chapter. For now, I'll look at the
registers in turn, and explain briefly.

Register No. Effect

Channel 1 frequency, fine adjustment, range 0 to 255.
Channel 1 coarse adjustment, range 0 to 15.

Channel 2 frequency, fine adjustment, range 0 to 255.
Channel 2 coarse adjustment, range 0 to 15,

Channel 3 frequency, fine adjustment, range 0 to 255.
‘Channel 3 coarse adjustment, range 0 to 15.

Noise predominant frequency, range 0 to 31.

Enable channels, see Fig. 10.23,

Channel 1 amplitude, range 0 to 15 (16 for envelopes).

W AN A WN = O

9 Channel 2 amplitude, range 0 to 15 (16 for envelopes).
10 Channel 3 amplitude, range 0 to 15 (16 for envelopes).
11 Envelope repetition time, fine adjustment (0 to 255).

12 Envelope repetition time, coarse adjustment (0 to 255).
13 Envelope shape pattern

14 Input/output control A ; Do not use!

15 Input/output control B

Fig. 10.18. A summary of the effect of the PSG registers.

166 Working with MSX BASIC

Two registers are needed to store the numbers that decide on the pitch of a
note, so that six registers, numbered 0 to 5, are used for three channels. In
each pair, one register is labelled ‘coarse’ and the other ‘fine’. The ‘coarse’
registers (numbers 1, 3 and 5) use each number (range 0 to 15)to produce 16
notes that cover the whole range of sound. The fine registers, numbers 0,2
and 4, will accept numbers in the range 0 to 255, and adjust the note which is
produced by the coarse adjustment, so that you can get a note as finely tuned
as you want. You can, in fact, get 16 X 255 = 4080 separate notes by using
this system. One of them must be the one you want!

Register 6 deals with noise, and can accept numbers from 0 to 63. Noise is
sound which is a mixture of pitches. Very often, however, a noise has one
pitch which is louder than the others. Hand-clapping, for example, has alot
of high-pitched sound, and drumbeats have a lot of low-pitched sound. The
noise register allows us to pick this ‘predominant frequency’ for noise.

Register 7 is a selecting register. It allows us to decide how many channels
of noise and /or music we pass to the loudspeaker. You can use this register
to switch sounds in and out. The action is complicated, and we’ll deal with it
in more detail later. Registers 8,9 and 10 control the amplitude of the sound
in the three music channels. The normal range of numbers here is 0 to 15,
which is the range that you use in the ‘V’ command of a music string. If you
use 16 in this register, however, you get the effect of using M in a PLAY
string. This allows the volume to be controlled by an envelope. Registers 11
and 12 set the time of an envelope, and register 13 allows you the choice of
shapes, using numbers 0 to 15.

SOUND in action

On to some examples. You’ll probably find it useful to redefine one of your
function keys, such as KEY3 to give SOUND, rather than having to type it
each time. Figure 10.19 produces a note whose pitch descends. Line 30 puts
the number 190 into register 7. This has the effect of turning on music
channel 1, and turning off all noise channels. Figure 10.20 shows in more
detail how these numbers are used. In this example, we use number 6 to
select music channel | only, 56 to turn off all noise channels, and add 128 to
these numbers to get 190. Line 40 then puts the number 15 into register 8.

10 CLS

20 FOR NZ=1 TO 255
30 SOUND 7,19@

49 SOUND 8,15

59 SOUND o,N%Z

60 NEXT

70 SOUND 8,9

Fig. 10.19. Programming a note of descending pitch.

Sounds Unlimited 157

Register 7
Music channel 1 only 6
NO NOISE ..ooeeveiiiiiiiieiiieeieeeae, 56
Add 192, 192
Total...oooieiiee e 254

The figure of 15 in register 8 gives full volume on music channel 1.

Fig. 10.20. The details of how the numbers for a sound effect are selected for
Fig. 10.19.

This sets the volume of sound in channel 1 to its maximum value. The
control of the pitch of the note is then carried out by using register 0. This is
the ‘fine’ control for channel 1. If you change the number in register 1, you
will get a different range of notes. By using N as a counter, and placing N in
the register, we get a note whose frequency changes. After the loop has
finished, we need line 70 to shut off the sound. Without line 70, the sound
keeps going until you press the CTRL/STOP keys.

Now for a bit of amusement. The program in Fig. 10.21 uses two
channels. This is achieved in line 30 by placing the ‘full-volume’ number of

10 CLS
20 SOUND 7,188

30 SOUND 8,15:S0UND 9,15
40 FOR N%=1 TO 255

5@ SOUND @,N%Z

60 SOUND 2, 256-NY%

70 NEXT

80 SOUND 7,191

Fig. 10.217. Controlling two channels with the SOUND command.

15 into registers 8 and 9, which control channels | and 2 respectively. The
pitch numbers are placed in lines 50 and 60, using the loop number N% for
register O (channel 1) and 256-NY, for register 2 (channel 2). The number
N will create a note whose pitch decreases as N% increases, and 256-N%
will produce a note whose pitch increases as N9% increases.

Figure 10.22 takes us a few stages further along the road. Line 20 enables
all three of the sound channels, and line 30 sets maximum volume in each
channel. The main loop that starts in line 40 then gives the same
combination as is used in Fig. 10.21, but this time we have added a different
sound in the third channel, by means of another loop. Since the other two
notes keep playing while this is altering, you hear the effect of all three until
blast-off is achieved!

158 Working with MSX BASIC

10 CLS
20 SOUND 7,184

36 SOUND 8,15:SOUND 9, 15:SOUND 10,15
40 FOR N%Z=1 TO 255

S© SOUND @,N%

6@ SOUND 2,256-N%

70 FOR J%=1 TO 20

80 SOUND 4,J%:NEXT

90 NEXT

100 SOUND 7,191

110 PRINT"BLASTOFF'"

Fig. 10.22. Three-channel SOUND.

Some of the most impressive sound effects that the MSX computer can
produce require the use of the noise generator. Noise is a mixture of
frequencies, unlike a musical note which always has one clear ‘fundamental’
frequency. Noise may nevertheless have a ‘predominant’ frequency,
meaning that most of the noise frequencies are centred around this
frequency instead of being spread evenly over all the range of frequencies.
The noise generation of the MSX computer depends on the use of registers 6
and 7.

We'll start with register 7 because it’s the use of this register that allows
noise signals to be sent to the three channels. Your choices in this matter are
made by the number that you put in following SOUND 7, and Fig. 10.23
lists these numbers, and how values can be added to mix the effects. The
number that you put into register 7 is, in fact, the sum of 128 plus separate
numbers for the tone and for the noise channels.

Channels activated Tone code Noise code
A, Band C 0 0
B and C only 1 8
A and C only 2 16
C only 3 24
A and B only 4 32
B only 5 40
A only 6 48
None 7 56

Add 128 to the sum of the number(s) used.

Example: Tone on channels A and B, noise on channels Band Ccodesare 4and 8, whichadd to
12, then add 128 to get 140. This, then, is the number that is placed in register 7.

Fig. 10.23. How numbers are used in Register 7 of the PSG.

Sounds Unlimited 159

Register 6, by contrast, uses numbers that can range from 0 to 31. This is
the register that causes the sound to have a predominant frequency. As an
illustration of the effect of predominant frequency, try the program in Fig.
10.24, which produces a rather impressive ‘surf on the shore’ type of noise.

190 CLS
2@ SOUND 7,183

3@ SOUND 8,15

49 FOR X%=1 TO 20

S0 FOR N%=0 TO 31

60 SOUND &6,N%

70 FOR J=1 TO S0:NEXT
80 NEXT

90 NEXT

100 SOUND 8,0

Fig. 10.24. The surf on the shore program.

The figure of 183 that is put into register 7 is made up of the usual 128, plus
7 for ‘no tones’ and 48 for ‘noise channel | only’. The loudness of channel 1is
put to full amplitude by line 30. We select 20 waves in line 40, and then the
loop in lines 50 and 60 carry out the wave sound. The noise predominant
frequency starts high, with N9%=0, causing a hissing sound, and ends up
with the booming noise that is caused when N%=31. We can now use these
noises as a basis for more useful sound effects.

Opening the envelopes

We’ve mentioned the principle of envelopes earlier, and it’s time now to see
how the MSX computer can make use of such envelopes with the SOUND
command. Figure 10.11 showed the envelope shapes from which you can
choose, and the numbers that you use for the SOUND command are the
same. Figure 10.25 demonstrates the effects of the envelopes. Theimportant

10 CLS

20 SOUND 7,199

30 SOUND 0,150

40 FOR NZ=9 TO 15

50 SOUND 13,N%

60 PRINT"Envelope No. "3;N%
79 SOUND 8,16:SOUND 12,190
80 FOR J=1 TO 1509:NEXT

90 NEXT

Fig. 10.25. Using the standard envelopes with the SOUND command.

command is in line 70, and is SOUNDS,16. When 16 (or any number
between 16 and 31) is used in register 8, its effect is to allow the envelope-

160 Working with MSX BASIC

generating part of the sound system to take control of amplitude. The sound
will no longer have a fixed amplitude, but will take values that depend on
whatever envelope has been chosen. The other lines are more conventional.
Line 20 enables music on to channel 1, and line 30 puts a note number into
the channel | register. Register 13 is then used to select envelopes. As you
can also see from Fig. 10.25, several numbers produce the same envelopes.
You can listen to the effects of each envelope, and compare the sounds that
you hear with the appearance of the shapes in Fig. 10.11. The delay loop in
line 80 gives plenty of time for one sound to be completed before the next
one starts. An important point here is that you must have something put
into register 12 (see line 70). This one controls the envelope period, and if
you do not place a number in here, all that you will hear will be clicks -
unless the register has been filled by a previous command.

We can produce some rather useful tinkling notes with envelope 1, as Fig.
10.26 illustrates. In this example, line 20 sets the envelope period at a

io0 CLS

20 SOUND 12,10

30 SOUND 7,190

49 SOUND 8,16

39 FOR N%=255 TO 1 STEP -10
60 SOUND 13,1

79 SOUND o,NZ

B® FOR J=1 TO 200:NEXT

90 NEXT

Fig. 10.26. A program which demonstrates the effect of envelope 1.

number which gives a short note. This is a quantity which can be
experimented with, but if you make the period number bigger, then you will
need a longer delay time in line 80 also. Line 30 enables channel 1, and line
40 allows the envelope generator to control the amplitude. The loop then
selects envelope | on each pass through the loop. Line 70 puts different note
numbers into the pitch register for channel 1, and the result is - well, listen
for yourself!

By way of contrast, Fig. 10.27 demonstrates what happens when we use
noise along with anenvelope control. The noise is selected by line 20, and the
rest of the instructions should be reasonably familiar to you by now - note

1o CLS

20 SOUND 7,183

30 SOUND B, 16

49 SOUND 46,8

5@ SOUND 13,8

60 FOR N=1 TO S000:NEXT
70 SOUND 8,0

Fig. 10.27. A drum-beat noise program.

Sounds Unlimited 161

the use of SOUND 8,0 to turn off the sound at the end of the program. The
drumming continues for the duration of the delay loop - you don’t need to
have the SOUND instructions inside a loop. Finally, try the programin Fig.
10.28, and hear what happens when we slow the drummer down a bit. You
should be able to analyse what’s happening here for yourself! How about
speeding it up a bit, and making it sound like a steam loco in full cry?

10 CLS

20 SOUND 7,183

30 SOUND 8,16

49 SOUND 6,15

S0 SOUND 13,8

&0 SOUND 12,30

70 FOR N=1 TO S00@:NEXT
80 SOUND 8,0

Fig. 10.28. Converting the drum-beats into hammer blows!

Chapter Eleven
Cassette Data Filing

Many small computers make no provision at all for recording data, as
distinct from recording programs, on cassette. Because of this, the use of
such a system for data recording will probably be quite new to owners of a
MSX computer, even if they have used a computer previously. This chapter,
then, is devoted to the use of the cassette recorder system for storing data.
Your manual will have dealt with the use of the cassette system in
connection with storing and loading programs, and Appendix A deals with
adjustment of the cassette recorder for best results. You should make sure
that you fully understand the use of the recorder for program storage before
you continue with this chapter. You should also make sure that you have
read the references to cassette recorders in Appendices A and B.

The most puzzling part of work on data recording is the number of new
names and ideas that you encounter. The new names that cause difficulty to
the MSX computer owner are ‘devices, streams and buffers’. Once you grasp
what is meant by these words, and how they are applied, you will find
cassette system operation much more interesting, and you will also be able
to do much more with your MSX computer. Let’s start, then, by explaining
these words. A device 1s something that puts out or receives data. Your
keyboard is a device, because each time you touch a key, a set of electrical
signals is sent to the computer. The screen is another device, because every
time the computer sends a set of electrical signals to the TV set, you will see
something appear on the screen. The keyboard is a transmitting device,
because it sends signals. The screen (or the TV)is a receiving device, because
it accepts signals.

Some devices can perform both operations. The cassette system is also a
device which can be used in both directions. The disk system is a similar type
of device. MSX computers identify devices by abbreviations, using CAS:
for the cassette recorder, CRT: for the text screen, GRP: for the graphics
screen, and LPT: for the printer.

We have talked of electrical signals passing from one device to another,
and this is what actually happens. It’s a lot more useful to think of what these
signals represent. Each set of signals represents a unit of data called a byre,
and data is the stuff that computers are designed to deal with. One byte is the
amount of memory that is needed to store one character in ASCII code, or

Cassette Data Filing 163

one command word in BASIC. Data may be numbers or names; it’s
anything that the computer has to work with. If you have a program that
arranges the names of your friends in order of birthdays, then that program
needs data. The data in this example is the set of names and birth dates. If
you have a program that shows cookery recipes and shopping lists, then the
data is the instructions, the names of the foodstuffs, and the quantities.
Every computer that is designed to be used for anything more than the
simplest games must be able to save and load data of this type separately
from the program that generates it or uses it.

There’s a lot to be gained from this approach. The memory of the MSX
computer is used for quite a lot of purposes over which you have no control.
A very long program which gathered data and then made use of it might not
fit into your computer. It’s a lot more sensible to have a short program
which gathers the data, using INPUT lines, and which records the data as it
is gathered. The data is then safe if anything should happen (like a
momentary failure of the power supply) that scrambles the memory of the
MSX computer. Another program can then make use of this same data. By
keeping the two programs and the data separate, you can deal with a lot
more information than would be possible if you had to have the whole lot in
the memory at one time.

What has all this to do with buffers, streams and devices? Well, devices are
the parts of the computer which give out or receive data, and streams are the
paths which carry the data. Just think of what happens when you use your
MSX computer. When you press a key, something appears on the screen.
The keyboard is one device, the screen is another, and there is a stream
which links them. This is just a fancy way of saying that there is a path for
data signals from the keyboard to the screen. The important point, however,
is that these paths or streams can be controlled. Controlling them means
that we can change the paths, breaking some and making others, as we
please. It wouldn’t be sensible to break some of the paths, of course, except
for special purposes. You normally want to see on the screen the words that
you type on the keyboard. If you were typing a special password, however,
and you didn’t want anyone who was watching the screen to see it, it would
make sense to break the stream that connects the keyboard to the screen,
and we have already done this by using the INPUT$ command.

As you might expect by now, there are some streams which are connected
to devices from the moment you switch on. It’s obvious, for example, that
there’s a connection between the keyboard and the screen. MSX computers,
however, allow you to make more connections, using the device
abbreviations of CAS:, CRT:, GRP: and LPT: as listed above. In this
chapter, we are concerned with the cassette recorder, CAS:, and we shall
make no further use of the other device abbreviations. We can also make use
of numbered streams which connect to the cassette recorder. We can use up
to 15 of these numbered streams, numbered | to 15, not as you might expect
0to 14. For each stream, the computer has to set aside a portion of memory

164 Working with MSX BASIC

to use for storing data that is to be written (recorded) or read (replayed).
This portion of memory is called a buffer. In order to use the cassette
recorder for data storage you have to know two things. One is how to select a
buffer, the other is how to link it to the cassette recorder.

The way that you select a buffer and link the cassette recorder is by using
the OPEN command. You have already seen this in action in Chapter 7,
being used to place text on the graphics screen. For cassette use, the OPEN
command must contain rather more information. You must specify the
device name, which will be CAS: for cassette recording. You then need a
filename, so that you can identify the collection of data (the file) when you
want to replay it. You may, after all, have several different files on one
cassette. You need to specify whether you want to use the stream for output
or for input, and finally you need to select a stream number in the range 1 to
15. For example, you might use:

OPEN“CAS:DATA”FOR OUTPUT AS #1

When this runs, it will link the cassette recorder to the computer ready for
data to be recorded. This means an output from the computer, so that
OUTPUT must be used in the command. The filename is DATA, and this
follows the CAS: which must be used. The filename must be of six letters or
less (not including CAS:), and must not contain a colon : or the numbers 0 or
255. The computer uses the colon to recognise device words like CAS:, and
the numbers 0 and 255 are also used as terminators. The #1 is the stream
number and our number in this example is 1. (The hashmark # is the
American way of writing what we write as No., the number of anitem.) The
command therefore prepares stream 1 for an output to the recorder, using
the filename of DATA. This is not simply a preparation; when this
statement runs, the cassette motor will operate, and the filename will be
recorded on the tape. To open a file for input with this filename, we would
need something like:

OPEN“CAS:DATA” FOR INPUT AS #2

using stream #2 this time. By specifying different stream numbers like this,
we can switch from writing to reading very quickly and easily. When this
statement runs, also, because of the use of the filename, only a file of the
correct name will be selected, and the cassette system will be operated so as
to find this filename on the tape.

Data filing techniques

What is a file?

The word file occurs many times in the course of this book. A file can mean
any collection of characters which belong together. The characters of a
BASIC program constitute a file, for example, because the program will not

Cassette Data Filing 165

run if characters are missing. A set of names and addresses in ASCII code is
a file, because they form one group of information, such as our friends, or
our suppliers, or debtors. A set of bytes of machine code is a file, and a
collection of the numbers that are used by a financial program is a file. In
this chapter, though, I'll take file to mean a collection of information which
we can record on a cassette, and which is separate from a program. For
example, if you have a program that deals with your household accounts,
you would need a file of items and money amounts. This file is the result of
the action of the program, and it preserves these amounts for the next time
that you use the program. Taking another example, suppose that you
devised a program which was intended to keep a note of your collection of
vintage 78 rpm recordings. The program would require you to enter lots of
information about these recordings. This information is a file and, at some
stage in the program, you would have to record this file. Why? Because if a
program like this is going to be really useful, there will not be enough space
even in the memory of your MSX computer to hold all of the information at
one time. In addition, you wouldn’t want to have to change the program
each time you wanted to add items to the list. This is the topic that we’re
dealing with in this chapter - recording the information that a program
uses. The shorter word is filing the information.

You can’t discuss filing without coming across some words which are
always used in connection with filing. The most important of these words
are record and field (Fig. 11.1). Arecord is a set of facts about one item in the
file. For example, if you have a file about LNER steam locomotives, one of
your records might be used for each locomotive type. Within that record,

FRIENDS FILE

RECORD 1

FIELD 1 Name 1
FIELD 2 Address 1
FIELD 3 Phone No. 1
FIELD 4 Birthday 1
RECORD 2

FIELD 1 Name 2
FIELD 2 Address 2
FIELD 3 Phone No. 2
FIELD 4 Birthday 2
RECORD 3

etc.

Fig. 11.1. The meaning of record and field. Here, eachrecord is for a particular
friend, with different fields for name, address, telephone number and
birthday.

166 Working with MSX BASIC

you might have designer’s name, firebox area, working steam pressure,
tractive force ... and anything else that’s relevant. Each of these items is a
field, an item of the group that makes up a record. Your record might, for
example, be the SCOTT class 4-4-0 locomotives. Every different bit of
information about the SCOTT class is"a field, the whole set of fields is a
record, and the SCOTT class is just one record in a file that will include the
Gresley Pacifics, the 4-6-0 general purpose locos, and so on. Take another
example, the file British Motor-bikes. In this file, BSA is one record, AJS is
another, Norton is another. In each record, you will have fields. These might
be capacity, number of cylinders, bore and stroke, suspension, top speed,
acceleration ... and whatever else you want to take note of. Filing is fun - if
you like to arrange things in the right order.

Cassette system filing

In this book, because we are dealing with the MSX computer cassette
system, we’ll ignore filing methods that are based on DATA lines in a
BASIC program. This is because cassette data filing keeps the data separate
from the program, and is therefore much more useful. If it’s all familiar to
you, please bear with me until I come to something that you haven’t met
before. To start with, there are two types of files, only one of which we can
use with a cassette system. These are serial files and random access files. The
difference is a simple but important one. A serial (or sequential) file records
all the information in order on a cassette system, just as it would be placed
on a cassette. If you want to get at one item, you have to read all of the items
into the computer, and then select. There is no simple way in which you can
command the system to read just one record or one field. A random access
file does what its name suggests — it allows you to get from the recorded data
one selected record or field without reading every other one from the start of
the file. The difference between serial filing on tape and random access filing
on disk is illustrated in Fig. 11.2. Random access filing is something which
requires the use of a disk system, but we can design programs which achieve
something like the same effect by using serial files on the cassette system.
We’ll start, then, by looking at serial files, which are also the type of files that
we record on a cassette.

Creating a file

When you are dealing with something new, it’s always a good idea to start at
the beginning and keep things simple at first. We’ll start the idea of filing
with the way that we make connections to the cassette system. Fig. 11.3
shows a very simple example of how one item of data, the value of a variable
called A%, can be recorded on the cassette system, whose stream number

Cassette Data Filing 167

tape movement
(a) data
wanted >
\

(b)

data wanted

Fig. 11.2. (a) Serial filing on cassette and (b) random access filing on disk.

1@ OFPEN"CAS: TEST"” FOR OUTPUT AS #1
20 AZ=5

30 PRINT#1,A%Z

40 CLOSE

Fig. 17.3. Recording the value of a single variable. It's the value that's
recorded, not the variable name.

has been chosen to be 1. Because the steps are so important, we'll look at
each of them in close detail. Starting with line 10, then, we open a file. This
requires the command word OPEN, with “CAS:TEXT"” used as the device
and filename. The file is an OUTPUT file, recording on to the cassette, and
its stream number is #1. You must be careful about how you use the
recorder here, because you need to select a cassette, and a position on the
cassette, which has nothing else recorded on it. There is nothing to prevent
you from ‘wiping’ a file by accidentally recording over it another one which
has the same name, or a different name. Disk systems can protect you
against that sort of error, but when you use a cassette for data storage, you
only have the reading of the tape counter to help you. The cassette recorder
also needs to be switched to record whenever this program runs.

The next step is to assign a value to the variable, A%, in line 20. Line 30is
the important one now. The instruction PRINT#1,A% means send out the
value of A% over stream 1. Stream 1, however, has been connected to the

168 Working with MSX BASIC

cassette system by the OPEN statement, so that this line 30 will ‘print’ the
value of A% on to the cassette. Press the RECORD and PLAY keys of the
recorder, and run the program. You do ros see the usual messages that you
get when you use SAVE, and the only indication that you get when this runs
is the sound of the cassette motor, and the O.k. prompt when the program is
ended. The value of A% (but not the variable name of A%) will be filed
under the name of TEST so that it can be easily found again. Line 30 causes
the recording to be made, but it’s not quite so straightforward as it might
seem. The cassette system records groups of characters, and the operating
system is arranged so that the computer will gather up data in the memory
until it has enough. This part of memory is called a buffer, and when you
open a stream, you also automatically allocate a buffer for that stream. The
data that is to be recorded is shifted into the buffer, and is then recorded. If
there is more data than the buffer can cope with, then the buffer will have to
be filled and emptied more than once. At the end of such a process, you have
to make sure that the buffer is cleared. This is done in line 40 by the CLOSE
command. Now what happens when this runs? As far as you are concerned,
it’s just that the cassette system starts, spins for rather a long time, then
stops.

Now we have to prove that this data was actually recorded, and show that
we can recover it. Take a look now at the listing in Fig. 11.4. Line 20 in this
listing uses OPEN“CAS:TEST” FOR INPUT AS #2. Wealready have afile

10 MAXFILES=2

20 OPEN"CAS:TEST"FOR INPUT AS #2
30 INPUT #2,X%

40 PRINT"XZ IS "3X%

5@ CLOSE

Fig. 11.4. Recovering the variable from the tape.

on our cassette, and we want to read it, not to create a new file. The stream
number this time is #2, and we have to specify “TEST”, the name of the file.
It won’t work, though, without line 10. This isn’t because we are using
INPUT in place of OUTPUT, it’s because we have used a stream number
greater than 1. The machine keeps one buffer ready for use, and this can be
allocated to #1. If you want to use numbers like #2, #3 and so on, you have
to prepare the memory. This is done by the MAXFILES command. By
using MAXFILES=2, you make the computer provide memory space for
files which use stream numbers up to 2. This MAXFILES command must
be carried out right at the start of a program, because it has drastic effects.
Because it prepares memory, it will erase anything that is already in
memory, apart from the program itself. If you have dimensioned an array,
used DEFINT to declare integer variables, or assigned any variables,
MAXFILES will wipe it all out. The only really safe place foritis in the first
line of the program!

Cassette Data Filing 169

Having done this and opened the file, meaning that a buffer will now be
allocated for use with signals from the cassette system, the system finds the
filename on the tape, if it exists. You must, at this stage, press the PLAY key
on the recorder. If the filename cannot be found, the system will keep on
trying as long as there is tape to read! A disk system does this type of thing
much better, because it can find at once if the filename is on the disk. Having
found the file, we can then read the data. Line 30 does so, using INPUT
#2,X%. INPUT by itself always refers to the keyboard, but when we place
the #2 after INPUT, it will cause the input to come from the specified
stream, #2, which means the cassette system because of the use of OPEN,
Because we have specified “TEST” in the OPEN statement, what comes
from the cassette system will only be whatever is in the file TEST. Line 40
prints what is read in, and line 50 closes the stream down again. By using
CLOSE, a/l streams are closed. You could close a specified stream by using
CLOSE #2, for example. It all looks reasonably simple and straightforward,
but take a close look at these two little pieces of programming, because they
contain a lot that you will need to get to grips with in the course of data
filing. Notice, for example, that we can assign what is read to any variable
name that we like. We used A% when recording, but X% when replaying. As
far as the computer is concerned, reading a file from cassette is just another
INPUT step like reading from the keyboard. Notice also that even the
simplest programs of this kind need some messages on the screen to remind
you that you have to press the correct keys on the tape recorder. This is
another important difference between using the tape recorder and using a
disk system.

Now try something more ambitious with the creation of a file of numbers.
Figure 11.5 shows a program which generates a file of numbers - the even
numbers from 0 to 50 - then records these numbers on the cassette system
and also prints them on the screen. There are only six lines to this program,

10 OPEN"CAS:EVENS" FOR OUTPUT AS #1
20 CLS:FOR N%Z=@ TO 5@ STEP 2

30 PRINT #1,N%

40 PRINT N¥%;"“ "3

S@ NEXT

&0 CLOSE

Fig. 11.5. Creating a file of numbers and recording the values.

but three of them contain these important commands that you need to
understand. We'll start, reasonably enough, with line 10. This is one of these
OPEN commands which connects a buffer to a stream. The stream is #1, so
that we don’t need to use MAXFILES, and the filename is EVENS. The
next thing is to create a file, and in this case, it’s being done by a loop which
starts in line 20. This allocates variable N9 as each of the even numbers in
turn, with the NEXT in line 50. How do we place the numbers into the

170 Working with MSX BASIC

buffer? Line 30 does this, using PRINT #1,N9%, and since there is a string of
numbers to be recorded, the buffer accepts the numbers before the cassette
recording begins. The cassette system is nothing like as fast as the computer.
The FOR...NEXT loop in lines 20 to 50 could easily be completed before
the motor of the cassette system could be started! Each time line 30 runs, the
value of N% is stored temporarily in the buffer. Buffer is a good name,
because its action is to connect the computer and the cassette system so that
they work smoothly together. In this simple example, all the numbers that
are generated by the action of the loop are simply passed into the buffer.
Nothing is recorded in this time, the cassette system motor has stopped after
recording the filename, and before recording the data. The recording of data
then takes place when all of the numbers have been assembled. CLOSE
means close down all streams, and when an output stream is closed, part of
the action is to empty any buffer which is part of that stream. In addition,
an end-of-file marker is recorded, so that the system can identify the end of
a file even when several blocks have been recorded. That’s it! If you now
press RECORD and PLAY, and RUN this program, you’ll hear the motor
run to record the filename, then see the numbers appear on the screen,
showing that the whole loop is being run. You will then hear the motor run
to record the data only after the whole loop has ended. Once again, if you
have forgotten to press RECORD and PLAY on the recorder, the computer
goes through the motions, but nothing can be recorded!

This program has shown you the buffer in action, and the size of the
buffer is large enough for a lot of data. You cantry it for yourself by altering
the program so that it looks like Fig. 11.6. Lines 10 to 30 provide a suitable

1@ CLS:PRINT"Please press REC and PLA
Y keys NOW."

20 PRINT"Press SPACEBAR to start.”

3@ IF INKEY$<>" "THEN 30

49 OPEN"CAS:MOREVN"FOR OUTPUT AS #1
590 CLS:FOR N%Z=@ TO 500 STEP 2

60 PRINT#1,N%

70 PRINT NZ;" "3

8@ NEXT

70 CLOSE

19@ PRINT: PRINT"End of recording- pl
ease press STOP":PRINT"key of recorde
r.ll

Fig. 11.6. A much longer number file, to display buffer action.

message and a pause to give you time to prepare the recorder. This time, the
number of bytes of data will need several thousand bytes, and when you
RUN the program, you will find that the numbers appear on the screen until
84 is reached. At this point, the cassette motor starts, and a block of data is
recorded. The numbers start running again until 158, when the cassette

Cassette Data Filing 171

records another block, and the same happens at 230, and every 72 numbers
after that. What is happening is that the buffer is being filled because of the
loop, and is being emptied by the cassette system.

These short programs have put data into a file, but so far, you have had to
trust me that there is actually something on the tape. Figure 11.7 shows how

10 CLS:PRINT"Press PLAY key, then 5PA
CEBAR. "

20 IF INKEY$<>" "THEN 20

30 OPEN"CAS:EVENS"FOR INPUT AS #1

49 FOR NZ=@ TO 5@ STEFP 2

5@ INPUT#1,AZ

60 PRINTAZ:;" Y3

70 NEXT

86 CLOSE

20 PRINT:PRINT"Press STOP key of reco
rder."

Fig. 11.7. Reading the EVENS file. You need to have a PRESS SPACEBAR step
early on to give you time to prepare the cassette recorder.

this can be done for the EVENS file. The program starts as usual with the
message about pressing the PLAY key of the recorder. This is because when
the OPEN command is carried out, the machine must find the filename of
EVENS before anything else can be done. You therefore need to have your
‘PRESS PLAY’ message right at the beginning of the program, so that
OPEN can do its work. As usual, the program starts in line 30 with opening
the file, using OPEN, with the filename of EVENS. We read the file with
INPUT#]1, in a loop to read and display the data. When this runs, then, you
will hear the cassette motor run, the machine will locate the file, and read it,
and you will see the numbers appear on the screen. Note that you get no
message which tells you that the computer has found the correct file. All that
you have to guide you is a clicking sound inside the machine when the
correctly named file is found.

Now let’s try the longer file, MOREVN, in Fig. 11.8. This time, we’ll
arrange a more tidy screen display by interrupting the display process. Line
80 performs the interruption. The condition is IF N%/40=INT(N%/40).
This means the condition when N9 divides evenly by 40. If N9%/40 has a
remainder, then it can’t be equal to INT(N%/40), which is the whole number
part of N%/40 only. Each time N has a value that divides evenly by 40,
then, the second part of line 80 causes a delay, and at the end of the delay, the
screen is cleared before the main loop continues. By using N%/ 40, you place
20 numbers on the screen because N9% increments in twos, remember. Could
you, perhaps, do this in a different way by using MOD? Now when you run
this one, you will hear the cassette motor start, find the file, and read it. The
number 0 then appears under the text on the screen, and then the main loop
displays the numbers in groups of twenty. The cassette motor will start and

172 Working with MSX BASIC

16 CLS:PRINT"Press PLAY key on record
er._ll

20 PRINT"—-then spacebar to start.”™

30 IF INKEY$<>" "THEN 3@

40 OPEN"CAS:MOREVN"FOR INPUT AS #1

S0 FOR N%Z=0 TO 500 STEP 2

60 INPUT #1,K%Z

790 FRINTTAB(12)KZ

80 IF N4L/40=INT(NZ/49)THEN FOR J=1 TO
2000: NEXT:CLS

99 NEXT:CLOSE

100 PRINT"Press STOF key of recorder.

Fig. 11.8. Reading the MOREVN file, with a screendisplay that gives you time
to see the numbers.

stop at intervals as required to fill the buffer. You will hear this stop and start
action going on all the time that data is being read back from the MOREVN
file. The process is a slow one, and it’s better if data filing is carried out ata
faster speed. You can’t alter the speed at which the tape moves, but it is
possible to read and write more bytes per second. This is done by making use
of another variation on the SCREEN command. This needs to be done onfy
for recording. When the machine reads a tape, it will set itself for the correct
rate of reading data, The command for using the higher speed is
SCREEN,,,2 assuming that you are not using any of the other SCREEN
options. If you are, then there will be other items between the commas. To
reset to normal speed, use SCREEN,,, 1. From now on, we’ll use the faster
speed.

More serial filing

Suppose that what we want to record is not a set of numbers that has been
generated by a program, but a set of names that you havetyped. As far asthe
cassette data system is concerned, this is just another set of data, and it’s
dealt with in exactly the same way. Each time you press RETURN at an
INPUT step, the data is stored in a buffer, and it stays there until the buffer is
full, or until the entry is complete and the file is closed. Once again, you can
see the importance of using a buffer - you wouldn’t expect the cassette data
system to record each letter as you typed it, would you?

Figure 11.9 shows a short program of this type. Normally, if you were
gathering information like this, you would store the names of an array. This,
as you probably know, introduces complications like having to dimension
the array. Unless you want to look at a previous entry at some time when
you were entering names, however, you don’t need to use an array for
recording a set of names. It can be a different matter when you play back,
but that’s something that we’ll look at shortly.

Cassette Data Filing 173

10 SCREEN,,,2

20 CLS:PRINT:PRINTTAB(14) "NAMES"

3@ PRINT:PRINT"This program stores a

file of names":PRINT"for you on the c
assette. Make sure":PRINT"that you ha
ve a cassette ready."”

49 PRINT:PRINT"Input X to end entry."
50 PRINT:PRINT"Press REC and PLAY on

the recorder":PRINT"and then the spac
ebar when you":PRINT"are ready."

60 IF INKEY$<>" "THEN &0

70 PRINT"Please wait..cseeenceccenens

890 OPEN"CAS:NAMES"FOR OUTPUT AS #1

99 NZ=NZ+1:PRINT"Name";NZL;“ “:INPUT N
M$

100 PRINT#1,NMs$

110 IF NM$<>"X"THEN 9@

120 CLOSE

130 PRINT"Press STOP key of recorder
now. "

149 SCREEN,,,1:END

Fig. 11.9. Filing names. The faster cassette filing speed has been selected to
make the program more efficient. The names don’t have to be put into an
array.

Taking the program in more detail now, line 10 selects SCREEN,,,2 for
the faster cassette writing speed. This does not, remember, mean that the
cassette tape moves faster, just that the data is recorded on to it at a higher
rate. We shall cancel this command at the end of the program, because if we
don’t it will remain in force. You might want to SAVE another item at the
slower rate, and this would not be possible after the higher speed has been
selected. Lines 20 to 50 print the usual messages and instructions, and line 60
is the INKEYS line. Line 70 prints another message, because it can be
confusing when you press the spacebar and nothing seems to be happening.
Line 80 then opens the file, so that the filename is recorded. Only when this
has been done will the first number and the request for a name appear.

The main loop then starts in line 90, and the idea is to input and record
each name until an X is typed. If you wanted to expand this into a more
realistic name file, you would probably want more detailed instructions.
Line 90 accepts the name that you type (no commas permitted with an
INPUT step, remember). The name is then recorded in line 100. If X has not
been entered, then line 110 returns for the next word. If you type names fast
and continually, you will find that the cassette motor spins every now and
again, emptying the buffer. You can’t enter data while this is going on.

174 Working with MSX BASIC

More on reading

By this time, you have a few files of both numbers and names stored on your
cassette data system, and it’s time to pay rather more attention to the
methods that are used for reading files and using the information from
them. Suppose, for example, that the numbers which we recorded in the file
EVENS had been placed on the file by an accounts program. They might,
for example, be the daily takings of a small shop. One thing that we might
want to do with the numbers, then, would be to read them from the file and
add them, showing only the total. This is a conventional and straight-
forward piece of programming, and one for which you will probably find a
large number of uses. Figure 11.10 shows what is needed. It starts in line 10

190 CLS

20 PRINTTAB(13)"TOTALS"

3@ PRINT:PRINT"Press PLAY key on reco
rder when the":PRINT"cassette is read
y."

49 PRINT"Press SPACEBAR to start read
-in."

50 IF INKEY$<>" "THEN S50

&0 OPEN"CAS:EVENS"FOR INPUT AS #1

70 TT=0

80 FOR NZ=1 TO 26

90 INFUT #1,J%Z

100 TT=TT+J%

119 NEXT

12@ FPRINT:PRINT"Total is ";TT

13¢ CLOSE:END

Fig. 11.70. Reading back and totalling numbers from the EVENS file, using a
FOR...NEXT loop.

by clearing the screen and then line 20 prints the title, followed by some
instructions in lines 30 and 40. Line 50 causes the machine to wait for the
spacebar to be pressed, and the real work starts in line 60, which opens the
EVENS file. Now when we recorded the file EVENS, we selected all the even
numbers from 0 to 50, which is a total of 26 numbers. To read the same set
back, then, line 80 uses a FOR...NEXT loop with 26 passes. The number TT
has been set to zero in line 70. Line 90 then inputs each number from the file,
giving it the variable name of J%, and line 100 adds this number to the total.
At the end of the loop, line 120 prints the value of the total and the file is
closed in line 130.

Suppose that you didn’t know how many numbers were recorded? This
makes the use of a FOR...NEXT loop impossible, because you wouldn’t
know what number of passes to use. As it happens, we can cope with this
quite easily. The MSX computer filing system puts an end-of-file code at the

Cassette Data Filing 175

end of the last block of data that it records. Now this end-of-file code can be
detected by using the word EOF, which has to be followed by the file
number, in brackets. If EOF(1)=0, the end is not yet nigh. If EOF(1)=—1,
then you have reached the end of the file. Note that the file number is 1,
because this is the number of the file that has been opened for input. There
must be no hashmark with this number ~ a line which includes EOF(# 1) will
be rejected as a ‘Syntax error’. Our EVENS file can therefore be much more
conveniently written as in Fig. 11.11. This time, we use a GOTO loop in

19 CLS

20 PRINTTAB(15) "TOTALS"

30 PRINT:PRINT"Press PLAY key on reco
rder when the":PRINT"cassette is read
y- i1}

49 PRINT"Press SPACEBAR to start read
-in."

S50 IF INKEY$<>" "THEN 5o

69 OPEN"CAS:EVENS"FOR INPUT AS #1

79 TT=0

80 INPUT #1,J%

90 TT=TT+J%Z

190 IF EOF(1)=0 THEN 8¢

110 PRINT:PRINT"Total is ";7TT

120 CLOSE:END

Fig. 17.11. A better method of reading back a file, using EOF. This time, you
don’t have to know how many items are in the file.

place of FOR...NEXT. The condition in line 100 is EOF(1)=0, because
while EOF(1)=0, we have not yet reached the end of the data for this file. In
this particular short file, of course, the end is reached in the first batch of
data. Try it out on the longer file of numbers!

Naming the names

Now that we have replayed and used a number file, it’s time to start looking
at some replaying methods for the file of names that we created earlier.
When this file was created, each name was recorded, and the usual end-of-
file marker would be placed on the tape. What we normally want to do is to
place the names into an array, so that the computer can make use of the
data. Using an array allows you to carry out tasks like placing the names
into alphabetical order, for example. Not all uses call for an array, however.
Suppose, for example, that you want to search the names for one beginning
with the letter J. You could do this by using the program which is shown in
Fig. 11.12.

The first few lines follow familiar patterns. When the program is run, it

176 Working with MSX BASIC

16 CLS:PRINTTAB(13) "NAMEFINDER" : PRINT
20 PRINT"This program will find a nam
e for ":PRINT"you from the NAMES file

30 PRINT"Press PLAY when the cassette
is ":PRINT"ready, and then the space

bar."

49 IF INKEY$<>" "THEN 40

50 INPUT"First letter of name, please
u;as

&0 OPEN"CAS:NAMES"FOR INPUT AS 1

70 INPUT #1,N$

80 IF EOF(1)=0 AND @$<>LEFT${(N%,1)THE

N 79

30 PRINT:PRINT"Name is "iN$

100 CLOSE:PRINT"Press STOP key on rec

order."

Fig. 11.12. Searching a file for one item, inthis case, a name that starts with a
given letter.

will allow you to find a name from the file simply by typing the first letter of
the name. The NAMES file was recorded at the higher speed, but you don’t
have to use a SCREEN,,,2 statement in the replay program, because the
computer adjusts itself. When the faster speed has been used, you must be
sure that the cassette is fully wound back to just before the start of the file.
The faster system is less tolerant of starting the playback at a point where the
tones have already been recorded! Line 50 asks you for a first letter of a
name (don’t forget the capital letter!). Line 60 opens the file for reading, and
line 70 starts a loop that takes a name from the buffer and checks first for the
end-of-file character, and then for the first letter of the name being identical
to the letter that you requested. If the whole file has not been read, this part
compares the first letter that you have selected with the first letter of the
name. If you have searched through the whole list without finding this letter,
then line 80 will respond by ending the program when the end of file marker
is found. The ‘name’ which is the last to be read in is X, which was used as a
way of ending entry. This is then printed by line 90. If, on the other hand, the
name that you want is found, then line 90 will print it, and the search ends
also. You could, of course, have another test, so that if N$=“X” then a
message such as ‘Name not on file’ is printed in place of the ‘X’

This scheme works quite well with small amounts of data but only if all
the data is different. If one name is Mary and another is Margaret, then a
request for M will give you whichever of these comes first on the file. You
will have to alter the tests in the loop if you want the program to print every
name which starts with a given letter. Many programs of this type can be
dealt with more satisfactorily by using an array to hold all the data in the
memory. The cassette data system is then being used as a store only, and all

Cassette Data Filing 177

of the selection is being done in the memory of the computer. You might
wonder if there is any advantage here as compared to having the data in
DATA lines. There is, because the data can be created by one program, and
used by several others. You can make the program that reads and uses the
data a fairly short one, so that there is room for a lot of data in the large
memory of the MSX computer. The cassette data system, in other words,
allows you to use short programs and lots of data.

Figure 11.13 shows how data from a program that has been put into the
cassette data system can be read back into an array. If we are to read items
into an array, we find ourselves facing a problem. The problem, you see, is
that we have to dimension the array so that it will hold all of the items. Todo
this we need to know how many items there will be. It’s easy enough if we
used an array to hold the items when we recorded. Suppose, for example,
that we INPUT the items into an array N$(J%), instead of recording
directly. We could then open the file, record the value of J% with a
PRINT#1,J%, and then set up a loop to record the array items. If we didn’t
use an array and didn’t count the items at the time when we recorded, what
can we do? One way out is to keep a note of the number of items, and enter it
in response to a question in the replay program. For example, you could use:

INPUT“How many items ”;N%:DIM NMS$(N%)

to get your dimensioning. Another possibility is to use a counter in the
recording program, such as:

INPUT NM§:N%=N%+1

and to record this number, using a filename that will relate it to the main
program, on another piece of tape. For example, if the main program is filed
as NAMES, the other one could be NUMBER. It may seem awkward, but
it’s a small price to pay for the sake of precise dimensioning. Precise
dimensioning means that you will never get an error message because of an
attempt to place too many items into an array. It also means that you are
using the memory of the MSX computer in the most efficient way, and that
can make the difference between being able to use as many items as you need
and being restricted to a lot less.

If, however, you have a file like our existing NAMES file, in which the
number of names is not known, perhaps because names are being added as
the file is updated, then we have to take drastic steps. This is another respect
in which disk filing is very much superior to cassette filing, because a number
can be recorded on a disk either before or after a set of data, and the number
read before the other data is needed. Figure 11.13 shows one approach
which is not too time-consuming even for fairly long files. In this program,
all of the items are read, one by one, and counted, until the end-of-file
marker is found. You are then asked to rewind the cassette. The number of
items in the file is now known, and an array can be correctly dimensioned.
The file can then be read again, this time placing the items into an array. The

178 Working with MSX BASIC

10 CLS:PRINTTAB(13) "NAMEFINDER" : PRINT
20 PRINT:PRINTTAB(1) "Load the names f
ile as instructed.”

3@ PRINT"When the file is completely
loaded, ":PRINT"type the first letter
of the names":PRINT"that you want to

see. "

49 PRINT"Type © to stop the action."

50 PRINT:PRINT"Wind the NAMES cassett

e to the start.":PRINT"Zero the count

er."

60 PRINT"FPress PLAY, then the SPACEBA

R when":PRINT"ready to start."”

79 IF INKEY$<>" "THEN 70

80 PRINT:PRINTTAB(19©)"PLEASE WAIT....

9% REM OFEN FILE

100 OPEN"CAS:NAMES"FOR INFUT AS 1,

110 J7.=0] :

120 INPUT #1,N%

130 J%=J7%+1

140 IF EOF(1)=0 THEN 120

150 CLOSE:CLS:PRINT:PRINT"PRESS STOP

KEY"

169 PRINT:PRINT"Now rewind tape to st

art again, and":PRINT"press PLAY. Fre

ss SPACEBAR again":PRINT"when ready."
170 REM Load array

189 IF INKEY$<{>" “"THEN 189

190 PRINT:PRINTTAB(1@)"PLEASE WAIT...

209 OPEN"CAS:NAMES"FOR INPUT AS 1

210 DIM NM%(JZ)

220 FOR NZ=1 TO J%

230 INPUT #1,NM$(NZ)

249 NEXT:CLOSE

2506 PRINT:PRINT"PRESS STOP KEY NOW"

269 FOR X=1 TO 2000:NEXT

279 CLS:PRINT:PRINT"Please type first
letter of name."

280 INPUT Q3:Q%=LEFT$(Q%,1) :ML=0

29@ FOR X%=1 TO J%

300 IF Q$=LEFTS$(NM$(X%L),1) THEN PRINT
NM$ (X7Z) s Mi=1

316 NEXT

320 IF MZ=0 AND R$<>"Q@"THENPRINT"Cann
ot find the name.":PRINT"Please try a
nother one."

330 IF Q3$<>"O0"THEN 260

349 PRINT"END OF PROGRAM

Fig. 11.13. Reading a file into an array. The file is read once to find how to
dimension the array, then again to get the items.

Cassette Data Filing 179

selection of names can then use a loop, because the file does not have to be
read again.

Looking at the program in detail, lines 10 to 60 print instructions, and line
70 is the usual spacebar detector. In line 80, the ‘Please wait’ message is
printed to remind you that you are waiting for the data to load. Variable J%
is zeroed, and the fast speed is selected by the computer, because the original
file was recorded at this speed. In the loop, each item is read, and the value of
J% is increased for each item. The file must be closed in line 150, because we
shall want to open it again later. We then have to rewind the cassette to the
zero mark again, and messages are printed as a reminder. The value of J% is
then used to dimension the array NMS$ in line 210, just before the names are
read from the file. Since we know the number of names, we can then use a
FOR...NEXT loop in lines 220 to 240 to read the names into the array. Once
the names are read, we can operate the NAMEFINDER action in lines 260
to 340. If a name is found, variable M9 is set to 1. If the name cannot be
found starting with the specified letter, M%=0, and the message in line 320 is
printed. When you press the 0 key to end the finding action, this also causes
M%=0, and the message in line 320 is suppressed by making the IF
condition M%=0 AND Q$<>*“0". If Q$="0", then the message is not
printed. It looks a lot neater that way! The entry of “0” is detected also in line
330, and the program then does not loop back.

Making amendments

Let’s be clear from the start that you cannot alter a file that is recorded on the
cassette data system. What you can do, though, is to read in a file, make
some alterations to it, and then re-record it. Using a cassette data system
means that you can record the new file using the same name on another part
of the cassette or on a different cassette. Using the same name allows the
updated file to be read by the same programs. This is not so easy to arrange
with a disk system. The technique which is shown in Fig. 11.14 follows the
program of Fig. 11.13 very closely.

Lines 10 to 260 are virtually the same as the corresponding lines in Fig.
11.13, except for the instructions. These lines dimension an array, and then
fill it with names. Line 150, however, now contains J9%=J%—1. This avoids
using the last item in the array, which is the terminator, X or 0, whichever
was used in the program that created the file. In this way, when we extend
the file we will have a continuous file with an X at the end, rather than a file
which has these marks scattered through it at each place where the file had
ended previously.

Lines 270 to 340 then re-record this file on a fresh piece of tape. You can
record over an old file, but this is risky and, if you value all the effort that you
have put into your files, don’t do it! You are then asked to type more names.
The stream is still open, so that no EOF mark has been recorded. This means

180

Working with MSX BASIC

10 CLS:PRINTTAB(11) "FILE UPDATE":PRIN
T=SCREEN,,,2

20 PRINT:PRINTTAB(1)"lLoad the names +
ile as instructed."”

30 PRINT"When the file is completely

loaded, ":PRINT"follow the instruction
s about":PRINT"re-recording it."

49 PRINT"You can now add items to the
file—":PRINT"Type o to end entry."
S5© PRINT:PRINT"Wind the NAMES cassett
e to the start.":PRINT"Zero the count

er."

&9 PRINT"Press PLAY, then the SPACEBA

R when":PRINT"ready to start."

70 IF INKEY$<>" "THEN 79

80 PRINT:PRINTTAB(10) "PLEASE WAIT....

90 REM OPEN FILE

100 OPEN"CAS:NAMES"FOR INPUT AS 1

119 J%=0

120 INPUT #1,Ns$

130 J7%=J%+1

149 IF EOF(1)=0 THEN 120

150 CLOSE:CLS:PRINT:PRINT"FPRESS STOP

KEY":J%4=J%—1:REM Get rid aof X

160 PRINT:PRINT"Now rewind tape to st

art again, and":PRINT"press PLAY. Pre

ss SPACEBAR again":PRINT"when ready."

1790 REM Load array

180 IF INKEY$<>" "THEN 180

1990 PRINT:FPRINTTAB(1@) "PLEASE WAIT...

200 OPEN"CAS:NAMES"FOR INPUT A5 1

212 DIM NM$(J%)

220 FOR N7Z=1 TO J%

230 INPUT #1,NMS% (NZ)

249 NEXT:CLOSE

250 PRINT:PRINT"PRESS STOP KEY NOW"

26@ FOR X=1 TO 2000:NEXT

2709 CLS:PRINT:PRINT"PLEASE FPREPARE TO
RE-RECORD THE FILE"™

280 PRINT"Find a clear space on the c

assette":PRINT"or use a new cassette.
Zero the":PRINT"counter again and fo

llow"

299 PRINT"the instructions.":PRINT"Fr

ess REC and PLAY, then the ":PRINT"sp

acebar when you are ready"

309 REM Re-record data

310 IF INKEY$<>" "THEN 310

Cassette Data Filing 181

320 OPEN"CAS:NAMES"FOR OUTPUT AS 1
330 FOR NZ=1 TO J%Z

340 PRINT#1,NMS$ (NZ) : NEXT

350 CLS:PRINT:PRINTTAB(14) "NEW ENTRY"
360 PRINT:PRINT"TYFE THE NAMES THAT Y
OU WANT TO ADD":PRINT"TO THE FILE NOW
. TYPE © TO END ENTRY":PRINT

370 INPUT"Name is— "3NM$

380 PRINT #1,NM$

390 IF NMS$<>"X"THEN 370

400 CLOSE

410 PRINT"END OF PROGRAM"

Fig. 11.14. Updating a file. This has to be done by reading the file, making
changes, and then recording again to a different part of the tape.

that anything else we add to the tape will be taken as part of the same file.
While you are doing this, the buffer may fill, and names will be recorded.
During this recording time, you will not be able to type more names. If you
type only a few names, however, the buffer will not fill, and you will not hear
the cassette system recording names until you have typed the X that ends the
entry. This completes the new file. If you want to check it, then RUN again,
and when you are asked to type more names, press STOP. Now type the line:

FOR Z=1 TO J9%:INMS$(Z);* ";:NEXT

and ENTER. You will then see all of the names being listed on the screen. If
you want to see the names listed in a more orderly way, or to select by letter,
or to sort alphabetically, then you will have to write a piece of program for
yourself! Note, incidentally, that we have done very little with MAXFILES.
The reason is that we can only work with one file at a time when we use
cassettes. The use of MAXFILES allows us to have several files open for
reading or writing, but this is useful only in a disk system. Changing between
reading and writing with a cassette means either changing cassettes or fast-
winding to a new position, so there is no point in having files kept open to
make it all slightly quicker for the computer!

Chapter Twelve

Editing, Fault-Tracing
and Miscellany

In a computer which permits as many commands as the MSX computer, it’s
impossible in a book of this size to cover everything in detail. As your
experience and confidence grow, however, you’ll find that you learn new
tricks faster, and that there are some instructions which only start to look
useful when you have come up against a problem that can’t be solved easily
any other way. In this chapter, we’ll be looking at a lot of the instructions
that can be used for making your programming easier, or for tracing faults,
or which just didn’t fit anywhere else.

To start with, there is the AUTO command. A lot of published programs
are written with line numbers that ascend in tens. If you type AUTO (then
RETURN), or just press the F2 key, then the word auto appears on the
screen - and so does the line number 10. You can then type your line 10, and
when you press RETURN, the next line number, 20, will appear. Using this
scheme, you don’t have to type any line numbers, which is good news if you
find that you tend to forget them. Suppose you want to start at line 100? No
problem: just type AUTO 100, then RETURN, and your first line number
will be 100. You can still use the F2 key to get the word auto. You want lines
that go up in fives, not tens? Then use AUTO 50,5 and you find that your
first line is 50, the next is 55 and so on. It’s a very useful dodge when you have
a lot of lines to enter. At the end of the program, just press CTRL/STOP,
and the automatic line numbering will stop.

As well as entering lines automatically, it’s often useful to be able to delete
lines automatically. If, for example, you have a program with a useful
subroutine which you want to save on tape, it’s useful to be able to delete
lines 10 to 4500, and be left with the subroutine which uses lines 5000 to
5050. There are computers, believe it or not, on which you have to type each
line number, then RETURN, just to do this! On the MSX computer, you
type DELETE 10-4500, press RETURN, and it’s done. You might wonder
how anyone could manage without it. The answer is - not very well!

There’s another command which is closely related to these. Suppose that
you have a program which is neatly numbered in tens, and that you remove
three lines, 240 to 260 inclusive. This might be because you have been able to
use a subroutine instead of these three lines. Your program now has a hole in

Editing, Fault-Tracing and Miscellany 183

it. Even more likely is that you have to add lines like 126, 127 to a program
just to get something extra in. The MSX computer allows you to make
everything neat again by using the RENUM command to renumber your
lines. Using RENUM (then RETURN) will number your program starting
at 10 and numbering in tens. RENUM100,10,5 will start your line numbers
at 100, and number in fives. You can renumber just as you want to, and you
don’t have to renumber all of a program. If, for example, you type
RENUM2000,160,10, then press RETURN, you’ll find that your program
is as it was as far as line 150, but the next line is 2000, and it’s numbered in
tens from then on. There are computers which can’t do this. Makes you
wonder what people can do with them.

Now what do you do with a subroutine when you want to use it in another
program? One useful answer is to save it on tape, but there is a special and
rather useful command for this. Instead of using CSAVE as you would for a
complete program, use the command SAVE. You have to follow this with a
filename, like “CAS:mysub”, placed within quotes, and you’ll then have to
press PLAY and REC on the recorder before pressing RETURN. Record
the subroutine, and then wind back the tape. Now use NEW to clear the
machine, and then type a few lines which have lower line numbers than the
lines of your subroutine. For example, if your subroutine has lines 5000 to
6000, then type lines 10 to 100. Now type MER GE “CAS:mysub”, using the
filename that you picked for your subroutine. Press RETURN, and then
press the PLAY key of the recorder. You will see the ‘Found:mysub’
message when the subroutine is found, and soon after, the O.k. appears.
Now list, and you will see that you have a merged program. Your lines 10 to
100 are now joined with lines 5000 to 6000 of the subroutine. This sort of
thing, which is not available on all computers, even some at fancy prices,
encourages you to program in the way that I have outlined in Chapter 6,
using subroutines. You can keep a stock of useful subroutines on tape, ready
to use. I find that there are subroutines that I use in all of my programs.
There’s always a Press-any-key routine, usually some sound effects, often
something that sorts words into alphabetical order. You, too, will find that
you have favourite subroutines, and you’ll greatly treasure this useful set of
commands. One thing you need to watch, though, is that anything you have
saved by using SAVE must be loaded by using MERGE or LOAD, not
CLOAD.

Editing

Editing means changing something that has already appeared on the screen.
Any feature of a line, including its line number, can be changed by editing.
The editing process can be carried out

(a) while a line is being entered, before RETURN has been pressed;

184 Working with MSX BASIC

(b) at a later stage, after a line has been entered, but before the program is
run;
(c) when an error is signalled during running.

For any form of editing, the line that you want to edit must be visible on the

screen. It doesn’t matter whereabouts on the screen it appears, or what other

lines or commands are placed around it. If you can see it, you can edit it!
Dealing with these in order:

(a) While a line is being entered, all of the editing commands, below, can be
used. Editing is completed by pressingthe RETURN key. This works even if
you are using auto line numbering.

(b) When the line has been entered, but the program has not been run, you
must make sure that the line is on the screen. Ifit is not, then type LIST xxx,
where xxx is the line number, and press RETURN. Remember that the key
F4 gives you the word ‘L1ST’, and key F9 (SHIFT FS5) gives ‘LIST.". The
difference is that LIST. will place the current line on the screen. This is the
line that you have just entered. After editing, you should then be careful to
use the cursor down-arrow key to move the cursor below the last line on the
program before using LIST or RUN.

(¢) When the program stops with an error message, the number of the line in
which an error has been traced will be put on to the screen. This does not
always mean that there is an error in this line. For example, if the line
contains READ X, and only strings can be read, an error will be signalled in
this line, because this is where the READ takes place. You need to alter a
RESTORE or a DATA line.

Editing commands

(1) Cursor movement. The cursor arrowed keys of the keyboard of the
MSX computer allow you to move the cursor around the screen. Many
MSX machines group these keys very conveniently together at the right-
hand side of the keyboard.

(2) To replace a letter, simply place the cursor over the error and type the
correct letter.

(3) To delete a letter, place the cursor over it and press the DEL key.
(4) To insert a letter, place the cursor over the letter that will follow the
insertion. Press the INS key, and then type the letter. You can then make
several insertions without pressing INS again. Pressing INS again stops
insertion. Insertion is also stopped when you press the cursor controls or the
RETURN key. When the cursor is being used for insertion, it changes to
half its normal height. Watch out for this, because it’s a good way of
checking that insertion will actually take place. It’s annoying to think that
you are inserting when you are, in fact, replacing letters!

(5) Pressing CTRL E(CTRL key and E key together) will delete everything

Editing, Fault-Tracing and Miscellany 185

in a line to the right of the cursor. ‘Line’ in this sense means a complete
numbered BASIC line, which may take several lines on the screen.

(6) The CTRL I key pair moves the cursor eight spaces to the right. You can
also use the TAB key to do this.

(7) Pressing RETURN ends editing, and places the line into memory. If you
don’t press RETURN after editing a line, but only move to another line by
using the cursor controls, then no ‘editing is carried out.

Figure 12.1 lists the uses of the CTRL and other keys pressed together.
Many of these actions duplicate others. You can obtain these effects in a

KEY=key which is pressed along with CTRL.
KEY Effect

Make next character a graphic.

Move cursor to first character of word to the left.
Stop program,

Delete rest of line.

Move cursor to first character of next word.
Sound beep.

Backspace cursor by one step and delete character.
Move cursor eight spaces to the right.

Move cursor to first position on next line.

Move cursor to top left corner of screen.

Clear the screen.

As for RETURN key.

Cursor to end of line.

Insert character at cursor position.

Delete line.

Cursor right.

Cursor left.

Cursor up.

SHIFT- Cursor down.

> rsromZZUOR="TOoTOnOW»

Fig. 12.7. The actions that you can obtain by using the CTRL key along with
others.

program by using an instruction such as PRINT CHR$(11), which homes
the cursor to the top left-hand side of the screen.

Digging out the bugs
In computing language, a fault in a program is called a bug, and someone

who puts the faults there is called, of course, a programmer. Your programs
can exhibit many kinds of bugs, and a lot of these are indicated by the error

186 Working with MSX BASIC

messages that you get when you try to run a program. Some of these
messages are pretty obvious. ‘Undefined line number’, for example, means
that you have used a command like GOTOI1000 or GOSUBI1000 and
forgotten to write line 1000. It can also appear if you have tried to
DELETE1000 with no line 1000, or if you have a THEN I000ELSE2000
following an IF somewhere.

The most common fault message is ‘Syntax error’. This means that you
have wrongly used some of the reserved words of BASIC. You might have
spelled a word incorrectly, like PRIBT instead of PRINT. You might have
missed out a bracket, a comma, a semicolon, or put a semicolon in place
of a colon. Machines can’t tell what you meant to do, they can only
slavishly do exactly what you tell them. If you haven’t used BASIC in exactly
the way the machine expects, you'll find a syntax error being reported.
Another common error is ‘Illegal function call’. This usually means that
something silly has happened involving a number. You might, for example,
have used TAB(300). Of course, having read this book, you wouldn’t write
TAB(300) in a program, but you might have TAB(N), and the value of N has
gone to 300 in some sneaky way. Anything that makes use of numbers, like
MIDS, LEFTS$, RIGHTS, INSTR, STRINGS, and others can have an
incorrect number used — and this will cause the ‘Illegal function call’ error.
You will also find that using a negative number in SQR(N), a negative or
zero value in LOG(N), and other mathematical impossibilities will cause this
error message. The cause shouldn’t be hard to trace, because the machine
tells you which line caused the trouble.

A lot of errors can find their way into programs, even when you are
entering a program that has been printed in a magazine. In general, the
programs that you find in the monthly computing magazines are pretty
reliable, but some are printed in a way that makes it difficult for you to enter
them correctly. The main problems arise when the author of the program
has used I (capital I) or 1 (small L) as a variable name, or has used a printer
which does not have slashed zeros. Of these, confusion between O and 0 is
the worst. A line like:

IFM=100RJ=40ORD=2

can cause a lot of trouble, and one magazine seems to specialise in lines like
this! If it had been printed as:

IF M=10 OR J=4 OR D=2

all would have been clear. Sometimes this has to be done just so as to be able
to get a program to fit into the memory of a computer, but this is the only
real excuse. You have to be particularly careful with sound programs,
because of the use of O to mean Octave. In your own programs, beware of
using letters O and I as variable names.

Even when you have eliminated all of the syntax errors and illegal
function calls, you may still find that your program does not do what it

Editing, Fault-Tracing and Miscellany 187

should. The MSX computer does what any machine of the nineteen eighties
should do - it gives you a lot of ways of finding out exactly what has gone
wrong. One of the most powerful of these is the STOP key. This, as you
know, stops the action of the machine when you press it, and restarts it when
you press STOP for a second time. This, as we’ll see later, can be very useful
for graphics bug-hunting, but for other programs, pressing CTRL and
STOP is more useful. This stops the program, and prints the line number in
which the program stopped. What you probably don’t know, however, is
that you can print out the values of variables, and even alter values while the
program is stopped, and then you can make the program resume by using
CONT. Suppose, for example, you try the simple programin Fig. 12.2. This
is a slow count, and you should run it, and then press CTRL STOP at some
early stage. The program stops, and you get a message like ‘Break in 30°.

16 FOR N=1 TD1ooo
20 PRINTN

3@ FDRJ=1 TO 500:NEXT
490 NEXT

Fig. 12.2. Wustrating the use of the CTRL/STOP method of checking.

That line number, 30, is important, because this is where the program has
stopped. You can start the program again at that line, using CONT,
providing you don’t edit, delete or add to any of the lines of the program.
Try typing 7N,J and RETURN. This will give you the value of N and J. Now
try N=998 and press RETURN. Type CONT, then RETURN. You will
then see the count start again - but at 999! This is an excellent way of testing
what will happen at the end of a long loop. Testing would be a rather time-
consuming business if you had to wait until the count got there by itself. You
can even make this testing process automatic! Take a look at Fig. 12.3. This

S STOP ON:ON STOP GOSUB 1000
1@ FOR N=1 TO1000

20 FRINTN

30 FORJ=1 TO S00:NEXT

40 NEXT

100 END

1960 PRINTN,J:=N=998: RETURN

Fig. 12.3. Automatic checking with CTRL/STOP, using a subroutine.

uses line 5 to make sure that a subroutine is run whenever the CTRL and
STOP keys are pressed together. In this case, the effect will be to print the
values of N and J, alter the value of N to 998, and then continue. To cancel
the effect of line 5, you can add the line:

50 STOP OFF

STOP used alone can be most useful when you have a graphics program

188 Working with MSX BASIC

that has gone wrong. When you press STOP, the graphics action will be
frozen, and you can use this to see in what order things happen. Pressing
STOP again resumes the action, and there is no limit to the number of times
that you can press the STOP key to check on how the picture is changing. If
this alone isn’t enough, add a delay loop temporarily to your graphics
program, and run it in slow motion, using STOP to check the tricky parts.
The alternative is to put in an ON STOP GOSUB routine which includes a
time delay.

Tracing the loops

One way in which a program can be baffling is when it runs without
producing any error messages — but doesn’t run correctly. This is really a
sign of faulty planning, but sometimes it’s an oversight. The ON STOP
GOSUB method of tracing a fault can then be very useful, because it allows
you to print out the state of the variables at any stage in the program, and
then carry on. Sometimes you want a simpler form of tracing, though. If
your program contains a lot of IF... THEN...ELSE lines, it often happens
that one of these does not do what you expect. In such a case, the MSX
computer provides help for you in the form of two commands TRON and
TROFF.

TRON means TRACE ON, and its effect is to print on the screen the line
number of each line as it is executed. The line numbers are put between
square brackets, and they are printed at the start of a screen line, in front of
anything the program prints. Try printing TRON and then running the
program of Fig. 12.3. TRON is particularly useful if you aren’t sure what a
program is doing, and it can be very handy in pointing out when something
goes wrong with a loop.

Remember that you can combine TRON with other de-bugging
commands. You can, for example, stop the program, alter the variables, and
then continue, with TRON showing you which lines are being executed.
Typing TROFF (then RETURN) switches off this tracing process.

Error trapping

Earlier in this book, we came across the idea of mugtrapping. This is a way
of checking data that has been entered at the keyboard, to see if it makes
sense or not. The mugtrapping is carried out by using lines such as:

60 IF LEN(A$)=0 THEN GOSUB 1000:GOTO 50

and you need a separate type of mugtrap foreach possible error. This can be
fairly tedious, and it usually turns out that there is one other error that you
haven’t spotted. The MSX computer is one of the exclusive few machines

Editing, Fault-Tracing and Miscellany 189

that offer you another mugtrapping command, ON ERROR GOTO or ON
ERROR GOSUB. Figure 12.4 gives a very artificial example - a real-life

10 ON ERROR GOTO10@@

20 PRINT"Type a word please”

30 INPUT A%

40 L=LEN{A®)

56 PRINT1/L

69 END

1099 PRINT"Word has no lettersi®
1010 RESUME 20

Fig. 12.4. Using the ON ERROR GOTO command.

example would involve too much typing. In this example, the length of a
word is measured, and the number is inverted (divided into 1). This is
impossible if the length is zero, and the ON ERROR GOTO is designed to
trap this. You could get a zero entry, for example, by pressing RETURN
without having pressed any other keys. Now normally, when this happened,
you would get an error message, and the program would stop. The great
value of using ON ERROR GOTO is that the program does not stop when
an error is found; instead it goes to the subroutine. In this example, the
subroutine prints a message, then resumes on line 20. Using RESUME by
itself would cause the program to go back to the line which contains the
error. Unless the subroutine has corrected the error, this can cause an
endless loop! Error trapping is delightfully simple, but it’s something that
calls for experience. You see, if your program still contains things like
syntax errors, these also will cause the subroutine to run, and this can make
the program look rather baffling as it suddenly goes to another line. You can
use RESUME NEXT if you want the program to skip a line, and this is often
more useful, because it does not take you back to a fixed line number like 20.
If you use RESUME NEXT, then an error in line 100 will take you to 110,
and error in line 540 will take you to 550, and so on, assuming that your lines
are numbered in tens.

Figure 12.5 shows another example. Line 20 ensures that any error will

1@ CLS

20 ON ERROR GOTOD 1909

30 FOR N%Z=1 TO S

49 READ X7Z:Y$=STR$ (CSNG (SRR (X%)))

39 PRINT"Number ";XX;" ";"sguare root
";Ys

69 NEXT

7@ DATA 5,4,3,-2,2

80 END

1000 Y$=STR$ (CSNG (SAR (ABS (XZ))))+"J*"
1910 RESUME NEXT

Fig. 12.5. Another example of error checking, with an automatic resumption.

192 Working with MSX BASIC

also by using CHR$(13), and this is often a useful addition to LIST. You can
use up to fifteen characters on each of these keys, and by careful selection,
you can save yourself a lot of typing. It’s useful, for example, to have
PRINTTAB(on a key, and SOUND can be another useful word in some
programs.

Finally, one odd item. If you want to control the motor of the cassette
recorder separately, you can use the commands MOTOR ON and MOTOR
OFF. This allows the computer to control background music for colour
displays, or spoken instructions for educational programs when the jack
plug is removed from the EAR socket. You can also use this to allow the fast
forward and rewind actions to take place without removing the motor
control plug. This can be useful in many of the programs in Chapter 11
which require the cassette to be rewound.

That’s the end of this particular road for me, but only the beginning for
you. Any model of MSX computer is a fascinating bag of tricks, all of which
you will gradually learn to unlock. This book should have unlocked some of
the secrets for you, and the rest is now up to you. By this time, you should be
able to cope with the way in which commands are described in the manual.
From now on, each time you settle down to write a program, you will be
learning more about your computer. This is something that you can never
acquire from running programs, or even from studying programs that were
written by other people. By all means, look carefully at programs in the
magazines. You will find that a lot of programs that are written for the TRS-
80 or for the Dragon can be adapted for the MSX computer, and so also can
programs for the Colour Genie and Spectravideo SV-318 and SV-328. Very
soon, you will find a huge variety of program ideas which are available for
you to use. Happy programming!

Appendix A
TV and Cassette Hints

The set-up and connection of your TV receiver and cassette recorder to the
MSX computer should be well dealt with in the manual that comes with the
computer. There are a number of useful hints, however, particularly on
tuning TV receivers and checking and adjusting cassette recorders that are
not dealt with in the manuals. This Appendix is a guide which will take over
where the manual leaves off.

One of the first things that you may need to attend to is an aerial splitter. If
you use one TV for entertainment and for computing, it does it no good at
all to have to keep plugging and unplugging aerial connections. The answer
is a two-way aerial splitter, such as the one illustrated in Fig. A.1. Thisis sold
under various names, such as Pandapack. When you have this plugged in to
the TV, the TV aerial lead can be plugged into one socket and the lead from
the computer into another. All you need to do to switch from Dallas to
computing is to switch on the computer and change channels! If you can
keep asecond TV for use with the computer, of course, then you won’t need
this.

The alternative to a TV receiver is to use a monitor. A monitor looks like a
TV, but it can’t receive signals from an aerial. It produces a much clearer

Lead from computer in here

Aerial Lead
in here

Plugs tnto T.V.

Fig. A.7. Atwo-way splitter for the aerial socket of your TV. Using this, you can
keep the aerial connected, and also have the computer lead connected
permanently.

194 Working with MSX BASIC

picture, and doesn’t need tuning, because it uses the signals from the
computer directly. Some types of monitors can also be used along with
Video Recorders so as to get a clearer picture from recordings also. The
MSX computers can be connected to a monitor by using the socket that is
marked VIDEQ - the type of socket and the position of it will vary from one
make of computer to another. A special connecting cable will also be
required. The monitor must be one that uses a composite video input.

It’s a good idea to see how many mains sockets you have around, and
where you are going to house everything. When you are in full control of
your computer you will need three mains sockets, one for the computer, one
for the cassette recorder, and one for the TV receiver. Most houses have
desperately few sockets fitted, so you will find it worthwhile to buy or make
up an extension lead that consists of a three- or four-way socket strip with a
cable and a plug (Fig. A.2). This avoids a lot of clutter - you don’t want to
bring your computer crashing to the floor when you trip over a cable. Don’t
rely on the old-fashioned type of three-way adaptor - they never produce
really reliable contacts. Most of the MSX computers have their own on/ off
switches, but you should a/ways take out the mains plug when you have
finished a computing session.

Fig. A.2. A four-way socket strip which avoids the use of the old-style
adaptors.

When you have the essential basic equipment, consisting of the computer
keyboard, TV or monitor and the cassette recorder, quite a lot of flat surface
is needed. Later on, you will probably want to add joysticks, a printer, disk
drives and other extras which make the difference between having a real
computer system and just having a computer. All of this needs space, and
the best way that I have found of organising this is one of the computer
stands made by Selmor (Fig. A.3). If you aren’t at that stage yet, then a
good-sized desk or table will have to suffice for the time being. Computing is
like hi-fi - there’s always something else that you can buy!

TV and Cassette Hints 195

Monitor or TV

Recorder

Fig. A.3. Using a Selmor stand to house all the bits and pieces of a typical
computer system.

Tuning a TV receiver

Unless you are exceptionally lucky, you will probably see nothing appear on
the TV screen, and hear only a loud rushing sound from the loudspeaker of
the TV when you first try it. This is because a TV receiver has to be tuned to
the signal from the MSX computer. Unless you have been using a video
cassette recorder, and the TV has a tuning button that is marked VCR it’s
unlikely that you will be able to get the MSX computer tuning signal to
appear on the screen of the TV simply by pressing tuning buttons. The next
step, then, is to tune the TV to the MSX computer’s signals.

Figure A.4 shows the three main methods that are used for tuning TV
receivers in this country. The simplest type is the dial tuning system that is
illustrated in Fig. A.4(a). This is the type of tuning system that you find on
black/white portables, and to get the MSX computer’s signal on the screen,
you only have to turn the dial. If the dial is marked with numbers, then you
should look for the signal somewhere between numbers 30 and 40. If the dial

196 Working with MSX BASIC

(a)

L Tuning dial-
L
turn to tune

- Select by pushing in
Tune by twisting

(c) Selector Switch-press

™\

Adjusting
Whee!
(turnto tune)

S

T (D (TR R GETED QD

Tuning Panel Cover

Fig. A.4. TV tuning controls: (a) single dial, as used on B&W portables, (b) the
four-button, (c) the more modern touch-pad or miniature switch type.

TV and Cassette Hints 197

isn’t marked, which is unusual, then start with the dial turned fully
anticlockwise as far as it will go, and slowly turn it clockwise until you see
the MSX computer signal appear. If you turn the volume control up slightly
so that you can hear the rushing noise of the untuned receiver, you will hear
things go quiet as the MSX computer signal appears. You may find that
there is some reduction in the sound level as you tune to a local TV
transmission, but you’ll notice the difference. The MSX computer doesn’t
give you the sound of Dallas!

What you are looking for, if the MSX computer hasn’t been touched since
you switched it on, is the screen display that is illustrated in Fig. A.5. The top
part of this display is a copyright notice, along with a note of how much
memory is free for you to use.

MSX BASIC version 1.0
Copyright 1983 by Microsoft
28815 Bytes free

O.k.

Nore: The number of bytes free will vary, depending on which machine is in
use.

Fig. A.5. The copyright notice which should appear on your screen when the
tuning is correct.

When you can see the words as in Fig. A.5, turn the dial carefully, turning
slightly in each direction until you find a setting in which the words are really
clear. If you turn up the volume control setting, you should find that the
amount of rushing sound that you hear is at its lowest, almost silent. On a
colour TV receiver the words may never be particularly clear, but get them
steady, at least, and as clear as possible.

The older types of colour and B/ W TV receivers used mechanical push-
buttons, as shown in Fig. A.4(b), which engage with a loud clonk when you
push them. There are usually four of these buttons, and you’ll need to use a
spare one - which for most of us means the fourth one. Push this one in fully.
Tuning i1s now carried out by rotating this button. Try rotating
anticlockwise first of all, and don’t be surprised by how many times you can

198 Working with MSX BASIC

turn the button before it comes to a stop. If you tune to the MSX computer’s
signal during this time, you’ll see and hear the same signs - the message on
the screen and the reduction in the noise from the loudspeaker. If you’ve
turned the button all the way anticlockwise and not seen the tuning signal,
then you’ll have to turn it in the opposite direction, clockwise, until you do.
If you can’t find the MSX computer signal at any setting, check that the
plugs on the TV aerial cable are not loose. If you have an aerial handy, plug
it in and use the other tuning buttons to check that you can receive normal
TV signals. If you can, there’s nothing wrong with the TV, so switch back
and try again to find the MSX computer signal.

Modern TV receivers are equipped with touch pads or very small push-
buttons for selecting transmissions. These are used for selection only, not for
tuning. The tuning is carried out by a set of miniature knobs or wheels that
are located behind a panel which may be at the side or at the front of the
receiver, as in Fig. A.4(c). The buttons or touch pads are usually numbered,
and corresponding numbers are marked on the tuning wheels or knobs. Use
the highest number available (usually 6 or 12), press the pad or button for
this number, and then find the knob or wheel which also carries this number.
Tuning is carried out by turning this knob or wheel. Once again, you are
looking for a clear picture on the screen and silence from the loudspeaker.
On this type of receiver, the picture is usually fine-tuned automatically when
you put the cover back on the tuning panel, so don’t leave it off. If you do,
the receiver’s circuits that keep it in tune can’t operate, and you will find that
the tuning alters, so that you have to keep retuning. The MSX computer
should give a good picture on practically any TV receiver. I tried it with
several, and even my Philips portable colour TV, which does not work well
with computers, gave a reasonably good picture with the MSX computer. If
your TV exhibits faults like a shaking picture, or very blurred colours, then
check the tuning carefully. If the faults persist, and the TV is correctly tuned,
you will have to contact the service agents for the TV - or use a different
model in future!

The cassette recorder

The computer has circuits which will convert the instructions of a program
into musical tones, which can then be recorded on any cassette recorder.
When these notes are replayed, another set of circuits will convert the signals
back into the form of a program. In this way, the use of a cassette recorder
allows you to record your program on tape and to replay them again. If you
don’t already have a cassette recorder, buy one which has a tape counter and
which allows motor on/off control, because this is much more suited to the
MSX computer. You don’t need a special hi-fi model, a reasonable make of
portable battery/mains machine is ideal, and there are lots to choose from.
You could, for example, buy one which is manufactured by the same makers

TV and Cassette Hints 199

as your computer. If you already have a recorder, you can probably use it,
but life will be harder if it does not allow for remote control of the motor,
and has no tape counter.

The next thing that you have to sort out is a supply of blank cassettes.
There’s nothing wrong with using reputable brands of C90-length cassettes
(ordinary ferric tape, not the hi-fi CrO, type), but you’ll find that the short
lengths of tape that are sold as C5, C10 or C15 in computer shops and in
most branches of W. H. Smiths, Boots, and Currys are much more useful.
Then make sure that the recorder is connected as shown in your manual. Put
a fresh cassette into the machine, with the 1 or A side uppermost. The first
part of the cassette tape consists of a leader, which is plain, not recording,
tape. This has to be wound on before you can record. Reset the tape counter
to zero by pressing the little button, and then fast-wind the cassette to a
count of 5. Now before you can make a recording to test the system, you
need a program to record, and this involves some typing. If you have no
program in the machine, then type four lines of REM, as in Fig. A.6.

10 REM
20 REM
30 REM
4@ REM

Fig. A.6. A program for testing the cassette recording and replaying actions

Now make sure that the cassette recorder is ready, with the cassette in
place and wound on to a count of 5. Type CSAVE“test”, and then press the
PLAY and RECord keys on the tape recorder. Press them firmly so that
they lock in place. The motor of the recorder should not start running until
you press RETURN, unless you have no remote motor control. After a
short time, the ‘O.k.” and the cursor of the MSX computer will reappear on
the screen, and the motor of the recorder will stop automatically. This lets
you know that the program has been recorded, and you can press the STOP
key of the recorder so that the tape is released. Get into the habit of pressingthe
STOP key after completing a recording, because if you don’t, it can damage
the rubber wheel that moves the tape. That’s all that’s involved in making the
recording. Now comes the crunch. You have to be sure that the recording
was successful. Wind back the tape again. Type NEW and press RETURN.
This should have wiped your program from the memory.

You can now load the instructions infromthe tape. Typeeither CLOAD or
CLOAD“TEST” and press RETURN. Now press the PLLAY key of the recorder
(did you rewind the tape?). As the tape plays, you will first see the message:
‘FOUND: test’ appear on the screen, assuming that you used the filename of
test when you recorded. This will be followed very quickly by the ‘O.k.’
message to show that the loading operation is complete. When this appears,
the program is in place, and the recorder motor stops. You should then press
the STOP key of the recorder. Type LIST now, then press the RETURN
key. You should see your program appear on the screen.

200 Working with MSX BASIC

Cleaning tapeheads

Any cassette recorder which gets a lot of use will eventually need head
cleaning. The tapehead is the part of the machine that the tape rubs against,
and any dirt on the tape will accumulate on the head. This has the result of
building up a film of dirt between the head and the tape. This makes the
signals from the tape fainter and more distorted when we replay tapes, and
can result in errors appearing in programs. Fortunately, it’s simple to clean a
head, using one of the head-cleaning kits that you can buy in Boots, W. H.
Smiths, or any audio dealers. These work very much more satisfactorily
than the cleaning-tapes that you can also buy.

The cleaning kit contains some liquid, some cloth, and usually some pads
on the end of plastic rods. Be careful not to spill the cleaning liquid over your
notes, because it will cause anything written in ball-point ink to smear, and it
might dissolve some types of plastics. Start by switching on the computer
and opening the recorder lid, as if you were going to put a cassette into it.
Now press the PLAY key. When you do this, you will see the recording head
appear. This is the head in the middle of the gap, not the (plastic) one at the
left-hand side. There will be a rubber wheel at the right-hand side. Moisten a
cleaning pad with some of the cleaning liquid, and rub the moist pad against
the curved face of the recording head for a few seconds. Take another clean
pad, moisten it with cleaning liquid, and hold it gently against the rubber
wheel as it revolves. Don’t put so much pressure on the wheel that it stops.
Leave the recorder with the lid open for a minute so that the liquid can
evaporate, then press the STOP key, and shut the lid again. Once every few
months should be often enough for this unless you are using cassettes for
hours each day.

Finally, if you find that your recorder works perfectly with your own
tapes, but refuses to load commercial tapes, or tapes belonging to your
friends, then the fault is tapehead alignment. You’'ll find advice on this in
Appendix B, which follows.

Appendix B

Cassette Head
Adjustment

Cassette recorders, like open-reel tape recorders, work on the principle of
pulling plastic tape, which has been coated with magnetic material, past a
‘tapehead’, which is a miniature electromagnet. The important part of any
tapehead is the ‘gap’, a tiny slit in the metal, too fine to see except under a
microscope. This slit should be placed so that it is at 90° to the direction of
movement of the tape, but this angle, which can be adjusted by tilting the
whole tapehead, is seldom precisely set, even when the recorder has been
quite expensive. A poorly set-up head will make it difficult to load programs
that have been recorded on correctly set-up equipment (bought software, for
example), though you will always be able to load tapes which have been

CASSETTE RECORDER HEAD ALIGNMENT METHOD

(1) Insert a cassette, with a long program, into the recorder.

(2) Remove cable connections between the computer and therecorder.

(3) Start playing the cassette. Set the volume control to a comfortable
level, and listen. Any tone control should be set to give maximum
treble.

(4) Insert a thin-bladed screwdriver into the head-alignment screw-
head. On some recorders this isreached with the cassette flap shut,
through a hole inthe casing. On other models, it will be necessary to
open the flap. This may have to be done before playing the tape.

(5) Adjust the azimuth screw slightly in each direction, listening to
increase in the treble (a sharper sound). If adjustment causes the
note to sound more muffled, reverse the direction of turning. Adjust
until the note is at its sharpest.

(6) Rewind the cassette, and make the connections between the
computer and the recorder.

(7) Try to load a program. If good loading cannotbe achieved, repeat the
procedure, but look for another setting which produces maximum
treble.

(8) NOTE that this procedure is needed only if a tape from a reputable
source cannot be loaded. Tapes made on a recorder will be loaded
by that recorder unless there is a serious fault. Once the adjustment
described above has been carried out, tapes recorded before the
adjustment may not load correctly after the adjustment.

202 Working with MSX BASIC

saved on the same equipment with the same head adjustment. NEVER
touch the recording head with anything metal -~ but you can set the
alignment fairly easily, following the scheme outlined here, in Fig. B.1.

|
Head gap | 90°
' /
A 7 gy
(a) Tape 1 !
!
T
} (View from back of head)
P’\ﬁ \
T——T
Adjusting Rear of head
screw | 44— (tacing keys of
recorder)
L L]
t i ola IR
Spring
(c)
of
(d) tid
Azimuth adjusting F-»O
hole

L

Fig. B1. Tape-head azimuth. The narrow slitin the tape-head(a) is normally at
90° to the edge of the tape This is the correct azimuth angle, butasurprising
number of recorders have this maladjusted. Any deviation from this angle (b)
causes muffled sound and poor loading. The angle can be altered by turning
an adjusting screw (c) which is on the head mounting. This is often reached
through a hole in the casing of the recorder (d). (Courtesy of Keith Dickson
Publishing.)

Appendix C
Some Other Commands

Even in a book of this size, it's impossible to deal with all of the commands
of MSX BASIC. One reason is that there are quite a number of commands
that require a knowledge of much more than BASIC to make use of. Several
commands, for example, are provided so as to make the machine very useful
for machine code programmers. Among these are BLOAD and BSAVE.
These are versions of CLOAD and CSAVE which load to and save from
specified parts of the memory. These commands will, for example, allow
you to save machine code programs separately from BASIC, and also to
load a machine code program without disturbing a BASIC program which
is already in the memory. DEF USR is used to put into a BASIC program
reference address numbers for machine code programs, so that the BASIC
program may call these up by means of the USR command. This is because
many subroutines which take a long time to run in BASIC will run very fast
in machine code. CALL is used to run routines from a ROM cartridge.
BASE is used to find where video patterns are stored, and VARPTR is used
to find where variable values are stored. VPEEK and VPOKE are used in
connection with the video display memory (try VPOKEI120,65, for
example), and PEEK and POKE will affect the main memory. VDP is used
to alter values in the video display registers (like the sound registers). All of
these commands require you to have a good knowledge of what goes on
inside the computer. If you program only in BASIC, it’s most unlikely that
you will ever need any of them.

Other commands have been omitted because they are seldom needed
when you first start to program. Of these, LPRINT and LLIST refer to
printer use, and should not be used unless you have a printer on line. They
operate in the same way as the familiar PRINT and LIST. LPOS is a way of
finding the position of the printer head. One of the SCREEN commands can
be used to switch between MSX and non-MSX printer types. Of the
commands which relate to joysticks, only STRIG has been mentioned,
because not many readers are likely to be writing programs which use
joysticks right away. Similarly, I have omitted some of the less useful sound
commands such as the use of PLAY to find if a string is being played or not.
Life’s too short for all of them, and by the time you are ready for them, you
will have found out how to make effective use of the definitions of keywords
in the manual.

Index

action code numbers, 55
add, 10

aerial splitter, 193

air pressure, 143
alphabetical order, 2, 56
amending file, 179
amplitude, 145

angle command in DRAW, 126

animating sprite, 131
animation, 128
apostrophe, 17
appearance of circles, 112
arithmetic actions, 11
array filling example, 178
ASC, 54

ASCII code, 46, 162
assignment, 20

asterisk, 12

AUTO, 12, 182
automatic resumption, 189

background colour, 105
backspace key, 7
BASE, 203

BASIC, 2

bass note, 144

BCD form, 31

BEEP, 145

blank cassettes, 199
blank lines, 17
BLOAD, 203

blocks of data, 170
border colour, 105
bottom line of screen, 6
bouncing ball routine, 116
box command, 110
brackets, 36

branching, 4

BSAVE, 203

buffer, 164, 168

bug, 185
byte, 5, 162

CALL, 203

calling a function, 42
cancel editing, 185
capital letters, 8

CAPS key, 8

cartridge, 9

CAS:, 162

cassette data filing, 162
cassette recorder, 198
cassette system filing, 166
cassette test program, 199
centring, 47

centring formula, 19
centring subroutine, 81
character codes, 98
CHRS, 55

CIRCLE, 112

CLEAR, 45, 120
clearing buffer, 168
clearing variable, 92
CLOSE, 170

CLS, 17

co-ordinates, 123
coarse pitch number, 156
code numbers, 13
CODE key, 8

coded message, 74
codes 0 to 31, 56
collisions of sprites, 135
colon, 16, 164
COLOR, 102

colour, 97

colour 0, 103

colour monitor, 103
colour TV, 103
columns, 77

comma, 17

206 /ndex

comparing numbers, 68
comparing strings, 56
compiler, 8

composite video input, 194
computer, 2

computer stand, 194
concatenation, 44
constants, 29

CONT, 187

controlling motor, 192
copyright notice, 197

core program, 88
correcting circle shape, 113
counting, 32

creating file, 166

creating sprite, [28
crochet, 146

CRT:, 162

CSNG use, 190

CTRL E keys, 184

CTRL I keys, 185

CTRL key, 7

CTRL key actions, 185
CTRL/STOP keys, 4, 61, 187
current line, 184

cursor, 6

cursor keys, 184

cursor movement, 184
cycle of wave, 144

Dartmouth College, 2
data, 162

DATA, 26, 74

data recording, 163
database programs, 85
decimal places, 27
decrementing, 32

DEF FN, 41

DEF USR, 203

default precision, 32
defining in advance, 30
DEFINT, 30
degree-radian conversion, 38
delay loop, 63

DELETE, 101, 182

delete a letter, 184
descending pitch note, 156
design of programs, 85

design steps, number guessing, 71
design using graphics shapes, 100

device, 162
device name, 164
diagonals, 121
dial tuning, 195

diamond patterns, 122
dimensioning array, 177
dimensioning subroutine, 94
direct mode, 10

disk system, 166
displacement, 108

divide sign, 12

division with integers, 30
dollar sign ($), 21
double-precision, 32
double-precision numbers, 29
DRAW, 118

DRAW error, 119

DRAW example, 119
drumbeats, 160

dummy variable, 59
duration of notes, 146

editing, 183

editing commands, 10
editing keys, 7
elaborate drawing, 120
ellipses, 113

ELSE, 69

end-of-file code, 174
ending editing, 185
endless loop, 10
ENTER key, 4
envelope of sound, 150
envelopes, standard, 151
EOF, 175

equality sign, 33

error code numbers, 190
error message, 3

error trapping, 182
ESC key, 7

even numbers file, 169
execute substring, 119
expanding outline, 88
exponentiation, 34
expression, 19
extending program, 95

F2 key, 182

F6 key, 103

faster tape action, 172
fault finding, 185
field, 165

file, 164

filename, 164

filing names, 173
filling number array, 75
filling with colour, 111
fine pitch number, 156

flashing arrow, 82
flashing asterisk, 81
flat-pad keys, 5

FOR, 62

foreground colour, 105
formatting, 27

formula translation, 36
FORTRAN, 36
foundation program, 87
FRE, 58

frequency, 144
function key display, 72
functions of angles, 37
fundamental frequency, 158

getting attention, 145

giant sprite demonstration, 139
GOSUB, 80

GOTO, 61

GOTO problems, 70

graph drawing program, 108
GRAPH key, 8, 98

graph paper, 106, 122
graphics, 97

graphics cursor, 105
graphics fault finding, 187
graphics screens, 104
graphics string letters, 118
growth of pattern, 125
GRP:, 105, 162

hammer blows, 161

hard copy, 15

hash mark (#), 28, 164
head adjustment, 201
head-cleaning kit, 200
hertz, 144

high resolution screen, 104
higher speed operation, 172

IF, 66

illegal function call, 19, 45, 186
illegal function in A, 126
including sound, 93
incomplete shapes, 98
Incredible Hulk graphics, 125
incrementing, 32

indenting, 18

INKEYS, 53

INKEYS$ subroutine, 90
INPUT, 23

INPUTS, 58

insert a letter, 184

INSTR, 59

Index

instruction words, 11
INT, 39

integers, 29
interpreted BASIC, 8
interrupts, 131
INTERVAL, 132
intrinsic functions, 40
inverted commas, 14
invisible character, 52
invisible colour, 103

joining lines, 109

joining shapes, 126
joystick control, sprite, 140
jumping out of loop, 66

KEY OFF, 72

KEY ON, 72
keyboard, 5
keyboard graphics, 97
keyclick, 145
KEYLIST, 191
keywords, 3

kilobyte, 5

leader, 199

LEFTS, 49

LEN, 47

length control letter, 149
letter pyramid, 73
LINE, 109

LINE INPUT, 25

line number, 11

line number change, 183
LIST, 4

LIST. command, 184
LLIST, 15, 203
LOCATE, 21

logarithm, 38

loop, 61

loop counter value, 64
looping, 4

loudness marks in music, 146
loudspeaker, 143
lower-case, 7

LPOS, 20

LPRINT, 15, 203

LPT:, 162

M control letter, 151
machine code, 2, 85
mains sockets, 194
mammoth sprites, 137
mathematical terms, 32

207

208 /ndex

matrix, 77

MAXFILES, 168, 181
maze games, 117

MDAS order, 35
mechanical pushbuttons, 197
memory, 1, 5

memory use, 115

menu, 79

MERGE, 183

messages on screen, 169
microprocessor, 8

MIDS, 50

Middle C, 148

minim, 146

MOD, 115

modifying program, 85, 95
monitor, 193

MOTOR commands, 192
moving keys, 5

moving sprite, 131

MSX BASIC, 2
mugtrap, 69, 77, 79
mugtrapping, 188
multistatement line, 16
music string, 148

musical stave, 14

name and number matrix, 78
names for variables, 91
negation, 34

nested loops, 63
never-ending loop, 61
NEXT, 62

noise, 156, 158

not equal test, 67

notes of music, 146
number abilities, 32
number arrays, 42
number conversion, 51
number expression, 51
number functions, 38
number guessing game, 72
number operations, 33
number totalling, 65
numbered lines, 4
numbers, 29

octave, 148

octave letter, 148

ON ERROR GOSUB, 189
ON ERROR GOTO, 189
ON KEY, 140

ON N% GOTO, 79

ON STRIG, 140

OPEN, 164

order of line numbers, 34
order of precedence, 34
out of string space, 45
outline plan, 86
overflow, 30

PAINT, 114
Pandapack, 193

panic button, colour, 103
paper, 86

parameters, 40
part-circles, 112

pass through loop, 62

passing values to subroutine, 84

pause step, 72

PEEK, 203

per cent sign, 30

piano keyboard, 148

piano note envelope, 150
pitch numbers, SOUND, 156
pitch of note, 144

pixel colour, 116

pixel groups, 106

pixels, 106

placing graphics in string, 101
planning example, 123
planning giant sprites, 138
planning graphics, 122

planning grid, graphics shapes, 99

planning grid, sprite, 129
planning grid for PSET, 106
planning sheets, 86
PLAY, 148

PLAY example, 153
PLAY sound effects, 154
PLAY subroutine plan, 91
playfield, 130

POINT, 116

pointer, 26

POKE, 203

position of DEF FN, 41
pound sign, 27

predefined functions, 40

predominant frequency of noise, 156,

158
PRESET, 105
PRINT #1, 105
PRINT, 10
print modifiers, 15
priority of sprites, 130, 133
processing, [1
program, |[
program design, 85

program listing, 4

program mode, 10

programmable sound generator, 155
programmable function keys, 6
programmed keys, 191
programming keys, 191
programming language, 2, 10
programming music, 146

programs in magazines, 192
prompt, 11

PSET, 106

PSG chip, 155

PUT SPRITE, 130

putting in commas, 113

putting variable values into DRAW, 124

quaver, 146
quit option, 79
quotes, 14

radian units, 38

radius of circle, 112
random access files, 166
random box and fill, 111
random box program, (10
random lines program, 10
random number, 70
READ, 26, 74

reading EVENS file, 171
reading into array, 177
real numbers, 29

real variable, 31
reassigning variable, 54
record, 165

recorder head cleaning, 200
recording core, 89
recording value, 167
redimensioned array, 58
redo from start, 24
register, 155

register 7, 158

register uses summary, 155
REM, 87

RENUM, 102, 183
REPEAT UNTIL type of loop, 67
repeating, 61

replace a letter, 184
reserved word, 11, 65
resolution, 97

rest control letter, 149

rest symbols, 147
RESTORE, 74

restoring normal scale, 125
restoring ordinary note, 154

Index

RESUME NEXT, 189
RETURN command, 80
RETURN key, 4
RIGHTS, 50

RND, 39

rotating shape, 126

rows, 77

rules, integer variables, 30
running total program, 66

SAVE, 183

scale effect, 124

scale of C Major, 147
scale program, 149
SCREEN 0, 99
SCREEN 1, 98
SCREEN 3, 115

screen memory, |16
scrolling, 4, 15

search for names in file, 175
seed, 39

seeding expression, 111
selecting list, 75

Selmor stand, 194
semibreve, 146
semicolon, 16
semiquaver, 146
semitone, 148

serial files, 166

SGN, 39

shape control letter, 150
shape of waves, 150
sheet music, 153
SHIFT key, 8

shifting pattern, 127
significant digits, 31
SIN, 108

sine of angle, 108
single-precision, 30

size of pixels, 107

size of string, 22
skipping title, 89

slash sign, 12

slashed zero, 12

slicing, 48

smeary red problem, 103
socket strip, 194
software, 2

sound, 143

sound effect numbers, 157
sound effects, 143
SOUND instruction, 155
sound waves, 143
SPACES, 48

209

210 /ndex

spacebar, 8 tempo letter, 149
SPC, 19 terminator, 65, 164
special effects, 97 testing, 90
split words, 15 testing strings, 69
sprite collisions, 135 text screen, 98, 104
sprite creating program, 130 three channel SOUND effects, 157
sprite plane, 130 three-part harmony, 154
sprite planning grid, 129 TIME, 72
sprite rules summary, 135 tinkling sounds, 160
sprite size, 136 tone, 148
SPRITES, 130 totalling from file, 174
sprites, 128 touch pad tuning, 198
squashed circles, 113 tracing loops, 188
standard envelope shapes, 151 tracing paper, 99, 122
standard envelopes, 159 treble note, 144
start /stop numbers, 112 - trigonometrical quantities, 37
starting at centre, 126 TROFF, 188
stave, music, 147 TRON, 188
STEP, 63 tune using PLAY, 153
STOP key, 7, 187 tuning TV, 195
STOP ON checking, 187 TV HEIGHT control, 112
stopping sprite, 132 TV hints, 193
STRS, 51 TV tuning methods, 195
stream numbers, 163 TV WIDTH control, 112
streams, 163 two-channel SOUND effects, 157
STRINGS, 45 two-part harmony, 153
string, 14 typing, 5
string array, 57, 76
string character count, 47 uncontrolled loop, 62
string functions, 44 undefined line number, 186
string space, 45 updating file, 179
string variable, 21 upper-case, 8
strings for numbers, 52 use of M, sound, 151
structured program, 86 use of recorder, 162
subroutines, 80 use of variables, 22
subroutines in menu, 81 user-defined function, 40
subscript, 43, 76 USING, 27
subscripted number variable, 76 using PSET, 107
substring, 119 using S8, 125
surf on shore program, 159 using brackets, 47
SWAP, 57
symbols for silences, 146 VAL, 51
syntax, 3 variable name, 21
syntax error, 42, 186 variable name confusion, 186
syntax error message, 5 variable types, 29

variable values in music string, 152
TAB, 18 VARPTR, 203
TAB key, 185 VAT, 29
TAB map, 18 vibrating drum skin, 143
tabulation, 18 video recorder, 194
tapehead, 201 visual menu choice, 82
tapehead alignment, 201 vocabulary, 3
tapehead azimuth, 202 volume control letter, 148

telephone directory, 78 VPEEK, 203

VPOKE, 203

WHILE DO type of loop, 67
WIDTH, 18, 99

wiping file, 167

working copy, 89
wraparound, 84

Index

X co-ordinate, 106
Y co-ordinate, 106
7-80, 8

(hash mark), 16

211

	front cover
	i-0
	i
	ii
	iii
	iv
	Contents

	Blank

	Preface

	viii
	ix

	Blank
	Chapter One - Where Do We Start?
	2
	3
	4
	5
	6
	7
	8
	9

	Chapter Two - Inputs and Outputs

	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28

	Chapter Three - Quantities and Numbers
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43

	Chapter Four - Strings Attached

	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60

	Chapter Five - Repeating Yourself

	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72
	73
	74
	75
	76
	77
	78

	Chapter Six - Menus and Subroutines

	80
	81
	82
	83
	84
	85
	86
	87
	88
	89
	90
	91
	92
	93
	94
	95
	96

	Chapter Seven - Special Effects and Geometrical Shapes

	98
	99
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114

	Chapter Eight - DRAW Graphics

	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127

	Chapter Nine - Identifiable Flying Objects

	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142

	Chapter Ten - Sounds Unlimited

	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161

	Chapter Eleven - Cassette Data Filing

	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181

	Chapter Tweleve - Editing, Fault-tracing and Miscellany

	183
	184
	185
	186
	187
	188
	189
	190
	191
	192

	Appendix A: TV and Cassette Hints

	194
	195
	196
	197
	198
	199
	200

	Appendix B: Cassette Head Adjustment

	202

	Appendix c: Some Other Commands

	204

	Index
	206
	207
	208
	209

	back cover

