SUMMARY OF HARDWARE

1.1 SPECIFICATION

1.1.1 Required Components

1.1.

1.1.

0]

o]

CPU

Memory

Screen Display

Cassette tape
Sound

Character Set

Keyboard
Expansion Slot

Joystick

4 MHz Z-80A compatible

ROM 32K (MSX system software)
RAM minimum 8K (16K* recommended)

Text display capability 40 x 24 (refer to section 2.4)
Graphic 256 x 192

Color 16

FSK format 1200/2400 Baud

8 Octave, 3 Voices

Alphanumeric, Japanese, Graphic (Japanese version)
Alphanumeric, European, Graphic (International version)

U.S./Europe, French*, German*, Japanese
Software cartridge, expansion BUS slots

1 or 2%

Recommended Extensions for U.S./Europe

Memory
Expansion Slot

Video

RAM 64K* total
Second

RF output

Standardized Optional Extensions

Screen Display* 80-column text

Clock*

Battery backed-up CMOS

Communications* RS-232

Floppy Disk*

Printerx

According to each company. Format is mMS-DOS compatible

8 bit parallel

Items with asterisk may not be build-in in the minimum system.

SUMMARY OF HARDWARE
1.2 SYSTEM CONFIGURATION) (

) sminzsis systen

Jovstick

x1

cassette
Tape Rec

o mnn + ——
\
: < < IR
: . . .- . * V- . - e
~ & L. . . S . b . B
. Sk . -

512)'iiuﬂc:ins'd:ported by Softvare . e v
Sound (BCC] s Video (VDP) Piirzer (PPe) : i
]7 1 : } Caztzidge fgog (¢p te 2)

i
]
!
|
Fovesesseseecn ‘
i

-ﬁ.,*w Y-_-‘. e

Joystiex x2
(?sC)

!)

!‘"'j-:'uaio "
Cassette %

T orn

4o an

s canccs coe coas

o

I iup o &) 0 W

-

|- tzpansion 3lo: ,

HARDWARE SPECIFICATION
2.1 LSI
o CPU

o VDP
o PSG
o PPI

2.2 MEMORY
0 ROM
0 RAM

Z-80A Compatibie
CLOCK 3.579545MHz (NTSC Color sub carrier frequency)
1 WAIT in M1 CYCLE

T1 TMS-9918A Compatible
GI AY-3-8910 Compatible

Intel i-8255 Compatible

MSX BASIC 32KEB
8KB or more
NOTE

Basic unit has four logical slots, so the total memory
space can be expanded up to ¢56KE. Each logical slot
can be expanded to have up to 4 physical slots, total
of 16 slots. So in this case, maximum memory space s
1 megabyte.

BASIC ROM occupies aaaress 0 to /FFF, RAM address
starts trom FFFF and grows downward on the memory map
to 8000.

For details refer to 4.1 memory map.
For U.S. Market we recommend 64K so the machine can

easily be wupgradable to MSX-DOS, although BASIC ROM
will only use 32K RAM.

¢

2.3 INTERRUPT
° MNI Not used. MSX ROM only provides RAM hook.

° INT ~ Accept interrupts from VDP and cartridge. The interrupt
js Z-80 mode 1. (Branch to 38H) MSX system software uses
interrupt from VDP for timer count. The interval of the
interrupt is 60Hz in NTSC and 50Hz in PAL/SECAM version.

NOTE
It is not possible to support NMI under MSX DOS environment because

address 66H, which is the entry vector for NMI, is occupied by FCB data
for DOS.

z
e |

HARDWARE SPECIFICATION
2.4 SCREEN DISPLAY
o LSI TI TMS9918A Compatible

0 Character set Alphanumerical + European + Graphic
256 patterns 6x8 dots

o Color 16 colors
o Sprites 32 sprites. Maximum 4 sprites on the same horizontal
1ine.

0o List of display modes

A NUMBER
(j MODE RES. SIZE -NO. { COLOR |SPRITE OF
i CHARACTERS
LSI
Graphic Spec. 256 x 192 32 x 24
. v 8 x 8 256 16 YES
I Suggested | 240 x 192 colors 29 x 24
value
LSI
Graphic Spec. 256 x 192 32 x 24
8 x 8 768 16 YES
11 Suggested | 240 x 192 colors 29 x 24
value
LSI
Multi- Spec. 64x48b1k 32 x 24
4 x 4 - 16 NO
v color Suggestea | 64x40bik | /block colors 29 x 24
(value
LSI 2
Spec. 256 x 192 colors 40 x 24
Text 6 x 8 250 | out ot| YES
Suggestea | 240 x 192 16 39 x 24
value colors

Suggested value to use: the 8 pixels from left and right of horizontal are
not usea by software.

4 The number of patterns

HARDWARE SPECIFICATION
2.5 KEYBOARD

o Layout Refer to figure
U.S./European
French
German
0 Scanning Software scanning driven by VDP interrupt

o Number of keys 70 plus optional dead key

0o Matrix diagram

X7 X6 X5 X4 X3 X2 X1 X0
. (7 = m
PB2 - T * X 7 4 7 J
PB3 Y1 =+ ‘ . =~ =) {
PBa oD ME D B 0E tE
PBS BS o L I 1) E 2 >
:gs Y2 ? > < ! *
S=pmi ol oR RN inRioNRCE
+ < ~ k- ” 2 B
| ¢ p— O D E oD FE 2 B B
PCO | & 1 D : 7 4 Y/ + o 2 P
PC1 B
2 p—— LCT 0 P) a1eimiz] o= |k
oo ° ap—— EJ [;]] [g [;} r:z]
+« p—
: b- =0 B DD PR D D
GD——_—_ 9 VA 4 * = [=] :,
7 D—————s Ye
s D F3 F2 F1 KANA | CcAP |GRAPH| CTRL SHIFT
-] o S—
—-—E-#RETURN SELECT| BS |stop | 1aB | ESC | F5 F4
AL B . ~ | peL | ws |HOME | sPacE
Y8

/ 2 3 4 5 6 7
" § cherr [code| cnar{ code {Cha codc]cnar{pode char|code{char|code|char|code|cnar|coce|
0 |30/ |31 2 323 |33[« |34[4& 356 367 |37
dl2g !l (21D |40 R |23 $ |24{2% | 25(~ | SE|& | 26
g 09\ | ACIL; |ABI%G |BAIN | EFSL|BO [|Fal/ | FE
OAl | |2 -|FO™ |[FCl. | J |Fs
§ |EB T |9F| ¥ |09 § |BF ¢ |98y |98/ [EO| B | E
A D8 'AD‘Pt- OElqT | BE| £-| 9¢t-¥ | 80 --|- x _
8 |38]¢ |3si—][20=_| 3D\ || 5¢/C |58 1 |30 ; |38
X C +- |28 1 [17C|{ [78!} 73‘:.5;\
Q| E T AN EE |01 |00 4 | 0F|
= |Fo ||]16/@ |02~ [OE¢ {04
1y |ETl¢ e |Eel | | ledw |oAT | oo
rledc NN ES
41272048912 . 28 J2FI D L e 18le 162
Vo122~ 7B (30> |3EL 7 3P Tl 1A 141l a2
& |05~ | BBIC |F3[2 | FL A1 D=2 | = lca—j1
w [03(= [F7ic [l (AR | Fe= |50 [Fel - | T
ij |BS|oc |ES|a |86(& |AGQ [A7|7 |3 |d |84/ |ST!
IJlesix [esli |8F -|- |¢ {ag >~ |l | 18€
C |65]d |64/e |65 f |66/ & |67|h |€E i |65 |EA
C |43|D |44[E |45/ F |46/G |a7|/H |48 1 jas|s |4n
(O] BCw® i c AT co H| 1455|157]| 13 0c]]I o5
- |FARSR | C1lal| CE| md| D4 +1| 1 O || D6F=58| OF BRI C A
i |80 788+ |8ClE |94] alja’ B 7 |Alz | o1
|- 40-edly |9A X ted < |s2l
k |68/ 2°|6Cm |6C-n |6El 0 |6F R {7Cq |71 r T2
K |4BL |4cim™ [aD/ N |4E[O |24F P |50 @ |51|Rr |52
A B ||ooEE||c8lc |oeT]| 158% C2BE 06K/ cCl | 18
A | Eloe| Jlco[@ [oc® o3[[cag&l o7 ca[—l| acl
T 1835 |BIYm |EE[F |A4 6 |A g |A3|2 |635 |S3
T |B2|5 {B4}- N |lAas{-—| 7T | €3] -
S | 73(t |74 u [75{v |76lw | 77| X | 78ly |T§¢Z T A
S 53T |s4/u |s5/v [56lw {57|X |58 Y |5SZ |5A
02_—_rj_12§ co[H 3A§ cFEX]| 1¢ce]| 15i=]| OF
o1l | cs| B Co 4|00 | Fe—i|arc |FE
g |89 4 |96/ |82 o |95 8 |88[¢ |8A 4 |ACa S
E |90
7

HARDWARE SPECIFICATION

0 Keyboard layout

)
) =

[e) feed (B0

) COLDCAEN T EDC AR E o)

,\H_..KQ\ o

44HS

(]

d@§¢so

© B HE 0 IC D TR [

193135
INOH
(0] (o) (32

(e (500
(= JEI)

29

ruwum H\ﬁm

FHK\

(oo] L

l@wu@gnmpmwmﬂmﬂ?:]
,,,,,, DIGD A IGD] UHUﬁUﬁum) (o)
H‘,,.,; Lo JCa (e

OQ

The following keyboard diagrams contain an optional dead-key. This
dead-key is useful for Eurgpean accented character input. For example,

when one wishes to enter "&", one must first press the dead-key "a"
and then press "a".

The dead-key will not be useful in the U.S. or U.K. Nor will it be
useful in France and Germany, where specific French and German key-
boards have been designed which include different dead-keys. Therefore
this general dead-key should only be included on machines which will be
marketed into minor European countries. :

The keyboard diagrams show the dead-key to the left of the carraige

return key, but this is probably not a good place for it, because it
pushes the carraige return key too far to the right. Manufacturers

may place this key where they wish. ’

=) Fz F3 Fa (| Fs E STop

scltrllzlatt4idsitetl74118iIL9 ol=1li=1l \[les | [Home] |Ins | |Pe!
; — dond ey
well s HHw el rilelly il didlelle L L)L] Select
cwy] lalls JLallf [g] SIFRIEI IR eI Rsru.f:‘ =)
HET) Z xtlclivitlblin||Imll, W/ e) « _;]
LIPS kPl SPACE | e v
wHhot Shift
withost Graph
witho-t (ode
-6 F7 F8 Fq Fi0 SToP
scli! 1D ||# $ 1% g kI CHDY N L L LBs | [Home] [Ins e |
: ' o —idmd Loy '
aalloliwllel[rI[TILY LIt o P L U " [Select
=d TAUS HHDHFH G |- T LKL L | L7 | {remvres 2~
sweT| L Z X HCIVIB N [ML L pat il f il ' < —>
CAPS] (ekel SPACE] Jeex | | v
with shidr
w(‘l‘\au't Grnr“
wifhout Coda

10

Fl F2 [F3 |[Fz [rs Srop
R EEAENDE o] fioe] (] [
TS N [| i5)
= DRI OO o
swieT| |E DX o =2 S < | > SHET | <~ E]
[owes] [erei SPACE] ez v o
vithewt Shidt
wih Crerh
witheut Coolt
=6 F7 | F& FAq F10 SToP
SC}L_‘I 2 1[0 BS LS | {Ins | [Pel
IZIK IN= "]
=) AL = e
o » |
WIET B i <~ z
{cres] (e - |

with Shid{+
W'\‘l\\ Grlrk
w'.-“-,od' (.d.ﬁ

11

F F2 F3 F4 FS STop
scllF L 8 ILE 7 e LB L dLS JLo e JLe Bs | [Home| {Tns | |P-
/\ A ~ ~ [a3 ’ 14 - g ' A dpd\";
Tellall el Hollullaltéellr ltoll ol & jlw Seloct
cry) (8 e JL e il (&t (T8 Lo L | o (ke 2
SHIFT ajle i iLo al(n [{mxllajlele]|ser I <« - ‘
UAPS| (6RPI SPACE] ‘(oor:’ v
w!“ud’ shift
w’-lho-—'\ Gror\y
\vrﬂ'l tod g
r6 F7 F& Fq FID STop
sa i HPellaT L £ ¥ ' T @ A BS Cls} YIns | |Pel
- - a—dudhé,
\AB E LD L o [Select
TRL LA SNONANETIIO]OITT = ||rervre = .
HIFT ' i:l ,& 3 SuET ; <~ __; }
LAPS] |6RP SPACE] eoce v

wvidh chid+
withotl Graph

dh (ode
v 12

"8JemMpaey pJeoqdd)y uy 0S op 3snw Inq 333| 4aMo| 03 A3y ueyy uajeaub/ueyy ssa
"P3peys aue sAay peag ‘shay jnejun n pue g ‘Y S341ys 3207 sde)
. T pAe0qAsy uewazy xSy

L @Aow Aew u3anioegnuey

"9JeMpaey paeoghay ul 0s Op Isnw NG 343 Jamo| 03. £3y. ueyy u33eaub /ueyy $S3| aAow Aew 434njoejnuey
"Popeys aue shay peag A3y of { Pue sA3y opaswnu s3jiys 3207 sdej
Pae0qAay youdu4 XSW

13

BASIC SPECIFICATION

2.6 SOUND
o LSI GI AY-3-8910 Compatible
o OCTAVE 8 Octaves (3 Voices output)

o SOUND EFFECT Yes
0 SOFTWARE SOUND OUTPUT 1 bit from output port
o OUTPUT LEVEL . -5dbm (If the system has output connector)

o CONNECTOR RCA 2 pins (If the system has audio output connector)
[I i i ! i
7 ! ! . 1 80
REGSTER Sl et Hal Bl M
L. | 9-BT Fne Tune A
e I G
R * Tone Pern : : 4-0T Codrse Tune A
n ,W B Tone e 88T Fne Tune B
K e e Teneo . ¢-BIT Coarse Tone B
LR e o H 88T Fine Tune C
[e C Tome Peroc 487 Coarse Tume ©
W torse Peroc : $-BT Penod Contro!
R Ot Norse che
: o 08 . D4 : C . 8 4 .t 8 a4
, - &3 AY-3-8810D T RD—-TEY
10 - Channe: A Ampstuce [[I o W
Rit . Channel A Ampstuoe | ™ LI 2 o L TR e
R:2 Channel A Ampatuoe oM 23w Lt o 32 i 0
LI , 3-BIT Fune Tume € Do ; \ _
g oo Temos 9-BIT Cosrse Tune § | ioiof,(xI
. NS Envewoe Snape Cycie | : TCONT ATT ALY MOLD b !
P RiE ' OPort A Data Store | §-8iT PARALLE. | D on Bort A ,0 I x X/'L
R1? 170 Port B Data Stere ! $-877 PAPALEL i Con B B
@22 Av-2-2910DL S 29 R t{ofojo W\!\!\I\N\N\
1jielo 1\

il

14

T

HARDWARE SPECIFICATION
2.7 CASSETTE INTERFACE

o INPUT From the earphone terminal of tape recorder
o OUTPUT To the microphone terminal of tape recorder
0 SYNCHRONIZATION Asynchronous by the software
0 BAUD RATE 1200 Baud (1200Hz - 1 wave "0", 2400Hz - 2 waves "1")
(Default)
2400 Baud (2400Hz - 1 wave "O", 4800Hz - 2 waves "1")
Change by software
(Tape recorder may have to be specified by the
manufacturer when used under 2400 Baud mode)
0 MODULATION FSK (Frequency Shift Keyiﬁg) by the software
o DEMODULATION By the software. The system software automatically
detects the baud rate when receiving the data.
0 MOTOR COUNTROL Yes
0 CONNECTOR DIN 45326 (8 pin)
0 TABLE OF SIGNAL PINS
PIN NO. SIGNAL DIRECTION PIN CONNECTION
NAME
1 GND —_—
2 GND —_—
3 GND -— @ ®
4 CMTOUT | OUTPUT ® @
. ®
5 MTIN INPUT
¢ ® @
6 REMOTE + OUTPUT @
7 REMOTE - OUTPUT
8 GND o

HARDWARE SPECIFICATION
2.8 INPUT/OUTPUT (J0YSTICK) PORT (1 Ok 2* PORTS)

o LSI AY-3-8910 compatible

o I/0 Input 4 bit, output 1 bit, biairectional 2 bit per each
port

o LOGIC Active high

o LEVEL TTL

0 CONNECTOR AMP 9 pin compatible

o LIST OF PINS

SIGNAL
PIN NO. NAME DIRECTION PIN CONNECTION,
1 FWD INPUT
2 BACK INPUT
3 LEFT INPUT
4 RIGHT INPUT
. ©O @00 ® 06
5 + by _—
6 TRG 1 INPUT/ ©0 60
OUTPUT
7 TRG 2 OUTPUT
8 OUTPUT OUTPUT
9 GND -—

a Current capacity is 50mA each

16

L
Eeoiy
L

HARDWARE SPECIFICATION
2.9 *PRINTER INTERFACE

0 OSPECIFICATION 8 bit parallel Handshakes by BUSY and STROBE signal

o LEVEL TTL
0 CHARACTER CODE SAME AS MSX DISPLAY CODE

0 CONNECTOR AMP 14 pin compatible
0 LIST OF PINS
SIGNAL
PIN NO. NAME PIN CONNECTION
1 PSTB
2 - PDBO
3 PDB1
4 PDB2
5 PLB3
6 PDB4
7165413121
7 PDB5
8 PDBb
9 PIB7 14113112 (11(10] 9 | 8
10 N.C.
11 BUSY
12 N.C.
13 N.C.
14 GND

17

HARDWARE SPECIFICATION

2.10 FLOPPY DISK INTERFACE

0 Contains 16K bytes of ROM at 4000H that includes:
* MSX-DOS KERNEL

* MSX DISK BASIC
* PHYSICAL DISK 1/0 DRIVER (Supplied by each manufacturer)

o0 The hardware interface is not specified. The physical disk I/0 driver
supplied by manufacturer should virtualize hardware differences.

o It is desirable to have a mechanism in the disk drive to detect
whether the drive door has been opened. It reduces disk accesses
which check for disk changes.

o Floppy formats are MS-D0OS compatible

8 inch SD 128 byte/sector
8 inch DD 1024 byte/sector
5-1/4 inch DD 512 byte/sector
3.5 inch CFD ‘ 512 byte/sector (exactly same as 5-1/4" 967TPI
3 inch CFD 512 byte/sector (exactly same as 5-1/4" 48TPI
¢

18

CHAPTER 3
CARTRIDGE

19

3.1 PHYSICAL CARTRIDGE SPECIFICATION

The internal specification of standard size cartridge

(a1l measurements in mm)

Front !!
<r
: o
O
o |
r+ I
Lo 1 Connector placement |
Ll lmeem e -~ - .
] 109mm]
[!
el 1] [:
Specification of extended size cartridge.
I
L
I, 2
Q
I
| I
< 3
| L E
s
L l _I)LLE
¢——————= Lo >

* No standard will b&&nforced beyond the above minimum height

109 +0.7

£

ADDRESS MAP
4.1 MEMORY MAP

0 Following is an example of memory map.

FFFF
3 RAM
€000
2 RAM
8000
DISK
1 32K SOFT-~ RAM
WARE
4000 -
0 ROM RAM
0000
CPU 0 . 1 2% 3*
Memory System Slot for
area slot cartridge

0 MSX BASIC uses the largest available contiguous RAM area that is
installed from FFFF to 8000 for its system working RAM area. This can
be placed in any slots including expandsion slots.

0 Slot select register, which is port A of 8255, maps tnephysical memory
space to the logical CPU memory space in 16K byte units (pages). For
example, the following value in the slot select register allocates
pages 0 and 1 from slot 0, page 2 from slot 2 and page 3 from slot 0.

MSB - 7 6 5 4 3 2 1 0 - LSB

0 0 1 0100 0 0

--——- allocate slot O for page 0
allocate siot 0 for page 1
allocate slot 2 for page 2
allocate slot 0 for page 3

Physical memory is always allocated to the same memory page in the CPU
address space. It is not possible to allocate to a different page, like
page 3 of slot 3, to page O of CPU memory space.

O Minimum system must have two slots, one for system, the other for
cartridge.

25

NOTE

The word “slot" does not imply that it must have a connector for
cartridges, however, a slot for cartridges must have a connector, of
course. Refer to APPENDIX C.

0 MSX-DOS requires 64K RAM

26

ADDRESS MAP
4.2 1/0 ADDRESS MAP

FF
F8
F7 Audio/Video Control
FO
EQ

*Kanji character ROM
D8

a Floppy disk controler
DO
CC

Light Pen interface
88
B4

External Memory
BO

PPI (8255)
A8

PSG (AY-3-8910)
Au

VDP (9918A)
98

* Printer interface

90

* RS-232C interface
80

Not specified
00

27

ADDRESS MAP
{ 4.3 1/0 DEVICE DESCRIPTION

4.3.1 RS-232C

4.3.1.1 LSI Components -
j-8251 Communication interface chip
j-8253 Programmable interval timer chip

4.3.1.2 Port Address -
80H R/W 8251 data port
81H R/W 8251 command/status port
82H R Baud rate setting switches
83H R Configuration setting switches
83H W Interrupt mask register
84H R/W 8253 counter O
85H R/W 8253 counter 1
86H R/W 8253 counter 2
87H W 8253 moae register

4.3.1.3 The Usage of Switch Port at Address 82H Ana 83H -

{ 87H read - Baua rate select

bit 0 — 3 : baud rate for receiver
bit 4 - 7 : baud rate for transmitter

value baud rate

50

75
110
150
300
600
1200
2400
4800
9600
19200
N.A.
N.A.
N.A.
N.A.
disable*

TMMOOmITOWoOoO~NOOPPWNORF O

*When value F is set as a baua rate, that function is disabled by software.

C

28

ADDRESS MAP

83H reaa - Set various functions

bit 0 - CD (carrier detect)*
1 - auto line feed on receivex* 1 - auto line feed
2 - Full/Half duplex 1 - Full duplex
3 - XON/OFF control 1 - Enable control
4 - Word length 1 - 8bits, 0 - 7 bits
5 - Parity Even/0Odd 1 - Even
6 - Parity enable 1 - Enable
7 1

Stop bit length 2 bits, 0 - 1 bit

* (D is a signal directly connected to carrier detect (pin 8) on the
DB-25 connector.

** Aad line feed on receiving carriage return.

NOTE

Bit 0 of the switch pulls up the CTS line of the 8251 (or [actually] it
pulls down since CTS on 8251 is negative logic) to make it possible to
send data even when CTS is not supplied from outside.

83H write - Set interrupt mask for receive

bit 0 - mask interrupt for receive 1 - mask interrupt
The initial value of this mask is 1 (disable interrupt).

4.3.1.4 Usage of 8253 Timer-counter To Generate Baud Rate - clock for 8251

0 Frequency of crystal
The frequency of the crystal:
1.2288 MHz

0 Usage of counter channel
CHO - Rx baud rate clock
CHl - Tx baud rate clock
CHZ - General interrupt timer .. connect to IRQ

4.3.2 PRINTER PORT

4.3.2.1 Port Address -
90H R Busy status :bit 1
90H W Strobe output : bit O
91H W Print data

29

ADDRESS MAP

4.,3.3 VDP PORT

98H
99H

R/W Vido Ram data
R/W Commana and status register

4.3.4 PSG PORT

4.3.

4.3

4.3

4.4

AOH
AlH
AZH

5

A8H
ASH
AAH
ABH

.6

BOH

i

B8H

.8

F7H

NOT

0

W Address latch
W Data write
R Data read

PPI PORT

R/W Port A

R/W Port B

R/W Port C

R/W Mode registerr
External Memory (Sony)

through B3H

Light Pen (Sanyo)

through BBH

Audio/Visual Control

W BIT4 - AV CONTROL L-TV
W BIT5 - Ym CONTROL . L -Tv
W BIT6 - Ys CONTROL L - Super
W BIT7 - Video select L-TV

ES ON I/0 ADDRESS ASSIGNMENT

1/0 address 80~FF are assigned for system usage. Tne empty areas are
reserved for system use.

Although these addresses are defined here, software should not access
those devices directly through the addresses listed above. Every
access to the 1/0 must be done through the BIOS calls. This is to keep
software independent from hardware differences. Manufacturers may
change some hardware from the standard MSX system and is still able to
maintain software compatibility by

30

ADDRESS MAP

supporting the haraware differences within the BIOS, so that the
aifference can be transparent to software.

Tne only exception is access to the VDP. Locations 6 and 7 of the MSX
system ROM contain reaa and write addresses of VDP register. The
software needing to access VOP very quickly may access VDP directly
through those addreses stored in ROM.

00~7F are free addresses, however when different devices use the same
address, they may not be accessed at the same time. Basically, special
[/0 devices not defined here should be placed in the memory space as
memory mapped I/0. Refer to Appendix B.3.

FOC may be placed in I/0 space, but it must have a mechanism to disable
it and only at the moment when the system accesses the FDC, is it
enabled. This makes it possible to have more than one FDC interface in
the system to handle different kinds of media.

31

ADDRESS MAP

(4.5 8255 (PPI) BIT ASSIGNMENT
SIGNAL
PORT BIT I/0 NAME DESCRIPTION
A 0 CSOL
0000~3FFF address slot select signal
1 0 CSOH
2 U CSI1L
4000~7FFF address slot select signal
3 T CS1H
4 P cS2L
8000~BFFF adaress slot select signal
5 U CS2H
) T CS3L
COOO~FFFF address slot select signal
7 CS3H
B 0 Keyboard return signal
thru INPUT
i[7
) C 0 KBO Keyboard scan signal
1 KB1
2 KB2
3 0 KB3
U
4 CASUN Cassette control signal (L-ON)
T
P ,
5 CASW Cassette write signal
U
T
6 CAPS CAPS lamp signal ("L" --> ON)
7 SOUND

Sound input by software

32

ADDRESS MAP
4.6 PSG BIT ASSIGNMENT

PORT BIT I/0 CONNECTOR PIN NO. NOTE
A 0 “Jd3-PIN 1 1 FWD1
I | J4-PINT * 2 FWD2
1 J3-PIN 2 1 BACK1
N J4-PIN 2 * 2 BACK2
2 J3-PIN 3 1 LEFT1
P J4-PIN 3 * 2 LEFT2
3 J3-PIN 4 1 RIGHT1
U J4-PIN 4 * 2 RIGHT2
4 J3-PIN 6 1 TRGA1
T J4-PIN 6 * 2 TRGA2
5 J3-PIN 7 1 TRGB1
J4-PIN 7 * 2 TRGB2
6 KEY LAYOUT Select 4 Japanese version only
7 CSAR (CASSETE TAPE READ)
B 0 J3-PIN 6 3 -~ "H" LEVEL
1 0 J3-PIN 7 * 3 —— "H" LEVEL
2 U J4-PIN 6 3 -~ "H" LEVEL
3 T J4-PIN 7 * 3 —— "H" LEVEL
4 P J3-PIN 8
5 U J4-PIN 8 *
6 T PORT A INPUT SELECT Selects J3/J4
7 KLAMP (KANA LAMP L- ON) Japanese version only

Available when bit 6 of port B is low used by JOYSTICK1

Available when bit 6 of port B is high used by JOYSTICK2

Turn to "H" level when use those pins as an input port.

Tied an open collector buffer to the output. (Refer to Appendix C-1)
4 JIS layout - "H" level, syllable layout - "L" level

W N =

<Remark> PINS +5V
PIN9 GND

0 On the minimum system, there is no J4 connector.

33

APPENDIX A
LIST OF CONNECTORS

PIN NAME

SPECIFICATION

1. Video output and
composite video

2. RF modulated signal

DIN 5 PIN CONNECTOR & or
RCA 2 PIN CONNECTOR

RCA 2 PIN CONNECTOR

CASSETTE DIN & PIN CONNECTOR (DIN-45326)
I/0 PORT AMP 9 PIN CONNECTOR
PRINTER AMPHENOL 14 PIN CONNECTOR

CARTRIDGE BUS

0.10 INCH (2.54mm) SPACE, 50 PIN CONNECTOR

AUDIO

RCA 2 PIN CONNECTOR

34

MSX-DOS CP/M-80

Technical Information

Introduction
MSX-DOS Function Requests
MSX-DOSFCBFormat

43

Introduction

The following information is provided so programmers can run CP /M-80 programs under MSX-DOS.
MSX-DOS function requests and the FCB format are described.

MSX-DOS Function Requests

The user requests a function by

1. Placingafunction number in the C register.

°

Supplying additional information in other registers for the specific function.
3. Executinga CALL Sinstruction.

Unless otherwise specified, single-byte values are passed in E and double-byte values in DE. When
MSX-DOS takes control, it switches to an internal stack. No registers are guaranteed to be preserved.
MSX-DOS returns single-byte values in register A and double-byte values in register pair HL. In
addition, the contents of register A will always equal those of register L, and the contents of B will equal
H for those calls which have a CP/M-80 counterpart. A value of zero will be returned in A (as well as
HL) for non-supported function numbers.

Function numbers are as follows. All values arein hex:

) Program Terminate: All file buffers are flushed, but files which have been changed in length
(but not closed) will not be recorded properly in the disk directory. Control transfers back to MSX-
DOS. Thisis thesame as JMP 0.

1 Keyboard: Waits for a character to be typed at the keyboard, then echoes the character to
the screen and returnsitin A. A console status check is done to check to Control-C, printer echo, and
Control-S. These characters will not be passed through this call. Execution will be suspended until a
character is typed, if none was waiting when the call was made. Carriage Return, Line Feed,
Backspace, and Bell are echoed assuch. Tabs are expanded.

2 Screen Output: The character in E is output to the screen in a fashion similar to Function 1.
A console status check is performed after the character is output. A VT52 driver is built into the
BIOS. ’

44

Milcrosoft MSX-DOS

Escape sequences are:

Clear screen

Clear screen

Erase to end of line

Erase to end of screen
(Lowercase L) Erase entire line
Insert a line .
Delete a line

Locate cursor

Up

Down

Right

Left

Home

Block cursor

Underscore cursor

Cursor off

Cursor on

SES R NOQOWR <2 S

3 Auxiliary Input: Waits for a character from the serial port and returns it in A. A console
status check is done beforehand, suspending reading from this device if Control-S is detected.

4 Auxiliary Output: The character in E is sent to the serial port. A console status check is
performed beforehand.

5 Printer Output: The character in E is output to the printer. A console status check is
performed beforehand. Tabs are not expanded by the DOS.

8 Direct Console IO: If Eis FFH, then A returns with keyboard input character if one is ready
and zero flag is not set; otherwise, A is zeroand zero flagisset. If Eis not FFH, the E is assumed to have

a valid character which is output to the screen. A console status check is not performed, passing
through the values Control-C and Control-S.

7 Direct Console Input: Waits for a character to be typed at the keyboard, then returns the
character in A. As with Function 6, no console status check is performed.

Note that CP/M-80Function 7 is Set /O Byte. I/O byteis not supported under MSX-DOS.
8 Keyboard Input without Echo: Identical to Function 1, without displaying the character.
Note that CP /M-80 Function 8is Set I/O Byte. 1/O byte isnot supported under MSX-DOS.

9 Display String: On entry DE must point to a character string in memory terminated with a
”$” (24H). Each character in the string will be displayed to the screen in the same form as Function 2,

45

including console status check.

A Buffered Keyboard Input: On entry, DE points to an input buffer. The first byte must not
be zero and specifies the number of characters the buffer can hold. Characters are read from the
keyboard and placed in the buffer at the third byte. Reading the keyboard and filling the buffer
continues until the carriage return is typed. If the buffer fills to the maximum, additional keyboard
input is ignored and a bell is rung until carriage retur: i: entered. The second byte of the buffer is set to
the number of characters received, excluding the carriage return (which is always the last character)
unless the buffer was full prior to the carriage returrn. Editing of this buffer is described below and is
somewhat different from CP /M-80.

-2 Copy one character

DEL Skip one character

SEL Copy until first occurrence of
next character typed

CLS Skip until first occurence of next
character typed
J Copy to end of line

4 ESC Kill new line
HOME Re-edit line

<-, BS Backspace one character
INS Toggle insert mode.

Note that CP /M-80 does not place the terminating carriage return in the bufler and that this byte will
be uninitialized. However, because the count of characters does not incluie the carriage return, the
count returned is the same as that under CP /M-80.

B Keyboard Status Check: If a character is nvailable from the kevboard, A will return FFH.
Otherwise A will be zero. If the available character is Control-C, Control-S, or printer echo, the
appropriate action will be taken.

C Return Version Number: MSX-DOS returns 22H in L (and zero in H) to indicate
compatibility with CP/M-80 version 2.2.

D Disk Reset: Flushes all file bufiers. Files that have been changed in size and not closed will
not be properly recorded in the disk directory until they are closed.

Unlike CP /M-80 this function need not be called before adisk change if all files which have been written
have been closed. ’

E Select Disk: Thedrivespecified in E(0=A, 1=B,etc.) isselected as the default drive.

Unlike CP /M-80, if the disk is changed the drive does notrevert to Read Only status. Also, the number

46

Microsoft MSX-DOS

of drivesisreturnedin A.

F Open File: On entry, DE points to an unopened file control block (FCB). The disk directory is
searched for the named file and A returns FFH if it is not found. I it is found, A returns zero. The
extent field is used and the record count field is appropriately filled in. The size of the file (in bytes), the
modification date and time are set in the FCB from information obtained from the directory. It is the
application’s responsibility to set the record size to the desired size if it uses the block read and write
calls. It is also the application’s responsibility to set the random record field and /or the extent and
current record fields.

Unlike CP/M-80, there is no concept of partial or missing extents in MSX-DOS. It is not possible to
create a file with ‘‘holes” in it. Therefore, this function may not fail in all the cases CP/M-80 would.
Note that different directory information is copied into bytes 10-1F4 of the FCB than in CP/M-80.
Also, MSX-DOS always returns a zero if successful, whereas CP /M-80 returns a number from 0 to 3,
indicating the position within the logical directory sector of this file.

10 Close File: This function must be called after file writes to ensure all directory information
and theFile Allocation Table is updated. On entry, DE points to an opened FCB.

Unlike CP/M-80, MSX-DOS checks to ensure that the directory entry for this file is in the same
position it was on file open. If it is different, MSX-DOS assumes that the disk has been changed and A
returns FFH. Otherwise, the directory is updated toreflect the statusin the FCB and A returns zero.

11 Search First: On entry, DE points to an unopened FCB. The disk directory is searched for
the first matching name (the name could have ““?''s indicating any letter matched) and if none is found.
A returns FFH. Otherwise 33 (as opposed to CP/M-80's 128) locations at the disk transfer address
contain a valid unopened FCB with the first byte indicating the drive number used (1==A,etc.}and A
returns a zero. The extent field returned will match the one that was searched for, with the rocord
count initialized appropriately.

Unlike CP /M-80, the directory position returned is always zero (with CP /M-80it can be 0to 3). Also, if
the drive field contains a “?"”, the filename and extent field are ignored, causing anything to match.
Deleted directory entries are not accessible and looking beyond the first directory entry at the disk
transfer address will not work. If the extent field is a **?"’, the resultant extent field is set to the highest
extent and record count.

12 Search Next: After a Function 11 has been called and has found a match, Function 12 may
be called to find the next match to an ambiguous request (**?"s in the search filename). Both inputs and
outputs are the same as Function 11. No intervening calls should be made between Search First and
Search Next or successive Search Next requests. Search Next assumes the address of the FCB used in
Search First.

13 Delete File: On entry, DE points to an unopened FCB. All matching directory entries are
deleted. If no directory entries match, A returns FFH. Otherwise, A returns zero.

47

14 Sequential Read: On entry, DE points to an opened FCB. The record addressed by the
current extent and current record is loaded at the disk transfer address, then the record number is
incremented. If end-of-file is encountered, A returns 01H. A returns zero if the transfer was completed
successfully.

Unlike CP/M-80, which does not recognize record sizes other than 80H, partial records are zero-filled.

15 Sequential Write: On entry, DE points to an opened FCB. The record addressed by the
current extent and current record is written from the disk transfer address, then the record number is
incremented. If the disk is full, A returns with 01H. A returns zero if the transfer was completed
successfully.

Note that in the case of records smaller than sector sizes, the sector is buffered up for an eventual write
when asector's worth of data isaccumulated.

16 Create File: On entry, DE points toan u_nopened FCB. The disk directory issearched for an

empty directory entry, and A returns FFH if none is found. Otherwise the entry is initialized to a zero
length file, the file is opened (see Function F), and A returnszero.

Unlike CP /M-80, MSX-DOS always returns zero as the directory code, instead of 0 to 3. If the file
already exists and the extent field contains a zero, MSX-DOS deletes the existing file. If the extent field
is non-zero, the DOS opens the file and points to that extent.

17 Rename File: On entry, DE pointstoa modified FCB which has a drive code and filename in
the usual position, and asecond filenamestarting 6 bytes after the first (DE+11H)in whatis pormally a
reserved area. Every matching occurrence of the first is changed to the s--ond (with the restriction
that two files cannot have the same name and extension). If no match was found, A returns FFH.

Wild cards may be used in both source and destination files. If *?”’ appearsin the second name, then the
corresponding positions in the original name will be unchanged.

18 Login Vector: Returns 1 bit for all drives on the system in HL, with drive A the low-order
bit.

19 Current Disk: A returns with the code of the default drive (0=A, etc.).

1A Set Disk Transfer Address: The disk transfer address is set to DE. Obp a Disk Reset

(Function D) the disk transfer address is reset to 80H.
1B FAT Address: A drive code is passed in E. On return, A contains the number of sectors per

cluster for the default drive or FFH if the drive number is invalid. BC is the sector size. DE i the
number of clusters on the disk. HL is the number of free clusters. TY points to the FAT. IX points to the

BPB.

CP /M-80 returns with HL pointing to a bit vector of free or allocated clusters. The cluster size can be

48

Microsoft MSX-DOS

obtained from CP/M-80Function 1F. Nosuch structure exists within MSX-DOS.
1C Write Protect Drive: NOT IMPLEMENTED. This call will return with Bo processing.

1D Get R/O Vector: NOT IMPLEMENTED. This call will return with zeros, indicating no
drives write-protected.

1E Set File Attributes: NOT IMPLEMENTED.

1F Get Disk Parameter Addresas: NOT IMPLEMENTED.

20 Set/Get User Code: NOT IMPLEMENTED.

21 Random Read: On entry, DE points to an opened FCB. The current extent and current
record are set to agree with the random record field. This record is loaded at the disk transfer address.

If end-of-file isencountered, A returns 01H. Otherwise, A returns zero if successful.

Unlike CP/M-80, which doesn’t support them, partial records are zero-filled. The high byte (r2) need
not be zero and is always used, which addresses files up to2gigabytes.

22 Random Write: On entry, DE points to an opened FCB. The current extent and current
record are set to agree with the random record field. This record is written from the disk transfer
address. A returns 01Hif the disk is full. Otherwise, A returns zero.

As with Sequential Write, the sector is buffered if the record size is smaller than the sector size.
23 File Size: On entry, DE points to an unopened FCB. The disk directory is searched for the
first matching entry and if none is found, A returns FFH. Otherwise, the random record field isset with

thesize of the file in records, and A returns zero.

Unlike CP/M-80, MSX-DOS supports ambiguous filenames, using the first xﬁatch.

24 Set Random Record: On entry, DE points to an opened FCB. This function sets the
random record field to the same file address as the current extent and current record fields.

25 Disk Reset: NOT IMPLEMENTED. This call will return after no processing.

268 Random Block Write: Essentially the same as Function 27 above, except for wtiting and a

write protect indication. If there is insufficient space on the disk, A returns 01H and no records are
written. If HL is zero upon entry, no records are written, but the file is set to the length specified by the
random record field, whether longer or shorter than the current file size. (Allocation unbits are released

or allocated as appropriate.)

27 Random Block Read: On entry, DE points to an opened FCB, and HL contains a record
count which must not be zero. The specified number of records (in terms of the record size field) are

49

read from the file address specified by the random record field (3 bytes if sector size is greater than or
equal to 40H; otherwise 4 bytes) into the disk transfer address. If end-of-file is reached, A returns 01H,
zero filling any partial record. A returns zero on a successful read. In any case, HL returns the actual
pumber of record read, and the random record field isset to address the next record.

28 Zero Flll Random Write: Same as call 22 except whenever a write request would extend a
file contiguously, the space in between is zeroed as well as allocated.

20 NOTIMPLEMENTED

2A Get Date: Returns the date in DE. HL has the year, D has the month (1=Jan, etc.) and E
has the day. A has the day of the week (0=Sun). If the time clock changes to the next day, the date will
be adjusted accardingly, taking into account the number of days in each month and leap years.

2B Set Date: On entry, DE and HL must contain a valid date as described in Function 2A
above. If the date isvalid, A returns zero; otherwise, A returns FFH.

2C Get Time: Returns time of day. H has the hours, L has the minutes, D has the seconds, and
E bas the hundredths of seconds. This form is easily converted to a printztle form, yet it can also be
used tocalculate (e.g., subtracting two times).

2D Set Time: On entry, DE and HL must contain a valid time as described in Function 2C. If
the timeisvalid, A returns zero; otherwise A returns FFH.

2E Verify Read After Write: Supported.

2F Direct Sector Read: Supported.

30 Direct Sector Write: Supported.

» MSX-DOS FCB Format
The following figure illustrates the MSX-DOS FCB format:

Offset Function
0 Drive number. 0=default,1=A,2=DB.
1-8 Filename left justified with trailing blanks. All 8 bits of characters are significant. If the

name of adevice (PRN, CON)is placed here, do not include the optional colon.

9-B Filename extension, left justified with trailing blanks (can be all blanks). All 8 bits of
characters are significant.

50

——
£ N

LT

KalrhaR

Microsoft MSX-DOS

10-13

14-15

16-17

1&1F

21-24

Extent field. Used on Open, Create, Search, Sequential Read, and Sequential Write. Set
by Random Read and Random Write. '

S1.Reserved.

S2. An 8 bit extension of the extent field. Zeroed on Open, Create, and Search First.
Used as low byte of record size for Block Read and Block Write.

Record Count. Normally 8DH, but set to number of 128-byte records left in extent after
Open and Create. Incremented as appropriate by Sequential Write and Random Write.
Used as high byte of record size for Block Read and Block Write.

Filesizein bytes. In this 2-word field, the first word is the low order part of the size.

Date the filenames were created or last modified.

Bits F-9 (year) = 0-119 (1980-2099)
Bits 8-5 (month) = 1-12
Bits 4-0 (day) = 1-31

Time the file was created or last modified.

Bits F-B (hours) = 0-23
Bits A-5 (minutes) = 0-59
Bits 6-0 {seconds) = 0-29 (two second increments)

Reserved

Current relative record number (0-127) within the current block. You must set this field
before doing sequential read/write operations to the disk. This field is not initialized by

the Open function call.

Relative record number relative to the beginning of the file, starting with zero. You must
set this field before doing random read /write operations to the disk. This field is not
initialized by the Open function call.

If the record size is less than 64 bytes, both words are used. Otherwise, only the first 3
bytes are used. Note that if you use the File Control Block at 5CH in the program
segment, the last byte of the FCB overlaps the first byte of the unformattted parameter

block.

51

III. MSX-BASIC LANGUAGE SPECIFICATION
Language specification for MSX-BASIC

Ver 1.4 (31st August '83)
(C) 1983 by Microsoft Corp.

A1l information contained her%ﬁp is proprietary to ASCII Microsoft

A

Language specification for MSX BASIC

CHAPTER 1

GENERAL INFORMATION ABOUT MSX BASIC

MSX BASIC is an extended version to the Microsoft standard Basic version
4.5, which includes supports to graphics, music and various peripherals
attached to MSX Home and Personal computer. Generally, MSX BASIC is
designed to follow the GW-BASIC which 1is a standard Basic in 16-bit
machine world. But the major effort was made to make the whole system
as flexible and expandable as possible.

Rlso NM3X BASIC is featured with up to 14 dicits accuracy double
precision BCD arithmetic function. This means arithmetic operations
no more generate strange round errors that confuse novice users. Every
trancendental functions are also calculated with this accuracy. 16
bit signed integer operation 1is also available for faster execution.

1.1 MODES OF OPERATION

When MSX BASIC 1is 1initialized, it displays the prompt "Ok". "Ok"
indicates MSX BASIC is at command level; that is, it is ready to accept
commands. At this point, MSX BASIC may be used in either of two modes:
direct mode or indirect mode.

In direct mode, MSX BASIC statements and commands are not preceded
by line numbers. They are executed as they are entered. Results of
arithmetic and logical operations may be displayed immediately and
stored for later wuse, but the instructions themselves are lost after
execution. Direct mode is useful for debugging and for using MSX BASIC
as a "calculator" for quick computations that do not require a complete
program,

Indirect mode is used for entering programs. Program lines are preceded
by line numbers and are stored in memory. The program stored in memory
is executed by entering the RUN command.

1.2 LINE FORMAT

53

(

Language specification for MSX BASIC

MSX BASIC program lines have the following format (square brackets indicate
optional input):

nnnnn BASIC statement [:BASIC statement...] (carraige return)

More than one BASIC statement may be placed on a line, but each must be separated
from the last by a colon.

An MSX BASIC program line always begins with a line number and ends with a carraige
return. A line may contain a maximum of 255 characters.

1.2.1 Line Numbers

Every MSX BASIC program line begins with a 1ine number. Line numbers indicate
the order in which the program lines are stored in memory. Line numbers are also
used as references in branching and editing. Line numbers must be in the range
0 to 65529 and only integer type numbers can be used. Cw

A period (.) may be used in LIST, AUTO, and DELETE commands to refer to the currgﬁt
line. .

1.3 CHARACTER SET

The MSX BASIC character set consists of alphabetic characters, numeric characters,
special characters, graphic characters and European characters.

The alphabetic characters in MSX BASIC are the upper case and lower case letters
of the alphabet.

The MSX BASIC numeric characters are the digits O through 9.
In addition, the following special characters are recognized by MSX BASIC:

Character Action

Blank - .
Equals sign or assignment symbol Q;ﬂ
Plus sign

Minus sign

Asterisk or multiplication symbol

Slash or division symbol

Up arrow or exponentiation symbol

Left parenthesis

Right parenthesis

Percent

Number (or pound) sign

Dollar sign

Exclamation point

Left bracket

Fle— A3 5328 3>~ %t + H

54

A

Language specification for MSX BASIC

NV A VRS ..

D

(backspdce)
(escape)

(
(

tab)

line feed)

(carraige

1.4

return)

CONSTANTS

Right bracket
Comma
Period or decimal point

Single quotation mark (apostrophe)

Semicolon
Colon
Ampersand
Question mark
Less than
Greater than

Back slash or integer division symbol

At sian
Underscore

Deletes last character typed.

Escapes

Moves print position to next tab ston
Tab stops are set every eiaht columns.
Moves to next physical line.

Terminates input of a line

Constants are the values MSX BASIC uses during execution. There are two types of

con

stants: string

and numeric.

A string constant is a sequence of up to 255 alphanumeric characters enclosed
in double quotation marks.

Exa

mplies:

"HELLO"
"$25,000.00"

“Number of Employees"

Numeric constants are positive or negative numbers. MSX BASIC numeric constants

cannot contain commas.

1.

Integer constants

Fixed-point
constants

Floating-
point
constants

There are six types of numeric constants:

Whole numbers between -32768 and 32767. Integer constants
do not contain decimal points.

Positive or negative real numbers, i.e., numbers that contain

decimal points.

Positive or negative numbers represented in exponential form

(similar to scientific notation). A floating-point constant
consists of an optionally signed integer or fixed-point number

(the mantissa) followed by the letter E and an optionally signed

integer (the exponent).

The allowable range for floating-point

constants is 10-64 to 10+63.

55

C

Language specification for MSX BASIC

Examples:

235.988E-7 = .0000235988
2359E6 =2359000000

(Double precision floating=-point constants
are denoted by the letter D instead of E.)

4. Hex constants Hexadecimal numbers, denoted by the prefix
&H.

Examples:

&H76
&H32F

5. Octal constants Octal numbers, denoted by the prefix &0.
Examples:

&§0347

6. Binary constants Binary numbers, denoted by the prefix &B.
Examples:

&B01110110
&B11100111

1.4.1 Single And Double Precision Form For Numeric Constants

Numeric constants may be either single precision or double precision
numbers. Single precision numeric constants are stored with 6 digits
of precision, and printed with up to 6 digits of precision. Double
precision numeric constants are stored with 14 digits of precision
and printed with up to 14 digits. Double precision is the default
for constant in MSX BASIC.

A single precision constant is any numeric constant that has one of
the following characteristics:

1. Exponential form using E.

2. A trailing exclamation point ().
Examples:

-1.09E-06
22.51

A double precision constant is any numeric constant that has one of
these characteristics:

56

Language specification for MSX BASIC

C

1. Any digits of number without any exponential or type specifier.
2. Exponential form using D.

3. A trailing number sign (#).
Examples:

3489
345692811
-1.09432D-06
3489.0%
7654321.1234

1.5 VARIABLES

Variables are names used to represent values used in a BASIC program.
The value of a variable may be assigned explicitly by the programmer,
or it may be assigned as the result of calculations in the program.
Before a variable is assigned a value, its value is assumed to be zero.

1.5.1 Variable Names And Declaration Characters

MSX BASIC variable names may be any length. Up to 2 —characters are
significant. Variable names can contain letters and numbers. However, (:
the first character must be a letter. Special type declaration
characters are also allowed--see below.

A variable name may not be a reserved word and may not contain embedded
reserved words. Reserved words include all MSX BASIC commands,
statements, function names., and operator names. If a variable begins
with FN, it is assumed to be a call to a user-defined function.

Variables may represent either a numeric value or a string. String
variable names are written with a dollar sign ($) as the last character.
For example: AS = "SALES REPORT".

The dollar sign is a variable type declaration character; that is,
it "declares" that the variable will represent a string.

Numeric variable names may declare integer, single precision, or double
precision values. The type declaration characters for these variable
names are as follows:

% Integer variable
! Single precision variable
Double precision variable

The default type for a numeric variable name is double precision.

57

Language specification for MSX BASIC

Examples of MSX BASIC variable names:

PI# Declares a double precision value.
MINIMUM! Declares a single precision value.
LIMITS Declares an integer value,

N§ Declares a string value.

ABC Represents a double precision value.

There is a second method by which variable types may be declared. The
MSX BASIC statements DEFINT, DEFSTR, DEFSNG, and DEFDBL may be included
in a program to declare the types for certain variable names. Refer
to the description for these statements.

1.5.2 Array Variables

An arrav is a group or table of values referenced by the same variable
name. Each element in an array is referenced by an array varig®
that is subscripted with an integer or an integer expression. An ar.:y
variable name has as many subscripts as there are dimensions in the
array. For example V(10) would reference a value in a one-dimension
array, T(l,4) would reference a value in a two-dimension array, and
=2 on. The maximum number of dimensions for an array is 255. The
meximum number of elements is determined by memory size.

1.5.3 Space Requirements
The following table lists only the number of bytes occupied by the
values represented by the variable names. .
Variables Type Bytes
Integer 2
Ssingle Precision 4

Double Precision 8

Arrays Type Bytes

Inteéer 2 per element

Single Precision 4 per element

Double Precision 8 per element
Strings

3 bytes overhead plus the present contents of the string.

1.6 TYPE CONVERSION

When necessary, MSX BASIC will convert a numeric constant from one

typg to another. The following rules and examples should be kept in
mind.

58

54

Language specification for MSX BASIC

l. If a numeric constant of one type is set equal to a numeric (T
variable of a different type, the number will be stored as
the type declared in the variable name. (If a string variable
is set equal to a numeric value or vice versa, a "Type mismatch"
€rror occurs.)

Example:

10 A%=23.42
20 PRINT A%
RUN

23

2. During expression evaluation, all of the operands in an
arithmetic or relational operation are converted to the sare
degree of precision, i.e., that of the most precise operand.
Also, the result of an arithmetic operation is returned to
this degree of precision.

PAgen

Examples:

10 D=6/71 The arithmetic was performed in double

20 PRINT D precision and the result was returned

RUN in D as a ¢oulle precision value.
.85714285714286

10 D!=6/7 The arithmetic was performed in double

20 PRINT D! precision and the result was returned

RUN to D! (single precision variable), (:
.857143 rounded, and printed as a single

precision value.

3. Logical operators convert theif operands to integers and return
an integer result. Operands must be 1in the range -32768 to
32767 or an "Overflow" error occurs.

4. When a floating-point value is converted to an integer, the
fracticnal portion is truncated.

Example:

10 C%=55.88
20 PRINT C%
RUN

55

5. If a double precision variable is assigned a single ©precision
value, only the first six digits of the converted number will
be valid. This is because only six digits of accuracy were
supplied with the single precision value.

Example: '

10 A!=5QR(2)
20 B=A!

59

Language specification for MSX BASIC

30 PRINT A!,B
RUN
1.41421 1.41421
1.7 EXPRESSIONS AND OPERATORS
An expression may be a string or numeric constant, a variable, or a
combination of constants and variables with operators which produces
a single value.

Operators perform mathematical or logical operations on values. The
MSX BASIC operators may be divided into four categories:

1. Arithmetic
2. Relational
3. Logical

4. Functional

Each category is described in the following sections.

1.7.1 Arithmetic Operators

The arithmetic operators, in order of precedence., are:

Operator Operation Sample Expression
- Exponentiation XY
- Negation =X
*,/ Multiplication, Floating- X*y
point Division X/Y
+,- Addition, Subtraction X+Y o

To change . the order in which the operations are performed, use
parentheses. Operations within parentheses are performed first. Inside
parentheses, the usual order of operations is maintained.

1.7.1.1 1Integer Division And Modulus Arithmetic

Two additional operators are available in MSX BASIC:

Integer division is denoted by the yen symbol. The operands are
truncated to integers (must be in the range -32768 to 32767) before
the division is performed, and the quotient is truncated tc an integer.

Example:

60

th

%
SNz

Language specification for MSX BASIC

10$4=2
25.68%6.99=4

Integer division follows multiplication and floating-point division
in order of precedence.

Modulus arithmetic is denoted by the operator MOD. Modulus arithmetic
yields the integer value that is the remainder of an integer division.

Example:

10.4 MOD 4=2 (10/4=2 with a remainder 2)
25.68 MOD 6.99=1 (25/6=4 with a remainder 1)

Modulus arithmetic follows integer division in order of precedence.
1.7.1.2 oOverflow And Division By Zero - .

If, during the evaluation of an expression, division by zero is
encountered, the "Division by =zero" error message is displayed and
execution of program terminates.

If overflow occurs, the "Overflow" error message it displayed &nd
execution terminates.

1.7.2 Relational Operators

Relational operators are used to compare two values. The result of
the comparison is either "true” (-1) or "false" (0). This result may
then be used to make a decision regarding program flow. (See
description for "IF" statements.)

The relational operators are:

Operator Relation Tested Example
= Equality X=Y
< Inequality XY
< Less than X<y
> Greater than X>Y
<= Less than or equal to X<=Y
>= Greater than or equal to X>=Y

(The equal sign is also used to assign a value to a variable.)

When arithmetic and relational operators are combined in one expression,
the arithmetic is always performed first. For example, the expression

61

Language specification for MSX BASIC

X+Y<(T-1)/2

is true if the value of X plus Y is less than the value of T-1 divided
by Z.

More examples:

IF SIN(X)<0 GOTO 1000
IF I MOD J<>0 THEN K=K+l

1.7.3 Logical Operators

Logical operators perform tests on multiple relations, bit manipulation,
or Boolean operations. The logical operator returns &a bitwise result
which is either "true" (not zero) or "false" (zero). 1In an express
logical operations are performed after arithmetic and relatiwiial
operations. The outcome of a logical operation is determined as shown
in Table 1. The operators are listed in order of precedence.

Table 1. MSX BASIC Relational Operators Truth Table

NOT
X NOT X
1 0
0 1
AND
X Y X AND Y
1 l 1l
1 0 0
0 1 0
0 0 0
OR
X Y X OR Y
1 -4 1 i
1 0 1 Q@
0 1 1
0 0 0
XOR
X Y X XOR Y
1 1 0
1 0 1
0 1l 1
0 0 0
EQV
X Y X EQV Y
1 1 1
1l 0 0
0 1 0

62

(33

Language specification for MSX BASIC

0 0 1
IMP

X Y X IMP Y

1 1 1

1 0 0

0 1 1

0 0 1

Just as the relational operators can be used to make decisions regarding
program flow, 1logical operators can connect two or more relations and
return a true or false value to be used in a decision .

Example:
IF D<200 AND F<4 THEN 80
IF I>10 OR K<0 THEN 50
IF NOT P THEN 100

Logical operators work by converting their operands to 16-bit, signed,

twc's complement intecers ir the rance =327€8 tc 32767. (If the
operands are not in this range, an error resclts.,) If both cperands
are supprlied as 0 or -1, locical operzter: return 0 or -1. The given
TTe.etion Lo orvericoriI cn thecse LhTecerl Ln nitsige fasuicr, ilel,
€xch it I tne resuit i Qetvernirec Lotte (lrtezpinliing bBlis an zhe

two operands.

Thus, it is possible to use logical operators to test bytes for a
particular bit pattern. For instance, the AND operator may be used
to "mask" all but one of the bits of a status byte at a machine 1I/0
port. The OR operator may be used to "merge” two bytes to create a
particular binary value. The following examples will help demonstrate
how the logical operators work.

63 AND 16=16 63=binary 111111 and l6=binary 10000, so 63 AND 16=16.

15 AND 14=14 15=binary 1111 and l4=binary 1110, so 15 AND 14=14
(binary 1110).

-1 AND 8=8 -l=binary 1111111111111111 and 8=binary 1000, so -1
AND 8=8.
4 OR 2=6 4=binary 100 and 2=binary 10, so 4 OR 2=6 (binary 110).
10 OR 10=10 10=binary 1010, so 1010 OR 1010= 1010 (decimal 10).
-1 OR -2=-1 -1=binary 1111111111111111 and -2=binary 1111111111111110,

$0 -1 OR =-2=-1. The bit complement of sixteen Zer:.s
is sixteen ones, which is the two's complement
representation of -1,

NOT X=-(X+l) The two's complement of any integer is the bit
complement plus one.

1.7.4 Functional Operators

63

59

Language specification for MSX BASIC

A function 1is used in an expression to call a predetermined operation
that is to be performed on an operand. MSX BASIC has ‘“intrinsic"
functions that reside in the system, such as SQR (square root) or SIN
(sine).

MSX BASIC also allows "user-defined"” functions that are written by
the programmer. See descriptions for "DEF FN".

1.7.5 String Operations
Strings may be concatenated by using +.
Example:

10 AS="FILE" : BS="LAMNE"
20 PRINT AS+BS .
30 PRINT "NEW "+AS+BS . Rl
RUN)

FILENAME

NEW FILENAME

Strings may be compared using the same relational operators that are
used with numbers:

= <> < > (= >=

String comparisons are made by taking one character at a time from
each string and comparing the ASCII codes. If all the ASCII codes
are the same, the strings are equal. If the ASCII codes differ, the
lower code number precedes the higher. If during string comparison
the end of one string is reached, the shorter string is said to be
smaller. Leading and trailing blanks are significant.

Examples:
IAAI<IAB'
"FILENAME"="FILENAME"
"XE"O>"XE" -
"CL ">"CL"
"kg">"KG"
"SMYTH" <" SMYTHE"
BS<"9/12/83" where B$="8/12/83"

Thus, string comparisons can be used to test string values or to

alphabetize strings. All string constants ~ used in comparison
expressions must be enclosed in guotation marks.

1.8 PROGRAM EDITING
The Full Screen Editor equiped with MSX BASIC allows the user to enter

program lines as usual, then edit an entire screen before recording
the changes. This time-saving capability is made possible by special

64

Language specification for MSX BASIC

keys for cursor movement, character insertion and deletion, and line
or screen erasure. Specific functions and key assignments are discussed
in the following sections.

With the Full Screen Editor, a user can move quickly around the screer,
making corrections where necessary. The changes are entered by placing
the cursor on the first 1line changed and pressing <RETURN> at the
beginning of each 1line. A program line is not actually changed until
<RETURN> is entered from somewhere within the line.

Writing Programs

Within MSX BASIC, the editor is in control any time after an OK prompt
and before a RUN command is issued. Any line of text that is entered
is processed by the editor. Any line of text that begins with a number
is considered a program statement.

Program statements are processed by the editor in one of the following
ways:

l. Anew 1line is added to the program. This occurs if the line
number is valid (0 through 65529) and at least one non-blank
character follows the line number.

2. An existing 1line is modified. This occurs if the line number
matches that of an existing line in the program. The existing
line is replaced with the text of the new line.

3. An existing 1line is deleted. This occurs if the line number
matches that of an existing line, and the new line contains
only the line number.

4. An error is produced.

If an attempt is made to delete a non-existent 1line, an
"Undefined line number" error message is displayed.

If program memory is exhausted, and a line is added to the
program, an "Out of memory" error is displayed and the line
is not added. '

More than one statement may be placed on a line. 1If this is done,
the statements must be separated by a colon (:). The colon does not
have to be surrounded by spaces.

The maximum number of characters allowed in a program line, including
the line number, is 255.

Editing Programs
Use the LIST statement to display an entire program or range of lines
on the screen so that they can be edited. Text can then be modified

by moving the cursor to the place where the change is needed and
performing one of the following actions:

65

Language specification for MSX BASIC

1. Typing over existing characters

2. Deleting characters to the right of the cursor

3. Deleting characters to the left of the cursor

4. Inserting characters

5. Appending characters to the end of the logical line

These actions are performed by special keys assigned to the various
Full Screen Editor functions (see next section).

Changes to a line are recorded when a carriage return is entered while
the cursor is somewhere on the line. The carriage return enters all
changes for that logical line, no matter how many physical lines are
included and no matter where the cursor is located on the line. -

Full Screen Editor Functions

The following table lists the hexadecimal codes for the MSX BASIC
control characters and summarizes their functions. The Control-key
segquence normally assigned to each function is also listed. These
conform as closely as possible to ASCII standard conversions.

Individual control functions are described following the table.

Table 1. MSX BASIC Control Functions. The ASCII control key is entered
by pressing the key while holding down the Control key.

Bex. Control Special

Code Key Key Function
01 A Ignored
02 * B Move cursor to start of previous word
03 * C Break when MSX BASIC is waiting for input o
04 * D Ignored (g;
05 * E Truncate line (clear text to end of logical
line)
06 * F Move cursor to start of next word
07 * G Beep
08 B Back Space Backspace, deleting characters passed over
08 I Tab Tab (moves to next TAB stop)
oa * J Line feed
0B * K Home Move cursor to home position
0C * L CLS Clear screen
0D * M Return Carriage return (enter current logical line)
OE * N Append to end of line
oF * 0] Ignored
10 * P Ignored
11 * Q Ignored
12 * R INS Toggle insert/typeover mode

66

Language specification for MSX BASIC

13 »* S Ignored

14 * T Ignored

15 =+ U Clear logical line
16 * v Ignored

17 * W Ignored

18 * X Select Ignored

19 * Y Ignored

1A * Z Ignored

1B [ESC Ignored

ic » \ Right arrow Cursor right

1D *] Left arrow Cursor left

1E ¢ ° Up arrow Cursor up

1F * - Down arrow Cursor down

7F DEL DEL Delete character at cursor

Note: Those keys marked with asterisk(*) cansels insert mode
when editor is in insert mode.

PREVIOUS WORD
The cursor is moved left to the previous word. The previous
word is defined as the next character to the left of the cursor
in the sets A-2Z, a-z, or 0-9.

BREAK
Returns to MSX BASIC direct mode, without saving changes that
were made to the line currently being edited.

TRUNCATE
The cursor is moved to the end of the logical line. The
characters it passes over are deleted. Characters typed from
the new cursor position are appended to the line.

NEXT WORD
The cursor is moved right to the next word. The next word
is defined as the next character to the right of the cursor
in the sets A-2, a-z, or 0-9.

BEEP
The beep sound will be produced.

BACKSPACE
Deletes the character to the left of the cursor. All characters
to the right of the cursor are moved 1left one position.
Subsequent characters and 1lines within the current logical
line are moved up (wrapped).

TAB

TAB moves the cursor to the next tab stop overwriting blanks.
Tab stops occur every 8 characters.

CURSOR HOME
Moves the cursor to the upper left corner of the screen. The
screen is not blanked.

CLEAR SCREEN

67

Language specification for MSX BASIC

Moves the cursor to home position and clears the entire screen,
regardless of where the cursor is positioned when the key is
entered.

CARRIAGE RETURN
A carriage return ends the logical line and sends it to MsX

BASIC.

APPEND
Moves cursor to the end of the 1line, without deleting the
characters passed over. All characters typed from the new
position until a carriage return are appended to the logical
line.

INSERT

Toggle switch for insert mode. When insert mode is on, the
c:ze cf the cursor it reduceé and charecters are inserteé at
the curtrent cursor position. Characters to the right of the
cursor move right as new ones are inserted. Line wrap {
observed. e
When insert mode is off, the size of cursor returned to normal
size and typed characters will replace existing characters
on the line,

CLEAR LOGICAL LINE

When this key is entered anywhere in the line, the entire
logical line is erased.

CURSOR RIGHT
Moves the cursor one position to the right. Line wrap is
observed.

CURSOR LEFT
Move the cursor - one @position to the left. Line wrap is
observed.

CURSOR UP
Moves the cursor up one physical line (at the current positioen).

CURSOR DOWN g ,
Move the cursor down one physical line (at the curreut
position).

Logical line Definition with INPUT

Normally, a logical line consists of all the characters on each of
the physical lines that make up the logical 1line. buring execution
of an INPUT or LINE INPUT statement, however, this definition is
modified slightly to allow for forms input. When either of these
statements is executed, the logical 1line is restricted to characters
actually typed or passed over by the cursor. Insert mode and the delete
function only move characters which are within that logical line, and
Delete will decrement the size of the line.

68

62

¢

Language specification for MSX BASIC

Insert mode increments the logical 1line except when the characters
moved will write over non-blank characters that are on the same physical
line but not part of the logical line. In this case, the non-blank
characters not part of the logical line are preserved and the characters
at the end of the logical line are thrown out. This preserves labels
that existed prior to the INPUT statement. If an incorrect character
is entered as a line is being typed, it can be deleted with the <Back
Space> key or with Control-H. and they backspacing over a character
and erasing it. Once a character(s) has been deleted, simply continue
typing the line as desired.

To delete a line that is in the process of being typed, type Control-U.

To correct program 1lines for a program that is currently in memorv.
simply retype the line using the same line number. MSX BASIC will
automatically replace the old line with the new line.

To delete the entire program currently residing in memory, enter the
NEW command. NEW is usually used to clear memory prior to entering
a new program.

1.9 Special keys

MSX BASIC supports several special keys as follows.

1.9.1 Function Keys

MSX BASIC has 10 pre-defined function keys. The current contents of
these keys are displayed on the 1last 1line on the screen and can be

re-defined by program with KEY statement. The initial values for each
keys are:

Fl color{b] [b] = blank character

F2 autolb] [cr]= carriage return

F4 goto[b] [u] = cursor up character

F5 list([b] [cls]=clear screen character
FS runicr]

F6 color 15,4,7[cr)

F7 cload"

F8 cont{cr]

F9 list.[cr]{u]{u]

F10 [cls]lrunfcr]

Function keys are also used as event trap keys. See ON KEY GOSUB and
KEY ON/OFF/STOP statement for details.

1.9.2 Stop key

When MSX BASIC is in command mode, the STOP key has no effects to the
operation, MSX BASIC just ignores it.

When MSX BASIC is executing the program, pressing the STOP key causes

69

65

Language specification for MSX BASIC

suspension of the program execution, and MSX BASIC turn on the cursor
display to indicate that the execution is suspended. Another STOP
key input resumes the execution. If the STOP key and control key are
pressed simultaneously, MSX BASIC terminates the execution and return
to command mode with following message.

Break in nnnn

where nnnn is the program line number where the execution stopped.

1.10 ERROR MESSAGES

If an error causes program execution to terminate, an error message
is printed. For a complete list of MSX BASIC error codes and error
messages, see Appendix A,

e
PSRN

70

G

Language specification for MSX BASIC

2.1
2.1.1

CHAPTER 2
MSX BASIC COMMANDS, STATEMENTS AND FUNCTIONS

Commands, Statements, and Functions except I/0

Commands except 1/0

AUTO [<line number>[,<increment>]]

CONT

To generate a 1line number automatically after every carriage
return.

AUTO begins numbering at <line number> and increment each
subsequent line number by <increment). The default for both
value is 10. If <line number> is followed by a comma but
<increment> is not specified, the last increment specified in
an AUTO command is assumed.

If AUTO generates a line number that is already being used, an
asterisk is printed after the line number to warn the user that
any input will replace the existing 1line. However, typing a
carriage return immediately after the asterisk will save the
line and generate the next line number.

AUTO is terminated by typing Control-C or Control-STOP. The
line in which Control-C is typed is not saved. After Control-C
is typed, BASIC returns to command level.

To continue program execution after BREAK or STOP in execution.

DELETE [<line number>)[-<line number>]

LIST

To delete program lines.
BASIC always returns to command level after a DELETE is executed.
If <line number> does not exist, an 'Illegal function call' error
occurs.

[<line number>[-[<line number>]]]
To list all or part of the program.

71

Language specification for MSX BASIC

LLIST

NEW

RENUM

1f both <line number> parameters are omitted, the program is
listed beginning at the lowest line number.

If only the first <line number> is specified, that line is listed.

If the first <line number> and "-" are specified, that line and
all higher-numbered lines are listed.

If "-" and the second <line number> are specified, all 1lines
from the beginning of the program through that line are listed.

If both <line number> parameters are specified, the range from
the first <line number> through the second <line number> is
listed.

Listing is terminated by typing "CTRL" and "STOP" keys at sane
time. Listing is suspended by typing "STOP" Kkey. and it (;;
resumed by typing "STOP" key again. s

[<line number>[-[<line number>]]]
To list all or part of the program on the printer. (See the
LIST command for details of the parameters)

To delete entire program from working memory and reset all
variables, '

[[<new number>][,[<cld number>]}|[,<increment>]]]
To renumber program lines.

<new number> is the first line number to be used in the new
sequence. The default is 10. <old number> is the line in the
current program where renumbering is to begin. The default is
the first 1line of the progranm. <increment> is the increment
to be used in the new sequence. The default is 10.

RENUM also changes all 1line number references following GOTO,
GOSUB, THEN, ELSE, ON..GOTO, ON..GOSUB and ERL statements / .
reflect the new 1line numbers. If a nonexistent 1line numé@;
appears after one of these statement, the error message 'Undefined
line nnnn in mmmm' is printed. The incorrect 1line number
reference(nnnn) is not changed by RENUM, but line number mmmm
may be changed.

NOTE: RENUM cannot be used to change the order of program 1lines

(for example, RENUM 15,30 when the program has three lines
numbered 10, 20 and 30) or to create 1line numbers greater than
65529. An 'Illegal function call' error will result.

RUN [<line number>]

To execute a program.

If <line number> is specified, execution begins on that 1line.
Otherwise, execution begins at the lowest line number.

72

Language specification for MSX BASIC

TRON/TROFF

CLEAR

To trace the execution of program statements.

ke an aic in debugging, the TRON statement (executed in either
the direct or indirect mode) enables a trace flag that prints
each line number of the program as is executed. The numbers
appear enclosed in square brackets. The trace flag is disabled
with the TROFF statement (or when a NEW command is executed).

[<string space>[,<highest location>}]

To set all numeric variables to 2zero, all string variables to
null, and close all open files, and optionally, to set the end
of memory.

<string space>

Space for string variables. Default size is 200 bytes.
<Highest location> :

The highest memory location available for use by BASIC.

DATA <list of constants>

To store the numeric and string constants that are accessed by
the program's READ statement(s).

DATA statements are nonexecutable and may be placed anywhere
in the program. A DATA statement may contain as many constants
as will fit on a _line (separated by commas), and any number of
DATA statements may be used in a program. The READ statements
access the DATA statements in order (by 1line number) and the
data contained there in may be thought of as one continuous list
of items, regardless of how many items are on a line or where
the lines are placed in the program.

<list of constants> may contain numeric constants in any format;
i.e.,fixed point, floating .point, or integer. {No numeric
expressions are allowed in the list.) String constants in DATA
statements must be surrounded by double quotation marks only
if they contain comma, colons, or significant leading or trailing
spaces. Otherwise, quotation marks are not needed.

The variable type (numeric or string) given in the READ statement
must agree with the corresponding constant in the DATA statement.
DATA statements may be read from the beginning or specified line
by use of the RESTORE statement.

DIM <list of subscripted variables>

To specify the maximum values for array variable subscripts and
allocate storage accordingly.

If an array variable name is used without a DIM statement, the
maximum value of its subscript(s) is assumed to be 10. If a
subscript is used that is greater than the maximum specified,
a 'Subscript out of range' error occurs. The minimum value for
a subscript is alweys 0.

73

Language specification for MSX BASIC

DEFINT <range(s) of letters>

DEFSNG <range(s) of letters>

DEFDBL <range{(s) of letters>

DEFSTR <range(s) of letters>
To declare variable type as integer, single precision, double
precision, or string.

DEFINT/SNG/DBL/STR statements declare that the variable names
beginning with the letter(s) specified will be that type variable,
However, a type declaration character always takes precedence
over a DEFxxx statement in the typing of a variables. (see the
end of section 1.5.1, for details of declaration characters.)

DEF FN<name>|[(<parameter list>)]=<function definition>
To define and name a function that is written by the user.

<name> must be a legal variable name. This name, preceded by
FN. becomes the name of the function. <parameter 1list> (..
comprised of those variable name in the function definition that
are to be replaced when the function is called. The items in
the list are separated by commas. <function definition> is an
expression that performs the operation of the function. It is
limited to cne line. Variable names that appear in this
expression serve only to define the function; they do not affect
program variables that have the same name. A variable name used
in a function definition may or may not appear in the parameter
list. If it does, the value of the parameter is supplied when
the function is <called. Otherwise, the current value of the
variable is used.

The variables in the parameter list represent, on a one-to-one
basis, the argument variables or values that will be given in
the function call.

If a type is specified in the function name, the value of the
expression is forced to that type before it is returned to the
calling statement. If a type is specified in the function name
and the argument .type does not match, a 'Type mismatch' error
occurs. (-

A DEFFN statement must be executed before the function it defines
may be called. If a function is called before it has been
defined, an 'Undefined user function' error occurs. DEFFN is
illegal in the direct mode.

DEFUSR[<digit>]=<integer expression>
To specify the starting address of an assembly language
subroutine.

<digit> may be any digit from 0 to 9. The digit corresponds
to the number of the USR routine whose address is being specified.
If <digit> 1is omitted, DEFUSR0O is assumed. The value of <integer
expression> is the starting address of the USR routine _

74

ey
£ k)
4 H

Language specification for MSX BASIC

ERASE

ERROR

Any number of DEFUSR statements may appear in a program to
redefine subroutine starting addresses, thus allowing access
to as many subroutines as necessary.

<list of array variables>
To eliminate arrays from a program

Arrays may be redimensioned after they are ERASEd, or the
previously allocated array space in memory may be used for other
purposes. If an attempt is made to redimension an array without
first ERASEing it, a '"Redimensioned array' error occurs.

To terminate program execution, «close all files and return to
commancé lievel.

END statements may be placed anywhere in the program to terminate
execution. Unlike the STOP statement, END does not cause a BREAK
message to be printed. An END statement at the end of a program
is optional.

<intecer expression>
To simulate the occurrence of an error or to allow error codes
to be defined by the user.

The value of <integer expression> must be greater than 0 and
less than 255. 1If the value of <integer expression> equals an
error code already in use by BASIC, the ERROR statement will
simulate the occurrence of that error, and the corresponding
error message will be printed.

To define your own error code, use a value that is greater than
any used by BASIC for error codes. See Appendix A for a 1list
of error codes and messages. (It is preferable to use the highest
available values, so compatibility may be maintained when more
error codes are added to BASIC.) This user defined error code
may then be conveniently handled in an error trap routine.

Example:

10 ON ERROR GOTO 1000

120 IF AS="Y" THEN ERROR 250

1000 IF ERR=250 THEN PRINT "Sure?"

If an ERROR statement specified a code for which no error message
has been defined, BASIC responds with the message 'Unprintable
error'. Execution of an ERROR statement for which there is no
error trap routine causes an ‘Unprintable error' error message
to be printed and execution to halt.

75

P

Language specification for MSX BASIC

FOR <variable>=x TO y [STEP z]

NEXT [<variable>)|,<variable>...]
note: <Variable> can be integer,single-precision or double-
precision. where x,y,2z are numeric expressions.

To allow a series of instructions to be performed in a loop &
given number of times.

<variable> is used as a counter. The first numeric expression
(x) is the initial value of the counter. The second numeric
expression (y) is the final value of the counter. The program
lines following the FOR statement are executed until the NEXT
statement is encountered. Then the counter is incremented by
the amount specified by STEP. A check is perfcrmed tc see if
the value of the counter is now ¢reater than the finzl value
(y). If it is not greater, BASIC branches back to the statement
after the FOR statement and the process is repeated. If it is
greater, execution continues with the statement following the
NEXT statement. This is a FOR...NEXT 1loop. If STEP is not
specified, the increment is assumed to be one.

If step is negative, the final value of the counter is set to
be less than the initial value. The counter is decremented each
time through the loop, and the loop is executed until the counter
is less than the final value.

The body of the loop is executed one time at least if the initial
value of the 1loop times the sign of the step exceeds the final
value times the sign of the step.

FOR...NEXT loops may be nested, that is, a FOR...NEXT loop may
be placed within the context of another FOR...KEXT loop. When
loops are nested, each loop must have a unigue variable name
as its counter. The NEXT statement for the inside loop must
appear before that for the outside loop. If nested loops have
the same end point, a single NEXT statement may be used for all
of them. Such nesting of FOR...NEXT 1loops is limited only by
available memory.

The variable(s) in the NEXT statement may be omitted, in which
case the NEXT statement will match the most recent FOR statement.
If a NEXT statement is encountered before its corresponding FOR
statement, a 'NEXT without FOR' error message is issued and
execution is terminated. :

GOSUB <line number>

RETURN [<line number>)
To branch to subroutine beginning at <line number> and return
from a subroutine.

<line number> is the first line of the subroutine. A subroutine
may be called any number of times in a program, and a subroutine

76

£

Language specification for MSX BASIC

may be called from within another subroutine. Such nesting of -
subroutines is limited only by available memory.

The RETURN statement(s) in a subroutine cause BASIC to branch
back to the statement following the most recent GOSUB statement.
A subroutine may contain more than one RETURN statement, shoulad
logic dictate a return at different points in the subroutine.
Subroutines may appear anywhere in the program, but it is
recommended that the subroutine be readily distinguishable from
the main program. To prevent inadvertent entry into the
subroutine, it may be preceded by a STOP, END, or GOTO statement
that directs program control around the subroutine. Otherwise,
a 'RETURN without GOSUB' error message is issued and execution
is terminated.

GOTO <line number)

To branch unconditionally out of the normal program sequence
to a specified <line number>. .

If <line number> is an executable statement, that statement and
those following are executed. 1If it is a nonexecutable statement,
execution proceeds at the first executable statement encountered
after <line number>.

IF <expression> THEN <statement(s)|<line number>
[ELSE <statement(s) |<line number>]
IF <expression> GOTO <line number>
[ELSE <statement(s)|<line number>] (“
To make a decision regarding program flow based on the result -
returned by an expression.

If the result of <expression> is not zero, the THEN or GOTO clause
is executed. THEN may be followed by either a line number for
branching or one or more statements to be executed. GOTO 1is
always followed by a line number. If the result of <{expression>
is zero, the THEN or GOTO clause is ignored and the ELSE clause,
if present, is executed. Execution continues with the next
executable statement.

Example:
A=1:B=2 => A=B is zero (FALSE) .
A=2:b=2 -> A=B is not zero (TRUE).

IF...THEN...ELSE statements may be nested. Nesting is 1limited
only by the length of the line. 1If the statement does not contain
the same number of ELSE and THEN clauses, each ELSE 1is matched
with the closest unmatched THEN. For example,

IF A=B THEN IF B=C THEN PRINT "A=C"
ELSE PRINT "ACT

will not print "A<>C"™ when A<>B. It will print "A<>C" when 2a=B
and B<>C. '

If an IF...THEN statement is followed by a line number in the

77

Language specification for MSX BASIC

INPUT

direct mode, an 'Undefined line' error results unless a statement

with the specified 1line number had previously been entered in
the indirect mode.

[*<prompt string>";]}<list of variables>
To allow input from the keyboard during program execution.

when an INPUT statement is encountered, program execution pauses
and a question mark is printed to indicate the program is waiting
for data. If "<prompt string>" is included, the string is printed
before the guestion mark. The required data is then entered
at the keyboard.

The data that is entered is assigned to the variable(s) given
in <variable list>. The number of data items supplied must be
the same as the number of variables in the list. Datz itens
are separated by commas.

The names in the <list of variables> may be numeric or strﬁﬁg
variable names (including subscripted variables). The type of
each data item that is input must agree with the type specified
by the variable name. (Strings input tc an INPUT statement need
not be surrounded by quotation marks.)

Responding to input with the wrong type of value (string instead
of the numeric, etc.) causes the message "?Redo from start”
to be printed. No assignment of input value is made until an
acceptable response is given.

Example:

list

10 INPUT "A and B";A,B

20 PRINT A+B

Ok

run

A and B? 10,80

?Redo from start

A and B? 10,20 . .
Responding to INPUT with too many items causes the message "?Extra
ignored™ to be printed and the next statement to be executed.

Exanple:
list
10 INPUT "A and B";A,B
20 PRINT A+B
Ok
run
A and B? 10'20130
?Extra ignored
30
Ok

78

Language specification for MSX BASIC

€f

Responding to INPUT with too few item causes two question marks
to be printed and a wait for the next data item.

Example:

list

10 INPUT "A and B";A,B
20 PRINT A+B

Ok

run

A and B? 10 (The 10 was typed in by the user)
2?2 20 (The 20 was typed in by the user)
30

Ok

Escape INPUT by typing Control-C or the "CTRL" and "STOP" keys
simultaneously. BASIC returns to command level and types “Ok".
Typing CONT resumes execution at the INPUT statement.

_Qﬁ} LINE INPUT ["<prompt string>";]<string variable> '
; To input an entire 1line (up to 254 characters) to a string
variable, without the use of delimiters.

The preormpt string is a string literal that is printed at the
console before input is accepted. A question mark is not printed
unless it is part of the prompt string. All input from the end
of the prompt to the carriage return is assigned to <string
variable>.

~

Escape LINE INPUT by typing Control-C or the "CTRL" and "STOP"
keys simultaneously. BASIC returns to command level and types
"Ok". Typing CONT resumes execution at the LINE INPUT statement.

[LET] <variable>=<expression>
i To assign value of an expression to a variable.

Notice the word LET is optional; i.e., the -equal sign is
sufficient when assigning an expression to a variable name.

LPRINT [<list of expressions>]
LPRINT USING <string expression>;<list of expressions>
;i To print data at the 1line printer. (see PRINT and PRINT USING
statements below for details.)

MIDS (<string exp. 1>),n[,m])=<string exp.2 >
; To replace a portion of one string with another string.

The character in <string exp.l>, beginning at position n, are
replaced by the characters in <string exp.2>. The optional m
refers to the number of characters from <string exp.2> that will
be used in the replacement. If m is omitted or included, the
replacement of characters never goes beyond the original length
of <string exp.1l>.

ON ERROR GOTO <line number>
P i To enable error trapping and specify the first line of the error

79

[

Language specification for MSX BASIC

handling subroutine.

Once error trapping has been enabled all errors detected,
including direct mode errors (e.g., SN (Syntax) errors), will
cause a jump to the specified error handling subrcutine. 1f
<line number> does not exist, an 'Undefined line number' error
results. To disable error trapping, execute an ON ERROR GOTO
0. Subsequent errors will print an error message and halt
execution. An ON ERROR GOTO 0 statement that appears in an error
trapping subroutine causes BASIC to stop and print the error
message for the error that caused the trap. It is ‘recommended
that all error trapping subroutines execute an ON ERROR GOTO
0 if an error is encountered for which there is no recovery
action.

If an error occurs during execution of an error handling
subroutine, the BASIC error message is printeé and execution
terminates. Error trapping does not occur within the error
handling subroutine. SO

ON <expression> GOTO <list of line number>
ON <expression> GOSUB <list of line number>

.
’

POKE <address of the memory>,<integer expression>

’

PRINT

To branch to one of several specified 1line numbers, depending
¢n the value returned when an expression is evaluated. The value
cf <expression> determines which line number in the list will
be usec for branching. For example, if the value is three, the
third line number in the list will be the destination of the
branch. (If the value is a noninteger, the fractional portion
is discarded.)

In the ON...GOSUB stétement, each line number in the 1list must
be the first line number of a subroutine.

If the value of <expression> is zero or greater than the number
of items in the list (but 1less than or equal to 255), BASIC
continues with the next executable statement. If the value of
<expression> is negative or greater than 255, a 'Illegal function
call' error occurs.

To write a byte into a memory location.

<address of the memory> is the address of the memory location
to be POKEd. The <integer expression> is the data (byte) tc
be POKEd. It must be in the range 0 to 255. And <address of
the memory> must be in the range -32768 to 65535. If this value
is negative, address of the memory location is computed as
subtracting from 65536. For example, =1 is same as the 65535
(=65536-1). Otherwise, an 'Overflow' error occurs.

[<list of expressions>]
To output data to the console.

If <list of expressions> is omitted, a blank line is printed.
If <list of expressions> is included, the values of the

80

=A

£

Language specification for MSX BASIC

PRINT

expressions are printed at the console. An expression in the
list may be a numeric and/or a string expression. (Strings must
be enclosed in quotation marks.)

The position of each printed item is Getermined by the punctuation
used to separate the items in the list. BASIC divides the line
into print zones of 14 spaces each. 1In the <list of expressions>,
a comma causes the next value to be printed at the beginning
of the next zone. A semicolon causes the next value to be printed
immediately after the last value. Typing one or more spaces
between expressions has the same effect as typing a semicolon.

If a comma or a semicolon terminates the <list of expressions>,
the next PRINT statement begins printing on the same line, spacing
accordingly. If the <list of expressions> terminates without
a comma or a semicolon, a carriage return is printed at the end
of the 1line. If the printed 1line 1is longer than the console
width, BASIC goes to the next physical line and continues
printing.

Printed numbers are always followed by a space. Positive numbers
are preceded by a space. Negative numbers are preceded by a
minus sign.

A question mark may be used in place of the word PRINT in a PRINT
statement.

USING <string expression>;<list of expressions>
To print strings or numerics using a specified format.

<list of expressions> comprises the string expressions or numeric
expressions that are to be printed, separated by semicolons.
<{string expression> is a string literal (or variable) comprising
special formatting characters. These formatting characters (see
below) determine the field and the format of the printed strings
or numbers. ‘

When PRINT USING is used to print strings, one of three formatting
characters may be used to format the string field:

ll!ll

Specifies that only the first character in the given string is
to be printed. ’ '

Example:
AS$="Japan"

Ok

PRINT USING "!";AS
7)

Ok

"&n spaces&”

Specifies that 2+n characters from the string are tc be printed.

81

Language specification for MSX BASIC

If the '&' signs are typed with no spaces, two characters will
be printed; with one space three characters will be printegq,
and so on. If the string is longer than the field, the extra
characters are ignored. 1If the field is longer than the string,
the string will be left-justified in the field and padded with
spaces on the right.

Example:

AS="Japan"

Ok

PRINT USING "& &";AS
Japa

Ok

Il@ll

Specifies that the whole character in the given string is to
be printed. (i
Example:

AS="Japan"

Ok

PRINT USING "I love € very much.";AS

I love Japan very much.

Ok

When PRINT USING is used to print numbers, the following special
characters may be used to format the numeric field:

'#ll

A number sign is wused to represent each digit position. Digit
positions are always filled. If the number to be printed has
fewver digits than positions specified, the number will be
right-justified (preceded by spaces) in the field.

A decimal point may be inserted at any position in the fiet?;
If the format string specifies that a digit is to precede %
decimal point, the digit will always be printed (as 0 1if
necessary). Numbers are rounded as necessary.

Example:
PRINT USING "##%#.%##":;10.2,2,3.456,.24
10.20 2.00 3.46 0.24
Ok
I+I
A plus sign at the beginning or end of the format string will
cause the sign of the number (plus or minus) to be printed before
or after the number.

Example:

82

2R

Language specification for MSX BASIC
PRINT USING "+###.##";1.25,-1.25

+1.25 -1.25

0K

PRINT USING "###.##+";1.25,-1.25
1.25+ 1.25-

0K

A minus sign at the end of the format field will cause negative numbers to be
printed with a trailing minus sign.

Example: PRINT USING "###.##-";12.5,-1.25
1.25 1.25-

0K

ok 1)

o A double asterisk at the beginning of the format string causes leading spaces
i in the numeric field to be filled with asterisks. The $$ also specifies positions
for two or more digits.

Example: PRINT USING "**1,25-1.25°
**]1.25%-1.25

0K

$$
A double § sign causes a $ sign to be printed to the immediate left of the
formatted number. The 3 specifies two more digit positions, one of which

is the § sign. The exponential format cannot be used with $$. Negative numbers
cannot be used unless the minus sign trails to the right.

Example: PRINT USING "$$###.#4";12.35,-12.35
$12.35 $12.35-
0K
u**$n
2% ~ The **$ at the beginning of a format string combines the effects of the above
. two symbols. Leading spaces will be asterisk-filled and a $ sign will be printed
before the number. **$ specifies three more digit positions, one of which is
the § sign.
Example: PRINT USING "**$#.4##";12.35
*12.35
0K

83

Language specification for MSX BASIC

non
r

A comma that 1is to the left of the decimal point in a formatting
string causes a comma to be printed to the 1left of every third
digit to the 1left of the decimal point. A comma that is at the
end of the format string is printed as part of the string. A
comma specifies another digit position. The comma has no effect
if used with the exponential format.

Example:

PRINT USING "é###%,.#%";1234.5
1,234.50

Ok

PRINT USING "###&.#%,";1234.5
1234.50,

Ok

NAAAAYR (
: N

AR

Four carats may be placed after the digit position characters
to specify exponential format. The four carats allow space for
E+xx to be printed. Any decimal point position may be specified.
The significant digits are left-justified, and the exponent is
adjusted. Unless a leading + or trailing + or - is specified,
one digit position will be used to the left of the decimal point
to print a space or minus sign,

Example:

PRINT USING "##,%4°"""";234.56
2.35E+02

Ok

PRINT USING "#.#$""""-";-12.34

1.23E+01-

Ck

PRINT USING "+4#,#%""""";12.34,-12.34

+1.23E+01-1.23E+01

ok

If the number to be printed is larger than the specified numeric
field, a percent sign is printed in front of the number. Also,
if rounding causes the number to exceed the field, a percent
sign will be printed in front of the rounded number.

Example:

PRINT USING "##.##";123.45
£123.45

Ok

PRINT USING ".##";.999
£1.00

Ok

If the number of digits specified exceed 24, an 'Illegal function

84

Language specification for MSX BASIC

call' errof will result,

READ <list of variables>
; To read values from a DATA statement and assign them to variables.

A READ statement must always be used in conjunction with a DATA
statement. READ statements assign variables to DATA statement
values on a one-to-one basis. READ statement variables may be
numeric or string, and the values read must agree with the
variable types specified. If they do not agree, a 'Syntax error'
will result.

A single READ statement may access one or more DATA statements
(they will be accessed in order), or several READ statements
may access the same DATA statement. If the number of variables
in <list of variables> exceeds the number of elements in the
DATA statement(s), an 'Out of DATA' error will result. If the
number of variables specified is fewer than the number of elements
in the DATA statement(s), subsequent READ statements will begin
reading data at the first wunread element. If there are no
subsequent READ statements, the extra data is ignored.

T. reread DATA statements from the start, use the RESTORE
statement.

REM <remark>
; To allow explanatory remarks to be inserted in a program.

REM statements are not executed but are output exactly as entered
when the program is listed.

REM statements may be ‘branched into (from a GOTO or GOSUB
statement), and execution will continue with the first executable
statement after the REM statement.

Remarks may be added to the end of a line by preceding the remark
with a single quotation mark instead of :REM.

Do not use this in a DATA statement as it would be considered
legal data. '

RESTORE [<line number>]
; To allow DATA statements to be reread from a specified line.

After a RESTORE statement is executed, the next READ statement
accesses the first item in the first DATA statement in the
program. If <line number> is specified, the next READ statement
accesses the first item in the specified DATA statement. If
a nonexistent line number is specified, an 'Undefined Line number'
error will result.

RESUME

RESUME 0

RESUME NEXT

RESUME <line number>

85

R

Language specification for MSX BASIC

STOP

~e

RESUME <line number>

To continue program execution after an error recovery procedure
has been performed.

Any one of the four formats shown above may be used, depending
upon where execution is to resume:

RESUME or RESUME 0
Execution resumes at the statement which caused the error.

RESUME NEXT
Execution resumes at the statement immediately following the
one which caused the error.

Execution resumes at <line number>

A RESUME statement that is not in an error trap subroutine causes
a 'RESUME without' error. {

To terminate program execution and return to command level.
STOP statement may be used anywhere in a program to terminate
execution. When &a STOP statement is encountered, the following
message 1s printed:

Break in nnnn (nnnn is a line number)

Unlike the END statement, the STOP statement does not close files.

Execution is resumed by issuing a CONT command.

SWAP <variable>,<variable>

.
1

To exchange the value of two variables.
Any type of variable may be SWAPed (integer, single precision,

double precision, string), but the two variable must be of the
same type or a 'Type mismatch' error results.

86

Language specification for MSX BASIC

2.1.3 Functions, except I/0

ABS({X)
; Returns the absolute value of the expression X.

ASC(XS$)
: Returns a numerical value that is the ASCII code of the first
character of the string X$. If X$ is null, a 'Illeqgal function
call’' error is returned.

ATN(X)
; Returns the arctangent of X in radians. Result is in the range
-pi/2 to pi/2. The expression X may be any numeric type, but
the evaluation of ATN is always performed in double precision.

BINS(n)
; Returns a string which represents the binary value of the decimal
argument.

n is a numeric expression in the range -32768 to 65535. If n
is necative, the two's complement from is used. That is, BINS(-n)
is the same as BINS$(65536-n).

CDBL(X)
; Converts X to a double precision number.

CHRS (I)
; Returns a string whose one element is the ASCII code for I. ASCS
is commonly used to send a special character to the console,
etc, .

CINT(X)
; Converts X to a integer number by truncating the fractional
portion. If X 1isn't the range =-32768 to 32767, an 'Overflow'’
error occurs.

COS(X)
; Returns the cosine of X in radians. COS(X) 1is calculated to
double precision.

CSNG (X)
; Converts X to a single precision number.

CSRLIN 7
; Returns the vertical coordinate of the -cursor.

ERL/ERR
; When an error handling subroutine is entered, the variable ERR
contains the error code for error. and the variable ERL contains
the line number of the line in which the error was detected.

The ERR and ERL variables are usually used in IF...THEN statements
to direct program flow in the error trap routine.

If the statement that caused the error was a direct mode

87

Language specification for MSX BASIC

statement, ERL will contain 65535. To test if an error occurred
in a direct statement, use

IF 65535=ERL THEN .e0ce.
Otherwise, use

IF ERL=<line number> THEN
IF ERR=<error code> THEN....

Because ERL and ERR are reserved variables, neither may appear
to the 1left of the -equal sign in a LET (assignment) statement.

EXP (X)
; Returns e to the power of X. X must be <=145.06286085862. I1f
EXP overflows, the 'Overflow' error message is printed.
FIX(X) ¢
; Returns the integer part of X (fraction truncated). FIX(X) “is
equivalent to SGN(X)*INT(ABS(X)). The major difference between
FIX and INT is that FIX does not return the next 1lower number
for negative X.

FRE(0)
FRE("™)
; Arguments to FRE are dummy arguments. FRE returns the number
of bytes in memory not being used by BASIC.

FRE(0) returns the number of bytes in memory. which can be used
for BASIC program, text file, machine language program file,
etc. FRE("") returns the number of bytes in memory for string
space.

HEXS (X)
; Returns a string which represents the hexadecimal value of the
decimal argument.

n is a numeric expression in the range =-32768 to 65535. If n
is negative, the two's complement from is used. That is, HEXS(QJ)
is the same as HEXS$(65536-n). e

INKEYS
; Returns either a one-character string containing a character
read from the keyboard or a null string if no key is pressed.
No characters will be echoed and all characters are passed through
to the program except for Control-C, which terminates the program.

INPUTS (X)
; Returns a string of X characters, read from the keyboard. No
character will be echoed and all characters are passed through
except Control-C, terminates the execution of the INPUTS function.

INSTR([I,]XS,YS)

; Searches for the first occurrence of string Y$ in X$ and returns
the position at which the match is found. Optional offset I

88

Language specification for MSX BASIC

‘sets the position for starting the search. I must be in the
range 0 to 255. If IDLEN(XS) or if X$ is null or if Y¥Y$ cannot
be found or if X$ and Y¥Y$ are null, INSTR returns 0. If only

Y$ is null, INSTR returns I or 1. X$ and Y$ may be string
variables, string expressions, or string literals.

INT (X)
; Returns the largest integer <=X.

LEFTS(XS$,I)
; Returns a string comprising the leftmost I characters of XS.
I must be in the range 0 to 255. If I is greater than LEN(XS),
the entire string (X$) is returned. If I=0, a null string (length
zero) is returned.

LEN(XS)
; Returns the number of <characters in X$. Nonprinting characters
and blanks are counted.

LOG (X)
; Returns the natural logarithm of X. X must be greater than zero.

LPOS(X)
; Returns the current position of the line printer print head within
the line printer buffer. Does not necessarily give the physical
position of the print head. X is a dummy argument.

MIDS(XS$,I[,J])
; Returns a string of 1length J characters from X$ beginning with
the Ith character. I and J must be in the range 1 +to 255. I1f
J is omitted or if there are fewer than J characters to the right
of the Ith character, all rightmost characters beginning with
the Ith character are returned. If IDLEN(XS), MIDS returns a

null string.

OCTS$(n)
; Returns a string which represents the octal value of the decimal

argument.

n is a numeric expression in the range =32768 to 65535. If n
is negative, the two's complement from is used. That is, OCTS$(-n)
is the same as OCTS$(65536=-n}).

PEER(I)
; Returns the byte (decimal integer in the range 0 to 255) read
from memory location I. I must be in the range -32768 to 65535.
PEEK is the complementary function to the POKE statement.

POS(I)

; Returns the current cursor position. The leftmost position |is
0. I is a dummy argument.

RIGHTS (X§$,I)
; Returns the rightmost I characters of string XS. If I=LEN(XS),
return XS. If I=0, a null string (length zero) is returned.

89

85

Language specification for MSX BASIC

RND(X)
; Returns a random number between 0 and 1. The same sequence of
random number is generated each time the program is RUN. If
X<0, the random generator is reseeded for any given X. X=0
repeats the last number generated. X>0 generates the next random
number in the seguence.

SGN(X)
; Returns 1 (for X>0), 0 (for X=0), -1 (for X<0).
SIN(X)
; Returns the sine of X in radians. SIN(X) is calculated to double
precision.
SPACES (X)

; Returns the string of spaces of length X. The expression X
discards the fractional portion and must be range 0 to 255.

SPC(I) ‘
; Prints I blanks on the screen. SPC may only be used with PRINT
and LPRINT statements. I must be in the range 0 to 255.

SQR(X)
; Returns the square root of X. X must be >=0.

STRS (X)
; Returns a string representation of the value of X.

STRINGS(I,J)
STRINGS(I,XS))
; Returns a string of length I whose characters all have ASCII
code J or the first character of the string XS.

TAB(I)
; Spaces to position I on the console. If the current print
position is already beyond space I, TAB does nothing. Space
0 is the 1leftmost position, and the rightmost position is the
width minus one. I must be in the range 0 to 255. TAB may only
be used with PRINT and LPRINT statements.

TAN (X)
s Returns the tangent of X in radians. TAN(X) is calculated to
double precision. If TaN overflows, an 'overflow' error will
occur.

USR[<digit>] (X)
; Calls the wuser's assembly language subroutine with the argument
X. <digit> is in the range 0 to 9 and corresponds to the digit
supplied with the DEFUSR statement for that routine. If <digit>
is omitted, USRO is assumed.

VAL (X$)

; Returns the numerical value of the string X$. The VAL function
also strips leading blanks, tabs, and linefeeds from the argument

90

Language specification for MSX BASIC

string. For example

PRINT VAL(" -7")
-7
Ok

VARPTR(<variable name>)
VARPTR(#<file number>)

; Returns the address of the first byte of data identified with
<variable name>. A value must be assigned to <variable name>
prior to execution of VARPTR. Otherwise, an 'Illegal function
call' error results. Any type variable name may be used (numeric,
string, array), and the address returned will be an integer in
the range -32768 to 32767. 1If a negative address 1is returned,
add it to 65536 to obtain the actual address.

VARPTR is wusually used to obtain the address of a variable or
array so it may be passed to an- machine 1language subroutine.
A function <call of the form VARPTR(A(0)) is usually specified
when passing an array, so that the lowest-address element of
the array is returned.

All simple variables should be assigned before calling VARPTR
for an array because the address of the arrays change whenever
a new simple variable 1is assigned. If #<file number> 1is
specified, VARPTR returns the starting address of the file control
block. A

91

Language specification for MSX BASIC

2.2 Device specific statements and functions.

--— Expanded statements and functions for MSX ---

2.2.1 Statements

SCREEN [<mode>]}[,<sprite size>][,<key click switch>]
[,<cassette baud rate>][,<printer option>]

; To assign the screen mode, sprite size, key click, cassette baud
rate and printer option.

<mode> should be set to 0 to select 40x24 text mode, 1 to select
32x24 text mode, 2 to select high resolution mode, 3 to select
multi color (low-resolution mode).

0:40x24 text mode e
1:32x24 text mode ﬁﬁg-
2:high resolution mode

3:multi color mode

<sprrite eize> determines the <cize of sprite. Should be set to
0 to select 8x8 unmagnified sprit«:z, 1 to select 8x8 magnified
sprites, 2 to select 16x16 unmagnified sprites, 3 to select 16x16
magnified sprites. NOTE: If <sprite size> 1is specified, the
contents of SPRITES will be cleared.

ep]

0:8x8 unmagnified
1:8x8 magnified
2:16x16 unmagnified
3:16x16 magnified

<key click switch> determines whether to enable or disable the
key click. Should be set to 0 to disable it.

0:disable the key click
non zero:enable the key click

Note that in text mode, all graphics statements except % T
SPRITE' generate an 'Illegal function call' error. Note also
that the mode is forced to text mode when an 'INPUT' statement
is encountered or BASIC returns to command level.

<cassette baud rate> determines the default baud rate for
succeeding write operations. 1 for 1200 baud, and 2 for 2400
baud. Baud rate can also be determined using CSAVE command with
baud rate option.

Note that when reading cassette, baud rate is automatically
determined, so the wuser don't have to know in what baud rate
the cassette is written. <printer option> determines if the
printer in operation is 'MSX printer' (which has 'graphics symbol’
and “'European' capability) or not. Should be non-0 if the printer
does not have such capability. In this case, graphics symbols

92

Language specification for MSX BASIC

are converted to spaces, and European MSX characters are converted
to equivalent ISO characters.

Width <width of screen in text mode)
; To Set the width of display during text mode. Legal value is 1..40
in 40x24 text mode, 1..32 in 32x24 text mode.

CLS ; To clear the screen. Valid in all screen modes.

LOCATE [< x>] [,cy>] [, <cursor display switchy]
; To locate character position for PRINT. <cursor display switch?>
can be specified only in text mode.

0:disable the cursor display
l:enable the cursor display

COLOR ([<foreground color,] [,(background color>] [,fborder color >
;To define the color. Defaults to 15,4,7. The argument can be
in the range of 0..15. Actual color corresponding to each value
is as follows.

transparent
black
medium green
1ight green
dark blue
1ight blue
dark red
cyan

medium red
1ight red

10 dark yellow
11 Light yellow
12 dark green
13 magenta

14 gray

15 white

WONONPWNRFRO

PUT SPRITE <sprite plane number)[,<coordinate specifier] [,<color]
[,<pattern number>]
; To set up sprite attributes.

<sprite plane number> may range from 0 to 31.

< coordinates specifier> always can come in one of two forms:

STEP (x offset, y offset) or
(absolute x, absolute y)

The first form is a point relative to the most recent point referenced. The
second form is more common and directly refers to a point without regard to
the last point referenced. Examples are:

93

Language specification for MSX BASIC

(10,10) absolute form
STEP (10,0) offset 10 in x and 0 in y
(0,0) origin

Note that when Basic scans coordinate values it will allow them
to be beyond the edge of the screen, however values outside the
integer range (-32768 to 32767) will cause an overflow error.
And the values outside of the screen will be substituted with
the nearest possible value. For example, 0 for any negative
coordinate specification.

Note that (0,0) is always the upper left hand corner. It may
seem strange to start numbering y at the top so the bottom left
corner is (0,191) in both high-resolution and medium resolution,
but this is the standard.

Above description can be applied wherever graphic coordinate
is used.

X coordinate <x> may range from -32 to 255, Y coordinates <y
may range from =32 to 191. 1If 208 (&HDO) is given to <y>, all
sprite planes behind disappears wuntil a value other than 208
is given to that plane. If 209 (&HDl) is specified tc <y>, then
that sprite disappears from the screen. (Refer to V1r manual
for further details.)

When a field 1is omitted, the current value is used. At start
up, color defaults to the current foreground color.

{pattern number> specifies the pattern of sprite, and must be
less than 256 when size of sprites if 0 or 1, and must be less
than 64 when size of sprites is 2 or 3. <pattern number> defaults
to the <sprite plane number>. (see also SCREEN statement and

SPRITES variable)

CIRCLE <coordinate specifier>,<radius>[,<color>]

.
’

[,<start angle>][,<end angle>][,<aspect ratio’>]
To draw an ellipse with a center and radius as indicated by the
first of its arguments.

<coordinate specifier> specifies the coordinate of the centér
of the circle on the screen. For the detail of <coordinate
specifier>, see the description at PUT SPRITE statement.

The <color> defaults to foreground color.

The <start angle> and <end angle> parameters are radian arguments
between 0 and 2*PI which allow you to specify where drawing of
the ellipse will begin and end. If the start or end angle is
negative, the ellipse will be connected to the center point with
a line, and the angles will be treated as if they were positive
(Note that this is different than adding 2*PI).

The <aspect ratio> is for horizontal and vertical ratio of the
ellipse.

94

Language specification for MSX BASIC

DRAW <string expression>
; To draw figure according to the graphic macro language.

The graphic macro language commands are contained in the string
expression string. The string defines an object, which is drawn
when BASIC executes the DRAW statement. During execution, BASIC
examines the value of string and interprets single letter commands
from the contents of the string. These commands are detailed
below:

The following movement commands begin movement from the last
point referenced. After each command, last point referenced
is the last point the command draws.

:Moves up

;Moves down

:Moves left

sMoves right

;Moves diagonally up und right
sMoves diagonally down and right
;Moves diagonally down and left
:Moves diagonally up and left

TOmmoibto
o Ji= Ji= = i« Bie s B |

n in each of the preceding commands indicating the distance to
move., The number of points moved is n times the scaling factor
(set by the S command).

M x,y 1Moves absolute or relative. If x has a plus
sign(+) or a minus sign(-) in front of it, it
is relative. Otherwise, it is absolute.

The aspect ratio of the screen is 1. So 8 horizontal points
are equal in length to 8 vertical points.

The following two prefix -commands may precede any of the above
movement commands.

B ;Moves, but doesn't plot any points.
N ;Moves, but returns to the original position
when finished.

The following commands are also available:

A n ;Sets angle n., n may range from 0 to 3, whefe
¢ is 0 degree, 1 is 90, 2 is 180, 3 is 270.
0
I
l--4-=3
I
2
Cn ;Sets color n. n may range 0 to 15.

95

o1

Language specification for MSX BASIC ,

Sn ;Sets scale factor. n may range from 0 to 255,
n divided by 4 is the scale factor. For example,
if n=1, then the scale factor is 1/4. The scale
factor multiplied by the distance given with
the U,L,L,R,E,F,G,H, and relative M commands
gives the actual distance moved. The default
value is 0, which means 'no-scaling' (i.e.,
same as S4)

X<string variable>;
;Executes substring. This allows you to execute
a second string from within a string. :

Example AS$S="USBORB80ODSOLSBO" :DRAW "XAS;"
->Drawes a square

In all of these commands, the n,x, or y argument can be a constant
like 123 or it can be ‘'=<variable>;' where <variable> is *e
name of a numeric variable. The semicolon (;) 'is required w. “a
you use a variable this way, or in the X command. Otherwise,
a semicolon 1is optional between commands, Spaces are ignored
ir string. Foe example, you could use variables in a move command
trie way:

X1=40:X2=50
DRAW "M+=x1;,-=X2"

The X command can be a very useful part of DRAW, because you
can define a part of an object separate from the entire object
and also can use X to draw a string of commands more than 255
characters long.

LINE [<coordinate specifier>]-<coordinate specifier>[,<color>)
[,<BIBF>]
; To draw 1line connecting the two specified coordinate. For the
detail of the <coordinate specifier>, see description at PUT
SPRITE statement.

If 'B'is specified, draws rectangle. If 'BF' is specified, fills
rectangle.

PAINT <coordinate specifier>[,<paint color>][,<color regarded
as border>]

; To £ill in an arbitrary graphics figure of the specified £ill
color starting at <coordinate specifier>. For the detail of
the <coordinate specifier>, see the description at PUT SPRITE
statement. PAINT does not allow <coordinate specifier> to be
out of the screen.

Note that PAINT must not have border for high resolution graphics,
border can be specified only in multicolor mode. In high
resolution graphics mode, paint color is regarded as border color.

PSET<coordinate specifier>[,<color>)
PRESET<coordinate specifier>[,<color>)

96

Language specification for MSX BASIC

C

; To set/reset the specified coordinate. For the detail of the
<coordinate specifier>, see the description at PUT SPRITE
statement

The only difference between PSET and PRESET is that if no <color>
is given in PRESET statement, the background color is selected.
When a <color> argument is given, PRESET is identical to PSET.

KEY <function key #>,<string expression>
; To set a string to specified function Kkey. <function key #>
must be in the range 1 to 10. <string expression> must be within
15 characters.

Example:
KEY 1,"PRINT TIMES"+CHR$(13)
AS$="Japan"
KEY 2,28

KEY LIST
; To list the contents of all function keys.

Example:
KEY LIST
color
auto
goto
list

run
color 15,7,7 (:
cloag”
cont
list
run
Ck

"color™ aligns with key "f1", "auto" with "f2", "goto" with "f3",
and so on. Position in the list reflects the key assignments.
Note that control characters assigned to a function Kkey is
converted to spaces.

KEY ON|OFF
; To turn on/off function key display on 24th line of text screen.

ON KEY GOSUB <list of line numbers>
; To set up a line numbers for BASIC to trap to when the function
keys is pressed.

example
ON KEY GOSUB 100,200,,400,,500

When a trap occurs, an automatic KEY(n)STOP is executed so receive

traps can never take place. The RETURN from the trap routine
will automaticallv do a KEY(n)ON unless an explicit KEY(n)OFF

C

97

Language specification for MSX BASIC

has been performed inside the trap routine.

Event trapping does not take place when BASIC is not executing
a program. When an error trap (resulting from an ON ERROR
statement) takes place this autometically disables all trapping
(including ERROR, STRIG, STOP, SPRITE, INTERVAL and KEY).

KEY (<function key #>) ON/OFF/STOP

.
’

To activate/deactivate trapping of the specified function key
in a BASIC program.

A KEY(n)ON statement must be executed to activate trapping of
function key. After KEY(n)ON statement, if a 1line number is
specified in the ON KEY GOSUB statement then every time BASIC
starts a new statement it will <check to see if the specified
key was pressed., If so it will perform a GOSUB to the line number
specified in the ON KEY GOSUB statement.

If a KEY(n)OFF statement has been executed, no trapping taﬁﬁﬁ
place and the event is not remembered even if it does take place.

If a KEY(n)STOP statement has been executed, no trapping will
take plece, but if the specified key is pressed this is remerbered
sc an irnediate trap will take place when KEY(n)ON is exec.zef.

KEY(n)ON has no effect on whether the function key value are
displayed at the bottom of the console.

ON STRIG GOSUB <list of line numbers>

-
’

STRIG

To set up a line numbers for BASIC to trap to when the trigger
button is pressed.

Example:
ON STRIG GOSUB ,200,,400

When the trap occurs an automatic STRIG(n)STOP is executed so
receive traps can never take place. The RETURN from the trap
routine will automatically do a STRIG(n)ON unless an explicit
STRIG(n)OFF has been performed inside the trap routine.

Event trapping does not take place when BASIC is not executi%ig
a program. When an error trap (resulting from an ON ERROR
statement) takes place this automatically disables all trapping
(including ERROR, STRIG, STOP, SPRITE, INTERVAL and KEY).

(<n>) ON/OFF/STOP
To activate/deactivate trapping of trigger buttons of joy sticks
in a BASIC program.

<n> can be in the range of 0..4. If <n>=0, the space bar is
used for a trigger button. If <n> is either 1 or 3, the trigger
of a joy-stick 1 is used. When <n> is either 2 or 4, joy-stick

A STRIG(n)ON statement must be executed to activate trapping

98

<:m.‘u ’

Language specification for MSX BASIC

of trigger button. After STRIG(n)ON statement, if a 1line number
is specified in the ON STRIG GOSUB Statement then every time
BASIC starts a new statement it will check to see if the trigger
button was pressed. If so it will perform a GOSUB to the line
number specified in the ON STRIG GOSUB statement.

If a STRIG(n)OFF statement has been executed, no trapping takes
place and the event is not remembered even if it does take place.

If a STRIG(n)STOP statement has been executed, no trapping will
take place, but if the trigger button is pressed this is
remembered so an immediate trap will take place when STRIG(n)ON
is executed.

ON STOP GOSUB <line number>

.
’

To set up a 1line numbers for BASIC to trap to when the
Control-STOP key is pressed.

When the trap occurs an automatic STOP STOP is executed so receive
traps can never take place. The RETURN from the trap routine
will automatically do a STOP ON unless an explicit STOP OFF has
been performed inside the trap routine.

Event trapping does not take place when BASIC is not executiog
a program. When an error trap (resulting from an ON ERROR
statement) takes place this automatically disables all trapping
(including ERROR, STRIG, STOP, SPRITE, INTERVAL and KEY) .

The user must be VERY careful when using this statement. For
example, following program cannot be aborted. The only way left
is to reset the system! :

example: 10 ON STOP GOSUB 40
20 STOP ON
30 GOTO 30
40 RETURN

STOP ON/OFF/STOP

’

To activate/deactivate trapping of a control-STOP.

A STOP ON statement must be executed to activate trapping of
a control-STOP. After STOP ON statement, if a line number is
specified in the ON STOP GOSUB statement then every time BASIC
starts a new statement it will check to see if a control-STOP
was pressed. If so, it will perform a GOSUB to the 1line number
specified in the ON STOP GOSUB statement.

If a STOF OFF statement has been executed, no trapping takes
pPlace and the event is not remembered even if it does take place.

If a STOP STOP statement has = been executed, no trapping will
take place, but if a control-STOP is pressed this is remembered
so an immediate trap will take place when STOP ON is executed.,

ON SPRITE GOSUB <line number>

99

Language specification for MSX BASIC ;

.
’

To set up a line number for BASIC to trap to when the sprites
coincide.

When the trap occurs an automatic SPRITE STOP is executed so
receive traps can never take place. The RETURN from the trap
routine will automatically do a SPRITE ON unless an explicit
SPRITE OFF has been performed inside the trap routine.

Event trapping does not take place when BASIC is not executiog
a program. When an error trap (resulting from an ON ERROR
statement) takes place this automatically disables all trapping
(including ERROR, STRIG, STOP, SPRITE, INTERVAL and KEY).

SPRITE ON/OFF/STOP

.
’

To activate/deactivate trapping of sprite in a BASIC prograrm.

A SPRITE ON statement must be executed to activate trapping of
sprite. After SPRITE ON statement, if a line number is specified
in the ON SPRITE GOSUB statement then every time BASIC sti 8
a new statement it will check to see if the sprites coincide.
If so it will perform a GOSUB to the line number specified in
the ON SPRITE GOSUB statement.

If a SPRITE OFF statement has been executed, no trappinc tev::
place and the event is not remembered even if it does take place.

If a SPRITE STOP statement has been executed, no trapping will
take place, but if the sprites coincide this is remembered so
an immediate trap will take place when SPRITE ON is executed.

ON INTERVAL=<time interval> GOSUB <line number>

.
’

To set up a line number for BASIC to trap to time interval.
Generates a timer interrupt at every <time interval>/60 second.

When the trap occurs an automatic INTERVAL STOP is executed so
receive traps can never take place. The RETURN from the trap
routine will automatically do a INTERVAL ON unless an explicit
INTERVAL OFF has been performed inside the trap routine.)

Event trapping does not take place when BASIC is not execu%ﬁhg
a program. When an error trap (resulting from an ON ERROR
statement) takes place this automatically disables all traps
(including ERROR, STRIG, STOP, SPRITE, INTERVAL and KEY).

INTERVAL ON/OFF/STOP

.
’

To activate/deactivate trapping of time interval in a BASIC
program.

A INTERVAL ON statement must be executed to activate trapping
of time interval. After INTERVAL ON statement, if a line number
is specified in the ON INTERVAL GOSUB statement then every time
BASIC starts a new statement it will check the time interval.
If so it will perform a GOSUB to the 1line number specified in
the ON INTERVAL GOSUB statement.

100

Language specification for MSX BASIC

VPOKE

BEEP

~e

MOTOR

~e

If a INTERVAL OFF statement has been executed, no trapping takes
pPlace and the event is not remembered even if it does take place.

If a INTERVAL STOP statement has been executed, no trapping will
take place, but if the timer interrupt occur, this is remembered
So an immediate trap will take place when INTERVAL ON is executed.

<address of VRAM>,<value to be written)>

To poke a value to specified location of VRAM. <address of VRAM>
can be in the range of 0..16383. <value to be written> should
be a byte value.

To generate a beep sound. Exactly the same with outputting
CHRS(7) .

[<ON|OFF>]

To change the status of cassette motor switch. When no argument
is given, flips the motor switch. Otherwise, enables/disables
motor of cassette.

SOUND <register of PSG>,<value to be written>

’

To write value directly to the <register of PSG>.

PLAY <string exp for voice 1>[,<string exp for voice 2> [r<string exp

’

for voice 3>]]

To play music according to music macro language.

PLAY implements a concept similar to DRAW by embedding a "music
macro language" into a character string. {string exp for voice
n> is a string expression consisting of single character music
commands. When a null string is specified, the voice channel
remains silent. The single character commands in PLAY are:

A to G with optional #%,+,o0r -
;Plays the indicated note in the current octave.
A number sign(#) or plus sign(+) afterwards
indicates a sharp, a minus sign(-) indicates
a flat. The #,+, or - 1is not allowed unless
it corresponds to a black key on a piano. For
example, B# is an invalid note.

On ;Octave. Sets the current octave for the
following notes. There are 8 octaves, numbered
l to 8. Each octave goes from C to B. Octave
4 is the default octave.

Nn ;Plays note n. n may range from 0 to 96. n=0

means rest. This is an alternative way of
selecting notes besides specifying the octave(O
n) and the note name (A-G). {The C of octave

101

Language specification for MSX BASIC

Ln

4 is 36.)

;Sets the 1length of the following notes. The
actual note length is 1/n. n may range from
1l to 64. The following table may help explain
this:

Length Equivalent

Ll whole note
L2 half note
L3 one of a triplet of three
half notes (1/3 of a 4 beat
measure) .
L4 quarter note
L5 one of & guintuplet (1/5
of a measure)
L6 one of a quarter note triplet =
164 sixty~forth note

The length may also follow the note when you
want to change the 1length only for the note.
For example, Al6é is eguivalent to Ll16A. The
default is 4.

;Pause(rest). n may range from 1 to 64, and
figures the length of the pause in the same
way as L(length). The default is 4.

: (Dot or period) After a note, causes the note
to be played as a dotted note. That is, its
length is multiplied by 3/2. More than one
dot may appear after the note, and the length
is adjusted accordingly. For example, "A..."
will play 27/8 as 1long, etc. Dots may also
appear after the pause(P) to scale the pause
length in the same way. -

{

;Tempo. Sets the number of quarter notes “in
a minute. n may range from 32 to 255. The
default is 120.

;Volume. Sets the volume of output. n may range
from 0 to 15. The default is 8.

:Modulation. Sets period of envelope. n may
range from 1 to 65535. The default is 255.

;Shape. Sets shape of envelope. n may range

from 1 to 15. The default is 1. The pattern
set by this command are as follows:

102

Language specification for MSX BASIC

\
0,1,2,3,9 N
I
/1
4,5,6,7,15 / |
e o o o e e e e o o i e e e
N
AN A A AN AN AN AN AN AN
8 NENENENENE NN NN
([T R A R N A
\ - N - -
N\ /N /N /N /\
10 N/ N/ N/ N/ \
v Vv \ v \
k“ \ e
\
11 \:
I Y Y R R T I
AN ARV N NV RVE NV RYA YA
12 VAR VAR VAR VAR VAR VAN VAR VAN VAR
/2 T T A R R T N
T
13 /
/

14 / N/ N/ N/ \/

Cff X<variable>;
- ;Executes specified string.

In all of these commands the n argument can be a constant like
12 or it can be "=<variable>;" where variable is the name of
a variable, The semicolon(;) is required when you use a variable
in this way, and when you use the X command. Otherwise, a

semicolon is optional between commands.
Note that wvalues specified with above commands will be reset

to the system default when beep sound is generated.

MAXFILES=<expression>

; To specify the maximum number of files opened at a time.
{expression> can be in the range of 0..15. When 'MAXFILES=0'
is executed, only SAVE and LOAD can be performed.

103

. 0o

Language specification for MSX BASIC

The default value assigned is 1.

OPEN "<device_descriptor>{<file name>]" [FOR <modé>]

.
’

PRINT
PRINT

INPUT

- AS [#]<file number>
To allocate a buffer for I/0 and set the mode that will be used
with the buffer.

This statement opens a device for further processing. Currently,
following devices are supported.

CAS: cassette

CRT: CRT screen
GRP: Graphic screen
LPT: line printer

Device descripters can be added using the ROM cartridge. See
SLOT.MEN for further details. .

<mode> is one of the following: L
OUTPUT : Specifies sequential output mode
INPUT : fpecifies sequential input mode
APPEND : &rnecifles sequential append mode

<file number> 1is an integer expression whose value is between
one and the maximum number of files specified in a MAXFILES=
statement.

<file number> 1is the number that is associated with the file
for as long as it is OPEN and is used by other 1I/0 statements
to refer to the file.

An OPEN must be executed before any I/O may be done to the file
using any of the following statements, or any statement or
function requiring a file number:

PRINT #, PRINT # USING
INPUT #, LINE INPUT #
INPUTS, GET, PUT

#¢<file number>,<exp>
#<file number>,USING <string expression>;<list of expression>
To write data to the specified channel. (See PRINT/PRINT USING

statements for details.)

$<file number>,<variable list> :
To read data items from the specified channel and assign them
to program variables.

The type of data in the file must match the type specified by
the <variable 1list>. Unlike the INPUT statement, no question
mark is printed with INPUT# statement.

The data items in the file should appear just as they would if
data were being typed in response to an INPUT statement. With

104

L RaYaY

Language specification for MSX BASIC

" numeric values, leading spaces, carriage returns, and 1line feeds ('
are ignored. The first character encountered that is not a space,
carriage return, or line feed is assumed to be start of a number.

The number terminates on a space, carriage return, line feed,
or comma.

Also, if the BASIC is scanning the data for a string item, leading
spaces, carriage returns and 1line feeds are ignored. The first
character encountered that is not a space, carriage return, or
line feed is assumed to be the start of a string item. If this
first character is a double-quotation mark ("), the string iten
will consist of all characters read between the first quotation
mark and the second. Thus, a quoted string may not contain a
guotation mark as a character.

If the first character of the string is not a gquotation mark,

the string is an unquoted string, and will terminate on a comma,
carriage return, 1line feed, or _after 255 characters have been

read. If end of file is reached when a numeric or string item
is being INPUT, the item is terminated.

LINE INPUT #<file number>,<string variable>
: To read an entire line (up to 254 characters), without Zelimiters,
from a sequential file to a string variable.

<file number> is the number which the file was OPENed.

<string variable> is the name of a string variable to which the
line will be assigned. (:

LINE INPUT$# reads all characters in the sequential file up to
a carriage return, It then skips over the carriage return/line
feed sequence, and the next LINE INPUT# reads all characters
up to the next carriage return. (If a line feed/carriage return
sequence is encountered, it 1is preserved. That 1is, the line
feed/carriage return characters are returned as part of the
string.)

LINE INPUT# is especially useful if each line of a file has been
broken into fields, or if a BASIC program saved in ASCII mode
‘is being read as data by another program.

INPUTS(n, [#]<file number>)
; To Return a string of n characters, read from the file. <file
number> is the number which the file was OPENed.

CLOSE [[#]<file number>[,<file number>]]
;s To close the channel and releases the buffer associated with
it. If no <file number>'s are specified, all open channels are
closed.

SAVE "<device descriptor>([<file name>]"

: To save a BASIC program file to the device. Control-Z is treated
as end-of-file,

105

ERNall

Language specification for MSX BASIC

LOAD "<device_descriptor>[<file name>]"

.
’

MERGE

BSAVE

~e

BLOAD

-

To load a BASIC program file from the device.

LOAD closes all open files and deletes the current program from
memory. However, with the "R"™ option, all data files remain
OPEN and execute the loaded program.

If the <file name> is omitted, the next program, which should
be an ASCII file, encountered on the tape is loaded. Control-2z
is treated as end-of-file.

"<device descriptor>[<file name>}"
To merge the 1lines from an ASCII program file into the program
currently in memory.

If any lines in the file being merged have the same line number
as lines in the ©program in memory, the lines from the file wil

replace the corresponding lines in memory. s

After the MERGE command, the MERGEd program resides in memor§?
and BASIC returns to command level.

If the <file name> is omitted, the next program files, it should
be ASCII file, file encountered on the tape is MERGEd. Control-2Z
is treated as end-of-file.

"<device descriptor>[<file name>}",<top adrs>,<end adrs>
[,<execution adrs>]

To save a memory image at the specified memory location to the

device. (Currently, only CAS: is supported.)

<top adrs> and <end adrs> are the top address and the end address
of the area to be saved. :

If <execution adrs> is omitted, <top adrs> 1is regarded as
<execution adrs>.

Example:

BSAVE "CAS:TEST",&HA000 , SHAFFF (.
BSAVE "CAS:GAME",&HE000 , &HEOFF , 8HE020

"<device_descriptor>[<file name>]"[,R][,<offsetd] '
To load a machine language program from the specified device.
(Currently only CAS: is supported.)

If R option is specified, after the loading, program begins
execution automatically from the address which is specified at
BSAVE.

The loaded machine language program will be stored at the memory
location which is specified at BSAVE. If <offset> is specified,

all addresses which are specified at BSAVE are offset by that
value,

106

102

¢

Language specification for MSX BASIC

+ If the <file name> is omitted, the next machine 1language program
file encountered is loaded.

CSAVE "<file name>"[,<baud rate>]
; To save a BASIC program file to the cassette tape.

BASIC saves the file in a compressed binary (tokenized) format.
ASCII files take up more space, but some types of access require
that files be in ASCII format. For example, a file intended
to be MERGEd must be saved in ASCII format. Programs saved in
ASCII may be read as BASIC data files and text files. In that
case, use the SAVE command.

<baud rate> is a parameter from 1 to 2, which determines the
default baud rate for every cassette write operations. 1 for
1200 baud, 2 for 2400 baud. The default baud rate can also be
set with SCREEN statement.

CLOAD ["<file name>"]
; To load a BASIC program file from the CMT.

CLOAD closes all open files and deletes the current program from

memory. If the <file name> is omitted, the next program file
encountered on the tape is loaded. For all «cassette read
operations, baud rate is determined automatically.

CLOAD? ["<file name>"]
; To verify a BASIC program on CMT with one in memory.

CALL <name of expanded statement>[(<argument list>)]
; To invoke an expanded statement supplied by ROM cartridge. See
SLOT.MEM for further details. '_' is an abbreviation for 'CALL',
so the next 2 statements have the same meaning.

CALL TALK("Yamashita","Hayashi”","Suzuki GSX400FW")
_TALK("Yamashita","Hayashi”", "Suzuki GSX400FW")

107

Language specification for MSX BASIC

2.2.2 Functions

POINT(<X coordinate>,<Y coordinate>)
; Returns color of a specified pixel.

VPEEK (<address of VRAM>)
; Returns a value of VRAM specified. <address of VRAM> can be
in the range of 0..16383.

STICK(<n>)
i Returns the direction of a joy-stick. <n> can be in the range
of 0..2. If <n>=0, the cursor key is used as a joy-stick. If
<n> is either 1 or 2, the joy-stick connected to proper port

is used. When neutral, 0 is returned. Otherwise, wvalue
corresponding to direction is returned.
1
8 | 2 (55
\ I/
\t/
7 =-—=0---3
/1IN
/ 1\
6 | 4
5
STRIG(<n>)

; Returns the status of a trigger button of a joy-stick. <n> can
be in the range of 0..4. If <n>=0, the space bar is used for
a trigger button. If <n> is weither 1 or 3, the trigger of a
joy-stick 1 is used. When <nd> is either 2 or 4, joy-stick 2.
0 is returned if the trigger is not being pressed, -1 is returned
otherwise,

PDL(<n>)
; Returns the value of a paddle. <n> can be in the range of 1..1l2.
When <n> is either 1, 3, 5, 7, 9 or 11, the paddle connected
to port 1 1is used. When 2, 4, 6, 8, 10 or 12, the paddle

connected to port 2 is used. G
PAD(<n>) '
; Returns various status of touch pad. <n> can be in the range
of 0..7.

When 0..3 1is specified, touch pad connected to joy stick port
1l is selected, when 4..7, port 2.

When <n>=0 or 4, the status of touch pad is returned, -1 when
touched, 0 when released.

When <n>=1 or 5, the X-coordinate is returned, when <n>=2 or
6, Y-coordinate is returned.

When <n>=3 or 7, the status of switch on the pad is returned,

108

1

Lanquage specification for MSX BASIC

-1 when being pushed, 0 otherwise.

Note that coordinates are valid only when ©PAD(0) (or PAD(4))
is evaluated. When PAD(0) is evaluated, PAD(5) and PAD(6) are
both affected, and when PAD(4), PAD(1l) and PAD(2).

PLAY(<play channel>)

.
’

Returns the status of a music queue. <n> can be in the range
of 0..3. If <n>=0, all 3 status are ORed and returned. If <>
is either 1,2 or 3, -1 is returned if the queue is still in
operation, i.e., still playing. 0 is returned otherwise.

Note that immediate after the PLAY statement is issued, the PLAY
function returns -1 regardless to the actual status of the music
queue.

EOF (<file number>)

.
’

Return -1 (true) if the end of a sequential file has been reached.
Otherwise, returns 0. Use EOF to test for end-of-file while
INPUTing, to avoid 'Input past end' errors.

109

Language specification for MSX BASIC

2.2.3 Special variables

Following are the special variables for MSX. When assigned, the content
is changed, when evaluated, the current value is returned.

TIME (type: unsigned integer)

; The system internal timer. TIME is automatically incremented
by 1 everytime VDP generates interrupt (60 times per second),
thus, when an interrupt is disabled (for example, when
manipulating cassette), it retains the old value.

SPRITES (<pattern number>) (type: string)
; The pattern of sprite.

<pattern number> must be 1less than 256 when size of sprites is
0 or 1, less than 64 when size of sprites is 2 or 3.

The length of this variable is fixed to 32 (bytes). 8o, if assign
the string that is shorter than 32 character, the chr$(0)s§"e
added. o

Example

list

100 SCREEN 3,3

110 AS=CHRS(1)+CHRS(3) +CHRS(7)+CHRS (&HF)+CHRS (&E1F)
+CHRS (&H3F) +CHRS (&H7F) +CHRS (&HFF)
120 SPRITES(1)=AS

130 SPRITES(2)=AS+AS

140 SPRITES(3)=AS+AS+AS

150 SPRITES(4)=AS+AS+AS+AS

160 PUT SPRITE 1,(20,20),15

170 PUT SPRITE 2,(60,20),15

180 PUT SPRITE 3,(100,20),15

190 PUT SPRITE 4,(140,20),15

200 GOTO 200 .

Ok

run
\

************************?***

Note: Following two are system variables which can be evalua@@d
or assigned 1like other ordinary variables. Prepared for
advanced programmers only. If you don't know the meaning,
never use.

* % % N % »

kkkhkkhkohhdhhkdkhdhhkdrhkhkkhkhkdddkdhdhdhbhhhkdhdhdhdhhhkdkhdkdhkhdkhhkdkkdbhdbkdkdhdkddkdbhddn:

VDP (<n>) (type: unsigned byte)
; If <n> is in the range of 0..7, specifies the current value of
VDP's write only register. If <n> 1is 8, specifies the status
register of VDP. VDP(8) is read only.

BASE (<n>) (type: integer)

; Current base address for each table. The description of <nd>
follows next.

110

Language

wooJovwun W -Ho

N el e ™
WO

el Sl el o
W~ oW

specification for MSX BASIC

- base of name table for text mode. \

- meaningless

- base of pattern generator table for text mode. > 40 * 24
- meaningless

- meaningless

- base of name table for text mode.

- base of color table for text mode.

- base of pattern generator table for text mode. > 32 * 24
- base of sprite attribute table for text mode. /

- base of sprite pattern table for text mode. /

- base of name table for high-resolution mode.

- base of color table for high-resolution mode.

- base of pattern generator table for high-resolution mode.
- base of sprite attribute table for high-resolution mode.
- base of sprite pattern table for high-resclution mode.

- base of name table for multi-color mode.

- meaningless

- base of pattern generator table for multi-color mode.
- base of sprite attribute table for multi-color mode.
- base of sprite pattern table for multi-color mode.

111

Language specification for MSX BASIC

2.2.4 Machine dependent statements and function

khkkkkhkhkkhkkhkhkkkhkkhhkrhkhkkhdhhkkhhkk kb d kA kA kb kb hkkk k%

*
* Note: Following statements and function access machine's I/0 port
* directly. 8So, the programs that use those statements and
* functions will not be compatible with MSX systems released
* future. Programs distributed to the public should not use
* those statements and functions.

*

*

* % % % % % %

khkkk bk kR kk kR hh kR khh kR Rk Ak kb kb kkkkdkhkkhkkhkkdrhkkkkkdkk

OUT <port number>,<integer expression>
; To send a byte to a machine output port.

<port number> and <integer expression> are in the range 0 to
255. <integer expression> is the data (byte) to be transmitted.

WAIT <port number>,I[,J]
: To suspend program execution while monitoring the status of
machine input port.

The WALIT statement causes execution to be <csuspended until ¢
specified machine input port develops a specified bit pattern.
The data read at the port is exclusive OR'ed with the integer
expression J, and then AND'ed with integer expression 1I. If
the result 1is zero, BASIC 1loops back and reads the data at the
port again. If the result is non-zero, execution continues with
the next statement. If J is omitted, it is assumed to be zero.

INP(<port number>I)
" ; Returns the byte read from the port I. I must be in the range
0 to 255. INP is the complementary function to the OUT statement.

Note: In above statements and functions, <port number> is handled with
16bit number to support 2Z80's capability that accesses I/0 port
with [BC] register pair. However, statndard MSX system does
not support those extended I/0 address space, port number larger
than 255 is meaningless. (f

112

rne

Language specification for MSX BASIC

CBAPTER 3
APPENDIX

A. Summary of error codes and error messages

code message

1l NEXT without FOR
z veriable in a NEXT statement does not
correspond to any previously executed, unmatched

Q;, FOR statement variable.

2 Syntax error
A line 1is encountered that contains some
incorrect sequence of characters (such as
unmatched parenthesis, misspelled command or
statement, incorrect punctuation, etc.)

3 RETURN without GOSUB
A RETURN statement is encountered for which
there is no previous, unmatched GOSUB statement.

4 Out of DATA
A READ statement is executed when -there are
no DATA statement with unread data remaining

in the program.

5 Illegal function call
A parameter that 1is out of the range is passed
to a math or string £function. An FC error
may also occur as the result of:

s 1., a negative or unreasonably large subscript.
2. a negative or zero argument with LOG.
3. a negative argument to SQR.
4. an improper argument to MIDS, LEFTS$, RIGHTS,
INP, OUT, PEEK, POKE, TAB, SPC, STRINGS,
SPACES, INSTRS or ON...GOTO.

6 Overflow
The result of a calculation is too large to
be represented in BASIC's number format.

7 Out of memory
A program 1is too large, has too many files,
has too many FOR 1loops or GOSUBs, too many
variables, or expressions that are too

113

Language specification for MSX BASIC

10

11

12

13

14

15

16

17

complicated.

Undefined line number
A line reference in a GOTO, GOSUB,
IF...THEN...ELSE is to a nonexistent line.

Subscript out of range
An array ~ element is referenced either with
a subscript that is outside the dimensions
of the array, or with the wrong number of
subscripts.

Redimensioned array _]
Two DIM statements are given for the same array,
or DIM statement is civen for an array @afte:
the default dimension of 10 has been established
for that array.
i
Division by zero e
A division by =zero is encountered in a
expression, or the operation of involution
results in 2zero being raised to a negative
power.

Illegal direct
A statement that is illegal in direct mode
is entered as a direct mode command.

Type mismatch
A string variable name is assigned a numeric
value or vice versa; & function that expects
a numeric argument 1is given a string argument
or vice versa.

Out of string space
String variables have caused BASIC to exceed
the amount of free memory remaining. BASIC
will allocate string space dynamically, until
it runs out of memory. (¢~

String too long
An attempt is made to create a string more
than 255 character long.

String formula too complex
A string expression is too long or too complex.
The expression should be broken into smaller
expressions.

Can't continue
An attempt is made to continue a program that:

1. has halted due to an error,

2. has been modified during a break in
execution, or

114

Language specification for MSX BASIC

18

19

20

21

22

23

24

25

26

50

51,

52

3. does not exist.

Undefined user function
FN function is called before defining it with
the DEF FN statement.

Device I/O error
An I/O0 error occurred on a cassette, printer,
or CRT operation. It is a fatal error; i.e.,
BASIC cannot recover from the error.

Verify error
The current program is different from the
program saved on the cassette.

No RESUME
An error trapping routine is entered but
contains no RESUME statement.

RESUME without error
A RESUME statement 1is encountered before an
error trapping routine is entered.

Unprintable error
An error message is not available for the error
condition which exists. This is usually caused
by an ERROR with an undefined error code.

Missing operand
An expression contained an operator with no
operand following it.

Line buffer overflow
An entered line has too many characters.

Unprintable errors
These codes have no definitions. Should be
reserved for future expansion in BASIC.

FIELD overflow
A FIELD statement 1is attempting allocate more
bytes than were specified for the record length
of a random file in the OPEN statement. Cr,
the end of the FIELD buffer is encountered
while doing sequential 1I/O(PRINT#,INPUT#) to
a random file.

Internal error
An internal malfunction has occurred. Report
to Microsoft the conditions under which the
message appeared.

Bad file number

A statement or command references a file with
a file number that is not OPEN or is out of

115

Language specification for MSX BASIC

53

54

55

56

57

58

59

60

255

the range of file numbers specified by MAXFILE
statement.

File not found
A LOAD, KILL, or OPEN statement references
a file that does not exist in the memory.

File already open
A sequential output mode OPEN is issued for
a file that is already open; or a KILL is given
for a file that is open.

Input past end
An INPUT statement is executed after all the
data in the file has been IKPUT, or for null
(empty) file. To avoid this error, use tne
ECF function to detect the end of file.

Bad file name
An illegal form is used for the file name with
LOAD, SAVE, KILL, NAME, etc.

Direct statement in file
L direct ctatement is encountered while LOADing
an ASCII format file. The LOAD 1is terminated.

Sequential I/0 only
A statement to random access 1is issued for
a sequential file,

File not OPEN
The file specified in a PRINT#, INPUT%#, etc.
hasn't been OPENed. :

Unprintable error
These codes have no definitions. Users may
place their own error code definitions at the
high end of this range. .
G

116

IV. BIOS ENTRY POINT LIST

117

Sep 14 19:34 1983 bioent.val

C

0000

0008

COMMENT ¢

w6 e N w0 we we “o wo we P

NP WE N NS NS We W W WO e g WO o

w8 We M WS We NG WE e Ny WO W

Following RST's (RST 0
interpreter, RST 6
interrupt.

thru

for inter-slot

Following notations are used.

Name
Function
Entry
Returns
Modifies
Notes

Name:
Function:
Entry:
Returns:
Modifies:
Note:

DI

ENTR CHRRAM
DW CGTABL
DB VDP.DR
DB VDP.DW

Name:
Function:
Entry:

Returns:

Modifies:

ENTR SYNCHR
HOLE 1

. Name:
Function:
Entry:

name of function
function to be performed
Entry parameters
Returned parameters

Registers to be modified

RST 5) are

reserved for BASIC

calls, RST 7 for hardware

(optional)
CHKRAM
Checks RAM and sets slot for command area
None
None
All
When done, a Jjump to INIT must be made for
further initialization
;For fail safe
;Address of character generator table
;Address of VDP data register (read)
;Address of VDP data register (write)
SYNCHR

Checks if the

HL is

the one

'Syntax error’,
HL, character to
next location to
HL points to
character.

Carry flag set if number, 2

of statement.

AF, BHL

RDSLT

Selects the appropriate slot
value given

next

through

pointed by
not, generates

into CHRGTR.
placed at the

current character
we want. If
otherwise falls
be checked be
this RST.
character, A has the

flag set if ¢

according to the

registers, and read the

content of memory from the slot.
A - FxxxSSPP

118

| | ++-- primary slot # (0-3)
4+4--—- gsecondary slot & (0-3)

1 if secondary slot # specified

Sep 14 19:34 1983 biocent.val

000C

0010

0014

0018

e we me ne we e

NS Mo We Ns %o WMo w2 we we

WO MO NP N We NS We W NE W WE N N Ne W N N we

we W Ne We N wo we

WO Ne e We We “e ws wp

Returns:
Modifies:
Note:

ENT RDSLT
HOLE 1

Name:
Function:
Entry:
Returns:

Modifies:

ENTR CHRGTR
HOLE 1l
Name:

Function:

Entry:
Returns:
Modifies:
Note:

ENT WRSLT
HOLE 1l
Name:
Function:
Entry:
Returns:
Modifies:

ENT OUTDO
HOLE 1
Name:
Function:
Entry:

HL - address of target memory (
A - content of memory
AF, BC, DE

Interrupts are disabled automatically but never
enabled by this routine.

CHRGTR

Gets next character (or token) from BASIC text.
HL

HL points to next character, A has the
character. Carry flag set if number, z flac
set if end of statement encountered.

AF, HL

WRSLT
Selects the appropriate slot according to the
value given through registers, and write ¢tc¢
the memory.
A - FxxxSSPP
I RN
| | | ++== primary slot # (0-3)
| ++---- secondary slot § (0-3)
Fr——————— 1 if secondary slot # specifiegi

HL - address of target memory

E - data to be written

None

AF, BC, D

Interrupts are disabled automatically but never
enabled by this routine.

QUTDO

Outputs to current device
A, PTRFIL, PRTFLG

None

None

CALSLT
Performs inter-slot call to specified address.
IYH - FxxXxSSPP
I P
| | | +4+== primary slot # (0-3)
| ++---- secondary slot # (0-3)
m———————— 1l if secondary slot # specifiec

C

119

C

Sep 14 19:34 1983

001C

0020

0024

0028

e WE W We W we we “e wo

e WP N Ne Ve NG NE NE N NE N e W e %0 % we ne %E We Ne W %o we

e Ne me “o W wa wo

~e we wme we

-~ we “e we

bioent.val

Returns:
Modifies:
Note:

ENT CALSLT
HOLE 1
Name:
Function:
Entry:
Returns:
Modifies:

ENTR DCOMPR
HOLE 1l
Name:
Function:
Entry:
Returns:
Modifies:
Note:

ENT ENASLT
HOLE l
Name:
Function:
Entry:
Returns:
Modifies:

ENTR GETYPR

Following 5 bytes

IX - address to call

Who knows?

Who knows? :

Interrupts are disztled automatically but never
enabled by this routine. You can never pass
arguments via alternate registers of 280 or
IX, IY.

DCOMPR

Compares HL with DE
EL, DE

Flags

AF

oWASLT
Selects the eappropriate slot
value given through registers,
enables the slot.
ST
| | | ++=- primary slot # (0-3)
| ++=-=-== secondary slot & (0-3)
trmm—————— 1l if secondary slot # specified

according to the
and permanently

HL - address of target memory

None

aAll

Interrupts are disabled automatically but
enabled by this routine.

never

GETYPR

Returns the type of FAC
FAC

Flags

AF

are reserved to store version number of MSX.

First versions hold 5 zeros.

HOLE 5
Name:
Function:
Entry:

CALLF
Performs far call (i.e., inter-slot call)

None

120

Sep 14 19:34 1983

0030

0038

N We N N We N We we we “e e

e W W w2 “e we W

bicent.val

Returns:
Modifies:
Note:

ENTR CALLF
HOLE 5

Name:
Function:
Entry:
Returns:
Modifies:

ENTR KEYINT

Who knows?
ditto
Calling sequence is as follows.

RST 6
DB destination slot
DW destination address

For precise description about parameters, see¢
CALSLT.

REYINT

Performs hardware interrupt procedures necessar:
None

None

None

121

Sep 14 19:34 1983 Dbioent.val

COMMENT %

Following are used for I/0 initialization.

3
H
: Name: INITIO
: Function: Performs device initialization
H Entry: None
H Returns: None
H Modifies: all
H
003B ENT INITIO
H
H Name: INIFNK
: Function: Initializes function key string contents
: Entry: None
; Returns: None
: Modifies: all
H
0C3E ENT INIFNK

122

Sep 14 19:34 1983

0041

0044

0047

004A

004D

0050

biocent.val

COMMENT %

o0

e WP we % Ne %o we e we e “e % we we e ws N we we we wo ~e W me Wa W %6 wa e %o W me we %o N

N me %o “a W e Wy

~e wo

Following aré used to access VDP (TI9918)

Name:
Function:
Entry:
Returns:
Modifies:

ENT DISSCR

Name:
Function:
Entry:
Returns:
Modifies:

ENT ENASCR

Name:
Function:
Entry:
Returns:
Modifies:

ENT WRTVDP

Name:
Function:
Entry:
Returns:
Modifies:

ENT RDVRM

Name:
Function:
Entry:
Returns:
Modifies:

ENT WRTVRM
Name:
Function:
Entry:
Returns:
Modifies:

ENT SETRD

Name:

DISSCR

Disables screen display
None

None

AF, BC

ENASCR

Enables screen display
None

None

AF, BC

WRTVDP

Writes to VDP register
Register # in [C], data in [B]
None

AF, BC

RDVRM

Reads VRAM addressed by [HL]
BHL

A

AF

WRTVRM

Writes to VRAM addressed by [HL]
HL, A

None

AP

SETRD

Sets up VDP for read
HL

None

AR

SETWRT

123

Sep 14 19:34 1983

0053

0056

0059

005C

005F

0062

~e we “o “e Wy

e we WO wp we we wo

WE W ME ME WP Ne No e we WE ME N W NE N N N We e NP Ne N N w e e Ne WE %o N N we

- we we wo we

Function:
Entry:
Returns:
Modifies:

ENT SETWRT

Name:
Function:
Entry:
Returns:
Modifies:

ENT FILVRM

Name:
Function:
Entry:

Returns:
Modifies:

ENT LDIRMV

Name:
Function:
Entry:

Returns:
Modifies:

ENT LDIRVM

Name:
Function:
Entry:
Returns:
Modifies:

ENT CHGMOD

Name:
Function:
Entry:

Returns:
Modifies:

ENT CHGCLR
BOLE 1

Name:
Function:
Entry:
Returns:

bioent.val

Sets up VDP for write

FILVRM

Fills VRAM with specified data
Address in [HL], length in [BC], data in [Acc]

None
AF, BC

LDIRMV

Moves block of memory
source in

Address of
length in [BC].
None

All

LDIRVM

Moves block of memory
source in

Address of
length in [BC].
None

All

CHGMOD

from VRAM to memorv

[EL],

destination in

from memory to VRAM.
destination in [DE]},

(HL],

Sets VDP mode according to SCRMOD

SCRMOD (0..3)
None

All

CHGCLR

Changes color of screen
Foreground color in FORCLR
Background color in BAKCLR

Border color in BDRCLR

None
All

NMI

Performs non-maskable interrupt procedures

None
None

124

{DET,

Sep 14 19:34 1983

0066

0069

006C

006F

0072

0075

WE Na e N %o we W we N me e e we me W Ny WE N N Np Ne NE NE Ne we Ne e e we

WO e e Ne wo % w4 we

e NE N %o Ne W N N

e %o We we W

Modifies:
ENT NMI

Name:
Function:

Entry:
Returns:
Modifies:

ENT CLRSPR

Name:
Function:

Entry:
Returns:
Modifies:

ENT INITXT
Name:
Function:
Entry:
Returns:
Modifies:

ENT INIT32
Name:

Function:

Entry:
Returns:
Modifies:

ENT INIGRP

Name:
Function:

Entry:
Returns:
Modifies:

ENT INIMLT

Name:
Function:
Entry:
Returns:

bicent.val

None

CLRSPR

Initializes all sprites
Patterns are set to nulls,
set to sprite plane number,
set to foreground color,
are set to 209.

SCRMOD

None

All

sprite
sprite
vertical

names are
colors ar-
position

INITXT

Initializes screen for text mode
vDP.

TXTNAM, TXTCGP

None

All

(40*24), sets

INIT32

Initializes screen for text mode (32*24), sets
VDP. (;
T32NAM, T32CGP, T32COL, T32ATR, T32PAT

None

All

INIGRP

Initializes screen for hiresolution
vDP.

GRPNAM, GRPCGP, GRPCOL, GRPATR, GRPPAT
None

All

mode, sets

INIMLT)
Initializes screen for
VDP.

MLTNAM, MLTCGP, MLTCOL, MLTATR, MLTPAT
None

All

multicolor mode, sets

SETTXT
Sets VDP for text (40*24) mode
TXTNAM, TXTCGP

125

Sep 14 19:34 1983

0078

007B

007E

0081

0084

0087

008a

~e wo

WE We N ws N we we e wE %e Ny we ws we we s We “e we “wo wp w8 N W™ we we we we we ™o % %o “e we ws

e WE N N We e %o e we

~ we we

Modifies:
ENT SETTXT

Name:
Function:
Entry:
Returns:
Modifies:

ENT SETT32

Name:
Function:
Entry:
Returns:
Modifies:

ENT SETGRP

Name:
Functions
Entry:
Returns:
Modifies:

ENT SETMLT

Name:

-Function:

Entry:
Returns:
Modifies:

ENT CALPAT

Name:
Function:
Entry:
Returns:
Modifies:

ENT CALATR

Name:
Function:
Entry:
Returns:

Modifies:

ENT GSPSIZ
Name:
Function:

bioent.val

SETT32

Sets VDP for text (32*24) mode

T32NAM, T32CGP, T32COL, T32ATR, T32PAT
None

All

SETGRP

Sets VDP for hiresolution mode

GRPNAM, GRPCGP, GRPCOL, GRPATR, GRPPAT
None

2ll

SETMLT

Sets VDP for multicolor mode

MLTNAM, MLTCGP, MLTCOL, MLTATR, MLTPAT
None

All

CALPAT

Returns address of sprite pattern table
Sprite ID in [Acc]

Address in [HL]

Ar, DE, HL

CALATR

Returns address of sprite attribute table.
Sprite ID in [Acc]

Address in [HL]

AF, DE, HL

GSPS1z
Returns current sprite size

None
Sprite size (# of bytes) in [Acc].

Carry set if 16*16 sprite in use, reset
otherwise.

AF

GRPPRT

Prints a character on graphic screen

126

Sep 14 19:34 1983 biocent.val

; Entry: Code to output in [Acc]
H Returns: None
H Modifies: None

008D ENT GRPPRT

127

C

Sep 14 19:34 1983

0090

0093

0096

0099

COMMENT &

~e w8 e e we “wo we wo ¥

e me e me we ™o we

~e W ne we We we “e

e “e we WE “E we we

bioent.val

Following are used to access PSG.

Name:
Function:

Entry:
Returns:
Modifies:

ENT GICINI

Name:
Function:
Entry:
Returns:
Modifies:

ENT WRTPSG

Name:
Function:
Entry:
Returns:
Modifies:

ENT RDPSG

Name:
Function:
Entry:
Returns:
Modifies:

ENT STRTMS-

GICINI

Initializes ©PSG, and
statement.

None

None

All

static data for

WRTPSG

Writes a data to PSG register
Register number in [Acc], data in [E]
None

None

RDPSG

Reads a data from PSG register
Register number in [Acc]

Data in [Acc]

None

STRTMS
Checks and
None

None

All

starts

128

PLAY

the background task for PLAY

Sep 14 19:34 1983

009cC

0CsF

00a2

00AS5

00A8

COMMENT %

e e %e Ne wa we we we N Ne N0 %o we e ne P

Ne Wp %o Ny we e N We Ne S Ne we W W

NS NE e Ne N N we we

WE Me Ns N N Ne W we

biocent.val

C

Following are used to access console. I.e., keyboard, and CRT.

Name:
Function:
Entry:
Returns:
Modifies:

ENT CHSNS

Name:
Function:

Entry:
Returns:
Modifies:

BT CHGET

Name:
Function:
Entry:
Returns:
Modifies:

ENT CHPUT

Name:
Function:
Entry:
Returns:
Modifies:

ENT LPTOUT

Name:
Function:
Entry:
Returns:

Modifies:

ENT LPTSTT
Name:
Function:

Entry:
Returns:

Modifies:

CHSNS

Checks the status of keyboard buffer.

None

Z flag reset if there's any character in buffer
AF

CHGET

Waits until any characters are typed, and retur
with the character code.

None

Character code in [Acc]

AF

CHPUT
Outputs a character to console.
Character code to be output in [Acc]

None (:

None

LPTOUT

Outputs a character to LPT
Character code to be output in [Acc]
Carry flag set if aborted

F

LPTSTT

Checks line printer status

None

255 in [Acc] and 7 flag reset if printer ready
0 and zZ flag set if not.

AF

CNVCHR

Checks graphic header byte and convert code

Character code in [Acc]

Carry flag reset - graphic header byte

Carry flag set, Z flag set - converted graphic
Carry flag set, Z flag reset - non converted co

C

129

126

Sep 14 19:34 1983

00AB

00AE

00Bl

00B4

00B7

00BA

. Ne %e wE e % N we wa e We %o w8 we we we “o Ne e we WE WE e N e we

WE Me “a “e %o we Ny e We e We %o w3 N we we

w0 Wme %o we Wy we W

ENT CNVCHR

Name:
Function:

Entry:
Returns:

Modifies:
ENT PINLIN

Name:
Function:
Entry:
Returns:

Modifies:
ENT INLIN

Name:
Function:

Entry:
Returns:

Modifies:
ENT QINLIN

Name:
Function:
Entry:
Returns:
Modifies:
Note:

ENT BREAKX

Name:
Function:
Entry:
Returns:
Modifies:

ENT ISCNTC

Name:
Function:
Entry:
Returns:
Modifies:

bioent.val

-when interrupts are disabled.

PINLIN

Accepts a line from conscle until a CR or STOP
is typed, and stores the line in buffer

None

Address of buffer ¢top-1 in [HL], carry flag
set if STOP is typed.

All

IKLIN -

Same as PINLIN, except in case AUTFLG is set.
Ncne

Address of buffer top-1 in
set if STOP is pressed.

aAll

[BL], carry flec

QINLIN
Outputs a '?'
INLIN.

None
Address of buffer top-1 in
set if STOP is pressed.

All .

mark and a space then £fall into

[HL], carry flag

BREAKX
Checks the status of Control-STOP key

None
Carry flag set if being pressed
AF

used to check

This routine is Control-STOP

ISCNTC
Checks
None
None
None

the status of SHIFT-STQP key

CRCNTC

Same as ISCNTC, used by BASIC
None

None

None

130

Sep 14 19:34 1983

biocent.val

00BD ENT CKCNTC
; Name: BEEP
: Function: Beeps buzzer
H Entry: None
H Returns: None
H Modifies: All
H
00CO ENT BEEP
H
H Name: CLS
: Function: Clears screen
; Entry: None
; Returns: None
; Modifies: AF, BC, DE
H
00C3 ENT CLS
H
H Name: POSIT
: Function: Locates cursor at specified position.
H Entry: Column in [H], row in [L]
H Returns: None
: Modifies: AF
00Cé6 ENT POSIT
; Name: FNKSB
: Function: Checks if function key display is active. (j
: so, displays it, otherwise do nothing.
; Entry: FNKFLG
: Returns: None
: Modifies: All
H
00C9 ENT FNKSB
; Name: ERAFNK
: Function: Erases function key display
H Entry: None
H Returns: None
: Modifies: All
;
0occ ENT ERAFNK
7
H Name: DSPFNK
; Function: Displays function key display
H Entry: None
H Returns: None
H Modifies: All
H
00CP ENT DSPFNK
H
H Name: TOTEXT
; Function: Forces screen to text mode
H Entry: None
H Returns: None
: Modifies: All

131

Sep 14 19:34 1983 bioent.val

H
00D2 ENT TOTEXT

132

Sep 14 19:34 1983

00D5

00D8

00DB

00DE

COMMENT %

P

e ™8 %o ws we we we e Ne NI W wp we W W N e Ne Ne N8 we we

e e We N Se we ng

biocent.val

Following are used to access game I/0

Name:
Function:
Entry:
Returns:
Modifies:

ENT GTSTCK

Name:
Function:
Entry:
Returns:

Modifies:
ENT GTTRIG

Name:
Function:
Entry:
Returns:
Modifies:

ENT GTPAD

Name:
Function:
Entry:
Returns:
Modifies:

ENT GTPDL

GTSTCK

Returns the current status of joy stick
Joy stick ID in ([Acc]

Direction in [Acc]

All

GTTRIG
Returns the current status of trigger button
Trigger button ID in [Acc]

Returns 0 in [Acc] 1if not pressed, 25¢

otherwise.

AF

GTPAD

Checks current status of touch PAD

ID in [Acc]

vValue in [Acc]

All (»
GTPDL

Returns the value of paddle
Paddle ID in [Acc]

Value in [Acc]

All

133

C

Sep 14 19:34 1983

O00El

00E4

00E7

00EA

00ED

00F0

biocent.val

COMMENT %

Following are used to access cassette tape

oP

we we WE we We We we

s We We e we Wme we Ne WE N We W e We we wo we W wp e W we o we %5 We W “E we wo

—e w8 Ne N “s we we

Name:
Function:
Entry:
Returns:
Modifies:

ENT TAPION

Name:
Function:
Entry:
Returns:

Modifies:
ENT TAPIN

Name:
Function:
Entry:
Returns:
Modifies:

ENT TAPIOF

Name:
Function:

Entry:

Returns:
Modifies:

ENT TAPOON

Name:
Function:
Entry:
Returns:
Modifies:

ENT TAPOUT

Name:
Function:
Entry:
Returns:
Modifies:

ENT TAPOOF

TAPION '

Sets motor on and reads header from tape
None

Carry flag set if aborted

all

TAPIN

Inputs from tape

None

Data in [Acc], carry flag set if aborted.
All

TAPIOF

Stops reading from tape
None

None

None

TAPOON

Sets motor on
cassette.

[Acc] holds non-0 value if a 1long
desired, 0 if a short header desired.
Carry flag set if aborted

All

and writes header block te

header

TAPOUT

Outputs to tape

Data to be output in [Acc]
Carry flag set if aborted
R1l :

TAPOOF

Stops writing to tape
None

None

None

134

Sep 14 19:34 1983 bioent.val

C

’
: Name: STMOTR
: Function: Sets cassette motor
; Entry: 0 in [Acc] to stop, 1 to start, 255 to flip.
H Returns: None
; Modifies: AF
’
00F3 ENT STMOTR

135

Sep 14 19:34 1983 bioent.val

COMMENT &

Following are used to handle queues

Name: LFTQ

Function: Returns how many bytes are left in queue
Entry:

Returns:

Modifies:

Ne %e ™o we we we we P

00F6 ENT LFTQ

Name: PUTQ

Function: Puts a bvte in gueue
Entry:

Returns:

Mocifies:

e %ea wa W Na W we

00F9 ENT PUTQ

136

Sep 14 19:34 1983 bioent.val

COMMENT &
Following are used by GENGRP and ADVGRP modules

Name: RIGHTC

Function: Moves one pixel right
Entry:

Returns:

Modifies:

e Ws me %o we we we W

00FC ENT RIGHTC

Name: LEFTC

Function: Moves one pixel left
Entry: .

Returns:

Modifies:

e e %o we W wo W

0OFF ENT LEFTC

Name: UPC

Function: Moves one pixel up
Entry:

Returns:

Modifies:

NE e we we “e v wp

0102 ENT UPC

Name: TUPC

Function: Moves one pixel up
Entry:

Returns:

Modifies:

- We N wp no %o W

0105 ENT TUPC

Name: DOWNC

Function: Moves one pixel down
Entry:

Returns:

Modifies:

e NP e e we we we

0108 ENT DOWNC

Name: TDOWNC

Function: Moves one pixel down
Entry:

Returns:

Modifies:

e “e me %p mp we W

010B ENT TDOWNC

Name: SCALXY

~e wo

137

Sep 14 19:34 1983 biocent.val

010E

0111

0114

0117

0lla

011D

0120

~o we we we we

we W we we w5 we we

we we w5 we we “e we wo

e Ne We N W“e we ws e e we wp ne wo W e WMo we wp we we we

e N Ne s %o we wp

-.

Function:
Entry:
Returns:
Modifies:

ENT SCALXY

Name:
Function:
Entry:
Returns:
Modifies:

ENT MAPXYC

Name:
Function:

Entry:
Returns:
Modifies:

ENT FETCHC

Name:
Function:
Entry:
Returns:
Modifies:

ENT STOREC

Name:
Function:
Entry:
Returns:
Modifies:

ENT SETATR

Name:
Function:
Entry:
Returns:
Modifies:

ENT READC

Name:
Function:
Entry:
Returns:
Modifies:

ENT SETC

Scales X Y coordinates

MAPXYC
Maps coordinate to physical address

FETCHC
Fetches
pattern.
None
Address in [HL], mask pattern in [Acc]
A, HL

current rhysical address end

STOREC

Stores to physical address and mask pattern
Address in [HL], mask pattern in [Acc]

None

None

SETATR
Sets attribute byte

READC
Reads attribute of current pixel

SETC
Sets current pixel to specified attribute

138

Sep 14 19:34 1983 biocent.val

; Name: NSETCX
: Function: Sets pixels horizontally
; Entry:)
H Returns:
: Modifies:
H
0123 ENT NSETCX
H
; Name: GTASPC
: Function: Returns aspect ratio
: Entry: None
H Returns: DE, BHL
: Modifies: DE, HL
i
0126 ENT GTASPC
H
; Name: PNTINI
: Function: Initializes for PAINT
H Entry:
; Returns:
: Modifies:
H
0129 ENT PNTINI
: Name: SCANR
: Function: Scans pixels to right
; Entry:
; Returns:
; Modifies:
. N
6l2¢C ENT SCANR
;
: Name: SCANL
H Function: Scans pixels to left
; Entry:
: Returns:
: Modifies:
;
012F ENT SCANL
139

C

Sep 14 19:34 1983

0132

0135

0138

013B

013E

bioent.val

COMMENT &

~e W we We me we w6 we P

NS e e we me we we “e We “e We we we we “e ™e e we we we we we ~e we ws We e s wo

e We “e we Wa We “e o

Following are the additional entries

Name:
Function:
Entry:

Returns:
Modifies:

ENT CHGCAP

Nane:
Function:
Entry:
Returns:
Modifies:

ENT CHGSND

Name:
Function:

Entry:
Returns:
Modifies:

ENT RSLREG

Name:
Function:
Entry:
Returns:
Modifies:

ENT WSLREG

Name:
Function:
Entry:
Returns:
Modifies:

ENT RDVDP

Name:
Function:

Entry:
Returns:

Modifies:

CHGCAP

Changes the status of CAP lamp

0 in [Acc] to turn off the
otherwise.

None

AF

lamr,

crz YD

Changes the status of 1 bit sound port.
0 in [Acc] to turn off, non 0 otherwise.
None

AF

RSLREG

Reads what 1is
register.

None

Result in [Acc]
A

WSLREG

Writes to primary slot register.
Value in [Acc]

None

None

RDVDP

Reads VDP's status register.
None

Data in [Acc]

A

SNSMAT

Returns the status of
keyboard matrix.

Row # in [Acc]

Status in [Acc], corresponding bit is
to 0 if being pressed.

AF

specified row

140

currently output to primary

ncn r

slot

of a

reset

Sep 14 19:34 1983 biocent.val

0141 ENT SNSMAT
Name:

Function:

Entry:
Returns:
Modifies:
Note:

™S N Me Ne e e We Ne “e wp

0144 ENT PHYDIO
Name:
Function:
Entry:
Returns:
Modifies:

Note:

e NE Ne WM %o % N0 W g

0147 ENT FORMAT
Name:
Function:
Entry:
Returns:
Modifies:

N8 Ne N N me e we

014A ENT ISFLIO
Name:
Function:
Entry:
Returns:
Modifies:

Note:

e NS e Ne Ne e N Ne N e we we e

014D ENT QUTDLP
Name:
Function:
Entry:
Returns:
Modifies:
Note:

e we e % we we we g

0150 ENT GETVCP

e we

Name:

PHYDIO
Performs operation

(such as disks).
?2?2?

for mass storage devices

o))
o) oJ

n minimum configuration, only a hook is

rovided.

Lo BN o U I)

FORMAT
Performs mass stcrage devices initialization.
?22?

) W)
LAV ECN)

configuration, only a hook is

T oW

n minimum
rovided.

ISFLIO
Checks if we're doing device I/0
None

Non zero if so,

zero otherwise (
AF

OUTDLP

Outputs to LPT

Code in [Acc]

None

F

This entry differs from LPTOUT in that:
1) TABs are expanded to spaces,
HIRAGANA and graphics symbol
when non-MSX printer is in use,
a jump to ‘'device 1/0 error'
aborted.

2) are converted

3) is made when

GETVCP

Only used to play music as the background task.

GETVC2

C

141

Sep 14 19:34 1983 bioent.val

; Function:
; Entry:
H Returns:
: Modifies:)
; Note: Only used to play music as the background tesk.
;
0153 ‘ ENT GETVC2
i
H Name: KILBUF
: Function: Clears kevboard buffer
; Entry: None
H Returns: None
; Modifies: ~ HL
g
0156 ENT KILBUF
H
; Name: CALBRAS
: Function: Performs far_call (i.e., inter-slot call) i -¢
: BASIC interpreter. g
; Entry: Address in [IX]
; Returns: Who knows?
: Modifies: ditto
H
0158 ENT CALBAS

Following is a patch area for BIOS, placed here to make it
easier to add new entry vectors.

~e we wo e

HOLE 90

142

V.

BIOS WORK AREA LIST

143

Sep 14 19:34 1983 msxram.val

C

Following short routines are to perform inter-slot read/write
and call facility.

e we we we

PPI.AW=="B10101000 ; ASH Write to PPI Port 2

Read primitive

msu -e weo

F380 MB (RDPRIM, 5)
ourT PPI.AW ;Select primary slot
MOV E,M ;Read from slot
JMPR WRPRM1 ;Restore current setting
’
: Write primitive
’
F385 RMB(WRPRIN, 7)
ouT PPI.AW ;Select primary slot
MOV M,E ;Write to slot -
WRPRM1: MOV A,D ;Load current setting s
ouT PPI.AW ;Restore current setting
RET

Call primitive

- F38C RMB(CLPRIM, 14)

ouT PPI.AW ;Select primary slot
o EXAF ;Restore [Acc] and flags
(CALL CLPRIM+12 ;Perform indirect call by IX
. EXAF ;Save possible returned value
. POP PSW ;Get old slot status
' our PPI.AW ;Restore it
EXAF ;Restore possible returned
;value
RET
IX
PCHL
F33A RMB(USRTAB, 20)
Dw FCERR
Dw FCERR
DW FCERR
DwW FCERR ’
Dw FCERR
DW FCERR
Dw FCERR
DW FCERR
Dw FCERR
DwW FCERR
F3AE RMB(LINL4O,1)
DB 39
F3AF RMB(LINL32,1)
DB LINLN
F3BO RMB(LINLEN, 1)
DB LINLN ;Line length
F3B1 RMB(CRTCNT, 1) :
DB 24 ;Line count
(‘ F3B2 RMB(CLMLST, 1)

144

Sep 14 19:34 1983

F3B3
F3B5
F3B7
F3B9

F3BB

F3BD
F3BF
F3Cl1
F3C3
F3C5

F3C7
F3C9
F3CB
F3CD

F3CF

F3D1
F3D3
F3D5
F3D7
F3D9

F3DB
F3DC
F3DD

F3DE

E~. ~e we
—

RMB (
RMB (
RMB (
RMB (

éMB(
RMB (
RMB (
RMB (

RMB (

RMB(
RMB (
RMB (
RMB(

RMB (

RHB(
RMB (
RMB (
RMB (
RMB (

RMB (
RMB (
RME (

RMB (

DB

msxram.val

14

Beginning of MSX specific work area

TXTNAM,
TXTCOL,
TXTCGP,
TXTATR,

TXTPAT,

T3 2NAM,
T32C0L,
T32CGP,
T32ATR,

T32PAT,

GRPNAM,
GRPCOL,
GRPCGP,
GRPATR,

GRPPAT,

MLTNAM,
MLTCOL,
MLTCGP,
MLTATR,

MLTPAT,

CLIRSW,
CSRY,
CSRX,

CNSDFG,

2)
DW1
2)
Dwl
2)
DwWl
2)
DWl
2)
DwWl

2)
DWl
2)
DWl
2)
DWl
2)
DW1
2)
DW1

2)
DwWl
2)
Dwl
2)
DWl
2)
DWl
2)
DW1

2)
DW1
2)
DW1
2)
DWl
2)
DW1
2)
Dwl

1)
DB
1)
DB
1)
DB
1)
DB

“B00000000000000+SCODE ;0000K

“B00000000000000+S$SCODE ; unused

“B00100000000000+$SCODE ;0800H

“BO000C0000000000+$SCODE ; unused

“B00000000000000+SCODE ; unused

“B01100000000000+SCODE ;1800E

“B10000000000000+$CODE ;2000H

“B00000000000C00+$SCODE ;0000H

“B01101100000000+$CODE ;1BOOH

“B11100000000000+SCODE ;3800H

“B01100000000000+SCODE ;1800H

“B10000000000000+$SCODE ;2000H

“B00000000000C00+SCODE ;0000H

“B01101100000000+$SCODE ;1BOOH

“B11100000000000+$CODE ;3800H

“B00100000000000+SCODE ;0800H

“B0O0000000000000+SCODE ; unused

“B00000000000000+SCODE ;0000H

“B01101100000000+$SCODE ;1BOOH

“B11100000000000+SCODE ;3800H

145

144

;Cursor position Y
;Cursor position X

;Function key display switch

Sep 14 19:34 1983

F3DF
F3EO
F3El
F3E2
F3E3
F3E4
F3E>
F3E6

F3E7

F3E8
F3E9
F3EA
F3EB
F3EC
F3EF

F3F2

F3F3
F3F5
F3F6
F3F7
F3F8
F3FA

F3FC

e e wo

RMB (
RMB (
RMB (
RMB (
RMB (
RMB (
RMB (
RMB (

RMB (

RMB (
RMB (
RMB (
RMB (
RMB (
RMB (

RMB (

-~

RMB (
RMB (
RMB (
RMB (
RMB (
RMB (

RMB (

msxram.val

Save area for VDP registers

RGO SAV,
RG1SAvV,
RG2 SAV,
RG3SAV,
RG4 SAV,
RG5 SAV,
RG6SEV,
RG7 SAV,

STATFL,

TRGFLG,

FORCLR,

" BAKCLR,

BDRCLR,
MAXUPD,
MINUPD,

ATRBYT,

QUEUES,
FRCNEW,
SCNCNT,
REPCNT,
PUTPNT,
GETPNT,
Csi20,

’
H
HEDLEN=

.
!

1)
DB
1)
DB
1)
DB
1)
DB
1)
DB
1)
DB
1)
DB
1)
DB
1)
DB

1)
DB
1)
DB
1)
DB
1)
DB
3)
JMP
3)
JMP
1)
DB

2)
DWl
1)
DB
1)
DB
1)
DB
2)
DWl
2)
DW1
5%2)

Some parameters

2000

0

“B11100000

0

o O O O o

“Bl11111111

15

4

7
$CODE
$CODE
15

" QUETAB

255

1

50
KEYBUF
KEYBUF

146

;foreground color, default is white
:background color, default is blue

;screen border color

;Attribute byte

;Addr of queue tables used by QUEUTL,

;Interval of keyscan

for cassette

;Length of header bits (mark) for short
;header

\\\\\

Sep 14 19:34 1983 msxram.val

F406

F408

F40A
F40B
F40D

F40F

F4l4
F415

F416
F417
F4l18

RMB (

RMB (

RMB (

RMB (

x
8

M we ~e
=
o

H followings are for 1200 baud

INTERN LOWO1l,HIGHOl,LOW1ll,HIGH1l
LOW0l= 83 ;Width of low state for 0
HIGHOl= 92 :Width of high state for 0
LOWll= 38 ;Width of low state for 1
HIGH1l= 45 ;Width of high state for 1

DB LOWO01

DB HIGHOl

DB LOW1l1

DB HIGH11

DB HEDLEN*2/256

followings are for 2400 baud

~s we we

INTERN LOW02,HIGHO02,LOW12,HIGH12

LOW02= 37 ;Width of 1low state for 0 12008z
1416 .7usec
HIGHO02= 45 ;Width of high state for 0
LOWl2= 14 ;Width of low state for 1 2400Hz
:208.3usec
HIGH12= 22 ;Width of high state for 1
DB Lowo2
DB HIGHO2
DB LOW12
DB HIGH12
DB HEDLEN*4/256
LOW, 2) (
DB LOWO1 ;default 1200 baud
DB HIGHO1
HIGH, 2)
DB LOW1l
DB HIGH1l1
HEADER, 1)
DB HEDLEN*2/256 ;Default 1200 baud
ASPCT1, 2)
DwWl SCODE+256 ;256/aspect ratio
ASPCT2, 2)
DW1 SCODE+256 ;256 *aspect ratio

- ENDPRG must be the last one which needs initializing

ENDPRG, 5)
DB RN ;FAKE END OF PROGRAM FOR RESUME NEX

End of initialized constants

INTERN INILEN

ENDPRG+1-INIRAM ;Length of initialized data

ERRFLG, 1) ;USED TO SAVE THE ERROR NUMBER

LPTPOS, 1) ;POSITION OF LPT PRINT HEAD -initiall
;0

PRTFLG, 1) sWHETHER OUTPUT GOES TO LPT

NTMSXP, 1) ;:Non 0 if not 'MSX-printer'

RAWPRT, 1) ;Non 0 if printing is in 'raw-mode'’

C

147

Sep 14 19:34 1983

F419
F41B
F41C
.~ F4lF
F55D

F55E

F660
FEEL
F662

F663
F664

F664

F665

F666

F668
F669
F66A

F672
F674

F676
F678

F67A
F698

RMB (
RMB (
RMB (
ZX==
RMB (
RMB (

RMB (

RMB (
RIL{

RMB (

RMB (
RMB {

RMB (

RMB (

RMB (

RMB (
RMB (

RMB (
RMB (

RMB (
RMB (

RMB (
RMB (

VLZADR,
VLZDAT,
CURLIN,
ZX+1
KBUF,
BUFMIN,

BUF,

ENDBUF,
TTYPOS,
DIMFLG,

VALTYP,
OPRTYP,

DORES,

DONUN,

CONTXT,

CONSAV,
CONTYP,
CONLO,

MEMSI1Z,
STKTOP,

TXTTAB,
TEMPPT,

TEMPST,
DSCTMP,

msxram.val

2)
1)
2)
KBFLEX)
1)

BUFLEN+3)

1)

2)

2)
2)

3 *NUMTMP)
3)

148

;Address of character replaced by VAL
;Character replaced by 0 by VAL

;THIS IS THE KRUNCE BUFFER

A COMMA (PRELOAD OR ROM) USED BY INPUT
i STATEMENT SINCE THE DATA POINTER ALWAYS
; STARTS ON A COMMA OR TERMINATOR

sTYPE IN STORED HERE DIRECT STATEMENTS
;EXECUTE OUT OF HERE. REMEMBER "INPUT"
; SMASHES BUF. MUST BE AT A LOWER
; ADDRESS THAN DSCTMP OR ASSIGNMENT
;OF STRING VALUES IN DIRECT STATEMENTS
sWON'T COPY INTO STRING SPACE =-- WHICH
; IT MUST

s PLACE TO STOP BIG LINES

: STORE TERMINAL POSITION EEFE B
+IN GETTING A POINTER TO A VAR’ JLE
;IT IS IMPORTANT TO REMEMBER WHLE4HAER
;IT IS BEING DOKE FOR "DIM" OR NOT
;DIMFLG AND VALTYP MUST BE COLSECUTIVE
;s LOCATIONS

;THE TYPE INDICATOR

:USED TO STORE OPERATOR NUMBER 1IN THE
; EXTENDED MOMENTARILY BEFORE OPERATOR
;APPLICATION (APPLOP)

;WHETHER CAN OR CAN'T CRUNCH RES'D
WORDS TURNED ON IN THE 8K WHEN "DATA"
;BEING SCANNED BY CRUNCHE SC UNQUOTED
;STRINGS WON'T BE CRUNCHED.

: FLAG FOR CRUNCH =0 MEANS NUMBERS
;+ALLOWED, (FLOATING,INT, DBL) 1 MEANS
;NUMBERS ALLOWED, KRUNCH BY CALLING
;s LINGET -1 (377) MEANS NUMBERS
;DISALLOWED (SCANNING VARIABLE NAME)
;) SAVED TEXT POINTER USED BY CHRGET
:TO SAVE THE TEXT POINTER AFTER CONSTANT
;HAS BEEN SCANNED.

;THE SAVED TOKEN FOR A CONSTANT 7. TER
;CHRGET HAS BEEN CALLED e
;SAVED CONSTANT VALTYPE

;SAVED CONSTANT VALUE

sHIGHEST LOCATION IN MEMORY

;TOP LOCATION TO USE FOR THE STACK
; INITIALLY SET UP BY INIT ACCORDING
;TO MEMORY SIZE TO ALLOW FOR 50 EYTL-
;OF STRING SPACE. CHANGED BY & CLEAR
s COMMAND WITH AN ARGUMENT.

sPOINTER TO BEGINNING OF TEXT DOESN'T
;CHANGE AFTER BEING SETUP BY INIT.
;POINTER AT FIRST FREE TEMP DESCRIPTOR
;INITIALIZED TO POINT TO TEMPST

;STORAGE FOR NUMTMP TEMP DESCRIPTORS

; STRING FUNCTIONS BUILD ANSWER
;DESCRIPTOR HERE MUST BE AFTER TEMPST
;AND BEFORE PARM1

Sep 14 19:34 1983 msxram.val

INTERN DSCPTR (f
DSCPTR= DSCTMP+1 sWHERE STRING ADDRESS IS STORE IN DSCTME

F69B RMB(FRETOP, 2) ; TOP OF STRING FREE SPACE
F69D RMB(TEMP3, 2) ;USED TO STORE THE ADDRESS OF THE ENI

;OF STRING ARRAYS IN GARBAGE COLLECTIORX
;AND USED MOMENTARILY BY FRMEVL USEI
; IN EXTENDED BY FOUT AND USER DEFINEIL
; FUNCTIONS ARRAY VARIABLE "HANDL INC

: TEMPORARY

F69F RMB(TEMP8, 2) :7/3/79 Now used by garbage collectior
;not TEMP3 due to conflict

F6A1l RMB(ENDFOR., 2) ;SAVED TEXT POINTER AT END OF "FOR"
s STATEMENT

F6A3 RMB(DATLIN, 2) ;DATA LINE & -~ REMEMBER FOR ERRORS

F6AS RMB(SUBFLG, 1) ;FLAG WHETHER SUBSCRIPTED VARIABLE

; ALLOWED "FOR" AND USER~DEFINED FUNCTIC!
;POINTER FETCHING TURN THIS OK . LFCRI!
;CALLING PTRGET SO ARRAYS WON'T BI
. ;DETECTED. STKINI AND PTRGET CLEAF

Lol
il ;IT.
F6A6 RMB(USFLG, 0)
F6A6 RMB(FLGINP, 1) ;FLAGS WHETHER WE ARE DOING "INPUT'
sOR A READ
F6A7 RMB(TEMP, 2) ;s TEMPORARY FOR STATEMENT CODE. NEWST"

_#SAVES [H,L] HERE FOR INPUT AND °C,
;"LET" SAVES VARIABLE POINTERS HERE,
iFOR "FOR" "NEXT" SAVES ITS TEXT POINTEF
;HERE, CLEARC SAVES [H,L] HERE.

F6A9 RMB(PTRFLG, 1) ;=0 IF NO LINE NUMBERS CONVERTED
;POINTERS, NON ZERO IF POINTERS EXIST

F6AA RMB(AUTFLG, 1) s FLAG TO INICATE AUTO COMMAND It

. ;PROGRESS =0 IF NOT, NON-ZERO IF SO

F6AB RMB(AUTLIN, 2) ;CURRENT LINE BEING INSERTED BY AUTO

F6AD RMB(AUTINC, 2) ;THE AUTO INCREMENT

F6AF RMB(SAVTXT, 2) ;PLACE WHERE NEWSTT SAVES TEXT POINTER
;FOR "RESUME" STATEMENT

F6B1 RMB(SAVSTK, 2) :NEWSTT SAVES STACK HERE BEFORE S¢

; THAT ERROR RECOVERY CAN RESTORE TEK!
:STACK WHEN AN ERROR OCCURS

F6B3 RMB(ERRLIN, 2) ;LINE NUMBER WHERE LAST ERROR OCCURED.

F6B5 RMB(DOT, 2) ;KEEPS CURRENT LINE FOR EDIT & LIST

F6B7 RMB(ERRTXT, 2) ; TEXT POINTER FOR USE BY "RESUME"

F6B9 RMB(ONELIN, 2) sTHE LINE TO GOTO WHEN AN ERROR OCCURS

F6BB RMB(ONEFLG, 1) ;ONEFLG=1 IF WERE ARE EXECUTING Al
; ERROR TRAP ROUTINE, OTHERWISE 0

F6BC RMB(TEMP2, 2) :FORMULA EVALUATOR TEMP. MUST Bl

;PRESERVED BY OPERATORS USED IN EXTENDE:
;BY FOUT AND USER-DEFINED FURCTICN:
;ARRAY VARIABLE HANDLER TEMPORARY

F6BE RMB(OLDLIN. 2) ;OLD LINE NUMBER (SETUP BY °C,"STOP'
sOR "END" IN A PROGRAM)

F6CO RMB(OLDTXT, 2) iOLD TEXT POINTER.. POINTS AT STATEMEN"
;TO BE EXECUTED NEXT .

F6C2 RMB(VARTAB, 2) ;POINTER TO START OF SIMPLE VARIABL?

;SPACE. UPDATED WHENEVER THE SIZ.
;OF THE PROGRAM CHANGES, SET T

C

149

Sep 14 19:34 1983

C

F6C4
F6C6
F6C8

F6CA

F6E4
F6E6
(F6E8
F74C

F74E
F750
F7B4
F7B5
F7B7
F7B8

F7BA
F7BC

F7C4

F7C5
F7F0
F7F2
F7F4

RMB (

RMB (

RMB (

RMB (

-~ we we

ARYTARB,

STREND,

DATPTR,

DEFTBL,

msxram.val

2)

2)

2)

26)

; I TXTTAB] +2 BY SCRATCH ("NEW").

;POINTER TO BEGINNING OF ARRAY TABLE.
; INCREMENTED BY 6 WHENEVER A NEW SIMPLE
;VARIABLE IS FOUND, AND SET TO [VARTAB]
;BY CLEARC.

;END OF STORAGE 1IN USE. INCREASED
;WEENEVER A NEW ARRAY OR SIMPLE VARIABLE
;1S ENCOUNTERED SET TO [VARTAB] BY
7 CLEARC.

;POINTER TO DATA. INITIALIZED TO POINT
;AT THE ZERO IN FRONT OF [TXTTAB] BY
:"RESTORE" WHICH IS CALLED BY CLEARC,
; UPDATED BY EXECUTION OF A "READ"

;THIS GIVES THE DEFAULT VALTYP FOR
;EACE LETTER OF THE ALPHABET. IT IS
;SET UP BY "CLEAR" AND CHANGED BY
;"DEPSTR"™ "DEFINT" "DEFSNG" "DEFDEL"

;$ DON'T FOLLOW A VARAIBLE NAME

RAM storage for user defined function parameter information

INTERN

PRMSIZ=="D100

RMB (
RMB (

RMB (
RMB (

RMB (
RMB (
RMB (
RMB (
RMB (
RMB (

RMB (
RMB (

RMB (

PRMSTK,
PRMLEN,

PARM1,
PRMPRV,

PRMLN2Z,
PARM2,
PRMFLG,
ARYTAZ2,
NOFUNS,
TEMPY,

FUNACT,
SWPTMP,

TRCFLG,
THIS IS
FBUFFR,
DECTMP,
DECTM2,
DECCNT,
DECIMAL

ZX+1

PRMSIZ
2)
2)

PRMSIZ)
2)

2)
PRMSIZ)
1)
2)
1)
2)

2)
8)

1)

;NUMBER OF BYTES FOR DEFINITION BLOCK

; PREVIOUS DEFINITION BLOCK ON STACK
;BLOCK (FOR GARBAGE COLLECTION)

:THE NUMBER OF BYTES IN THE ACTIVE TABLE
;THE ACTIVE PARAMETER DEFINITION TABLE

; INITALLY PRMSTK, THE POINTER AT THE
;PREVIOUS PARAMETER BLOCK (FOR GARBAGE
; COLLECTION)

:SIZE OF PARAMETER BLOCK BEING BUILT
;PLACE TO KEEP PARAMETERS BEING MADE
;USED BY PTRGET TO FLAG IF PARMl BEHAS
;sBEEN SEARCHED

: STOPPING POINT FOR SIMPLE SEARCH
; (EITHER [ARYTAB] OR PARM1+[PRMLEN])
;ZERO IF NO FUNCTIONS ACTIVE. SAVES
; TIME IN SIMPLE SEARCH

";AND USED BY PTRGET WHEN ! # % OR

;GARBAGE COLLECTION TEMP TO CHAIN . .

;s THROUGH PARAMETER BLOCKS

;s COUNT OF ACTIVE FUNCTIONS

:VALUE OF FIRST "SWAP" VARIABLE STORED
s HERE

:ZERO MEANS NO TRACE IN PROGRESS

THE RAM TEMPORARY AREA FOR THE MATH PACKAGE ROUTINES

43)
2)
2)
1)

ACCUMULATOR

150

;BUFFER FOR FOUT

;used by decimal int to float
;used by divide

;used by divide

; TEMP COMPLEMENT OF SICGN

Sep 14 19:34 1983 msxram.val

F7F6

F806
F836
F83E

F847
F857

RMB (

FACLO=

DAC, 1s6)
INTERN FACLO
DAC+2

HOLDING REGS FOR DECIMAL MULTIPLY

HOLD8, 48) ; 80*X
HOLD2, 8) ;2*X
BOLD, 8) $1*X

ARGUMENT ACCUMULATOR

ZX+1 ; TEMP SIGN COMPLEMENT
ARG, 16)
RNDX, 8) iholds last random number generated

151

150

Sep 14 19:34 1983 msxram.val

SUBTTL Data Area

; Set up by initialization. Unchanged by disk code.
F85F RMB(MAXFIL, 1) sHighest legal file #
F860 RMB(FILTAB, 2) ;Points to adr of file data
F862 RMB(NULBUF, 2) ;Points to file 0 buffer
H
; Set up by file / drive selection routines. Only PTRFIL is
; cleared elsewhere.
F864 RMB(PTRFIL, 2) s;Points to file data of selected file
H
; Misc.
FBE6 éMB(RUNFLG, 0) sMen-zero if =h0L’d ror -‘ter loa.
FEG6 RMI | FILNAEM,11) pEIZ.C flienano Sl LLIILIy Lrva. LlAIos
F871 RMB({ FILNM2,11) ~Holds other fllename for NAME
F87C RMB(NLONLY, 1) ;Non-zero if loading program A
. L
; Set up by NULOPN and BSAVE, used by BSAVE and CREATE
H
F87D RMB(SAVEND, 2) ;End of binary or mem image save
FB7F RMB(FNKSTR, 16*10) ;Function key string save area
F91F RMB(CGPNT, 3) ;Where character pattern is held in ROM
F922 ﬁMB(NAMBAS,2) ;Base of current name table
F924 RMB({ CGPBAS.2) ;Base of current cgen table
F926 RMB(PATBAS,2) ;Base of current sprite pattern table
F928 RMB({ ATRBAS, 2) ;Base of current sprite attribute table
;. For GENGRP
F92A RMB({(CLOC, 2)
F92C RMB(CMASK, 1)
F92D RMB(MINDEL,2)
F92F RMB(MAXDEL, 2)
; For CIRCLE
i
F931 RMB(ASPECT, 2) ;aspect ratio for circle
F933 RMB(CENCNT, 2) ;end count
F935 RMB(CLINEF,1) ;flag to draw line to center
F936 RMB(CNPNTS, 2) ;points to plot
F938 RMB(CPLOTF,1) :plot polarity £flag
F939 RMB({ CPCNT, 2) 11/8 no. ¢ pts in circle
FS93B RMB(CPCNT8,2) iNo. of pts in circle
F83D RMB(CRCSUM, 2) ;Circle sum
F93F RMB(CSTCNT, 2) ;start count
F941 RMB(CSCLXY,1) ;scaling x y
F942 RMB(CSAVEA, 2) ;ADVGRP C save area
F944 RMB(CSAVEM, 1) ;ADVGRP C save area
F845 RMB(CXOFF, 2) ;X offset from center save loc
F947 RMB({ CYOFF, 2) ;Y offset save location
H For PAINT

152

Sep 14 19:34 1983

F949
F94A
F94B
F94D
F94F
F951
F853
F954
F955

F956
F958

F959
F971

F975
FOF5
FA75
FAF5

FB35

FB36
FB38
FB39
FB3B
FB3C
FB3E

FB3F
FB40

1

RMB (LOHMSK, 1)
RMB (LOHDIR,1)
RMB (LOHADR, 2)
RMB (LOHCNT, 2)
RMB (SKPCNT, 2)
RMB (MOVCNT, 2)
RMB (PDIREC,1)
RMB (LFPROG, 1)
RMB(RTPROG,1)
; For MACLNG
7

RMB (MCLTAB,2)
RMB (MCLFLG,1)

msxram.val

;RAM save area for left overhang

:Skip count
sMove count
sPaint direction

sindicates PLAY/DRAW

; QUEUES for PLAY statement
H

RMB (QUETAB, “D24)
RMB (QUEBAK, “D4)
MUSQLN=:"D128
RSIQLN=:"D64

RMB (VOICAQ, MUSQLN)
RMB (VOICBQ, MUSQLN)
RMB (VOICCQ, MUSQLN)
RMB (RS2IQ, RSIQLN)
; Music stuff
RMB (PRSCNT, 1)

RMB (SAVSP, 2)

" RMB (VOICEN,1)

RMB (SAVVOL, 2)

RMB (MCLLEN, 1)

RMB (MCLPTR,2)

RMB (QUEUEN, 1)

RMB(MUSICF,1)
RMB(PLYCNT.1)

* %o wp

METREX=:0

VCXLEN=:METREX+2
VCXPTR=:VCXLEN+1
VCXSTP=:VCXPTR+2
QLENGX=:VCXSTP+2
NTICSX=:QLENGX+1
TONPRX=:NTICSX+2
AMPLTX=: TONPRX+2
ENVPRX=:AMPLTX+1
OCTAVX=: ENVPRX+2
NOTELX=:0CTAVX+1
TEMPOX=:NOTELX+1

153

;4 queues (6 bytes each)
;sFor BCRQ
7Size of voice queues

;Voice a queue
:Voice b creue
;Voice ¢ gueue
:RS232 input queue

:D1-D0 = #strings parsed

;D7=0 if 1st pass, 1 if not

iSave main stack pointer During play
iSet current voice being parsed
;Save volume for pause

;Used by intime-action-dequeue
sMusic interrupt flag

;% play statements queued for background
;task

Per Voice Static Data Area Displacement Definitions

stimer countdown
+MCLLEN for this voice
sMCLPTR for this voice
7save top of stack pointer
;# bytes to be queued
;new countdown

;tone period
;amplitude/shape
ienvelope period
;joctave

:note length

; tempo
C

Sep 14 19:34 1983 msxram.val

FB41
FB66
FBEB

FBBO
FBEl
FBB2
FBCA

FBCD
FBCE

FBD8
FBDSY
FBDA
FBES

FBFO
FCl8
FC1l8
FC40
FC48
FC4A
FC4C
FC9A
FC9B
FC9C
FCOD
FCOE
FCAO
FCA2
FCA4
FCAS
FCA6
FCA7
FCAS8
FCAS
FCAA
FCAB
FCAC
FCAD
FCAE
FCAF

FCBO
FCBl1

VOLUMX=: TEMPOX+1
ENVLPX=:VOLUMX+l
MCLSTX=: ENVLPX+"D14
MCLSEX=:MCLSTX+3
VCBSIZ=:MCLSEX-METREX+l
RMB (VCBA, VCBSIZ)
RMB (VCBB, VCBSIZ)
RMB (VvCBC, VCBSIZ)

Area between here
is called.

o we wa we

RMB (ENSTOP,1)
RMB (BASROM, 1)
RMB (LINTTB,24)
RMR(FSTPOS, 2)
RMB(FNKSWI,1)
RMB (FNKFLG,10)
RMB (ONGSBF,1)
RMB (CLIKFL,1)
RNMB(OLDKEY,11)

RMB (NEWKEY,11)
INTERN SFTKEY
SFTKEY= NEWKEY+6

RMB (KEYBUF, 40)
RMB (BUFEND, 0)
RMB (LINWRK, 40)
RMB (PATWRK, 8)
RMB (BOTTOM, 2)
RMB (HIMEM, 2)
RMB (TRPTBL,3 *NUMTRP)
RMB (RTYCNT, 1)
RMB (INTFLG,1)
RMB (PADY, 1)
RMB (PADX, 1)
RMB (JIFFY, 2)
RMB (INTVAL,2)
RMB (INTCNT,2)
RMB(LOWLIM,1)
RMB (WINWID,1)
RMB (GRPHED, 1)
RMB (ESCCNT, 1)
RMB (INSFLG,1)
RMB (CSRSW, 1)
RMB (CSTYLE,1)
RMB (CAPST, 1)
RMB (KANAST,1)
RMB (KANAMD,1)
RMB (FLBMEM,1)
RMB (SCRMOD,1)
RMB (OLDSCR,1)

RME (CASPRV,1)

and

154

;volume

;envelope shape

;stack save area

sinitial stack

;veice static buffer size
:static data for voice 0
;static data for voice 1
:sstatic data for voice 2

MUSICF is cleared everytime a IGICIN

:Non zero if warm start enabled
;Non zero if BASIC text is in ROM
;Line terminator table

1Firet position when entered INLIN
+Ccde save erez for curscer
;Indicates which function key
;displayed

:Indicates key is assigned to e .

;device
:Global event flag

;01d key status
;New key status

;GR,CTRL, SHIFT status

:Key code buffer

;End of KEYBUF

;Scratch area for screen handler
;Scratch area for pattern converter
;Bottom of equipped RAM

;Highest available memory

;Trap table

;Used when reading cassette

;Used when reading cassette

;Plag for graphic character output
; Escape sequence counter

;Insert mode flag

;Cursor display switch

;Cursor style

;Capital status

;Kana lock status

;Non 0 if JIS

;0 if loading BASIC program
:Screen mode

: (0-text,l-text,2-hires,2-multi)
;Screen mode save area

;Previous character save area for CAS:

is

-

te -

Sep 14 19:34 1983 msxram.val

FCB2 RMB({ BRDATR, 1) ;Border color for PAINT (P

FCB3 RMB(GXPOS. 2)
FCB5 RMB(GYPOS. 2)

FCB7 RMB({ GRPACX, 2) ;graphic accumulater
FCBS RMB(GRPACY,2)
FCBB RMB(DRWFLG,1)
FCBC RMB({(DRWSCL,1) ;Draw scale factor - 0 means no scaling
FCBD RMB(DRWANG, 1) ;Draw angle (0-3)
H
H For BLOAD and BSAVE
FCBE RMB(RUNBNF,1) ;Whether we're doing BLOAD,BSAVE or not
FCBF RMB(SAVENT, 2) ;Start address for BSAVE
; Information save area for slots
H
FCCl RMB(EXPTBL, 4) ;Flag table for expanded slot
sHolds 255 if expanded
FCC5 RMB({(SLTTBL, 4) ;Current setting for each expanded
;slot register
FCC9 RMB(SLTATR, 64) ;Holds attributes for each slot
FD0O9 RMB(SLTWRK, 128) t1Holds work area specific for each slot
; For CALL statement and device expander
;
FD89 RMB(PROCNM, 16) ;Name of expanded statement terminated
:;by 0
FD99 RMB(DEVICE, 1) ;The device ID for a cartridge (0..3) (:

~~~~~~~

155



Sep 14 19:34 1983

¢

FDSA

FD9A

FDOF

FDA4

FDAS

FDAE

FDB3

COMMENT &

GSX==
RMB (

§~. e s ws we we w~. —e ™s we we we W" ~e e we wa we w~. e e e wo we
— —

o

{

-e :‘jn. ~e me ws we wme w~. wa wa %me we Ny
~ —

msxram.val

Following are definition of hooks and their functions

name
where
purpose

zX
HOKJMP, 0)

name:
where:
purpecse:
E.KEYI,5)
name:
where:
purpose:
H.TIMI,S)

name:
where:

purpose:
H.CHPU,5)

name:
where:

purpose:
H.DSPC,5)

name:
where:

purpose:
H.ERAC,5)

name:
where:

purpose:

E.DSPF,5)

- name of hook
- where in what module it is used
- what purpose it is used for

a

H.KEYI

MSXIO, at the beginning of interrupt handler

to édo &dditionzl interrugt handlinc szuch ac
RS232C

H.TIMI

MSXIO, in timer interrupt handler

to allow other interrupt handling invoked by
timer .

H.CHPU

MSXIO, at the beginning of CHPUT (CHaracter
outPUT) routine

to allow other console output devices to be used

H.DSPC
MSXIO, at the
CurSoR) routine

beginning of DSPCSR

H.ERAC

(DiSPlay

MSXIO, at the beginning of ERACSR (ERAse CurSoR)

routine

to allow other console output devices to be used

H.DSPF
MSXI0, at the beginning
FuNction Key) routine

of DSPFNK

(DiSFlay

to allow other console output devices to be used

156

-to allow other console output devices to be used



RS

Sep 14 19:34 1983

FDBS8

FDBD

FDC2

FDC?7

FDCC

FDD1

FDD6

FDDB

W e e e Ne we MY wme ne e we ne one
o]
—

§sn .~ we we we
—

B3 v e ws we we we

&

e R R T

=
m

X ne S No ne ne we

=
w

B (

we e we ws we we §

W Ne we we Ne N we E
—

RMB (

name:
where:

purpose:
H.ERAF,S)

name:
where:

purpose:
H.TOTE,5)

name:
where:

purpose:
H.CHGE,S)

name:
where:

purpose:
H.INIP,5)

name:
where:

purpose:
H.KEYC,5)

name:
where:

purpose:
H.KYEA,S)

name:
where:

purpose:
H.NMI, 5)

name:
where:

purpose:

H.PINL,S)

msxram.val

C

(ERAs¢

H.ERAF
MsX10, at the beginning of ERAFNK
FuNction Key) routine

to allow other console output devices to be usec

H.TOTE
MSXIO, at the beginning of TOTEXT (force
TO TEXT mode) routine
to allow other console output devices to be used

screer

H.CHGE

MSXIO, at the
GET) routine
to allow other console input devices to be used

beginning of CHGET (CHaracter

H.INIP

MSXIO, at the beginning of
PATtern) routine

to allow other character sets to be used

INIPAT (INItialize

H.KEYC " (
MSXIO, at the beginning of KEYCOD (KEY CODer)
routine

to allow other key assignments to be used

H.KYEA

MSXIO, at the beginning of KYEASY {(KeY EASY)
routine

to allow other key assignments to be used

H.NMI

MSXIO., at the beginning of NMI (Non Maskable
Interrupt) routine

to allow NMI handling

H.PINL

MSXINL, at the beginning of PINLIN
INput LINe) routine

to allow other console input
input design to be used

(Program

devices or other

C

157



Sep 14 19:34 1983

FDEO

FDES

FDEA

FDEF

FDF4

FDF9

FDFE

E~. e W %Ne me we we
—

3 e me weo we ws we we

&

§s. e ~e %o wme e

B(

Eh. ~e we we we §~u we Ne e e we Mfne me ne e e we
— — —

Se ~e we N me Ne Y ne Se e e we we
—_

name:
where:

purpose:

H.QINL,5)

name:
where:

purpose:

H.INLI,S)

name:
where:

purpose:
H.ONGO,5)

name:
where:

purpose:
H.DSRO,5)

name:
where:

purpose:
H.SETS,5)
name:
where:
purpose:
H.NAME,S)

name:
where:

purpose:
BE.KILL,5)

name:
where:

purpose:

msxram.val

H.QINL

MSXINL, at the beginning of QINLIN (Question
mark and INput LINe) routine

t¢ allow other console input devices or
input design to be used

¢ther

H.INLI

MSXINL, at the beginning of INLIN (INput LINe)
routine

to allow other console input devices or other
input design to be used

H.ONGO _

MSXSTS, at the beginning of ONGOTP (ON GﬁTo

Procedure) routine 7
to allow other interrupting devices to be used

H.DSKO
MSXSTS, at
routine
to install disk driver

the beginning of DSKOS$ (DiSK OQutput)

H.SETS
MSXSTS, at the
attributeS) routine
to install disk driver

beginning of SETS {SET

- H.NAME

MSXSTS, at the beginning of NAME (reNAME) routine
to install disk driver Ly

B.KILL

MSXSTS, at the beginning of KILL
routine

to install disk driver

(KILL file)

H.IPL

MSXSTS, at the beginning of IPL (Initial Program
Load) routine

to install disk driver

158



Sep 14 19:34 1983

FEO3

FEO8

FEOD

FE12

FE17

FE1C

FE21

FE26

:

§s. e we ws wo Ne

B (

N8 Ne Ne Se ne e TN Se Se we we N
—

5

I Se we ve we g e

§~o we %o No we e
& &

M LR o O R
——

e % %o %o o we E
—

H.IPL, 5)

name:
where:

purpose:
H.COPY,5)

name:
where:

purpose:
H.CMD, 5)

name:
where:

purpose:
H.DSKF,5)

name:
where:

purpose:
H.DSKI,S5)

name:
where:

purpose:
H.ATTR,S5)

name:
where:

purpose:
H.LSET,5)

name:
where:

purpose:
H.RSET,5)

name:
where:

purpose:

msxram.val

H.COPY

MSXSTS, at the beginning of
routine

to install disk driver

H.CMD

MSXSTS, at the
routine

to install disk driver

beginning

H.DSKF

MSXSTS, at the beginning of
routine

to install disk driver

H.DSKI

MSXETS, at the
routine

to install disk driver

beginning

H.ATTR

MSXSTS, at the beginning of
routine

to install disk driver

H.LSET
MSXSTS, at the
routine
to install disk driver

beginning

B.RSET

MSXSTS, at the beginning of
routine

to install disk driver

H.FIEL
MSXSTS, at the
routine
to install disk driver

beginning

159

of LSET

C

COPY (COPY files)

of CMD (CoMmanD)

DSKF (DiSK Free)

of DSKI (DiSK Input)

¢

ATTRS (ATTRibute)

(Left SET)

RSET (Right SET)

of FIELD (FIELD)

C



Sep 14 19:34 1983

FE2B

FE30

FE35

FE3A

FE3F

FE44

FE49

2

~e wme %o %o wo e s-. e “e we e wo
—

RMB (

1) ~e we me Se ~e we

=
w

0 ~e e Ne ne e we

&

Es. Ne N6 we e we Mse e Se ms e e
— —

H.FIEL,5)

name:
where:

purpose:
H.MKIS,5)

name:
where:

purpose:
B.MKSS$,5)

name:
where:

purpose:
H.MKDS,5)

name:
where:

purpose:
H.CVI,5)

name:
where:

purpose:
H.CVS,5)

name:
where:

purpose:

H.CVD,5)

msxram.val

H.MKIS
MSXSTS, at
routine

to install

H.MKSS
MSXSTS, at
routine

to install

H.MKDS
MSXSTS, at
routine

to install

H.CVI
MSXSTS, at
routine

to install

H.CVS
MSXS8TS, at

. routine

to install

H.CVD

- MSXSTS, at

routine
to install

160

the beginning of MKIS (MaKe 1Int)

disk driver

the beginning of MKS$ (Make Single)

disk driver

the beginning of MRKDS$ (Make Doy~ ¢

disk driver

the beginning of CVI (Convert Int)

disk driver

the beginning of CVS (Convert Sng)

disk driver

the beginning of CVD (Convert hfjl)

disk driver



(1

R

Sep 14 19:34 1983

~e

FE4E

FE53

FES8

FESD

FE62

FE67

FE6C

FE71

FE76

B(

we ~o e ve we M se ne me ne we §~. ~e we wo we s~. e %o we we g\o ~e we we
— — —

:

0 Se w6 Se we we e

s- Ne we we Se M we we ne we we
— — —

&

s g ne e we Ne we

name:
where:
purpose:

H.GETP,5)

name:
where:
purpose:

H.SETF,5)

name:
where:
purpose:

H.NOFO,5)

name:
where:
purpose:

H.NULO.,5)

name:
where:
purpose:

H.NTFL,5)

name:
where:

purpose:
H.MERG, 5)

name:
where:
purpose:

H.SAVE,5)

name:
where:
purpose:

H.BINS,5)
name:
where:
purpose:

H.BINL,S5)

msxram.val

H.GETP
SPCDSK, at
to install

H.SETF
SPCDSK, at
to install

H.NOFO
SPCDSK, at
to install

H.NULO
SPCDSK, at
to install

H.NTFL
SPCDSK, at
to install

H.MERG
SPCDSK, at
routine
to install

H.SAVE
SPCDSK, at
to install

H.BINS
SPCDSK, at
to install

H.BINL
SPCDSK, at
to install

161

(

the GETPTR (GET file PoinTeR) routine
disk driver

the SETFIL (SET FILe pointer) routine
disk driver

the NOFOR (NO FOR clause) routine
disk driver

the NULOPN (NULl file OPeN) routine

disk driver

the NTFLO (NoT FiLe number 0) routine
disk driver (

the MERGE (MERGE program files)

disk driver

the SAVE routine
disk driver

the BINSAV (BINary SAVe) routine
disk driver

the BINLOD (BINary LOaD) routine
disk driver



r\

Sep 14 19:34 1983

¢

FE7B

FE8O

FEB5

FEBA

FE8BF

FE94

FE99

FESE

FEA3

;
i
;
;
RMB (
i
;
:
;
;
RMB (
;
;
;
;
RMB (
;
H
4
;
;
RMB (

e W N Ne e w~o ~e wa we e
—

~e we %\- ~e we we we s- ~e wo ws W E~. —e weo we wo %
— — — —

name:
where:
purpose:
H.FILE,S)

name:
where:
purpose:

H.DGET,5)
name:
where:
purpose:
B.FILO,5)

name:
where:

purpose:
H.INDS.5)

name:
where:
purpose:

H.RSLF,5)
name:
where:
purpose:
H.SAVD,S)
name:
where:
purpose:
H.LOC, 5)
name:
where:
purpose:
B.LOF, 5)
name:
where:
purpose:
H.EOF, 5)

name:

msxram.val

H.FILE
SPCDSK, at
to install

BH.DGET
SPCDSK, at
to install

B.FILO
SPCDSK, at
to install

H.INDS
SPCDSK, at
routine

to install

H.RSLF
SPCDSK, to
to install

H.SAVD
SPCDSK, to
to install

BH.LOC

- SPCDSK, at

to install

H.LOF
SPCDSK, at
to install

H.EOF
SPCDSK, at
to install

B.FPOS

162

the FILES command
disk driver

the DGET (Disk GET) routine
disk driver

the FILOUl (FILe OUt 1) routine
disk driver

the INDSKC (INput DiSK Character)

disk driver

re-select old drive
disk driver

save current drive
disk driver

the LOC (LOCation) function
disk driver

the LOF (Length Of File) function
disk driver

the EOF (End Of File) function
disk driver



Sep 14 19:34 1983

FEA8

FEAD

FEB2

FEB7

FEBC

FEC1

FEC6

FECB

FEDO

§so ~e wo

B(

We e we we we e M ne we w5 we we
<4
ol
—

2

B (

B ve we No we e

“e Ne %o we Ne Ne M ae we e e w I ne we we we e

e %p Wme WP Wy
g

&

~o %o w\. we we we W

where:
purpose:

H.FPOS,5)

name:
where:
purpose:

H.BAKU,5)

name:
where:

purpose:
H.PARD,5)

name:

where:
purpose:

H.NODE,5)
name:
where:
purpose:
H.POSD,5)

name:
where:
purpose:

H.DEVN,5)

name:
where:

purpose:
H.GEND,5)
name:
where:
purpose:
B.RUNC,5)
name:
where:
purpose:

H.CLEA,S)

name:

msxram,val

SPCDSK, at the FPOS (File POSition) function
to install disk driver

H.BAKU
SPCDSK, at the BAKUPT (BAcCK UP) routine
to install disk driver

H.PARD
SPCDEV, at the PARDEV
routine
to expand logical device names

(PARse DEVice name

H.NODE
SPCDEV, at the NODEVN (NO DEVice Name) routine
to set other default device

H.POSD
SPCDEV, at the POSDSK (POSsibly DiSK) rcutine
to install disk driver (;

H.DEVN
SPCDEV, at the DEVNAM (DEVice NAMe) routine
to expand logical device names

H.GEND
SPCDEV, at the GENDSP (GENeral’ devic
DiSPatcher)

to expand logical device names
H.RUNC

BIMISC, at the RUNC (RUN Clear) routine

H.CLEA
BIMISC, at the CLEARC (CLEAR Clear) routine

H.LOPD
C

163



Sep 14 19:34 1983 msxram.val

FED5

FEDA

FEDF

FEE4

FEE9

FEEE

FEF3

FEFS8

FEFD

gso e wo we
o

=
or]

R L L T . R R B0 ~e we ne we e

e e %5 we we we E- w8 e ~a N g
— —

RMB (

%\. ~s wa we we Esq ~e wo we we
— —

~e ~u M ve we e we we
=
w

where:
purpose:
H.LOPD,5)

name:
where:
purpose:

B.STKE,5)
name:
where:
purpose:
H.ISFL,5)
name:
where:
purpose:
H.OUTD,5)
name:
where:
purpose:
H.CRDO,5)

name:
where:

purpose:
H.DSKC,5)
name:
where:
purpose:
H.DOGR,5)
name:
where:
purpose:
B.PRGE,5)
name:
where:
purpose:
H.ERRP,5)

name:

BIMISC, at the
routine

LOPDFT

(LOop and set DeFaulT)

to use other defaults for variables

B.STKE
BIMISC, at the STKERR

H.ISFL
BIMISC, at the ISFLIO

H.OUTD

(STack ERRor) routine

(IS FilLe I/0) routine

BIO, at the OUTDO (OUT DO) routine

H.CRDO

BIO, at the CRID (CR.” DO routiie

H.DSKC
BIO, at the
routine

DSKCHI

H.DOGR

. GENGRP, at the DOGRPH

H.PRGE
BINTRP, at the PRGEND

H.ERRP
BINTRP, at the ERRPRT

164

(DiSK CHaracter Input)

(DO GRaPH) routine

(PRoGram END) routine

(ERRor PRinT) routine



Sep 14 19:34 1983 msxram.val

H where: BINTRP (T
; purpose:
FF02 RMB( H. ERRF,5)
H
H name: H.READ
: where: BINTRP, at the READY entry
H purpose:
H
FF07 RMB( H.READ,5)
H name: H.MAIN
H where: BINTRP, at the MAIN entry
; purpose:
FFOC RMB( H.MAIN,S5)
; name: H.DIRD )
: where: BINTRP, at the DIRDO (DIRect statement DO) entry
: purpose:
H
FF1ll RMB({( H.DIRD,5)
; name:
; where: BINTRP
; purpose:
H
FF16 RMB( H.FINI,S5) : (
; name:
: where: BINTRP
.7 purpose:
H
FF1B RMB({ H.FINE,5)
H
; name:
H where: BINTRP
: purpose:
. i
e FF20 RMB({ H.CRUN,5)
R 4 .
: ’
H name:
: where: BINTRP
H ‘purpose:
7
FF25 RMB( H.CRUS,5)
; name:
H where: BINTRP
H purpose:
FF2A RMB( H.ISRE,5)
H
} name:
H where: BINTRP
: purpose:

165

‘A



Sep 14 19:34 1983 msxram.val

H.NTFN,5)

&

FF2F

name:
where: BINTRP
purpose:

Se me we we e e

FF34 H.NOTR,5)

name:
where: BINTRP
purpose:

E~. -~ we we ‘.E

FF39 H.SNGF,5)

name:
where: BINTRP
purpose:

FF3E H.NEWS.5;

e
[34]

name:
where: BINTRP
purpose:

FF43 H.GONE,5)

&

name:
where: BINTRP
purpose:

Ne me Se Se me MY se e me me we M ve ne ve ne e

FF48 H.CHRG,S)

:

name:
where: BINTRP
purpose:

H.RETU,5)

&

FF4D

name:
where: BINTRP
purpose:

FF52 H.PRTF,5)

£
&)
—

name:
where: BINTRP

purpose:
H.COMP,5)

Se Ne ve me me Yyf e we we we we %) e e e ne we

FFES7

name:
where: BINTRP
purpose:

E~. ~e wo wo wo s
— —

FF5C H.FINP,5)

166

vE -



PR

Sep 14 19:34 1983

FF61l

FF66

FF6B

FF70

FF75

FF7A

FF7F

FFB4

FF89

Es- we %o wo wo E~. ~e we we o

&

&

W Se N6 Se we Ve we ve ne X e we Ne we o~

Ne we wo we wo g
—

~. we E“ ~e wo wo we s~. we we o we ssn ~e we %o we s
— — — —

name:
where:
purpose:
H.TRMN,5)

name:
where:
purpose:

H.FRME,S5)
name:
where:
purpose:
H.NTPL,5)
name:
where:
purpose:
H.EVAL,5)
name:
whe;e:
purpose:
H.OKNO,5)
name:
where:
purpose:
H.FING,5)

name:
where:
purpose:
H.ISMI,S)
name:
where:
purpose:
H.WIDT,5)
name:
where:
purpose:
H.LIST,5)

name:

msxram.val

BINTRP

BINTRP

BINTRP

BINTRP

BINTRP

BINTRP

H.ISMI
BINTRP, at the ISMIDS (IS MIDS) routine

H.WIDT
BINTRP, at the WIDTHS (WIDTH) routine

H.LIST
BINTRP, at the LIST routine

H.BUFL

167



Sep 14 19:34 1983

FFBE

FF93

FF98

FFOD

FFA2

FFA7

FFAC

FFB1

FFB6

Ne we me we we Y ve Se we Se we MY ne we e

&

g

;

I ~e we we we we

&

w~. we we we we

~e %o Y e we me we we e

MO ~e e e e we fr) me we ve se e e
=
w
—

=
o

O Se e me e s

=
(34)

&

where:
purpose:

B.BUFL,5)

name:
where:
purpose:

H.FRQI,S5)
name:
where:
purpose:
B.SCNE,5)

name:
where:

purpose:
H.FRET,5)
name:
where:
purpose:
H.PTRG,5)
name:
where:
purpose:
H.PHYD,5)
name:
where:
purpose:
B.FORM,5)
name:
where:
purpose:
H.ERRO,5)

name:
where:

purpose:
H.LPTO,S)

name:

msxram.val

BINTRP, at the BUFLIN (BUFfer LINe) routine

H.FRQI
BINTRP, at the FRQINT routine

BINTRP

B.FRET
BISTRS, at the
routine

FRETMP (FREe up TeMPorarji )

H.PTRG
BIPTRG, at the PTRGET (PoinTeR GET) routine
to use other variable names than default

H.PHYD
MSXIO, at the PHYDIO (PHYsical Disk I/0) routine
to install disk driver

H.FORM
MSXIO., at the FORMAT (disk FORMATter) routine

.to install disk driver

E.ERRO
EINTRP, at the ERROR routine
to trap errors from application programs

H.LPTO
MSXIO, at the
routine
to use other printer than default

LPTOUT (Line PrinTer OUTput)

B.LPTS

168

167



Sep 14 19:34 1983 msxram.val

; where: MSXIO, at the LPTSTT (Line PrinTer s'raTu(
: routine
H purpose: to use other printer than default
H
FFBB RMB( H.LPTS,5)
:
; name: H.SCRE
: where: MSXSTS, at the entry to SCREEN statement.
H purpose: To expand SCREEN statement.
H
FFCO RMB( H.SCRE,5)
i
; name: H.PLAY
: where: MSXSTS, at the entry to PLAY statement.
: purpose: To expand PLAY statement.
H
FFC5 RMB({ H.PLAY,5)
H
FFCA RMB({ ENDWRK, 0) ;end of work area

169



VI. SLOT MANAGEMENT MECHANISM

MSX BASIC interpreter's slot management mechanism

August 20th. 1983.

All information contained herein is proprietary to ASCII Microsoft,

170



MSX BASIC interpreter's slot management mechanism

[ Memory structure of MSX ]

e — e e g
™l | | |
* | ———t ——— S —— — - —
———t ——— e ——
Nl ] ] ]
» i ——— e ——— b ——— —— 4
RS SR S A |
~ ]
i———d
i b e +
o | 1 MeLNHO
- b ——— e ———

<slot #2 expanded> <slot #3 expanded>

<slot #1 expanded>

<{slot #0 expanded>

e e T e,
1 1 ] !
»ll|+ll|+lll+lll+
e S e Y
' 1 !
$—— b —— b}
o — et ——— 4
! ' { | |
o — b b —— 4
e by
| 1
S SN N
e — e
i 1 | ! 1
o — b ——— 4
i bt et b B
' t
e SNy U S—
bt —
1 i i | |
+t——— e —— e}
o — e —— e
! i | 1 {
t———t——— e ———
P — b
1 ! { 1 |
—_——t e ——— b — — .}
F o by
! 1 1 1 1
—_——t——— et ——— y——
t—m— e —— e —— 4.
| i 1 I 1
e b
+ll|+|llﬁ|ll+|ll+
| | |
t——— bt} _}
t———
{ ! i | 1
F——— b ———  — 4
e — b ———
{ 1 | { !
e e
et ———
| 1 1 1 i
o — 4
b —— b ——— —
! } | | 1
e —— e ——— b —_—— y — .}

1024 Rbytes (16*64 Kbytes)

Total:

Terminology:

4+ £ o .m
O o] Quo
v M g Vo
—~ v v oo
Q =] ™ ©
u [ Q,
[STRENN <
E oI N
Pt D . m
o X O Iy
~ g~ 4 [xy o~
u (o dd © by
D10 o~y
0 e [
> . o T O
0 E 0O
[ TRie RN IEC o) o
MO ©E-~
el ~ > 00
DN QU X-AO
—~un o Moo
QNLCUE <m
WO VU Y~ 0 o
= ~ 4 ~O
v o PR no
v SR S]
NLANMNOO0O MmO
Mol S D E~ oL
- PVOOMmMm
L2 n e o]
8] el O [1
Ralad OV & U oy
L 0 @ o I
V) - mm
0] ~® s0oO0
VP UODDO
oo OO0 o0
—~ @ ~ 4O Y
m um -
] !

secondary slot - Slot which

primary slot

page

1. Minimum configuration

171



MSX BASIC interpreter's slot managem

ent mechanism

a) Microsoft MSX BASIC interpreter at slot #0 from 0000H to 7FFFH.

b) Minimum of
the secondary slot)

2. RAM search procedure

MSX BASIC first searches for
to 8000H (including the on
the page containing the larg
one such pages, selects th
MSX BASIC next searches for
to 0CO00H, and does
MSX BASIC searches for conti
to B000H and sets the system

3. PROGRAM CARTRIGE search procedure

MSX BASIC scans all slots
4000H to OBFFFH for a valid
collects information, and
scan order is from left to
format of ID and others are

Offset from top

+0000H 4-=w—memee—-
| ID
+0002H H=—=—mmemeem
I INIT
+0004H +=———=emmmen
| STATEMENT
+0006H 4=———cmmm———
| DEVICE
+0008H +rm—mme—ca——-
| TEXT
+000AR +4~——=-—m————e
|
: reserved
+0010H +4=~-—mmmceeee
- ID is a 2 byte code use
empty pages. 'AB' (41H,42H)

INIT holds an
to this cartridge. 0 when
Programs that need to work c
should return control to it
registers except [SP] can
as game programs) need not t

STATEMENT holds an address

if such is contained in this
is inside. When BASIC enc

172

the same thing described above.

8K RAM from OEOOOH to OFFFFH in any slot (including

available RAM from OBFFFH down
es in secondary slots), then enables
est RAM. If there are more than
e leftmost page in the figure above.

available RAM from OFFFFH down
Finally,
nuous RAM block from OFFFFH down
variable 'BOTTOM'.

(including secondary slots) f-om
ID at the beginning of each pi 7,
passes control to each page. The
right in the figure above. The

as follows.

S

d to distinguish ROM cartridge from
is used for this purpose.

address of the initialization procedure specific

no such procedure 1is necessary.

o-operatively with BASIC interpreter
by a z80's 'RET' instruction (all
be destroyed). Other programs (such
o do so, however,

of the expanded statement handler
cartridge. 0 when no such handler
ounters a 'CALL' statement, it calls



MSX BASIC interpreter's slot management mechanism

this address with the statement name 1in the system area.
Following are the notes to be remembered. (In the notes below,
[HL] register pair is called a 'text pointer')

1) The cartridge must be placed at 4000H..7FFFH.
2) Syntax for expanded statement is,
CALL <statement_name> [ ( <arg> [ ,<arg> ].. ) ]

Key word "CALL" can be substituted with an under score

character. "_".

3) Statement name is stored in the system area terminated
by 0. The buffer for statement name is of fixed length
(16 bytes) so statement name cannot be longer than
15 characters.

4) If the handler for that statement is not inside the
cartridge, return with carry flag set. Text pointer
must be returned unchanged.

5) If the handler for that statement 1is inside the
cartridge, the cartridge should do the function, update
text pointer to the end of the statement (usually,
pointing to 0 which indicates the end of line, or ':'
which indicates the end of statement), and return with
carry flag reset (registers except [SP] can be
destroyed). At the entry to the expanded statement
handler. text pointer is set up to point to the first
non-blank character after the statement name.

- DEVICE holds an address of the expanded device handler if such
is contained in this <cartridge. 0 when no such handler is
inside. BASIC calls this address with the device name 1in the
system area. Following are notes to be remembered.

1) The cartridge must be placed at 4000H..7FFFH.

2) Device name is stored in the system area terminated
by 0. The buffer for statement name is of fixed length
(16 bytes) so device name cannot be 1longer than 15
characters.

3) A cartridge (16K) can have up to 4 logical devices.

4) When BASIC encounters a device name which is not known
to itself. it calls DEVICE entry with OFFH in [Acc].
If the handler for that device is not inside the
cartridge, carry should be returned set. If it's
inside, device ID (from 0 to 3) should be returned
in [Acc], and carry reset. All registers can be
destroyed.

5) Real I/0 operations take place when a DEVICE entry

173



MSX BASIC interpreter's slot management mechanism

is entered with one of the following values in [Ace].

0 Open

2 Close

4 Random I/0

6 Seguential output

8 Sequential input
10 LOC function
12 LOF function
14 EOF function
16 FPOS function
18 Back up a character

Device ID is passed in the system variable 'DEVICE'.

(Further descriptions about I/0 operations will be
prepared later.)

- TEXT holds the beginning address of BASIC text (tokeni: )
contained in the cartridge. 0 when no such text is insiae.
BASIC regards this as the beginning address of BASIC text,
sets pointer there, and begins execution of the program.
Following are the notes to be remembered.

1) When there are more than one such slots, only the
leftmost one (in the figure above) 1is enabled and
executed.

2) The cartridge must be placed at 8000H..O0BFFFH, thus
the maximum length of BASIC text cannot exceed 16K
bytes.

3) Even if there is a RAM block equipped at 8000H..OBFFFH,
it can never be used,

4) The address pointed to by the TEXT entry must contain
a zero.

5) The line numbers (for statements which reference 1line
numbers, such as GOTO, GOSUB, etc) had better' e
translated to pointers in advance because they are
never converted to pointers when executed. They CAN
be line numbers however, but the execution would become
slower then,

Note: INIT, STATEMENT, DEVICE and TEXT are placed low order
byte first.

174



MSX BASIC interpreter's slot management mechanism

4. How slot informations are kept in the system area

EXPTBL - Indicates which slot is expanded.

EXPTBL: DS 1 ;for slot #0
DS 1 ;for slot #1
DS 1l sfor slot #2
DS 1 1for slot #3

Each entry in the EXPTBL holds 80H if expanded, 0 if
not expanded.

SLTTBL - Indicates what value is currently output to expansion
slot register. valid only when corresponding EXPTBL

holds 80H.

SLTTBL: DS 1l ;for slot #0
DS 1 ;for slot #1
DS 1l ;for slot #2
DS 1l ;for slot #3

SLTATR - Holds attributes for each page.
SLTATR: DS 64

Each byte in the SLTATR table corresponds to each page.
Bits are assigned as follows.

PEELS

|1l [|+-Unused

} || +=-=-Unused

| { +===Unused

| 4====Unused

4=—===Unused

Statement expander inside
pm—————— Device expander inside
fm——————— BASIC text inside

SLTWRK - Holds working storage for each page.
SLTWRK: DS 128 ‘
Each word in the SLTWRK table can be exclusively used

by each page. The usage of this work area is completely
up to the page.

175



MSX BASIC interpreter's slot management mechanism

5. Usage of hooks

Hooks are one of those means by which MSX-BASIC can be expanded.

Some procedures (such as ‘'console input', 'console output')
has a 280's 'CALL' instruction which is directed to common
RAM area. Those areas consist of 5 byte storage per hook,

and initialized with 5 280's 'RET' instructions at cold start.

Expansions can be done by re-directing this entry to somewhere
else.
Example:
. \
CALL HOOKxx > in ROM
. /
. /
HOOKxx: RET HOOKxx: RST 6
RET \ \ DB <{slot-address>
RET > in RAM ==> DW <memory-address:
RET / RET
RET /
RST 6 performs an inter-slot call to a different slot.

See BIOENT.MAC for further details of inter-slot call

facility.

the hook to the desired routine, the routine
slot) he 1is. Thie

To connect
has to know where (i.e., in what

is very important because there's no telling in what
slot the routine is placed. This is done by a following
procedure.
RSLREG EQU 138H
EXPTBL EQU OFCClH
B800O EQU 1 ;Set this true 1if the
iprogram resides R
- ;8000..0BFFFH E
CALL RSLREG sRead primary slot #
RRC :Move it to bit 0,1
RRC ;of [Acc]
IF B8000
RRC
RRC
ENDIF
ANI 11B
MOV C,A
MVI B,0
LXI H, EXPTBL ;See if this slot is
DAD B ;expanded or not
ORA M ;Set MSB if so
MoV C,A
INX H ;Point to SLTTBL entry
INX H



MSX BASIC interpreter's slot management mechanism

INX H
INX H
MoV AM ;Get what 1is currently
soutput to expansion
;slot register
IF B800O0
RRC ;Move it to bit 2,3
RRC 10f [Acc]
ENDIF
ANI 1100B
ORA C ;Finaly form slot address
RET

< CAUTION >
A machine language program in cartridges must be able to run

in any slots (including secondary slots) There's no telling
in what slot the cartridge is to run.

177



MSX BASIC interpreter's slot management mechanism

6. Usage of USR function

There are 10 USR functions, USR0O through USR9. USRO can be
abbreviated as USR. Defining address to which a USR function
jumps is done as follows.

DEFUSRO=&HEO00 (This can be DEFUSR=&HE000)
DEFUSR3=&HE023

USR functions can be invoked as follows.

A=USR0(12) (This can also be A=USR(12))
PRINT USR("ABCD")+" This is a test"

Argument to a USR function is passed to machine language
programs by the following manner.

Integer oo

OF663H has 2. Real value is in OF7F8H and OF7F9H,
lower byte first.

String

0F663H has 3. OF7F8H and OF7F9H have the address of
the string descriptor. A string descriptor consists
of 3 bytes, first byte has the length of string, second
and third the address of the string.

Single precision

OF663H has 4. Real value is in OF7F6H through OF7F9H.
Double precision

OF663H has 8. Real value is in OF7F6H through OF7FDH.

Value from a USR function can be returned to BASIC by the
following manner. P

Integer

0F663H should be set to 2. Real value should be in
OF7F8H and OF7F9H, lower byte first.

String

0F663H should be set to 3. OF7F8H and OF7F9H should
have the address of the string descriptor. A string
descriptor consists of 3 bytes, first byte should be
set to the 1length of string, second and third the

address of the string.

Single precision

178



-

N

MSX BASIC interpreter's slot manhagement mechanism

0F663H should be set to 4. Real
OF7F6H through O0F7F9H.
Double precision

0F663H should be set to 8.
OF7F6H through OF7FDH.

179

value should be in

Real value should be in

(



MSX BASIC interpreter's slot management mechanism

7. Appendix
How to allocate work area for cartridges

If the program is stand-alone (i.e., does not need to run with
other programs in other <cartridges), all RAM area below the
fixed work area for BIOS (i.e., below OF380H) is free. However,
if it needs to run with BASIC interpreter and other programs
in other cartridges, RAM usage is restricted.

There are three ways to allocate RAM to be used exclusively
by each cartridge.

1) Put a RAM on the cartridge. (the easiest and the best)
2) If the work area is less than 3 bytes, use the SLTWRK.

3) If the work area 1is greater than 2 bytes, make the SLTW
point to the system variable BOTTOM (OFC48H), then upda.e
it by the amount of memory required. BOTTOM is set up by
the initialization code to point to the bottom of equipped

3

ie

Ex. if the program is at 4000H..7FFFH.

SIZE EQU ?2? ;Size of memory reguired
RSLREG EQU 138H

EXPTBL EQU OFCClH

BOTTOM EQU 0FC48H

[

CALL RSLREG sRead primary slot #

RRC ;Move it to bit 0,1
RRC ;of [Acc]

ANI 00000011B

MOV C,a

MVI B,0

LXI
DAD
ADD
ADD
ADD
ADD
MOV
MOV
ADD
SBB
ANI
INX
INX
INX
INX
ANA

;See if this slot is
;expanded or not

t
>
g
H
[0s]
t

’

B 3y v e 0 I

' A
M
.;Form mask pattern

0001100B
;Point to SLTTBL entry

Tonmmmo»IPOn

;Get what is currently
;output to expansion
;slot register

ORA C

180



MSX BASIC interpreter's slot management mechanism

ORI 00000001B

Now, we have the sequence number for this
cartridge as follows.

00PPSSBB
RRARN

|1} {++=- higher 2 bits of memory address
| | 4++=---- secondary slot # (0..3)

Ne we we We WE Wp Ne N “o o

ttmm——— primary slot # (0..3)
ADD A ;Double since word table
MOV C,A
MVI B,0
LXI H, SLTWRK ;Point to entry in
DAD B ;s SLTWRFE. table
LBCD BOTTOM :Get current RAM bottom
MOV M,C ;Register this
INX H ’
MOV M,B
LXI H,SIZE
DAD B
MOV A,H ;Beyond OEFFFH?
CPI QFCE
JRNC NOROOM ;Yes, cannot allocate this much
SHLD BOTTOM
RET
1
; BOTTOM became greater than OEFFFH, there |is
; no RAM left to be allocated.
’
NOROOM: ;Print messages or

;something like that

181






	MSXASCIIdocpart1
	MSXASCIIdocpart2
	MSXASCIIdocpart3

