

% % % % J ok ok % % de %k ok o e %k g ok ek ok ok ok ke
* *
* BEHIND THE SCREENS *
% *
* of the MSX *
* *
* *

Fhhkhhkhdkhhkhdhdkhhhdhkhk

Published by KUMA COMPUTERS LTD.

Copyright (C) 1984 Mike Shaw

ALL RIGHTS RESERVED

No part of this Book may be reproduced by any means
without prior permission of the publisher.

The only exceptions are the entry of programs

contained herein onto a computer for the sole use of the
owner of this book.

ISBN 07457 0008 X

First Published 1984

Published by

KUMA COMPUTERS LTD
Unit 12, Horseshoe Park
Horseshoe Road, Pangbourne
Berkshire RG8 7JW
Tel: 07357 4335

Written using WDPRO V2.37 software

PREFACE

One of the most important features of practically
every computer program is the screen display. The MSX,
like so many other home computers today, has more than
one screen mode of operation, so enabling programmers to
choose the type of display most suited to their
purposes.

This Book is all about that part of the MSX that
produces the picture on the screen - the Video Display
Processor, or ‘VDP’ for short. It discusses how the VDP
works, how it is used by MSX Computers, and how the
programmer can use its versatility in MSX Basic oOr
machine code programs.

It has been written to satisfy both the newcomer to
home computing and the more experienced programmer
alike, giving the newcomer a deeper insight into what ‘s
going on ’‘behind the screens’, and giving the more
experienced programmer the information needed to save on
midnight oil.

My appreciation and thanks go to Kuma Computers and
to Sony for the loan of equipment, to Texas Instruments
- manufacturers of the VDP used in MSX Computers - for
allowing use of reference material in the preparation of
this book (without it, we’d all probably be floundering
in the dark!), and to the Microsoft Corporation, for
information and data on the MSX’ System.

Mike Shaw

November 1984

MSX is a Registered Trademark
of the Microsoft Corporation.

CONTENTS

SECTION 1 THE VDP EXPLAINED

1.1 PUTTING YOU IN THE PICTURE
.1.1 The Computer Within Your Computer
.1.2 Four Modes of Operation
.1.3 A Splash of Colour
.1.4 Sprites - The Animated Characters
.1.5 Screen Management
2 INSIDE THE VDP
.2.1 The Ins and Outs
Writing to VRAM
Reading from VRAM
Write to VDP Register
Read VDP Status Register
1.2.2 The VDP Registers
VDP Register
VDP Register
VDP Register
VDP Register
VDP Register
VDP Register
VDP Register
VDP Register
VDP Register 8 (Status)
3 FORMING THE DISPLAY
1 Building Up The Picture
2 The ’‘Backdrop’
3 The Pattern or Multicolour Plane
4 The Sprite Planes

~NoubkewNnH+HO

SECTION 2 CHARACTER BUILDING

HOW A CHARACTER IS FORMED
1.1 The VRAM Space Required
1.2 Bytes Make Patterns
1.3 The MSX Character Set

CREATING A CHARACTER
2.1 Designing The Pattern
2.2 Loading The Character
2.3 Printing The Character

CHARACTERS AND SCREEN MODES
.1 All Change
.2 Bcreen 0
.3 Screen 1
. 4
e

(8
NN

e =« o

%)
=

[\]
NN DN

.

Screen 2

Screen 3
COLOURING CHARACTERS
1 Each Mode Is Different...
2 Screen 0 Colours
3 Screen 1 Colours
4
5

no

NN
. ° = o e

Screen 2 Colours
Screen 3 Colours

—

OO WD -

34

34
34
35
36
36
36
X
38
38
38
39
39
39
41
41
41
41
41
42
42

SECTION 3 SPRITES

W

Wwe WWWW-e

1 HOW A SPRITE IS FORMED
1.1 Screens and Sizes
1.2 The 8-Byte Sprite
1.3 The 32-Byte Sprite
1.4 Mixing Sprite Sizes
CREATING A SPRITE
2.1 Designing 8-Byte Sprites
2.2 Designing 32-Byte Sprites
MOVING SPRITES
1 How the VDP does it
2 Initial Settings
3 Making the Move
Putsprite
VPOKEing a Sprite
Four to a line
Collision Courses
Sprite Status for Machine Code Programmers
ROM Interrupt Routines

w w
We = Nes = = =
L]

w W we

* o @

w W w
.

w W W

. o o

wwWw
.

A U

SECTION 4 SCREEN MODE 0

-3

L O R]

1 SCREEN MODE SPECIFICATION
.1l Screen Parameters
.2 MSX Initialisation of Mode 0
HOW MODE 0 OPERATES
MODE USAGE
3.1 Limitations
3.2 Free VRAM Area
3.3 ‘6witching NAME Tables
3.4 Switching PATTERN GENERATOR Tables

>
WM e o
—

SECTION 5 SCREEN MODE 1
5 SCREEN MODE SPECIFICATION
.1 Screen Parameters
.2 MSX Initialisation of Mode 1
HOW MODE 1 OPERATES
MODE USAGE
Free VRAM Area
Switching NAME and PATTERN Tables
Colour for Mode 1
Screen Width

(SR 6
ogOrons « NN
e 8 0 o LN e o -

- -
W=

Wi ww

43

43
43
44
44
46
47
47
49
49
49
52
53
33
55
56
57
58
58

61

61
61
62

64
64
64
64
66

67

67
67
68
69
71
71
71
72

SECTION 6 SCREEN MODE 2

6.1 SCREEN MODE SPECIFICATION

6.1.1 One Mode, Two Displays

6.1.2 VDP Screen Parameters

6.1.3 How the VDP Operates in Mode 2
6.2 MODE 2 AS USED BY MSX BASIC

.2.1 Initialising the VRAM Base Addresses
.2.2 Loading the Tables

.2.3 How MSX BASIC uses Mode 2

.2.4 Text on MSX Screen 2

6.3 MODE 2 AS A TEXT SCREEN

1l How to Initialise the VDP

2 Getting VRAM ready

.3 Using the ‘Text” Mode 2

4 Other Initialisations for Mode 2

One Character Set: Three Colour Sets
Two Character Sets: Three Colour Sets
One or Two Colour Sets

Mix “n Match

(o a e W o) Wo W]

SECTION 7 SCREEN MODE 3

1 SCREEN MODE SPECIFICATION

.1.1 Screen Parameters

.1.2 How the VDP Operates in Mode 3
. MODE 3 AS USED BY MSX BASIC
7.2.1 Initialising the VRAM Base Addresses
7.2.2 Loading the Tables

7.2.3 How MSX BASIC uses Mode 3

v MODE USAGE

7.3.1 Text on Screen

7.3.2 Free VRAM Areas

7.3.3 $Sprite Patterns

APPENDICES

Appendix A Binary-Hex-Decimal Conversions
Appendix B Demonstration Programs
Appendix C VDP Tables

Appendix D Characters from the Keyboard
Appendix E Useful ROM Routines

Appendix F Useful Addresses and Hooks

75
15

77
T4
81
81
81
82
86
89
89
90
92
93
23
93
94
94

25

35
95
96
99
99
100
102
102
102
103
103

LIST OF ILLUSTRATIONS

Fig. 1. Input/Output to VDP

Fig. 2. The VDP Registers

Fig. 3. Mapping NAME Table to Screen (Mode 1)
Fig. 4. Derivation of PATTERN GENERATOR address
Fig. 5. Derivation of SPRITE ATTRIBUTE address
Fig. 6. Build up of the screen

Fig. 7. How characters are defined

Fig. 8. Defining a 32-Byte Sprite pattern

Fig. 9. The Attributes for a Sprite Plane

Fig. 10. Creating Mode 0 Screen display

Fig. 11. Creating Mode 1 Screen Display

Fig. 12. How the VDP creates Mode 2 Screen Display
Fig. 13. How characters are coloured, VDP Mode 2
Fig. 14. Creating the Multicolour Screen Character

Fig, 15. Mapping to the Screen, Mode 3

12

19

25

33

35

45

%

63

70

80

96

97

|

SECTION 1

THE VDP EXPLAINED

In learning how to use any system to

its best advantage, it often helps to
understand first how the system
actually works. This first Section,

therefore, is devoted to a discussion
on how the Video Display Processor
operates in general, and within the MSX
in particular.

1.1 PUTTING YOU IN THE PICTURE

1.1.1 The Computer Within Your Computer

Let us start by having a general 1look at the Video
Display Processor, or VDP as we shall call it from now
on. In many respects, this is 1like another small
computer nestling inside your MSX. It is there to
control the way anything and everything appears on the
screen of your TV or Monitor. Like any computer, it
needs an input of instructions to tell it what to do,
and data for the instructions to act on. Given these,
it provides an output in a suitable form for the screen

display.

When using BASIC, the VDP gets its instructions from
the routines that are resident in the ROM of your MSX.
Machine code programmers can access the VDP via two
Ports, or by calling ROM routines (the easiest and best
way). The data for the VDP to act on is held in its own
area of RAM - usually 16k bytes. This RAM is quite
separate from the main memory RAM, and to differentiate
it, we shall call it ‘VRAM® - short for Video RAM.

When a Screen Mode is selected using BASIC, routines
in ROM are called up to automatically fill certain areas
of VRAM with specific data. In Screen Modes 0 and 1,
for example, the complete character set is entered into
a part of VRAM, MSX BASIC also allows you to enter data
%nto the VRAM, either indirectly, using the variable

SPRITES°, or directly using VPOKE,

SECTION 1 : THE VDP EXPLAINED

For those who wish to write their programs in machine
code, the ROM routines in the MSX can, of course, be
used to enter data into VRAM (which is easier than

writing your own routines!), and to let you give the VDP
its instructions.

1.1.2 Four Modes Of Operation

The VDP provides the MSX with powerful visual display
capabilities. For a start, it can be set to any one of

four completely different modes of operation. These
are:

(a) Text Mode, 40 x 24 (Screen 0)
(b) Text Mode, 32 x 24 (Screen 1)
(c) Hi-Resolution Mode (Screen 2)
(d) Multi-éolour Mode (Screen 3)

Each mode has specific characteristics in the way
information is presented to the screen. For example in
the 40 x 24 Text Mode, only two colours can be used on
the screen at a time, whereas in the other Modes, all
the colours can be displayed.

As another example, in the 32 x 24 Text Mode, one
VRAM “Colour Address”® controls the foreground and
background colours for a sequence of eight characters,
while in the Hi-Resolution Mode, one Colour Address
controls just one of the eight horizontal “lines” that
go to make up a complete character position.

Details of these characteristics will be given more
fully 1in the respective Mode Sections of this book:
sufficient to know at this stage that each Screen Mode
operates in a different manner.

1.1.3 A Splash Of Colour

The VDP gives you a palette of 15 colours, and
“transparent . Unlike some computer systems which only
‘map” the colour information to screen addresses (the
Sharp MZ700, for example), MSX BASIC uses the VDP to
either define the colour of a specific character (e.g.

as in Screen 1), or to ‘map’ to a Screen address (e.g.
as in Screen 2),.

8o if in Screen Mode 1 character 65 (the letter °A”)
is coloured, say, red on yellow, then wherever that
character appears it will be red on yellow. In Screen
Mode 2, on the other hand, MSX BASIC arranges the VDP
so that any specific point on the screen can be given a
required foreground or background colour.

o ¥ w

e gy e

SECTION 1 THE VDP EXPLAINED

However, it is possible to achieve different colour
schemes for the one character in Screen Mode 1, Jjust as
it is possible to define character colours in Screen
Mode 2, by changing the data held in VRAM. This is one
of the beauties of the VDP: you don’t have to use it the
way the MSX sets it up if you don’t want to. We shall
be examining ways to re-organise the VDP later on in the
book.

The colours available are:

Transparent (Border colour)
Black

Medium Green
Light Green
Dark Blue
Light Blue
Dark Red
Cyan

Medium Red
Light Red
Dark Yellow
Light Yellow
Dark Green
Magenta

Grey

White

e e
Vb WNHOWVODNOUBWNOHO

1.1.4 Sprites - The Animated Characters

Another of the features of the VDP is its ability to
provide Sprites. A Sprite 1is a kind of animated
character, controlled by the VDP in a different way to
ordinary characters.

The VDP lets you have Sprites in one of four
different forms - though only one form can be present on
the screen at any given time. The Sprite pattern can
occupy the space of one character or a block of four
characters: both of these forms can be ‘magnified” to
occupy the space of a block of four characters or 16
characters respectively.

Sprites can be moved pixel by pixel in any direction
across the screen to give smooth movement, and they can
be made to pass in front of or behind each other, to
give a 3D effect.

The VDP can detect when the patterns of any Sprites
coincide - that is, occupy the same pixel area on the
screen - and this feature is, quite naturally, used to
provide useful commands in MSX BASIC. Detecting a
‘collision’ of Sprites is an essential feature of many
Arcade type games.

SECTION 1 THE VDP EXPLAINED

Up to 32 Sprites can be placed on the screen (though
only four can occupy one horizontal line at a time), and
you can define a maximum of 64 or 256 different Sprite
patterns, depending on the Sprite size you choose.

1.1.5 Screen Management

The VDP constantly ‘refreshes’ the screen display,
examining the instructions it is given and the data it
holds about 50 times a second. This refreshing process
is gquite invisible, and takes place virtually
independently of any ‘communication’ that may be going
on between the VDP and the MSX central processor unit.

Machine code programmers will be interested to know
that the VDP produces an interrupt signal at the end of
every screen refresh operation. The signal is detected
by MSX ROM routines - and 1is accessible via a “hook’,
which allows the programmer to insert his own interrupt-
driven routines.

STATUS
REGISTER

WRITE TO
SYSTEM DEFINING
VDP REGISTERS

_P'OR_TL——J ADDRESSING VRAM ADDRESS
“*“—™ 99 hex . REGISTER POINTER
READ or WRITE
98 hex VRAM

Figure 1 Input/Output to VDP

1.2

SECTION 1 THE VDP EXPLAINED

INSIDE THE VDP

1.2.1 The Ins And Outs

A greatly simplified block diagram of the interfacing
between the MSX and the VDP is shown in Fig. 1. As you
can see, the MSX ’communicates’ with the VDP through
Ports 99 hex and 98 hex. Note that these are not RAM
addresses: Ports are 1like doorways to and from
Input/Output devices. MSX BASIC lets you access Ports
directly with the “OUT” and “INP® statements, but this
will rarely be necessary in a BASIC program.

Through Ports 99H and 98H, the MSX can instruct the
VDP to perform one of four operations. These are:

(a) Write bytes of data to VRAM
(b) Read bytes of data from VRAM

(c) Write data to one of the eight VDP System
Defining Registers

(d) Read data from the VDP status Register.

For the first two of these operations, two bytes of
data are routed separately through Port 99H to the
Addressing Register. These bytes, along with

information carried on three control lines (not shown in
the Figure), set up the VDP address for the required
operation. The Reading or Writing of data from or to
VRAM is then achieved through Port 98H.

Before we examine these operations in closer detail,
let us first look at the nature of the VRAM addresses.
The maximum VRAM area that the VDP can deal with is 16k
or, put another way, the maximum possible address in
VRAM is 3FFF hex. In binary, this is 00111111 11111111:
thus, as you can see, the top two bits of the High byte
- bits 14 and 15 - will always be zeroes as far as the
address is concerned, and only bits 0 to 13 have any
addressing significance.

Bits 14 and 15 of the address data (i.e. bits 6 and 7
of the ‘High®’ byte) are used by the VDP, along with
information on the control lines, to determine tpe
nature of the operation to be performed. Armed with this
information, we can now take a look at the four
operations in closer detail.

SECTION 1 THE VDP EXPLAINED

Writing to VRAM

When ‘writing data to VRAM, first the required VRAM
agdress 1s input through Port 99 hex, one byte at a time
(in the order Low byte then High byte), and then the
data to be wgitten to that address is input to Port 98
hex. For a ‘'Write® operation, the High byte of the
address data must have its bit 6 set to a “1°.

The address in VRAM having been set up for a write
operation by the first two bytes, the data itself is
then written to that address via Port 98 hex. There
needs to be a very short delay between the input of the
adqress and the input of the data - in MSX routines,
Eh;s delay 1is achieved by performing an “EX (SP),HL’

wice.

You are about to ask a question... Does this mean
that for every byte of data transferred into VRAM it is
necessary to enter first a two-byte address?’.

Glad you asked. The answer is no. The VDP is a bit
cleverer than that: once the data byte has been
transferred to VRAM, the address pointed to by the
Addressing Register is automatically incremented to the
next address. Thus, if say 100 bytes of data are to be
transferred into sequential VRAM addresses, it 1is
necessary to set up only the first (lowest) address, and
then pump in the 100 data bytes through Port 98 hex.

It ‘s worth mentioning the timing at this point. When
the address is initially set up, the first data byte is
transferred to that address from Port 98 hex in 2 to 3
microseconds: for subsequent sequential addresses, the
VDP can take up to 8 microseconds to make the transfer.
This is because the VDP must wait for a ‘window” in its

screen refreshing operations.

There are two occasions when the wait for an access
window is effectively zero: when the screen has been
‘disabled” (the entire screen will then only be showing
the border color), and when the VDP is in its ‘vertical
refresh’ mode. The ‘vertical refresh’ occurs after the
active display has been refreshed, and lasts for some
4300 microseconds. It is possible to use the VDP
interrupt signal - which occurs at the end of the active
screen refresh - to indicate when data can be
transferred to (or from) VRAM in the minimum time.

Programmers using BASIC can write data to the VRAM
area by using the VPOKE command. Note that MSX BASIC
between VPOKE, which is for Video Ram

differentiates

addresses, and POKE, which is for RAM addresses.
Unfortunately, using the VPOKE command means data has

to be transferred one byte at a time. Where a

of data has to be transferred to

considerable amount
defining a new character set), the

VRAM (such as when
6

SECTION i THE VDP EXPLAINED

transfer can be speeded up by incqrporating a machine
code routine to be placed 1in ‘safe memory by the BASIC
program. But this would consume quite a lot of RAM
memory space, for the machine coding data gnd the data
itself would be in memory twice - once in the BA$IC
program and again in the area allocated to the machine
code - as well as, ultimately, in VRAM. If timing is
not too important (most people are prepared to wait
while “‘initialising’ takes place), the best way to
transfer a lot of data is probably with a FOR-NEXT loop
and READ statements.

For machine code programmers, here are some useful
monitor routine addressés for Writing data to VRAM:

04DH Write one data byte to VRAM

IN: Data in Register A
VRAM address in HL
OUT: AF modified

056H Fill VRAM area with one data byte

IN: Data in Register A
VRAM address in HL
Length to be filled in BC
OUT: AF, BC modified

05CH Move block of data from RAM to VRAM

IN: RAM source start address in HL
VRAM destination start address in DE
Length of block in BC
OUT: All Registers modified

The Registers referred to in these routines are, of
course, the Z80 Registers. Note that the MSX routine
addresses given above are simply jumps to the actual
routine performing the operation: it is best to use
these jump addresses wherever possible, rather than the
actual routine addresses, to ensure compatability with
other MSX machines.

Reading From VRAM

_ ?he operation of reading data from VRAM is very
similar to the Write to VRAM operation. The required
address in VRAM to be read is first input as two bytes
(one at a time, in the order Low byte, High byte) to
Port 99 hex: in this instance, however, bits 14 and 15
of the address must both be zeroes.

SECTION 1 THE VDP EXPLAINED

This sets up the VDP for a read operation, and points
it to the appropriate address. The data at that address
can then be read at Port 98 hex.

As with the Write operation, after the data byte has
been read at Port 98 hex, the VRAM address pointed to by
the Addressing Register is automatically incremented, so
that a further ‘read” from the next address can take
place. In this way, a whole block of data can be read
from sequential VRAM addresses, once the initial
starting address has been given. The timings for a Read
from VRAM are the same as for a Write.

Programmers using BASIC can access the contents of a
VRAM address by the VPEEK statement. For machine code
programmers, here are a couple of useful ROM routine
addresses:

04AH Read one byte from VRAM

IN: VRAM address in HL
OUT: Data in A

059H Move block of data from VRAM to RAM

.IN: VRAM source start address in HL
RAM destination start address in DE
Length of block in BC

OUT: All Registers modified

Write to VDP Register

The VDP has eight Registers which define the way the
system is to ‘operate’. These Registers and their
functions are explained in Section 1.2.2: here we are
going to discuss how data in the Registers can be
changed.

It should perhaps be mentioned at this point that one
can only write to the VDP Registers - their contents
cannot be read. MSX keeps a record of what’s in the VDP
Registers by storing the information written to them, in
addresses F3DF hex (Register 0) to F3E6 hex (Register
7). However, it will only do this when its own ROM
routine is used to change the Register data.

Two data bytes are required to write to a VDP
Register, The first byte carries the actual data to be
written, and is input through Port 99 hex. The second
byte also goes to Port 99 hex, to tell the VDP which
Register the data is to be written into. The most
significant bit (bit 7) of this second byte must always
be a ‘1°, while bits 3, 4, 5 and 6 must be zeroes. Bits
0, 1 and 2 carry the Register number in the usual binary
manner.,

SECTION 1 THE VDP EXPLAINED

Note that the data byte 1is written to Port 98 hex
before the addressing byte - unlike the VRAM Read and
Write operations, which need the data byte to be written
after the address has been set up.

If it 1is required to re-write data to a VDP Register
after a data byte has been loaded through Port 98 hex,
it is necessary to Read the Status Register first, to
re-initialise the VDP’s logic circuits. Otherwise, the
VDP will be duped into thinking that the next data byte
to appear is an address. This situation could occur in
interrupt-driven situations, for example, and for this
reason the MSX monitor routine performing a Write to a
VDP Register disables the interrupts while the writing
process 1s carried out.

It is, therefore, adviseable to always use the
monitor routine (when programming in machine code) when
it is desired to change the data in a VDP Register:

047H Write to VDP Register

IN: Register number in C
Data in B
OUT: Registers AF, BC modified

This monitor routine also updates the data stored at the
appropriate address F3DF to F3E6 hex - another good

reason for using it.

BASIC programmers can also change the data held in a
VDP Register, by using the ‘VDP(x)’ variable. For a
five-minute breather, try the following program...

10 SCREEN 0

20 PRINT "OLD COLOUR
30 VDP(7)=&HB6

40 PRINT "NEW COLOUR

" +.HEXS (PEEK(&HF3E6))

" :HEXS (PEEK(&HF3E6))

As you will see later, in Screen Mode 0, VDP Register
7 holds the colour information for the background and
foreground colours. When run, the MSX will initialise
the screen into Mode 0 - wusually with a white on blue
display. This is recorded in VDP Register 7 as ‘F4°
hex, °‘F’ being 15 in decimal - which is the number for
‘white’, and 4 being the number for ‘blue’.

Then, in line 30, we use the VDP(x) variable‘to‘write
new data to Register 7. The data written, B6 = hex,
represents the colours Light Yellow (‘B hex or 11
decimal) and Dark Red (6). In line 40, we re-read the
storage address for VDP Register 7 to find the data has

been updated.

SECTION 1 THE VDP EXPLAINED

The screen, of course, changes colour at line 30.
Try putting a ‘FOR I=1 to 1000:NEXT delay at line 25,
and you'll see the moment of change. You can also try
changing the data input to VDP(7) in 1line 30 - for
dif ferent screen colourings. Very exciting! (Well, it
makes a break, doesn’t it?).

It may seem a trivial point to make, but you cannot
change the contents of a VDP Register by POKEing the
desired value into the corresponding storage address
(F3DF - F3E6 hex).

Read VDP Status Register

The VDP provides a Register to report on the status
of certain events during its operation. It is a Read-
only Register - you cannot change its contents.

Details of the information provided by this Register
are given in Section 1.2.2. To read the Status Register
requires nothing more than ‘collecting” the data at Port
99 hex.

There is a monitor routine, at 0l13E hex, to read the
Status Register. This routine simply does an IN A, (99H)
followed by a RETurn. It should be noted, however, that
reading the Status Register has the effect of clearing
the interrupt flag, which means the MSX’s own interrupt
handling system could miss it.

Consequently, if the machine code programmer wishes
to detect when an interrupt has occured, or wishes to
check the contents of the Status Register, he is best
advised to use one of the "hooks’ made available by the
MSX routines (see Section 3.3.6).

For programmers using BASIC, the contents of the
Status Register can be read using the variable “VDP(8)°
in a “PRINT VDP(8) or a ‘V=VDP(8) type of statement.

However, it would seem that MSX BASIC finds the
answer by looking at the data held in address F3E7 hex
(the Status Register store) rather than performing a
separate VDP read operation. Since this store is only
updated when an interrupt occurs, bit 7 - which marks
the occurence of an interrupt - will always be set, and
it cannot therefore be used to detect the occurence of
an interrupt.

- =

SECTION 1 THE VDP EXPLAINED

1.2.2 The VDP Registers

There are nine accessible Registers within the VDP,
each holding one byte (8 bits) of information. Eight of
the Registers define how the system is to operate
- which Screen Mode is to be used, what the Sprite size
is to be, which parts of VRAM are to be devoted to what

functions, and so on.

These are Write only Registers - that is to say, it
is not possible to read what each Register contains.
Such information is, at times, very useful to know.
Consequently the MSX sets up a storage area in RAM (from
F3DF hex for Register 0, to F3E6 hex for Register 7)
where it holds the information contained in the Write
only Registers. It does this by loading the appropriate
memory store with the data at the same time as it loads
the VDP Register.

It is adviseable when writing to a VDP Register,
therefore, to use an MSX ROM routine.

The ninth VDP Register can only be read, not written
to, and it contains certain information on the status of
events that take place within the VDP. Section 1.2.1
discusses how this Register can be read both from BASIC
or using a ROM routine. Its contents are also held in
RAM, at address F3E7 hex.

It should be pointed out, however, that the Register
information stores are only updated when a VDP intarrupt
occurs - which is about 50 times a second, at the end of
each active-screen refresh.

The nature of the data held in all nine of the VDP
stores is shown in Figure 2. The first two Registers
- Register 0 and Register 1 - contain information that
controls the system’s mode of operation and its
features. Registers 2 to 6 contain values which tell
the VDP’s inner circuitry where to start looking in VRAM
for specific screen display data.

Register 7 is used to define the border colour and,
foi Screen Mode 0, the screen foreground and background
colour.

Before discussing the specific function of each
Begister in turn, let us first take a broad look at what
information the VDP needs in order to place a character,
in colour, on the screen, and what information it needs
to place a Sprite, in colour, on the screen.

» Sl

SECTION 1

Bit

REGISTER O

REGISTER 1

REGISTER 2

REGISTER 3

REGISTER 4

REGISTER 5

REGISTER 6

REGISTER 7

STATUS
REGISTER
(Read-Only)

THE VDP EXPLAINED
MSB LSB
1 6 5 L 3 2 1 0
13 T i
f @ s
QO
NOT USED O &o
N2 o
| 1 L L Il c}/ % 4
T
DISPLAY| INT NOT | SPRITE | SPRITE
4k/16k | 3| ANK |ENABLE [MODE SELECTION| yggp | SIZE | MAG
Top four bits of the
NOT USED 'NAME’ TABLE BASE ADDRESS
1 1 1 b I 1 1
Top eight bits of the
COLOUR TABLE BASE ADDRESS
1 1 1 1 | 1 1
I I I I
Top three bits of
NOT USED PATTERN GENERATOR
BASE ADDRESS
1 1 | 1
NOT Top seven bits of the
USED SPRITE ATTRIBUTABLE TABLE BASE ADDRESS
'l T 1 T
Top three bits of the
NOT USED SPRITE PATTERN
BASE ADDRESS
1 | |]
1 1 T
FOREGROUND COLOUR FOR BACKTGHOUND S FOR
TEXT MODE @ EXT MODE @ AN
. : . BORDER COLOUR
bl 1 1 L
INT | spmire | . C FIFTH SPRITE NUMBER
FLAG FLAG
FLAG 1 1 1 ‘

Figure 2. The VDP Registers

- 32

SECTION 1 THE VDP EXPLAINED

In order to place a character on the screen, the VDP
needs to know

(a) The ‘NAME’ or ‘number” of the character and its
position on the screen

(b) The shape or pattern of the character
(c) The colour that is to be associated with the
character.
Each Screen Mode operates in a different manner, but
they all need this information in one form or another.
To find where on the screen it is to place a

character, and which character is required at that
place, it looks at a part of VRAM designated the “NAME

TABLE If the screen happens to be in the 32 X 24
“text” mode (Screen 1), then there will be 768 separate
character positions (32x24), and the NAME Table will be

768 bytes long.

A value in any one of these bytes is recognised by
the VDP to be a character number, or NAME. Thus, if the
first byte of the NAME Table contained 41 hex - 65
decimal - then the VDP would say to itself "In the first
Screen position for this Mode - the top left hand corner
- I must place the character numbered 41 hex".

The VDP then looks at the PATTERN GENERATOR Table, to
see what character 41 hex 1looks like - that’s item (b)
above. In the Text Mode we are discussing (Screen 1),
the VDP requires 8 bytes of information to place a
character on the screen (more about this in a later
Section). So for a 256 character set, the VDP needs a
PATTERN GENERATOR Table that’s 2048 bytes long (256x8).
It looks at this table to find the eight bytes
associated with character number 41 hex. (If the ASCII
character set has been loaded, then the eight bytes
will, of course, form the letter "A7).

Then the VDP looks to the COLOUR Table, to see what
colours it should make the background and the foreground
for the selected character. If this information tells it
that the background is to be Dark Red and the foreground
is to be Yellow, then it proceeds to place the
character, in Yellow on a Dark Red background, in the
top left screen position.

This is a very simplistic view of the way the VDP
places characters on the screen for Modes 0,1 and 23
further details are given in the relevant Sections of
this book.

- ALY -

SECTION 1 THE VDP EXPLAINED

The process for placing a Sprite on the screen is
rather different, although the VDP still needs to know
where to find the necessary data.

The information required to produce a Sprite on the
screen is:

(a) The Sprite’s attributes - screen location,
colour, ‘plane’ number

(b) The Sprite’s pattern or shape

(c) The Sprite’s size and magnification

Again, we will be discussing all of these features in
detail later on. The point to be made at this stage is
that Table addresses have to be set up in the VDP
Registers so that it knows exactly where to look.

The beauty of the VDP is that the user can set up
these addresses as required - although, as mentioned
before, when operating from MSX BASIC the addresses are
set to specific values, and should be changed with
caution if it is intended to continue programming in
BASIC.

We are now in a position to examine in more detail
the function and contents of each of the VDP Registers.

NOTE: Should you be unsure how ‘bit’
pogitions”® (binary values) convert to
hexadecimal and decimal numbers - and
vice versa - please refer to Appendix A

VDP Register 0

This Register currently makes use of only the least
significant two bits - bits 0 and 1. The other bits
must always be zeroes (they are reserved for future
developments on the VDP),.

Bit 0

This is the external VDP enable/disable bit. It is
only used when two VDP’s are connected in ‘cascade’, to
allow the display from the external VDP to be made
visible on the screen. Since there is no ‘external ® VDP
used in the MSX, this bit should always be set to 0’
= the ‘disable external VDP condition. Setting it to a

1° makes the screen go haywire (to put it mildly!).

w 34 »

SECTION 1 THE VDP EXPLAINED

Try this, to see the effect:

(a) In Screen 0 or Screen 1, type in VDP(0) = 1,
followed by ‘CR”

(b) When you’ve had enough of the prancing screen,
very carefully type in VDP(0)=0 (you won’'t see
what you're typing on the screen)

(c) Make a note to be very careful about what you
put into Register 0!

Bit 1

This bit is used along with bits 3 and 4 of VDP
Register 1 to determine the Screen Mode: a description
of the values for this bit is given under Bits 3 and 4
of Register 1

VDP Register 1

Seven of the eight bits of Register 1 select the
operating options for the VDP. The remaining bit (Bit
2) is currently not used.

Bit 0

The least significant bit determines whether or not
the Sprite patterns will be ‘magnified’. The conditions
are:

0 Selects unmagnified Sprites
1 Selects magnified Sprites

In the unmagnified condition, Sprites are represented
on the screen by one pixel for each pattern position.
In the magnified condition, each pattern position is
represented by a block of 2x2 pixels.

Since this Bit controls the magnification for all
Sprites, it is not possible to have unmagnified and
magnified Sprites on the screen at the same time.
Interesting effects can be achieved by setting and
resetting this bit at short time intervals while Sprites

are displayed on screen. This can be achieved from
BASIC by wusing the ‘VDP(l)=" construction - but be
careful not to upset the other Bits in Register 1! (A

sample program is given in Appendix B).

w 1Bl

SECTION 1 THE VDP EXPLAINED

The contents of this Bit, along with the contents of
Bit 1 of this Register, are set by the value of ‘s’ in
the BASIC command 'SCREEN m,s,k,cb,po”’. (‘'m” is the
Screen Mode required, ‘k” is the keyclick on/off, “cb”
is the cassette baud rate and ‘po” is the printer
option: refer to your Owner’s Manual for details of the
last three functions as they are not relevant to this

book) .

Bits 0 and 1 are set according to the value of “s” as
follows:

s Bit 1 Bit 0 Sprite Size

0 0 0 8-byte unmagnified
1 0 1 8-byte magnified

2 1 0 32-byte unmagnified
3 1 1 32-byte magnified

Note that wusing the BASIC “SCREEN’ command to set
Sprite size also re-initialises the screen and clears
all the Sprite patterns, so it cannot be used in the
same way as VDP(l)® to change the size of Sprites
whilst on the screen.

Bit 1

The pattern size of all Sprites is governed by this
Bit. Sprite patterns can be created to cover
unmagnified blocks of 8x8 pixels, or 16x16 pixels. The
conditions are:

0 8-byte Sprite patterns
1 32-byte Sprite patterns

Generally speaking, care must be taken when changing
this bit in a program, since the VDP looks to it to see
how many bytes in the SPRITE PATTERN Table are required
to create the pattern. Changing the size from 8-byte to
32-byte patterns will make the VDP pick up the first
four Sprite characters to create the first 32-byte
Sprite character. (See program 9, Appendix B),

The way this Bit is set by the BASIC “SCREEN’ command
is explained in the discussion for Bit 0 above.

Bit 2

This particular Bit is currently not used by the VDP.

w LB w

SECTION 1 THE VDP EXPLAINED

Bits 3 and 4

These two bits, along with Bit 1 of VDP Register 0,
determine the operating Screen Mode for the VDP. They
are set by the BASIC “SCREEN’ command as follows:

Reg 1 Reg 1 Reg 0
Bit 4 Bit 3 Bit 1

Screen 0 1 0 0 40x24 Text Mode
Screen 1 0 0 0 32x24 Text Mode
Screen 2 0 0 1 Hi-Resolution Mode
Screen 3 0 1 0 Multicolour Mode

It will not be necessary, normally, to select the
Screen Mode by setting or resetting these Bits: if
writing in BASIC, it is best to use the “SCREEN~
command, and if writing in machine code, it is best to
call up the appropriate ROM routine. This 1is because
other parameters also need to be set in order to
initialise the selected screen properly - the VDP’s
Tables, for example.

If it is intended to re-organise the Table locations
in VRAM, then of course, one could change the Screen
Mode by setting these Bits accordingly. Programmers
using BASIC should be careful, however, to ensure that
the other Bits of VDP Registers 0 and 1 are not
affected, or are properly set.

Machine code programmers have a number of ways to
change the Screen Mode. To select a Mode and set it up
the same way that BASIC sets it up, they can either

(a) Load (Z80) Register A with the required mode (0,
1, 2 or 3) and CALL 05FH

or

(a) CALL the appropriate ‘initialising’ routine
direct -

06CH for Screen
06FH for Screen
072H for Screen
075H for Screen

W=~ 0o

To simply select a Mode - by appropriately setting
the VDP Registers 0 and 1 - they can CALL

078H to set the VDP for Mode
07BH to set the VDP for Mode
07EH to set the VDP for Mode
08l1H to set the VDP for Mode

wWNo—Co

« ¥ =

SECTION 1 THE VDP EXPLAINED

The advantage of using these routines over writing
direct to the VDP Registers - using ROM routine 047H (as
explained on page 9) - is that they ensure the other
Bits of VDP Registers 0 and 1 are unaffected. They also
record the new settings in the VDP Register 0 and 1
storage addresses, F3DF hex and F3E0 hex.

Bit. 5

This switches on or off the VDP’s own interrupt
signal. The conditions are:

Interrupt disabled
Interrupt enabled

— o

It should be noted that detection of the VDP’s
interrupt signal is an integral feature of the hardware
interrupt routines in the MSX: switching it off will

therefore affect these routines and prevent MSX BASIC
from functioning properly.

Bit 6

This is the active screen enable/disable Bit. The
conditions are:

0 Entire display shows border colour only.
1 Active display area enabled

Even though the screen is “blank’ when disabled,
can still be entered into the VRAM areas although,
obviously, you won’t see it on screen until it has been

enabled again. Note that the ‘blank’ colour is the same
as the border colour.

data

Blit 7

This Bit is set according to the

[anmount of VRAM
available to the VDP -

0 for 4k VRAMs
1 for 8/16k VRAMs

It should always be left in its initialised

. . setting,
invariably 16k on MSX machines.

- 18 -

SECTION 1 THE VDP EXPLAINED

VDP Register 2

The top four bits of this Register aren’t used. The
bottom four bits provide the information needed for the
VDP to identify the start or “Base’ of the NAME Table.

The NAME Table is that area of VRAM where the VDP
finds the NAME (or ‘number’) of a character to be placed
on the screen, the address of the character’s NAME
within the Table identifying the position on the screen.

Figure 3 demonstrates this for Screen Mode 1, the
32x24 Text screen. Each address, starting with the NAME
Table Base address, represents a screen position: thus,
the 32nd byte represents the leftmost position on the
screen, one row down from the top of the active area.

N)

COLUMNO COLUMN1 COLUMN2 COLUMN3 COLUMN 31
J
I ISP eIeradl
NAME
ROW 0 TABLE +1 +2 +3 2 +31
BASE 41 Hex
ADDRESS (="A")

ROW 1 +32 +33 +34 +35 S +63
,f'/‘\J\xW‘L/\;A L\/_
MMN/\I’\/\N’?

ROW 23 +736 +737 +738 +739 2 +767

l
‘(////////////////{ é 44_/_/

Figure 3. Mappingthe NAME Table to the screen.
(Screen Mode 1)

X0 %

SECTION 1 THE VDP EXPLAINED

The VDP regards the value of the byte at each address
in the Table as a character NAME, even if the value is
zero. Since ‘0" is generally used in the Table to denote
a blank space, Character 0 is generally made a blank,
like the ASCII Character 20 hex (32 decimal - “space’).

In Figure 3, the NAME Table Base address plus two
contains the data byte 41 hex’ (decimal 65). This
tells the VDP that the third column (labelled Column 2)
at the top of the screen (Row 0) is to be filled with
the character pattern designated by 41 hex: if ASCII is
loaded into the PATTERN GENERATOR, this would, of
course, be the letter “A”.

Note that Columns and Rows are numbered from ‘07, the

start point being the top 1left hand corner of the
screen.

The relevant four Bits of VDP Register 2 represent
the Most Significant four bits of the 14-bit NAME Table
address (remember that the maximum VRAM is 16k, so the
maximum possible address is 3FFF hex, or 00111111
11111111 binary - hence l4-bits are all that are needed
to completely identify an address in VRAM).

The four bits thus identify the NAME Table Base
address in the following way:

0 0% * % * (00 00000O0O0CO

If all the bits are '“1° - i.e., if VDP Register 2
contained “OF°, then the NAME Table Base address would
be:

C 041 1711400 000000O0O0O = 3C00 hex

This is the maximum value that the NAME Table Base
address can have. The minimum value is 0, and the
‘step” between possible NAME Base addresses is

00000100 0O0O0DO0OO0OOUO O =400 hex

In other words, the NAME Table will always start on a
400 hex (1024 decimal, or ‘lk’) boundary. A Table
showing the NAME Table Base addresses corresponding to
all possible values of VDP Register 2 is given in
Appendix C.

The lower ten bits of the NAME address are formed
from the ‘row” and ‘column’ counters within the VDP:
these are adjusted by the VDP as it searches through the
NAME Table for bytes to be ’‘put on the screen’ during
the active display refresh period.

- 30 »

SECTION 1 THEE VDP EXPLAINED

The NAME Table is 768 bytes long for Screen Modes 1,
2 and 3, and 960 bytes (40x24) long for Screen Mode 0.

The MSX initialises VDP Register NAME Table Base
address for each Screen Mode as follows:

Screen NAME Base Register 2
Mode Address Value

0 0 0

1 1800H 6

2 1800H 6

3 800H 2

Because the Base address for the NAME Table can be
switched by simply resetting the value in VDP Register
2, it is possible to switch from one screen display to
another fairly quickly.

This is demonstrated in Program 3 of Appendix B,
which loads VRAM addresses from 3C00 hex, then switches
the NAME Base address back and forth between its BASIC
setting for Screen Mode 1 (1800 hex) and 3C00 hex.
(Notice that the values given to VDP Register 2 are OF
hex, for a NAME Table Base address of 3C00 hex, and 6
for a Base address of 1800 hex.)

VDP Register 3

All of this Register 1is used to define the Base
address for the COLOUR Table - the area in VRAM where
the VDP finds out what colours a particular character
should be when it is operating in Screen Modes 1 and 2.
No COLOUR Table is used in Screen Modes 0 and 3, and so
for these Modes the content of VDP Register 3 is
irrelevant.

In Mode 1, the eight bits of Register 3 form the most

significant eight bits of the 14-bit COLOUR Table Base
address. It thus defines the address as follows:

0O %% %% %% *%000000

The maximum value that Register 3 can hold is FF hex
= 11111111 binary (255 decimal). Consequently, the
maximum value the COLOUR Table Base address can have is

00111111 11000000 = 3FCO0 hex

. -

SECTION 1 THE VDP EXPLAINED

The minimum value is 0, and the ’“step” between
possible COLOUR Table Base address locations is

00000000 O01O0O0O0OOOO =40 hex

Thus the COLOUR Table Base address can be set on any
40 hex” boundary in VRAM, from 0 to 3FCO hex. The
COLOUR Table Base addresses for all possible values of
VDP Register 3 are given in Appendix C.

In Mode 2, the location of the COLOUR Table is
determined by the top bit only of VDP Register 3: all
the other bits are set to. “1° (but see Section 6.3.4).
The Table can consequently be located only at 0 or 2000
hex in VRAM.

.The MSX initialises the COLOUR Table Base address at
2000 hex (8192 decimal) for Screen Modes 1 and 2.

The way the VDP selects the colours to be associated
with a character pattern is different for every Screen
Mode: for details of the way colours are produced,
therefore, please refer to the appropriate MODE Section
of this book.

VDP Register 4

The least significant three bits of this Register
determine the Base address of the PATTERN GENERATOR: the
top five bits are not wused. The three relevant bits
form the most significant three bits of the 14-bit
PATTERN GENERATOR Base address:

00***000 00000000
The maximum value for these three bits is 7, or °“111°
binary, hence the maximum value for the PATTERN
GENERATOR Base address is:
00111000 0O0O0O0DO0O0O0O0 = 3800 hex

The miminum value is 0, and the ‘step” between
possible Base addresses is:

00001000 0O0O0OO0ODO0OOOOGO=2800 hex
A Table of the PATTERN GENERATOR Base addresses

corresponding to each value of VDP Register 4 1s given
in Appendix C.

- 22 -

SECTION 1 THE VDP EXPLAINED

The PATTERN GENERATOR is where the VDP looks to find
the pattern associated with a specific character NAME.
The complete 14-bit address is derived for Modes 0,1 and
3 as shown in Figure 4.

Except for Mode 2, the top three bytes of the VRAM
address are obtained from Register 4, as just described.
The next eight bytes are derived from the Character’s
NAME - with values from 0 to 255 (0 - FF hex). The last
three bytes, which can have a decimal value of 0 to 7,
determine the row number within the specific pattern
set, and in the Text Modes are incremented from 0 to 7
by the VDP in the process of placing the character on
the screen. For Mode 2 only Bit 2 defines the address,
which can be at 0 or 2000 hex, bits 0 and 1 being set to
“1°. (But see Section 6.3.4)

BITS
13 | 12 nmjp10]9 8 7 6 5 b 3 2 1 0
F\

v AN v — /
FROM VDP FROM THE CHARACTER'S ‘NAME' SPECIFIC PATTERN
REGISTER 4 0-255 ROW lggMBER

(0-7) -

(Incremented by VDP)

Figure 4. Derivation of the PATTERN GENERATOR address.
(except Mode 2)

- 23 =

SECTION 1 THE VDP EXPLAINED

In the two “Text Modes (Screens 0 and 1), each
character requires eight bytes to define 1its pattern,
and so for a set of 256 characters, the PATTERN
GENERATOR Table will be 2048 bytes long (256x8). In the
Hi-Resolution Mode (Screen 2), 758 different characters
can be specified, so the Table will be 6144 bytes long.
In the Multicolour Mode (Screen 3), the PATTERN
GENERATOR Table is used to define colour blocks rather
than just patterns, eight bytes being used for each
“colour character” name. Consequently for a full set of
256 ‘colour characters’, this Mode requires a Table 2048
bytes long. The MSX initialises PATTERN GENERATOR Base
addresses as follows:

Screen PAT GEN. Base Register 4
Mode Address Value

0 800H 1

1 0 0

2 0 0

3 0 0

As with the NAME Table, it is possible to switch from
one PATTERN GENERATOR set to another by resetting the
contents of Register 4. This is demonstrated in Program
4 of Appendix B.

In Program 4, the pattern generating bytes for the
lower case alphabet are loaded into the corresponding
upper case character positions, in a different
permissible area of VRAM. The contents of VDP(4) are
then switched back and forth between the initialised
location for the PATTERN GENERATOR Table and the newly
set up location, causing the display to flash between a
message in Upper Case and Lower Case.

Note that the pattern generating bytes for the
character set used by the MSX can be found in the 2048
bytes starting from address 1BBF hex (7103 decimal) in
ROM. As each character’s pattern takes 8 bytes, it is
easy to deduce the starting byte for any particular
character. Thus, the eight pattern bytes for character
97 (61 hex = ‘a’) start at decimal address 7879
(7103+(97*8)), or 1EC7 hex.

The area used for demonstration Program 4 is that
normally reserved by the MSX for Sprite Patterns. This
demonstrates a further point about the VDP: one can use
‘areas” allocated to other functions, provided that the
same VRAM addresses are NOT being used simultaneously
for both functions. Thus, in the example Program,
provided that Sprite Patterns do not occupy more than
the first 520 bytes of the SPRITE PATTERN Table, both
Sprite Patterns and a second character set (Character
numbers 41 hex or 65 decimal upwards) can fill the VRAM
block normally allocated entirely to Sprite Patterns.

- Pd -

SECTION 1 THE VDP EXPLAINED

VDP Register 5

The VDP 1looks to this Register to find the Base
address for the SPRITE ATTRIBUTE Table. The most
significant bit is not used: the rest form the top seven
bits of the 14-bit address, thus:

00 %% = x=* 00000400

The maximum value that Register 5 can hold is 7F hex
(1111111 Dbinary), and so the maximum value for the
SPRITE GENERATOR Base address is:

3F80 hex

00111111 10000000

The minimum value is O, and the ’step” between
possible Base addresses is:

80 hex

00000000 10000000

The SPRITE ATTRIBUTE Table can thus start on any 80
hex boundary (128 decimal) from 0 to 3F80 hex: a Table
of the start addresses for every value of Register 5 is

given in Appendix C.

BITS
13 12 " 10 9 8 7 6 5 4 3 2 1 0

J\ J

- v —/\ \' 'S
FROM VDP REGISTER 5 SPRITE 'PLANE’ SPECIFIC

(0-31) ATTRIBUTE BYTE
(0-31)
(Incremented

by VDP)

Figure 5. Derivation of the SPRITE ATTRIBUTE address

« 3k =

SECTION 1 THE VDP EXPLAINED

Figure 5 shows how the complete 14-bit address for
the SPRITE ATTRIBUTE Table is obtained by the VDP. The
top seven bits are derived from Register 5, as just
described. The next five bits - which can provide
values from 0 to 31 - are obtained from the Sprite
Plane. The last two bits determine which byte in the
set of four the VDP 1is to examine in the process of
placing a Sprite on the screen, and are incremented from
0 to 3 during that process.

The MSX initialises the SPRITE ATTRIBUTE Base address
to 1B00 hex (6912 decimal) for Screen Modes 1, 2 and 3,
and so the value in VDP Register 5 will be 36 hex (54
decimal) in each case. Sprites are not possible in the
Text Screen Mode 0.

Each entry in the SPRITE ATTRIBUTE Table is four
bytes long, and there is one 4-byte entry for each of
the 32 possible Sprite ‘planes’. Thus the Table is
always regarded by the VDP to be 128 bytes (32*4) long.

The VDP looks to the four data bytes in a SPRITE
ATTRIBUTE entry to find where on the screen the Sprite
should be placed, which ‘plane” it is to be on, and what
its colour is to be: these details are explained more
fully in the Section on Sprites.

VDP Register 6

The lower three bits of this Register determine the
Base address for the SPRITE PATTERN GENERATOR. The top
five bits are not used. The three bits form the top
three bits of the 14-bit SPRITE PATTERN GENERATOR

address:

00*** 000 00000O0CO0CO

The maximum value for these three bits is 7 or “111°
binary, hence the maximum value for the SPRITE PATTERN
GENERATOR Base address is:

00111000 00O0O0O00O0O0O0= 3800 hex

The minimum value is 0, and the ’step” between
possible Base addresses is:

00001000 000O0O0OOO0 =800 hex

A Table of the SPRITE PATTERN GENERATOR addresses for
each value of VDP Register 6 is given in Appendix C.

The MSX initialises the SPR}TE PATTERN GENERATOR Base
address to 3800 hex (14336 decimal) for Screens 1,2 and

- 26 -

SECTION 1 THE VDP EXPLAINED

3, and so the contents of VDP Register 6 will be “7° for
all of these Screen Modes.

The SPRITE PATTERN GENERATOR is where the VDP looks
to find the pattern for a specific Sprite °‘NAME’ - very
simiiar in' fack, to the way the VDP 1looks for a
character pattern according to the character s NAME.

The Table is 2048 bytes long - the same, in fact, as
the character PATTERN GENERATOR Table. Indeed, vyou‘ve
probably noticed that both these Tables also have the
same range of Base start addresses. The maximum number
of Sprite patterns possible is 256 when the Sprite size
is 8x8 pixels (8-byte patterns), and 64 when the Sprite
size is 16x16 pixels (32-byte patterns).

One would not normally set the two PATTERN GENERATOR
Tables to the same Base address - obviously! - but it is
possible to do so, if you want. Program 5 in Appendix B
demonstrates this possibility. It simply resets the
Base address for the SPRITE PATTERN GENERATOR to that
used for the character PATTERN GENERATOR. So if you
want character patterns to become Sprites - that’s one
way to do it!.

The program also shows the 32-byte Sprite size
- where 4 blocks of 8 bytes are required to form the
Sprite pattern. When you try this Program, you‘ll
notice that four blocks of 8-byte character patterns are
also placed on screen - since in the 16x16 pixel Sprite
size, the VDP expects to find 32 bytes defining the

Sprite pattern. The on-screen positions of these
characters demonstrates how the 32-byte Sprite is
formed. This is discussed more fully in the Sprite
section.

VDP Register 7

This Register serves two purposes. For all Screen
Modes, the lower nibble (four bits) defines the ‘border’
or ‘backdrop’ colour of the screen. For the 40x24 Text
Mode (Screen 0), the lower nibble also defines the
character backgound colour, while the top nibble defines
thi colour of the character itself - the ‘foreground’
colour,

Each nibble can have a value of 0 to 15. Thus for
Screen Modes 1,2 and 3, all 15 colours and ‘transparent’
are available for the border or backdrop colour,
irrespective of the colours given to the characters
themselves. In Screen Mode 0, the VDP looks to Register
7 for the character colours as well as the border
colour: hence only two colours can be displayed on the
screen at a time when in Mode 0.

-3 e

SECTION 1 THE VDP EXPLAINED

The value held by the top or lower nibble corresponds
to the colour’s number (see page 3). If one uses
hexadecimal notation, therefore, the colours for screen
1 can be specified thus:

VDP (7)=&HFB

where 'F° 1is the Foreground colour and ‘B° is the
background colour. In this instance, ‘F° hex (15
decimal) is the number for the colour White, and ‘B’ hex
(11 decimal) is the number for the colour Light Yellow.
So entering VDP(7)=&HFB would, in Screen Mode 0, give
White characters on a Light Yellow background, with a
Light Yellow border...not the best of combinations!

VDP Register 8 (Statﬁs)

This is a Read-Only Register that’s used to report on
specific events within the VDP. It is read regqularly by
MSX ROM routines, and can also be read from BASIC, by
using for example a “PRINT VDP(8) statement.

Bit 7

The most significant bit is the Interrupt Status
Flag. It is set to a “1° at the end of the raster scan
at the last line of the active display. It is reset to
‘0’ after the Status Register is read.

The MSX reads the Status Register frame by frame, so
that the intérrupt flag is cleared and made ready for
being set again at the end of the next refresh period.
Provided that the Interrupt Enable bit (Bit 5) of VDP
Register 1 is set to °‘l1°, the VDP will produce an
interrupt signal whenever this bit of the Status
Register is “1°. If the Interrupt Enable bit of VDP
Register 1 is not set to “1°, then interrupt signals
will not be produced - and hardware interrupt routines
within the MS8X will not occur: that means the keyboard
is effectively ‘switched off° =~ with no way to redress
the situation except by a ‘reset’.

Bit 6
The VDP won’t allow more than four Sprites to occupy
one horizontal ixel line at a time. (Program 6
demonstrates this)., If five or more Sprites occur on a

pixel line, this Bit of the Status Register is set to a
. g It is reset whenever the Status Register is read
- but will be set again if five or more Sprites still
occupy a line.

- 38 -

SECTION 1 THE VDP EXPLAINED

Bit 5

The VDP is able to detect when the pattern bits of
any two or more Sprites coincide at the same pixel on
the screen. When such an event occurs, this bit of the

Status Register 1is set. It is re<et when there are no
‘coincidences’.

BASIC tests this Bit when the SPRITE ON function has
been invoked during the running of a program: 3%
detects a coincidence, it passes program running control
to the ’ON SPRITE GOSUB’ line number. Whilst the
subroutine is being executed, further tests for Sprite
coincidence are suspended. Testing is re-introduced on
the Return from the subroutine, unless within the
routine there is a specific °“SPRITE OFF° statement.

If SPRITE STOP has been invoked in a BASIC program,
testing continues to take place, but no action is taken
until a ‘SPRITE ON’ is invoked: any coincidence that
may have occured is remembered and acted upon.

If SPRITE OFF is invoked, testing does not take
place. However, the programmer can make the test for
himself, if he wishes, by examining this bit of the
Status Register (preferably by examining address F3E7
hex) : the VDP always reports a coincidence of Sprites
for as long as the coincidence occurs.

Bits 0 to 4

When five or more Sprites occur on a horizontal pixel
line - as detected by Bit 6 of this Register - the
number of the ‘plane’ carrying the fifth Sprite is
placed in Bits 0 to 4. The content of these Bits is
valid and meaningful ONLY when Bit 6 is set.

Thus, a program segment such as
IF VDP(8) AND &H40 THEN FS = VDP(8) AND &H1F

will test Bit 6 of the Status Register (ANDing with &H40
masks out all but Bit 6), and if it is ‘17, will make
variable FS equal to the “plane’ number of the fifth
Sprite - by masking out the unwanted top 3 Bits.

- B8

1.3

SECTION 1 THE VDP EXPLAINED

FORMING THE DISPLAY

1.3.1 Building Up The Picture

There is, obviously, considerably more within the VDP
than described in Section 1.2. Apart from numerous
other registers, counters and controllers, there is all
the logic and colour decoding necessary to produce the
signals for the display screen.

A description of such circuitry is beyond the scope
of this book, since the user has no control over it
other than as so far described. What is important,
however, 1is the way that the picture is built up on the
screen, and it is this aspect of the VDP’s operation
that we are going to examine in this Section.

Unlike earlier home computers, which treated the
screen as one flat plane, the VDP 1is capable of
producing picture elements at different ‘depths” on the
screen. The screen can, in fact, be regarded as a
series of transparent sheets laid one over the other,
with each carrying a part of the overall display (see
Figure 6). .It is in this way that your computer is able
to create the three-dimensional effect of one object
passing behind or in front of another.

1.3.2 The “Backdrop”’

Right at the very ‘back” of the display is the layer
known as the “Backdrop”’. This covers the entire screen
- not just the ‘active area’ that you can create
pictures on. Its single colour is determined by the
lower four bits of VDP Register 7.

The background colour of the active display area can
be different from the backdrop colour: when it is, the
backdrop provides a distinct ‘border” colour to the
overall picture at the top and bottom (the sides are
sometimes concealed from view on European system
television sets). Indeed, in the BASIC “COLOR x,y,z’
statement, the ‘z° parameter allows you to determine the
‘border * colour. The colour specified for “z° is loaded
into the lower nibble of VDP Register 7.

In Screen Mode 0, the backdrop colour also becomes
the background colour for the active display area
- consequently in this Mode the entire screen has but

one background colour.

- B0 -

SECTION 1 " THE VDP EXPLAINED

When ’transparent” has been specified as a colour,
the screen becomes transparent through to the backdrop.
Thus, entering 'SCREEN 1: COLOR 15,4,7 would produce a
backdrop (border) colour of Cyan (colour 7), with an
active display of White (colour 15) on Dark Blue (colour
4). If, then, 'COLOR 0,4,7 is entered, the characters
displayed on the screen in the “Foreground® colour White
would become transparent (colour 0) - and one would
‘see” the backdrop colour through them: they would, in
effect, take on the colour of the backdrop.

If transparent is specified for the backdrop colour,
then it defaults to black: if the MSX had an ‘external’
VDP connected and it was enabled, the screen display
generated by the ‘external’ VDP would be displayed
instead of black.

1.3.3 The Pattern or Multicolour Plane

The next “layer” over the backdrop is the Character
Pattern or Multicolour plane. It occupies only the
“active screen’ area, and it is the layer on which all
the characters or, in Screen Mode 3, the multicolour
blocks are displayed in the specified colours.

The size of the active display screen is 256x192
pixels, a pixel being the smallest point that can be
defined on the screen. 1In Screen Mode 0, each character
occupies a block of 6x8 pixels, and the 8 pixels on both
the side edges are not accessed. Thus it is possible to
have 40 characters to a row (240/6), and 24 rows

(192/8).

In Screen Modes 1 and 2, the character sizes are 8x8
pixels, and so there can be a maximum of 32 characters
to a row and 24 rows. It 1is wusually recommended,
however, that the number of characters to a row be
limited to 29, to avoid loss of characters at the edges
on some television receivers. The narrower width can be
achieved by using the MSX BASIC ‘WIDTH® command. For
even numbers (e.q, WIDTH 28), the MSX centres the
display: when an odd number is specified, the first
character position on the left hand side is indented.

In Screen Mode 3, the multicolour blocks each occupy
4x4 pixels, and so it is possible to have 64 blocks to a
row and 48 rows, Each individual block, however, can
have onlg one colour, and cannot be given a character

pattern’ as with the other screens. It is possible to
have all 15 colours and transparent displayed on screen,
and the 4x4 pixel blocks can of course be used to create
pictures.

v 3% o

SECTION 1 THE VDP EXPLAINED

1.3.4 The Sprite Planes

For Screen Modes 1, 2 and 3 there are 32 Sprite
planes located over the Pattern or Multicolour layer.
These are numbered 0 to 31, 31 being closest to the
Pattern layer, and 0 being nearest to the “front’ of the
screen.

Each of the Sprite planes can carry one Sprite only.
Sprites can have basic patterns occupying 8x8 pixels or
16x16 pixels, and both these pattern sizes can be
‘magnified” so that each pattern point occupies a block
of 2x2 pixels instead of 1 pixel. Sprites on all planes
have the same size and magnification: the sizes and
magnifications cannot be intermixed.

Each Sprite can be given one specific colour only,
the coloured part of the Sprite being associated with
the defined pattern. The non-defined pattern areas are
automatically transparent.

Since there are 32 Sprite planes, 32 Sprites can be
positioned on the screen at any one time. However,
there cannot be more than four Sprites on any .one
horizontal line of pixels. Should more occur, the four
Sprites nearest to the front (i.e. the four Sprites with
the lowest plane numbers) will be displayed. The plane
number of the fifth Sprite is recorded in the lower five
bits of the VDP Status Register and the ‘5th Sprite
Flag” - bit 6 of that Register - will be set to a ‘1°.
Any further Sprites on the same horizontal 1line are
ignored.

Sprites can occupy any position in the active display
area, and they can be made to occupy the same area on
the screen. When this happens, Sprites nearest to the
front ‘block out’ the Sprites behind their pattern
areas, but allow them to be seen through their
transparent non-pattern areas. It is thus possible to
define Sprites in such a way that they can be overlaid
to produce a multicoloured pattern.

Also, since each Sprite occupies just one plane and
can be moved anywhere over the active screen area, it is
possible to make Sprites move in front of or behind each
other, so giving a three-dimensional effect.

The VDP reports when the patterns of any two Sprites
occupy the same pixel -~ by setting bit 5 of the Status

Register. This coincidence of Sprites can be detected
using the MSX BASIC ‘ON SPRITE GOSUB ' statement after a
SPRITE ON command has been invoked. Machine code

programmers would read the VDP’s Status Register by
calling the routine at 013E hex: this returns the value
of the Status Register in 280 register A.

- 32 =

SECTION 1

THE VDP EXPLAINED

(7////// L_BACKDROP PLANE
/ (All One Colour)
/. 7 /%

'TRANSPARENT’

BORDER THRU PATTERN OR
WHICH BACKDROP 7 - [— MULTICOLOUR
IS SEEN // PLANE

ACTIVE /

AN

<+—1—-SPRITE PLANE

30

SPRITE
PLANE
0

TOTAL OF
32 SPRITE
‘PLANES

SCREEN % ‘
AREA <\ -SPRITE
'CLOUD’ PATTERN Y/ iy
SPRITE ON S
PLANE 31 v
'AEROPLANE' N
PATTERN = ‘ee—tt— —p b
SPRITE ON
PLANE 30
_/ N
‘BIRD"
SPRITE ON >~
PLANE 0
-
_ _J
0/ /S S S
L | BACKDROP COLOUR
ACTIVE GIVES BORDER

o,

Figure 6. Build up of the screen.

- B8 ~

SECTION 2

CHARACTER BUILDING

The basic character set provided by the
MSX, with its alphabet variations,
mathematical symbols and selection of
graphic shapes, gives a good foundation
for many programs. Eventually however,
different shapes will be wanted in
order to enhance the presentation of a
program. In this Section we examine
how Character patterns are formed, how
new ones can be created and an overview
of how they can be ‘coloured’

2.1 HOW A CHARACTER IS FORMED

2.1.1 The VRAM Space Required

Character patterns in Screen Modes 1 and 2 occupy a
block of 8x8 pixels on the screen. In Screen Mode 0
they occupy a block of 6x8 pixels on the screen, but
nevertheless still require the same amount of storage
space for their definition in the PATTERN GENERATOR
Table of VRAM.

Within the PATTERN GENERATOR Table of VRAM, eight
bytes are allocated to each character. Thus, 1f there
are 256 characters, 2048 bytes will be needed to define
them all. The character numbers and their pattern bytes
run sequentially through VRAM, starting at the PATTERN
GENERATOR Base address. So the pattern for Character 65
will start at the PATTERN GENERATOR Base address plus
520 (65x8), and continue over the next seven bytes.

The MSX initialises the PATTERN GENERATOR Table to
VRAM address 800 hex (2048 decimal) for Screen Mode 0,
and to 0 for Screen Modes 1, 2 and 3 - although for Mode
3, the PATTERN GENERATOR Table is used to store colour
pattern blocks rather than character patterns.

w & »

SECTION 2 CHARACTER BUILDING

2.1.2 Bytes Make Patterns

The first byte of an 8-byte character pattern block
defines the top line of the character, the next byte the
second line, and so on to byte eight, which defines the
bottom line of the character.

The pattern of each character line is determined by
the binary value of the corresponding byte. (If you’'re
not sure how to convert decimal or hexadecimal to binary
- and vice versa - you’'ll find an explanation in
Appendix A).

Thus if the first byte of a pattern block has a value
of 5C hex (92 decimal), the pattern for the top line of
that particular character will be determined by the
binary value of 5C hex:

01011100

where the set bits: (the “1° bits) switch on the
FOREGROUND colour, and the reset bits (the “0° bits)
switch on the BACKGROUND colour. This is shown for an
entire character in Figure 7.

BITS
- 76543210
BYTEO olof1lololololo =20HEX
BYTE1 o[f1]0|1]0|0]0}f0O =50HEX
BYTE2 1]ofojo(1]0|0OfO =88 HEX
BYTE3 1-]of0jof1]|0|0f0O =88 HEX
BYTE 4 111f(1]1]1]0]0]o0 =F8HEX
BYTES 1({0|J0|0|1|0|0]|O =88 HEX
BYTEG 1]0(0}l0f1]|0|0fO =88 HEX
BYTE7 ojofofof[ololofo =0
ZHUH,
Y4
/‘//»’/ SHAPE DEFINED BY THE
Z 7, /, ABOVE BYTE VALUES
979%
Y

=BACKGROUND COLOUR

/]
X/ [} -FOREGROUND COLOUR

Figure 7. How Characters are defined.

- 3 -

N 2 CHARACTER BUILDING
SECTIO

2.1.3 The MSX Character Set

When Screen Modes 0 and 1 are selected, the MSX
automatically loads a complete set of 256 characters
into the 2048 bytes of VRAM allocated to the PATTERN
GENERATOR, from a storage area within ROM. This storage
area starts at 1BBF hex. (Program 7 of Appendix B
enables you to display on the screen any character from
the MSX set in large detail, with the pattern byte
values).

In Screen Mode 2, the PATTERN GENERATOR Table is
cleared to ‘zeroes’, and in Screen Mode 3 it is loaded
with 44 hex throughout - for reasons which will be
discussed later.

Consequently, any characters defined by the user
whilst in one Screen Mode may be lost from VRAM when
another Mode is selected.

Note that for Screen 0, the lowest two significant
bits of each character pattern byte (bits 0 and 1) are
ignored by the VDP and do NOT get reproduced on the
screen: Mode 0 characters are 6x8, remember, the 6
pixels in a character row being controlled by the top
six bits of the pattern byte.

CREATING A CHARACTER

2.2.1 Designing The Pattern

Creating a new character pattern is simply a matter
of entering the required pattern data into the correct
area of VRAM. First, of course, the pattern must be
designed, and this is easily achieved by shading in
blocks in an 8x8 grid (similar to that shown in Figure
7) wherever the “Foreground’ part of the pattern is
required. Remember that for Screen Mode 0 the right
hand two bits (0 and 1) will not be displayed on screen.

Having shaded 1in the blocks, the binary value for
each horizontal line is then ascertained: the non-
shaded blocks become ‘0° and the shaded blocks “1°.
The 8-bit binary number can then be converted to
hexadecimal (or, if you prefer, to decimal), for loading
into VRAM,

You will end up with a sequence of eight byte values,
the first byte representing the pattern for the top
line, the second byte the pattern for the second line,
and so on, Thus if you were constructing the "A° shape
shown in Figure 7, the eight bytes would be (hex) 20,
50, 88, 88, F8, 88, 88 and 0. Alternatively, in decimal
the values would be 32, 80, 136, 136, 248, 136, 136, 0.

- 36 -

SECTION 2 CHARACTER BUILDING

2.2.2 Loading The New Character

It now has to be decided which character number this
new pattern is to become. Whatever the number, its 8-
byte location in VRAM will start at:

PATTERN GENERATOR Base address + (8xCharacter Number)

So if the PATTERN GENERATOR Base address is 0 and
the character number is to be 97, then the first byte of
the pattern will need to be loaded into VRAM address
0+97x8, or 776 decimal (0308 hex), the second byte into
address 777 decimal - and so on. A typical program to
achieve this in BASIC would be:

10 FOR I=0 TO 7

20 READ DS$
30 VPOKE 776+I, VAL("&H"+DS$)
40 NEXT

50 REM *Now the Data*
60 DATA 20,50,88,88,F8,88,88,0

If you prefer to enter the data as decimal values
then in Line 20 use a numeric variable such as ‘D’ (or,
better, °D%’) instead of ‘D$°, and change Line 30 to
VPOKE 776, D (or D%). The data in line 60 must now be
entered as decimal values, not hex, of course.

If a number of character patterns are to be entered,
they can be VPOKEd within the same FOR-NEXT loop (hence
the reason for running the loop from 0 to 7 rather than
776 to 783), in a similar way to Line 30. Alternatively,
if the character numbers are consecutive, the FOR-NEXT
loop can be extended to embrace the entire range of

character patterns to be entered.

Machine code programmers can use the Block Shift ROM
routine at address 5C hex: a typical Assembly language
subroutine to load the pattern for an ‘A’ as character

97 would be:

LOADA:LD HL,CHRPATA
LD DE,0+97%8

LD BC,8 ;Bytes to shift
CALL 5CH
RET

CHRPATA:DB 20H,50H,88H,88H,F8H,88H,88H,0

It should be noted that, unlike some computer
systems, if a character pattern is changed whilst the
original character is being displayed on the screen,
then the displayed character will take on the new
pattern wherever it appears.

w A1 =

SECTION 2 CHARACTER BUILDING

This feature could be put to use within a program:
instead of defining a series of characters to provide,
say, an animated sequence in one character position, the
character itself can be redefined to provide the
sequence. Program 8 of Appendix B demonstrates this
feature.

2.2.3 Printing the Character

Once a character has been defined, it can be printed
on the screen either by using the “PRINT CHR$(number)’
statement - suitable for characters with numbers above
32 decimal - or by selection of the appropriate keys.

For example, if character 65 - the letter "A” - has
been:redefined, this can be accessed by pressing the A
and~"SHIFT keys on the keyboard.

A Table showing the MSX characters, character numbers
and how they are accessed from the keyboard is given in
the Appendices.

Alternatively, for Screen Modes 0 and 1, the
character number can be VPOKEd into the appropriate
address in the VRAM NAME Table for the screen location.
In Mode 1, for example, the NAME Table starts at 6144
decimal in VRAM (1800 hex), and the column width is 32.
So to place, say, character 97 on the screen at a
position three rows down and ten columns across, one
would

VPOKE 6144+ (3*32)+10,97

In Mode 0, the NAME Table starts at 0, and the column
width is 40, so to place character 97 on the screen
three rows down and ten columns across, one would

VPOKE 0+(40%*3)+10,97

In Screen Mode 2, because of the way the MSX
initialises the Mode, the entire character pattern will
have to be VPOKEd to the PATTERN GENERATOR Table: see
Sections 2.3.4 and 6.2.4. Alternatively, Mode 2 can be
re-initialised - see Section 6.3.

CHARACTERS AND SCREEN MODES

2.3.1 All Change

The VDP and the way the MSX initialises it for BASIC
affects the way characters are displayed on the screen
in each Mode. The differences between Modes are
discussed elsewhere, but are given here for reference
purposes.

- 38 =

SECTION 2 CHARACTER BUILDING

It is important to remember that when Screen Modes
are changed using MSX BASIC, the PATTERN GENERATOR is
completely re-initialised: any characters you may have
defined in one Mode could be lost from the PATTERN
GENERATOR when another Screen Mode is selected.

We will now examine the way the PATTERN GENERATOR
Table is used for each Screen Mode.

2.3.2 Screen 0

In Screen Mode 0 the characters can be defined as
described in Section 2.2, but only the leftmost 6 bits
of each pattern line will be reproduced on screen.

This should be remembered when defining characters
for Screen Mode 0: the lowest two bits - those on the
extreme right of the pattern - will not be visible. % 5
you examine the ASCII character set - and indeed most of
the other characters - produced by the MSX, you will see
that their patterns do not involve the lowest three
bits. This is to enable the character set to be used
for Screen 0 (with a one pixel space between the
characters), as well as for Screen 1.

The MSX Character set is automatically loaded into
VRAM whenever this Mode is selected.

2.3.3 Screen 1

Screen Mode 1 characters occupy the full 8x8 pixel
block, and they can be defined and changed as described
in Section 2.2. Whenever this Mode is selected, the MSX
Character set is automatically loaded into the PATTERN
GENERATOR Table, and so changes to character patterns
should be made after the Mode has been selected.

2.3.4 Bcreen 2

In Bcreen Mode 2, the MS8X initialises the VDP and
loads VRAM in such a way that no character is defined
within the PATTERN GENERATOR Table wuntil it 1is to be
displayed on the screen: it does this so that the Mode
can be used for high resolution graphics, Full details
of this dinitialisation are given in the Section on
Screen Mode 2.

The point about this Mode is that, when PRINTing to
the screen using M8X BASIC, you are limited to the MSX ‘s
own character set, and you can only PRINT to the screen
after OPENing the GRP screen.

-39

"

SECTION 2 CHARACTER BUILDING ﬁ!

To give an example:

10 SCREEN 2

20 OPEN "GRP:" AS 1

30 PRESET (70,100)

40 PRINT 1,"Here we are!"
50 GOTO 50

Line 30 sets the position on the screen at which
PRINTing is to occur: note that, wunlike the Text Modes,
you can position the characters with their top left
corner at ANY pixel position on the screen. Line 50
prevents the MSX jumping to Screen 0 or 1 after the
brogram has run - which would clear the displayed phrase
from the screen.

You can display a character of your own design on the
screen by loading its eight bytes into the PATTERN
GENERATOR at the location related to the screen position
required. The next short program shows how to display
our ‘own’ character ‘A’ at screen position 110 (3 rows
down, 14 columns across).

10 SCREEN 2

20 'COIOR 14,4,11

30 FOR I=0 TO 7

40 READ D$

50 VPOKE I+(110%*8), VAL("&H"+DS$)
60 NEXT

70 DATA 20,50,88,88,F8,88,88,0

80 GOTO 80

Line 20 has been added to show you that, when placed
on the screen this way, the character takes on the
Border colour. One would have to VPOKE the
corresponding addresses of the VRAM COLOUR Table to
change the colour: this is discussed more fully later
on.

You might like to note at this point that the VDP
allows for a completely different character to be
defined for every position on the screen in Mode 2 - a
total of 768 completely different characters! This
feature is dealt with in the Section on Mode 2.

You can re-initialise Mode 2 so that you can load a
(768) character set ‘permanently’ into the PATTERN
GENERATOR Table, and use the Mode the same way as you
use Mode 2 - with direct access from the keyboard.
Apart from the number of characters available, this has
the advantage of higher resolution colouring - each
pattern byte can be individually coloured.

._4‘0._

2 o A A BT B

SECTION 2 CHARACTER BUILDING

2.3.5 Screen 3

In Screen Mode 3 (the Multicolour Mode) the PATTERN
GENERATOR Table is not used to define characters as
such, but to determine the colours of specific 4x4 pixel
blocks. However, like Screen Mode 2, you can OPEN the
GRP screen and PRINT from the BASIC character set to the
screen, although in this instance, each pixel position
in the original character pattern will be represented by
a block of 4x4 pixels: try the program at the top of
page 40, with Line 10 changed to SCREEN 3, to see the
effect.

2.4 COLOURING CHARACTERS

2.4.1 Each Mode is Different...

The way that a character is coloured depends on the
Screen Mode selected, and is discussed in detail in the
Screen Mode Sections of this book. Here we are going to
take a general 1look at the way you can change the
character colours for Screen Modes 0, 1 and 2.

For these Modes, the VDP looks at the appropriate
data in the COLOUR Table area of VRAM ‘at the same time°’
as it looks at the character pattern data. Changing the
colours of a specific character will, therefore, change
that character’s colours wherever it appears on the
screen, even if it is already being displayed.

2.4.2 Screen 0 Colours

Only two colours are possible on this screen,
consequently all characters will have the same
Foreground and Background colour.

These colours can be defined by the BASIC ‘COLOR
x,y,z statement, where 'x’ gives the Foreground colour,
y" the Background colour, and “z° has no effect.

Alternatively, one can use the “VDP(7)=&HFB’
statement, where 'F° is the hexadecimal value of the
required foreground colour, and ‘B’ is the hexadecimal
value of the Background colour. Thus, for Dark Yellow
(colour 10, or ‘A° hex) characters on a Dark Red (colour
6) background, one would use °‘VDP(7)=&HA6 .

2.4.3 Screen 1 Colours

Only 32 bytes in the COLOUR Table are used to define
all the 256 characters. MSX 1initialises the COLOUR
Table at 2000 hex (8192 decimal) for Screen Mode 1, and
so only the bytes from 2000 hex to 20lF hex (8192 to
8223 decimal) have any significance.

41.

SECTION 2 CHARACTER BUILDING

Each byte in the COLOUR Table determines the
Foreground and Background colours for eight characters.
The first byte - at 2000 hex - determines the colours

for characters 0 to 7, the second byte for characters 8
to 15, and so on.

The top four bits of the byte determine the
Foreground colour, and the bottom four bits of the byte
determine the Background colour.

To find which byte defines the colour for a specific
character, divide the character number by eight and
ignore the remainder. Thus the colouring for the letter

A, character 65, is determined by the eighth byte in
the COLOUR Table - the byte at address 2008 hex (8200
decimal). To change the colour of this character (and
also characters 64 to 71), simply VPOKE the required
colour into VRAM address 2008 hex.

When you have changed the colours of a character, it
will take on the new colours wherever it appears on the
screen. If you want a character to appear in different
colour combinations, then the character will have to be
defined again in a different eight-character block, and
the corresponding colour bytes in the COLOR Table
changed accordingly.

2.4.4 Screen 2 Colours

In this Mode, every one of the eight bytes that go to
make up a character pattern has an associated colour
byte in the COLOR Table. The COLOR Table in this Mode
is therefore the same length as the PATTERN GENERATOR
Table - 6144 Dbytes. The Tables are synchronous: in
other words, the 100th byte in the COLOR Table
determines the colours for the 100th pattern line in the
PATTERN GENERATOR Table.

However, remember that in this Mode, MSX BASIC does
not load the character set into the PATTERN GENERATOR
Table, but instead initialises the screen for graphic
displays. Because of this, the COLOB Table for Mode 2
is primed to address screen locations. This 1is
discussed more fully in the Section on Mode 2.

2.4.5 Screen 3 Colours

The VDP does not recognise a COLOR Table in this
Mode: all colouring is determined by the contents of the
PATTERN GENERATOR Table. See the Section on Screen Mode

3.

- 42 -

SECTION 3

SPRITES

In addition to ‘ordinary’ characters,
the VDP is capable of producing
‘Sprites’ - special characters that can
be moved pixel by pixel around the

- screen to create animated and three-
dimensional displays. In this Section,
we examine Sprites in detail.

3.1 HOW A SPRITE IS FORMED
3.1.1 Screens and Sizes

Sprites are available in Screen Modes 1, 2 and 3, and
in all these Modes, they are formed the same way.
Furthermore, the SPRITE PATTERN Table is initialised to
the same Base address for all three Modes (3800 hex,
14336 decimal) and its contents are not changed when
switching from Mode to Mode provided the Sprite size and
magnification are left unspecified. This means Sprites
can be defined in one Screen Mode, and used in another.

It has been mentioned in earlier Sections that
Sprites can be formed in two different sizes, and each
size can be unmagnified or magnified, The following
table shows the number of pixels occupied by the
different sizes of Sprite, and the number of bytes
required to generate their patterns.

SCREEN m,s VDP REG 1 PIXEL BYTES PER
‘s’ VALUE Bit 1 Bit 0 SIZE PATTERN
0 0 0 8x8 8
1 0 1 16x16 8
2 1 0 16x16 32
3 1 1 32x32 32

- 43 ~,

SECTION 3 SPRITES

3.1.2 The 8 Byte Sprite

This size of Sprite pattern is formed in virtually
the same way as the character pattern. Eight
consecutive bytes in the SPRITE PATTERN Table define the
pattern, the first byte providing the information for
the top row of the Sprite, the second byte the second
row, and so on to byte eight which defines the bottom
row of the Sprite’s pattern.

The pattern formation is, therefore, the same as that
indicated in Figure 7 for a character pattern. The only
difference is that the background colour is always
“transparent”: thus, whatever colour lies behind the
Sprite’s ‘background’ areas will be seen, whether it is
from another Sprite pattern, from a character pattern,
or from the ‘backdrop’.

The SPRITE PATTERN Table has a maximum size of 2048
bytes, and since it takes eight bytes to define the
Sprite pattern, in this size one can have a maximum of
256 different Sprites. Only 32 of them can be displayed
on the screen at a time, of course, since there can be
only one Sprite on each of the 32 different Sprite
planes.

When the Sprite is ‘magnified” each bit of a pattern
byte controls not one pixel, but a block of 2x2 pixels.
Consequently the Sprite pattern occupies an area of
16x16 pixels although of course, it still needs only 8
bytes to define it.

The first Sprite pattern - Sprite number 0 - occupies
the first eight bytes of the SPRITE PATTERN Table, the
second Sprite - number 1 - occupies the next eight
bytes, and so on up to Sprite number 255, which occupies
the last eight bytes of the Table. So to find the start
address in VRAM for a particular Sprite pattern, simply
multiply its number by eight, and add the result to the
SPRITE PATTERN Base address. When using the MSX as
initialised by the ROM routines, the Base address is
always 3800 hex (14336 decimal).

3.1,3 The 32 Byte Sprite

Sprites can also be made to have a pattern that
occupies a 16x16 pixel area on the screen, unmagnified,
or a 32x32 pixel area when magnified. This is achieved
by giving ‘s’ the value 2 or 3 in the BASIC “SCREEN m,s
command, or by setting bit 1 of VDP Register 1.

These larger Sprites need 32 bytes to define their
pattern, The first eight of these bytes relate to the
top left block of the Sprite, the next eight bytes to
the bottom left block, the third eight bytes to the top
right block and the last eight bytes to the bottom right
block., (See Figure 8).

In Figure 8, each shaded area represents a binary 1’

- dA =

SECTION 3 SPRITES

- which switches on the Sprite colour, and each non-
shaded area represents a 0 which switches on
“transparent’. The hex values that would have to be
loaded into the SPRITE PATTERN Table to create this
particular Sprite are also shown in Figure 8.

It is important to remember how the pattern data is
stored in VRAM - especially when creating a 32 byte
Sprite. Since it takes 32 bytes to define this size of
Sprite, the maximum number that can be defined is 64
(2048/32).

BLOCK 1 BLOCK?3
Hex Sl A
Value ¥ S ' HexValue
Byte 0=07 Ce Byte
1=0F =
2=1C 39
3=20 30
4=2C 70
5=40 . 30
6=45 70
7=20 BO
8=21 B0
9=14)]
10=13 AD
11=08 20
12=04 49
13=08B 80
14=11 Co
15=29 EQ
\ v I v 5
BLOCK?2 BLOCK 4

16
17
18
19
20
21

22
23
24
25
26
27
28
29
30
31

If this were sprite pattern number 1, then for the Sprite Pattern Table initialised by MSX,
BYTE 0 would be at YRAM location 3800 hex plus 32=3820 hex, or 14368 decimal, BYTE 1

at 3821 hex (14369 decimal) etc.

Figure 8. Defining a 32 Byte Sprite pattern.

- A8 »

SECTION 3 SPRITES

3.1.4 Mixing Sprite Sizes

The VDP knows, from bit 1 of VDP Register 1, what
size of Sprite has been specified, and if the larger
size is chosen, the VDP will always construct the Sprite
using 32 bytes. Changing Sprite size during a program
can be achieved, but the patterns for the two sizes
should be kept apart in the Table.

For example, one may decide to use Sprite numbers 0
to 31 as 8-byte patterns, and Sprites 32 to 63 as 32
byte patterns. In this specific example, the first 32
8-byte Sprites will occupy an area of 256 bytes (8x32).
The 32 byte Sprites will occupy an area of 1024 bytes
(32x32) and, since the first of these is numbered 32, it
will have to start at the SPRITE PATTERN Base address

plus 1024 (32x32) if it is to be properly identified by
the VDP.

There will therefore be a gap of 768 bytes (1024-256)
between the two pattern elements. Assuming the SPRITE
PATTERN Table remains at its initialised location of

3800 hex in VRAM, the arrangement would then look like
this:

SPRITE PATTERN SPRITE COMMENTS
START ADDRESS NUMBER
3800H (14336d) 0
3808H (14344d) 1
3810H (14352d) 2
" . 8-byte Sprites
38FOH (14576d) 30
38F8H (145844) 31
3900H (145924) Unused area
-3BFFH (153594) of VRAM
3C00H (15360d) 32
3C20H (153924) 33
3C40H (15424d) 34
¢ ' 32-byte Sprites
IFCOH (16320d) 62
3FEOH (16352d) 63

- 46 -

32

SECTION 3 SPRITES

Obviously great care must be taken when using Sprites
this way: with our example, calling the 8-byte Sprite
numbered “4°, say, whilst in the 32-byte Sprite size
would yield a block of four of the 8-byte Sprite
patterns - numbered 12, 13, 14 and 15.

During a program the Sprite size must be changed by
setting or resetting bit 1 of VDP Register 1: to change
Sprite size by using the ’SCREEN m,s’ statement would
re-initialise the entire display as well as clear the
Sprite Tables! There are a number of ways of changing
Sprite size using Register 1:

(a) VDP(1)=VDP(1)+2 To go from SMALL to LARGE
(b) VDP(1)=VDP(1)-2 To go from LARGE to SMALL
(c) VDP(1)=VDP(l) AND &HFD Always gives SMALL

(d) VDP(1)=VDP(1l) OR 2 Always gives LARGE

The last two examples, c¢) and d) would be the
recommended approach, to avoid misloading VDP(1).
ANDing with FD hex =~ 11111101 in binary - ensures that
Bit 1 1is zero, whilst ORing with 2 - binary 00000010
- ensures it is “1°, whatever the previous contents, and
without upsetting the other Bits of the Register.

Program 9 of Appendix B demonstrates how Sprites of
two different sizes can be used within one program, and
also shows how both sizes can be displayed unmagnified
and magnified.

CREATING A SPRITE

3.2.1 Designing 8-Byte Sprites

The process for creating an 8x8 Sprite pattern is the
same as that for creating a character pattern, First
the pattern is designed in a grid that is 8x8, then the
pattern areas converted to ‘l°s so that the binary value
for each row of the pattern can be ascertained. This

value is then loaded to the appropriate address in the
SPRITE PATTERN Table.

Whereas character patterns have to be VPOKEd into the
VRAM area, to enable you to enter Sprite data, MSX BASIC
provides a statement variable - ‘SPRITE$(x)’, where °‘x°
is the Sprite pattern number.

o A7 »

SECTION 3 SPRITES

This variable can be defined in various ways.

(a) SPRITES(1)

CHR$ (7)+CHRS (&HF)+CHRS$(28)...etc

(b) SPRITES(2)

"aAbBcCdD"

(c) SPRITES$(3) BS (B$ having been previously
defined, of course).

(d) SPRITES(4) = STRINGS(8,255)

All these methods load the required data bytes into
the appropriate area of VRAM for the Sprite number: if
insufficient bytes are specified then the remaining
bytes in the pattern block are made equal to zero.
Thus, if one wrote ’SPRITE(8)=CHR$(&H27)°, then the
first byte of the pattern would be given the value 27
hex (39 decimal), and the remaining bytes - either 7 or
31 of them, depending on the Sprite SIZE - would be
Zero.

The method given in (b) for defining a Sprite pattern
may need explaining. When a “String variable” is stored
by BASIC, the characters given in quotes are converted
to their ASCII values - so they are stored within the
MSX as numbers. The ASCII number for ‘a” is 97, for ‘A’
it is 65, for ‘b’ it is 98, for ‘B’ it is 66 - and so
on. So ’SPRITE$(2)="aBbBcCdD"“ is a short way of
writing “SPRITES$(2)=CHR$(97)+CHR$(65)+.... " and so on.

This method takes up less programming memory space
- but does require that you know the character for a
given number - and where to find it on the keyboard.
You’ll find a Table to help you do this in Appendix D.

Machine code programmers can use the ROM routine at
5C hex to load Sprite data: see the details under
‘Writing to VRAM®~ 1in Section 1.2.1. There is also a
routine in ROM which returns the start address for a
Sprite pattern in the SPRITE PATTERN Table, which may be
useful. The details are:

084H Find Sprite Pattern start address
IN: Sprite pattern number in Register A
OUT: Pattern start address in HL
AF,DE,HL modified
This routine checks whether 8 or 32-byte Sprites have

been selected, and returns the correct start address
accordingly.

- 48 -

|”

3.3

SECTION 3 SPRITES

3.2.2 Designing 32-Byte Sprites

The process for creating a 32-byte Sprite is similar
to that for an 8-byte Sprite, but you must ensure that
you get the four 8-byte segments in the correct order.

First the pattern is designed on a 16xl16 grid - as
shown in Figure 8. The grid is then divided into four
quarters, so each quarter is an 8x8 block. The binary
- or hex - values for each of the horizontal lines in
each of the 8x8 blocks is then ascertained, and written
alongside the grid.

When entering the data - using the SPRITES(x)
variable as for the 8x8 Sprite - the data for the top
left block must come first, followed by the data for the
bottom left block, the top right block and finally the
bottom right block. In all, there should be 32 bytes of
data: if there are less, the MSX will load zeroes into
the pattern table to make up the difference. These will
always be loaded at the end of your byte sequence.

Thus if you specify only 16 bytes of a 32-byte
Sprite, the entire right hand side of the Sprite will be
“blank”’, since the pattern area for the top right and
bottom right blocks will be filled with “0°.

MOVING SPRITES
3.3.1 How the VDP does it

For characters, there are three Tables in VRAM to
define their pattern, colour and screen location:
Sprites have only two - the SPRITE PATTERN Table,
discussed in Sections 3.1 and 3.2, and the SPRITE
ATTRIBUTE Table.

Each Sprite Plane has a block of four bytes within
the ATTRIBUTE Table, to define the Sprite’s location on
the screen, to name the pattern required, and to specify
the colour. As with characters, whenever the VDP does
an active screen refresh - 50 times a second - it
examines the SPRITE ATTRIBUTE Table to see what Sprite
should be going where, and acts accordingly.

For all the Sprite Screen Modes (1, 2 and 3), the MSX
initialises the SPRITE PATTERN Table to start at 1B00
hex (6912 decimal) in VRAM. Each of the 32 Sprite
planes has one set of four attribute bytes, and so the
Table is 128 bytes long (32x4).

- 49 -

s |

SECTION 3 SPRITES

The function of the four attribute bytes is shown in
Figure 9, and will now be described in detail.

The First Byte (Byte 0)

This byte determines the vertical pixel position of
the top 1left corner of the Sprite pattern. it -is
defined so that a value of “-1° butts the top edge of
the Sprite right against the top border of the screen.

Values of -2 to -8 will cause a Sprite occupying an
8x8 pixel block to apparently ‘dissappear”’ behind the
border. Similarly, Sprites occupying blocks of 16x16 and
32x32 plxels can be made to gradually dissappear by
increasing the negative value held by this byte to -16
and -32 respectlvely. Thus the Sprite can be made to
apparently °‘bleed’ off or onto the screen at the top.

Programmers not familiar with machine code techniques
may wonder how a negative number - binary or otherwise
- can be stored in one byte. The answer is the top bit
- bit 7 - is used in this instance to indicate the sign
of the number, and the rest of the number is “two' s
complemented”. The VDP evaluates the contents of the
byte to ascertain whether it should be regarded as a
two ‘s complement or not. For further information on
this topic, please refer to a book on 280 machlne coding
- such as ’Starting Machine Code on the MSX~, by Geoff
Ridley.

Machine code programmers will have gathered from the
last paragraph that to make a Sprite dissappear at the
top of the screen, they should two’s complement for
decimal values -1 to -32.

At the bottom of the screen, values approachlng 191
decimal will make the Sprite similarly ‘dissappear’
behind the border area. What actually happens, of
course, 1s that both at the top and the bottom of the
screen, the Sprites are ‘leaving’ the active display
area, but the effect is they are going behind the
border.

Two very special values can be held by this Vertical
position byte. They are 209 decimal and 208 decimal.
209 decimal tells the VDP to sw1tch off this Sprite, so
that it isn’t displayed at all’ 208 decimal does the
same thing - but it also tells the VDP to “switch ogf
all the bytes with higher plane numbers too”. Thug,_lf
the Sprite on plane 6, say, is given a vertical position
attribute of 208, not only will the Sprite on plane 6 be
switched off, but so will the Sprites on planes 7 to 31l.

w B8 -

SECTION 3 SPRITES

The Second Byte (Byte 1)

The next byte in a SPRITE ATTRIBUTE block locates the
horizontal pixel position of the SPRITE - again, using
the Sprite’s top left corner as the marker. The values
can range from 0 to 255 decimal: values in the region of
255 cause the Sprite to ‘disappear’ at the right edge
of the display.

A value of “0°, however, butts the Sprite up against
the left edge of the display: to allow Sprites to enter
and disappear at the left edge, Bit 7 of the last byte
(byte 3) in the ATTRIBUTE block is wused. When this
particular bit is set (“1°), the horizontal position of
the Sprite is shifted left by 32 pixels. Values below
32 then placed in the horizontal position byte will
cause the Sprite to become concealed behind the left
edge of the display.

In BASIC, one would simply enter a negative value
from -1 to -32 for the horizontal position, in order to
achieve the entrance or dissapparing act at the left
edge: the MSX ROM routines make the necessary entries in
the ATTRIBUTE Table. Machine code programmers will have
to set or reset Bit 7 of the fourth attribute byte
according to their needs.

It should be noted that Sprites operate over the
entire width of the active display screen, irrespective
of the character setting given by the BASIC ‘WIDTH®
statement.

The Third Byte. (Byte 2)

This byte tells the VDP which Sprite pattern number
should appear on the attribute’s particular Plane. Thus,
if the attribute is for Plane 4, say, and this byte
holds the value 17 decimal, then Sprite pattern number
17 will be displayed on Plane 4.

The Fourth Byte (Byte 3)

The last attribute byte holds in its lower four bits
the number for the colour to be displayed. The most
significant bit - Bit 7 - has already been discussed
under the Second Byte: it shifts the Sprite pattern 32
pixels to the left. The remaining bits of this byte are
not used.

.

SECTION 3 SPRITES

BIT
7 6 5 4 3 2 1 0
I 1 ! I T r I
BYTEO VERTICAL PIXEL POSITION
bt % sttt
BYTE 1 HORIZONTAL PIXEL POSITION
% % % ', : : s
BYTE 2 SPRITE PATTERN NUMBER
l 1 1
Ll 1 1
HORIZ T
BYTE3 SHIFT 0 0 0 COLOUR OF SPRITE

Figure 9. The Four Attribute Bytes for a Sprite Plane

3.3.2 Initial Settings

When the MSX is switched on, the four bytes of each
attribute block in the SPRITE ATTRIBUTE Table are
initialised the following way:

(a) The Vertical Position byte (byte 0) is set to
¢ 209 - which switches off the Sprite.

(b) The Horizontal Position byte value varies for
each Plane of the attribute block - but is
irrelevant since the Sprite is ‘switched off’.

(c) The Pattern Number Byte is set to the same value
as the Plane number: thus, Plane 0 is set to

pattern 0, Plane 1 is set to pattern 1, and so
on.

(d) The Colour byte is set to the initial Foreground
colour, usually White (15 decimal).

Whenever the data in an attribute is changed, it
retains the value given to it until changed again - even
when Screen Modes are switched: in other words, it is
not initialised again unless the MSX is ‘reset’.

Thus if the pattern and colour is to remain the same
once set, subsequent use of the BASIC statement

- RO o

SECTION 3 SPRITES

‘PUTSPRITE’ for that Plane need not include the colour
or pattern data.

The following program demonstrates this feature:

10 SCREEN 1:VDP(6)=VDP(4)

20 PUTSPRITE 0,(10,209),1,42
30 FOR J=0 TO 150

40 PUTSPRITE 0,(10+J,10+4J)
50 NEXT

60 GOTO 30

Line 10 simply sets the Sprite Patterns to the
character set (after ensuring the machine is in a Mode
to accept Sprites!). Line 20 sets up the Sprite data
- in particular, the colour is set to Black (°1°) and
the pattern to “*”° (Character 42), while leaving the
Sprite still switched off (the vertical locator = 209).
Line 30 then starts the loop to move the Sprite across
the screen: note that in Line 40, it is not necessary to
specify colour or pattern again.

The SPRITE PATTERN Table is usually initialised to
zeroes throughout, so no Sprite patterns are present.
However, you may find on some MSX machines one or two
Sprite patterns have in fact been set - the Sony ‘Hit
Bit ", for example, initialises the first few Sprite
patterns on switch-on to ‘markers” that it uses for its
opening Menu display.

3.3.3 Making the Move

In MSX BASIC, Sprites are moved using a PUTSPRITE
statement, or by VPOKEing the required data into the
correct VRAM address.

PUTSPRITE
The PUTSPRITE statement has one of two formats:
(a) PUTSPRITE p,(x,y),c,n
(b) PUTSPRITE p,STEP(x,y,),c,n

where ‘p° is the Plane number for the Sprite, ‘x’ is its
horizontal pixel location, in the range -32 to 255, 'y’
is its vertical pixel position in the range -32 to 192,

¢’ is the colour and ‘n’ is the pattern number. Note
that values for ‘y“ approaching 255 dupe the MSX into
thinking that the Sprite should be located at the top of

the screen (see Section 3.3.1).

" As previously mentioned in Section 3.3.2, for both
formats the values for ‘¢’ and 'n’ can be ignored once

w535

SECTION 3 SPRITES

they have been correctly set for the Plane. Initially

they are set to the switch-on Foreground colour and the
Plane number respectively.,

If only the pattern is being changed, then the format
would be:

PUTSPRITE p,(x,y),,n
The variables ‘p, x and y’ must always be present.

The first format, (a), gives an absolute pixel
location for the top left corner of the Sprite,
determined by the values of ‘x° (horizontal) and ‘y°
(vertical). To move a Sprite across the screen using
this format, one would use a program segment such as

70 FOR I=40 to 100
80 PUTSPRITE 1,(I,120)
90 NEXT

The values for “x” and ‘y” can also be expressions - try
the following program, for example:

10 SCREEN 1:VDP(6)=VDP(4)
20 FOR I=1 TO 7.3 STEP .05

30 PUTSPRITE 0, (120+SIN(I)*50,904+COS(I)*50),1,42
40 NEXT

This moves a “*” around the screen in a circle, each
location on the screen being defined in absolute terms
by the expressions for “x” and ‘y”°.

The second format, (b), uses "x” and ‘y’ to move the
Sprite to a position that is relative to its previous
position. 1In other words, the value of ‘x” is added to
the previous horizontal position, and the value of ‘y°
is added to the previous vertical position. A program

segment to move a Sprite across the screen wusing this
format could be:

70 FOR I=1 to 50
80 PUTSPRITE 0,STEP(1,0)
90 NEXT

As you can see, in this instance the loop counter is
not used in the determination of the Sprite’s location
- merely to count off how many times the Sprite must
move relative to its last position. If the loop counter
variable is used, then the Sprite will appear to
accelerate very quickly indeed: try the last program,

making the “x° value ‘1/5° instead of ‘1°, and you'll
see the effect,

- B4 -

VPOKEing a Sprite

A Sprite’s attributes can be changed by VPOKEing the
required data into the correct location in VRAM. To
find the attribute start address for the desired Plane,
multiply the Plane number by 4, and add it to the start
address for the SPRITE ATTRIBUTE Table - in the MSX,
this is 6912 decimal (1B00 hex). This gives the address
for the first byte of the attribute for that Plane - see
Figure 9.

The following program demonstrates how the VPOKE can
be used to move a Sprite across the screen on Plane 3:

10 SCREEN 1:VDP(6)=VDP(4)
20 VPOKE 6912+(3%*4),100
30 VPOKE 6914+(3%*4),42

40 VPOKE 6915+(3*4),1

50 FOR I=40 TO 200

60 VPOKE 6913+(3*%4),I

70 NEXT

Line 10 should be familiar to you now - it sets the
Sprite Patterns to the character patterns. In lines 20,
30 and 40 the ‘y’, ‘n” and ‘c’ attributes are set to put
a Black “*° patterned Sprite, 101 pixels down (the top
pixel line is “-1°, remember) on Plane 3 (note the “3*4°
added to 6912, to find the correct VRAM addresses).
Then in line 60, the required °x° pixel position is
VPOKED into the horizontal attribute byte, to move it
across the screen.

Machine code programmers would use a similar process,
entering data into the VRAM addresses using ROM routines
as described in the first Section of this book. There
is a handy ROM routine to identify the start address of
the attributes for a specific Plane. The details are as
follows:

087H Find Sprite Attribute start address

IN: Sprite Plane number in Register A
(F928 hex = Attribute Base address)

OUT: Attribute start address in HL
AF,DE,HL modified

- 55 -

SECTION 3 SPRITES

It should be noted that in this routine, the MSX
looks to the SPRITE ATTRIBUTE Base address it has stored
at F928 hex: if the Base address is changed, its new
location should be entered at F928 hex (low byte) and
F929 hex (high byte) for the above routine to produce a
valid result.

Machine code programmers won t need reminding of the
speed of machine code: delays must be incorporated
between successive Sprite moves - otherwise they occur
too fast to be seen! One way of achieving a suitable
“timing” for Sprite movement is to use the Interrupt
signal from the VDP itself - for further details see
Section 3.3.6

3.3.4 Four to a line

The patterns of only four Sprites can be displayed on
one horizontal pixel line: if more Sprites have a line
of their pattern on the same line of pixels, only the
four Sprites with the lowest Plane numbers (i.e those
‘nearest the front” of the screen) will have that
particular line of their. pattern displayed.

The ‘Fifth Sprite’ Flag of the VDP Status Register
(Bit 6, VDP Register 8) 1is set, and the next highest
Plane number carrying an offending Sprite is loaded
into the lower 5 Bits of the Status Register.

Thus if Sprites on Planes 3, 5, 7,.9, 12, 14 and 17
all have lines of their patterns on the same horizontal
lines of pixels, then only Sprites 3, 5, 7 and 9 will be
displayed in full. Sprites 12, 14 and 17 will lose
those parts of their patterns on the common lines, the
Fifth Sprite Flag will be set, and “12° will be loaded
into the lower part of the VDP Status Register.

The Plane number of the Fifth Sprite can be found by
a program segment such as:

IF VDP(8) AND &H40 THEN FS = VDP(8) AND &H1F
This tests the Fifth Sprite Flag, and if it is ’17,
returns the Plane number of the fifth Sprite in variable

FS. Program 6 of Appendix B demonstrates the “four in
line’ feature of MSX Sprites.

Machine code programmers should refer to Sgction
3.3.6 for information about reading the Status Register.

- 856 =

SECTION 3 SPRITES

3.3.5 Collision Courses

When two (or more) Sprites have one active bit of
their patterns occupying the same pixel on the screen,
the Coincidence Flag of the VDP Status Register 8 is
set. This is described under ‘Bit 5° of VDP Register 8
in Section l.2.2.

MSX BASIC provides Interrupt driven statements to
allow such collisions to be acted upon. The statements
are:

ON SPRITE GOSUB
SPRITE ON
SPRITE OFF
SPRITE STOP

The Coincidence Flag is examined every time the VDP
provides an interrupt signal - 50 times a second. If it
is set and the SPRITE ON statement has been made,
program sequencing jumps to the subroutine specified by
the ON SPRITE GOSUB statement. This subroutine should
of course, provide a RETURN - the RETURN being made to
that part of the program being processed when the
interrupt occured.

While the subroutine is being processed, other
program accessible interrupt-driven routines are
temporarily inhibited, so that two cannot be operative

simulataneously.

SPRITE OFF switches off the Sprite interrupt process
altogether, as far as the program is concerned. When
the SPRITE STOP statement has been made, a Sprite
coincidence is ‘remembered”’ until a SPRITE ON statement
occurs in the program. The interrupt is then acted upon
accordingly - with a jump to the ON SPRITE GOSUB

routine.

As with all the interrupt-driven routines, the “ON
SPRITE GOSUB° statement can be made right at the
beginning of a program, and invoked when desired in the
program by the SPRITE ON statement. Since the MSX does
all the testing in ROM, it saves the need for tests to
be incorporated in the main program - and that means
faster program execution. It also means that your MSX
can apparently be doing several things at once
- accepting an input from the keyboard, playing
‘background’ music and testing for a Sprite collision,
to name but three - all whilst the main program 1S

running.

- §% =

R — R S S = e, e |

SECTION 3 SPRITES

3.3.6 Sprite Status for Machine Code Programmers

Machine code programmers can test for the fifth
Sprite on a line and for Sprites coinciding by examining
VDP Register 8, the Status Register. However, reading
this Register clears the Interrupt Flag - which could
adversely affect the machine’s own hardware interrupt-
driven routines.

Furthermore, the Coincidence Flag is also reset when
the Status Register has been read. On the face of it,
this makes life a little tricky. If the Status Register
is read prior to the MSX’s own read operation, it will
not see a ‘set’ interrupt flag, and so will not perform
any of its hardware interrupt routines. If it’s read
after the MSX does its own read, the Coincidence Flag
will have been cleared, and Sprite ’‘crashes’ will go
undetected. -

There is, of course, a solution. The Status Register
must be ‘read’ at the same time as the MSX reads it.. In
practice, this means “saving’ the result of the MSX’s
read for subsequent examination. Fortunately, the
authors of MSX BASIC have done this for us: vyou’ll find
the latest information on the VDP Status Register at
F3E7 hex.

The MSX ROM hardware interrupt routine provides a
number of wuseful features for machine code programmers,
so let us look at the routine in alittle more detail.

ROM Interrupt Routine

The routine is accessed whenever a ‘RST 38H° occurs
- the normal address for the %80°s Interrupt Mode 1. On
such interrupts, the MSX pushes both 280 Register sets
to the stack, then CALLs a “hook‘ at FD9A hex.

This hook comprises a series of five ‘RETurns’ - and
since they are in RAM, they can be replaced by a jump to
one’s own routine, the RETurn going back to the hardware
interrupt process, This hook enables additional
hardware interrupt procedures to be added.

On return from this hook, the MSX reads the VDP
Status Register - and if the VDP’s Interrupt Flag - Bit
7 - is NOT set, it returns from the interrupt routine.
(Hence the reason for being careful about reading the
Status Register - which <clears the VDP’'s Interrupt

Flag).

- 58 -

SECTION 3 SPRITES

If the VDP’s Interrupt Flag IS set, there is an
immediate CALL to another hook, at FD9F hex. Since VDP
interrupts occur 50 times a second, this hook can
provide an extremely useful ’clock’. It, too, consists
of a series of five ‘RETurns’, which can be replaced by
a jump to the programmer ‘s own routines.

The hook can be used, for example, to increment a
“timer” for Sprite movements, or to initiate Sprite
movement direct. However, to traverse the screen - some
250 pixels - would take five seconds at 50 pixels per
second: for faster speeds, it would be necessary to move
the Sprite more than one pixel at a time, or to
incorporate one s own delay routine.

At this hook, the 280 Register A contains the result
of the VDP’s Status Register read - so it could be saved
in a suitable place in memory in an ‘own’ routine.
Again, care should be taken here, because the MSX not
only uses the information in Z80 Register A itself in
subsequent operations but also the data held in other
Z80 Registers. So their contents must be preserved
- using PUSHes and POPs - in the user’s own routine.

On return from the hook, the contents of Z80 Register
A are loaded into the Status Register store, at F3E7H.
This address can be examined for details on the Fifth
Sprite and the Coincidence Flag, without need to use the
hook and without detriment to any other routines.

The ROM Interrupt routine then goes on to examine the
status of the the various interrupt conditions for BASIC
(ON KEY... ON STOP... ON INTERVAL... and so on) as well
as the status of any PLAY statements and keyboard inputs
etc. That ‘s how the MSX can play music while a program
is running, and how it ‘remembers” which keys have been
pressed so that it can display them when an input from

the keyboard is called.

To achieve a ‘clock’ signal - to time Sprite movement
for example - the hook at FDIF hex should be used, this
hook being ‘activated” 50 times a second while
interrupts are ENABLED. When interrupts are DISABLED
- which occurs, for example, during the brief moments it
takes to set up the VDP for a Read or Write operation
- then the FD9F hex hook is not accessed, but this
should not seriously disrupt any general timing
mechanisms.

To help newcomers to machine code programming, a
simple example of how this hook can be used to perform a
‘count” is now given.

SECTION 3 SPRITES

First, the hook must be loaded with a jump to the
routine address, which we shall call ‘COUNT and which
we will Assemble at E000 hex (having ensured space in
RAM is reserved, using the BASIC ‘CLEAR’ statement, of
course!). The hook is five bytes long, so there’s
plenty of room for the three byte jump command:

FD9F C300E0 JP COUNT

One could do a CALL, of course - followed by a
RETurn. But this isn’t really necessary, since our
COUNT routine will have a RETurn which will send

processing directly back to the ROM Interrupt routine,
instead of via the hook.

The next step is to write the COUNT routine to update
the value of our own counter, which we will call TICKER:

E000 E5 COUNT:PUSH HL

E001 2107E0 LD HL,TICKER
E004 34 INC (HL)

E005 E1l POP HL

E006 C9 RET

E007 00 TICKER:DB 0

Notice the PUSH HL at the start of this routine and
the POP HL at the end: that’s to make sure that on the
RETurn, Register pair HL contains the same data it came
in with, so that the MSX isn’t presented with spurious
data. Whenever using a hook, always make sure the data
in all Registers is returned the way it came in.

Every time the machine does a hardware interrupt,
this routine will add one to the data in TICKER, at

address E007 hex. So it will clock up ‘50° every
second. Elsewhere in the program, TICKER can be
examined to see if it’s “time for action’ - move a

Sprite, perhaps. If it is planned to move a Sprite every
tenth of a second, then the move must be made when

TICKER reaches ‘5, and a program segment could look
like this:

MOVE? : LD A, (TICKER)
CP 5
JP NC, MOVEILT

The routine ‘MOVEIT’ would actually make the move, by
updatin? the appropriate byte of the relevant attribute.
MOVEIT in this case would be called whenever TICKER had
clocked up “5° (or more): the MOVEIT routine should, of

course, include a statement to reset TICKER to 2zero
after the move has been made.

..60-.

SECTION 4

SCREEN MODE 0

Text Only

This is the first of the four possible
Screen Modes for the MSX: it is used
mainly for text, offering a Screen size
of 40 columns x 24 rows and only two
colours at a time. Most models of the
MSX enter this Mode on switch-on.
Either this Mode or Mode 1 (whichever
was previously in use) will also be
selected when a program using Mode 2 or
Mode 3 is terminated.

4.1 SCREEN MODE SPECIFICATION

4.1.1 Screen Parameters

Screen Size (Max): 40 columns x 24 rows
(Recommended) : 37 columns x 24 rows
(to avoid loss at edges)
Character set (Max): 256
Character Size: 6 pixels x 8 pixels deep

(Right two bits of each
Character is “lost’)

Characters re-definable: Yes
Colours available: Any two from range of 15

Sprites: Not available

This Mode is selected when Bit 1 of VDP Register 0
and Bit 3 of VDP Register 1 are equal to "0, and Bit 4
of VDP Register 1 is equal to “l1°: VDP Registers 2 and 7

must also be initialised.

- 61 -

4.2

SECTION 4 SCREEN 0

4,1.2 MSX Initialisation of Mode 0

When Screen Mode 0 is selected using BASIC, the VDP
Registers are initialised by the MSX so that the Tables
in VRAM are set as follows:

PATTERN NAME: 0 VDP(2)=0

BASE(0)=0

PATTERN GENERATOR: 800 hex VDP(4)=1
2048 dec BASE(2)=800 hex

During the Screen initialisation process, the 256 MSX
character set is loaded into the PATTERN GENERATOR Table
in VRAM from its location in ROM, the line width is set
to its default value - usually 37, as determined by the
contents of address F3AE hex in RAM, the screen is
cleared and the default colours set.

Screen colour for this Mode 1is derived from VDP
Register 7: the top four bits define the Foreground
colour, the bottom four bits define both the Background
and the Border colour. The initial setting is usually
F4 hex - that is, White on a Dark Blue Background.

VDP Registers 3 (COLOUR Table start address), 5 and 6
(SPRITE data) have no significance, since colour 1is
derived from VDP Register 7, and Sprites are not

available.

The MSX BASIC Graphic statements (DRAW, LINE, CIRCLE,
PAINT, PSET, PRESET and POINT) are not operative in this

Mode.

HOW MODE 0 OPERATES

The PATTERN NAME Table for Mode 0 is 960 bytes long,
each byte ‘mapping’ to a screen location. The first
byte of the Table determines the character displayed at
the top left of the screen, the second byte determines
the character in the column next to it, and so on. The
arrangement is similar to that shown in Figure 3, except
that for this Mode each row has 40 columns.

Each character position on the screen occupies a
block of six horizontal pixels x 8 vertical pixels,
while the character pattern is actually defined by eight
bytes, each of which has eight bits. For this screen
only, the VDP therefore ignores the least significant
two bits of the each pattern defining byte: that is to
say, the rightmost side of the pattern block 1is not

reproduced on the screen.

» §2 -

SECTION 4 SCREEN 0

For this reason, most of the characters are either
Qefineq within the top five bits, leaving one bit
blank” to provide the space between characters, or they
are defined within the top six bits. Characters defined
using seven or eight bits per byte will have their right
sides truncated.

POSITION 0 POSITION 39
=BYTE 0 in =BYTE 39 in
PATTERN PATTERN name Table name Table
name GENERATOR
Table Table SCREEN
BYTES]
BYTE 0 0-7 CHRO I_‘
SRS BYTES CHR 1 POSITION N
BYTE 2 8-15 =BYTE N IN
I : I i NAME TABLE
I CHR No. ‘'C’
BYTE 'N' [CHR N0 C" | ™ BYTES PATTERN FOR* e e
! fuftaal SREIE B GENERATOR
' ' (Cx8)+7 =
1 1 Table
BYTE 958 BYTES COLOUR
BYTE 959 2040 TO HR DETERMINED
2047 i 259 BY VDP (7) -
POSITION 959
=BYTE 959

in name Table

FOREGROUND BACKGROUND,

COLOUR COLOUR
OF 1" BITS OF ‘0" BITS

VDP REGISTER 7
*NOTE - Lowest two bits of each pattern definition are ignored in this mode.

Figure 10. Creating Mode 0 Screen display

- B3 ¥

4.3

SECTION 4 SCREEN 0

During the active-screen refresh period, the VDP
examines each byte in the NAME Table in turn, to
determine what should be placed in the corresponding
location on the screen. Whatever value it finds in the
NAME Table it takes to be a character number. It then
looks to the PATTERN GENERATOR Table, locating the start
of the pattern definition by its character number: if
it found 65 decimal in the NAME Table, it would look to
the pattern which started at 65x8 bytes from the
beginning of the PATTERN GENERATOR Table.

For each “0° in the pattern definition, the VDP looks
to the Background colour defined in VDP Register 7 and
sets the corresponding pixel on the screen accordingly.
Similarly, each “1° in the pattern definition causes the
corresponding pixel to be set to the Foreground colour,
as defined by VDP Register 7.

MODE USAGE
4.3.1 Limitations

Screen Mode 0 is intended to be used for text
applications, particularly where around 30 characters to
a line - as provided by Screen 1 - is insufficient. It
also has limitations as far as non-textual programs are
concerned in that only two colours are available for the
entire screen display - so areas of different colour
cannot be created - and Sprites are not available.

4.3.2 Free VRAM Area

As stated earlier, when the Mode is initialised by
the BASIC statement "SCREEN 0°, or by calling the ROM
routine at 6C hex, the MSX character set is loaded into
the PATTERN GENERATOR Table starting from VRAM address
800 hex (2048 decimal). This Table is 2048 bytes long.
The NAME Table, which starts at VRAM address 0, is 960
bytes long, and so the Mode utilises only 3008 bytes of
the potential 16k VRAM,

This means that a number of both NAME and PATTERN
GENERATOR Tables can be defined and, provided they are
located at viable Base addresses, switching from one
Table to another is simply a matter of resetting the
appropriate VDP Register. Details of how to do this are
given in the following paragraphs, while possible start
addresses for the Tables are given in the Appendices.

This technique can provide the programmer with a very
fast means of switching screen displays.

- B4 »

SECTION 4 SCREEN 0

4.3.3 Switching NAME Tables

In a very simple example of switching the NAME Table
address, one may decide to set up a separate screen with
a ‘Menu’ or ‘Help information. The initialised Base
for the NAME Table is at 0 in VRAM. The Table always
‘sits” on 1k (400 hex) boundaries, and so other
potential Base addresses are 400 hex, 800 hex, CO00 hex,
1000 hex, 1400 hex 1800 hex, 1C00 hex - and so on, up to
3C00 hex maximum.

The PATTERN GENERATOR Table is initialised at 800 hex
and runs for 2048 bytes (800 hex), and so occupies the
area 800 hex to FFF hex. If we avoid this area (as
indeed we should if we don’t want to infringe into the
PATTERN GENERATOR Table!), then that still leaves a
number of potential areas where a further NAME Table can
be located. Let us assume we decide to use address 2000
hex (8192 decimal) for a second NAME Table Base.

The area should be cleared by VPOKEing ‘0 for 960
bytes (to remove spurious data that may be there), and
then it can be VPOKEd with the data we want to appear on

the screen. Switching screens to show this second
display is then simply a matter of resetting VDP(2)
- the NAME Table defining Register - to 8 (i.e.

‘VDP(2)=8").

Note that, because BASIC still expects to find the
NAME Table at O, any PRINT statements will not produce
characters on the screen whilst the NAME Table is set to
this new address: they will be entered into the
appropriate screen positions in the original NAME Table
at 0. In order to PRINT to the screen at the new NAME
Table address, it would be necessary to make BASIC
realise you have changed the address: this can be done
by wusing the BASE function. BASE(0) gives the start
address for the NAME Table, so this must be set to the
new address (BASE(0)=&H2000), and then the screen re-
initialised.

The following program may help to clarify this
procedure:

10 SCREEN 0

20 PRINT "THIS SCREEN, NAME TABLE AT 0"

30 GosuB 100

40 BABSE(0)=&H2000

50 VDP(2)=8: REM See Section 1

60 SCREEN 0

70 PRINT “THIS SCREEN, NAME TABLE AT &H2000"
80 GOSUB 100

90 sTOP

100 FOR I=0 TO 2000:NEXT:RETURN

- 65 =

SECTION 4 SCREEN 0

After running this program, do a “PRINT VDP(2) and
you’ll see it has the value “8°. Similarly, BASE(0) will
have the value &h2000 (8192 decimal). You will be able

to use the screen in the normal way - that is, entering
commands direct from the keyboard - although it has now
been completely re-initialised to a new NAME Table
address.

To see what is in the ‘original’ NAME Table - at Base
address 0 = enter VDP(2)=0 direct from the keyboard.
You will then see the result of the PRINT statement in
line 20. Now try entering other data from the keyboard,
and you will see your efforts apparently unrewarded.
Press the ‘RETURN’ key, to ensure you are on a fresh
line. Then enter VDP(2)=8 very carefully (you won't see
what you are doing!), and you will be returned to the
screen that BASIC now accepts, to see the results of
your previous keying-in. To return your MSX to its
original state, simply list the program and change lines
40 and 50 so that BASE(0)=0 and VDP(2)=0 and RUN again.
All will be restored to ‘normal’.

4.3.4 Switching PATTERN GENERATOR Tables

Obviously before switching the PATTERN GENERATOR
Table to a new address, it is necessary to load up the
Table with the desired patterns. Creating patterns has
already been discussed in Section 2: the important thing
to remember is where your new PATTERN GENERATOR Table is
going to start.

Program 4 of Appendix B demonstrates how the PATTERN
GENERATOR can be re-addressed: although this Program
operates in Screen Mode 1, it can also be used for
demonstration purposes in Mode 0 provided VDP(4) is
correctly reset to ‘1° on return to the initialised
state. One can remain with the “second”’ character set
by adding a STOP in the Program after VDP(4) has been
set for the new PATTERN GENERATOR Table address.

However, because the Program doesn’t load a full
character set into the new PATTERN GENERATOR Table area,
keys for undefined characters will not produce a result
on the screen: the only character numbers defined by
this program are those for the CAPITAL alphabet letters.
They have been defined as their lower case counterparts,
and so you will get lower case letters when - and only
when - typing the CAPITALS. After running this program,
you can return to the original PATTERN GENERATOR Table
by typing in VDP(4)=1.

For further information on switching PATTERN

GENERATOR Table addresses, please refer to the
discussion on VDP(4) in Section 1.2.2,

- 66 =

SECTION 5
SCREEN MODE 1

Text and limited Graphics

This Mode provides a screen format of
32 x 24 for text and graphic character
applications, with Sprites and limited
colour facilities. The MSX will always
return to either this Mode or Mode O
when BASIC enters the command level
- i.e. for direct access to the screen
from the keyboard. It is possible to
obtain the featuree provided by the VDP
for Mode 2 while “in” this Mode: these
are different from those provided by
the MSX system when it initialises Mode
2 for its own use, and enable more
characters to be defined, with very
high colour resolution. Details are
given in the Section on Mode 2: this
Section deals only with the way the VDP
operates in Mode 1, and the way the MSX
initialises and uses the Mode.

5.1 SCREEN MODE SPECIFICATION

5.1.1 Screen Parameters
Screen Size (Max): 32 columns x 24 rows

(Recommended) : 29 columns x 24 rows
(to avoid loss at edges)

Character set (Max): 256

Character size; 8 pixels x 8 pixels

Characters redefinable: Yes

Colours available: All, but blocks of eight
characters have the same
Foreground and Background

colours.

Sprites: Available

- K3 w

SECTION 5 SCREEN 1

5.1.2 MSX Initialisation of Mode 1

When Screen Mode 1 is selected using BASIC or by
calling the ROM routine at 6F hex, the VDP Registers are

initialised by the MSX so that the Tables in VRAM are
set as follows:

PATTERN NAME: 1800 hex VDP(2)=6
6144 dec BASE(5)=1800 hex
COLOUR: 2000 hex VDP(3)=80 hex
8192 dec BASE(6)=2000 hex

PATTERN GENERATOR: 0 VDP(4)=0

BASE(7)=0
SPRITE ATTRIBUTE: 1B00 hex VDP(5)=36 hex
6912 dec BASE(8)=1B00 hex

SPRITE PATTERN: 3800 hex VDP(6)=7
14336 dec BASE(9)=3800 hex

Additionally, Bit 1 of VDP Register 0 and Bits 3 and
4 of VDP Register 1 are reset to 0 in order to select

VDP Mode 1. During the initialisation for Mode 1, the
MSX:

(a) Loads its own 256 character set into the PATTERN
GENERATOR Table in VRAM from 1BBF hex in ROM, as
determined by the contents of F920 hex (low
byte) and F921 hex (high byte).

(b) Sets the line width to its default value
- usually 29.

(c)®Loads the first 32 bytes of the COLOUR Table in
VRAM with the default value, F4 hex - giving
White (15, or ‘F’ hex) characters on a Dark Blue
(4) background. VDP(7) is loaded with the
Border colour default value.

(d) IF Sprite size/magnification is specified, the
SPRITE ATTRIBUTE and SPRITE PATTERN Tables are
initialised as described in Section 3.3.2.
Otherwise they are left alone.

This initialisation process takes place whenever
‘SCREEN 1° is called from MSX BASIC, or the ROM routine
at 6F hex is called from a machine code program. Other
areas of VRAM are left unaffected, so if this Mode is
called immediately after Screen 0 has been called, for
example, there will still be a character pattern set in
the VRAM locations starting at 800 hex (2048 decimal)
- this being where the PATTERN GENERATOR Table is
initialised for Screen Mode 0.

- 68 -

5.2

SECTION 5 SCREEN 1

The MSX BASIC Graphic statements (DRAW, LINE, CIRCLE,
PAINT, PSET, PRESET and POINT) are not operative in this
Mode.

HOW MODE 1 OPERATES

The PATTERN NAME Table for Mode 1 1is 768 bytes long,
each byte ‘mapping” to a screen location. The first
byte of the Table determines the character displayed at
the top left of the screen display, the next byte
determines the character in the column next to it, and
so on. The arrangement is shown in Figure 3.

During the active screen refresh period, the VDP
examines each byte in the NAME Table in turn, to
determine what should be placed in the corresponding
location on the screen. Whatever value it finds, it
takes to be a Character number or ‘NAME’.

The VDP then looks at the PATTERN GENERATOR Table, to
determine the shape for the required character number.
Each character is defined by eight bytes, so if the
character number is 65, say, then the VDP would look to
the eight pattern bytes starting at 65x8 bytes from the
beginning of the PATTERN GENERATOR Table.

At the same time, the VDP looks to the COLOUR Table,
to determine the colours for the displayed character.
The COLOUR Table in this Mode is 32 bytes long, and the
colours of a character for display are determined by
the most significant five bytes of the character number.
So if the character number is 65 (41 hex), say, the top
five bytes would give a value of ‘87

0100 0001

The VDP looks at the resulting byte number in the

COLOUR Table - in our example, byte 8. The top four
bits of this byte’s value determine the colour for all
1s’ in the character’s pattern (i.e., the Foreground

colour), while the bottom four bits determine the colour
of all the ‘0Os’ in the character’s pattern (i.e. the
Background).

From this, it is evident that eight characters share
the same COLOUR Table byte. The colours for character
numbers 0 to 7 are determined by the first byte (byte 0)
in the COLOUR Table, for character numbers 8 to 15 by
the second byte (byte 1) in the COLOUR Table, and so on.
The byte number in the COLOUR Table can be found by
integer division of the character number by eight.

~The ’‘mapping’ to the screen for this Mode is
illustrated in Figure 11,

w B8

SECTION 5 SCREEN 1
F’OSlTlON‘O POSITION 31
=BYTE 0 in =BYTE 31in
NAME Table NAME Table

PATTERN PATTERN
NAME GENERATOR
Table Table
B Defines pattern
SEEO OETES }’for CHR O
1 POSITION N=BYTE N
BYTE 2 SYIES CHR 1 in NAME Table
| ! | 1 CHR No. 'C’
ke Defines pattern D defined from
BYTE'N' [tHR No-C. for CHR No. ‘C’ PATTERN
A = e s GENERATOR
! v | Cx8)+7 Table
1]
BYTE 766 ; COLOUR DETERMINED
BYTE 767 %I()Ets Defines pattern BY BYTE C/8
047 0 for CHR No. 255 in COLOUR Ta_bie]—
POSITION 767
=BYTE 767
in NAME Table
COLOUR Table
BYTE O
BYTE 1
l |
BYTE | '
Cc/8 h'_ {
| OREGRNDI|BACKGRND {
I

' | |
| | :

BYTE 32

Figure 11. Creating Mode 1 screen display

- 70 -

SECTION 5 SCREEN 1

MODE USAGE

5.3.1 Free VRAM Areas

In this Mode, the NAME Table occupies 768 bytes, the
PATTERN GENERATOR Table 2048 bytes, the COLOUR Table 32
bytes, the SPRITE ATTRIBUTE Table 128 bytes, and the
SPRITE PATTERN Table 2048 bytes. Bearing in mind where
these Tables are initialised by the MSX, the arrangement
in VRAM looks like this:

0 - 2047 decimal PATTERN GENERATOR
0 - 07FF hex TABLE
2048 - 6143 decimal Not
0800 - 17FF hex used
6144 - 6911 decimal NAME
1800 - 1AFF hex TABLE
6912 - 7039 decimal SPRITE ATTRIBUTE
1B00 - 1B7F hex TABLE
7040 - 8191 decimal Not
1B80 - 1FFF hex used
8192 - 8223 decimal COLOUR
2000 - 201F hex TABLE
8224 - 14335 decimal Not
2020 - 37FF hex used
14336 - 16383 decimal SPRITE PATTERN
3800 - 3FFF hex TABLE

From this, you can see that there are areas within
VRAM which are not used. If one chose not to use all
the area allocated to Sprites, then this would release a
further area within VRAM.

5.3.2 Switching NAME and PATTERN Tables

As with Mode 0, these ‘free areas’ can be used to set
up alternative Tables, Switching from the initialised
Table address to the alternative address is achieved by
resetting the appropriate VDP Registers,

Note that each Table must ‘sit’ on a specific

boundary address, as detailed in Section 1.2.2 on the
VDP Registers and given in Appendix C.

- Miw

SECTION 5 SCREEN 1

A discussion on NAME and PATTERN Table switching is
given in Sections 4.3.3 and 4.3.4 for Mode O0: the
process for this Mode is similar, although of course the
addresses of the initialised Tables are different.
You’ll also find simple examples of switching these
Tables in Programs 3 and 4 of Appendix B.

Among the programs of Appendix B, you’ll see several
instances where the SPRITE PATTERN Table has be reset to
the same address as the PATTERN GENERATOR Table for
characters: this gives an easy way to set up an entire
SPRITE PATTERN Table. This Table always ’‘sits” on an
800 hex boundary, and so a completely new Table could be
defined in the Non-used areas of VRAM for this Mode, at
800 hex, 1000 hex, 1800 hex, 2800 hex or 3000 hex,
without interfering with any of the other Tables.
However, only 32 Sprites can be displayed on the screen
at a time, and since a SPRITE PATTERN Table allows for
256 8-byte Sprite patterns or 64 32-byte Sprite
patterns, one Sprite Table should always prove adequate.

5.3.3 Colour for Mode 1

The COLOUR Table in this Mode can sit on 40 hex
boundaries, and since it is only 32 bytes long, a large
number of COLOUR Tables can be set up within the free
areas of VRAM. However, switching COLOUR Tables affects
the colouring of all characters, and so a complete Table
should be defined in every instance.

Also it should be remembered that the COLOUR Table
controls the colours of characters, not screen
locations, and so the value of switching COLOUR Tables
is rather limited: it is probably easier to simply
change the colours within the existing Table.

This can be achieved by VPOKEing the appropriate byte
in the COLOUR Table with the desired colour data: if one
uses hex notation, the most significant hex digit
represents the foreground colour, and the least
significant digit the background colour.

Thus, to change the colouring of the letter ‘A’
- character 65, we would first ascertain which byte we
need to change in the COLOUR Table. The integer of 65
divided by 8 is 8, and so the byte required is at 8+8192
(the COLOUR Table start address), i.e. 8200. We would
then VPOKE this address with the required data - for
Dark Yellow (10, or A hex) on a Dark Red background (6),
we would ‘VPOKE 8200, &HA6 °.

Every occurence of the letter ‘A" on the screen would
then be in the new colouring. So will the @

character, and letters B, C, D, E, F, and G - since they
all share the same colour information byte.

- 72 =

T A

SECTION 5 SCREEN 1

. This makes life a little difficult if one wants to
pick out certain words in a different colour - since any
letters used in those words will be in the ‘new’ colour
wherever they appear on the screen. One solution is to
repeat the alphabet portions of the character set at,
say, their ‘relative’ positions in the top section of
the PATTERN GENERATOR Table: i.e., with the top bit set.
Thus the pattern for ‘A° - character 65 or 4l hex
- would be repeated at character position 193 or Cl hex

(65+128, or 41 hex + 80 hex).

If this were done for the entire alphabet (and

punctuation marks), there would be two alphabet sets
loaded into the PATTERN GENERATOR Table, each of which
can be given its own colouring. To call the ’“second’

set, one would simply set the top bit high before
printing to the screen. This could be achieved in a
subroutine, with the line to be printed passed into the
subroutine via a string variable.

The following program illustrates the whole process:

10 SCREEN 1

19 REM. '
20 REM ** Load alphabet/punctuation marks **
21 REM -

30 FOR I=32*8 TO 122*8
40 VPOKE I+(128*8),PEEK(&H1BBF+I)

50 NEXT
59 REM
60 REM ** Now change the colour **
61 REM

70 FOR I=(128+32)/8 TO (128+122)/8

80 VPOKE 8192+I,&H16: REM Black on Dark Red
90 NEXT '

99 REM

100 REM ** Print line in original colour **
101 REM

110 LOCATE 5,5

120 PRINT "Original colours"

129 REM

130 REM ** Now print in new colours **

131 REM

140 LOCATE 5,7

150 SC$="New colours!"

160 GOSUB 200

170 PRINT SC$

180 STOP

189 REM

190 REM ** THE SUBROUTINE **

191 REM

200 FOR P=1 TO LEN(SCS$)

210 MID$(SC$,P,1)-CHRS(ASC(MIDS(SC$,P,1)) OR 128)
220 NEXT

230 RETURN

w 713 o

SECTION 5 SCREEN 1

The various values in the program have been written

so that the process can be easily understood. Lines 30
and 40 load from character 32 to character 122 into the
VRAM pattern area for characters 160 to 250. Note that

the character set in ROM is used rather than VPEEKing
the set already existing in VRAM.

Lines 70 to 90 change the colour of the second
alphabet set that has just been loaded, while lines 110

to 170 locate and print from the two sets onto the
screen.

The subroutine at line 200 takes every character in
the string variable SC$ in turn, and ‘ORs” it with 128
(80 hex) - which is one way to set the top bit. Note
that to do this, it is necessary to first obtain the
ASCII value of the character - and then, having updated
the character number, it is turned back to its character
pattern within the string variable SCS. The string
variable with its updated character patterns is then
printed to the screen on return from the subroutine.

VDP Mode 2 provides more scope for those who wish to
use different coloured characters. However, the way
that the MSX initialises the Screen for Mode 2 inhibits
its use in the same way as Mode 1: the good news is,
you can re-initialise Screen 2 so that it operates in
the same way as Mode 1 - with direct access to the
screen from the keyboard, and with the potential to
Ccreate 768 different character patterns. Also, each of
the eight lines that form a character pattern can be
displayed in two different colours - so one character
can have a total of 15 different colours in its make-up.
Details are given in Section 6 of this book.

5.3.4 Screen Width

When using MSX BASIC ‘PRINT statements, the number
of characters that can be printed on one line of the
display area is determined by the WIDTH statement. This
is initialised to 29 columns on most MSX machines, thus
leaving three character positions blank at the edges of
the screen.

It is possible to display characters outside the area
set by WIDTH by using the VPOKE command, since the
PATTERN NAME Table is always addressing the entire
active display area. Characters so placed will not
affect any BASIC command statements made along the same
line: BASIC operates only on commands made within the
area set by WIDTH: anything outside this area is ignored
and remains permanently on the screen until it is
cleared either by ‘CLS‘ or SHIFT-HOME.

- T4 #

SECTION 6

SCREEN MODE 2

High Resolution Graphics
or
High Resolution Text

When initialised by the MSX, this Mode
provides high resolution graphics with
limited text facilities, and can be
entered only during program or direct
statement execution. The Mode can also
be used in a similar manner to Screen
Mode 1, to provide a larger range of
characters and greater colour
resolution than Mode 1. Used this way
the screen can be accessed direct from
the keyboard for program development,
but the MSX BASIC graphic statements
cannot be used. This Section deals
with both methods of operation.

6.1 SCREEN MODE SPECIFICATION
6.1.1 One Mode, Two Displays

Normally, the MSX BASIC routines only allow this Mode
to be entered during program execution, or the execution
of direct statements from Modes 0 or 1. At the
termination of the program and on return to the BASIC
command level, the MSX returns automatically to the Text
Mode that was in operation prior to entering Mode 2.

The reason for this lies in the way that the Mode is
set up by the MSX. This is done in such a way that it
is not possible to print characters direct to the screen
from the keyboard: for program development, it is
necessary to be in one of the Text Modes - hence the
return to one of the Text Modes on exit from Mode 2.

The set up of Mode 2 by the MSX enables it to provide

sophisticated graphics routines =~ such as the very
powerful macro ‘DRAW’ statement, which enables a
- 75 =

SECTION 6 SCREEN 2

complete, complex figure to be produced from one string
variable.

It is possible to print text on the screen whilst in
this Mode, but to do so using BASIC, it is necessary
first to OPEN "GRP:" AS #1° before using ‘PRINT#1,
string” statements. It is also necessary to set the

location for PRINTing to the screen by (for example)
using the PRESET statement.

The interesting point here is that the text can be
positioned to start at any pixel location on the screen

- not necessarily at a character position. So in that
respect, one has greater control of where PRINT
statements are to be displayed. (The pixel 1location

defines the position of the top left corner of the
character).

Because of the way text is presented to the graphics
screen, it is not possible to redefine the characters:

you can only use the character set as provided by the
MSX.

However, it is possible to initialise the VDP into
its "Mode 2° - but without the use of the MSX graphics
facilities. When used this way, one can define up to
768 different characters, and each character can have
every one of its pattern lines in two different colours

- SO0 one character can be coloured with the entire
colour range.

Furthermore, the screen can be accessed direct from
the keyboard - for program development - as if it were a
‘Text Mode’. , This is, in fact, the ‘standard’ way of
using the VDP: it is the designers of the MSX system
that have adapted this wusage to provide for high
resolution graphics.

The programmer therefore has a choice of how Mode 2
is to be used: either in the manner it is set up by the
MSX, with extensive graphic facilities, or in the manner

of Mode 1, but with a potentially larger character set
and much greater colouring facilities.

Both methods will be discussed, but first let us have
a look at the way the VDP operates in Mode 2.

. Y

SECTION 6 SCREEN 2

6.1.2 VDP Screen Parameters

Screen size (max): 32 columns x 24 rows
(Recommended) : 29 columns x 24 rows
(to avoid loss at edges)

Character set (Max): 768

Character size: 8 pixels x 8 pixels

Characters redefinable: Yes (but not as initialised
by the MSX)

Colours available: All: each line of a

character pattern can be
individually defined for
Foreground and Background
colour (but not as
initialised by the MSX).

Sprites: Available

6.1.3 How the VDP Operates in Mode 2

The VDP is set to Mode 2 when Bit 1 of VDP Register 0
is set to ‘17, and Bits 3 and 4 of VDP Register 1 are
reset to 0°. When this happens, the VDP’s system for
evaluating the Base address of the PATTERN GENERATOR
Table and the COLOUR Table is different. In this Mode,
both of these Tables are 6144 bytes long, and both can
sit only on an 8k boundary.

Whereas in the other Modes, three bits define the
VRAM Base address for the PATTERN GENERATOR Table (see
Section 1.2.2), in this Mode only one Bit - Bit 2 of VDP
Register 4 - defines the Table’s start point. The other
two Bits - 0 and 1 - must be set to “1s” for the VDP to
function fully in the Mode.

Similarly in Mode 2 only one Bit defines the VRAM
Base address for the COLOUR Table - Bit 7 of VDP
Register 3. The remaining Bits (0 to 6) must be set to

ls” for the VDP to function fully in the Mode.

Both Tables can have only one of two possible
locations - at address 0 in VRAM, or at address 8192
(2000 hex), as selected by the Bits mentioned above.
The MSX in fact initialises the PATTERN GENERATOR Table
;o ?ddrese 0, and the COLOUR Table to address 8192 (2000

ex -

- 77 -

SECTION 6 SCREEN 2

The PATTERN NAME Table is 768 bytes 1long, each byte
‘mapping” to a screen location in exactly the same

manner as Mode 1 (see Figure 3). Thus the first byte of
the Table determines the character displayed at the top
left position on the screen display, the second byte

determines the character displayed in the column next to
it, and so on.

So far, there would appear to be no difference
between this Mode and Mode 1. However, in Mode 1 the
PATTERN GENERATOR Table is only 2048 bytes long,
catering for the 8-byte patterns of 256 characters. In
this Mode, the PATTERN GENERATOR Table is 6144 bytes
long, thus catering for 768 characters.

Obviously the maximum value that a byte in the NAME
Table can have 1is 255 (FF hex), so the question must
arise "how does the NAME Table address a character with

a value greater than 255°. The short answer is - it
doesn “t.

What in fact happens is the screen is divided into

thirds. The top third of the screen - 256 locations
(768/3) - 1is represented by the first 256 bytes of the
NAME Table. Any character number called within this

section of the NAME Table is defined by the character

pattern in the first 2048 bytes of the PATTERN GENERATOR
Table.

The ‘middle” third of the screen, represented by
bytes 256 to 511 in the NAME Table, calls up character
patterns in the second 2048 bytes of the PATTERN
GENERATOR Table. Similarly, the bottom “third’ of the
screen , represented by bytes 512 to 767 in the NAME
Table, calls up character patterns in the third block of
2048 bytes in the PATTERN GENERATOR Table. The three
blocks of 2048 bytes in the PATTERN GENERATOR Table make
up the total Table length of 6144 bytes.

Thus, if byte 0 in the NAME Table has the value ‘657,
then the particular character pattern placed at the top
left of the screen will be that defined by bytes 65x8 to
(65x8)+7 in the PATTERN GENERATOR Table. If byte 256 in
the NAME Table has the value ‘65", then the particular
character pattern placed on the left edge of the screen
eight lines down from the top (256/32) will be that
defined by bytes 2048+(65x8) to 2048+(65x8)+7 of the
PATTERN GENERATOR Table.

This, obviously, can be a completely different
character pattern to that appearing in the top third of
the screen. Similarly, yet a different character
pattern again can be defined for the bottom third of the
screen - yet called by the same number or Name, “65°.
This time, the pattern is defined by bytes 65x8 to
(65x8)+7 in the third section of the PATTERN GENERATOR
Table - which starts at byte 4096 from the Table’s Base
address. (See Figure 12).

- 1B

BYTET

BYTE 255’___
BYTE 256

BYTEM

BYTE 511
BYTE 512

BYTEB

BYTE 767

SECTION 6

SCREEN 2

PATTERN PATTERN
NAME GENERATOR PSSBIJ‘T%'}'JO
Tabfe Table in NAME Table SCREEN
evieo [V]
0-7
CHR No.65(T I POSITIONT
. P —»] CHR 65 (T)
Tx8TO
\ 74+(Tx8)
\\\
BYTES 2040 . POSITION 256
HR No 65(M >4 =BYTE 256
: _— in NAME Table
2048- POSITION M
2055 /D CHR No. 65 (M)
! llli’wgs 2048+’ —
- NG'GS{B).H SR W POSITION 512
- \ : ' =BYTE 512
[e g BYvES in NAME Table POSITION B

4088-4095

TES \H

D CHR No. 65 (B)

4096+ (Bx8)
TO 4096+7
+ (Bx8

\ 4096-4103
1
D—
BYTES

.
BYTES
6406 TO

6143

BYTES

COLOUR
Table

0-7

2047
2048

4095
4096

__pi—____‘_———b

8 BYTE COLOUR PATTERN
FOR CHR No. 65 (T)

8 BYTE

COLOUR

PATTERNS

8 BYTE COLOUR PATTERN
FOR CHR No. 85 (M)

==
]

8 BYTE COLOUR PATTERN
FOR CHR No 66 (B)

el

6143

Figure 12. How the VDP creates Mode 2 screen display

19 =

SECTION 6 SCREEN 2

What about colour? The COLOUR Table in this Mode,
remember, is the same length as the PATTERN GENERATOR
Table: every byte in the PATTERN GENERATOR Table has a

corresponding byte in the COLOUR Table. This means that
each of the eight bytes that define a character’s
pattern has associated with it a byte that defines the
colours for that pattern line.

During the active screen refresh period, when the VDP
looks to the PATTERN GENERATOR Table to see how each
line of the character should be presented, it also looks
to the corresponding byte in the COLOUR Table to see
what colours should be used for the pattern line.

The top four bits of the COLOUR byte define the
Foreground colour of the pattern line byte - that is to
say, any bit that is set to a “1°. The lower four bits
of the colour byte define the Background colour of the

pattern line - that is, the bits in the line that are
reset to ‘0°.

Consequently each 1line of a character pattern can
have its Foreground and Background individually
coloured, so enabling all the colours to be used within
a character - although of course, only two can appear on
any one line of the character pattern. The arrangement
is shown in Figure 13.

COLOUR TABLE PATTERN TABLE .
he Foreground Background hex
X
Byte 0=6F |DarkRed White 00011000 Byte 0=18
Byte 1=8F |Medium Red White 00100100 Byte 1=24
Byte 2=9F Light Red White 01 0000O0T10 Byte 2=42
Byte 3=7A Cyan Dark Yellow 1 10000 11 Byte 3=C3
Byte 4=5B Light Blue Light Yellow 111001 1 1 Byte 4=E7
Byte 5=0F |Magenta Grey 111101 1 1] Byte5=F7
Byte 6=17 Black Cyan 00011000 Byte 6=1C
Byte 7=34 Light Green Dark Blue 10101 01 0] Byte7=AA
COLOURS OF CHARACTERS ON SCREEN
Line O w W W|DR| DRl W | W]| W W = White
DR = Dark Red
ne 1 W MR w | w MR = Medium Red
i W pd ¥l W LR = LightRed
C = Cyan
Line 2 W LR W W W W LR W DY = Dark Yellow
LB = LightBlue
Line 3 C cloy|py| DbDyjby|f C| C LY = LightYellow
M = Magenta
G = Grey
Line 4 LB | LB | LB LY LY | LB| LB | LB R = Binck
g LG = LightGreen
Line 5 ™M M M| M| G M| M M DB = DarkBiue
Line 6 C C C B B C C C
Line 7 LG |pB|LG|oB| LG| DB | LG | DB

Figure 13. How characters are coloured, VDP Mode 2

- 80 -

SECTION 6 SCREEN 2

The correlation between the bytes in the COLOUR Table
and the bytes in the PATTERN GENERATOR Table means that
the colour byte for a given pattern line can be found by
simply addina or subtracting 8192 decimal (2000 hex) to
the PATTERN GENERATOR address - 8192 always being the
difference between the Base addresses for the two
Tables. In the MSX, the PATTERN GENERATOR Table is set
at zero, and so one would add 8192 to find the
corresponding colour byte.

MODE 2 AS USED BY MSX BASIC
6.2.1 Initialising VRAM Base Addresses

The way that the VDP needs to be set up for this Mode
has already been discussed in Section 6.1. When the
Mode is selected by using the “SCREEN’ statement or by
calling the ROM routine at 72 hex, the VDP Registers are
initialised by the MSX so that the Tables in VRAM are
set as follows:

PATTERN NAME: 1800 hex VDP(2)=6
6144 dec BASE(10)=1800 hex
COLOUR: 2000 hex VDP(3)=FF* hex
8192 dec BASE(11)=2000 hex
PATTERN GENERATOR: 0 VDP(4)=3 *
BASE(12)=0
SPRITE ATTRIBUTE: 1B00 hex VDP(5)=36 hex

6912 dec BASE(13)=1B00 hex

SPRITE PATTERN: 3800 hex VDP(6)=7
14336 dec BASE(14)=3800 hex

* NOTE: See Sections 6.1 and 1.2.2 regarding the
values in these VDP Registers for Mode 2.

6.2.2 Loading the Tables

In Modes 0 and 1, the PATTERN GENERATOR Table is
loaded with the MSX character set, and all the bytes in
the NAME Table are set to zero, so giving a ‘blank’
screen. This is NOT the case when MSX initialises Mode
2. Instead, the MSX loads the Tables with data in
readiness for accepting and operating on the BASIC
graphic statements - CIRCLE, DRAW, LINE PSET and so on.

- 81 =

SECTION 6 SCREEN 2

During the initialisation process, the MSX:

(a) Fills the entire PATTERN GENERATOR Table (6144
bytes) with zeroes.

(b) Fills the entire COLOUR Table to give
‘Transparent ’ (i.e. the Border colour)
characters on the currently named Background
colour. Thus, if the current colours are White
Foreground, Dark Blue Background and Cyan
Border, then every byte in the Table will have
the value 04 hex, the top nibble “0° giving
Transparent - or the Border colour, and the
bottom nibble “4° giving Dark Blue.

(c) The first 256 bytes of the 768 byte NAME Table
are loaded with the wvalues 0 to 255 decimal

respectively. Bytes 256 to 511 of the NAME
Table are 1loaded with the wvalues 0 to 255
respectively. Bytes 512 to 767 of the NAME
Table are 1loaded with the values 0 to 255
respectively.

(d) The Sprite Tables are 1left in their current
state provided that Sprite size/magnification is
unspecified. Otherwise they’'re re-initialised
as stated in Section 3.3.2.

6.2.3 How MSX BASIC uses Mode 2

The significance of the way the Tables are 1loaded
will now be explained. You will see that the top,
middle and bottom third areas of the NAME Table are each
loaded with consecutive values 0 to 255. 1In the earlier
part of this Section, it was explained that each third
of the screen looks to its own “area’ within the PATTERN

GENERATOR Table to determine the pattern for the
character being “NAMEd’.

From the way the NAME Table is loaded with data, it
can be seen that the first byte in a screen area always
points to character number (or ‘name’) 0, the second
byte to character number 1, the third to character
number 2 and so on through to the last byte in each ‘one

third® area of the screen, which points to character
number 255,

The patterns for all characters are intially set to
Zzero, consequently the screen is initially ‘blank’.
When a graphic command is made, the appropriate
character pattern areas in the PATTERN GENERATOR Table
are filled with the necessary data to produce the
required graphics, Since these pattern areas are

:permanengly' pointed to by the NAME Table, the
patterns’ then appear on the screen.

- B0

SECTION 6 SCREEN 2

To show this effect, try the following two short
programs.

10 SCREEN 2:COLOR 15,4,7

20 FOR I=6144+16 TO (6144+768)-16 STEP 32
30 VPOKE I,l

40 NEXT

50 LINE (20,70)-(250,74),10,BF

60 LINE (20,100)-(250,104),6,BF

100 GOTO 100

Enter and RUN this program, and you will see that two
thick coloured lines are drawn across the screen, but
both have a ‘one character’ gap in the middle. This is
a result of lines 20 to 40. In these program lines, the
‘centre’ bytes all the way down the NAME Table are reset

to the value “1°.

So they no longer ‘point’ to the correct area in the
PATTERN GENERATOR Table for the thick coloured lines to
be drawn by the MSX. For example, the centre byte in
the top line - byte 16 in the NAME Table - should be
pointing to the 16th set of character pattern bytes in
+he PATTERN GENERATOR Table. But it isn’t - because it
has been reset to point to the pattern bytes for

‘character 1°.

Program lines 50 and 60 draw the ‘boxes’ across the
screen of course (refer to your Owner ‘s Manual for
details on using this statement), while line 100 ensures
that the MSX doesn’t leave Screen Mode 2 at the end of

the program and so lose the display.

Break the program by using 'CONTROL-STOP’, then add
the following line:

This draws a ‘block”’ line right down the screen, one
character wide (8 pixels), starting at the NAME Table
byte that ‘s calling character number 1, But the centre
line of bytes throughout the NAME Table has also been
directed to character number 1 - so this new program
line produces TWO vertical block lines on the screen.

If the first part of Line 70 is changed to read 'LINE
(8,8) " instead of ’‘LINE (8,0)°, then the top third of
the screen doesn‘t carry the central block vertical
line: character ‘1 in this third of the screen hasn t

been addressed by the statement, and consequently the
PATTERN TABLE for this third is not carrying data for

character “1°.

- 83 =

SECTION 6 SCREEN 2

No mention has beein made so far about the COLOUR
Table. The colour for each of the block lines that are
drawn on the screen 1is specified within the ’‘LINE’
gtatgment. The MSX loads this colour data into the

top” nibble of the COLOUR Table bytes that correspond
to the PATTERN Table bytes. If no colour is specified,
then the current ‘Foreground’ colour (as stored at F3E9
hex) is loaded into the top nibble.

The way that the MSX ROM routines select which bits
of the pattern-line bytes have to be set for a graphic
statement is quite complex. It is sufficient to know
that the appropriate pattern lines and the bits are
selected according to the ‘character”’ locations on the
sScreen, as addressed from the NAME Table set up.

Take, for example, a “PSET (24,3),1° statement. This
tells the MSX that the pixel 25 across from the left and
four down from the top is to be set in the colour Black.
(Remember that the start point at the top left corner is
pixel 0,0, which is the top left corner of ’‘Character
number 07). Pixel 24,3 thus lies in the fourth
character position along the top of the screen.

The fourth character position in the NAME Table is
initialised by the MSX to point to the pattern for
Character number 3 (the first position is Character 0).
Pixel 24 is, in fact, the leftmost bit of the character
pattern line. The “3° tells the MSX that the particular
pattern 1line 1is the fourth one in the set of eight
pattern bytes.

Thus, the 1leftmost bit (most significant) of the
fourth pattern 1line of the pattern set for Character
number 3 is set to a ‘1°. The corresponding COLOUR
Table byte has its top nibble set to “1° - for Black.

If, subsequently, a ‘PSET (25,3),15° statement is
made - to set the pixel next to the previous one to
White - then in the PATTERN GENERATOR Table, the TWO
most significant bits of pattern line 4 for character
number 3 would be set. Now however, the corresponding
COLOUR Table byte would have its top nibble set to 15 (F
hex) - for White, and since both the pixels that have
just been set lie in the same pattern line, both pixels
would turn ‘White’ on the current background colour.

When ALL the pixels for a character pattern are set,
any further ‘“attempts’ to set one of the pixels to a new
colour results in the LOWER (Background) nibble of the
corresponding COLOUR byte to be set to the new colour,
and the appropriate bit in the pattern line to be reset
to ‘0° to show that colour.

The following programming examples will help to
demonstrate this feature of the way the MSX operates on
the high resolution graphic screen.

- Bd

SECTION 6 SCREEN 2

First, enter and RUN the following short program:

10 SCREEN 2:COLOR 15,4,7
20 OPEN"GRP:" AS #1

30 LINE (82,0)-(95,0),6
40 GOSUB 500

.200 GOTO 200

500 PRESET(24,100)

510 FOR I=0 to 7

520 PRINT #1,HEXS$(VPEEK(8192+80+I));" ";
530 NEXT:RETURN

Line 30 draws a Red line at the top of the screen
from pixel “82° to pixel “95°. This means that the
first pattern line for Character number 10 will have its
lower six bits set, and the first pattern line for
Character 11 will have all its bits set. The subroutine
at Line 500 prints out the hex values for the COLOUR
Table bytes that correspond to each line of the pattern
for Character 10. As you will see when the program is
run, the first pattern line has its set bits coloured
Red (°6° - the Foreground nibble), and the reset or zero
bits coloured Blue (°4° is the Background nibble).

Now break the program (CTRL-STOP“), delete Line 40,
and add Lines 50 and 60:

50 LINE (83,0)-(83,180),1
60 GOSUB 500

When RUN, this draws a vertical 1line down through
Character 10 to near the bottom of the screen: notice
that the Foreground nibble of the COLOUR bytes is now

‘l” - for Black, and that the top pattern line for
Character 10 is no longer Red - but defined by the new

colour, Black.
Now break the program and change Line 30 to read:

and RUN again. Now we have drawn the Red line (Line 30)
from the beginning of the character position - i.e. all
the bits of the first pattern line are set. This time,
drawing the vertical Black line down the screen - in
Line 50 - results in the COLOUR byte for the first
pattern 11ne of Character 10 holding the value 61 hex.
The ‘new’ colour - Black - has been placed in the LOWER
nibble of the COLOUR byte, and if you were to examine
the first pattern line for Character 10, you’d see that
one bit has been reset to zero - to display the Black as
a Background colour. For all the other COLOUR bytes
associated with Character 10, Black is still defined as
the Foreground colour (14 hex).

- 85 -

SECTION 6 SCREEN 2

While this description has covered the ‘simplest’
graphic statements, all operate in a similar manner.
Once the necessary screen location calculations have
been made by ROM routines (for the ’CIRCLE’ statement,
for example), the necessary pixels are turned on and
their colour is defined by the top (Foreground) nibble
of the associated COLOUR byte.

If they are ALL already turned on, any new
requirement results in the COLOUR byte being “amended’
so that the new colour is displayed as a background
colour, with the relevant bit(s) of the pattern byte
being reset to “0° to display that colour.

The colour of a set pixel always changes to the last
one specified for the particular pattern line. If no
colour is specified, then it will be changed to the
current foreground colour for the screen.

6.2.4 Text on MSX Screen 2

There are two ways that “text” characters can be
placed on Screen Mode 2, as it is initialised by the
MSX. One way has already been mentioned: first OPEN the
graphic screen as a ‘file” - °‘OPEN"GRP:" AS #1° - and
then use “PRINT #1,"string"” statements. The other
method involves VPOKEing the required character pattern
into the PATTERN GENERATOR Table. Let us first examine
the “PRINT method.

The required text is placed on the screen at the
currently addressed pixel location, this being the top
left cerner of the first character in the string. The
location can, of course, be defined by the ’PSET’ or
PRESET statements.

When this procedure is used, MSX ROM routines load
each desired character in the string into a ‘Work area’,
then transfer it to the current pixel location on the
screen. Since this ‘pixel location’ may not necessarily
coincide with the top left corner of a screen character
position, a ‘masking’ system is used to SET the correct
bits in the appropriate bytes of the PATTERN GENERATOR
Table.

Bits already set to “1° in the PATTERN GENERATOR
Table merely have their colour changed. Where there is
a ‘0’ bit in the Character pattern being ’printed” to
the screen, the PATTERN GENERATOR bit is left unaltered:
if it is set, it stays set. The corresponding COLOUR
bytes have their top nibble set to the current
foreground colour for the screen, so any previously set
bits in an affected pattern line will take on the colour
of the PRINTed Character.

SECTION 6 SCREEN 2

This process means three things:

(a) Only the MSX's own Character set can be
displayed on the screen in Mode 2 when using
‘PRINT 1° statements.

(b) Text characters PRINTed to the screen cannot be
cleared by overwriting with “space’ characters.
These do not set any bits, and so 1leave the
already set bits in the PATTERN GENERATOR Table
as they are. This 1is done so that graphic
patterns are not destroyed when PRINTing to the
screen, but continue to appear through the
‘gaps” in the text.

(c) If PRINTing a character to the screen results in
all the bits of a pattern line being set, then
those bits that were previously set will take on
the colour of the PRINTed text - i.e., the
current foreground colour for the screen.

Now let us look at the second way of setting text and
character patterns on the screen, which involves
VPOKEing.

For this, it 1s necessary to determine first the
character position on the screen where it is desired to
place the character pattern. From this, the location in
the PATTERN GENERATOR Table can be deduced. For
example, suppose it is desired to place three characters
on the screen, all in the column number 6, but in rows
2, 12 and 20 respectively.

Bearing in mind the way the screen is mapped by the
NAME Table, the first character will have to be defined
in the PATTERN GENERATOR Table in the eight bytes
starting at: 2x32 (the number of characters in the
preceding rows) PLUS 6 (to give the column in the third
row), multiplied by eight (the number of bytes in a
character pattern definition). In other words, the
pattern for the character to be placed at Column 6 of
Row 2 will have to start at byte 560 in the PATTERN
GENERATOR Table.

Similarly, the second and third characters will have
to start at bytes 3120 - ((12x32)+6)x8 - and 5168
- ((20x32)+6)x8 - respectively from the start of the
PATTERN GENERATOR Table,

The eight bytes making up each of the required
character patterns are then VPOKEd into the eight
addresses starting from their respective start
locations. This means of course that programmers can
either define their own characters, or use the
characters in the MSX by PEEKing the appropriate section
in ROM.

- 87 =

. |

SECTION 6 SCREEN 2

The ROM character set starts at address 1BBF hex
(7103 decimal). Thus, to place the letter ‘aA°

(Character 65 in the MSX set) in the three locations
just discussed:

10 SCREEN 2:COLOR 15,4,10
20 FOR I=0 TO 7

30 D=PEEK(&H1BBF+(65*8)+1I)
40 VPOKE 560+1I,D

50 VPOKE 3120+I,D

60 VPOKE 5168+I,D

70 NEXT
80 GOTO 80
The characters so VPOKEd will have their Foreground
set to Transparent (i.e., the Border «colour) and
Background as set on initialisation of Screen 2, or as
changed by graphics statements. To colour the
characters differently, the COLOUR Table bytes

corresponding to the PATTERN GENERATOR Table bytes will
have to be loaded with the required colour information.
The appropriate COLOUR Table address can be found by
adding 8192 to the PATTERN GENERATOR Table address.

Thus, to colour the ‘A’ at the top of the screen Red
on Yellow, one would VPOKE VRAM addresses 560+8192 to
560+8192+7 with the value 6A hex. This can be done in
the program above by adding

45 VPOKE 560+8192+I,&H6A

Since it takes eight bytes to define the entire
colour for a character, the programmer can of course
define the foreground and background colour of each line

individually - and so get a beautifully multicoloured
character pattern.

This procedure for getting characters onto the
graphics screen consumes more program space than the
“PRINT #1° method - although space can be saved by
judicious use of subroutines and multi-statement lines
(not used in this book, for the sake of clarity).
Furthermore, characters can be placed only in screen
character’ locations, and whatever is VPOKEd into VRAM
will overwrite any graphics or colours currently being
displayed - unless ‘masking’ routines are written!.

For example, to have a Whige character on an existing
colour background, one could 'VPOKE ca,VPEEK(ca) AND &HF
OR &HFO’, ~ where ‘ca’ is the COLOUR Table address.
ANDing with OF hex retains the lower nibble of the
COLOUR byte, while ORing with FO0 hex puts the code for
White into the top nibble.

So, in return for the possible ‘disadvantages’ of
this method, the programmer is able to define and colour
characters as desired.

- 88 -

SECTION 6 SCREEN 2

MODE 2 AS A TEXT SCREEN

6.3.1 How to Initialise the VDP

If you compare the VRAM Base addresses set up by the
MSX for Mode 2 (page 8l) with the addresses set up for
Mode 1 (page 68), you will see that they are the same.
VDP Registers 3 and 4 are not set to the same values,
however. For Mode 2, only one bit of each of these
Registers is significant in the determination of the
Base addresses: the other ’selection’ bits must be set
to “1s” for the full implementation of the Mode.

Obviously the Mode setting bits of VDP Registers 0
and 1 will not have the same values for both Modes - but
simply setting these to switch the VDP into Mode 2 is
not sufficient to select the Mode.

The following program illustrates one method of
setting the VDP to implement Mode 2 so that it operates
in the same manner as Mode 1 - but with the additional
features mentioned at the beginning of Section 6.

Note that it will also be necessary to
load VRAM with data before the Mode can
be fully utilised: this will be discussed
Section 6.3.2 ~

10 SCREEN 0:SCREEN 1

20 VDP(0)=VDP(0) OR 2

30 VDP(1)=VDP(1l) AND &HE7
40 VDP(3)=&HFF

50 VDP(4)=3

Machine code programmers can use a similar technique:
for them, however, it would not be necessary to go
through the procedure of first initialising Screens 0
and 1: only Screen 1 need be initialised.

Why are both Screens 0 and 1 initialised? (Line 10).
This is to save a little time on initialising the ‘new’
Mode 2. You will recall that when Modes 0 and 1 are
initialised by the MSX, the MSX Character set is loaded
into the PATTERN GENERATOR Table,

For Mode 0, the set is loaded into the 2048 bytes
starting from VRAM address 2048 - the location of the
PATTERN GENERATOR Table Base for that Mode. For Mode 1,
the set is loaded into the 2048 bytes starting from VRAM
address 0, without overwriting or clearing the data held
in bytes 2048 to 4095. Thus Line 10 usefully loads the
MSX Character set twice into VRAM,

- 90 »

SECTION 6 SCREEN 2

For Mode 2, it needs to be loaded three times - the

PATTERN GENERATOR Table in Mode 2 is 6144 bytes 1long,
remember. If there is no set in the last “third’ of the
Table, it , will not be possible to display characters
geps%bly in the lower third of the screen when it is
initialised this way: it can be re-intialised
differently to use only one or two character sets over
the screen - see Section 6.3.4.

Enter and RUN the program, and you will see that when
the cursor is moved to the middle third of the screen,
it 'vanishes”, although tapping keys produces characters
on the screen. In the lower third of the screen, there
will be no cursor, and no ‘sensible’ result from tapping
the keys: the characters are not displayed since a

pProper character set is not in that part of the PATTERN
GENERATOR Table - yet.

.The’cursor ‘vanishes’ from the screen since the MSX
still “thinks’ it is in Mode 1. To create the cursor,
the MSX “images” the content of the actual character at
Fhe cursor location, and 1loads the resulting pattern
into character number 255. For Mode 1, it expects
character 255 to be at the end of the first 2048 bytes
oﬁ the PATTERN GENERATOR Table. Character 255 in the
middle and the bottom areas of the screen are, at this
stage, simply ‘blanks’.

_The colours of characters displayed in the middle
third of the screen when keys are pressed may well be

varied, depending on the particular make of MSX.
Equally, some characters in varied colours may be
obtained in the lower third of

. _ the screen when keys are
pressed. This will Dbe the result of residual data

entered into the PATTERN GENERATOR Table and COLOUR
Table areas during the ‘wake-up’ display of the machine

(the Sony Hit Bit, for example), or as a result of
previous programming.

Program Lines 20 to 50 set the VDP so that it will
operate in its “full”’ Mode 2 state (see Section 6.3.4).
As far as the MSX is concerned, however, it is operating
under Mode 1 conditions. But more needs to be done...

6.3.2 Getting VRAM ready

The next stage in completely preparing the screen is
to load a character set into the lower third section of
the PATTERN GENERATOR Table, to render this area
‘visible’. The following program lines will load the
MSX character set (add them to the previous program, so
that you can, if you wish, save it all for future use).

60 FOR I=0 TO 2047
70 VPOKE 4096+I,PEEK(&H1BBF+I)
80 NEXT

- 90 -

SECTION 6 SCREEN 2

This is not the fastest of programs - when you RUN
it, you will wunderstand why Line 10 in the original
setting-up program was introduced - it cuts the time to
load the character set by about half.

Loading from the Character set in ROM also saves a
little time over loading from a set already in VRAM.
While the program is running, provided that yom have not
cleared the Key Function display from the bottom of the
screen, you should see the Key words appear as the
letter characters are entered into VRAM.

Machine code programmers can use the Block Data Move
ROM routine at 5C hex to perform an almost instantaneous
load (see ‘Writing to VRAM®~ in Section 1.2.1). All
three “thirds’ of the PATTERN GENERATOR Table can be
filled in microseconds this way: hence there is no need
to initialise Screens 0 and 1 to perform the task.

The MSX will now be in a position to display at any
point on the screen data that is entered from the
keyboard. However, a cursor will still be missing from
the middle and bottom thirds of the screen. This 1is
easily rectified:

90 FOR I=0 TO 7

100 VPOKE 4088+I,&HFF
110 VPOKE 6136+I,&HFF
120 NEXT

You can, of course, simply enter RUN 90 to save the
whole program from being run just to enter this data.
This last program segment creates a ‘block” for a
cursor: it will not be a true cursor as appears at the
top of the screen - i.e. it won 't image the character it
is placed over. Nevertheless, it does enable you to see
where the current cursor location is on the screen.

Now for the colour. The next program segment is
written to demonstrate’ the three areas of the screen
controlling the different character sets: you could,
obviously, choose to load the entire screen with one

colour.

130 FOR I=0 TO 2047

140 VPOKE 8192+I,&HF4

150 VPOKE 8192+2048+I,&HB6
160 VPOKE 8192+4096+I,&H1B
170 NEXT

As in previous programs, the VPOKE addresses are
written so that you can see how they are derived.
Machine code programmers can use the Block Fill ROM
routine at 56 hex (see Section 1,2.1).

When this segment is RUN, you will see each character
on the screen change colour as the COLOUR Table is being

- g} &

SECTION 6 SCREEN 2

filled with data. This, again, shows that it is
characters and not screen locations that are coloured
when the VDP is used this way.

The three colour bands that appear across the screen
after this program has been run clearly show the three
areas in which each character set - and associated
colours - operate independently.

The screen is now initialised for wuse - although
not, perhaps, the way you’d 1like it to be from the
colour or character definition point of view. But now

that you know how, you can experiment with your own
colours and character patterns.

In early ‘experiments?’, it is probably wisest to
leave the alphabet and punctuation parts of the
character sets intact, so that you can ‘see’ what you

are doing. This isn’t necessary in order to enter
program lines, however, as long as you know that you
have pressed the right keys(!): the MSX 1looks at the
character NUMBER, remember, not its shape. So if you

decide to make the °“?° character a different shape in,
say, the bottom third of the screen, then pressing the

? key and a "string" in the bottom third will result
in the string being printed, even though the string is
preceded by your new character.

6.3.3 Using, the ‘Text’ Mode 2

Initialised as described in the last few pages, the
VDP operates as described in Section 6.1.3, which gives
a good idea of how the Mode can be used. The MSX
‘behaves ° as though it is in Screen 1 - in other words,
the graphics commands are not available.

If you study the length of each VRAM Table and its
Base address, you'll see that there isn’t very much VRAM
space available for ‘Table switching’.

0 - 6143 dec PATTERN GENERATOR Table
6144 - 6911 dec NAME Table
6912 - 7039 dec SPRITE ATTRIBUTE Table
7040 - 8191 dec Not used
8192 - 14335 dec COLOUR Table
14335 - 16383 dec SPRITE PATTERN Table
A fairly busy VRAM! In any event, neither the

PATTERN GENERATOR nor the COLOUR Tables can be moved to
other VRAM locations (unless they are ‘swapped’). The
only Table that can sensibly be switched to another
location in VRAM is the NAME Table: this could be
switched to location 7168 dec (1C00 hex), by loading VDP
Register (2) with “7°, The comments given in Section
4.3.3 regarding the use of BASIC with the Table at a new
addressy would also apply here.

- 92 =

N R S e e ——

SECTION 6 SCREEN 2

With regard to creating vyour own characters - refer

to Section 2. Remember that you can define the
Foreground and Background colour for each 1line of a
pattern - the address of the appropriate byte in VRAM

being 8192 more than the PATTERN GENERATOR byte.

6.3.4 bther Initialisations for Mode 2

The initialisation procedure for the VDP, given in
Section 6.3.1 gives a full character set with colour
control over the entire screen. You can, however, set
up the VDP ‘differently to produce different effects.

These subtle variations on the full initialisation
mean that you can effectively set up the Mode 2
character to suit your particular needs, so saving VRAM
and programming space, and time.

One Character Set: Three Colour Sets

If you <change Line 50 (program in Section 6.3.1) so
that VDP(4)=0 instead of 3, then you will have but one
character set for the entire screen, defined by the
first 2048 bytes of the PATTERN GENERATOR Table. The

cursor will be a true cursor wherever it appears on the
screen, and you will be able to print anywhere on the
screen immediately.

The COLOUR Table, however, will still be fully
operative: the first 2048 bytes of the Table will define
the colours for the characters that appear at the top of
the screen, the second 2048 bytes will define the

colours for the characters that appear in the middle of
the screen, and the last 2048 bytes will define the
colours of the characters at the bottom of the screen.

Thus, if 256 characters are sufficient, this would be
the simplest way of initialising the Mode - yet still
allowing you to have the same character in three
different colourings, according to where it appears on
the screen. You will also ‘release” 4096 bytes of VRAM
for other uses - such as ‘Table switching”’.

Two Character Sets: Three Colour Sets

If you make VDP(4)=1, then the character set in the
first 2048 bytes of the PATTERN GENERATOR Table appears
at the top AND bottom sections of the screen: the middle
section is defined by the second 2048 bytes of the
PATTERN GENERATOR Table.

The first, second and third blocks of 2048 bytes in
the COLOUR Table still point to the top, middle and
bottom of the screen respectively, so characters can be
individually coloured in each area, as before.

- 93 =

SECTION 6 SCREEN 2

Similarly, if VDP(4)=2, then the first 2048 bytes of
the PATTERN GENERATOR Table will be used for the
characters at the top and middle of the screen. The
bottom of the screen uses characters defined by bytes
4096 to 6143 of the PATTERN GENERATOR Table. Again, the

COLOUR Table still allows characters in each section of
the screen to be individually coloured.

One or Two Colour Sets

: Just as the PATTERN GENERATOR Table can be reduced in
size by giving VDP(4) different values, so-the COLOUR

Table can be reduced. The values for VDP(3) are as
follows:

(a) VDP(3)=&H9F. This gives just one “colour set’
for the entire screen, the colours being

determined by the first 2048 bytes of the COLOUR
Table. '

(b) VDP(3)=sHBF. This provides two colour sets for
the entire screen. The first 2048 bytes of the
COLOUR Table control the colours of characters
in the top and bottom sections of the screen.
The second block of 2048 bytes in the colour
table control the middle section of the screen.

(c) VDP(3)=&HDF. This provides two colour sets for
the entire screen. The first 2048 bytes of the
COLOUR Table control the colours of characters
in the top and middle sections of the screen.
The last (third) block of 2048 bytes in the
COLOUR Table control the colours of characters
in the bottom section of the screen.

A word of warning: Bits 0 to 4 of VDP(3) must ALWAYS
be set, otherwise only part of the character set will be
recognised, and Bit 7 must always be set for the
operation of Mode 2 in this way. If it is not set, the
COLOUR Table will have the same Base as the PATTERN
GENERATOR Table ... with weird results!

Mix ‘n Match

That ‘s right - you can also mix the way you
initialise the Table lengths for Mode 2. Thus, by
making VDP(4)=2, and VDP(3)=&HDF, you will have one
character set and one colour set (the first 2048 bytes
of both Tables) controlling the top and middle sections
of the screen, and one character set and one colour set
(the 1last 2048 bytes of both Tables) controlling the
bottom section of the screen. . This flexibility_glves
you ample scope to create a screen display economically
- and save usegul VRAM space for other purposes.

- 94 -

SECTION 7

SCREEN MODE 3

Multicolour

This Mode provides multicoloured block
graphics on a screen that is 64 blocks
wide by 48 blocks deep. The MSX
initialises the Screen 1like Screen 2
- that is, to accept graphics commands,
with limited facilities for printing to
the screen. All shapes are formed
using the 4x4 pixel colour blocks,
which can be in any of the 15 colours
available. It is not possible to print
characters direct from the keyboard
onto the screen, and consequently when
a program using this Mode has ended or
is aborted, the MSX returns to Screen 1
or Screen 0 to accept BASIC commands.

7.1 SCREEN MODE SPECIFICATION

7.1.1 Screen Parameters

Screen Size (Max): 64 columns x 48 rows
Character set: None inherent
Colour Block size: 4 pixels x 4 pixels
Colours available: All
Sprites: Available

- 95 -

SECTION 7 SCREEN 3

7.1.2 How the VDP Operates in Mode 3

The VDP is set to Mode 3 when Bit 1 of VDP Register 0
and Bit 4 of VDP Register 1 are reset to ‘0°, and Bit 3
of VDP Register 1 is set to “1°. The screen is then
treated as an unrestricted 64 x 48 block display, each
block being 4 x 4 pixels - the maximum definition that
can be achieved on the screen. A group of four blocks
(8x8 pixels) make up one ‘character position’, and are
represented by one byte in the NAME Table.

Thus, in this Mode the NAME Table is the same as that
for the Screen Modes 1 and 2 - that is, 768 bytes long,
and ‘mapping’ to the screen as shown in Figure 3.
However, in this Mode, the NAME Table doesn’t “look’ to
the PATTERN GENERATOR Table for a character pattern, but
for a set of four 4x4 pixel colour blocks. Thus data in
the PATTERN GENERATOR produces colours on the screen,
not patterns. A COLOUR Table isn’t used.

Each character position on the screen is made up of
four 4 x 4 pixel blocks, and the colour for each pair of
horizontal blocks is derived from one byte in the eight
that go to make up a pattern definition. The two bytes
providing the colours for a complete character block
area are consecutive in the PATTERN GENERATOR Table:
which two of the eight bytes of a pattern set provide
the colours for a character block on the screen depends
on the location of the character block on the-screen.

Two consecutive bytes One “chal;acter position” on screen
in PATTERN GENERATOR =four 4 x 4 pixel blocks
Table

<—8 Pixels —>
1

Colour A

] Colour ! Colour
Colour B A | B

Colour C

Colour D ! 8 Pixels

S g At 1]

- = - —-l——-—

|
Colour 1 Colour
c ! D

|

Figure 14. Creating the Multicolour Character

- 86 =

SECTION 7 SCREEN 3

Figure 14 shows how the two bytes provide the colours
for a character position on the screen. Exactly which
two bytes of the PATTERN GENERATOR ‘character set’ are
used depends on the location on the screen that the
colour block is to appear - which is directly related to
a location in the NAME Table.

For the very top Row - Row 0, the first two bytes of
the ‘character pattern”’ are used. For the second Row
- Row 1 - the second pair of pattern bytes are used.
For the third Row - Row 2 - the third pair of bytes are
used, and for the fourth Row, the fourth pair of bytes
are used. For Row 5 on the screen, the first pair of
bytes are again the ones that determine the colours
-"and so on for each group of four rows right down the
screen. Thus, the second pair of bytes in the
‘character pattern’ determine the colours when the
character is called in Rows 1, 5, 9, 13, 17 or 21. This
mapping to the screen is shown in Figure 15.

NAME PATTERN SCREEN
; TABLE GENERATOR
First TABLE
Position A B Row 0 (and 4, 8,
in Byte 0 _4 12, 16, 20)
X 8 Pixels =1 ‘character’
Byte 0 (Row 0) | _CHR No "X - : C10}, position
Byte 1 : |
‘ t E| F
! ! Colour A | ColourB Row 1 (and 5, 9, 13.
Byte 32 (Row 1)| CHR. No.' X' Colour C | Colour D ¢ ’ 17.21)
| Colour E | Colour F
) ; Colour G | ColourH | ”
Byte 64 (Row 2)| CHR.No " X Colour J | ColourK Row 2 (and 6, 10, 14,
T | Colour L | ColourM Llom 18, 22)
, ; : Colour N | Colour P
Byte 96 (Row 3}] CHR .No. X' Colour Q] ColourR
” : NP Row 3 (and 7, 11, 15,
; ! : . 19, 23)
] 1] 0' R
1
Byte 767 (End of]S C _ =3

Row 23)

8 Bytes for character “pattern” ‘X'

Figure 156. Mapping to the Screen, Mode 3

SECTION 7 SCREEN 3

Probably the best way to see this is by an
illustrative program such as the one that follows.
Since the MSX initialises Mode 3 in a special way, it is
necessary to set the VDP for Mode 3 by using the VDP
Registers: this is done in Lines 10 and 20. We then
load into character position 254 of the PATTERN
GENERATOR Table (with its Base at address 0 in VRAM - as
set when Screen 1 is called by Line 10) the colour set
as consecutive values, for easy identification.

10 SCREEN 1:KEYOFF

20 VDP(1)=VDP(1l) OR 8:CLS

30 FOR I=0 TO 7

40 READ D$:D=VAL("&H"+DS$S)

50 VPOKE(254*%8)+1,D

60 NEXT

65 DATA 12,34,56,78,9A,BC,DE,Fl

70 FOR I=0 TO 3

80 VPOKE 6144+14+I+(32*I),254

90 VPOKE 6144+14+I+(32*(4+1)),254
100 VPOKE 6144+14+4I+(32*%(8+I)),254
110 VPOKE 6144+14+I+(32*(12+1)),254
120 VPOKE 6144+14+I+(32*(16+I)),254
130 VPOKE 6144+14+I+(32*(20+I)),254
140 NEXT

150 IF INKEYS$="" THEN 150

160 SCREEN 0

Line 70 to 140 VPOKE character 254 into different
locations onto the screen - which has its Table Base at
address 6144. The offset value ‘14" roughly centres the
character location on the screen in each instance. The
further offset “I° enables each block of four colours to
be distinguished from those in adjacent rows on the
screen. The “32*° value determines the Row number on
the screen for the colour block to appear.

Lines 150 and 160 simply enable an easy return to the
Text Screen: when ready to abort the program, simply
press any key.

When you RUN this program, you will see that, in the
top row, there 1is a colour block comprising Black,
Medium Green, Light Green and Dark Blue. These colours
are derived from the first two bytes of the character
pattern - 12 hex and 34 hex respectively. You will also
see that this colour block is repeated in Rows 4, 8, 12,
16 and 20, showing that they too are coloured by the
first two bytes of the character pattern.

The colours of the block in the second row (Row 1)
are Light Blue, Dark Red, Cyan and Medium Red - derived
from the second pair of bytes in the character pattern
(56 hex and 78 hex respectively). These too are
repeated at every fourth row. Similarly, you will be
able to see the derivation of the colours in the colour
blocks in Row 2 and Row 3 - and every fourth Row on.

- 98 -

SECTION 7 SCREEN 3

Used in this way, the NAME Table 1is 768 bytes long
and the PATTERN GENERATOR Table 1is 2048 bytes long
- making a total of 2816 bytes. So there can be plenty
of VRAM space available if required.

However, there is another way to use the Mode - with
greater economy of VRAM space, and requiring less
‘pattern definition’. Since each screen character
location needs only two bytes to define all four colours
in its colour block, and since there are 768 screen
locations, then every location on the screen could be
individually and separately coloured from 1536 bytes
(768x2).

One would thus have a total of 192 character pattern
sets (1536/8). Each character pattern set, remember,
provides individual colouring for four different
character pattern blocks on the screen, depending on
their location: any more character patterns in the
PATTERN GENERATOR are therefore superfluous.

The MSX uses this principle in its initialisation of
Mode 3.

MODE 3 AS USED BY MSX BASIC

7.2.1 Initialising VRAM Base Addresses

When Mode 3 is selected using MSX BASIC or by calling
the ROM routine at 75 hex, the VDP Registers are
initialised by the MSX so that the Tables in VRAM are
set as follows:

PATTERN NAME: 800 hex VDP(2)=2
2048 dec BASE(15)=800 hex
COLOUR Not Used
PATTERN GENERATOR: 0 VDP (4)=0
BASE(17)=0
SPRITE ATTRIBUTE: 1B00 hex VDP(5)=36 hex

6912 dec BASE(18)=1B00 hex

SPRITE PATTERN: 3800 hex VDP(6)=7
14336 dec BASE(19)=3800 hex

Note that the Sprite Table addresses are the same as
for Screen Modes 1 and 2.

- 99 -

SECTION 7 SCREEN 3

7.2.2 Loading the Tables

As indicated in Section 7.1.3, the MSX makes use of
the fact that not every character number is required to
provide colouring for every possible block on the
multicolour screen. It does this by loading the NAME
Table in a similar way to the way it loads Mode 2 - that
is, with ‘pointers” to the PATTERN GENERATOR Table.

The very first, leftmost character position in each
of the first four Rows all derive their colours from the
same character pattern set - albeit, from different
pairs of bytes. Similarly with the second character
position - and so on to the end of the Row.

The 32 bytes for each of the first four Rows of the
NAME Table are therefore initialised to point to the
first 32 character patterns in the PATTERN GENERATOR
Table. That is, the first 32 bytes of the NAME Table
are loaded with the values 0 to 31 (lF bhex)
respectively. Similarly, the second, third and fourth
sets of 32 bytes in the NAME Table are loaded with the
values 0 to 31 respectively.

The 32 bytes for each of the next four Rows - Rows 4
to 7 are loaded with the values 32 to 63 (20 hex to 3F
hex) respectively, and so on throughout the NAME Table:

Screen Row Character Numbers Relevant Bytes
Pointed To of Chr Pattern
0 0- 31 (0-1F hex) 0 and 1
1 0- 31 (0-1F hex) 2 and 3
2 0- 31 (0-1F hex) 4 and 5
3 0- 31 (0-1F hex) 6 and 7
4 32- 63 (20-3F hex) 0 and 1
5 32- 63 (20-3F hex) 2 and 3
6 32- 63 (20-3F hex) 4 and 5
7 32- 63 (20-3F hex) 6 and 7
8 64- 95 (40-5F hex) 0 and 1
9 64- 95 (40-5F hex) 2 and 3
10 64- 95 (40-5F hex) 4 and 5
11 64- 95 (40-5F hex) 6 and 7
12 96-127 (60-7F hex) 0 and 1
13 96-127 (60-7F hex) 2 and 3
14 96-127 (60-7F hex) 4 and 5
15 96-127 (60-=7F hex) 6 and 7
16 128-159 (80-9F hex) 0 and 1
17 128-159 (80-9F hex) 2 and 3
18 128-159 (80-9F hex) 4 and 5
19 128-159 (80-9F hex) 6 and 7
20 160-191 (A0-BF hex) 0 and 1
21 160-191 (AO0-BF hex) 2 and 3
22 160-191 (AO-BF hex) 4 and 5
23 160-191 (AO-BF hex) 6 and 7

- 100 -

A SCREEN 3

Thus, the colour for every individual 4x4 pixel
colour block can be specified by suitably loading the
top or bottom nibble of the appropriate byte in the

character pattern relating to the block’s position on
the screen.

An example will undoubtedly help to illustrate this.
Suppose it is desired to colour Black the 4x4 pixel
block that is fifth along from the left and second down
frgm the top. This particular 4x4 block 1lies in the
thqu character” position on the screen. To be
precise, it is in the bottom right hand corner of the
third character position.

The third byte in the NAME Table points to character
pattern number 2, and since we are in the top
character” row on the screen, it is the first two bytes
of the character pattern set that control the four
colours of the character block. We want the bottom left
segment of the character block - which is specifically
controlled by the bottom nibble of the second byte
(refer to Figure 14).

Thus, the byte we need to change is the second of
Character Pattern number 2 in the PATTERN GENERATOR
Table - and we need to change only its bottom nibble.
The start of the PATTERN GENERATOR Table is at VRAM
address 0, so the second character will start at address
16 (0+(2x8)). The second byte of this pattern will
therefore be at VRAM address 17.

The question now arises - how do you change the
bottom nibble without upsetting the top nibble.
Probably the easiest way is to use a simple ‘masking’
technique. Thus, if we get the value of this byte and
AND it with &HF0, we will retain whatever is in the top
nibble - without having to know its actual value. If,
then, it is ORed with ‘1° (the code for the colour
Black) and replaced (VPOKEd) back, the 3job will have
been done:

10 SCREEN 3

20 VPOKE 17,VPEEK(17) AND &HFO OR 1
30 IF INKEY$="" THEN 30

40 SCREEN 0

If one wanted to colour Black the fourth 4x4 pixel
block along, second down, then the end of Ling 20 would
read ‘VPEEK(17) AND &HF OR &H10 - to load °1° into the
top nibble without affecting the bottom nibble.

The appropriate nibble of the appropriate byte in the

character pattern table for any 4x4 pixel location on
the screen can be found by a similar process.

- 18}~

7.3

SECTION 7 SCREEN 3

All of the 1536 bytes of the PATTERN GENERATOR Table
(for the eight byte ’character patterns 0 to 191) are
intialised to 44 hex by the MSX - i.e., to make every
4x4 pixel block on the screen Dark Blue in colour.

7.2.3 How MSX BASIC uses Mode 3

The Multicolour Screen is essentially for graphics,
and it is initialised by the MSX in a similar manner to
Screen Mode 2 so that all the BASIC graphics statements
can be used.

The operation of the screen is, therefore, very
similar to Screen Mode 2 - but for this screen, of
course, the definition is not in single pixels, but in
4x4 pixel blocks.

When u51ng the graphics statements, such as 'LINE~
and “CIRCLE’ the parameters are still defined by plxgl
locations, even though an entire colour block is

switched on by the statement.

Putting text on the screen involves the same
procedure as that for Screen 2 - using the ‘OPEN "GRP:"
AS #1° and ‘PRINT #1,"string" ~ statements. The
characters displayed on the screen will be large,
occupying 8x8 colour blocks rather than 8x8 pixels, and
they will have the last defined ‘Foreground” colour
(COLOR statement).

Like Screen 2, only the MSX character set can be used
this way: to put other ’‘characters” on the screen, one
would have to set the colours of the appropriate nibbles
in the PATTERN GENERATOR Table ... an awesome task! It
would undoubtedly be far easier to use the powerful
graphics statements to create ‘pictures” on the screen.

MODE USAGE
7.3.1 Text on Screen

The nature of the Multicolour display - with its
large, easily read characters - 1lends itself to
educational programs for young children, and to Titling
for programs.

As with Screen 2, characters printed to the screen
(using the PRINT 1 statement) can be individually
coloured by preceding the ‘PRINT’ with a “COLOR”
statement that defines the Foreground colour only. To
locate characters on the screen, the ‘PRESET statement
can be used: remember that the graphic statements
require locations to be defined as pixel positions, not
colour block positions,

- 102 ~-

e

SUCTOPRSEORTT

SECTION 7 SCREEN 3

7.3.2 Free VRAM Areas

An extensive area of VRAM is free for Table Switching
- from 2816 to 6911 decimal (0BOO-1AFF hex), and from
7040 to 14335 decimal (1B80-37FF hex). This would
enable separate PATTERN GENERATOR Tables to be set up,
for rapid switching of displays: a discussion on Table
Switching is given in Sections 4.3.3 and 4.3.4.

7.3.3 Sprite Patterns

Since the MSX doesn’t load a character pattern set
into VRAM in -this Mode, it is not possible to use Fhe
VDP(6)=VDP(4) " technique to define all the Sprite

Patterns as character patterns. Furthermore, the VRAM
areas used for the PATTERN GENERATOR in Modes 1 and 2
are overwritten on initialisation of Mode 3. In order

to create a Sprite Pattern set that is the same as the
character set, it would be necessary to Jjuggle around
with the Table Base addresses during the initialisation
process. The following program gives an example of how
this could be achieved:

10 BASE(7)=&H2800
20 SCREENI] : SCREEN3
30 VDP(6)=5

35 REM

36 REM Sprite example

37 REM

40 PUTSPRITE 0,(100,100),15,65
50 GOTO 50

Line 10 tells the computer that you want BASE(7)
- which is the Base address for the PATTERN GENERATOR
Table in Screen Mode 1 - to start at VRAM address 2800
hex (10240 decimal), and not its normal address for that
Mode, which is ‘0°. Screen Mode 1 is then initialised
(Line 20) so that the MSX character set will be loaded
into the PATTERN GENERATOR Table at the new address, and
then Mode 3 is initialised.

The Character set will still be in VRAM, and so all
that is now needed is to reset the SPRITE PATTERN Table
so that its Base is at 2800 hex. This is achieved by
suitably loading the VDP Register controlling the SPRITE
PATTERN Table Base address - VDP(6) - as in Line 30.
Line 40 demonstrates that the system works (!) by
placing Sprite Pattern 65 (the letter ‘A°), in White on
the screen.

This may seem like a good way to get small characters
on the sceen for text purposes: as long as there are
not more than four sprites to a line ... it is. One has
to admit that four Srites to a line would be very
limiting as far as text is concerned!

- 303 =

IS

Author “s Note

It is hoped that this book and its
Appendices has provided you with a
better insight into the operation of
the Screen displays on your MSX Home
Computer, and that it continues to be
an invaluable source of reference when
programming.

Every effort has been made to ensure
the accuracy of its contents, and to
present the information in a way that
can be readily understood by all.
Suggestions for additional information
or improvements should be sent to the
Publishers.

- 104 -

APPENDIX A

BINARY-HEX-DECIMAL

CONVERSIONS

Newcomers to computing often find the
concept of binary and hexadecimal
numbering systems difficult to
understand. For computer programming
both these systems are more meaningful
than decimal and, when grasped, can
make the process of programming much
easier and quicker. Indeed, for
machine code programming, knowledge of
binary and hexadecimal is essential.
This short Appendix gives a broad
overview of the systems, with details
of how to convert from one to another.

WHY BINARY?

Binary simply means ‘two”’, and a binary counting
system is one which has only two values - “0° and °“1°.
Decimal, by contrast, has ten values - 0 to 9. Binary
is useful because it is easier to have devices with only
two states - on or off, for example - than with ten
states.

When counting in decimal, we start from zero and go
up to 9. Then, with no more values to use, we add one
to the column to the left to represent ‘another ten”,
reset the ‘units’ to zero and start again. Binary works
the same way. Only this time, we have only 0 and 1 to
play with. The first few binary numbers look like this:

in decimal

HEEMHEEROOOO
HOoOHO~OHO

0
1
3
3
4
5
6
4

nmauwnwnnnu

HHOORHODO

v EKitd

APPENDIX A BINARY-HEX-DECIMAL

If you were to write down a four digit decimal number
- say 1234, you would know that this represented:

4 “units”’

3 “tens”’ = 3x10

2 “hundreds’ = 2x(10x10) = 2x(10 to the power 2)

1 “thousands’® = 1x(10x10x10) = 1x(10 to the power 3)
The first two values - for the units and tens - can

be written as

4x(10 to the power 0)
3x(10 to the power 1)

because any number to the ‘power 0° 1is equal to 1, and
any number to the ‘power 1% is equal to itszlf.

In computers we deal with binary numbers eight digits
at a time. Each digit is called a “bit” - short for
binary digit, and all eight together are called a
‘byte”. If we call the least significant “bit” Bit 0
and the most significant bit Bit 7, then a binary number
such as “10011101° can be represented like this:

Bit Number 76543210
Value 1= 070l -1 Dod
Let us now ‘translate’ this binary number into

decimal. In the decimal system each digit to the left
in a number represents an increasing power of ten - see

the example given above. The same is true in binary
- only instead of being a power of ten, each position
represents an increasing power of 2. So to convert a

binary number to decimal, wherever a ‘1 occurs in the
number we ‘raise’ two to the power of the corresponding
‘bit’ number. Thus, using the above example, we have:

1 for bit 0. 2 to the power 0 = 1

0 for bit 1. Do nothing

1 for bit 2. 2 to the power 2 = 4 (2x2)

1 for bit 3, 2 to the power 3 = 8 (2x2x2)

1 for bit 4. 2 to the power 4 = 16 (2x2x2x2)

0 for bit 5. Do nothing

0 for bit 6. Do nothing

1 for bit 7. 2 to the power 7 =128 (2x2x2x2x2x2x2)

When these are all added up, we get 157 - whigh is the
decimal equivalent of 10011101 in binary. Don't forget
that any number to the power 0 is equal to 'l1°, strange
though it may seem.

- ADiw

APPENDIX A BINARY-HEX-DECIMAL

Another way of looking at this is to write down the
decimal value represented by each bit position:

Bit Position F 6 5 4 3 2 1 0

Decimal Value 128 64 32 16 8 4 2 1

So wherever a bit has a “1°, simply add in to the total
the decimal equivalent. You“ll notice that, by adding
up these decimal values in different combinations, you
can get every number from 0 to 255 - the maximum that
can be stored in eight binary digits.

How about converting decimal into binary? Probably
the easiest way is to use the “divide by two’ method.
For this, you take the decimal number, and successively
divide it by two, writing down the REMAINDER in
ascending order for the binary number. Thus, taking 157
for example:

157/2 = 78, remainder = 1
78/2 = 39, remainder = 0
39/2 = 19, remainder = 1
19/2 = 9, remainder = 1

9/2 = 4, remainder = 1
4/2 = 2, remainder = 0
2/2 = 1, remainder = 0
1/2 = 0, remainder = 1
So the binary number is 10011101

WHY HEXADECIMAL?

Hexadecimal 1is a counting system in which we have 16
values: we use the numbers 0 to 9, then for the values
‘ten” to ‘fifteen’, we use the letters A to F
respectively. If you look at the binary numbers again,
you’ll see that four binary bits can be used to count
from 0 to 15 - and that ‘s what makes hexadecimal so
useful in computing.

One hexadecimal digit can be represented by four
binary bits, so an eight bit binary number c¢c~n be
represented by two hexadecimal digits. The hexadecimal
number enables us to tell at a glance what the value is
for each ‘group” of four bits - once you have mastered
the fact that A=10, B=ll and so on, of course.

- A3%E

APPENDIX A BINARY-HEX-DECIMAL

Each group of four bits is called a ‘nibble” (don’t
ask!). To convert from binary to hexadecimal is simply
a matter of taking the bits four at a time. Using our

example of 10011101 binary again:

Nibble “bit”~ number 3 2 1 0 3 2 -5 0
Decimal value of bit g8 4 2 1 8 4 2 1
Binary value L: 8 @..5 . k&0 .}

Adding the decimal values for the ‘1 bits in the top
nibble, we get 8+1 = 9. Similarly, adding the decimal
values for the “1° bits in the bottom nibble, we get
8+4+1 = 13, which in hexadecimal is represented by the
letter 'D°. So the hexadecimal equivalent is 9D hex.

Converting ‘9D hex’® to decimal is also
straightforward. Remember that there are 16 values in
hexadecimal, so the 1least significant digit can have
values from 0 to F (15 in decimal). For 16, we “add one’
to the next column to the 1left - so this column
represents the number of “16s’. So, to convert ‘9D hex’
to decimal, multiply the 9x16, then add in the value of
‘D’ - which is 13. The answer is 157.

If we have four hexadecimal digits instead of two, we
can get up to a value of 65535 in decimal (FFFF hex).
Here, the . ’base” is 16, so each position to the left
represents an increasing power of 16 - just as in
decimal, each position to the left represents an
increasing power of 10, and in binary, an increasing
power of 2.

Thus AB34 hex is:

4x(16 to the power 0) = 4xl = 4
3x(16 to the power 1) = 3x16 = 48
Bx(l6 to the power 2) =11x16x16 = 2816
Ax(16 to the power 3) =10x16x16x16 =40960
Adding the results together =43828 decimal.
One final point. When a two-byte number (four hex

digits, 16 binary digits) is stored in machine code on

‘280 ° machines such as the MSX, the LEAST significant
byte is always placed before the most 81gn1f1cant byte.
Thus, if ‘AB34° hex were to be stored in the machine in
two adjacent addresses, the first address would have
the value 34 hex, and the next address would have the

value AB hex. The reason is tied up with the way the
Z80 processor works ... and that is another book
altogether.

o il

APPENDIX B

DEMONSTRATION PROGRAMS

The programs in this Appendix
illustrate specific operating features
of the MSX, and are given here rather
than within the text of the book for
easy reference to routines which can be
adapted for the reader’s own programs.
The programs are not written for speed
or space-saving, but so that they can
be easily understood.

The reader is strongly urged to
“experiment ” with the programs, since
this can be an invaluable way to build
knowledqe and understanding of the
machine s operation.

Machine code programs are not included
here: programmers with knowledge of
machine code will be able to
‘“translate’ these programs using the
ROM routines and useful addresses given
in Appendices E and F. Programmers
wishing to enter the fascinating world
of machine coding are recommended to
read “Starting Machine Code on the MSX’
by G. Ridley, and Published by Kuma
Computers Ltd. ~

THE PROGRAMS

Setting up Sprite Patterns
Changing Sprite Magnification by VDP (1)
Switching NAME Table addresses

Switching PATTERN GENERATOR Table addresses

Sprite Patterns as Character Patterns
Fifth Sprite demonstration
MSX Character patterns in detail

Changing Character shape whilst it is displayed
t

All Sprite sizes in one program

w Pl o

APPENDIX B PROGRAMS

PROGRAM 1

SETTING UP SPRITE PATTERNS

This is a ’‘Sprite pattern loader’ program, serving two
purposes. It demonstrates how both 8-byte and 32-byte
patterns can be loaded into the SPRITE PATTERN Table so
that both sizes can be used in the same program. It is
also used as a Subroutine for other programs in this
Appendix.

Lines 1000 to 1040 load the data for eight 8-byte
Sprites and into'the first eight Sprite patterns - 0 to
7 - of the Sprite Table. The first four of these
patterns overlay each other to produce a car shape: to
see it, set SCREEN 1,0, enter “GOSUB 10007, then enter:

PUTSPRITE 0,(100,100),15,0
PUTSPRITE 1,(108,100),15,1
PUTSPRITE 2,(100,100),1,2
PUTSPRITE 3,(108,100),1,3

Notice the displacement in the “x” location for Sprites
1 and 3 - the entire pattern is two Sprites wide, and
each Sprite is 8 pixels when not magnified. If SCREEN
1,1 is used (BEFORE loading the Sprite Patterns) - or
Bit 0 of VDP(l) is set - the Sprites will be 16 pixels
wide, and the ‘108 ° parameters will need to be “116°.

The next four Sprite patterns are a Dog, a face, and
two arbitrary geometric shapes.

Lines 1050 to 1100 load the data for 32-byte Sprite
patterns into the PATTERN GENERATOR Table. For this
size of Sprite, only 64 can be defined altogether, and
the patterns in this program are located in the Table
such that, when 32-byte Sprites have been <pecified
(SCREEN 1,2 for example), they are Pattern Numbers 32,
33 and 34. This has been done to allow both sets to be
called from within the same program - see PROGRAM 10 of
this Appendix, and Section 3.1.4.

Each of the 8-Byte Sprite DATA lines represents one
Sprite pattern, making it easier for you to see how the
shape is created. The DATA for each of the 32-byte
Sprite patterns is split into two 16-byte DATA lines
- the first gives the pattern for the left side of the

Sprite, and the second the pattern for the right side.
See Section 3.1.3,

Save this Program for use in later Demonstration
Programs. Note: if you use SAVE"CAS:", you will be able
to use MERGE "CAS:" to merge the saved program with a
program already written - provided that you don’t use
the same Line numbers in both programs.

- B2 -

APPENDIX B

998

999

1000
1010
1020
1030
1040
1047
1048
1049
1050
1060
1070
1080
1090
1100
1197
1198
1199
1200
1205
1210
1215
1220
1225
1230
1235
1297
1298
1299
1300
1301
1302
1305
1306
1307
1310
1311

: **% TOAD EIGHT 8-BYTE SPRITES ***
RESTORE 1200
FOR I=0 TO 63
READ DS$
VPOKE &H3800+I,VAL("&H"+D$)
NEXT

: *** LOAD THREE 32-BYTE SPRITES ***
RESTORE 1300
FOR I=0 TO 95

READ DS$

VPOKE &H3CO00+I,VAL("&H"+D$)
NEXT

RETURN

° %*%*%* §_BYTE SPRITE DATA **%*
DATA 1F,8,88,FF,FF,FF,0,0
DATA F0,98,8C,FC,FC,F8,0,0
DATA 0,7,7,0,0,0,70,20

DATA 0,60,70,0,0,0,70,20
DATA 0,1,C2,FC,3C,24,24,0
DATA 38,7C,BA,EE,7C,44,38,10
DATA 10,28,44,82,41,22,14,8
DATA 77,63,55,8,55,63,77,0

‘ *%% 32-BYTE SPRITE DATA ***

pagya 0,0,1,1,1,1,1,3F,3F,1,1,1,1,1,0,0

PROGRAMS

DATA 0,0,80,80,80,80,80,FE,FE,80,80,80,80,80,0,0

paTaA 0,0,0,18,1C,0E,7,3,3,7,0E,1C,18,0,0,0

paTA 0,0,0,18,38,70,E0,CO,C0O,E0O,70,38,18,0,0,0

paTA 7,F,1C,20,2C,40,45,20,21,14,13,8,4,B,11,29
DATA CO,EO0,30,30,70,30,70,B0,B0,20,A0,20,40,80

C0,EO

- B3 ~»

APPENDIX B PROGRAMS

PROGRAM 2

CHANGING SPRITE MAGNIFICATION BY VDP (1)

This Program demonstrates how VDP Register 1 can be
used to change the magnification of a Sprite displayed
on the screen. This enables Sprite magnification to be
changed without wusing the BASIC “SCREEN n,m’ statement
= which not only clears the screen of any text present
- but, because a magnification or size wvalue is
specified ('m”), also clears the Sprite Patterns! If
the Screen Mode is changed without specifying the size

or magnification factor, then the Sprite Pattern Table
is left untouched.

This Program uses Program 1 as _a Subroutine to

generate Sprite patterns: if you have SAVEd Program 1
(using SAVE"CAS:"), vyou will be able to merge it (using
MERGE"CAS:") after this Program has been entered. If,

on the other hand, you CSAVEd Program 1, then load it
first before entering this Program.

The ’BEEP” in Line 20 is to tell you when the Sprite
patterns have been loaded, and will give you an- idea of
how long it takes. Lines 30 and 40 place two of the 8-
byte Sprites on the screen, using Sprite Planes 1 and 2.

Line 50 provides a short delay between the changes in
Sprite magnification.

Line 60 obtains the value of Bit 0 of VDP Register 1
- the ’‘magnification Bit” - by masking out the other
Bits, and places the value in variable “A°. Lines 70 and
80 change the magnification. If Bit 0 of VDP Register 1
is set to a 17, Line 70 resets it. Conversely, Line 80
sets it if it was reset. Once the change has been made
- in either Line, a jump is made back to the delay in
Line 50.

Lines 70 and 80 can be combined in just one Program
Line, and Line 60 deleted altogether, by:

IF (VDP(1)AND1)=1 THEN VDP(1)=VDP(1)AND&HFE : ELSE
VDP(1)=VDP(1)OR1:GOTO 50

The brackets round the ‘VDP(1) AND 1° at the
beginning of this Line are important.

Notice the technique used to set and reset the VDP
Register Bit. This is better than adding or subtracting
‘l° from the Register contents, since this procedure
could upset other Bits in the Register if things became
‘out of phase’ - as may occur in a full length program.

- B4 -

e |

APPENDIX B PROGRAMS

After you have entered and RUN the Program and
Subroutine, Line 20 can be turned into a ‘REM’.

For a demonstration of how the SCREEN statement can
clear the SPRITE PATTERN Table, after the program has
been RUN, change Line 10 to read °‘SCREEN 1,0° and Line
20 to be a REM: now, when RUN, there will be no Sprite
display at all. To restore the situation, make Line 10
SCREEN 1’ again, remove the REM from Line 20, and RUN.

10 SCREEN 1

20 GOSUB 1000:BEEP

30 PUTSPRITE 1,(120,100),6,4
40 PUTSPRITE 2,(120,120),1,5
50 FOR I=1 TO 200:NEXT

60 A=VDP(1l) AND 1
70 IF A=1 THEN VDP(1)=VDP(l) AND &HFE:GOTO 50

80 IF A=0 THEN VDP(1)=VDP(1l) OR 1:GOTO 50

1000 ° Subroutine - Program 1 - goes here

See Program 10 for the way to change Sprite Size (VDP
Register 1, Bit 1)

- BB =

APPENDIX B PROGRAMS

PROGRAM 3

SWITCHING NAME TABLE ADDRESSES

This program shows how the PATTERN NAME Table Base
can be switched to a new address in VRAM, to present a
completely different screen display very quickly.

WARNING: BASIC expects to find the NAME Table at the
address it was initialised at on entering the Screen
Mode - i.e., the address defined bv BASE(n), where ‘n~
is 0, 5, 10 or 15 for Modes 0 to 3 respectively. Always
be sure, therefore, that at the end or on abortion of
your program, the “initialised’ screen is re-entered.

The “second” NAME Table is located at 3C00 hex in
this program - on a “legitimate’ boundary (see pages 19-
21 and Appendix C). This address is actually within the
SPRITE PATTERN Table area, but we are not using Sprites
in this program, so thats o.k.

Line 20 prints a message to the initialised screen
display. Lines 40 to 60 fill the second NAME Table with
‘colons”, while Line 70 sets the colours for the colon
character to Black on Dark Red (see Section 5.3.3).

Lines 80 to 100 place the message in M$ (Line 30)
into the NAME Table, starting at the offset value 322
- 10 rows down, 2 columns along. These routines all
take a four or five seconds to complete.

Then comes the actual Table switching segment,
beginning with an ON STOP statement. This is so that
when the program is aborted, conditions are returned to
‘normal” for the MSX - including putting the original
colours back into COLOUR Table address 8199. The
Subroutine at Line 300 simply holds each screen display
for about four seconds before making the switch.

As you will see when the program is RUN, switching
from display to display this way 1is virtually
instantaneous, with none of the visible build up that

occurs when the screen is filled using normal BASIC
statements.

- BE =

APPENDIX B PROGRAMS

‘10
14
dS
16
20
30
40
50
60
70
80
90
100
104
105
106
110
120
130
140
150
160
194
195
196
200
294
295
296
300

SCREEN 1

© **%* Set up the two displays ***
LOCATE 5,10:PRINT "INITIALISED SCREEN"
M$="The SECOND Display Screen"

FOR I=0 TO 767

VPOKE &H3C00+I,&H3A

NEXT

VPOKE 8199, &H16

FOR I=1 TO LEN(MS$)

VPOKE &H3C00+322+I,ASC(MID$(MS$,I,1))
@EXT

° *%* GSyjitch NAME Tables ***
ON STOP GOSUB 200: STOP ON
VDP(2)=&HF

GOSUB 300

VDP(2)=6

GOSUB 300

GOTO 120

° **%* Restoring to Normal ***

’

VDP(2)=6 :VPOKE 8199,&HF4:STOP
 % Delay Subroutine ***

FOR I=0 TO 2000:NEXT:RETURN

- BT

APPENDIX B PROGRAMS

PROGRAM 4

SWITCHING PATTERN GENERATOR
TABLE ADDRESSES

In this program the PATTERN GENERATOR Table Base is
switched to a new address in VRAM, by suitable
adjustment to the value of VDP Register 4. This could
be used to change the patterns displayed on the screen
to alternative patterns, the contents of the NAME Table
being unchanged.

For this demonstration, only a part of the “second’
PATTERN GENERATOR Table 1is 1loaded with patterns. - The
second Table is located at 3800 hex - normally the start
of the SPRITE PATTERN Table. But as we are not going to
use Sprites in this program, this is o.k.

The procedure used is as follows. The lower case
character set is loaded into the second PATTERN
GENERATOR Table, at locations that would normally be
occupied by the upper case character set. Then the NAME
Table is filled with the message ‘UPPER TO LOWER CASE”
(in capitals) - by simply using the “PRINT statement.

When the PATTERN GENERATOR Table Base address is
switched, the NAME Table points to the new patterns for
the characters - which have been defined as lower case
letters. Consequently the displayed sentence switches
from Capital letters to small letters.

\
Line 10 initialises the screen to Mode 1. Line 20
ensures that when the program is aborted, the NAME Table
is pointing to the full PATTERN GENERATOR Table.

Lines 30 to 50 VPOKE into the new PATTERN GENERATOR
Table, starting at the location for capital A
(520=65x8), the lower case patterns for the alphabet.
The MSX character set is in ROM, starting at address
1BBF hex. The pattern for the lower case letter ‘a’
- character 97 - therefore starts at 1BBF hex plus 97x8:
each character pattern needs eight bytes, remember.

The FOR-NEXT loop (Line 30) is made long enough to
just cover the 26 letters of the alphabet. The "-1° at
the end of Line 30 is to ensure the exact number of
“loads* are made: there would be 209 operations between
0 and 208, the first being made when I=0.

After you have RUN the program, see the effect of
putting a “STOP” at the end of line 80. This will leave
you with the NAME Table pointing to the second character
set - in which only the CAPITAL letter characters have
been defined. You will therefore be able to see what
you ‘re printing on the screen only when CAPITAL letters
are used - and they will appear as lower case letters.

- B8 »

APPENDIX B PROGRAMS

With a full character set in this second PATTERN
GENERATOR Table, the character for every key will print
to the screen. To return to the original PATTERN
GENERATOR Table, carefully type in VDP(4)=0 and
“carriage return’.

The technique outlin~d in this program enables you to
have more than one character set in the text Screen
Modes, but of course, characters from one set only can
be displayed at any given time.

10 SCREEN 1
20 ON STOP GOSUB 200:STOP ON

25 ° *** LOAD CHARACTERS a-z IN SECOND TABLE ***

30 FOR I=0 TO (26%*8)-1
40 VPOKE &H3800+(65*8)+I,PEEK(&HLBBF+(97*8)+I)

50 NEXT

54 °

55 ° *%* PRINT MESSAGE IN CAPITALS ***
56 °

60 LOCATE 5,10:PRINT "UPPER TO LOWER CASE"

65 ° *** TABLE-SWITCHING LOOP **x
66 -

70 GOSUB 300

80 VDP(4)=7

90 GOSUB 300

100 VDP(4)=0

110 GOoTO 70

194 °

195 ° *#* RESTORE ON PROGRAM ABORT **#*
196 -

200 VDP(4)=0:STOP

294 °

295 ° *%* DELAY SUBROUTINE ###

296 °

300 FOR I=1 TO 300:NEXT:RETURN

For further information on VDP(4), refer to pages 22 to
24,

-3 »

APPENDIX B PROGRAMS

PROGRAM 5
SPRITE PATTERNS AS CHARACTER PATTERNS

This program - in two stages - shows first how
Sprites can be defined as MSX Character patterns, and
secondly the formation of a 32-byte sprite.

First enter and RUN Part A. In this part, Line 20
sets the Base address for the SPRITE PATTERN Table to
the same Base address used for the character PATTERN
GENERATOR Table, by suitable adjustment of the value
contained in VDP Register 6 (see Section 1.2.2 for
details on the VDP Registers).

To make things slightly more interesting (!), you
will be asked to ‘Press any key (Line 30), and in Line
60, the ASCII value for the key you pressed is stored in
variable “A°. Line 40 clears the input buffer, so that
only the next key pressed will be accepted (try the
program with this line temporarily as a REM, pressing as
many keys as you can while the program is actually
running). Note: you can of course use the ’‘greater-than’
and “less-than’ symbols instead of °‘NOT ~ and the ’=7
sign in this Line.

Line 80 puts the selected character on the screen as
a Sprite - with a little movement as provided by the
FOR-NEXT loop, Lines 70 and 90.

\

This program will enable you to see the “characters’
produced by keys such as those used for Cursor control.
You can see the Sprite characters magnified by making
Lin% 10 read SCREEN 1,1

Having RUN the program a few times, break out (by
pressing ‘CTRL-STOP’), and amend lines 10 and 80 as
shown in Part B.

The new Line 10 sets the Sprites to 32-byte
characters, magnified. Since each Sprite pattern now
takes 32 bytes, there can be only 64 Sprite patterns in
the 2048 byte SPRITE PATTERN Table. The amendment to
Line 80 ensures that only Sprite patterns up to 64 are
called.

To see how the 32 bytes form a large size Sprite,
press the ‘0° key. You will see a Sprite Pattern
comprising the numbers 0, 1, 2 and 3. That ‘s because
these patterns are consecutive in the PATTERN Table.
Notice that the first two 8-byte segments, 0 and 1, form
the left side of the Sprite, and the next two 8-byte
segments form the right side of the Sprite.

- Bl0 -

\ls‘&u‘h—_.s—.‘ i 0 i A

APPENDIX B PROGRAMS

This demonstrates quite clearly how the larger sized
Sprite is formed from the consecutive block of 32 bytes
in the PATTERN Table.

Part A

10 SCREEN 1,0

20 VDP(6)=VDP(4)

30 LOCATE 8,5:PRINT "PRESS ANY KEY"
40 IF NOT INKEY$="" THEN 40

50 AS=INKEY$:IF A$="" THEN 50

60 A=ASC(AS)

70 FORI=-8 TO 150

80 PUTSPRITE 1,(120,I1),1,A

90 NEXT

100 GOTO 40

Part B

10 SCREEN 1,3
80 PUTSPRITE 1,(120,I),1,A/4

- Bll -

APPENDIX B PROGRAMS

PROGRAM 6

FIFTH SPRITE DEMONSTRATION

This Program demonstrates what happens when five (or
more) sprites are present on one horizontal pixel line.
It will give you an opportunity to see how changing the
planes on which Sprites are displayed can affect which
Sprite ‘vanishes’ when four or more are on one pixel
line.

Line 10 sets the MSX into Screen Mode 1, with
magnified 8-byte Sprites: this will enable you to see
what is happening quite clearly. Line 20 sets up VDP
Register 6 so that the SPRITE PATTERN Table is at the
same address as the character PATTERN GENERATOR Table:
in other words, all the Sprite Patterns are set to
character patterns.

Lines 30 to 60 put Sprite patterns 49 to 52 - the
numbers 1 to 4 - on the screen in different colours, and
slightly overlapping so that between them they occupy a
small band of horizontal pixels. Notice that Sprite
planes 2, 4, 6 and 8 are used: this is so that, later
on, you can ‘pass’ a Sprite on an intermediate plane.

Lines 70 to 140 provide a loop to move a fifth Sprite
(the number °5°) down the screen, past the other four.
At the top of the screen 1is printed the status of the
Sth Sprite Flag (Bit 6 of VDP Reglster 8), and the

‘Fifth Sprite Number . The delay loop in line 130 slows
the movement down, so that you can watch what is

happening.

When RUN, the Fifth Sprite Flag will initially be
zero, and will turn to a ‘1° as the moving Sprite
coincides with the other four on the same horizontal
pixel line. Part of the fifth Sprite will then
“vanish’, and the Number of the Fifth Sprite plane will
be indicated: any value indicated while the Flag is at
‘0° is spurious, and should be ignored.

After running the program a few times, change Line 80
to PUTSPRITE “1°, instead of “9°: you’ll notice that
now, the Fifth Sprite plane is different - and it is
part of Sprite pattern ‘4°, on plane 8, that ‘vanishes’
as Sprite pattern ‘5° passes by it. The four fully
displayed Sprites are always those closest to the

“front” of the screen, i.e. those with the lowest plane
numbers.

Try placing the Sprites on other planes and observe
the effects: it will give a good insight into how the
Fifth Sprite mechanism works.

- Bl2 ~

ORON———

APPENDIX B

10

30
40
50
60
70
80
90
100
110
120
130
140

SCREEN 1,1
VDP(6)=VDP(4)

PUTSPRITE 2,(100,100),15,49

PUTSPRITE 4,(108,102),7,50

PUTSPRITE 6,(116,104),10,51

PUTSPRITE 8,(124,106),1,52

FOR I=60 TO 130

PUTSPRITE 9,(132,1),9,53

LOCATE 5,5

PRINT "5th SPRITE FLAG

LOCATE 5,6

PRINT "5th SPRITE Plane =

FOR J=1 TO 50:NEXT
NEXT

- B13 -

PROGRAMS

".(VDP(8) AND &H40)/&H40

";VDP(8) AND &HIF

APPENDIX B PROGRAMS

PROGRAM 7

PRINTING OUT THE
CHARACTER PATTERNS

This program enables you to look at how any character
pattern is constructed on the screen - and can help you

when defining your own characters Line 20 sets
variable BA to the Screen 1 PATTERN GENERATOR Table Base
address. Lines 22 to 28 generate a new pattern for
characters 250 and 219 - to give a more attractive

display: they can be omitted, if you wish, but if you
do, you should change the VPOKE in Line 40 to &H66
instead of &HF6.

Lines 30 and 40 set the colours for characters 250
and 219, and load the characters into variables D1$ and
D2§ respectively for later on.

Lines 50 to 100 get the character number you wish to
see displayed: Line 50 clears the input buffer, and Line
100 checks that a valid number has been INPUTed.

In Line 110, BL is made equal to the first byte of
the pattern definition. Then comes a FOR-NEXT loop which
examines each pattern 1line in turn. The print
destination is set up (Line 130), and the pattern byte
is VPEEKed (Line 140).

The byte value is converted to a BINary string and to
a HEX string (Line 150), and the strings made the
“correct” length (Lines 160 and 170). A FOR-NEXT loop
then prints out the binary strings in position
- character 250 for a “0” bit, and 219 for a “1° bit
(Line 190): watch the semi-colons in this Line.

Then the Hex value is printed out, so you can see how
the byte value relates to the pattern line. Lines 230
simply enable you to continue inspecting character
shapes: simply press ‘Y’ to view another, then enter the
new character number.

One interesting character to view will be 255 - the
cursor character. To do this, enter “255°, then
Backspace the cursor over one of the characters in the
same line before making the Carriage Return: you will
see how the cursor character always ‘images the
character it is placed ov-er.

- Bl4 -

APPENDIX B PROGRAMS

4 L
5 ° %*** GET UP SCREEN ***
6 ”

10 SCREEN 1
20 BA=BASE(7)

22 FOR I=0 TO 7

24 IF I=0 THEN VPOKE250*8,&HFF:VPOKE219*8, &HFF:GOTO 28
26 VPOKE (250*8)+I,&H80:VPOKE (219*8)+I,&H80

28 NEXT I

30 VPOKE 8192+(250/8),&HF1:D1$=CHRS$(250)

40 VPOKE 8192+(219/8),&HF6:D2$=CHR$(219)

44

45
46 -

50 IF NOT INKEY$="" THEN 50

60 LOCATE 3,1:PRINT "WHICH CHARACTER NUMBER?"
70 LOCATE 10,3 :PRINT " %

80 LOCATE 10,3:INPUT Q$

90 Q=VAL(QS)

100 IF Q<0 OR Q>255 THEN GOTO 70

104 ~

105 ° *** PRINT SHAPE & DATA ***

106 ~

110 BL=BA+(8*Q)

120 FOR I=0 TO 7

130 LOCATE 5,6+I

140 CP=VPEEK (BL+I)

150 CPS$=BINS(CP):HV$=HEXS$ (CP)

160 IF LEN(HVS$)=1 THEN HV$="0"+HVS$

170 CD$=LEFT$("00000000",8-LEN(CPS$))+CP$

180 FOR J=1 TO 8:BV$=MID$(CD$,J,1)

190 IF BVS="0" THEN PRINT D1$;:ELSE PRINT D2§;
200 NEXT J

210 PRINT " = ";HVS$;" HEX"

220 NEXT I

224 °

225 ° *%% MORE? ***

226 ° .

230 LOCATE 0,17:PRINT "PRESS ‘Y’ FOR ANOTHER"
240 PRINT "PRESS ‘N° TO STOP"

250 IF NOT INKEYS$="" THEN 250

260 QS=INKEYS

270 IF Q$="Y" OR Q$="y" THEN 50

280 IF Q$="N" OR Q$="n" THEN END

290 GOTO 260

”

*** GET REQUIRED CHARACTER ***

- Bl5 -

APPENDIX B PROGRAMS

PROGRAM 8

CHANGING CHARACTER SHAPE
WHILST IT IS DISPLAYED

This program demonstrates how a character shape can
be changed whilst it is on display. The program creates
a pair of ‘eyes’, which blink - until you’ve had enough
and CTRL-STOP it from running.

Lines 10 to 30 set up the display, and locate (twice)
on the screen the character that will be changed to an
‘eye” shape. The DATA is RESTOREd to its start, then
the open-eye character created via the subroutine.

Line 60 provides a short delay between the °‘blinks’.
The pattern for the character is then changed by a
series of calls to the subroutine, through a FOR-NEXT
loop. The Subroutine simply reads the DATA and VPOKEs
it into the PATTERN GENERATOR Table at the correct
locations for the character being changed.

While this technique may seem space consuming in
terms of the data bytes required for each of the
character pattern changes, it does save on the number of
different character numbers required. Also, if used in
Screen Mode 2 as set for a Text Screen (see Section
6,3), only one set of COLOUR Table bytes need be
defined. Using eight different characters in Screen 2
as a Text- screen would require 64 (8x8) COLOUR Table
bytes to be defined.

Programming space can be saved also, by using the
‘string” technique for the DATA statements, as outlined
in Section 3.2.1 (example (b)) for Sprite definitions.
The Subroutine would need to be changed, of course.

Assuming that a DATA line had the form "abcdefgh",
the Subroutine could be:

200 READ D$

210 FOR I=1 TO 8

220 P=ASC(MID$(D$,I,1))
230 VPOKE (254*8)+I1-1,P
240 NEXT:RETURN

Note the “-1° in the VPOKE address, Line 230: this is
to ensure the values are VPOKEd into their correct
addresses. S8ee Appendix D for the way to access
characters from the keyboard for string statements.

- Blé -

APPENDIX B PROG g

4 ”
5 7 %*.=x SET UP THE SCREEN **x*
6 ’

10 SCREEN 1
20 LOCATE 11,12
30 PRINT CHR$(254);" ";CHR$(254)

35 ° *** OPEN EYE SHAPE **¥*
40 RESTORE 500

50 GOSUB 200
60 FOR I=1 TO 200:NEXT

64
65 ° *** CREATE “BLINK®~ ***
66

70 FOR J=1 TO 7
80 GOSUB 200

90 NEXT

100 GOTO 40

194 °

195 ° *** SUBROUTINE TO CHANGE CHARACTER ***
196 °

200 FOR I=0 TO 7

210 READ D$

220 VPOKE (254*%8)+I,VAL("&H"+D$)
230 qEXT:RETURN

495 ° *%% DATA ***

496 °

500 DATA 18,66,99,99,66,18,0,0
510 DATA 0,7E,99,99,66,18,0,0
520 DATA 0,0,FF,99,66,18,0,0
530 DATA 0,0,E7,99,66,18,0,0
540 DATA 0,0,81,E7,66,18,0,0
550 DATA 0,0,0,81,7E,18,0,0
560 DATA 0,0,FF,99,66,18,0,0
570 DATA 0,7E,99,99,66,18,0,0

- Bl17 =

APPENDIX B PROGRAMS

PROGRAM 9

ALL SPRITE SIZES
IN ONE PROGRAM

When you specify Sprite Size and Magnification using
the BASIC °SCREEN’ statement, not only is the Screen
Mode completely re-initialised, but the SPRITE PATTERN
Table is cleared too. (Simply specifying the “SCREEN~
number, without Sprite Size or Magnification, leaves the
SPRITE Tables unaltered, but re-initialises the Mode).

This program shows how to change Sprite Size and
Magnification whilst. a program is running, using
“VDP(x) ° statement, although it is not possible to
obtain the different kinds of Sprite on the screen at
the same time.

The program uses Program 1 as a Subroutine: either
load Program 1 before entering this program, or
MERGE"CAS:" load it after entering this program.

Lines 10 and 20 initialise the screen, ensure that
the Sprite data in VDP(l) is set to 0, and 1load the
Sprite Patterns via the Subroutine (Program 1). Lines
30 to 50 put three 8-byte Sprite patterns onto the
screen - unmagnified. i

After a short delay - through the subroutine at Line
300 - the Sprite Magnification bit of VDP(l) is set in

Line 80 - to produce Magnified 8-byte Sprites. After
another delay, all ’thel Sprites are cleared from the
screen - by entering °"208° for the vertical position of

the Sprite with the lowest _Plane number - and VDP(1l) is
reset for ‘no magnification’ (Line 120).

The process is then repeated for the 32-byte Sprites
- selection of this size being done in Line 140, by
setting the Size bit of VDP(1). Then, after a short
message, the whole program is repeated again. To break
the program, enter ‘CTRL-STOP”.

The reader is encouraged to experiment with this
program. For example, try changing the magnification of
the Sprites whilst they are on the move. Also, notice
that the top left corner of each Sprite remains in the
same position whatever its size or magnification. This
ie always the reference point for the location of a
Sprite.

- Bl8 -

APPENDIX B PROGRAMS

4 s
5 ° *%*% SET SCREEN & LOAD SPRITES ***
6 s

10 SCREEN 1:COLOR 15,1,1:VDP(1)=VDP(1) AND &HFC
20 GOSUB 1000

24
25 ° %*%% g-BYTE SPRITEB ***
26

30 PUTSPRITE 1,(100,30),8,
40 PUTSPRITE 2,(100,50),7,
50 PUTSPRITE 3,(100,80),3,
60 LOCATE 0,20:PRINT "8-BY
70 GOSUB 300

80 VDP(1)=VDP(1l) OR 1

90 LOCATE 0,20:PRINT "8-BYTE SPRITES, MAGNIFIED "
100 GOSUB 300

110 PUTSPRITE 1,(90,208)

114 °

115 ~ *** 32-BYTE SPRITES ***

116 °

120 VDP(1)=VDP(1l) AND &HFE

130 LOCATE 0,20:PRINT "32-BYTE SPRITES, UNMAGNIFIED"
140 VDP(1)=VDP(1l) OR 2

150 PUTSPRITE 1,(100,30),13,32

160 PUTSPRITE 2,(100,50),10,33°

170 PUTSPRITE 3,(100,80),8,34

180 GOSUB 300

190 LOCATE 0,20:PRINT "32-BYTE SPRITES, MAGNIFIED "
200 VDP(1)=VDP(1l) OR 1

210 GOSUB 300

220 PUTSPRITE 1,(30,208)

230 CLS:LOCATE 2,5:PRINT "ALL IN THE SAME PROGRAM"
240 GOSUB 300

250 VDP(1)=VDP(1l) AND &HFC

260 CLS:GOTO030

294 °

295 Y %%k%x DELAY *-%

296 -

300 FOR I=1 TO 2000:NEXT:RETURN

E SPRITES, UNMAGNIFIED"

1000 ~ *** SPRITE LOADER - PROGRAM 1 *#*x*

- Bl9 ~

APPENDIX C

VDP TABLES

The values in VDP Registers 2 to 6
determine the Base addresses of the
various Tables in VRAM. The way these
addresses are derived 1is discussed
fully in Section 1.2.2: this Appendix
provides Tables of all the possible
values for the Registers.

VDP REGISTER 2: Base Addresses Pattern Name Table

HEX START
VALUE ADDRESS
(HEX)
00 0000
01 0400
02 0800
03 0C00
04 1000
05 1400
06 1800
07 1C00
08 2000
09 2400
0A 2800
0B 2C00
oC 3000
oD 3400
OE 3800
OF 3C00
VDP REGISTER 4: Base Addresses for Pattern Generator
Table
HEX START
VALUE ADDRESS
(HEX)
00 0000
01 0800
02 1000
03 1800*
04 2000
06 2800
06 3000
07 3800**

* In mode 2, Start address=0
** In mode 2, Start address=2000 hex

- L)

APPENDIX C vDP TABLES

VDP REGISTER 3: Base Addresses for Colour Table

HEX START HEX START HEX START HEX START HEX START
VALUE ADDRESS VALUE ADDRESS VALUE ADDRESS VALUE ADDRESS VALUE ADDRESS
(HEX) (HEX) (HEX) (HEX) (HEX)

00 0000 34 0D00 68 1A00 9C 2700 DO 3400

01 0040 35 0D40 69 1A40 aD 2740 D1 3440

02 0080 36 0D80 6A 1A80 9E 2780 D2 3480

03 00CO 37 oDCOo 6B 1ACO 9F 27C0 D3 34C0

04 0100 38 0E00 6C 1B00 A0 2800 D4 3500

05 0140 39 OE40 6D 1B40 Al 2840 D5 3540

06 0180 3A 0E80 6E 1880 A2 2880 D6 3580

07 01C0 3B 0ECO 6F 1BCO A3 28C0 D7 35C0

08 0200 3C OF00 70 1C00 A4 2900 D8 3600

09 0240 3D OF40 71 1C40 A5 2940 D9 3640

0A 0280 3E OF80 72 1C80 A6 2980 DA 3680

0B 02C0 3F OFCO 73 1CCO A7 29C0 DB 36C0

oC 0300 40 1000 74 1D00 A8 2A00 DC 3700

oD 0340 41 1040 75 1D40 A9 2A40 DD 3740

OE 0380 42 1080 76 1D80 AA 2A80 DE 3780

OF 03C0 43 10C0 77 1DCO AB 2ACO DF 37C0

10 0400 44 1100 78 1E00 AC 2B00 EO 3800

11 0440 45 1140 79 1E40 AD 2B40 E1 3840

12 0480 46 1180 7A 1E80 AE 2B80 E2 3880

13 04C0 47 11C0 7B 1ECO AF 2BCO E3 38C0

14 0500 48 1200 7C 1F00 BO 2C00 - E4 3900

15 0540 49 1240 7D 1F40 B1 2C40 E5 3940

16 0580 4A 1280 7E 1F80 B2 2C80 E6 3980

17 05C0 4B 12C0 7F 1FCO B3 2CCo E7 39C0

18 0600 4C 1300 80 2000 B4 2D00 E8 3A00

19 0640 4D 1340 81 2040 B5 2D40 E9 3A40

1A 0680 4E 1380 82 2080 B6 2D80 EA 3A80

1B 06CO 4F 13C0 83 20C0 B7 2DCOo EB 3ACO

1C 0700 50 1400 84 2100 B8 2E00 EC 3B00

1D 0740 51 1440 85 2140 B9 2E40 ED 3840

1E 0780 52 1480 86 2180 BA 2E80 EE 3B80

1F 07C9 53 14C0 87 21C0 BB 2ECO EF 3BCO

20 0800 54 1500 88 2200 BC 2F00 FO 3C00

21 0840 55 1540 89 2240 BD 2F40 F1 3C40

22 0880 56 1580 BA 2280 BE 2F80 F2 3C80

23 08CO0 57 16C0 8B 22C0 BF 2FCo F3 3CCo

24 0900 58 1600 8C 2300 co 3000 Fa 3D00

25 0940 59 1640 8D 2340 C1 3040 F5 3D40

26 0980 5A 1680 8E 2380 C1 3080 F6 3D80

27 09C0 5B 16C0 8F 23C0 C3 30C0 F?7 3DCOo

28 0A00 5C 1700 90 2400 ca 3100 F8 3E00

29 0A40 5D 1740 91 2440 Cs 3140 F9 3E40

2A 0A80 5E 1780 92 2480 Cé 3180 FA 3E80

2B 0ACO 5F 17C0 93 24C0 c? 31C0 FB 3ECO i
2C 0B00 60 1800 94 2500 (o}:] 3200 FC 3F00 |
2D 0B40 61 1840 96 2540 Cc9 3240 FD 3F40 1
2E 0B80 62 1880 96 2680 CA 3280 FE 3F80 i
2F 0BCO 63 18C0 97 25C0 CB 32C0 FF 3FCO i
30 0C00 64 1900 98 2600 cc 3300 ¢
31 0C40 65 1940 99 2640 cD 3340

32 0C80 66 1980 9A 2680 CE 3380

33 0CcCo 67 19C0 98 26C0 CF 33C0

APPENDIX C VDP TABLES

VDP REGISTER 5: Base Addresses for Sprite Attribute

Table
HEX START HEX START HEX START HEX START
VALUE ADDRESS VALUE ADDRESS VALUE ADDRESS VALUE ADDRESS
(HEX) (HEX) (HEX) (HEX)
00 0000 20 1000 40 2000 60 3000
01 0080 21 1080 41 2080 61 3080
02 0100 22 1100 42 2100 62 3100
03 0180 23 1180 43 2180 63 3180
04 0200 24 1200 44 2200 64 3200
05 0280 25 1280 45 2280 65 3280
06 0300 26 1300 46 2300 66 3300
07 0380 27 1380 47 2380 67 3380
08 0400 28 1400 48 2400 68 3400
09 0480 29 1480 49 2480 69 3480
0A 0500 2A 1500 4A 2500 6A 3500
0B 0580 2B 1580 4B 2580 6B 3580
oC 0600 2C 1600 4C 2600 6C 3600
ob 0680 2D 1680 4D 2680 6D 3680
OE 0700 2E 1700 4E 2700 6E 3700
OF 0780 2F 1780 4F 2780 6F 3780
10 0800 30 1800 50 2800 70 3800
1 0880 31 1880 51 2880 71 3880
12 0900 32 1900 52 2900 72 3900
13 0980 33 1980 53 2980 73 3980
14 0A00 34 1A00 54 2A00 74 3A00
15 0AS80 35 1A80 55 2A80 75 3A80
16 0B0O 36 1B00 56 2B00 76 3B00
17 0B80 37 1B80 57 2880 77 3B80
18 0C00 38 1C00 58 2C00 78 3C00
19 0C80 39 1C80 59 2C80 79 3C80
1A 0D00 3A 1D00 5A 2D00 7A 3D00
1B 0D80 3B 1D80 5B 2D80 78 3D80
1C 0E00 3C 1E00 5C 2E00 7C 3E00
1D OEB0 3D 1E80 5D 2E80 7D 3E80
1E 0F00 3E 1F00 5E 2F00 7E 3F00
1F 0F80 3F 1F80 5F 2F80 7F 3F80

VDP REGISTER 6: Base Addresses for Sprite Pattern
Generator Table

HEX START
VALUE ADDRESS

(HEX)
00 0000
01 0800
02 1000
03 1800
04 2000
06 2800
06 3000
07 3800

APPENDIX D

ACCESSING A CHARACTER

FROM THE KEYBOARD

It is often useful to be able to access
a character number direct from the
Keyboard, particularly when generating
Sprite shapes or new patterns for
characters. It is easier, for example,
to enter AS$="AaBc" than it is to enter
AS=CHRS (65)+CHR$ (97)+CHRS$ (66)+CHRS$ (99) .

This Appendix shows how all but three
character numbers can be obtained from
the Keyboard: the three unobtainable
characters are 0 (null or blank), 127
(delete) and 255 (Cursor character).

Note: On European versions of the MSX,
Characters 0-31 are formed by two bytes
- the first ‘"switching on" the lower
set: these cannot therefore be used as
the others 1in string elements to
produce character numbers.

CHARACTER CHARACTER KEY-BOARD
NUMBER. SHAPE CHARACTER PLUS
Dec Hex (MSX Set) to press
0 00 Blank NOT AVAILABLE .
1 01 e [Graph
2 02 ® [Graph & Shift
3 03 v ‘ Graph & Shift
4 04 L 4 ? Graph & Shift
5 05 & ‘ Graph
6 06 L i Graph
y 07 ’ 9 Graph
8 08 [£] 9 Graph & Shift
9 09 O 0 Graph
10 0A @ 0 Graph & Shift
11 0B ¢ M Graph
12 ocC ¥ M Graph & Shift
13 0D Fu] Graph
14 0E 2] Graph & Shift
15 OF ted Z Graph

- Dl -

APPENDIX D ACCESSING CHARACTERS

CHARACTER CHARACTER KEY-BOARD

NUMBER. SHAPE CHARACTER PLUS
Dec Hex (MSX set) to press

16 10 £ G Graph & Shift
17 11 5 B Graph
18 12 0 i Graph
19 13 q) H Graph
20 14 (B F Graph
21 15 (6B G Graph
22 16 (D \ Graph & Shift
23 17 =) - Graph
24 18 (d R Graph
25 19 &) Y Graph
26 1A 3 \Y Graph
27 1B) N Graph
28 1C X X Graph
29 1D %] / Graph
30 1E N ¥ Graph
31 1F aa) - Graph & Shift
32 20 Space SPACE

33- 21 B 1 Shift
34 29 n ‘ Shift
35 23 s 3 Shift
36 24 $ 4 Shift
37 25 % 5 Shift
38 26 & 7 Shift
39 27 ‘ ’

40 28 (9 Shift
41 29) 0 Shift
42 23 * 8 Shift
43 2B + = Shift
44 2C ' '

45 2D - -

46 2E ; .

47 2F / /

48 30 0 0

49 31 1 1

50 32 2 2

51 33 3 3

52 34 4 4

53 35 5 5

54 36 6 6

55 37 7 7

56 38 8 8

57 39 9 9

58 3A : ; Shift
59 3B H i

60 3C < g shift
61 D = =

62 3E > . Shift
63 3F ? 7 shift

- D2 -

APPENDIX D ACCESSING CHARACTERS

CHARACTER CHARACTER KEY-BOARD

NUMBER. SHAPE CHARACTER PLUS

Dec Hex (MSX Set) to press

64 40 @ 2 Shift
65 41 A A Shift
66 . 42 B B Shift
67 43 C C Shift
68 44 D D Shift
69 45 E E Shift
70 46 F F Shift
7i 47 G G Shift
12 48 H H Shift
73 49 I I Shift
74 4A J J shift
75 4B K K Shift
76 4C L L Shift
77 4D M M Shift
78 4E N N Shift
79 4F 0] 0] Shift
80 50 P P Shift
81 51) Q Shift
82 52 R R Shift
83 53 S S Shift
84 54 m T Shift
85 55 U U Shift
86 56 v \' Shift
87 57 W W Shift
88 58 X X Shift
89 59 b § Y Shift
90 5A Z Z Shift
91 5B [[

92 5C \ A

93 5D]]

94 5E ~ 6 Shift
95 5F - - Shift
96 60 ; . Code*
97 61 a A

98 62 b B

99 63 c C

100 64 d D

101 65 e E

102 66 f F

103 67 g G

104 68 h H

105 69 i I

106 6A j R

107 6B k K

108 6C 1 %

110 6E n N

111 6F o 0

* Varies with model of MSX
w BY &

APPENDIX D ACCESSING CHARACTERS

CHARACTER CHARACTER KEY-BOARD

NUMBER. SHAPE CHARACTER PLUS
Dec Hex (MSX Set) to press

112 70 p P

113 711 q 0

114 72 r R

115 73 s S

116 74 t T

117 75 u U

118 76 \'4 \")

119 77 w W

120 78 X X

121 79 y Y

122 7A z pA

123 7B { [Shift

124 7C : \ Shift

125 7D } | shift

126 7E x Shift

127 7F NOT AVAILABLE

128 80 o 9 Code & Shift
129 81 i G Code

130 82 é 4] Code

131 83 a Q Code
-132 84 a A Code

133 85 3 Z Code

134 86 a ' Code

135 87 ¢ 9 Code

136 88 @ W Code

137 89 e S Code

138 8A) X Code

139 8B i D Code

140 8C i E Code

141 8D i Cc Code

142 8E A A Code & Shift
143 8F A ' Code & Shift
144 90 E U Code & Shift
145 91 ® J Code

146 92 L3 J Code & Shift
147 93 o R Code

148 94 0 F Code

149 95 o \' Code

150 96 0 T Code

151 97 U B Code

152 98 y 5 Code

153 99 (o} F Code & Shift
154 9A U G Code & Shift
155 9B ¢ 4 Code

156 9C £ 4 Code & Shift
157 9D ¥ 5 Code & Shift
158 9E P 2 Code & Shift
159 9F f 1 Code

- D4 =

APPENDIX D ACCESSING CHARACTERS

CHARACTER CHARACTER KEY-BOARD

NUMBER. SHAPE CHARACTER PLUS

Dec Hex (MSX Set) to press

160 A0 a X Code

161 Al i I Code

162 A2 0 0 Code

163 A3 " P Code

164 A4 n N Code

165 A5 N N Code & Shift
166 A6 a g Code

167 A7 o Vi Code

168 A8 ¢ / Code & Shift
169 A9 [R Graph & Shift
170 AA L X Graph & Shift
171 AB 2 2 Graph

172 AC % 1 Graph

173 AD i 1 Code & Shift
174 AE < P Graph & Shift
175 AF > . Graph & Shift
176 BO A H Code & Shift
177 Bl a H Code

178 B2 [K Code & Shift
179 B3] K Code

180 B4 0 L Code & Shift
181 B5 0 L Code

182 B6 U ; Code & Shift
183 B7 U : Code

184 B8 n ; Code & Shift
185 B9 i ’ Code

186 BA Y 3 Graph

187 BB “ Graph

188 BC 0 C Graph

189 BD Yo 5 Graph

190 BE ar 3 Code & Shift
191 BF § 3 Code

192 co U Graph

193 Cl D Graph & Shift
194 Cc2 0 Graph

198 c3 0 Graph & Shift
196 C4 (=) A Graph

197 c5) U Graph & Shift
198 Cé , J Graph

199 c7 D Graph

200 cB L Graph

201 c9 A L Graph & Shift
202 CA J Graph & Shift
203 CB 9 Q Graph & Shift
204 oc) Q Graph

205 CD - BE Graph

206 CE 8 E Graph & Shift
207 CF W Graph

- Bk

APPENDIX D ACCESSING CHARACTERS

CHARACTER CHARACTER KEY-BOARD

NUMBER. SHAPE CHARACTER PLUS

Dec Hex (MSX Set) to press

208 DO (4 W Graph & Shift
209 D1 X S Graph & Shift
210 D2 () S Graph

211 D3 ol N Graph & Shift
212 D4 (w F Graph & Shift
213 D5 ™ Y Graph & Shift
214 D6 w H Graph & Shift
215 - D7 & P Graph & Shift
216 D8 (%) 0 Code & Shift
217 D9 F 2 Code

218 DA w] Code

219 DB a8 P Graph

220 DC - I Graph

221 DD U K Graph

222 DE (B K Graph & Shift
223 DF =) I Graph & Shift
224 EO a 6 Code

225 El B 7 Code

226 E2 P 8 Code & Shift
227 E3 n 2 Code & Shift
228 E4 3 . Code & Shift*
229 E5 o . Code *

230 E6 u M Code

231 E7 T 8 Code

232 E8 @ [Code & Shift
233 E9 e = Code

234 EA Q] Code & Shift
235 EB 5 0 Code

236 EC oo 8 Graph

237 ED ¢ [Code

238 EE € - Code

239 EF N 4 Graph

240 FO = = Graph & Shift
241 Fl t = Graph

242 F2 2 . Graph

243 F3 < ' Graph

244 F4 [6 Graph

245 F5 J 6 Graph & Shift
246 Fé6 + / Graph & Shift
247 F7 ~ . Graph & Shift*
248 F8 ° Z Graph & Shift
249 F9 ’ X Graph & Shift
250 FA . e Graph & Shift
251 FB va 4 Graph

FAY FC " 3 Graph & Shift
253 FD ? 2 Graph & Shift
254 FE 0] A Graph & Shift
255 FF Cursor NOT AVAILABLE

* On some models, use the "£" Key

= B

0041H

0044H

0047H

004AH

004DH

0056H

APPENDIX E

USEFUL ROM ROUTINES

At the beginning of ROM in the MSX
there is a Jump Table to a number of
routines that can be of value to the
machine code programmer. It is advised
that the Jump Table is used rather than
the actual routine address, since this
would maintain compatibility should the
actual routine addresses change in
future versions.

This Appendix gives details of the
routines that are associated with the
VDP and the screen display.

Disable screen display
IN: None
OUT: AF,BC Modified

Enables screen display
IN: None
QOUT: Modifies AF,BC

Write to a VDP REGISTER
IN: B = Data
C = Register number
OUT: Modifies AF, BC

Read VRAM address
IN: HL= Required VRAM address
OUT: A = Data. AF modified

Write to VRAM address
IN: A = Data
HL= Required VRAM address
QUT: AF modified

Fill VRAM area with specified data
IN: A = data byte
BC= Length of VRAM area to be filled
HL= Start address in VRAM
oUT: Modifies AF,BC

- Bl =

APPENDIX E ROM ROUTINES

0059H

005CH

005FH

0062H

0066H

006CH

006FH

0072H

0075H

0084H

Move block of memory from, VRAM to RAM
IN: BC= Length of block to be moved
DE= Destination in RAM
HL= Source in VRAM
OUT: Modifies all

Move block of memory from RAM to VRAM
IN: BC= Length of block to be moved
DE= Destination in VRAM
HL= Source in RAM
OUT: Modifies all

Set VDP Mode according to Accumulator
IN: A = Required Mode (0...3)
OUT: Modifies all

Change screen colours
IN: Foreground colour at F3E9H
Background colour at F3EAH
Border colour at F3EBH

OUT: Modifies all

Initialise - reset - all Sprites
IN: FCAFH = 1,2 or 3 (Mode)
OUT: Modifies all

Initialise Mode 0 (Text Screen)
IN: F3B3H = NAME Table Base address
F3B7H = PATTERN GENERATOR Base address
OUT: Modifies all

Initialise Mode 1 (Screen 1)

IN: F3BDH = NAME Table Base address
F3BFH = COLOUR Table Base adddess
F3ClH = PATTERN GENERATOR Base address
F3C3H = SPRITE ATTRIBUTE BRase address
F3C5H = SPRITE PATTERN Base address

OUT: Modifies all

Initialise Mode 2 for BASIC graphics

IN: F3C7H = NAME Table Base address
F3C9H = COLOUR Table Base address
F3CBH = PATTERN GENERATOR Base address
F3CDH = SPRITE ATTRIBUTE Base address
F3CFH = SPRITE PATTERN Base address

OUT: Modifies all

Initialise Mode 3 (Multicolour screen)
IN: F3D1H = NAME Table Base address
F3D5H = PATTERN GENERATOR Base address
F3D7H = SPRITE ATTRIBUTE Base address
F3D9H = SPRITE PATTERN Base address
OUT: Modifies all

Find Sprite Attribute address
IN: A = Plane number for attribute
OUT: HL= Start address of attribute
Modifies AF,DE,HL

...-Ez_

APPENDIX E ROM ROUTINES

008AH

008DH

00A2H

00C3H

00CéH

00CCH

00CFH

013EH

Find current Sprite size
IN: None
OUT: A = Bytes per Sprite
Carry Flag set if 32 Byte Sprites

Print character to Graphic Screen
IN: A = Character number
OUT: No change

Print character to screen, Modes 0,1
IN: A = Character number
OUT: No change

Clear the screen
IN: None
OUT: Modifies AF,BC,DE

Position cursor on screen, Modes 0,1

IN: H = Column
L = Row
OUT: Modifies AF

Erase Function key display
IN: None
OUT: Modifies all

Display Function keys
IN: None
OUT: Modifies all

Read VDP Status Register

IN: None
OUT: A = data

w B3 -

Slaalih dearo e Lo o _&

APPENDIX F

USEFUL ADDRESSES
AND HOOKS

The MSX uses the “top” area of RAM to store data and to
provide ‘Hooks” for routines in ROM. The Hooks enable
the system to be expanded, and also enable the user to
“interject’ his own machine rode routines. When using
the Hooks in this way, it is recommended that the
contents of those Z80 registers used are preserved for
the return, since this data may be used by the ROM
routines too. The Hooks comprise five bytes, each one
initialised to contain a machine code ‘RETURN’. Any
added peripherals - such as discs - or system
developments could result in some of the Hooks being
used: it is wise to check the Hook data, therefore,
before making any changes.

This Appendix details the Storage and Hook addresses
that are associated with the display screens: the
initialised contents are not given, since these can vary
from machine to machine, and, obviously, during system
use.

The addresses are given in HEX. Note that where data
(such as an address) is stored in two consecutive bytes,
the first byte contains the least significant byte of
the data, and the second byte contains the most
significant byte of the data. Thus, data such as F123
hex would be stored in the order 23, Fl hex.

- F1 -

ey

APPENDIX F USEFUL ADDRESSES

F3AE
F3AF
F3BO0
F3B3/4
F3B7/8
F3BD/E
F3BF/C0
F3Cl/2
F3C3/4
F3C5/6
F3C7/8
F3C9/A
F3CB/C
F3CD/E
¥3CF/D0
F3D1l/2
F3D5/6
F3D7/8
F3D9/A
F3DC
F3DD
F3DE
F3DF
F3EQ
F3El
F3E2
F3E3
F3E4
F3ES
F3E6
F3E7
F3E9
F3EA
F3EB
F87F
F920/1
F922/3
F924/5
F926/7
F928/9
FBCC
FCAF
FCBO

FD9A
FD9F
FDC7
FDES
FFBB

ADDRESSES

Initialising width for Text Screen Mode 0
Initialising width for Screen Mode 1
Current line width

Mode 0 NAME Table Base address

Mode 0 PATTERN GENERATOR Base address
Mode 1 NAME Table Base address

Mode 1 COLOUR Table Base address

Mode 1 PATTERN GENERATOR Base address
Mode 1 SPRITE ATTRIBUTE Base address
Mode 1 SPRITE PATTERN Base address
Mode 2 NAME Table Base address

Mode 2 COLOUR Table Base address

Mode 2 PATTERN GENERATOR Base address
Mode 2 SPRITE ATTRIBUTE Base address
Mode 2 SPRITE PATTERN Base address
Mode 3 NAME Table Base address

Mode 3 PATTERN GENERATOR Base address
Mode 3 SPRITE ATTRIBUTE Base address

SPRITE PATTERN Base address
Cursor ‘Y’ position

Cursor “X° position
Function key display flag

VDP Register 0 store
VDP Register 1 store
VDP Register 2 store
VDP Register 3 store
VDP Register 4 store
VDP Register 5 store
VDP Register 6 store
VDP Register 7 store

VDP Status Register (8) store
Foreground colour

Background colour

Border /backdrop colour

Start of FUNCTION key storage: 160 bytes
Pointer to ROM character pattern set
Current NAME Table Base address
Current PATTERN GENERATOR Base address
Current SPRITE PATTERN Base address
Current SPRITE ATTRIBUTE Base address
Code storage for cursor

Current Screen Mode

0ld Screen Mode

HOOKS

Start of Interrupt routines

Start of timed Interrupt routines
Start of pattern initialising routine
Start of ‘ON-GOTO’ interrupt routines
Start of 'SCREEN’ statement

- F2 -

&
-
1
\\
5 Alu.
o~
A.
NEap |
: 1
EET
———
\ ifl
8
17 / K
)
L
v
g2 2
/
]
A A “
' 4
/ F 4
r 4

| P80 B : e EEESCEREE gL

