

MSX Exposed

3 M

Our Order Line Ref: 02207829-001
Your Order Ref: HLH1708

LOAN ITEM DUE BACK BY:25/06/2019

The British Library, On Demand, Boston Spa,
Wetherby,United Kingdom, LS23 7BQ
OnDemand.bl.uk

OTHER MSX COMPUTER TITLES

NSX Games Book (Lacey)
Compiete MSX Programmer's Guide (Sato, Muriel, Mapstone)
MSX Machine Language for the Absolute Beginner (Pritchard)

Ultra High-Pertormance MSX Programs (Sato, Muriel, Mapstone)
Z80 Reterence Guide (Tully)

R s e Y i

MSX EXPOSED

Joe Pritchard

M|

Duuu

eiTISH LIBE ARY
SUPPLY CENTRE

3V APR 1986

fsc,\oa-m__l

SUS

SLBOURNE HOUSE

PUBLISH)

BRS

©1984 Joe Pritchard

All rights reserved. This book 1s copyright and no part may be copled or
stored by electromagnaetic, electronic, photographic, mechanical or any
other means whatsoever except as provided by national law All enquiries
should be addressed to the publishers:

IN THE UNITED KINGDOM—
Melboume House (Publishers) Ltd
Castle Yard House

Castle Yard

Richmond, TW10 6TF

IN THE UNITED STATES OF AMERICA—
Melbourmne House Software Inc.
347 Reedwood Drive

Nashville TN 37217

IN AUSTRALIA—

Melbourne House (Australia) Pty Ltd
2nd Floor, 70 Park Street

South Melbourne, Victoria 3205

Cataloguing in Publication

Pritchard, Joe.
MSX exposed.

Includes index,
ISBN 0 86161 182 9.
1. MSX (Computer system). 2. Software compatibility. |. Title.
001.64'4
EDITION. 7654321

PRINTING FEDCBA9B7654321
YEAR: 90 80 688 87 86 85 84

Contents

Figures
Preface

1 TheMSX System

An introduction to the components in the MSX standard

The Core BASIC

The main commands, statements and functions

Data Structures and Variables

Variable types, expressions, functions and operators

2
3
4 Cassette Tape Storage
5
6

Storing programs, data and areas of memory on tape

The ON Commands

Eror trapping and multiple branching for program control

The Video Display Processor
Elementary and advanced programming of the VOP in
different screen modes, including the graphics macro

language and sprites

35

55

7S

=

7
8

10

12

Joysticks

Using the Joysticks with BASIC programs

The MSX Sound System

Programming the programmable sound generator
(PSG) for sound effects and music

The Programmable Peripheral
Interface

Programming the PPl to access peripheral devices

The MSX Memory Map

Memory management, RAM allocation and the input/
output map

BASIC Style and Sample Routines

Program design and coding, with handy re-usable examples

MSX Machine Code

Information essential for programming MSX computers in
machine language

Appendix: Number Systems
Index

Writeto Us

Customer Registration Card

143

147

163

169

185

193

205

223

227

229

R

e ———

Figures

g
3.1
4.1
4.2
6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13

Block schematic of MSX system

Representation of array A: DIM A (5,5)

Data recorded at 120@ baud (1200 bit/sec)

Form of tape files (sequential files)

Angle convention, CIRCLE statement

Varying the angle argument supplied to CIRCLE

Varying the aspect-ratio argument supplied to CIRCLE
Representation of the Sprite, Multicolour and Backdrop Planes
Sprite definition (1): Size, memory and resolution trade-offs
Sprite definition (2): Mapping on 8 x 8 block

Sprite definition (3): Translating the 8 x 8 sprite shape
Sprite definition (4): Assigning data to the SPRITES$ variable
Sprite definition (5): Translating the 16 x 16 sprite shape
The video display processor registers

Mapping the name table to the screen, mode @
Character defintion

Mapping colour, pattern and name tables to the screen,

mode 2

41

56

63
101
102
103
110
112
114
114
115
116
123
128
130

134

6.14
6.15
6.16
6.17
71
7.2
8.1
8.2
8.3
9.1
10.1
10.2
103
104
12.1

Mapping the graphics tables to the screen, mode 3 136

Mapping pattern-table blocks to the screen (1) 137
Mapping pattern-table blocks to the screen (2) 1798
Functions of bytes in sprite-—attribute block 149
Reading direction (1) From cursor-key combinations 144
Reading direction (2). From the joysticks 144
Envelope modification (1): The sound macrocomrmand 5 151.2
Envelope modification (2): The sound macrocommand M 153
Functions of bits in register 7, programmable sound generator 158
The MSX keyboard table 166
Memory map of slot @ (system slot) 170
Banking of slots 171
Slot-select register (1) Functions of bits 171
Slot-select register (2): Selection example 172

Registers of the Z8@ microprocessor 194

Preface

In this book | give the MSX programmer enough insight into the way in
which the various devices that make up the MSX computer can be
programmed to gain the maximum benefit from the machine. Many of the
demonstration routines for directly accessing the various system
components are written in BASIC, but the principles involved can be
transferred directly to machine code programming.

One thing that | have not tried to do is teach the programmer Z80
machine code programming, which would take a book in itself. Instead |
have given particular note to how the machine code programmer can gain
access to the MSX system components as easily as if the program were
being written in BASIC.

| would like to express my gratitude to all those who have been
involved, directly or indirectly, with the production of this book: Alfred
Milgrom and his marvellous staff, Dr lan Logan for suggesting .the
structure of the book, my family — especially my mother, father and uncle
— who have put up with an absence of mail and visits during the

preparation of the book, and my wife Nicky, who has put up with my
disappearing for several hours at a time to write and type the manuscript.
This book is dedicated to all these people, as well as to the staff of the
South Yorkshire & Humberside Microelectronics Education Programme
Regional Centre . . . and the late Mrs H.M.A. Brownlow for reasons that will

be obvious to anyone who knows me.

Joe Pritchard
Doncaster, 1984

The MSX System

The MSX System is a totally new departure for the home computer; a
series of computers that are compatible with each other in terms of BASIC
Language and performance! Any computer that claims the MSX standard
will be able to run software that has been written for other MSX machines
and MSX computers will have access, therefore, to an extremely wide
range of software. The MSX standard provides a minimum system which
machines must adhere to, thus minimising or totally removing the fears
that software written for one machine in the range will not run on others.
Once the machine possesses this minimum specification, individual
manufacturers will no doubt supply machine specific features, which will
include such items as the electronics necessary to handle a printer and
joysticks. However, certain elements of the system will always be constant,
and it is these parts of the system that this book will describe and explore.
Let's begin by taking a look at the system as a whole.

Minimum MSX Implementation

Figure 1.1 shows a block diagram of the 'innards’ of an MSX machine. This
is not the place to give an indepth description of each of the major system
components; this will be done in later chapters. However, we shall look
briefly at each component of the system to see where it fits in with regard

to the rest of the system.

Z-80 CPU

This is the heart of the MSX System, the Central Processor Unit. It is a
microprocessor chip, an electronic device that, with certain other
components, controls the action of the rest of the system. It can be
controlled by a series of instructions which it performs in a stored
sequence. This sequence of instructions is called a PROGRAM. We will
look more closely at this device in subsequent chapters; suffice to say for
the moment that any computer in the MSX series will have this chip as it's
CPU. The CPU is always running the program contained in the MSX ROM,
and it is this ROM program, called the BASIC Interpreter, that executes
your BASIC program. You can instruct the CPU to run other programs,
that you have written in a language called MACHINE CODE, by using a
BASIC command called USR. We shall meet this command in greater
detail in the chapters concerned with mixing BASIC and machine code in
your programs.

ROM

This stands for Read Only Memory, and contains a program that is
executed by the CPU when the machine is turned on. The program stored
in this area of memory is permanent and unalterable by the user, and
provides the instructions needed by the CPU to enable it to read the
keyboard, execute your BASIC programs and perform the dozens of other
tasks that your MSX computer must do. Any computer in the MSX series
will have a ROM that is very similar to the one in your machine, if not
identical. It is what is called a 32k ROM, there being space inside it to store
over 32000 different numbers, each number having a value between 0
and 255 and representing an instruction to the Z-80 or part of an
instruction or an item of data that the CPU may need to perform its tasks.
More details about 'k's and numbers will be given in the appendix, which
will investigate number systems.

RAM

Thisis anothgr area of memory in the computer, but is of a different type to
the ROM. This memory is called Random Access Memory, and the user

can modify its contents with no difficulty. This 18 where your BASIC
program lives when you have typed it in, and it 18 also the memory that the
computer uses as ‘scrap paper’ when it is running your programs Any
variables that your BASIC program declares while it is running are stored
in RAM. Commands like CLEAR and NEW affect RAM, CLEAR sets all
numeric vanables to zero and all string variables to empty strings by
directly affecting the area of RAM that holds the vanables. NEW clears
away a program from the memory of the computer by again directly
affecting the contents of RAM. The BASIC command POKE also enables
the user to modify RAM, as we shall see when we come to write machine
code programs for the machine. There is one final, and rather drastic way,
to modify RAM, and that is to turn the computer off!

The minimum amount of RAM that an MSX system can have is 8k,
and you can add memory to your system via the slot system. More details
about slots will be given in the chapter on Memory Maps.

Cartridge Slot

This is again a vital feature of the MSX concept, and all computers flying
the MSX pennant should be totally compatible in this respect. The slot is a
means by which the on board memory can be added to in various ways.
There are 4 slots on the minimum MSX system, and it is possible to add
more. For the moment, we will simply describe the slots as means of
adding more ROM or RAM to the system.

Video RAM

This is a special type of RAM that is totally dedicated to holding the
information used to put the display together. Whereas the normal RAM is
directly accessible to the CPU, the Video RAM is not. The CPU alters
memory locations in Video RAM by using the Video Display Processor.
There is 16k of Video RAM, commonly abbreviated to VRAM, and this
abbreviation will be used throughout this book.

Video Display Processor

This is another device that any computer in the MSX range must possess.
The Video Display Processor, or VDP, is a device dedicated to the control
of the video or television display of the computer. In the MSX series, the
device used is the TMS9918A or a chip that is very similar. The VDP s
directed by the CPU, and provides 4 different types of display. These
display types are called display MODES, and will be dealt with in greater
detail in a subsequent chapter. The VDP interfaces the computer to the

e

display unit that is to be used with the computer, All the information that it
requires to produce the display is held in VRAM, and the way that the VOP
interprets this data depends upon the display mode in use. VRAM is
modified whenever the user writes anything to the screen, uses the CLS
command, the COLOR command, VPOKE or any of the sprite related

commands.

Programmable Sound Generator

This device is the third chip that is central to the MSX concept and must in
all machines be compatible with the General Instrument AY-3-8910
device. The abbreviation that we shall employ for Programmable Sound
Generator is PSG, and it is responsible for the wide range of sounds that
can be obtained from the MSX computers. It interfaces directly with the
CPU and is controlled by the CPU. It is also responsible for implementing
the Input and Output functions of the system that are accessible to the
user, usually in the form of Joysticks.

System Input/Output

The CPU needs to be able to interact with other devices apart from the
display and the sound generator. These include such things as tape
recorders, the keyboard, and printers. The interface between these
devices and the CPU is called the Programmable Peripheral Input/Output
chip, or PPI for short. The PPI must be compatible with the 8255 device. It

is controlled by the CPU.

That sums up the essential components of the MSX computers.
Subsequent chapters in this book will describe how each component fits
into the system, giving the user an insight into the operation of the
computer. However, let's take a brief look at how the components are
connected together. Figure 1.1 shows how the components of the system
interact with each other; but exactly how does data pass between, say, the
CPU and the Read Only Memory?

The BUS System

In computing, the BUS is not the large, wheeled vehicle that we all
manage to miss at bus stops. A bus in a computer is a collection of
electrical conductors that carry electrical signals representing either a
binary ‘1" or a ‘0’; signals are conveyed around the computer in a binary
form, and such a 1 or 0 is called a binary digit, or BIT. If you are interested
In the binary system, then an account of it is given in the appendices at the
end of the book. 8 of these bits make up what is called a byte, and this is

AHOW3W HO

HOLVYHINIO

JHYMNYHIS AHOW3IN NdO anNnos
A, T B A ¥ i I18YWAVHOOHd ©Sd
— Eqm MO m_oav — — 30V4H3LNI
1 WvY WOH 087 H3IHdIH3d
.moo_mhmd‘o ‘ ‘ JIGYWAVYHOOYd ‘Idd
D D C Q ¥H3HdIE3d 1Nd1NO
A ™ ANV LNdNINV SI
IHL ,
A SNY v1va ANV SS3HAaQyv p G R
| g J\\\.Il,uv .. J\JU J\N’Inv v
WVYH
O3dlA
| S | N L/\r D
HOLINOW D
HOSS3O04Hd
13S AL _m D AV1dSIAa O3AlA
S~
H3INV3dS _UH_T 9Sd M_ MOILSAON
. H3QHO0O3H o . H3QHOD3Y
3dvL [5=7]- % eun =4 3dv.l
H3LNIEd ﬁu (== QuvosA
~ v/ o e ~ 7/ N\ — /S
S1Nd1noO S30V44H31INI S1NdNI

BLOCK SCHEMATIC OF MSX SYSTEM

FIGURE 11

the basic unit of data transfer around the CPU. This byte can represent
numbers between the values of 0 and 255, and all the numbers that are
used by the CPU are represented by bytes.

The data bus, which is the means of transferring information from the
CPU to the memory, PSG or VDP, carries bytes around the computer, the
bytes representing a given number being placed sequentially on the data
bus.

How does the computer know what to do with a number on the data
bus? Well, there is a second bus in the computer called the ADDRESS
bus, which is 16 bits wide. This can carry numbers between 0 and 65535,
and each of these numbers refers to a certain unique location in the
memory of the computer. When it puts a byte of data on the data bus, the
CPU also puts the address of the memory location to which it is to be
written on the address bus. This address could refer to a memory location,
part of the PPI or the VDP or sound generator of the computer system.

A third bus in the computer controls all these data transfers. This is
called the control bus, and it informs devices connected to the address
and data buses whether the CPU wants to read data from the device or

write data to it.

The final bus in the computer is that linking the VDP to the Video RAM.
This bus system, consisting as it does of a data and an address bus, is not
usable by the CPU but can only be accessed by the VDP.

We have now met the main components of the MSX computer
system. In the next Chapter, we'l examine the simpler aspects of MSX
BASIC. Should you have difficulty with some of the concepts introduced,
don’t worry. Such ideas as expressions, variables and constants | will

explain in Chapter 3.

The Core BASIC

In this chapter you will find quick descriptions of all the common BASIC
commands. These commands are in no way specific to MSX BASIC, and
so | have called the commands and statements listed in this Chapter the
Core Statements. None of the commands listed in this Chapter relate to the
excellent graphics or sound capabilities of the MSX computers; these
features will be described in detail in later chapters. The role of this chapter
is to provide a ready reference guide to the main BASIC statements that all

programs use.

The first commands we will look at are those that are used in Direct
Mode, that is, without any line numbers. They are principally commands to
help us write programs, such as commands to list the program we've

written so far.

AUTO n,m

This command generates line numbers automatically. It can be invoked by
typing in the word, or by using the function key F2. The first line number

generated is n, and subsequent ones are separated by the increment m.
Thus

AUTO 10,10

will hence generate line numbers at 10,20,30 . . . etc. The highest line
number that is allowable on the MSX machines is 65529, and if AUTO
generates a line number higher than this, or if you type one in, the error
message ‘‘Syntax Error” will be generated. If the line number generated
by AUTO is already occupied by BASIC statements, then a ““*"" is printed
after the line number to warn you of this fact. Typing RETURN at this point
will preserve whatever is on line. AUTO can be exited by either typing
CTRL-C or CTRL-STOP. AUTO n, will generate line numbers starting at
line n with the last specified increment.

It is often useful to leave blank lines in programs to separate one part
of the program from another. If you simply type in a line number followed
by a space on the MSX system, then the line is not inserted. However, the
" can be put at the beginning of a line and appears to cause no
problems. Thus

100
will give a line blank except for the **:"" at the line 100.
If you type in a line without spaces, e.qg.
10REM

spaces will be inserted at the appropriate places in the line, giving
10 REM.

CONT

This command is short for Continue, and it resumes execution if the
program is stopped by the use of CTRL-STOP. To restart the program,
type in the command and press RETURN. If the program has finished
execution altogether then CONT will have no effect. CONT cannot be used
as a statement in a program line. Also, if the stop was caused by an error
condition, CONT is not likely to be effective. Finally, CONT will not work if
the program has been edited since CTRL-STOP was pressed.

DELETE n-m

This command allows us to delete blocks of lines from the program. n is
the first line of the block to be deleted and m is the last line. DELETE n will
just remove line n from the program. DELETE -m will delete all the
program lines between line 0 and line m, including line m. Thus

DELETE -100

will delete all lines in the program from line 0 to line 100 inclusive. DELETE
100-, which we might expect to delete all lines from the program between
line 100 and the end of the program, is not allowed. If the m parameter is
less than the n parameter, as in

DELETE 300-200

then an error is generated. Also, if the lines referenced by the command
do not exist, an error is generated. Delete can be used as part of a
program line, but as soon as the delete operation has been completed, the
computer stops executing the program and returns to Direct Mode.

LIST n-m

Allows you to look at the program you are writing. n and m are line
numbers, n being the lowest line number of interest and m being the
highest. If the command LIST is used without any parameters, then the
whole of the program is listed to the screen. If it is apparent that the listing
will disappear off the top of the screen before you have read it, then a
single press of the STOP key will cause the listing to pause for a while. The
listing can be restarted by pressing the STOP key a second time. This can
be done as often as is required. If parameters are used, then the
command works as follows.

LIST n Lists the line, n
LIST n- Lists from line n to the end of the program.
LIST -n Lists from the start of the program to line n.

LIST n-m Lists lines n to m of the program including
lines n and m.

Listing is exited by CTRL-STOP. List can be a statement in a program, but
as soon as the listing is completed the computer enters Direct Mode and
program execution ceases.

LLIST

This command is similar to list but sends the listing to a printer if one Is
connected. If a printer is not connected and the command is issued, the
computer will “hang-up" until CTRL-STOP is pressed. Control will then be
returned to you with the message ''Device /O Error''. The parameters that
can be passed with this command are the same as those for the LIST
instruction.

NEW

This command wipes a BASIC program from the memory of the computer.
The command can be incorporated into a program line, but as it would
wipe the program from memory as soon as it was executed, | don't see
many applications for it in this role!

RENUM

RENUM renumbers programs, maintaining the sequence in which lines
appear in the program but altering the actual line numbers that the
statements possess. The syntax for the command is

RENUM new, old, increment

new
new is the first line number to be used in the new sequence.

old

old is the currently existing line number that is to be used as the starting
place for the renumbering operation.

increment

This is the ‘gap’ to be left between adjacent program lines.

The parameters old and increment are not compulsory; if they are

absent then the computer assumes a value of 10 for both parameters.
Here below is an example of its use.

1 REM 1
2 REM 3
3 REM 4

10

Renumber this now, using RENUM 10. This gives the range

10 REM 1
20 REM 3
30 REM 4

Renumbering this with the command RENUM 10,110,100 will give

10 REM 1
110 REM 3
210 REM 4

As with AUTO, RENUM cannot generate line numbers greater than
65529. All GOTO's and GOSUB's that are found in the program are
renumbered to take the new line numbers into account. If a GOTO or
GOSUB makes a reference to a line that does not contain any BASIC
statements — i.e. a non-existent line — then the renumber goes ahead but
an error is generated for each occurrence of a non-existent line number.
The message generated is “Undefined Line n inm’’, where n is the non-
existent line number and m is the line number of the statement that caused
the problem.

RUN

Typing in this command will cause the computer to execute the BASIC
program currently in RAM, starting at the lowest line number in the
program. If the word RUN is followed by a line number that is in the
program, then the computer will execute the BASIC program from that

line.

TRON

This command can often prove to be invaluable in getting your programs
working properly. It stands for Trace On, and after this command has been
issued, a running program will print to the screen each line number as that
line is executed. It is disabled by either NEW or TROFF. It can be used as
part of a program line or in Direct Mode.

10 PRINT ""Hello”

20 PRINT "“Goodbye"
30 TRON

40 PRINT "“MSX"

50 TROFF

1"

will produce this when run

Hello
Goodbye
(40]) MSX
(50

The next group of BASIC statements that we will consider are all
concerned in some way with variables. We have already met the LET, DEF
var and DIM statements, and so these will not be discussed here.

CLEAR n,m

Both n and m are optional parameters. CLEAR on its own will perform the
following functions:

I Clears all numeric variables to @
il Sets all strings to be ‘empty’.
i Closes any files that are still open.

If the n parameter is specified, then the CLEAR n command sets up
STRING SPACE. On turning the computer on, the MSX BASIC allocates
200 bytes of memory for use by string variables. Should you require more
space than this for string variables, then you must use the CLEAR n
command to generate more string space. CLEAR 250 will thus reserve
250 bytes of RAM for string variables. To see what happens when you run
out of string space, try the following commands.

CLEAR 0
A$ = ‘‘fred”

The m parameter specifies the highest location in the memory of the
computer that is available to BASIC programs and variables. This allows
the programmer to put an area of RAM ‘out of bounds’ to the BASIC
system. This means that the area of RAM set apart in this way is a safe
resting place for machine code programs.

ERASE array1, array?2, . . .

This command allows you to selectively clear arrays from the vanable
space of the computer without affecting the values of other variables. The
command is most useful for redimensioning already existing arrays,
without getting the *‘Redimensioned Array" error. Simply use ERASE, and
then redimension the arrays using DIM statements.

12

ERASE fr.ea

will erase the arrays fr and ea. The command can be used in program lines
or in direct mode.

INPUT

One of the most important commands in BASIC. We have seen how we
can assign values to variables in program lines so that when the program
is executed the variables are given the value. However, what happens if
we want to change the value of the variable while the program is running?
Well. the INPUT command causes execution of the program to halt so that
the user can type in numbers or strings that will be assigned to certain
specified variables. The syntax for the input command is

INPUT “‘string constant’’; variable list

The string constant is optional, and we will look at it in greater detail shortly.
The variable list consists of a number of variable names separated by
commas. Thus

INPUT ASD

will allow the user to assign values to the variables A, S and D. Note how
we only require the semi-colon when we have used the string constant.
Array type variables may also have values assigned to them using the
INPUT statement, and string variables can also be part of the variable list.

Thus
INPUT A$,A(1)

is quite legal. When the above command is encountered in a program, the
computer prints a prompt to the screen in the form of a *?". If the string

constant is specified, as in
INPUT ““Type in the first number'’; A

then the string constant is printed to the screen followed by the ‘?'. The
string constant is called a PROMPT STRING.

When the user comes to type in the response to an INPUT statement,
then the type of value typed in by the user must correspond to the variable

13

type expected by the INPUT statement. In the statement
INPUT A(1),A(2).B

the user is expected to type in 3 numbers; there are two ways in which this
can be done. If the user were to type in just one number and then press
RETURN, a second prompt, *??’, would be generated. This type of prompt
is generated every time that the computer is expecting another item of
data to be typed in. The second method is to type in all the data items at
once, separated by commas. Thus suitable data for the above INPUT
statement could be typed in as shown below:

? 1,2,3 (RETURN)

If a string input is requested, the quotation marks are not required. If,
however, you type in a string when a numeric value is expected, the error
message “‘Redo from Start” will be issued, and you will have type in ALL
the responses to that particular INPUT statement again, even if the
previous values typed in were legal. If more data items are typed in than
were expected by the INPUT statement, then the message “‘Extra
Ignored” will be displayed. This means exactly what it says; the data items
that were typed in that were surplus to requirements are simply
disregarded.

An INPUT statement can be terminated by either CTRL-C or CTRL-
STOP. The problem with both of these operations is that program
execution is halted as well. The program can, however, be restarted by
using the CONT command.

LINE INPUT ‘“‘string constant’’;
string variable
Try the below program:

10 INPUT A%
20 PRINT A$
30 GOTO 10

Run it, and type in a few strings to confirm that it works. Now type in a
string containing a comma, and see what happens. The *“'Extra Ignored”
message is generated, and the PRINT statement at line 20 only prints up
the string that was entered up to the comma. One way around this is to put

14

the string that is typed in quotation marks, but this method has problems if
you want to have quote marks as part of the string. LINE INPUT gets us
around all these problems. Change Line 10 in the above to

10 LINE INPUT A$

and re-run the program. The first thing that you will notice is that the "7’
prompt is not printed. Each character that you type in is added to A$. If
you want a prompt to be put to the screen, then a string constant can be

used, as shown below.

LINE INPUT “Only string variables”; a$

CTRL-C and CTRL-STOP have effects similar to those noticed with the
INPUT statement.

READ, DATA and RESTORE

Imagine that we have written a program that requires the names of the
months of the year to be held in a string array called year$(12). One way
that we might put the months into the array is shown below.

10 DIM year$(12)
20 year$(1) ="January”
30 year$(2) ="February”

and so on. This works, but takes up quite a lot of program space to do 12
separate assignments to the array. A more efficient way of assigning the
months to the array is to use DATA and READ statements to provide a
means of reading the months from a list held in the computer program and
assigning them to the elements of the array. The FOR-NEXT loop that we
have used in this program will be explained shortly. At this time, suffice to
say that we use it to read items from the data list and assign the data item
read to a particular element of the array, the value of the subscript
depending upon the value of the variable |.

10 DIM year $(12)

20 FOR I1=1TO 12

30 READ vyear$(l)

40 NEXT |

50 END

60 DATA January,February,March,April, May,

June
70 DATA July.August.September,October.November

80 DATA December

15

Lines 60 to 80 prowide a list of the months that we wish to be read into
the array. Each begins with the word DATA and consists of a senes of
stnng constants separated from each other by commas, Of course, in
another program, the DATA statement might be a list of numbers or a
mixed hst of both numbers and strings. However, in each case the values
must be constants and must be separated from one another by commas |f
a string constant in the list contains a comma as part of the string, then it
must be enclosed in quotation marks. Quotation marks are also needed if
traihng or leading spaces are 1o be included as part of the string. Normally,
‘spaces like these, at the beginning or end of a string, are discarded when
the computer makes use of the list. These DATA statements are not
executed by the program. A series of DATA statements in a program,
even if they are separated by lines containing other statements, are
considered to be one long list of constants. The start of the list is always at
the DATA statement with the lowest line number and the end of the list is at
the end of the DATA statement with the highest line number.

To access the constants that are held in DATA statements we use a
statement called READ. READ is followed by either a single vanable name
or a list of variable names that are separated by commas. Reading the
DATA statements is done by the vanable folowing the READ statement
being assigned the next value in a DATA statement. If no other READ
commands have been issued, for example, the first READ staterment will
assign to its vanable the first constant in the first DATA statement in the
program. In the example above, for the first tme the READ command was
executed, the constant “'January” was read into the array.

To clarify matters, imagine that there is a pointer in the BASIC
interpreter that, on running the program, pomnts 1o the first item in the first
DATA statement of the program. The first READ statement encountered
will read this value into its variable, and then move the pointer on 1o point
to the next item in the DATA statement. Any subsequent read operations
will smply move the pointer towards the end of the list. If the pointer is at
the end of a DATA statement, then after the next READ the pointer will
point to the first item in the next DATA statement. If this next DATA
statement does not exist, then the next READ will cause an 'Out of Data’’
error message 1o be issued. If the pointer still points to data items, but no
more READs occur, then the extra items are simply ignored.

What happens if we wish to get a data tem from a DATA statement
that has already been read? We cannot go backwards along the list using
READ, but the command RESTORE enables us to reset the pointer to the
first item in a DATA statement on a particular ine in the program.

16

RESTORE when used alone will set the pointer to the first item in the
first DATA statement in the program. A command such as

RESTORE 3000

will set the pointer to point at the first item in the DATA statement at line
3000. It is not possible to restore the pointer to a given data item within a
line, only to the first item on the line.

MID$ (string expression 1,n,m) = string
expression 2

MID$ gives us the opportunity to replace part of one string, string
expression 1, with another string, string expression 2. String expression 1
CANNOT be a string constant. n is the position of the first character in
expression 1 that will be replaced by the characters in expression 2. For
example;

A$ = "QQQQQQQQQ”
MID$ (AS$, 2) ="ELP”
PRINT A$

will return “QELPQQQQQ" as the value of A$. m is optional and refers to
the number of characters from string 2 that you want to be put in string 1.
The result of the replacement will be a string that is never any longer than
string 1 was in the first place.

SWAP var1i, var2

This command, as its name implies, swaps the values of var1 and var2.
String variables or numeric variables can be included, but it is not possible
to do a SWAP with one parameter a string variable and the other a
numeric variable. Neither of the parameters of the swap command can be
a constant.

* Kk %

The next group of commands we will look at are the BASIC
commands that are not DEVICE SPECIFIC. These commands, which we
will discuss in later chapters, are commands that work by sending
information to or reading information from the other chips in the MSX
computer; strictly speaking, you might say that commands such as PRINT
and INPUT are device specific, as they obviously send data to the VDP in

17

order for it to appear on the screen. However, these (wo Commands are
available in all versions of the BASIC language, and 8o | believe that | arm
justified in saying that they are not Device Specific commands. | zamples
of the latter are the SCREEN command, which operates in conunchion
with the VOP, and the SOUND command, which works with the P50

DEF USRn = integer expression

This is used by advanced programmers to inform the computer of the start
address of a piece of machine code. n is a digit between O and 9, and il i
is omitted the value assumed by the computer 16 @. The Integer expression
should evaluate to give the start address of the piece of machine code,
and so should give an integer in the range 0 to 65535, The addresses
corresponding to different values of n can be redefined throughout thc
program as many times as is necessary. The command USRn is used in
conjunction with this command and further details will be given there.

END

Nothing spectacular, this command simply causes program execution o
halt, and the computer to return to Direct Mode.

ERROR integer expression

As you will no doubt have noticed, your computer lets you know when you
have made an error in your program. The various error messages that are
printed by the computer all have a number associated with them. Thus the
error that causes the message '‘Out of Data’’ to be printed has the number
4. The command ERROR allows us to simulate any error that we so
choose by using this code number. Thus issuing the command

ERROR 4

will cause the “‘Out of Data"” message to be printed, just as if the error had
been caused by trying to READ past the end of a DATA statement. If this
statement were in a running program, then the program would stop
running with this message. However, errors generated in this way can, like
all errors, be trapped by the ON ERROR command, which we shall look at
in Chapter 5. If you do some experiments with the ERROR command, you
will find that some values of the integer expression generate the message
"Unprintable Error”. Such numbers can be used to generate ‘‘user
defined" errors, which will cause control to pass to the ON ERROR routine
if the program has one, or will cause the program to stop with the error
message if it hasn't. The numbers that give this error are 23, 26-49 and

18

60-256. It you want to add your own error messages, then you are strongly
advised to do 80 using the numbers between 60 and 255, as the others
are reserved for future expansion of the MSX system.

ERR and ERL

These are system variables — i.e, variables whose value at any time can
only be changed by the BASIC of the MSX system or by machine code or
other advanced programming methods.

ERR holds the number of the last error that occurred, whether the
error was caused by a program error or use of the ERROR statement.
More will be said about its use when we consider ON ERROR in Chapter
5.

ERL gives the line number at which the last error occurred, again
irrespective of what caused the error. If the error was generated in Direct
Mode, then ERL has the value 65535.

FORvar = x TOy STEP z
NEXT var

This is the first CONTROL STRUCTURE that we have encountered in MSX
BASIC. A control structure is a command that controls the flow of the
program. Normally, a program begins running at the lowest line number
and carries on through the program executing each line in turn. However,
if we need to execute some lines repeatedly, or miss some lines out, we
use what is called a control structure. The FOR-NEXT loop, as it is called,
enables us to execute a block of program lines a given number of times.
Other control structures are GOTO, IF ... THEN ... ELSE and GOSUB
. RETURN. These will all be examined in this section of the book.

x is the initial value of the variable var, which is called the control
variable of the loop. y is the final value, or limit value, that var will attain. z is
optional, and x, y and z are all numeric expressions.

The program lines between the FOR and the corresponding NEXT are
then executed repeatedly until the value of var exceeds the limit value.

After the statements between the FOR and NEXT have been
executed, the variable var is incremented by either 1 or the value z if the
STEP feature is present. Once the value of var exceeds the limit value, the
statement immediately following the NEXT is executed. The loop

19

10 FOR | = 1 TO 10
20 PRINT |
30 NEXT |

will print the numbers between 1 and 10 to the screen. If we had STEP 2
on the FOR statement, then the numbers 1, 3, 5. . . would be printed. Try
experimenting with the commands to get used to them. If you want to go
from a high value of x to a lower value of y then we simply have a negative
STEP value. The values of x,y and z need not be integer, but in many
‘programming applications they are. The variable name following the
NEXT statement is not necessary, but it helps program readability if it is
present.

We can have FOR . . . NEXT loops within other FOR . . . NEXT loops.
This is called NESTING the loops. It is essential in these cases that the
NEXT for the inner loop is encountered by the FOR of the inner loop before
the NEXT of the outer loop is executed. Thus

FORI=1TO10
FORJ=1TO10

is legal, whereas

FORI=1TO10 ,
FORJ=1TO10

will cause problems. The default type of the numeric variables used in FOR
... NEXT loops as control variables is Double Precision. We very rarely
require this type of accuracy in this application and so single precision or
Integer can be used instead. This has two effects; space is saved when the
variables are stored in memory, and the loops are executed more quickly
when single precision or Integer type variables are used. Try the program

_below, with Double and Single Precision and Integer variable types for |.
Details about the TIME function will be given later. Here we will justuseit to
get a relative time for each variable type.

10 DEFDBL |

20 TIME = 0

30 FOR | = 1 TO 200: NEXT |
40 PRINT TIME

The results that | obtained on the Sony HB-55 MSX machine were as
follows:

Typeof | TIME
Double Precision 23
Single Precision 20
Integer 10

Omitting the | from the NEXT statement causes the times to be- 19, 16 and
6 respectively. Putting the NEXT on a separate line gives times of 20, 17
and 7. Thus, if speed is required, the control variable of a FOR . . . NEXT

loop should be Integer.

GOSUB and RETURN

In programs, we often have sequences of statements that are repeated in
many places throughout the program. We can replace each of these
sequences by a GOSUB n instruction, where n is the line number of the
sequence of instructions that we wish to be executed at that point in the
program. We thus only need one copy of the set of instructions to be kept
in the program, and this copy is called a SUBROUTINE. A subroutine
always ends in the command RETURN, which passes control of the
program back to the statement following the GOSUB. The line number that
is referenced by the GOSUB statement must be a numeric constant; unlike
some other BASIC dialects, the line number must not be a variable or

expression.

It is a good idea when writing programs to separate your subroutines
from the main part of the program by an END command or a STOP
command. Should a RETURN be executed without a corresponding
GOSUB then an error will be generated. For this reason, | tend to keep all
my subroutine definitions at the end of my programs, and | split them up
by using REM statements (see later) to give the title and function of the

sub-routine that follows it.

GOTO n

As we have already noted, a program is normally executed in the numeric
order of the line numbers. A GOTO n statement will cause control of the
program to pass to line n. Use them very carefully — a program that is full
of GOTO statements is very difficult to read and understand. As with
GOSUB statements, the line number specified must be a constant. If the
line number specified does not exist, then an error will be generated. The
command can be used for the purpose of running a program, or portion of

21

a program without clearing the variables, by typing in GOTO n, where n is
the number at which you wish program execution to start

IF expression THEN statements
ELSE statements

IF expression THEN GOTO nn ELSE
statements

This control structure enables the computer to perform certain statements
only if certain conditions are met. The expression is any BASIC expression
that returns a ‘true’ or ‘false’ result. If the result of the expression, when
evaluated, is true then the statements immediately after the THEN are
executed. Otherwise the statements following the ELSE are executed.
Thus, only one group of statements out of the two are executed whenever
the line is executed. The IF . . . GOTO construct is a special case of the IF
... THEN construct where the THEN is not required. In this case, the
GOTO nn is executed if the expression evaluates to true. In the IF . ..
THEN . . . ELSE statement, the statements after the THEN and ELSE can
be replaced by line numbers it desired

100 IF I <6 THEN 200 ELSE 300
which is the equivalent of the statement
100 IF1 <6 THEN GOTO 209 ELSE GOTO 300

IF...THEN . ..ELSE statements can be nested, each ELSE matching up
with the nearest unmatched THEN. This can, however, get rather
confusing, and whereever possible it is advisable to keep these statements
on separate lines. If the line number that follows an ELSE, THEN or GOTO
statement does not exist, then an error will be generated.

KEY, KEY LIST

One interesting feature of the MSX computers is that they have a series of
keys which are called Function Keys. You will probably be aware that
several BASIC words can be entered into the program or in Direct Mode
simply by pressing the appropriate Key. For example, pressing F2 will
activate the AUTO command, and F5 will RUN the BASIC program
currently resident in your machine. However, it is also possible to change
what these keys do, using the KEY n command, where n is a number in
the range 1 to 10. Thus the commands

22

A$ = “PRINT"
KEY 1, A$

will cause the word PRINT to be printed every time Key 1 is pressed. This
particular example will leave the cursor immediately after the word, so that
you can type in more text. If you wish the command that you place in a
function key to be executed immediately, then you can cause the
computer to think that the RETURN key has been pressed when the
function key has been pressed by the method below. CHR$ (13) simulates
the pressing of the RETURN key.

KEY 1, “PRINT A” + CHR$ (13)

The string that we put into the function key must be less than 15
characters long.

The KEY LIST command lists the current contents of all the function
keys.

Further insight into how the function keys can be used will be givenin
Chapter 6, when ON KEY will be discussed.

ON GOTO and ON GOSUB

Although these commands begin with the word ON, they are slightly
different in the way in which they function to the ON commands that will be
discussed in Chapter 5. These commands give us a way of transferring
control to a line number depending upon the value of a BASIC variable or
expression. The syntax is shown below.

ON expression GOTO linet, line2, line3 . ..

If the value of the expression is 3, for example, then the third line number in
the list of line numbers after the GOTO would be jumped to. Thus in the

program section

100 A = 2
110 ON A GOTO 200, 300, 400

the destination line number would be 300. If the expression evaluates to a
non integer number, then the fractional part is simply disregarded. In the
ON ... GOSUB construct, the line numbers are the first line numbers of

subroutines.

23

If the value returned by the evaluation of the expression i1s ® or greater
than the number of items in the line number list, but still less than 255, then
the execution of the program continues with the next statement that 15 after
the ON ... GOTO or ON .. GOSUB statement If. however. the
expression returns a result that is more than 255 or s negative, then an
“lllegal Function Call'" error is generated.

POKE address, integer expression

This command is of use when we need to directly alter a value held in a
certain address in RAM The address in the syntax above is the address of
the byte to be altered and the integer expression is the new value that 1s to
be written to the location. The address should be between -32768 and
+65535. If the value of the address is negative, then the machine will
poke (address + 65535) with the new value. The integer expression must
return a value between 0 and 255.

PRINT list of expressions

We've already used the PRINT command in a couple of the demonstration
programs. It does as its name suggests — prints the value of an
expression to the screen. The command PRINT when issued on its own,
either in Direct Mode or as part of a program line, will cause a blank line to
be printed to the display. PRINT followed by a numeric or string
expression will print the value of the expression to the screen. MSX BASIC
divides each line of the screen into PRINT ZONES. (Note. The PRINT
command will not work in certain screen modes; these will be discussed
when we examine the VDP in detail.) Each print zone is 14 characters
long. Where a value is printed in relation to these zones depends upon the
character used to separate expressions from one another in the
expression list.

causes the next expression value to be printed at
the beginning of the next print zone.

" causes the next expression to be printed
immediately after the last one.

It a PRINT statement finishes with either of these characters, often called
DELIMITERS, then the next PRINT statement will print its expressions in
accordance with the above. If the list of expressions is t0o long to fit on one
line, or if a single expression returns a value that is too long to fit on one
line, then the values will be printed to the next line. The character '?' can
be used instead of the word PRINT, as in

24

? "Hello"
which is the equivalent of PRINT "Hello".

PRINT is one of the most versatile commands that we have met so far.
Because of the variety of ways we can print to the print zones on a given
line, it is well worth playing around with the command, seeing exactly what

you can do.

PRINT USING string expression; expression
list

The PRINT USING command enables us to print strings or numbers to the

display in accordance with a preset format. For example, it enables us to

have numbers printed out to a set number of digits both before and after

the decimal point — very useful if we are printing tables of data to the

screen. The string expression in the syntax above is called a formatting
string, and it contains certain non-alphanumeric characters.

Let's take a look at these formatting characters, first examining the
ones that are used to format string expressions.
‘!D
This character simply prints the first characters only of each string in the
expression list, e.g.

PRINT USING "!"’; ""Hello”; “Goodbye"

will return
HG

as the result. Incorporation of numeric expressions in the expression list
generates a ‘'Type Mismatch™ error.

& n spaces &

This formatting string consists of 2 ampersands separated by n spaces.
2 +n characters from the string in the expression list will be printed to the
screen. If you allow n to equal 0 then 2 characters from the string
expresion will be printed. If the 2+ n is longer than the string expression,
then the string expression is printed to the display with trailing spaces.

PRINT USING “& &": “CATTLE"

will return 'CAT"' to the display.

25

SR

@

This character gives us a method of placing string variables in the middle
of a string constant. The method of use is slightly different to the other two
formatting characters that we have encountered, as there is no formatting
string as such.

A$ = ""MSX"
PRINT USING "“This is an @ computer'’; A$

Other characters are used to format numeric expressions. Let's now
look at these in a similar fashion.

#

This character enables us to specify the numbers of digits we wish to have
printed before and after the decimal point in a numeric expression. For
example, “##.##" as a formatting string will specify 2 digits to be printed
before the decimal point and 2 digits to be printed after the decimal point,
e.qg.

PRINT USING "##.##"; 10.2

will return
10.20

to the display. Replace the 10.2 with 100.7. This is printed as %100.70.
The ‘%’ indicates that there is an excess digit in the number, in this case
the 1 in the hundreds column. Try other numbers, such as 0.37 or 1.37. In
these cases a space is printed to the left of the first digit. A +° sign at the
beginning or end of the format string will print the sign of the number at the
beginning or end of the number. For example,

PRINT USING “+##.#4"; 1.3
will print the sign of the number to the left of the number.

A '-" character at the end of a formatting string will print the number to
the appropriate number of digits with a trailing minus sign.

e

added to the front of a formatting string for specifying the
number of digits to be printed will print leading ‘*’ characters if required
instead of leading spaces, e.g.

PRINT USING “**.##".2.2

26

will print *2.20 to the display. Similarily,
PRINT USING "**#.##°',10.3

will print *10.30. Note that these numbers, when formatted in this way, are
rounded up or down according to their value so that the number is
accurate to the number of digits shown.

¥¥

This is of minimal use to the European user. It is used in conjunction with
the ‘# characters, and represents 2 digit positions to the left of the decimal
point, one of the character positions being occupied by a "Y' character.

Thus

PRINT USING *‘¥¥.## 1.3

will print up ¥1.30 to the display.

[
L

The comma is quite useful in numeric formatting. Again, it is used in
conjunction with the ‘# characters. Placed to the left of the decimal point, it
causes a comma to be printed to the left of every third digit to the left of the
decimal point. For example,

PRINT USING "'#####, #%',10000.2

will print 10,000.20 to the screen.

s AAAA 90

Placed after the ‘#' characters in a numeric formatting string, it indicates
that the number is to be printed to the display in exponential format.

PRINT USING “#.# mm™7.4

will print 0.7 E +01.
There is one possible error that can turn up with numeric formatting

strings. This is when we specify more than 24 digits to be printed. A
formatting string can be a string variable. E.g. AS = “HE.HE".

REM is short for REMark — it allows you to place comments in the
program that have no effect on the correct execution of the program.

27

100 REM This is a remark

The line can be jumped to by GOSUB or GOTO commands. Execution
continues with the first statement after the REM. Any statements on the
same line as the REM, i.e. after a ‘', are ignored. The ' character can be
used at the end of a line instead of REM.

STOP

This command simply causes the computer to cease execution of the

BASIC program currently running. Control is passed back to Direct Mode.

Unlike END, any open files will remain open. CONT will cause execution to
continue.

INTRINSIC FUNCTIONS

We have already considered BASIC statements and commands. A
function is a series of operations that is performed on BASIC variables and
constants. More details will be given in the next Chapter, but here we will
discuss the Intrinsic Functions. These functions are present in the MSX
computers from the instant that the power is turned on. The programs for
working the functions out are stored in the ROM as part of the BASIC
interpreter. We will now look at them in alphabetical order.

ABS(n)

This function returns the ABSOLUTE value of the number n. This is the

value of n irrespective of the sign of the number. Thus ABS (-10) is 10, and
is hence greater than ABS (5).

ASC (n$)

This returns the ASCII code of n$.

ATN(n)

This returns the arc-tangent of the number n in radians. All trigonometric
functions, such as SIN, TAN, COS will work in radians and to double
precision. The result for this function is always between -PI/2 and + PI/2.

BINS$(n)

Returns a string representing the binary value of n. n is a numeric
expression returning a result in the range —32768 to +65535. If n is a

28

negative number, then the string returned represents the two's
complement form of the number.

CDBL(n)

Converts n to double precision.

CHRS$(n)

Returns the character that has the ASCII code n.

CINT(n)

Truncates n to an integer. n must be in the range - 32768 to + 32767.

COS(n)

Returns cosine of n in radians.

CSNG(n)

Converts n to single precision.

CSRLIN

Has no argument, but returns the current vertical co-ordinate of the screen
cursor. Details of screen lay out will be given in the chapter on the VDP.

EXP(n)

Gives e to the power of n. n must be less than 145.1, or else an “‘Overflow"’
error is generated.

FIX(n)

Returns the integer form of n, but when used on negative numbers does
not return the next lowest negative number, as does CINT.

FRE(0)

The argument here is a dummy; PRINT FRE(®) will return the number of
bytes available to you for your program, etc.

28

FRE("")

Again a dummy argument, returns number of bytes of string space left.

HEX$(n)

Returns a string representing the Hexadecimal value of n. Same
constraints apply to n as in BINS.

INKEYS

This returns either a one character string representing a key pressed or an
empty string if a key was not. pressed. Any key pressed is not echoed to
the display.

10 A$ = INKEY$

20 IF A$ = "" THEN GOTO 10 ' wait for key press
30 PRINT ASC (A%)
40 GOTO 10

This program prints out the ASCII code of the keys pressed. Note how if
you press a function key with this program running a whole string of ASCII
codes are generated.

INPUTS$(n)

This function accepts n characters before allowing the computer to carry
on executing the program. INPUT$(1) will accept one character, and the
characters so accepted are not echoed to the screen. This function is quite
useful as it allows us to write subroutines that respond to only certain key
presses. For example, the routine below waits for the space bar to be
pressed before moving on.

1000 REM Space Bar Routine

1010 PRINT *Press Space Bar to go on"
1020 G$ = INPUTS$ (1)

1030 IFG$<>" " THEN GOTO 1020
1040 RETURN

INSTR(n, x$, z$)

This function searches the string x$ for occurrences of the string z$. If nis
present, then x$ is searched from character n onwards. If absent, the
whole of x$ is searched. n must be between 0 and 255. The function

30

returns 0 if 28 was not found or if both strings were null. If 2§ is found, then
the function returns the position within x$ where z$ was found.

INT(n)

Returns the integer portion of n by simply discarding the fractional part.

LEFT$(x$,n)

Returns the leftmost n characters from x$, eg,

PRINT LEFTS$ ("GOODBYE", 3)
GOO

LEN(a$)

Returns the number of characters in the string a$. This includes non
printing characters and spaces.

LOG(n)

Returns the natural logarithm of n. n must be greater than 0.

LPOS(0)

Only used with a printer. It returns the current print head position.

MID$(a$,n,m)

This returns a string of m characters from a$ starting at character n. m can
be omitted, and if this is done then all the characters to the right of

character n will be returned.

OCT$(n)

Similar to BIN$(n), but string represents the Octal value of n.

PEEK(n)
Returns the value of the byte held at address n. n must be between
-32768 and + 65535. See POKE for further detalils.

-

K}

POS(0)

This returns the current horizontal position of the cursor on the screen. The
argument is a dummy, and the leftmost column on the display is said to be

‘column 0.

RIGHT$(a$,n)

Returns the rightmost n characters of a$.

RND(n)

This generates a random number between 0 and 1. If n = 0 then the
number generated is the same as the last one that was generated. If n > 0,
then the random number generator produces truly random numbers. To

get random integers between 0 and 10, for example, we can use a simple
user-defined function.

10 DEF FNr(Q) = INT (RND(1)*11)

Note how we use 11 as a multiplier; this is because the INT function always
rounds down, and so if we had 10 as a multiplier the number 10 would
never be produced.

SGN(n)

Returns a number representing the sign of n. If n = 0, then function
returns zero. If n < @ then function returns —1 and if n > @ the function

returns + 1.

SIN(n)

Returns sine of n.

SPACES(n)

Returns a string of n spaces. n must be between 0 and 255.

SPC(n)
Similar to SPACES(n), but can only be used with the statements PRINT or
LPRINT.

32

,,,,,

SQR(n)

Returns the square root of n.

STRING$S

This function returns a string of characters in a similar way to SPACES(n).
STRINGS$(n,m) will return a string of n characters whose ASCII code is m.
STRINGS$(n,a$) returns a string of n characters, the character being the
first character of a$.

TAB(n)
Moves the place at which the next print statement will start printing to a

position n on current line. If print position is already past position n then the
function is ignored. It is used in conjunction with PRINT or LPRINT.

TAN(n)

Returns tangent of n.

TIME

This system variable gives us access to an internal timer on the MSX
computers. As previously mentioned, the variable TIME is incremented 50
times per second on MSX computers equipped with PAL TV displays (i.e.
UK models) and 60 times a second on MSX computers with NTSC TV
displays. Setting TIME to zero will reset the clock. TIME is not incremented
during tape operations, but retains the value it had before the tape
operation commenced.

USRn(m)

Used to call a machine code routine, either in the ROM or one of the
programmers own devising. n is a digit between 0 and 9, and indicates to
the computer the address of the routine wanted. The address will have
already been assigned to the USRn call by the DEF USR statement. m is

the argument of the function and will be passed over to the machine code
routine,

33

VAL(a$)

This returns the numeric value of a$, e.g.

A$ = "12"
PRINT VAL (AS)
12

VARPTR

This function is really aimed at advanced programmers, and offers a
method of finding out where in memory variables are stored. PRINT
VARPTR(n) will return the address of the first byte associated with variable
n. If n has not been assigned, then an error is generated. The address
returned will be between -32768 and 32767. If the address is negative,
simply add 65536

PRINT VARPTR (a(0))

will return the start address in RAM of the first byte of element 0 of array a.
Note that the address of the array will move in memory as other variables
are assigned. So, whenever this information is required, use VARPTR
again.

VARPTR (#file number) returns the address of the first byte of the file
control block. This is only of value if you want to directly access the file
control block. Be very careful doing this, as it is possible to thoroughly
confuse the MSX tape system!

That sums up the simple BASIC statements that are available to the
MSX BASIC programmer. In the next Chapter, we'll look in some detail at
the raw material on which these statements and functions work —
variables, constants and expressions.

Data Structures
and Variables

All computer programs process information in some form or another; the
information acted upon could be the name and address of someone, the
number of days in the year, or the position of a Space Invader in a video
game or any one of an infinite number of things. However, before the
computer can process the data it must be represented in the computer ina
suitable form. The ways in which the data is stored in the computer is
called a DATA STRUCTURE. We'll now look at these in greater detail.
Those of you interested in number systems in general may care to look at
the relevant Appendix. The first data structure we'll look at is the character,
because within the computer, a character can be represented in a single

byte of memory.

Characters

How is non-numeric data dealt with by a computer, which, after all, is a
mainly numeric machine? Textual data, such as the letter “A™, is stored in
the computer as a number between @ and 255. This will, you will note, fit
into a byte. Each character on the computer keyboard has a numeric code

35

R RN P S B S <

assoCated with i, and the most common method of coding characters is
10 use the ASCIHl code ASCIl is an acronymn for American Standard Code
for Information Interchange. This code is utilised by the MSX machines,
and in it the lefter "A’"" is represented by the number 65. A lower case '‘a’
has the code 97 Other characters have different ASCIl codes. and to
exarmine the ASCII codes associated with different characters we can use
a BASIC function called ASC(). Typing in

PRINT ASC("B")

and pressing RETURN will give the result 66. There is a function that
performs the reverse of this operation; given the ASCIl code of a
character. this function, CHR$(), will print the character. So,

PRINT CHR$(66)

will print the letter “B"’. Some characters, such as the character with code
1. will not print a character to the screen; these are known as NON
PRINTING characters. Other characters will do some strange things when
printed; try printing character 7 and character 12,

Strings
This book 1s made up of strings. A string is a collection of characters, and
stnngs are often found to end in character 13.

Constants

A constant 1n a program is a value that does not change as the program
runs. There can be either numeric or string variables, 1.234 and '‘Hello"
being examples. A string constant may be up to 255 characters long.
There are 6 ways in which the MSX computers can represent numeric
constants, so let’s have a look at them. A numeric constant can be either a
positive or a negative number.

integer Constants

An integer constant in MSX BASIC can have a value between — 32768
and +32767. Obviously, integer constants don't contain decimal points.

Fixed Point Constants

These are numbers containing a decimal point.

36

Floating Point Constants

These are DOSitiVG_Or negative numbers that are represented in the
exponential format, i.e.

1.234 E+n

Here, n is called the exponent and the number to the left of the E is the
mantissa. Floating point constants can be in the range 10E -64 and

10E +63.

Hexadecimal Constants

These are hexadecimal numbers, and they are prefixed by the &H
characters.

Octal Constants

Octal constants are prefixed by &0 or just &.

Binary Constants
These are prefixed by &B.

Numeric constants can be either single or double precision, single
ones being represented within the machine to 6 digit accuracy and double
ones to 14 digit accuracy. Unless you specify otherwise, the constant will
always be represented to double precision. Any number in exponential
form, however, will normally be treated as single precision. If you require a
double precision number to be represented in exponential format, then the
letter “E"" is replaced by the letter “D"". Constants can also be put into

single precision by following the number with a 1"’

Thus we've got many ways or representing constants in MSX BASIC.
So far, however, the numbers retain the same value throughout the
running of the program. What would be useful would be a means of
allowing us to represent a number in some way that enabled us to change
its value as the program progressed. This is where the concept of the
variable becomes useful. A VARIABLE is best imagined as a series of
bytes in memory which the computer can refer to by a name. the
VARIABLE NAME. The series of bytes represents a string or a number.
The variable name is thus used by the programmer to access the number
stored in the variable. When we give a value to the variable, we say that we

37

are ASSIGNING a value to the variable; to do this we can use the LET
statement in BASIC, or we can just use the ' ="' sign;

LET A=100
A=100

Both of the above statements assign a value of 100 to the variable A. Each

variable type requires a certain amount of space to store the number in.
The table below shows this.

Type No. of Bytes
Integer 2

Single Precision 4

Double Precision 8

String 3 + 1 per character

Variable Names

A variable name is a collection of alpha-numeric characters (those
characters that are either letters or numbers) that form a unique identifier
for a particular variable. Names can occasionally include 1", "“#’. “$"" or
"04" as the last character of the name but this last character has a special
meaning. They indicate whether the variable is single or double precision,

string or integer. The characters are called TYPE DECLARATION
characters, and are as follows:

Character Type

% Integer

$ String

! Single Precision
Double Precision

If we don't give a variable name a type definition character, then the
computer will usually take that variable to be a double precision variable.

Making up Names

Christening variables is quite easy; a variable name can be of any length,
but only the first two characters of the name are considered by the
computer, not counting the type declaration character. Also, a variable
name must begin with a letter; should it start with a number, the computer
will incorporate the variable name as a line in the program. Thus A1l is

38

legal. but 1A I8 not. To see the effect of only the first two characters being
significant, type this in, following each line with RETURN.

NEW

THISTLE=1

THROUGH =20

PRINT THROUGH, THISTLE

You will hopefully get 20 and 20 printed to the screen, thus indicating that
the computer cannot differentiate between the two variable names. As
soon as the computer has matched the first two characters with a variable
that it knows exists, then it does not check any more. This can obviously
cause problems if we are not careful. A further point to note is that variable
names cannot contain any names of BASIC functions, commands or
statements, and it cannot differentiate between upper and lower case
letters. For example, “sprint” is an illegal variable name because it
contains the word “‘print”” which the computer will read as “"PRINT". For
similar reasons, SINK and DATA are illegal variable names because the
first name contains SIN and the second DATA. A variable name must not
start with the letters FN, as if it does the computer thinks that you are
referring to a user-defined function. Thus FNF is an illegal variable name,
as the machine thinks you are referring to a function called F. Don’t worry
about this sudden introduction of the user defined function; it will be

explained soon.

The type declaration characters have been previously mentioned; z#
and z1 are both double precision variables, z% is an integer variable and
8 is a string variable. However, we can also declare the type of variable
using some statements that | call DEF var statements. There are 4 of these,
DEFINT, DEFDBL, DEFSTR and DEFSNG, each of which is followed by

ether a single letter or two letters separated by a "'—"".

Thus DEFINT a will define all variables that begin with the letter ato be
integer variables. In a similar fashion, DEFDBL would define the variables
to be double precision, DEFSNG to be single precision and DEFSTR
would define the variables to be string types. One point to note here is that
the subsequent use of a type declaration character will overrule the DEF
var statements issued. As an example, let us issue a DEFINT a command,
and then assign the variable a # =1.234. Ifwe were 0 printa # outthenwe
would find that it was a double precision variable, as we might expect from
the use of the “'#" sign. However, a second variable, al, would stll be an

integer variable. Try the program overleal.

10 DEFINT A
20 A=1.2346
30 A#=1.234567
40 A!'=1.2345
50 PRINT A Al A#

Run the program, and note how the variables that have type declaration
characters are treated as different variables to the one without the
declaration character.

The statement DEFINT A-Z will cause all the variables available to be
integer unless otherwise said. Any variables that you want to be string,
double or single precision must be specified by the use of type declaration
characters. In a similar fashion, DEFINT I-K will define all variables
beginning with the letters |, J or K to be integers. DEFSTR can give strange
results to the unwary; variables will be string variables without the need for
a “$" sign. The statement A = "apple” would normally generate an error
message — ‘‘Type Mismatch”. However, after a DEFSTR A statement, the
statement A ="apple" is legal but the more usual A= 1.234 is not! Again,
use of the type declaration characters will overrule the DEFSTR statement.

Array Variables

An array is a data structure that is available to the MSX programmer.
However, whereas the data structures we have previously discussed are
collections of bytes, an array is a collection of numbers or strings which
can be accessed under the same name. An individual item stored in an
array is called an ELEMENT, and all the elements of an array will hold data
of the same type. When you turn on your computer, the machine will allow
you to use arrays with up to 11 elements in them, numbered 0 to 9, without
having to inform the computer that you wish to use arrays. If you wish to
have more elements than this, then the array will have to be
DIMENSIONED using the BASIC DIM statement. Thus DIM A(20) will
dimension an array called A to have 21 elements, numbered 0 to 20

When we first dimension an array, each element has the value 0 if it is
a numeric array and empty string if it is a string array. Assigning values to
an element of an array is quite easy.

A(1)=1.234

A(2)=3
LET A(4)=23

40

A(0,4) A(1.4) A(2.4) A(3.4) A(4,4)

A(0.3) A(1.3) A2,3) A(3.3) A(4.3)
A(0.2) A(1.2) AR2) A@3.2) A(4.2)
A@.1) A(1,1) A(2,1) AB1) | “A@1)

A(0,0) A(1.0) A(2,0) A(3,0) A(4,0)

FIGURE 31 REPRESENTATION OF ARRAY A: DIMA(5,5)

These statements will all assign the appropriate values to various elements
of array A. Arrays are still under the influence of the DEF var statement,
and they can also have type declaration characters. An array can be one
dimensional, like the example array A, or can have several dimensions,
such as B(10,6). The best way to view the multi-dimensional array is to
think of it as a collection of boxes arranged on a grid. The different boxes
are the various elements of the array, and Figure 3.1 shows a diagrammatic
representation of part of such an array. Should you attempt to access an
element of an array which does not exist, such as A(99) when we’ve only
dimensioned A to 30 elements, then we get the *'Subscript out of Range”
error. The number used to access an element of an array is called the
SUBSCRIPT. The subscript can be a constant, variable or expression, and
the “‘Subscript out of Range’ error often occurs when an expression
returns a too high value. The maximum number of dimensions that an
array can have is 255, but the number of elements is only really limited by
the amount of RAM in your machine.

Changing Types
Try the following:
A="fred"”

You'll get a “'Type Mismatch'’ error — you can't put a string into a numeric
variable! However, MSX BASIC will allow you to convert one type of
number to another. If you set a variable of one type to a value held in a
variable of a different type, then obviously the variable will assume the
value and the value will be held in the variable according to the variable

type. For example,

A% = 1.23456
PRINT A%

41

S I T

e ——

will print 1. The real number has been converted to an integer by this act.
The fractional part is discarded, and no attempt is made to round the
number up or down. Thus, in double precision work, such a value when
assigned to a single precision variable will only be represented to 6 digits.
During the evaluation of expressions, the degree of precision applied to

the result is the highest degree of precision possessed by a variable or
constant in the expression.

EXPRESSIONS IN MSX BASIC

In everyday lite, the sum 2+3 is a simple expression. We carry out the
addition, a process known as EVALUATION, and produce a result, or
VALUE. In this case, the result would be 5. In technical terms, we describe
an expression as a collection of numbers, constants, variables and
Operators that can be evaluated to return a result. It is not compulsory for
an expression to contain all of the above.

1+2+3+4
IS an expression, as is
A+B+1+2
However, most expressions do contain at least one operator. An
OPERATOR can alter the value of a variable or constant by performing
some arithmetical or logical operation on it.
In the expression
142
the operator is ** + . This is an arithmetical operator, and in the expression

1+ASC("A")

the ASC() is said to be a functional operator. In total, there are 4 main
families of operators available to the MSC programmer. These are:

i Arithmetic Operators
i Relational Operators
il Logical Operators
iv Functional Operators

The most obvious thing to do now is to look at each family in greater detail.

42

A4

Let's start with the ones that we're already familiar with — the Arithmetic
Operators.

Arithmetic Operators

There are 8 different arithmetic operators available in MSX BASIC. These
are exponentiation (A), Negation (—), Multiplication (*), Division (/),
Addition and Subtraction, Integer Division (¥) and Modulus Arithmetic.
we'll take a look at the operators here that are new to us shortly. The
computer will evaluate expressions according to a sequence of rules. For
example, the expression

A+B*C

can be evaluated in 2 different ways, as either (A+B)*C or as A+ (B*C).
The computer will evaluate the expression as written in the second of these
examples. The small expression in parentheses will, however, be
evaluated according to these rules. These rules are called the rules of
PRECEDENCE. The multiplication operator has a higher precedence than
the addition operator. The figure below shows the order of operator
precedence.

High

Precedence Operator
Exponentiation
Negation

Multiplication/Floating Point Division
Integer Division
Modulus Arithmetic

Addition/Substraction
Low

Precedence
Thus in the expression,

142A2
the 2 A2 will be evaluated first, giving 4, and then the 1 will be added,
giving a final result of 5. However, what if we want to evaluate the 1+2

before the exponentiation operation? Well, we use brackets, as we've

seen before. To get the expression evaluated in the way wé want, we'd
write

(1+2)A2

43

This will return the result 9. The operations within brackets are performed
first, but within a set of brackets the rules of precedence still operate. Thus
in long expressions in parentheses, we often bracket parts of the
expression to determine what order the expression is evaluated in. Such
brackets within brackets are called NESTED PARENTHESES. One
important point to remember about nesting brackets like this is that each
opening bracket (() is matched by a closing bracket ()). If this is not
adhered too then an error will be generated by the computer. This error,
however, will NOT be the message '‘Missing Bracket’”! The usual
message obtained is “Syntax Error’'. Whilst on the subject of errors,
should you place an operator in the expression and not follow it with a
constant, variable or other expression, then the message ‘'Missing
Operand” will be generated, an OPERAND being anything that an
operator works on.

Integer Division

Normal division usually returns a real number. However, integer division
simply discards the fractional portion of the result. Thus,

7¥2=3 and not 3.5

The “¥" symbol indicates Integer Division. There are a couple of points to
watch here; before the division is performed, the computer converts the
operands to integers, which must be in the range —32768 to + 32767.
The result is also truncated to an integer. Secondly, don'’t try and get the
computer to divide by zero — it's impossible and the computer knows that,
even if your program thinks otherwise! Due to the conversion to integers,
the expression

30.1 ¥01.4
will be evaluated as 30 ¥ 0. The division by zero error will also occur in real

division.

Modulus Arithmetic

When | went to primary school, which wasn't too long ago, | was taught
modulus arithmetic. We didn't call it that; to us it was remainder division.

10 MOD 4=2

The computer evaluates the expression above as 10 divided by 4 equals

two remainder two, anq it is the remainder that is returned as the value of
the expression. Similarily,

10 MOD 5=0

Whilst on the subject of arithmetic operators, it is worth examining a couple
of errors that can be generated. The firstis “Overflow", where the result of
your calculations is too great for the computer to handle. The second is
“Type Mismatch”, where you've attempted to assign a number to a string
variable. | usually do this after issuing a DEFSTR statement, as | tend to
assume that the type of a variable that has no type declaration character is
numeric!

Relational Operators

Nothing to do with Aunts working in telephone exchanges: they are used
to compare 2 values, expressions, variables or constants, and either — 1
or 0 is returned as a result. In these cases, — 1 is called TRUE, and 0 is
called FALSE. The result of an operation of this sort may then be used to
control the flow of a program, using the BASIC IF statement that we will
soon encounter. There are 6 relational operators in MSX BASIC, and these
are shown below.

Symbol Operator
= Equality
<> Non Equality
> Greater than
< Less than
>= Greater than or equal to
E= Less than or equal to

Let's see a couple of examples of the use of Relational Operators. A true
result yields —1; and a false result 0.

PRINT (1=1)
will return —1, as it is true that 1=1. The expression
PRINT (1=2)
will return the value @, or False. The more complex expression

PRINT (A-B) =1

45

. s B

will only return a True value if the expression (A-B) returns a value of 1.

You can assign variables using relational operators: obwviously,
though, the values assigned to these variables will be either ® or -1

Thus the expression
A=(1=2)

will assign the value @ to the variable A. When we combine arithmetic

operators and relational operators, the arithmetic expressions are
evaluated first.

Logical Operators

These are slightly more involved than previous operators, and can cause
confusion. However, when used correctly they are powerful programming
tools. So, here we go. The most obvious way of using logical operators is
to link together relational expressions, i.e. expressions containing
relational operators. The logical operators available in MSX are AND. OR.
NOT, EQV, XOR and IMP. The most commonly used of these for linking
relational expressions are AND, OR and NOT, and so we'll look at these
three first in this role. When used in this way, the expression containing the

logical and relational operators will return a true or false value. The
expression

PRINT (A=1) AND (B=2)

will return a true value only when both A=1 ANDB=2 A further example
IS

PRINT (A$="FRED"") AND (B$ = “"BLOGGS")

Here, A$ must contain “FRED" and B$ must contain “BLOGGS'"" The
expression

PRINT NOT (P)

will return a true value if P = 0 and a false value otherwise. As 0 is the value
used to represent “False’’, we can see that NOT False is True.

These two operators, and OR, are often employed when our program
has to make a decision based on several different conditions being met.

Logical expressions of the sort shown above can be included in IF
statements to help programs flow correctly.

The second use of these operators is to test a byte for a particular
pattern of bits. This is known as BITWISE operation, and it is this aspect of
the use of logical operators that can give rise to problems. First of all, let’s
see how the logical operators function in a bitwise fashion on single bits.
The results of the operations on various combinations of bits are shown in
the following TRUTH TABLES.

NOT
A NOT A
0 1
1 0
AND
A B A AND B
0 0 0
0 1 0
1 0 0
1 1 1
OR
A B A OR B
0 0 0
0 1 :
1 0 1
1 1 1
XOR
A B A XOR B
0 0 0
0 1 1
1 0 1
1 1 0

47

EQV

A B A EQV C
0 0 1
0 1 0
1 0 0
1 1 1
IMP
A B A IMP B
0 0 1
0 1 1
1 0 0
1 1 1

Let's explain a few things before we go on. XOR is a contraction of the
phrase “Exclusive OR". This function only returns a 1 if either A OR B is of
value 1 but not if they both are of value 1. Treat EQV as a shorthand form
of writing Equivalence; a 1 is returned only if A=B. The IMP function |
have christened Importance, as in the expression A IMP B, a 1 is returned
only if the B value is greater than or equal to the A value. How can we
apply this to numbers or variables? Well, remember how numbers are
represented as byte sequences within the computer? The integers are
stored as 16 bit numbers, thus occupying two bytes. The leftmost bit of the
binary representation of an MSX integer represents the sign of the
number, whether it is positive or negative. This is why the MSX integers
can only have values between —32768 and + 32767. Both numbers that
are to be operated on by the bitwise logical operators must be integers of
this type. Thus any expressions to be used in a bitwise operation must
return a value in this range. Let's try a bitwise ANDing of 2 numbers, say 8
and 3.

PRINT 8 AND 3

will return the value 0. To see how this situation arises, let's convert 8 and 3
to their binary equivalents and examine the bit patterns.

8 000000000001000
3 000000000000011

Now apply the truth table to the binary numbers; we find that we've got no
1's in common positions in the numbers, and thus we get the result @
returned. To make it more obvious, try the operation with binary numbers.

48

PRINT &B0001000 AND &B00000011

We can now see the bit patterns directly. In a similar fashion, the bitwise
OR command can be employed.

PRINT 8 OR 3

will return 11 as the result. Work through this using the bitwise OR truth
table. '

When we use negative numbers in bitwise operations, we have to be
careful due to the fact that negative integers in MSX BASIC are
represented in two's complement notation. Thus -1 in binary is
represented as 1111111111111111. Thus

PRINT —1 AND 2

returns 2 as a result. One use of the bitwise operators is to modify the
values of certain bits within bytes without altering the other bits.

Functional Operators

A function is a defined set of operations that can be applied to an operand
or expression. There are two types of function supported by MSX BASIC.
The first major type of function is the INTRINSIC FUNCTION — functions
present in the computer from the moment the machine is turned on. They
include such things as SIN(n), ASC() and CHR$(n). The value n here can
be an operand or expression and is called the argument of the function.
For the ASC() function, the argument must be a character. The argument
is said to be ‘passed’ to the function, and the function is said to return a
value. Should you try and pass a numeric argument to a function when a
character or string argument is required by the function, then a "“Type
Mismatch' error will occur. This error will be generated by the statement

A=SIN (“hello”)

The argument of a function can be another function, provided that the
latter supplies an argument that is of the correct type. Thus

PRINT CHR$ (ASC.1 ("A™))

will print the letter ‘A’ to the screen.

49

e A O

The second class of function supported by MSX BASIC is the User
Defined Function. These are functions written by the programmer to
perform a specific task. Let's see how we can define our own functions.

Defining Functions

Before a user-defined function can be used, the computer must be
provided with a function definition, which is simply a list of statements that
perform the function. A User Defined Function can use intrinsic functions
in its definition, as we shall soon see.

Defining a function is done with the DEF FN statement. This is an
abbreviation of Define Function, and the statement tells the BASIC
interpreter that the following line is a function definition. Function
definitions must always be executed before the function is called. The
following is an example of a function definition.

10 DEF FNtest 1 (a,b,c$)=SIN(a) + SIN(b)

Here, test is the function name, and the function simply returns as a result
the sum of the sines of the two numbers a and b. a,b and c$ are
collectively the parameters of the function, and together are called the
parameter list of the function. Each item in the list is separated from its
neighbour by a comma. These parameters are just ordinary operands; if
they are variables, they are named in accordance with the rules governing
the naming of variables.The function name is named in the same way as
variables are. It is legal to have a function that has the same name as a
variable, as the computer treats variable names and function names
differently.

The expression to the right of the * =" in the function definition can only
be one line long;

10 DEF FNtest 1 (a,b)=SIN(a)
20 + SIN(b)

will generate a “'Syntax Error”’ message at line 20. A function called test
will have been defined, but it will only return the SIN of the number a.
Variable names that appear in this expression serve only to define the
function, and changes in their values are not reflected in changes of the
value of variables with the same name outside the definition. If your
function has a parameter list, then the variables listed therein may be
included as part of the expression, but it is not compulsory.

50

A User Defined Function is called with the FN statement Remember
that before a function can be called, the corresponding DEF FN statement
must have been executed. To call the function that we defined above we
would type in something like this. ;

100 PRINT FNtest 1 (1,2"Hello")

It is vital that the number of items passed to the function is the same as the
number of parameters in the parameter list that was set up in the DEF FN
statement. Also, the types of the values passed to the function when it is
called must be the same as the types that were used in the parameter list
when the function was defined. If this is not done, then a *“Type Mismatch”
error will be generated. Parameters passed to a function in this way are
passed over on a one-to-one basis, the value of the variables or constants
in the call being passed to the corresponding variable in the function
parameter list. Thus in the example we have just seen, the variable a would
be assigned a value of 1, b would be assigned a value of 2 and c$ would
get the string ‘Hello™ assigned to it. If a variable is used in the expression,
but is not in the parameter list, then on evaluation of the expression the
value used is the current value of the variable in the program. The ability to
pass parameters over to the function in this way, and to get results
returned, makes the User Defined Function a powerful programming tool.
If we were to use subroutines (see the next chapter), then we would need
to set the variables used in the expression to the appropriate values before
the subroutine was called.

Thus we would have a piece of code like:

100 a=1

110 b=2

120 c$="Hello"
130 GOSUB 1000

This assumes that the code at line 1000 is the same code as we put in Fhe
function definition that we used a little while ago. The equivalent function
call is much more obvious.

100 result = FNtest 1 (1,2,"Hello”)
If you attempt to use a function call before you have defined it using the

DEF FN statement, then the error message "'Undefined User Functjon“ IS
issued. Functions will occur in various places in this book, so you will have

several examples to look at.

51

One final point; the DEF FN statement MUST be issued from within a
program. Attempting it from Direct Mode will generate the ‘“‘lllegal Direct”
error message, which indicates that you have executed a command from
Direct Mode that should only be executed from within a program line.

STRING OPERATIONS

Although we’ve mentioned string variables, we haven't yet discussed what
operations we can do on them. As you cannot do much arithmetic on
strings or characters, the only arithmetical operator that we use with strings
s+,

However, the operator does not perform the addition operation, but
joins the strings together. This process is called CONCATENATION.

a$="ABC”
b$ = “DEF"
PRINT a$+b$

The string “ABCDEF "’ is printed to the screen. We can thus make one long
string from 2 or more short ones.

C$=A%$+B$
is quite legal. We can, however, use the relational operators on strings.

When the computer compares two strings using the relational
operators, it does so on a character by character basis, comparing the
ASCIl codes of each character in one string with the corresponding
characters codes in the other string. If all the codes are the same then the
strings are equal. However, should a code be found in one string that is
less than the corresponding code in the other string, then the string with
the lower code is said to be less than the other string. For example,

“AA"<"AB"
Any leading or trailing spaces are also examined, and so
This comparison is fine until we come to the situation where one string is

shorter than the other string; what happens now? Well, the shorter of the
two strings is said to be less than the longer one. So,

52

| saaaREC RS RIS St T TR RV TR e eree——

“AB"<"ABC"

As in the case of relational operators applied to numbers, true and false
values are returned as the result of a relational comparison of two strings.
Logical operators such as AND can be employed to perform more
complex relational functions such as

PRINT (A$="1" AND B$="2")

This will only return a true value if A$ ="'1"" and B$ = "2"". We can also use
string comparisons to control the flow of the computer program in
conjunction with the IF . .. THEN . .. ELSE structure.

Obviously, bitwise logical operations are not possible, but a bitwise
operation can be performed on the ASCIl code of a character.

We are now ready to move on to look at the rest of MSX BASIC. Don't
be afraid to experiment with programming your machine. This is the best
way to learn about how you can get the best results from the computer. If
examples are suggested in the text, then type them in; if you can then see
a way of doing a particular job that is different to the one | have used then
experiment; your method may well be better than mine!

53

Cassette
Tape Storage

The RAM of your MSX computer will lose all record of your program as
soon as the power is turned off or you type the command NEW. It is
obvious, therefore, that we need a method of making a permanent copy of
the program that we can use to store the program indefinitely. We do this
by saving a copy of the program on to cassette tape. As well as being able
to save BASIC programs to tape, we can also save variables, arrays or
blocks of bytes.

When we transfer data to tape from the computer, it is recorded on the
tape as a series of tones, each tone representing a bit of a byte. Thus each
byte on the tape is represented by 8 tones, the pitch of the tone telling the
computer whether the bit had a 1 or @ value. This coding of data into
different audio tones is called Frequency Shift Keying, or FSK for short. If
we could “see” the audio tones on the tape, we would see Figure 4.1.

ONE CYCLE TWO CYCLES
1200 Hz 2400 Hz

lwl ,w;

MAGNETIC | | I I l |
TAPE

SATURATIOEJ_-

g (1 |80 |1 |1

N
ENCODED BITS

FIGURE 41 DATARECORDED AT 1200 BAUD (1200 BIT/SEC)

=

The actual tones used to represent 1's or @'s depend upon the speed
at which the computer is saving data to the tape. The rate of data transfer
is known as the BAUD RATE, and is a rough measure of the number of
bits sent per second. MSX computers can read or write data at either 1200
or 2400 baud.

At 1200 baud, a ‘0’ is represented on the tape by 1 cycle of a 1200
Hz tone. (1 Hz is 1 cycle per second.)

At this baud rate a ‘1’ is represented by 2 cycles of a 2400 Hz tone.
1200 baud is the usual rate of data transfer adopted by the MSX
computer, and is reliable with aimost all computers.

The 2400 baud rate will enable data transfer at twice the speed of the
1200 baud rate, but is not very reliable with some tape recorders. A ‘0 is
now represented by 1 cycle of a 2400 Hztoneand a ‘1’ is represented by
2 cycles of a 4800 Hz tone.

The baud rate is selectable by the programmer and is normally at
1200 baud. The rate can be changed using the CSAVE command, as we
shall soon see, or by the SCREEN command, as we shall see in a later
chapter. On reading the data from the tape, the computer can
automatically decide which baud rate to use to read the tape.

The computer, as well as sending data to the tape recorder and
reading it back in, can control the motor of the tape recorder if the recorder
has a remote socket. Thus the computer can turn the cassette motor on,
send data to the tape, and then turn the motor off. The BASIC commands

56

MOTOR ON and MOTOR OFF control the ta
ON will turn the motor on, and MOTOR O
MOTOR on its own will cause the motor to turn off if it |]
off. This is called TOGGLING. The motor is c:ontroﬂedS g; 'aa?ga?,",;: ,:Z
computer, and when you issue a MOTOR command, or use commands
that use the tape recorder, this relay can be heard “clicking”” whenever it
turns the motor on or off.

Pe recorder motor MOTOR
FF will turn it off Typing in

Saving Programs

The first thing most people wish to use ata
is to save their program; on the MSX co
which BASIC programs can be stored

further, let's examine these two method

saved on cassette tape from the computer is called a FILE. A program can
be stored on tape as a file of ASCI| characters, in which case the BASIC
command PRINT will be saved as P.RIN,T; that s, as individual letters, or
as a TOKENIZED file, in which case the BASIC command PRINT is stored

as a single number. This number is said to be the TOKEN of the
command, and each BASIC command or function h
better idea about tokens, let's see how BASIC
the MSX system.

pe recorder for with a computer
Mputers there are two ways in
on tape. So, before we go any
S. A block of information that is

as a token. To get a
program lines are stored by

10 REM test program

is stored as a series of numbers in the RAM of the computer. These
numbers are;

20, 192, 10, 0, 143, 32, 116 . ..

The 20 and 192 form a pointer for the beginning of the next line of the
BASIC program. This pointer is stored as a two byte integer, with the low
byte stored first. Thus in this particular example, the next program line is
stored at address 20 +(192*256), or address 49172. At this address we
will find another two byte pointer which points to the beginning of the next
line. The 10 and the 0 are the line number, again stored low byte first.

Finally, we get to the text of the BASIC line. Note how the REM
statement is represented by the token 143 and the text of the remark. Not
all the ASCIl codes of the remark are shown as they are not terribly
important at this time. It is in this form that the program is saved if we use
the command CSAVE. The command

CSAVE ‘‘test

57

will save the program thal s currently residing in the computer as a
lokenized file called “test’’ One obvious reason for saving programs n
this fashion is that they take less time to ransfer to lape — only one byte 18
transferred for the statement PRINT instead of the 5 bytes that wouid have
toboummanpvogrmwobunguvodnanASCum The
baud rate used for the CSAVE command is ether the default rate, 1200
baud, or the current rate selected by the last SCREEN command
However, should you wish 10 specity a baud rate, then an exira parameter
s added to the CSAVE command. Thus

CSAVE "test’’, 1
will save the program at 1200 baud and the command
CSAVE “test’’, 2

wil save the program at 2400 baud. The baud rate set in a CSAVE
command is only applicable to that command and has no effect on the
baud rate of subsequent data transfer operations. Note that after you
press the RETURN key after typing a CSAVE command, data immediately
begins to be transmitted to the tape recorder. It is thus necessary to press
the RECORD and PLAY keys on your tape recorder before pressing
RETURN. The first piece of data to be written to the tape is a single tone
called the LEADER. By "listening’ to this, the computer can determine the
baud rate at which the data was recorded when we come to reload the
program. Next comes the HEADER, which contains information about the
following file, and then finally the data representing the program is written
to the tape.

After pressing PLAY and RECORD on the tape recorder, the tape
motor will only start going if the remote plug on the tape lead supplied with
your computer is not plugged in. If it is, then the motor will not start going
until the RETURN key is pressed after the CSAVE command s entered.
After the program has been saved 1o tape, the cursor will return to the
screen and the tape motor, if controlled by the remote facility, will be
turned off.

Now let's move on 1o saving files of ASCIl characters to represent
BASIC programs. As each character is saved 10 tape, programs saved as
ASCII files take longer 10 save and hence take up more space on tape.
However, saving programs as ASCIl files does have its advantages.
Programs saved in this way can be used as data for other programs 1o
work on. We ghall look at data files in more detasl shortly But the man

acvantage in SaVing & program as an ASCII file is that a program so saved
can be added On 10 & Program that is already in memory |

Ths process. known as MERGING the two programs. is quite ysehl
2 enables us 0 store commonly used sections of programs on tape and
then incorporate them into other programs with the minimum of effort 10,
save a program in ASCIl format in MSX BASIC. we use the SAVE

command
SAVE “test”

will save the program in ASCII format to tape in a file named “‘test” The
command

SAVE “CAS:test”

will also save the program to cassette in ASCII format. However, the CAS
part of the filename s called a DEVICE DESCRIPTOR and it enables
programs o be transferred to other devices in ASCII format. For example,

the command
SAVE "CRT:test”

will perform an operaton that is similar to the LIST operation; the program
will be displayed on the TV screen. If we have a device descriptor “LPT."
n the file name then the file will be listed on a printer, if connected, just as f
the LLIST command had been issued. The baud rates used in these data
ransfers is that baud rate that was set by the last SCREEN command or
1200 baud. There is no way of selecting a baud rate with the SAVE
command as there is with the CSAVE command.

The file name used can be a string variable; thus the commands

As = “CRT?'GS'"
SAVE A$

will kst the currently held program to the screen. If we were to repeat the
above operation with A$ equal to “CAS:test’’ then the program would be
writien 1o tape as an ASCII file called “test”’. The file name used in CSAVE
commands can also be a string variable; the commands

AS = “test”
CSAVE A$ -

e

?
t

will save the program to tape in tokenised form with the file name “‘test’’

There 1s one final point to note about the SAVE command. When we
write the file. the last ASCIi code that is sent to the tape is a character 26.
This 1s sent so that the computer will recognise the end of the ASCII file
when it encounters it on reloading. For this reason the CHRS 26 is called
an End Of File marker.

Loading Programs

To load a program. we use one of two different commands, depending
upon the method used to save the program. If the program was saved with

the CSAVE command then we reload it using the CLOAD command. The
command

CLOAD

by itseif will load the next tokenised BASIC program that is found on the
tape. However, we may have saved several programs on the same tape
and so we usually use CLOAD with a file name, as below.

CLOAD “‘test”

will load the program ““test’” when it finds it on the tape. *‘Test"’ should, of
course. be a tokenised file saved by the use of CSAVE. Files encountered
while the computer is searching for “test”” will be ignored. In both cases.
as soon as the correct file is found the message

Found: test

is pnnted 1o the screen. Loading will now proceed. As soon as loading
starts, the program that was previously in the computer is lost. As soon as
the program has been loaded, the computer returns to direct mode. For
this reason, CLOAD is not much use as a statement in a program, as on
completon program execution would be halted. CSAVE can be used in a
program kne, and after the save has been completed execution of the
program continues.

if the program has been saved in ASCIl format with the save
command, then we load it back in using the LOAD command. This is the
equivalent of the CLOAD command, but works on files that have been
saved as ASCII files. Thus

LOAD “CAS:test”

60

will search for an ASCII format file called test” Should you smply want
the next ASCIH format file encountered 1o be loaded then the command
used s

LOAD "CAS

LOAD "CAStest’ R

will load the ASCII file called ““test” and execute a RUN command, thus
starting the program running. The “R’" is the only parameter that you can
pass to a LOAD command.

Verify

it would be rather nice to think of our computers as infallible in all things.
unfortunately, this is not so. The act of saving a program to tape s fraught
with problems, as the tape recorder could need cleaning, the tape
recorder can be noisy, or running at the incorrect speed, or any one of a
dozen problems might beset the act of saving. Before we NEW the
machine, therefore it would be useful to know if the computer has
recorded a faithful copy of the program onto the tape which will be
loadable on a future occasion. The command that is used to do this 1s
called CLOAD?, and it operates by comparing the bytes read off the tape
with the bytes in the computer memory. This process is called
VERIFICATION; indeed, on some computers the CLOAD? command 1s
called VERIFY. The syntax of the command is;

CLOAD? “test”

This command will look at the file “test’” on tape and compare it with the
program currently in memory.

Merge

The final command that we use to manipulate tape files representng
programs is called MERGE. As you progress with programming, you will
soon gather together a collection of subroutines that are useful in most
programs. It i1s therefore useful to have these saved on tape in such a way
that they can be incorporate into any program. We do this by saving the
subroutines to tape using the SAVE command, and when we wish to

61

incorporated them into a program that is already partially written, we use
the MERGE command. The command

MERGE "CAS:test”

will search the tape until a file called *'test’’ is encountered. This file should
be a program or program section saved in ASCII format. Once the file has
been read in, the program lines that were represented in the file will have
been added on to the program. Any lines that were in the program
resident in the computer at the time of merging, that have line numbers
identical to lines in the file, will be replaced by the lines read in from the file.
Thus, take care over the line numbers in ASCII files! Any program sections
that are to be saved in this way should be renumbered to give them fairly
high line numbers. This will reduce the chances of a conflict of line
numbers. As soon as the merge operation is completed, the computer
returns to Direct Mode and awaits more commands.

If the file name is left off, as in
MERGE "CAS:"

then the next file that is encountered will be merged into the program in
memory. Remember that for a file to be available for merging, it must have
been saved with the SAVE command.

As well as storing programs on tape, the MSX BASIC allows us to
store variables and blocks of bytes. We will now study each of these in
turn, starting off with the storing of variables on tape.

Data Files

As we have already seen, MSX BASIC provides us with a wide variety of
data structures in which we can store numbers or strings. When we turn off
the power, however, or execute a CLEAR or RUN instruction, the values of
the variables are lost. But by using the tape system of the MSX micros to
write this data to tape we can have a permanent record of the variables
that were in use at a particular point in the program. The values of the
variables are written to tape, along with a file name, and can be reloaded
at any time. A file that holds numeric or string variables in this way is called
a data file. Let us look at a specific application in which being able to save
the data used in the program is essential. Imagine we are writing a
program that stores names, addresses and telephone numbers. We could
have 3 string arrays, name$(50), add$(50) and num$(50), which hold the
name, address and telephone number for a particular person respectively.

62

Each name and its corresponding address and phone number are
collectively known as a RECORD. The start of such a file when written to
tape could look like Figure 4.2.

NI 777777 MAMMG RO

HEADER name$(1) add$(1) num$(1) name$(2) add$(2)
N N\ -
—\/ —\/
RECORD 1 RECORD 2

FIGURE 4.2 FORMOF TAPE FILES (SEQUENTIALFILES)

So, how can we get data held in a variable onto the tape? Let's
examine the BASIC statements that we can use to write data to tape.

Opening A File

Before we can write data to tape we must OPEN a file. This operation
instructs the computer to prepare an area of memory to act as a BUFFER
to which data is written before being sent to tape. A FILE CONTROL
BLOCK is also created. This is an area of memory that the computer uses
to ensure that the file operation goes ahead as smoothly as possible. Data
in the buffer is only written to the tape when the buffer becomes full, or
when we signal to the computer that we no longer require the file. It is also
necessary to open a file before we can read data from it.

The statement that we use to open a file is of the form

OPEN “CAS:filename’’ FOR operation AS #mumber

The file name is the name under which the file will be saved to tgpe. Note
how we again have the chance to use device descriptors to specify where

63

the data s written to. Once we have opened a file, we can either write dala
to it or read data from the file. Thus the operation in the above staterment
can be INPUT aor OUTPUT. It we open a file for output, then data s
transferred from the computer to the tape. If a file in opened for input then
data (s transferred from tape to the computer. The number in the above
statement serves as a specifio (dentifier for the file during the time it s
open, and it s used whenever we need to access the file. Thus the
command

OPEN "CASitest” FOR OUTPUT AS #1

will open a file on tape called "test" with the file number 1. The file number
I8 between 1 and 15, and 80 It Is possible to have more than one lile open
atonce. It we want to set a top limit on the number of files that we want (o

have open at one time, then we use a command called MAXFILES, The
statement

MAXFILES = 6

will allow you to have only 6 files open at once, with the numbers 1 to 6
used as file numbers,

MAXFILES = 0
does not allow you to have ANY files open at all. After such a statement
has been executed, the only tape operations that are available are the
program save and load operations,
In the OPEN statement, "CAS:" can be replaced by either "CRT " or

"LPT:". Again, for “LPT:" to function correctly a printer must be
connected to the computer, The statement

OPEN "CRT:test" FOR OUTPUT AS #1

will cause everything that we write to file number 1 to be written to the
screen.

Writing Data to Files

The staterments employed here are similar to those we use to print data to
the screen. Instead of PRINT, we have PRINT #. and instead of PRINT

64

USING we have PRINT #, USING. In each case, the "‘#" is followed by a
file number. Thus the statement

PRINT #1,35

will print the value 35 to the file with number 1. The statement

PRINT #1, USING “#.##":A

will print the value of the variable A to the file with 2 digits after the decimal
point. Remember that before either of these commands is executed, the
file to which data is being written must be open for output. In a similar way,
fles opened for input can be accessed by the use of INPUT # LINE
INPUT # and INPUTS # commands. Thus the statement

INPUT #1,A

will read a numeric value from the file with number 1 and assign the value
read in to the variable A. The statement

A$=INPUT$ (3,#1)

will cause the execution of the program to wait until 3 characters have

been read in from file number 1. For more details, see the notes on
INPUTS.

INPUT #ilenumber,variable will work in a similar way to the straight
forward INPUT statement, but no prompt will be generated. If you are
carrying out an input to assign a string variable, then the same
considerations apply as in the normal INPUT statement. The LINE INPUT
statement will read in all the characters it encounters in the file until a
character 13 is encountered. This final character is then read in and the
resultant string is assigned to the variable in the LINE INPUT # statement.
Some applications will be given shortly so that you can see how these
statements are used.

Closing Files

When we have finished using a file, whether the file was open for input or
output, we have to CLOSE it. This is vital for files that are being used for
output, as if there is a data item in the buffer, closing the file will ensure that
this item is written to the tape. The act of closing a file also releases the
RAM that the computer allocated for that file for the buffer and control
block for other purposes. Once a file has been closed, you have to re-open
it before you can access it again. The statement

65

CLOSE #

will close the file that has number 1 associated with it. If the “#1"" is omitted
then all files that are currently open are closed.

Examples of the Use of Data Files

In this section, we'll look at how the statements and commaan we’'ve met
concerning data files can be used in BASIC programs. The' first gxample
program, below, is a trivial example but it illustrates the main points.

10 REM Writing a file to tape

20 OPEN ‘““‘CAS:test” FOR OUTPUT AS #1
30 FOR I=1TO 10

40 PRINT #1,

50 NEXT |

60 CLOSE #1

Line 20 opens the file for output. Line 30 and line 50 make up a FOR-
NEXT loop, and the data is written to tape in line 40. Line 60 closes the file
to finish the operation. We saw earlier on how we could replace the device
descriptor and the file name with a string variable for the save program
commands; well, we can do the same here. If we were to insert a line 15,
containing A$ = “CAS:test”, then we could change line 20 to OPEN A$
FOR OUTPUT AS #1, and this would be perfectly legal. .

This is a good place to look at how data is represented in the tape file.
If we change the Device Descriptor to “CRT:", we will see the data written
to the screen. As you will see, the numbers are written to the screen in the
format used by the standard print statement. Thus in the example just
seen, the digits are written to tape separated by carriage returns. Strings
would also be written to the tape as they would be written to the screen.

The file that we have just written out to tape can now be read back into
the computer. The program below demonstrates this in action.

10 REM reading a file

20 OPEN “CAS:test” FOR INPUT AS #1
30 FOR I=1TO 10

40 INPUT #1,J

50 PRINT J

60 NEXT |

70 CLOSE #

As soon as the file has been located on the tape, the FOR-NEXT loop will
read in 10 numbers from the file using the INPUT #1, J statement at line
40. The value thus read in is then printed to the screen. An interesting
feature of the way in which MSX BASIC reads data from tape files is that
line 40 can be rewritten as

40 INPUT #1,J%

or

40 LINE INPUT #1,J$

If this is done, and line 50 altered to read PRINT J$, then it will be noticed
that J$ contains a string representation of the number that the computer
has just read from tape. There is a simple explanation for this. The data
items in the file appear just as they would if you were typing in a response
to a normal input statement. With numeric values, therefore, the first
character that the INPUT statement encounters in a file that is not a space,
carriage return or line feed, is treated as the start of a number. Then, each
subsequent character is treated as a part of the number until a carriage
return, line feed, comma or space is encountered. In this case, with the
computer expecting a string input, the first character that is not a space,
carriage return or line feed, is treated as the start of the string. If this first
character read is a ‘", then the string item read in will consist of all
characters up to the next ‘. If the first character that is read in by the
string input statement is nota ‘"', then the string item read in will consist of
all characters up to the next carriage return, line feed, comma or after 255
characters have been read in from the file. If we wish to read in items from
the data file that are strings containing commas, then we use the LINE
INPUT # statement. With this statement, the string read in consists of all the
characters read in up to and including the next carriage return and line
feed. This command is thus of great use where data has been written to
tape containing commas, and can also be used to read in to a string
variable a line from a BASIC program that has been saved as an ASCII file.

If we construct a file full of string variables, using the program lisged
below, then we can see what happens when we attempt to read.a string
item from a file using an input statement that is expecting a numeric value.

10 OPEN “CASiest” FOR OUTPUT AS #1
20 FOR I=1TO 10

30 PRINT #1, "“Hello”

40 NEXT |

50 CLOSE #1

67

The file of strings produced by the program can be read back into the
machine using INPUT #1, A$, for example.

10 OPEN "CAS:test” FOR INPUT AS #1
20 FOR I=1 TO 10

30 INPUT #1, A$

40 PRINT A$

50 NEXT |

60 CLOSE #1

However, replacing line 30 with INPUT #1,A and replacing line 40 with
PRINT A will give totally different results. No error is generated, but the
value 0 is assigned to the variable. Even if the string is something like
1.234", the numeric value will still be 0.

Itis thus quite plain that data must be read from the file in the order in
which it was written to the file. Data files can, of course, contain a mixture
of both numeric and string data types, as the program below
demonstrates.

10 INPUT""How many strings’’; N

20 OPEN “CAS:string” FOR OUTPUT AS #1
30 PRINT #1 N

40 FOR I=1 TO N

50 INPUT A%

60 PRINT #1,A%

70 NEXT |

80 CLOSE #1

Line 10 asks for the number of strings that we wish to write to the tape. The
file is then opened in line 20 and the first thing that we write to it is the
number of strings that follows. A FOR-NEXT loop then accepts an input
from the keyboard and then prints the string typed in to the tape file.
Finally, the file is closed. Thus we have a file containing both numeric and
string data. The file that is produced by this routine can be read by the
program below.

10 OPEN “CAS:string” FOR INPUT AS #1
20 INPUT #1,N

30 FOR I=1 TO N

40 INPUT #1,B%

50 PRINT B$

60 NEXT |

70 CLOSE #1

68

Note how we read in the string into B$; the variable into which a value is
read from tape does not have to be the same variable name that was
written to tape when the file was created.

Use of Variables in Open Statements

The filename and device descriptor can be replaced by a string variable if
desired. We have seen how to do this earlier in the chapter. The file
number can also be replaced by a numeric variable. The statement

OPEN “CAS:test’” FOR OUTPUT AS A

is legal provided that the current value of A is between 1 and the current
value of MAXFILES. When a file has been opened in this way, the INPUT #
or PRINT # statements can also contain a file number that is a variable.
Here, the variable name that was used in the OPEN statement for the file
concerned simply replaces the digit. Thus

PRINT #A, '‘Hello”

will print the string “‘Hello” to the file. If we used variable in this way,
however, we must be careful that the value of the variable being used as a
file number does not alter while the file is in use!

As a final example of the use of data files on tape, | list below a
subroutine that would write the data from our imaginary name, address
and telephone number to tape.

1000 REM Save file subroutine

1010 OPEN *“CAS:data” FOR OUTPUT AS #1
1020 FOR I=1 TO 50

1030 PRINT #1,name$(l)

1040 PRINT #1,add$(l)

1050 PRINT #1,num$(l)

1060 NEXT |

1070 CLOSE #1

1080 RETURN

Here we simply use a FOR-NEXT loop to write the elements of the arrays
out to tape. When we read the arrays back in, it is necessary that the arrays
into which the data is being read in have been dimensioned so as to
accommodate all the data that was in the file. In the above example, if we
read in the data into arrays that had only been dimensioned to 20

69

elements, as soon as we tried to read in element 21 from the tape we
would get a ‘Subscript out of Range’ error.

You now have enough information to enable you to write simple file
handling programs. One thing that you will have noticed is that you cannot
read, say, record 21 from a file without first having read record 20, and the
other records prior to that. Files written in this way are called sequential
files, as the records are accessed in a particular sequence.

Saving Bytes

Once you start to write machine code programs you will soon want to save
the machine code you have written. Everything that we have written to
tape files so far has been structured in some way — the BASIC programs
we saved and the data files that we have constructed were all written to
tape without us needing to know exactly where in the computer’'s memory
the data that was saved was stored. When we come to save machine
code, or any other blocks of bytes to tape, however, we need to know 2
things about the bytes that we want to save.

i The position in memory of the first byte that is to be saved — the
START ADDRESS.

i The position in memory of the last byte that is to be saved — the
END ADDRESS.

The commands that we use to write bytes to tape and to read them back
from tape are BSAVE and BLOAD, respectively. Think of the commands
as Byte SAVE and Byte LOAD. The BSAVE command has either 2 or 3
parameters. The essential parameters are the start and end addresses of
the code to be written to tape. The third parameter is the EXECUTION
ADDRESS, and this is only specified if the file represents a machine code
program. The execution address is the address from which the program is
run, and provides information for the computer when the file is reloaded.
The command

BSAVE ‘‘test’’,200,499

saves 299 bytes of memory to tape, starting at address 200 and ending at
address 499. It is possible to have a device descriptor with the filename,
such as "CAS:test”, but at the time of writing the only device supported
was the cassette recorder. The file name, as we might now begin to
expect, can be replaced by a string variable. The start and end addresses

can also be replaced by numeric variables, as the command below
demonstrates.

70

start = 200
ed = 499
BSAVE ‘'test” start.ed

will save the bytes between start and ed. We couldn't use ‘end as a
varnable name here because it is a BASIC statement |If it becomes

necessary to specify an execution address then it is the third parameter of
the command, as can be seen below.

BSAVE ‘“'game’,49800.50000,49820

This command will save the bytes between 49800 and 50000, with an
execution address of 49820. If the execution address is not specified, then
it is assumed to be the start address.

To reload the bytes saved with BSAVE, the BLOAD command is
used. In its simplest form, BLOAD is used in the manner below.

BLOAD, “CAS:"

When used with just the device descriptor in this way, the command will
load the next suitable file encountered on the tape. The command

BLOAD ‘‘test”

loads in the file “'test’” from the tape. In both these examples, the file is
loaded to the address from which it was originally saved. If the file name is
followed by the letter ‘R’, as below,

BLOAD *“‘game’’ R

then the file is loaded into the computer and is then run, execution starting
at the execution address specified when the file was saved. There is one
more parameter that we can use with the BLOAD command. This is called
'OFFSET' and enables us to load the file in to your computer at a different
address to that from which it was saved.

BLOAD *‘game’' ,R,200

will load the file to (start + 200). Any execution address that was specified
when the file was written will also have 200 added 10 it to take the new load
address into account.

That just about sums up the tape handling facilitiues in MSX BASIC.

n

Before we leave this chapter, a few words on a couple of points that are
useful on certain occasions. The first is concerned with the function
EOF(n), where n is a file number. This function returns the value -1 if the
End of File n has been reached, and returns a 0 if the end has not been
reached. If you design your file handling routines so that you are always
aware of how many more data items there are in the file to be read in, t_hen
you will probably never use this function. If you try to INPUT a data item
from a file that doesn't contain any more data, then an error is generated.
Checking the file with the EOF(n) function before you actually perform an
input will prevent this happening. This function is particularly useful if the
file being read in is off an unknown length.

The final points concern errors that are sometimes generated during
tape operations.

Tape System Errors

Bad File Name Error Number 56

This error is caused by an incorrect filename being used with a LOAD,
SAVE, etc. statement.

Input Past End Error Number 55

Caused by attempting to read data from a file that is either empty of all
data or a file that has already had all its data read in.

File Already Open Error Number 54
An OPEN statement has been issued for a file that is already open.

File Not Open Error Number 59

A PRINT #, INPUT # statement has been issued for a file that is not open.
Files must be open before these commands are used.

Direct Statement in File Error Number 57

This error occasionally occurs if a direct command is encountered during
the LOADing of an ASCII format file. The load is terminated immediately.

Bad File Number Error Number 52

This occurs when a statement or command accesses a file with a file
number that is outside the range set by MAXFILES, or an attempt is made
to access a file that is not open. It is also generated if you try to execute an

INPUT from a file that has been opened for output or vice versa. It is thus a
general ‘catch all’ error message.

72

Device 1/O Error Error Number 19

This error occurs when somethin
examples are the user typing CTR
poorly recorded piece of data on t
tape input or someone pulling the
during a loading operation. This
connected, or to the screen if somet
innards!

g rather drastic happens; typical
L-STOP during a tape operation, a
he tape, electrical noise reaching the
earphone lead on the tape recorder
can happen to the printer if it is
hing goes wrong with the computer's

73

The ON Commands

While writing this book, | was often bothered by various little problems that
needed my attention. Whenever one of these happenings occurred, | left
the typewriter, having first made notes from which | could pick up where |
left off on my return, dealt with the problem, and then returned to carry on
with the book as if nothing had happened. This is not a dissertation on the
rigours of the writer’s life, but is an example of an INTERRUPT . . . In the
computing world, an Interrupt is a signal that is applied to the Central
Processing Unit of the computer to inform the CPU that a device
somewhere in the computer needs immediate attention. The CPU finishes
what it is doing, stores away the present contents of its internal registers,
and then goes away and performs the required job. This is called
SERVICING the interrupt, and once this job is completed the CPU

resumes its earlier task.

The example of an interrupt that you will probably be most familigr
with on the MSX computers is the action of the STOP key. Whatever is
happening, pressing this key, especially in conjunction with the CTRL key.

75

will cause the program execution to halt. Other interrupts on the MSX
machines read the keyboard and help keep the TV or monitor display
going. The fundamental thing about interrupts is that no matter what the
computer is doing, the occurrence of the interrupt event causes it to go
away and do something else, then return and carry on as if nothing had
happened.

This is very similar to the behaviour of the MSX computers when we
use BASIC programs that utilise the ON commands. Certain events, such
as an error, the depression of a function key or the collision of two sprites,
will cause the control of such a program to be passed from the current line
being executed to a special routine, which ‘services’ the BASIC ‘interrupt’
that the event causes. These ON commands are incredibly powerful; that
is why they occupy a chapter on their own. Let's start to examine some of
these commands, beginning with the ON ERROR command, a command
which gives us the ability to make our programs much more easy for other
people, and ourselves, to use.

ON ERROR command

We are all aware of the normal behaviour of the computer when an error
occurs; program execution stops, an error message, or REPORT is
printed to the screen, and the system variables ERR and ERL contain
details about what the error was and where in the program the error
occurred. We have already seen in Chapter 2 how errors all have numeric
codes associated with them; we will now go on to look at how we can
make use of these codes to cause the computer to resume execution of
the program with the minimum fuss and bother when an error occurs. This
is very important if someone who is not an MSX expert is using your
program. The sudden ‘beep’ and the message “‘Input past end” will
reduce many people into a state of mind that is convinced that computers
are a menace! The ON ERROR command causes control to be passed to
a certain line number after an error has occurred. The full syntax is shown
below.

ON ERROR GOTO n
where n is an existing line number. Thus, the command
ON ERROR GOTO 3000
at the start of a BASIC program will cause control of the program to be

passed to line 3000 in the event of an error happening. The program
statements at line 3000 and on subsequent lines that deal with errors are

76

called the ERROR TRAP. When we use the ON ERROR command, we are
said to be enabling error trapping.

Let's see an example of error trapping at work. Type in the command
NEW, and then enter the below program. We'll look at screen modes in
greater detail in the chapter on the VDP.

10 SCREEN 1
20 ON ERROR GOTO 3000
30 FOR I=1 TO 30
40 PRINT |
50 NEXT |
60 GOTO 30
3000 SCREEN 0: PRINT “Ooops, Error number
‘ERR: " has occurred at line ";ERL
3010 END

Before we see the program operating as an error trap, run it and make
sure that it works. If the message that is in the PRINT statement in line
3000 is printed to the display, then you've made a programming error!
Assuming that all is in order, the program should begin to print out the
numbers using the FOR ... NEXT loop. Type CTRL-STOP to halt the
program. This ‘error’ is not trapped by the ON ERROR command; it is
trapped by a command that we shall meet later in this chapter. However,
while the machine is in Direct Mode, type in some rubbish; type in
anything that would normally generate a syntax error, or any other error.
You will, with any luck, enter the error trap from Direct Mode by this
method. The “Ooops . . ."” message will be printed, together with the Error
number and the number 65535 instead of an error line. The number
printed depends upon the error that you caused. You can see from the
code that the error number is passed to the error trap routine in the system
variable ERR and that the error line is passed over in the variable ERL. To
see the error trap operate from within the program, replace line 40 with the

code
LPRINT |

| am assuming here, by the way, that you have no printer connected. Run
the program. As we might expect, the machine cannot execute the
program due to the printer not being connected. If we now press CTBL-
STOP, the error trap is entered with ERR =19, due to the I/O Error being
generated. It is also possible to enter the error trap by use of the ERROR

command, from either direct mode or from within a program.

77

What has this simple routine demonstrated? Well, it has shown that the
system variables can be treated just like normal BASIC variables; they can
be printed as part of a PRINT statement expression list, and they can also
be used inIF ... THEN ... ELSE statements, as we shall soon see. The
various ways in which control of the program can be passed to an error
trap have also been seen; the generation of an error in Direct Mode, the
generation of an error in the running program or the use of the ERROR
command. However, this simple demonstration doesn't help us regain

control of the program. For that, we need to look at another command.
called RESUME.

Replace the END at line 3010 with RESUME and repeat the above
experiments. You will see some rather interesting, but not terribly useful
effects. Whenever an error trap routine finds a RESUME statement, the
computer passes control back to the statement that caused the error in the
first place. Thus, when the error trap was entered due to a syntax error,
instead of the machine simply reporting the fact and stopping, it tried to
interpret the offending statement again. This will eventually lead the
computer around in circles, and the only way out of the loop will be to
press CTRL-STOP. A similar situation will occur with other errors. Thus the

RESUME command by itself is not very useful. However, it has other, more
useful forms, which we shall now see.

3010 RESUME NEXT

is the next command to try at this line. Now, after executing the routines in
the error trap, the RESUME NEXT command passes control of the
program to the next executable statement after the error statement. Thus
syntax errors will not cause the loop condition to arise.

The final form of the RESUME command is the most useful. We
usually require error handling routines to either restart the program or
rerun a small part of the program. For example, if an 1/0 Device error IS
generated, we would probably want to re-execute the part of the code that
caused the error, after having first given the nature of the error to the user
of the program. For example, the user might be asked to check the tape
recorder or printer before trying the routine again. The command that
enables us to return to a certain line number after an error trap has been
executed is

RESUME n

where n is an existing line number in the program. Look at the example
below, which is from a program that uses tape files. Two main errors were

78

expected; either an I/O Device error or a bad file name error. These have
the error numbers 19 and 56 respectively.

3000 REM Error trap routine

3010 IF ERR=19 THEN RESUME 10
3020 IF ERR=56 THEN RESUME 20
3030 ON ERROR GOTO 0

Line 10 of the program called a menu, so that the user could retry that
option that had caused the I/0 error. Line 20 prompted the user for a file
name; thus on the occurrence of the bad file name error, the user was
prompted again. The ON ERROR GOTO 0 at line 3030 is so that any
programming errors would not cause a jump back into the program but
would allow a report of their nature and whereabouts to be made. Thus in
this case, any errors generated except numbers 19 and 56 will cause
normal error handling to occur. Once the error trap has been entered, then
the ON ERROR trapping is turned off until a RESUME instruction has been
executed. Once this occurs, then the ON ERROR trap is reactivated.

RESUME must always be followed by a line number in the last method
of use that we discussed. It cannot be followed by a variable or expression
that evaluates to a legal line number but must be a constant. Error trap
routines can include calls to subroutines; errors generated in these
routines will give their usual error message, as the error trapping will be
deactivated until the RESUME is encountered.

Error

Error traps will work with the BASIC ERROR n command, thus enabling
the user to set up his or her own errors that can be trapped like any other
BASIC error. Again, ERL and ERR will carry appropriate values into the

error trap.

Multiple ON ERRORS

A BASIC program may have more than one ON ERROR statement in it.
Each ON ERROR statement takes over from the last one that was
executed, and so errors can be directed to different error trap routines
according to where the error occurred in the program. For example:

10 ON ERROR GOTO 2000

20 PRINT ‘“‘Hello"
30 hdfgf: REM deliberate error
40 ON ERROR GOTO 3000

79

50 dfhsdg: REM deliberate error
60 PRINT "Hello"
70 END
2000 REM first error trap
2010 PRINT '“2000"
2020 RESUME NEXT
3000 REM second error trap
3010 PRINT "“3000"
3020 RESUME NEXT

The first deliberate error in the program will be passed to the error trap at
line 2000. The ON ERROR GOTO at line 40, however, redirects the
subsequent error to line 3000.

POSSIBLE PROBLEMS

As with subroutines, it is vitally important that the program does not
accidentally run into an error trap without entering it in the correct manner.
GOSUB is the appropriate method of entry to a subroutine and the only
method by which a program should be able to enter the error trap is
through an error being generated. If the trap is entered without the error
being generated, then the execution of the RESUME instruction in any of
its forms will cause an error message to be generated. Thus it should be
impossible for a program to accidentally run into an error trap routine.
They should be separated from the rest of the program by END or STOP
instructions.

One final command that | will mention here is the LIST. command, a
special case of LIST. It has already been stated that we can't follow the list
command with a variable for a line number, even if the variable is a system
variable such as ERL. LIST., when placed in an error trap, will stop the
computer by listing the line of the program that caused the error to occur.
LIST. can thus be treated as a LIST ERL command. It is thus useful for
debugging programs. It can also be used in Direct Mode.

ON KEY command
This command, whose full syntax is

ON KEY GOSUB 100,200,300 . . .

enables us to define a series of line numbers to which control of the
program will be passed in the event of one of the function keys being
pressed. Control will be passed in the form of a subroutine call, and so the

80

sequence of lines after the one specified in the ON KEY statement will
have to finish with a RETURN. In the above example, control of the
running program will be passed to the subroutine at line 200 if key F1 is
pressed while the program is running. This EVENT, as it is called. will only
be trapped in this way if the function key of interest has been ‘turned on’
by a KEY (n) ON command, where n is the number of the function key.

Let's look at an example of trapping the function key F1 to jump to a
subroutine whenever it is pressed. Don't worry about the SCREEN

commands and the writing to the graphics screen yet; we'll look at these
two features in Chapter 6.

10 KEY (1) ON
20 ON KEY GOSUB 1000
30 SCREEN 1
40 FOR I=1 TO 10
50 FOR J=1 TO 100: NEXT
60 PRINT |
70 NEXT
80 GOTO 30
90 END
1000 SCREEN 3
1010 OPEN “GRP:” FOR OUTPUT AS #1
1020 PRESET (0,20),2
1030 PRINT #1, “That was F1"
1040 CLOSE #1
1050 TIME=0
1060 IF TIME<20Q THEN GOTO 1060
1070 RETURN

Line 10 activates the key that is to be used when we wish to enter the trap
routine, which in this case is F1, and line 20 sets up the line to which
control is passed when the key is pressed, in this example line 1000. The
key number in line 10 need not be a constant; it could be an expression or
variable that returns an appropriate value. Thus putting the lines below in
the above program would be perfectly legal.

5n=1
10 KEY (n) ON

The KEY ON command can come before or after the ON KEY GOSUB
statement. In the above example, we have only activated key 1 to jump to
a subroutine. Suppose that we wanted to use key F5 to cause a jump but
no others; in this sort of situation a comma is placed on the ON KEY

81

GOSUB statement for each key that is inactive. Thus, to make key 5
operate instead of key 1 in the last example program, replace lines 10 and

20 with the two lines below.

10 KEY (5) ON
20 ON KEY GOSUB ,,,, 1000

In a similar fashion, the lines

10 KEY (6) ON
20 ON KEY GOSUB ..., 1000

will cause key 6 to cause the jump to the subroutine at line 1000. To set
more than one key up to do a jump to a subroutine, it is necessary 1o
execute a KEY ON command for each key that is of interest, and also to
define a line number for that key on the ON KEY GOSUB statement. Thus
the lines

10 ON KEY GOSUB 2000,,3000,4000
20 KEY (1) ON
30 KEY (3) ON
40 KEY (4) ON

will activate keys 1, 3 and 4, so that when the program is running pressing
key 1 will cause control to pass to line 2000 of the program, key 3 will pass
control to line 3000 and key 4 will pass control to line 4000. If a key is
activated by a KEY ON statement, but is not given a line number in the ON
KEY GOSUB statement, then any presses of the key are simply ignored.

When we have several keys to turn on with the KEY ON statement, it is
quite clear that using several KEY On statements is probably NOT the
most efficient way of activating the keys. My favourite method where |
need to turn on several keys at once is to use FOR ... NEXT loops or
DATA statements. As an example, look at the activation of keys 1 to 6.

10 FOR I=1 TO 6
20 KEY (I) ON
30 NEXT

If there are 6 keys to be activated, but they are not in the sequence that

these are in, then we use a DATA statement and a FOR . . . NEXT loop to
read from ghe DATA statement, as shown overleaf.

82

10 FOR I=1 TO 6
20 READ n

30 KEY (n) ON
40 NEXT

|||||

This latter program turns on keys 1,2,4,6,7 and 8, something that would be
a little difficult to do efficiently by just using FOR .. . NEXT loops.

If we wish to disable a function key that has been active in a program
then we use the KEY (n) OFF statement. This is useful when we want the
function key to be active for part of the program but inactive in other parts
of the program. Thus the command

400 KEY (2) OFF

will ensure that pressing F2 after this command has been executed has no
effect. Of course, if we then want to turn the function key back on we can
use a KEY ON command to do so.

KEY (n) STOP has similiar effects to the KEY OFF command; however,
while all key. presses of the function key are ignored after a KEY OFF
command, they are stored up during the time in which the KEY STOP is
active. As soon as a KEY ON command is issued for that particular key,
the computer will remember if the relevant function key has been pressed
during the KEY STOP period, and, if there has been a key press, will pass
control to the appropriate line in the program. If the function key
concerned was not pressed during the STOP period, then nothing more
happens.

When a key trap routine is entered, a KEY STOP command is issued
by the computer for that particular function key. A KEY ON instruction is
issued when the RETURN is executed. Thus pressing the function key
during the execution of its subroutine will cause the routine to be executed
a second time as soon as the RETURN is executed.

While using the ON KEY GOSUB command, if you should need
reminding about what each key does, don’t forget that you can program a
string into the function keys. This will be displayed in the normal fashion on
line 24 of the display. The nature of the text held in a function key malfes
no difference to the way in which the computer responds to the key being
pressed in an ON KEY GOSUB operation. Remember that if this line 24
display irritates you, the command

83

KEY OFF

with no key number involved will remove this display. KEY ON will restore
the line 24 display.

The next ON command that we will look at also involves the trapping
of an event that is caused by a key press; in this case the pressing of the

STOP key.

ON STOP GOSUB n

The main method of stopping a program on the MSX computers is to hold
down the CTRL key and the STOP key simultaneously, thus issuing what is
known as a Control-Stop command, usually abbreviated to CTRL-STOP.
The program will immediately stop executing. This, however, is not always
a desirable proposition, especially if the program is being used by
someone other than yourself whom you don't wish to be able to see the
program. ON STOP GOSUB n enables you to prevent the CTRL-STOP
function from stopping your programs. It does not affect the use of the
STOP key on its own, which will normally produce a pause in program
execution, and neither does it prevent the use of the STOP command
within a BASIC program. The CTRL-STOP trap that is set up using this
command is only entered by pressing CTRL-STOP when the BASIC
program is running. When the trap is active, pressing these keys will cause
the program lines starting at the line specified in the ON STOP GOSUB
instruction to be executed. Control is passed back to the program by
means of a RETURN statement. The CTRL-STOP is thus another form of
subroutine, as are all the routines that we have seen in this chapter with the
exception of the ON ERROR trap routines, which ended with a RESUME
command instead of a RETURN command. In common with the other
traps that we have seen in this chapter, the ON STOP GOSUB command
has to be ‘turned on’ by the use of a

STOP ON

command. This can be issued before or after the ON STOP GOSUB
command. Thus the two lines

10 ON STOP GOSUB 5000
20 STOP ON

will cause control of the program to be passed to line 5000 whenever the
CTRL-STOP event occurs. As an example of what can be done with the
ON STOP ... command, the code below will completely inactivate the

84

CTRL-STOP operation, and this combination of keys will no longer stop the
program when it is running.

1 ON STOP GOSUB 20000
2 STOP ON

20000 RETURN

If you disable the STOP key in this way in a program, then TAKE CARE! |t
is possible to get into an infinite loop if the program has-bugs in it, and
should this occur the only way to get out of the loop may be to reset the
machine, with the resultant loss of program.

The STOP OFF command turns off the CTRL-STOP trap. The STOP
STOP command turns off the trap, but if CTRL-STOP is pressed the event
is remembered and acted upon as soon as a STOP ON command is
issued.

There is one occasion in a BASIC program protected in this way when
the program can be broken into by use of the CTRL-STOP function. This is
when an error trap has been entered: until the RESUME statement, all
trapping by the use of ON commands is disabled.

When the computer has executed a CTRL-STOP trap routine, the
RETURN statement also executes a STOP ON statement. This is because
during the trap handling routine, the computer acts as if a STOP STOP
command has been issued. If you put a STOP OFF command within the
trap routine, then trapping is NOT activated by the RETURN statement,

and any subsequent CTRL-STOP’s will have the usual effect.

ON SPRITE GOSUB n

This command can only be properly discussed when we have gained a
knowledge of the sprites available in MSX BASIC. This will be fully covered

in the next chapter, where we will also discuss this command.

ON INTERVAL = time GOSUB n

This command enables us to program the computer to stop whatevgr itis
doing after a given time interval, execute a subroutine_stanir)g at line n,
and then return from that subroutine and carry on until the interval hgs
elapsed again, when the process will be repeated. To implement this
command, the computer makes use of an interrupt that is generated by

85

the VOP. This tells the CPU to axecute some ROM routines that rond the

keyboard and update the value of the TIME variable. The number of times
that this happens per second depends upon the type of MSX aystorm that
you've got. It it is a computer that can drive a TV set in the UK, then thig
interrupt occurs 50 times per second. If the machine 18 one that was
originally intended for the Japanese market, and cannot drive n UK
television set, then this interrupt occurs 60 times a second, This interrupt s
counted by the computer and made use of when weo use the ON

INTERVAL command.

The delay, time, is given by the delay required in seconds multiplied
by the number of times per second that the interrupt is generated, Thus in
the UK the value of the parameter time is given by

time = required interval* 50

Thus for a delay of 5 seconds between executions of the sub-routine
specified in the ON INTERVAL command, the command used would be

10 ON INTERVAL =250 GOSUB 1000

To activate trapping of the ON INTERVAL command, an INTERVAL ON
command has to be issued in a similar way to the KEY (n) ON commands.
Again, the sub-routine that is called must end in RETURN.

The program listed below makes use of the ON INTERVAL command
to give an ‘alarm clock’ style program. Once the INTERVAL ON command
has been executed the computer enters the subroutine at line 1000 every
10 seconds. The frequency of entry into the subroutine can obviously be
varied by altering the time parameter in line 10.

5 SCREEN 0
10 ON INTERVAL =500 GOSUB 1000
20 INTERVAL ON
30 FOR I=1 TO 1000000
40 PRINT |
50 NEXT |
60 END
1000 SCREEN 3
1010 OPEN "GRP:" FOR OUTPUT AS #1
1020 PRESET (0,40)
1030 PRINT #, "“Wake up!"
1040 BEEP:BEEP
1050 CLOSE #1

86

1060 FOR T=1 TO 2000: NEXT T
1070 SCREEN 0
1080 RETURN

As soon as the interval on command is issued in line 20, the routine at line
1000 is entered each time the requested time delay finishes — in this
case, for example, the routine will be entered after 10, 20, 30 . . . etc
seconds. This time includes time spent executing the trap routine. Thus if
a trap routine takes 3 seconds to execute, and the time parameter in ttlwe
ON INTERVAL command is still set at 500, then the trap will be re-entered
7 seconds after it was last exited. If you only wanted the interval to elapse
once, giving one entry into the routine and no more, then an INTERVAL
OFF instruction in the subroutine will ensure that this happens. On entry to
the subroutine, an INTERVAL STOP command is executed. This has
similar effects to the STOP STOP command. If another time delay expires
while the trap is being executed, then as soon as the RETURN at line 1080
is executed the trap is re-entered. You can see this in action by reducing
the time parameter in line 10 of the demonstration program to, say, 10.
This is a silly example, but if you have a low value of a time parameter, the
execution time of the trap routine has to be similarly short if the program is
to do anything other than repeatedly run the trap routine. You have been
warned. INTERVAL OFF and INTERVAL STOP instructions can, of course,
be used in other parts of the program to prevent the ON INTERVAL calls
occurring when they are not needed. Within the time constraints
mentioned above, the trap routine can execute any commands you wish.
As with all the other ON commands, the program will continue executing
as if nothing had happened when the RETURN command is executed.

ON STRIG

This command is used with the joystick; therefore we will deal with it in
Chapter 7.

* Kk %

That finishes the ON commands. The ability of ON INTERVAL to
perform a regular subroutine call will be used in the next chapter when we
go on to look at sprites and graphics as we look at the Video Display

Processor.

87

The Video Display
Processor

The Video Display Processor, or VDP for short, is the device in the
computer that gives the MSX microcomputers ther excellent graphics
abilities. It is one of the chips that is part of the MSX standard, and so in this
chapter we shall look at in detail, beginning with some general information.

The device listed in the MSX specificaton is the TMS 9918 or
equivalent. It controls the display that the MSX can prowide to eiher
television or monitor, and is in total control of 16384 bytes of Video
memory, known as VRAM. 16 colours are avadabie, as we shall later see.
The VDP is in communication with the Central Processor Unit via the bus
system of the computer, and the following types of information transfer are
possible between the CPU and the Video Processor.

i The CPU sends bytes to the VDP REGISTERS
i The CPU reads bytes from the VDP regsiers

i The CPU sends bytes to the Video RAM
iv The CPU reads bytes from the Video RAM

89

A couple of definitions at this point; a register is best seen as a byte of
RAM within the Video Processor chip, that controls the operation of the
VDP, It I8 not part of the VRAM. Within the VDP there are 8 registers called
WRITE ONLY registers; the Z-80 CPU can write bytes to these registers
hut cannot read data from them. There is also one READ ONLY register,
called the STATUS REGISTER, We'll look at these in more detalil later in the
chapter, The Video RAM holds data pertaining to the sprites, the screen
display, the colours in use and various other things. By directly accessing
the Video RAM or the VDP registers, we can greatly increase the
programming power at our disposal. The second part of the chapter will
deal with this method of using the VDP from BASIC. However, in the first
part of the chapter we'll look at the BASIC commands that are available to
us without having to gain a knowledge of the arrangements of the Video
RAM or the Video Processor registers.

Display Modes

A Display Mode is a particular way of arranging the display screen. The
MSX computers have 4 modes, all using the Video RAM in different ways
and each mode being best suited for a particular application. Display
Modes are selected using the SCREEN command.

Mode © Text Mode
Mode 1 Text Mode
Mode 2 High Resolution Graphics mode
Mode 3 Low Resolution Graphics mode

Let’s look at these modes in some detail now, and see what we can do
with each of them.

Mode 0

This is a text mode which offers you the characters displayed on the
keyboard of the computer — that is, letters, numbers and various non-
alphanumeric characters. The mode is specified as offering 24 lines of 40
characters per line; however, the MSX microcomputers that will be
available in the UK will actually display 24 lines of 37 characters. The
actual characters that are displayed in this mode are stored in part of the
Video RAM. This means that by directly altering the VRAM we can alter the
shape of the letters printed to the screen. We'll look at how we can do this
later in the chapter. Two colours out of the 16 available can be used in this
mode, one for the letters displayed and one colour for the background.

90

Mode 1

This gives us 24 lines of 32 characters, but again the UK machines will
display 24 lines of 29 characters. In the MSX specification, two colours oot
of the available 16 are usable, one for the foreground colour — that is the
characters displayed — and one for the background. MHowever by

manipulating the VRAM directly, we can modity this slightly. Again, it ig
possible to modify the character set in VRAM. o

The graphics commands of MSX BASIC, such as PSET, LINE or
DRAW will genprate errors If you try to use them in a text mode. However
in mode 1 spntes are availlable, and we shall discuss these later in lh(;
chapter. One important thing to note is that a text mode will be returned to
whenever you execute an INPUT statement from within a graphics only
mode or when the computer has finished execution of a program. As this
results in the loss of whatever was on the screen at that point, remember to

finish the program in an infinite loop it you wish to examine the results of
graphics commands.

Mode 2

Mode 2 gives us access to high resolution graphics capability. We can
have 16 colours on the screen at one time, and we can use sprites. The
resolution of the screen is 256 by 192 pixels. Treat a pixel as a dot on the
screen. However, in each group of 8 pixels in the horizontal direction you
can only have two separate colours — one foreground colour and one
background colour. Thus it is not possible in the horizontal direction to
have a row of 8 pixels all having different colours. In the vertical direction,
however, there are no such limitations. For 8 vertical pixels in this mode, 8
different colours can be used if necessary.

Mode 3

This is the low resolution graphics screen, again with 16 colours and
sprites. The resolution of the screen in this mode is 64 horizontal pixels by
48 vertical pixels. Any colour can be held by any pixel in any screen
position. There are no problems with horizontal colour resolution as there

are in Mode 2.

If you have experimented at all with the graphics modes of the MSX
computers then you will probably be aware of the fact that ghe normal print
statements do not print text to the graphics screens. There is a way around
this problem, and we shall look at this shortly.

Printing Text

We'll firstly look at the commands available to us in the text modes, with the

o1

exception of sprite control, which has a separate section in this chapter. To
see the characters that are available to you in text mode, enter the

program below.

10 SCREEN 0

20 FOR 1=32 TO 255
30 PRINT CHR$ (l);
40 NEXT |

50 END

Line 10 selects screen mode 0. If we wanted any other mode here, we
simply put in the appropriate number instead of 0. We then simply print out
all the characters between ASCII code 32 and 255. Note how as the
characters are printed we use the full width of the screen. We can, in fact,
vary the number of characters that we write to a line by the use of the
WIDTH command.

WIDTH 20

will set the display line to 20 characters. Legal values of the parameter in
the WIDTH command are between 1 and 40 in screen mode 0, and
between 1 and 32 in screen mode 1. Try including the line below in the
above program:

15 WIDTH 15

Note how the use of this command also affects the function key display on
line 24 of the display. The width of the display line set with this command
stays fixed at that length, even if you change display mode. The only way
to restore it to its original value is to reset it with a WIDTH command.

When you have filled a screen with text, the CLS command will clear
the screen to blank. The CLS command also works in the graphics modes.

LOCATE XY

The LOCATE command enables us to position text on the text screen
wherever we want it. The full syntax of the command is:

LOCATE X,Y,cursor
The cursor parameter is optional, and if omitted is assumed to be 0. The

command ensures that the next print statement issued by the system
prints the text at location X,Y on the screen, X being the horizontal position

92

from the left of the screen and Y being the vertical position from the top of
the screen. In the MSX system, the top left hand character of the text
screen is atlocation 0,0. X increases from left to right and Y increases from
screen top to bottom. The cursor parameter determines whether or not the

cursor block will be displayed after the next print statement has been
executed. Look at the example below:

10 LOCATE 10,10,0:PRINT “#"
20 GOTO 20

will print the “#" but nothing else. However, if we alter line 10 to

10 LOCATE 10,10,1:PRINT “#"

will cause the “'#’ to be printed, followed by the cursor block. With the
cursor parameter equal to 1, the cursor is said to be enabled, and is
disabled if the parameter is equal to 0.

Colour

So far, we've not strayed away from the white letters on a blue background
that the MSX computers all start off with when we turn them on. Changing
text colour is easy, if we can remember to use the Japanese spelling of
colour! Seriously speaking, though, the COLOR command enables us to
change the text colour, the background colour and the border colour of
the text display. The full syntax is

COLOR foreground, background, border

The foreground colour is that colour which the text is printed in, the
background is the colour of the blank screen and the border colour is the
colour of the edges of the screen which cannot be written to. Thus the

command
COLOR 15,1,1

will give us white lettering in a black background with a black bprder. The
colours available and the numbers used to represent them in COLOR

statements are as follows.

@ Transparent 4 DarkBlue
1 Black 5 LightBlue
2 Medium Green 6 DarkRed
3 Light Green 7 Cyan

93

8 Medium Red 12 Dark Green

9 LightRed 13 Magenta
10 Dark Yellow 14 Grgy
11 Light Yellow 15 White

Just one word of explanation is needed here, and thgt is about the qolour
transparent. This simply allows whatever is under it — whatever is the
background — to show through. Due to the fact that we are only supposed
to have two colours available to us in the text modes, chgngmg the
foreground colour will change the colour of text already written to the
screen to the new colour.

Text in Graphics Modes

Try the program below:
10 SCREEN 2
20 PRINT "'Hello”
30 GOTO 20

Nothing is printed to the screen. This is because some rather special
techniques are employed to write text to the graphics screens. However,
once mastered, they give a great degree of control over the positioning of
text on the display screen and allow us to mix both text and high resolution
and low resolution graphics with text.

We gain access to the graphics screens by the use of an OPEN
command and a Device Descriptor. The new descriptor is called GRP:.
Just as we were able to write text to the text screens using OPEN"'CRT:"",
we use OPEN"GRP:" to write to the graphics screen. The full syntax of the

command needed to prepare the way for writing text to the graphics
screen is

100 OPEN"GRP:" FOR OUTPUT AS #number

or

200 OPEN"GRP:" AS #number

The command can only be sensibly used from within a program after a
graphics mode has been selected. The parameter number is the
equivalent of the file number that we used when we were writing text to
tape files. In a similar way, we use the PRINT # and PRINT # USING

94

commands to write text to the graphics screen. RESET :
try the demonstration program below. your machine and
10 SCREEN 2
20 OPEN “GRP:” AS #1
30 PRINT #1,"Hello"
40 CLOSE #1

50 GOTO 50: REM prevents return to Direct
Mode

You'll see the word ““Hello™ printed to the top left-hand corner of the
display. If you stop the program and then re-run it, you will find that the
printed text has moved down the screen by 1 line. This is due to the
computer “‘remembering” that it printed a carriage return at the end of the
word “Hello™ on its previous run. Thus the new text is printed accordingly.
We are therefore in need of a method of positioning the text we wish to
print to the graphics screen. LOCATE will not work, and the WIDTH
command has no effect until we return to a text mode, when the width we
specified in the WIDTH command that was executed in the graphics mode
will come into effect.

The command we use to position the text is called PRESET. The
syntax of the command when used for text positioning in graphics modes
is

PRESET (X.Y)

where X is the horizontal position of the character and Y is the vertical
position of the character. PRESET works on a 256 by 192 grid in mode 2
and on a 64 by 48 grid in mode 3. The program below shows the PRESET
command in use, to position text randomly on the screen.

10 SCREEN 2

20 OPEN"GRP:" AS #1

30 PRESET (RND(1)"256,RND(1)"192)
40 PRINT #1,"Hello”

50 GOTO 30

60 CLOSE #1

The CLOSE statement is rather superfluous here as it is el e;;(élgg:
due to the GOTO at line 50. The coordinates pasged s th? he strin
command refer to the top left hand corner of the first character of the string

that is to be printed.

95

]

The coordinate system used again has position 0,0 in the top left hand
corner of the screen. Due to the difference in pixel size, text printed in
Screen mode 3 is larger than the text printed in any other mode. It is thus
excellent for title pages in programs and other such applications where
large text is needed. To see this big text in action, simply change the
SCREEN 2 in the above program to SCREEN 3. Changing the colour of
text printed to the graphics screen is very simple — we just use the
COLOR command. We now, of course, have the 16 colours of the
graphics modes available to us. This, and the degree of variation we can
have in positioning the text makes the use of text in graphics modes very
useful. The program below shows how we can change the text colour with
the COLOR command. The colour of the words printed to the screen will
be repeatedly changed as the program runs.

10 SCREEN 3

20 OPEN"GRP:’ FOR OUTPUT AS#1
30 PRESET (0.0)

40 COLOR RND(1)*15

50 PRINT #1,"Hello’"

60 GOTO 40

70 CLOSE #1

The background colour and border colour parameters can be used in
such commands, but while in the graphics mode only the foreground and
border parameters are acted upon. The background colour used when
printing text to the graphics screen is the same one that was in use in the
last text mode used. If you want to change the background colour of the
screen using the COLOR command whilst in a graphics mode, then use
the command combination below.

1010 COLOR foreground, background, border
1020 CLS

This will, of course, clear the screen of anything there already.

If, while indulging in all these colour changes, you accidentally come
back to the text mode with a completely unreadable colour combination,
then a press of F6 will set matters to rights.

When all the text has been written to the graphics screen that you
want to write, the CLOSE #1 instruction must be executed. If you've used
some other file number than 1 here then simply replace the 1 with the
number you used.

-

Let's now go on to look at the simple
available to us in modes 2 and 3. The g
terms is to make a pixel at a particular scre
is often called plotting a point. The ¢
graphics commands again starts at the t
wWhen BASIC encounters coordinates i
have values that are beyond the edge o

in the coordinate pair are within the range -32768 to +32767. The values
that would be outside the screen are replaced by the closest value that is
just on the screen. Thus, 0 would replace any negative values that are
specified as a coordinate, if the coordinate is an absolute coordinate. We
say that we are plotting a point in an absolute fashion if the coordinate
refers to the position of the pixel to be modified with respect to 0,0. It is
possible to specify the position of a pixel with respect to another point

apart from 0,0. This is said to be plotting a point relative to some point on
the screen..

graphics commands that are
mplest thing to do in graphics
€N position a certain colouyr. This
Oordinate system used by the
op left hand corner of the screen,
N commands it will allow you to
f the screen, as long as the values

The commands that we can use to plot a pixel in a given colour are
called PSET and PRESET. These commands are virtually identical in
action. The syntax for the PSET command is

PSET (X,Y), colour

X and Y specify the coordinates of the point, and the colour parameter
specifies the colour that you want the pixel to be. The colour parameter
can be omitted from the PRESET command, which has the same syntax
as the above. If the colour is left out then the current background colour is
chosen. This was the way we used PRESET to position text on the
graphics screen. If we wanted to, we could use PSET to do the same job,
using a transparent pixel colour:

PSET (X,Y),0

The size of the pixel obviously depends upon the graphigs mode in use.
To see this in action, type in the program below, and run itin both modes 2
and 3.

10 SCREEN 2: REM or SCREEN 3
20 PSET (RND(1)*50,RND(1)*50),RND(1)*15
30 GOTO 20

Although the size of the area of the screen affected by the program is the

same in both cases, the pixels that are plotted in Mode 2 are only a.quaﬂ:f
of the size of those plotted in Mode 3. As a further demonstration, the

97

Y

below program draws a graph, showing the Sine and Cosine for various
angles in two different colours. The sines and cosines are evaluated before
we begin drawing, to speed up the drawing process. The angle in
degrees, represented by 1%, has to be converted first into radians before
the sine or cosine functions can be applied. Thus A is the angle in radians.
This program is also a good example of the slow speed of trigonometric
function evaluation on MSX computers!

10 SCREEN 0: LOCATE 10,10:PRINT "‘Please
Wait”’

20 DIM S(360), C(360)

30 FOR 19%=0 TO 360 STEP 2: A=1%/57.33

40 S(1%) = SIN(A): C(1%)=COS(A)

50 NEXT 1%

60 SCREEN 2:REM or SCREEN 3

70 FOR 1% =0 TO 360 STEP 2

80 PRESET (1%/2,5(1%)*30 + 50),7

90 PRESET (1%/2,C(i%)*30 + 50), 1

100 NEXT 1%

110 GOTO 110

The graphs can be plotted in both mode 2 and mode 3, simply by
changing line 60 accordingly. The next demonstration is what is called in
computing circles a ‘‘Random Walk”. The next pixel to be plotted is
specified to a certain degree by random factors. In this particular case, the
X and Y coordinates are either incremented or decremented, depending
upon the values of 2 random numbers.

10 SCREEN 2
20 X%=100:Y% =100

30 PSET (X%,Y%),15

40 N% =RND(1)*2:M% = RND(1)*2

50 IF N%>Q THEN X%=X%+1 ELSE X% =X% —1
60 IFM%>0 THEN Y%=Y%+1 ELSE Y%=Y%—1
70 GOTO 30

Try altering the amounts by which X% and Y% are altered in lines 50 and
60.

Now that we can use the PSET and PRESET commands to plot
individual pixels, it would be nice to be able to draw lines between points
on the screen. The MSX BASIC command that we use to do this is called
LINE. The full syntax of the LINE command is

LINE (X,Y)-(X1,Y1)

98

XandY are the coorc‘ii‘nates of the position at which line drawing is to start
and X1,Y1 is the position at which the line is to be finished. Thus the lin
drawn by the command - o

LINE (10,10)(100,100)

will start at position 10,10 and finish at position 100,100. We can specify
the colour of such a line by either a COLOR command before we draw the
line or by a colour parameter at the end of the LINE command, as below.

LINE (10,10)-(30,100),1

This command would draw a black line between the specified
coordinates. The numbers used in the colour parameter are those that
we've already seen. There is one final parameter that we can add to a line
command, which is quite useful. To draw a rectangle, or ‘box’, on the
screen would normally take 4 LINE statements to draw. By adding the
parameter B to the LINE statement. The command

LINE (10,10)-(100,100),1,B

will draw a black box to the screen with it's top left hand corner at position
10,10 and it's bottom right hand corner at 100,100. We can replace the
letter B with BF. This will draw the box and then colour it in in the colour
specified in the LINE command. Obviously, the shapes drawn with this
extended line command are all rectangles with parallel sides. Should we
want to draw irregular shapes or triangles, we will still have to separate

LINE commands.

Before leaving the LINE command, let's look at how we can draw
lines or plot points relative to the current graphics position, rather than to
and from absolute coordinates. The X,Y pair of coordinates in any
graphics command so far encountered can be replaced by an expression

of the form

STEP (X.Y)
The STEP signifies that relative addressing of the coordinates is to be
used. Thus the pair of commands

200 PRESET (100,100)
210 LINE STEP (10,10)-(30,60)

will result in the drawing of a line from point 110,110 to point 30,60. The

99

10.10 in the STEP expression refers to point 1@,10 relativ@e to thfee;agr:
gra'lphics point used, which in this case was the point 100,100 specified |

the PRESET command.

The final form of the LINE command is to omit the start coordinates.
The command is

LINE-(X1,Y1)

dnd the line is drawn from the last graphics point that was accessed to the
point X1, Y1.

We've seen how we can draw boxes to the screen; what about
something a little more difficult, such as a circle? Most home computers
require that the user write a subroutine to draw circles; not so the MSX
system. The command CIRCLE enables us to draw circles or 'elhpses in
either of the graphics modes. The full syntax of the command is

CIRCLE (X,Y), radius, colour, start angle, finish angle,
aspect ratio

STEP (X,Y) can be used instead of the (X,Y) expression in the aboye
syntax. Of the parameters, colour, start angle, finish angle and aspect ratio
are all optional. Let’s begin by drawing a few circles.

10 SCREEN 2

20 X=RND(1)*256:Y =RND(1)*192:REM random
circle position

30 R=RND(1)*30:REM Random circle radius

40 CIRCLE (XY),R,RND(1)*15:REM draw circle with
50 REM random colour
60 GOTO 20

This program will run in mode 3 as well, but the circles will be drawn with
much thicker lines. If you were to use the STEP (X,Y) method of positioning
the circle, then the first circle drawn in the above program would be
dependent upon the position reached by the last PSET, LINE etc.

command. The CIRCLE command can only be used in the graphics
modes.

Let's now look at the final three parameters that we can use with the
CIRCLE command — the start and finish angles, and the aspect ratio.
These are used when drawing sections of circles or ellipses. Let's start by
looking at how we can draw sections of circles to the screen.

100

_

We do this by specifying the start and finish angles in the CIRCLE
command. These parameters are in radians, but we can use the function
that we designed a short while ago to convert degrees to radians to solve
this problem. | will thus address this problem in degrees, as | believe that
more people are familiar with this measure of angle. The angles used in
these two parameters are between O and 360 degrees. The MSX
computers draw circles as illustrated in Figure 6.1,

(1.57rad,ie)
90°

(3.14rad, i.e: m) Q
180° 0°/360°(Drad)

270"
(4.711ad,ie:3)

FIGURE 61 ANGLE CONVENTION, CIRCLE STATEMENT

The circle is thus drawn in an anti-clockwise direction, starting at the
start angle and ending at the finish angle as we might expect. Thus when
we draw a circle command, the start angle is taken by the system to be 0
degrees and the finish angle is assumed to be 360 degrees. The program
below allows you to see the effects of changing the start angle of the circle
drawing procedure. Line 20 of the program defines the function for our
degrees to radians conversion. In line 30 we call this function, putting the
required start angle as the argument of the function. You can thus change
the start angle by altering the parameter passed to the function.

10 SCREEN 2

20 DEF FNA(angle)=angle/57.33

30 st=FNA(180):REM to change start angle, change
40 REM this argument

50 CIRCLE (100,100), 40,15,st

60 GOTO 60

101

T

Figure 6.2 shows the effects of varying the argument.

START
FINISH FINISH
START
ARGUMENT ARGUMENT
IS 90° IS 270°
START FINISH START/FINISH
ARGUMENT ARGUMENT
IS 180° IS 360°

FIGURE 62 VARYING THE ANGLE ARGUMENT SUPPLIED TO CIRCLE

It is possible to draw segments of circles by specifying the finish angle
parameter in the CIRCLE command as well has the start angle parameter.
Thus drawing a circle with the start angle equal to @ degrees and the finish
angle equal to 90 degrees would give us a line describing a quarter circle.
The length of the arc thus produced still depends upon the radius of the
circle, and the position of the arc is set by the X,Y coordinates specified in
the CIRCLE command. Again, experiment with varying values in the finish
angle parameter, remembering that the CIRCLE command must be given

its angles in radians.

The final parameter of the CIRCLE command, the aspect ratio, is used
when we want to draw ellipses. As you may know, an ellipse is a ‘flattened’
circle. The aspect ratio of the ellipse is a measure of how flattened the
ellipse is with respect to a circle. It is the measure of the vertical radius of
the figure to the horizontal radius of the figure. In a circle, these two radii
are the same, and a circle has an aspect ratio of 1. Figure 6.3 shows two
ellipses with their respective aspect ratios. Very large aspect ratios will lead
to a straight line, as will very small aspect ratios. The centre of the ellipse is
again specified by the X,Y coordinates specified in the CIRCLE command.

102

One point of interest to all users of the CIRCLE command is that if the
ngles specified are negative, the angles will be treated as positive ones
2ng the perimeter of the circle or ellipse will be connected to the point X,Y.

ASPECT RATIO = V.
_T ;
Y = 1
|
B o
f— H—+
ASPECTRATIO = 2
v 1
= 2
v
o=l sy

(&)

S
(64}

f ASPECTRATIO = 0.
v -1—
i = 0
=

| FIGURE 6.3 VARYING THE ASPECT-RATIO ARGUMENT SUPPLIED TO
CIRCLE

Paint

We know how to draw circles or lines in colour by specifying the colour
Parameter in the command. We can plot pixels in colour in a similar way.
However, what happens if we want to fill a circle or some irregular shape

e

103

with colour? One possibility would be to plot every pixel in the shape‘ in the
colour required. This would work, but in BASIC ‘wouid take a long time to
achieve. MSX BASIC provides us with a routine in ROM that wprks on this
principle but in machine code, which means that it is many times faster
than BASIC. This routine is called PAINT, and the command has the

syntax shown below.

PAINT (X.Y), colour, colour to be regarded as border.

The STEP (X,Y) form can be used in place of the (X,Y) expression. Both
colour, which is the colour with which we wish to fill the shape, and border
colour, which will be explained soon, are optional parameters. So, how do
we use this command? The X,Y coordinate specifies the position at which
the computer is to begin filling the shape with colour. It does this on a line
by line basis, and recognises the edges of the area that it is to fillvin the
following fashion. As the PAINT operation proceeds along a line, it tests
the calour of any pixel it encounters. If the pixel is not of the colour that is
recognised as a border colour, then the pixel colour is changed to the
paint colour. If it is a pixel that is the border colour then the operation goes
no further along that line in that direction. Thus if we draw a circle, and
position the X,Y coordinates of the PAINT command in the circle, the circle
is filled with colour. If the coordinate pair specified in the PAINT command
is outside the circle, then the rest of the screen will be filled with colour but
the inside of the circle will not be. These examples assume that the circle is
drawn in a colour that will be treated as a border colour by the PAINT
routine. An important point to note here is that the parameter specifying
the border colour is disregarded in screen mode 2. Here, the border
colour is the same as the paint colour in use. In mode 3 a border colour
can be specified. Let's now look at a few programs that demonstrate the
potential of the PAINT command.

10 SCREEN 3
20 CIRCLE (100,100),40,15

30 PAINT (100,100),5,15:REM set different border
40 REM and paint colours
50 GOTO 50

Note how we set the border colour to the colour in which we drew the

circle. Run this program, then add the line below which will fill in the
background in a different colour.

45 PAINT (100,190),1,15

104

Again we've set the border colour to the colour in which the circle was

drawn. Due to the fact that this command has directly specified the border
colour, it will not work properly in screen mode 2. Be|
of the use of paint in mode 2.

Ow is a demonstration
10 SCREEN 2

20 CIRCLE (100,100),40,5

30 CIRCLE (100,100),50,15

40 CIRCLE (100,100),60,15

50 CIRCLE (100,100),70,1

60 PAINT (100,100),5

70 PAINT (100,152),15

80 PAINT (100,190), 1

90 GOTO 90

It is therefore clear that more care has to be taken when using the PAINT
command in mode 2; the colour which we draw the outline of the shape to

be filled in in mode 2 must be the same as the colour in which we intend to
fill the shape in with.

The final simple graphics command that we shall look at is called
POINT. This command allows us to find the colour of a pixel at a given
screen position. The syntax is

POINT (X.Y)

and the statement containing the POINT command is usually one that
assigns a value obtained from the point command to a variable. The
POINT command returns a value between 0@ and 15. X and Y give the
position of the point of interest. A typical example of the use of POINT is in
the statement

200 IF POINT(x,y)=1 THEN GOSUB 2000 ELSE
GOSUB 3000

GRAPHICS MACRO LANGUAGE

This rather grand title is given to a series of graphics commands bgsed
around the DRAW comrand. The DRAW command and its associated
string of functions do indeed form a language within BASIC. The syntax of
the DRAW command is

DRAW string of graphics commands

105

The DRAW command only works in the two graphics modes, and any
command passed to the DRAW command in the string of graphics
commands will start drawing from the last point referenced — this is simply
the last point drawn to or plotted by a graphics command of any type.

The string of graphics commands consists of certain letters and
numbers, along with certain non-alphanumeric characters. The simplest
commands in the graphics macro language are those for drawing straight
lines. In each of the commands listed below, n is the number of pixels that

you want to draw over.

Command Function

Un Draw upwards on screen
Dn Draw downwards on screen

Ln Draw to left on screen

Rn Draw to right on screen

En Draw diagonally, up and right
Fn Draw diagonally, down and right
Gn Draw diagonally, down and left
Hn Draw diagonally, up and left

The demonstration program below draws a square. Note how we use the
PRESET command to position the square and define the colour to be

used.

10 SCREEN 2

20 PRESET (100,100),15

30 DRAW *“U50L50DS50R50"
40 GOTO 40

Should we wish to draw lines that are at a particular angle, then we can
use the M X, Y command, which is similar in many ways to the LINE
command that we've already met. If we wish to use the M command to
draw to a point relative to the last point visited, rather than 0, as we do
when we use the STEP command in LINE, then we prefix the X or Y
coordinate with a + or —. For example,

1000 DRAW ‘M +10,100"

would move to a point 10 pixels to the right of the current graphics position
and 100 pixels down the screen from the current position. The negative
sign enables us to reference a point to the left of the current X position and
‘above’ @he current Y position. Always remember that the M command
draw a line as it moves in the current foreground colour. If you wish to

106

move to a point on the screen without drawin

, g a line, then an
commands that we've seen so far can be prefi y of the

xed with the letter ‘B’

The: ‘N’ com.mand allowg you to draw a line with any of the commands
that we've previously examined, and then return the current graphics

position to where it was before the command prefixed with the N
command was executed. Thus the command

DRAW “M100,100NU50"

will draw a line first to position 100,100, and then draw a line to position
100,50. However, the next line to be drawn will take as its start position
100,100, which is the position of the start of the N prefixed command. To
make this clearer, type in the program below, and run it.

10 SCREEN 2
20 PRESET (100,100),1

30 DRAW “NU10ONL10ONL10ONR10OND100"
40 GOTO 40

The N before every command in the string has the effect of every
command in the string drawing from the same start position.

Colour

Colour changes in the graphics macro language are easy to perform. The
character ‘C’ is inserted into the command string, followed by a number
between © and 15 which represents the colour wanted. The colour code
numbers are those which we’ve previously discussed for use in the text
and graphics modes. Thus the line of instructions below will cause a black
square to be drawn.

DRAW “C1U50L50D50R50"

The colour commands can be placed anywhere in the DRAW command
string.

Another command that is of use is the Angle command, ‘A’. One
drawback with this command is that there is not a terribly large number of
different angles available to you; 4 in fact! The syntax within 2 SRR
command string is An, and n has a value according to the table below. As
in the CIRCLE command, angles are measured in an anti-clockwise
fashion.

107

Value of n Angle

0 0 degrees
1 90 degrees
2 180 degrees
3 270 degrees

The demonstration below will draw a square using the angle commands
instead of the D, L and R commands.

10 SCREEN 3

20 PRESET (100,100),1

30 DRAW “A1U90A2U9DA3U90AOU90D"
40 GOTO 40

Scale Factor

In normal circumstances, the n parameter that we pass over to commands
such as U or D, corresponds directly to the number of pixels that you want
drawn over. A command of the form Sn, where n is a value between 0 and
255, enables us to vary the number of pixels represented by a certain
value of n in these commands. The value of n over 4 is the scaling factor,
and so if we have a value of n=1, a figure will be drawn that is 1/4 the size
of the figure drawn with no scaling commands involved. Similarily, if we set
n =8 by issuing the command S8, then the figure drawn will be twice the
size of the one we would get without the scaling factor.

Subroutines

It would be nice if we could have, within the graphics macro language, the
equivalent of the BASIC subroutine; that is, a means of keeping only one
copy of a set of commands but being able to call it into use whenever we
wanted to. We can, in fact, do this by using the X command and string
variables. For example, we might set sq$ to contain the commands that
draw a square. We could then call this into use in another string as part of a
DRAW command using the command

Xsq$;

The full commands needed to draw a square in such a way would be as
follows:

A% ="U30R30D30L30"
DRAW "'XAS$;"

108

r—

The program below shows this in greater detail, and shows how a string
used in an X command can itself call other strings with X commands.

10 SCREEN 2

20 a$="U30"

30 b$="Xa$;,L30D30R30D"
40 PRESET (100,100),1
50 DRAW “Xb$;"

60 GOTO 60

Thus by using the X command, it is possible to assemble strings of
commands for the DRAW command that are, in effect, more than 255
characters long. Any string variable name that we use in this way must be
followed by a semi-colon.

Variables in the graphics macro language

In all the commands that we've discussed above, the numerical
parameters have all been constants. This need not always be the case, as
we can use a variable that has been assigned a variable in the normal way
in the BASIC program in the DRAW command string. The variable name
used is prefixed by the *' =" sign, and is followed by a **;”". Thus we could

have:

100 up=100
110 DRAW *'U =up;D30R30"

Expressions are not allowed in a string that is passed over to a DRAW
command They must be evaluated and the values obtained assigned to a

variable and the variable passed to the string.

In all these commands, the **;”’ can be used as an optional separater
of commands. Any spaces are ignored by the DRAW command when the
string is interpreted. As must by now be fairly obvious, the graphics macro

language can only be used in graphics modes.

SPRITES

We've seen how we can write text to the graphics screen, and how we can
draw lines and circles using the graphics commands. However, once we
start writing games software, for example, we begin to want characte(s
that look like space invaders, giant cucumbers, or whatever our game 1S
about! We can create these characters for use in graphics modes qmte
easlly. They are called SPRITES and are extremely useful in graphics

|
\
|
| 109
|

R

programming. A sprite can be defined in simple terms as a character
whose shape we can define and that we can move at will on the screen,
We can also tell if two sprites collide with each other as they travel around
the screen. They can be bigger than normal characters, and a sprite can
be made up of more than one character. No matter how many characters
a sprite is composed of, the computer treats it as a single entity for the
purposes of BASIC programming.

Before we go and examine how we can define and use sprites, it will
1 be useful to look at how the Video Display Processor looks at sprites.

BACKDROP
PLANE

PLANE 31

SPRITE I
PLANE 0

FIGURE 6.4 REPRESENTATION OF THE SPRITE, MULTICOLOUR AND
BACK DROP PLANES

110

The picture that the VDP presents to the television screen or monitor
can be imagined as being made up of a series of la
PLANES. These are shown diagrammatically in Figure 6.4. Images that
are onthe Display Planes closest to the observer appear to pass in front of
images that are on Display Planes further back. This is what gives sprites
their useful ability to pass in front of or behind other sprites. Note that it is
not possible for a sprite to pass behind an object that is on a Display Plane
that is further back than the sprite in question. The Display Planes closer to
the viewer are said to have a higher PRIORITY than those planes that are
further away from the viewer. Thus the Display Plane upon which Sprite 0
is seen has a higher priority than the plane on which Sprite 3 is normally
seen. There are 32 of these Sprite Display Planes; this explains why it is not
possible, except by the use of very advanced programming techniques, to
have more than 32 sprites on the screen at once, as there is only one sprite
per Plane. After the Sprite Planes comes a Display Plane known as the
Multicolour Plane. Itis on this plane that the images created by the normal
text handling and graphics commands are displayed. Thus images that
are produced by commands such as PRINT and DRAW always have a
lower priority than images that are sprites. The final Display Plane that is

accessible from software is called the Backdrop. We normally see this as
the border to the display screen.

yers, which are called

Sprites are not available in Mode 0, but are available in the other
modes, including text mode 1. Sprites can be of various sizes on the
screen. The smallest sprite size is the 8 by 8 pixel sprite; this gives an
image size the same as that given by printing a text character to a Mode 2
screen. The other sprite size is 16 by 16 pixels. Both of these sprites can
be ‘magnified’ on the screen, thus making them bigger. There are thus 4
different sprite sizes available to the MSX programmer. A sprite’s colour is
set when we position it on the screen. If a pixel of a sprite is not coloured in,
then we can see the images present on lower priority planes through the
transparent pixels of the sprite. Thus if one sprite is over another sprite, the
colour of the lower priority sprite will be visible through any transparent
areas of the higher priority sprite.

The information that is required to define a sprite is stored in Video
RAM as an area of bytes called a SPRITE GENERATOR TABLE. A
detailed examination of such a table will come later in the chapter. As there
s always a given amount of memory available for defining sprites, }he
larger the sprite is the fewer sprites we can define, as a 16 by 16 pixel
sprite takes more memory to define than an 8 by 8 pixel sprite does. The
memory needed to define an 8 by 8 pixel sprite stays the same whether

111

S440-3Qvyl
NOLLNTOS3H ANV AHOW3W '32I1S:(1) NOILINIS3Q 311HdS

. Stuonnjosay e
8I0)S 01 S81AQ 2¢ o

Q3IINDOVW '3LIHdS 91 X9}

W siuouniosey e
8I01S 0} SAAQ 2E o
3ZIS TVYWHON
‘311HdS 91 X91

S'9 3HNOI4
S31A8 8¥02 1v¥ Q3XI4 SI
AHOW3W NOILINIJ3Q-31IHdS
‘310N
. SI uoNN|OSaY e
2I0)S 0} SaiAQ g e m s
Q3IINOYW ~ UounIoSsYy e
3LI6dS 8x8 S
o) saiiqg e
3ZI1S
TVIWHON

‘3114dS 8%8

112

the sprite is magnified or unmagnified. We can have up to 256 separate

sprite patterns for 8 by 8 sprites and up to 64 separate patterns for 16 by
16 sprites.

Sprite Size

The size of sprites that will be displayed on the screen is set by a SCREEN
command of the form:

SCREEN mode, size

where mode is a screen display mode that is capable of displaying sprites

and size is a number between 0 and 3. The sizes of sprite specified by the
size parameter are as follows.

Size Sprite size
0 8 by 8 unmagnified
1 8 by 8 magnified
2 16 by 16 unmagnified
3 16 by 16 magnified

Figure 6.5 shows the appearance of the different sprite sizes on the
screen.

An 8 by 8 sprite can be defined by simply defining a single character,
but the 16 by 16 pixel sprite requires the user to define four 8 by 8 pixel
sections, each section representing one quarter of the complete sprite.
Thus using 16 by 16 pixel sprites we can define large images that we can
move around the screen just as if they were 8 by 8 pixel sprites. So, how
do we go about defining sprites?

Sprite Definition

No matter what size the sprite is, the basis of sprite definition is the use of
an 8 by 8 grid of squares, as shown in Figure 6.6. Note the numbers
running along the top of the grid; those of you who have consulted thz
appendix will recognise these numbers as being powers of2. Armed wntrt
this grid, on which we can represent an 8 .by 8 pixel sprite, we Ca:j sttr;e\ !
defining the sprite. We do this by shading in each square of the gr , ?s
we will want to appear in the foreground colour when the _s?nr:an
displayed. Thus, if we wanted to have a spritg thgt represented alittle ’
we could end up with the grid shaded in as in Figure 6.7.

113

81T OR COLUMN VALUES
128 64 32 16 8 4 2

BYTE 1

BYTE2

BYTE3

BYTE 4

BYTES

BYTE6

BYTE7

BYTES8

FIGURE 6.6 SPRITE DEFINITION (2): MAPPING ON 8 x 8 BLOCK

BINARY BIT VALUES DECIMAL BYTE
VALUES VALUES

64 32 16 8 4

32+16+8=156 2

i — W
o011 1000 . 32+16+8=56 4

o011 1000

0101 0100 64+16+4=84 5
0001 0000 =16 6
0010 1000 ‘ 32+8 =40 7
0100 0100 64 +4 =68 8

FIGURE 6.7 gr{?gEE DEFINITION (3): TRANSLATING THE 8 x 8 SPRITE

114

To get this into a form that is understandable by the computer we use
a series of special string variables called SPRITES$(n). n is an integer
between 0 and 255 when the sprite size is © or 1 and between 0 and 63
when the sprite size is 2 or 3. These variables are used to hold the pattern
for a sprite, and are 32 bytes long in memory. 8 bytes are needed to define
an 8 by 8 pixel sprite, and 32 bytes are needed to define a 16 by 16 pixel
sprite, which can be thought of as four 8 by 8 pixel sprites. SPRITE$(1)
holds the data defining the sprite that normally is displayed on sprite

Display Plane 1. The SPRITES variables are thus a means of accessing the
Sprite Generator Tables from BASIC.

To transtfer the information held in the grid into a SPRITES variable, we
convert each row of the grid into a number. This is shown for the little man
in Figure 6.8. These numerical values are obtained by adding together the
numerical values of the columns in the row that contain pixels that we want
to set to the foreground colour when we display the sprite. Thus, in a given
row, if only the leftmost pixel was to be in the foreground colour, the value
assigned to that row would be 128. Once the values have been calculated

for each row, we assign them to a SPRITE$ variable in the following
fashion.

100 a$ =CHR$(56) + CHR$(56) + CHR$(16)
+ CHR$(56) + CHR$(84) + CHR$ (16) + CHR$(40)
+ CHR$(68)

110 SPRITE$(1)=a$

64 32 16 8 4 a$ =

J=. CHRS$(56) +

CHR$(56) +
CHR$(16) +
CHR$(56) +
CHR$(84) +
CHR$(16) +
CHR$(40) +
CHR$(68)

FIGURE 6.8 SPRITE DEFINITION (4): ASSIGNING DATATO THE SPRITES
VARIABLE

115

~

The numerical contents of a given SPRITE$ variable can be examined by

use of the routine below.
10 SCREEN 1

20 n=1
30 FOR I=1 TO LEN(SPRITE$(n))

40 PRINT ASC (MIDS$(SPRITES(n),,1))
50 NEXT |

You can assign a string of characters to a SPRITES$ variable in the usual
fashion, as long as it is less than 32 characters long. Note that the conterits
of all the SPRITES$ variables can be deleted by the use of a routine which)
sets them all to a string of CHR$(0)'s. The SCREEN mode, size command

also deletes all the SPRITES$ variables.

With regard to the 16 by 16 pixel sprite, the principles of sprite design
remain the same. We simply design a separate 8 by 8 pixel sprite for each
quarter of the large sprite, as shown in Figure 6.9. To define a 16 by 16
pixel sprite, we simply design each 8 by 8 pixel sprite in turn, following the
numbering sequence in Figure 6.9. Once the sprites parts have been
designed, the numerical values of each row are evaluated, and then these
numerical values are placed into a SPRITES variable in the way that we've
already seen. However, the order in which the numbers are assigned to
the SPRITES$ variable is important, and below you can see the order in
which the values are assigned to SPRITE$(n).

100 SPRITE$(1)=string from quarter 1+ string
from quarter 2 + string from quarter 3 + string

from quarter 4.
Quad- Decimal Decimal Quad-
fant Byte Value Value Byte rant
1 1 0 = g 3
2 0 1 3 o 18
3 2 128 19
4 7] 64 20
5 31 BE 176 21
6 15 HER 224 22
7 10 160 23
2 8 10 [TTT ____]| 160 24
9 15 2 160 25 4
10 0 Q@ 26
11 3 208 27
12 63 232 28
13 127 244 29
14 170 1790 30
15 113 206 31
16 32 132 32
FIGURE 69 SPRITE DEFINITION (5): TRANSLATING THE 16 x 16 SPRITE

SHAPE

116

—

r

To make the job of defining an 8 by 8 sprite slightly easier, try the program
pelow. There are no frills to it and it can easily be improved upon. The 8
DATA statements at the end of the program represent the 8 rows of pixels
in an 8 by 8 pixel sprite. Each ‘1" in these statements represents a pixel in
the sprite in the foreground colour and each '0’ in them represents a pixel
to be left blank in the finished sprite. Thus to change the sprite definition,
simply edit the DATA statements and, when the pattern in the DATA
statements is to your satisfaction, RUN the program. The numerical values
that represent each row will then be printed out so that you can include
them in your program. These numbers are in the correct order for direct

inclusion in SPRITE$ assignments.

10
20
30
40
50
60
70
80
90
100
110
120
1000
1010
1020
1030
1040
1050
1060
1070

Having defined our sprites, the next thing to do is to use them! To place

SCREEN 0

RESTORE

FOR J=1TO 8

READ n$

char=0

FOR 1=8 TO 1 STEP -1

X$ =MID$(n$,!,1):n = VAL(X$)
IF n=1 THEN char=char + 2 A (8-1)
NEXT

PRINT char

NEXT

END

DATA 10001000

DATA "01010000"

DATA 00100000

DATA “00111111"

DATA “"00111111"

DATA “00100001"

DATA “00100001"

DATA “00100001"

them on the screen we use the PUT SPRITE command.

Positioning Sprites

The full syntax of the PUT SPRITE command is shown below, and of the
Parameters listed, colour, (X,Y) and pattern number are all optional.

PUT SPRITE plane number, (X,Y), colour, pattern

number

17

urrent values are

If any of the optional parameters are omitted, then the C !
used. Thus if the colour and (X,Y) position were to be omitted, the colour
used to display the sprite would be the current foreground colour anq the
position at which the sprite would be placed would be !he last position
accessed by a graphics command. The position of the sprite always refers
to the top left hand corner of the sprite. The (X,Y) position of the sprite can
also be defined in terms of the STEP (X,Y) command that we have alreaqy
seen in use in the graphics commands. So, as a start with sprites, let's
position a sprite in the middle of the screen. Before we look at a program to
o this, a few notes about the range of values that is allowed for XandY

coordinates.

The X coordinate must be betwen -32 and 255; the Y coordinat.e is
from -32 to 191. This is true in all the screen modes that support sprites,
thus giving you a large degree of control over the positioning of sprites.
Some values of Y give strange results; if we set Y to a value of 208, all
sprites on Display Planes of lower priority disappear from the display. This
situation remains in force until the Y value is changed. A value of 209
causes the sprite itself to disappear.

~ Anyway, let's now position our sprite on the screen. Try the program
below.

0 SCREEN 2,1
20 FOR =1 To 8: READ n:a$+ CHR$(n)
30 NEXT

40 SPRITES$(1) = a$

50 PUT SPRITE 1,(100,100),1

60 GOTO 60

70 DATA 56,56,16,56,84,16.40,68

Line 10 sets the mode of display and the sprite size, in this case an 8 by 8
pixel magnified sprite has been selected. This is positioned at position
100,100 on the screen by line 50, and is coloured black. The plane
number here is 1, and this indicates that the sprite defined in SPRITE$(1)
will be displayed at this position. Under normal circumstances, there is a
direct relationship between the value of n in the SPRITE$(n) command and
the Sprite Plane that particular sprite will be displayed on. Thus the sprite
definition held in SPRITE$(1) will normally be displayed on Plane 1. Add
the lines below to the program to demonstrate this; the sprite defined in

118

SPRITE$(2) will be of a lower priority than the one in SPRITE$(1) in this
demonstration.

35 FOR I=1 TO 8:READ n:b$ =b$ + CHR$(n): NEXT
45 SPRITE$(2) = b$%

55 PUT SPRITE 2, (100,100), 15

80 DATA 0,0,0,255,255,0,0,0

However, what it we want to place the sprite defined in SPRITE$(2) on a
higher priority plane than the sprite defined in SPRITE$(1)? This is where
the Pattern Number parameter in the PUT SPRITE comes in useful. Run
the program listed below, and by pressing a key you will see how we can
use the pattern number to position a sprite on a plane other than that to
which it was originally assigned using the SPRITE$ command.

10 SCREEN 1,1

20 FOR I=1 TO 8:READ n:a$ =a$+ CHR$(n):NEXT
30 FOR |=1 TO 8:READ n:b$ = b$ + CHRS$(n):NEXT
40 SPRITE$(1)=a$:SPRITE$(2) = b$

50 PUT SPRITE 1, (100,100),1,1

60 PUT SPRITE 2, (100,100),15,2

70 a$=INPUTS$(1)

80 PUT SPRITE 1,(150,150),1,2

90 PUT SPRITE 2,(150,150),15,1

100 a$=INPUTS$(1)

110 GOTO 50

120 DATA 56,56,16,56,84,16,40,68

130 DATA 0,0,0,255,255,0,0,0

One of the most useful properties of a sprite is that it can be moved around
the screen with the minimum of fuss. We do this by simply changing the X
and Y coordinate. The sprite in question will then be deleted from its
current position on the screen and moved to the new position specified by
the new coordinates almost instantaneously. Thus is we only alter the
coordinates by, say, 1, we can get the illusion of smooth, continuous
movement. The program below moves the sprite from the top left of the
screen to the bottom right.

10 SCREEN 1,1

20 FOR I=1 TO 8: READ n:a$ =a$ + CHRS$(n):NEXT
30 SPRITE$(1)=a$

40 FOR 1=0 TO 190

50 PUT SPRITE 1, (1,I),1

60 NEXT

70 GOTO 40

80 DATA 56,56,16,56,84,16,40,68

119

L—_

If we want to, we can use the ON INTERVAL GOSUB command to update
the sprite position automatically. The program below demonstrates this in

operation.

10 ON INTERVAL=10 GOSUB 1000
30 SCREEN 1,1
40 FOR I=1TO 8: READ n:a$=a$ + CHR$(n):
NEXT
50 SPRITE$(1)=a$
60 X% =128:Y% =96:XI%=1:YI%=1
65 INTERVAL ON
70 FOR I=1 TO 10000:PRINT I;:NEXT
80 END
90 DATA 56,56,16,56,84,16,40,68
1000 PUT SPRITE 1, (X%,Y%), 1
1010 X%=X%+Y1%:Y%=Y%+YI%
1020 IF RND(2)*6>4 THEN XI%=—XI%
1030 IF RND(2)*4>3 THEN Y1%=—Y1%
1040 RETURN

This program quite usefully demonstrates the concept of timesharing,
where the computer is apparently performing 2 tasks at once. This is
useful in application where we might want to do extra jobs, such as
redrawing a graphics background, whilst still moving the sprites around

the screen.

We are not limited to just moving one sprite; we can move several
around the screen using exactly the same sort of routines as we've seen
here, just having a different set of XY coordinates for each sprite.
However, if we are moving them using the ON INTERVAL method,
remember to allow more time between each entry to the interval trap. If
you don’t you could well find yourself continually executing the interval
trap. Also, when handling several sprites at once on the screen, remember
that you can have no more than 4 sprites on the same line of the screen in
the horizontal direction at one time.

Sprite Coincidence

When one sprite crosses another one on the screen, they are said to be
COINCIDENT. When designing and programming graphics games, it is
useful to know when two sprites coincide on the screen, and we can trap
such an event when it occurs using the ON SPRITE command. When a
pixel of one sprite on one plane coincides with a pixel of a sprite on a
different plane, then the CPU is informed of the fact by the VDP and, if the

120

ON SPRITE trap is active, the trap subroutine is entered. The program
below shows this in action. Note the SPRITE OFF command within the trap
routine; this will disable the event until the next SPRITE ON command is
executed. If this command were not present, then as soon as the two
sprites coincided the trap outine would be entered, executed and
returned from. However, if the two sprites were still in coincidence, the trap
would be re-entered almost immediately with no other processing being
done. Thus the SPRITE OFF command allows the position of the sprite to
be changed after a coincidence has been detected and hence allows the

program to continue without repeatedly calling the trap routine. The trap is
turned on again in line 160.

10 SCREEN 1,1
20 FOR I=1 TO 8:READ N:a$=a$
+ CHR$(N):NEXT

30 SPRITES$(1)=a$:SPRITE$(2) =a$
40 X=100:Y =50:X1=100:Y1 =70
50 X8=2.Y3=2:X2=2:Y3=2

60 ON SPRITE GOSUB 180

80 PUT SPRITE 1, (X,Y),1

90 PUT SPRITE 2, (X1,Y1),15

100 IF RND(2)*6>3 THEN X2=-X2
110 IFRND(2)*4>3 THEN Y2=-Y2
120 IF RND(2)*6>3 THEN X3=—-X3
130 IF RND(2)*4>3 THEN Y3=-Y3
140 X=X2+XY=Y2+Y

150 X1=X3+X1:Y1=Y3+ Y1

160 SPRITE ON

170 GOTO 80

180 BEEP:BEEP

190 PRINT “Ouch!”
200 SPRITE OFF
210 RETURN
220 DATA 56,56,16,56,84,16,40,68

That just about sums up how the MSX BASIC programmer can use BASIC
commands and statements to control the Video Display Processor. We are
now ready to move on to look at how we can extend the ability of our MSX
computer by accessing the Video RAM and the VDP directly.

Direct Access of VRAM and the VDP

MSX BASIC comes equipped with some commands that are speciﬁcglly
for accessing Video memory and the VDP registers. Thus, we'll examine

121

these commands first. As we've already seen, the ’cqmmanq POKE is
used to directly modify the contents of memory; in a similar ‘fashuon we use
the command VPOKE to directly alter the contents of the Video RAM. The

full syntax is

VPOKE address, value

where address is between 0 and 16384 and value is between_lD and 255_
We use the VPEEK (address) command to find out what a particular Video
memory location holds, address again being between 0 and 16384.

When it comes to directly accessing the Video Display Processor
(VDP) registers, we use the command VDP(n), where n is the register
number between @ and 8. The VOP command enables us to see what the
current value is in the write only VDP registers and also allows us to alter
the contents of these registers. We can also use it to read the read only
VDP register. The command

PRINT VDP(1)

will print to the display the current value held in register 1 of the VDP. If we
wish to assign a value to a register, then we use the command below.

VDP(1) = value

This will set the register to the value on the right of the equals sign. One
word of warning here; certain registers can cause the VDP to behave in an
extremely peculiar fashion if they are assigned certain values. No damage
will be done to the computer, but you may have to press reset to regain
control of the machine! Anyway, let's now go on to look at the function of
each VDP register, and see how we can use them to improve our
programming techniques.

General Notes on VDP Registers

Before progressing into the programming of registers, you are advised to
consult the appendix on Number Systems, paying particular attention to
the section on Binary Numbers. This will make this section much easier to
follow. The registers of the VDP can each hold an 8 bit number, which can
have a value of between 0 and 255; this number that is held in the register
can be treated as either indicating an address in VRAM or as a series of
bits, each bit controlling some facet of the operation of the VDP. If the
contents of a register are used to control the VDP operation, and we only

122

want to alter one bit of the register, we must take care not

i : to alte
bits of the register by accident. r the other

BIT NUMBER

[[ITTTTT]

128 64 32 16 8 4 2
DECIMAL VALUE OF BITS

FIGURE 610 THE VIDEODISPLAY PROCESSORREGISTERS

Each bit position has, as you will know if you've read the appendix, a
numerical value associated with it. These values are shown above. To
avoid altering other bits of the register when we change one bit, we use the
bitwise AND and OR operators, which we first encountered in Chapter 3.
For example, to set bit 3 or register n to 1, whilst leaving the other bits as
they are, we use the line of code:

VDP(n) =VDP(n) OR &B00001000

| have used binary here as it makes the bitwise OR operation more
obvious. In a similar fashion, to set the same bit to @ we use the bitwise
AND.

VDP(n)=VDP(n) AND &B11110111

This is quite important when dealing with, for example, VDP register 1,
which is totally dedicated to controlling the VDP chip. If you wish to test
whether a given bit in a register is setto 1 or 0, then we can again use the

bitwise operators, as we saw in Chapter 3.

Register0
Only bits @ and 1 of this register are used at this time; all the higher orqer
bits are being kept for future use by the manufacturer. Of these two bits,

the only one of relevance to the MSX programmer is bit 1, which is
involved with the screen mode selection. This bitis called M3, and we shall

see how it is used when we look at Register 1.

Register 1

This is the main control register for the V
whilst a couple are best left alone.

DP. Some bits are quite useful,

123

Bit 7. This is one of the latter: it tells the VOP what chips are used for the
video memory. If you alter it from what your particular computer needs,

then the display is rendered unreadable.

Bit 6. This controls whether or not the screen is blank or whether it is
active. If we set it to 0, then the display is turned off and the only part of the
screen left visible is the border. colour, which is now seen in all parts of the
display. This bit is normally set to 1.

Bit 5. This bit is called the VDP INTERRUPT ENABLE bit, and is a bit that
is best dealt with carefully. In the MSX computers, the VDP generates an
interrupt signal, every 1/50th of a second in the UK machines, that causes
the CPU to do various 'housekeeping’ jobs, such as read the keyboard,
update the TIME variable and update the counters used by the ON
INTERVAL command. If this bit is set to @ then the interrupt is said to be
disabled, and none of these tasks are carried out by the CPU. Thus setting
this bit to @ disables the keyboard read operation. Doing this from Direct
Mode is thus fatal! The only way you will regain control of the computer is
to reset it. However, it can be done from within a program, as the program
will carry on executing regardless of the status of this interrupt. Obviously,
the program should not request any input from the keyboard, as this would
cause the program to wait for a keypress that will never come. Two
possible benefits that can come from disabling this interrupt are as follows.

i If you disable this interrupt before entering a very long loop, that
contains no inputs or references to the TIME variable, it will cause a
slight improvement in the execution time of the loop. Remember to
set the bit back to 1 before going on with the program.

i If you are keen on program protection, then you can issue a
command to disable this interrupt as part of an ON STOP trap. This

is an extremely final way of preventing people looking at your
program!

The interrupt is enabled by

VDP(1)=VDP(1) OR &B00 100000

and is disabled by the command

VDP(1)=VDP(1) AND &B11011111

124

7 l

Bits 4 and 3. Together with the M3 bit of register 0, these two bits control
the display mode selected by the VDP. Bit 4 is called M2 and Bit 3 is called
M1. The screen mode that is selected depends upon the values of these 3

bits.

M1 M2 M3 Screen Mode
0 0 0 1
0 0 1 2
0 1 0 3
1 0 0 0

BIt 1. This selects the size of sprite in use. If it is set to 0 then the 8 by 8
pixel sprite size will be selected. If it is set to 1 then the larger, 16 by 16
pixel sprite size will be selected.

Bit 0. This selects whether or not the sprites will be magnified or not:
setting it to @ will give unmagnified sprites and setting to 1 will give
magnified sprites.

The rest of the VDP registers, with the exception of the status register,

hold data about the position of various tables of information held in VRAM
that are required by the VDP.

Register 2

This register holds a value between © and 15. The contents, when
multiplied by &H400, give the start of what is called the NAME TABLE for
a particular display mode. This will be discussed in greater detail when we
look at VRAM allocation shortly.

Register 3

This register holds a value of between 0 and 255, and, when multiplied by
&H40, gives the address in VRAM of what is called the COLOUR TABLE
for a particular mode.

Register 4

This defines the start address in VRAM of the PATTERN TABLE area of
VRAM for a given mode. To get this VRAM address, the contents of the
register are multiplied by &H800.

Register 5

The contents of this register, when multiplied by &H80, gives the address
In VRAM of the SPRITE ATTRIBUTE TABLE.

125

Register 6

When multiplied by &HB00 the contents of this register give the VRAM
start address of the SPRITE PATTERN GENERATOR TABLE.

Register 7

This register is of most use in screen Mode 0. The upper 4 bits of the
register hold the code for the foreground colour that is active in Mode 0.
The lower 4 bits hold the code for the background colour of the Mode 0
screen and the border colour in the other screen modes. The codes used
to represent each colour are the same as those we use in the COLOR
command. Try the program below, which will display all combinations of
foreground and background colour. Remember that some of these
combinations will be unreadable.

10 SCREEN 0

20 PRINTHello!!”

30 FOR I=0 TO 255

40 VDP(7)=I

50 TIME=0

60 IF TIME<20 THEN GOTO 60
. 70 NEXT

80 SCREEN 0

Line 80 will set the colour codes held in the register back to their default
values; in this case, the normal value held in the register is 244.

The Status Register

This is the read only register of the VDP, and we cannot alter its value
directly. The only way that this register changes its value is in response to
changes in the operation of the VDP. It can thus only be accessed by such
commands as

var=VDP(8)
or

PRINT VDP(8)

3 bits of the register are used to signal changes in the status of the VDP to
the CPU. These bits are called FLAGS.

126

Bit 7. This is only of real use to the machine code programmer. It indicates
that the VDP wishes to send an interrupt to the CPU. This interrupt will only
be sent by the VDP if the Interrupt Enable bit of Register 1 is set to 1. If this
bit is set to zero then the interrupt is not sent. If you do write prograrﬁs that
use this bit, then it is only set back to zero by reading the status register. If
you don't read it, then the VDP will not be able to signal when it wishes'to
send its next interrupt.

Bit 5. This is called the COINCIDENCE flag; it is set to 1 whenever two
sprites coincide, and is again only reset to zero by a read from the status
register. Again, it is of real use only to the machine code programmer, as
MSX BASIC makes full use of this facility with the ON SPRITE command. In
UK MSX machines, that use the PAL television system, the VDP checks for
sprite coincidence 50 times a second. As it is only cleared to zero by
reading from the status register, any machine code programs that use this
facility should read the status register fairly early on in the program to
ensure that the flag is clear.

Bit 6. This is called the FIFTH SPRITE flag; not long ago | said that we
could only have 4 sprites per horizontal display line; this flag is set to 1
whenever a display line is about to hold a fifth sprite. The number of the
sprite that is causing the problem (the Sprite Plane Number, to be precise)
is then stored in bits 0 to 4 of this register.

Machine code access to the VDP registers will be discussed in
Chapter 11.

VRAM Usage in Screen Modes

The MSX system has 16k of memory dedicated totally to the VDP. This is
called VRAM, and the way that it is allocated depends upon the screen
mode that is in use. The memory used by a given Mode is used for various
purposes, and each area of RAM has a name. The NAME TABLE is an
area of VRAM that tells the VDP what image is to appear on a certain part
of the screen. The way the contents of the Name Table are converted into
actual screen images depends upon the Mode in use, as we shall soon
see. The PATTERN GENERATOR TABLE is the area of VRAM that defines
the image to be placed on the screen for a given value in the Name Table.
The COLOUR TABLE informs the VDP of the colours to be used in that
Mode. The SPRITE ATTRIBUTE TABLE and the SPRITE GENERATOR
TABLE will be discussed later in this chapter. When we turn on our
computer, the start addresses of these tables in memory are set by the
ROM in our machine for a given Mode. The appropqate start addresses
are then placed in the correct VOP registers. We can find these addresses

127

in VRAM by the use of a command called BASE. This command is used to
read the start addresses of the various tables in a given screen Mode, and
its full syntax is shown below.

start = BASE(n)

where n is a value between 0 and 19. Some values of n in this range will
return senseless results, but the valid n values will be mentioned when we
come to look at the various Modes. These Table start addresses can be
altered by writing to the relevant VDP register, not by the BASE command.
So, on to the Modes.

Mode 0

This is the 40*24 text mode. It only has two Tables to deal with, as the
colours used in this mode are stored in VDP register 7. BASE(Q) will return
the start address of the Name Table for this mode and BASE(2) will return
the start address of the Pattern Table.

The Name Table holds information that is used by the VDP to work out
which part of the Pattern Table is used to define the screen image at a
particular position on the screen. The role of this table is effectively the
same in each screen Mode, although its actual length may be different.
The bytes of the Name Table correspond to screen positions, and the
contents of the Table are used to access the Pattern Table in each mode.

In Mode @ the Name Table is 960 bytes long, and is arranged with
respect to the screen as shown in Figure 6.11. Thus the value held in
location 20 of the Name Table will define the image displayed at column 20
of row 1 of the screen.

NAME TABLE (MODE 0) MODE @ SCREEN
Base () BYTEQ p| 1| 2|3) 38 |39
BYTE 1 40 141 | 42 |43 78 |79
BYTE2 80 |81|82 |83) -118119|
BYTE 3 R P4
BYTE 4 |
BYTES [s20[921{922[923 95805
' |
I |
' I
BYTE 958
Base (0)+959 BYTE 959
FIGURE 611 MAPPING THE NAME TABLE TO THE SCREEN, MODE 0

128

The program below will write to each location in the Name Table
using the VPOKE command. Each location is set to hold the number 35',
which is the ASCIl code for “#'. The numbers in the Name Table
correspond to the ASCII codes of characters, and so this program fills the
screen with “'#"’ signs.

10 SCREEN 0

20 start=BASE (0)

30 FOR % =start TO start + 960
40 VPOKE 1%, 35

50 NEXT '

60 1$=INPUT$(1)

70 CLS

When the screen is full, simply press any key to go on. It is also possible to
see what character is displayed on the screen at any point by using
VPEEK to look at the appropriate location in the Name Table. In Mode 0,
the various bytes of the Name Table can be referred to as Text Positions,
because they do in fact hold textual character codes.

The Pattern Table holds the data needed for the VDP to convert the
ASCII character code held in the name Table to an image on the screen,
such as the “#’ sign. For each character in the ASCII set, 8 bytes are
needed to store the screen image. There are 256 separate ASCII codes,
and the Pattern Table is long enough to include all these codes. It is 2048
bytes long in Mode 0. The first 8 bytes of the Table hold the information for
the screen image of the character with the ASCII code of 0, the next 8
bytes the data for character 1, and so on, right up to the 8 bytes from
location 2040 of the Table, which holds the data for the screen image of
character 255. The data for the screen image is stored in an identical
fashion to the way in which we defined sprites; the first of the 8 bytes
representing a given character gives the data for row 1 of the character,

the second byte codes the second row and so on.

The best way to explore the pattern Table is to try and alter the
characters set that is normally displayed. Let's alter the *'space’ character
in some way. Well, the first thing that we've got to da is find out where the
“space’’ character definition begins in the Pattern Table. This is fairly easy;

space = BASE(2) +(32"8)

will return the start of the “‘space’’ character definition. As a more general

129

method, the line below will return the start address within VRAM of the
character definition for the character with the ASCII code n.

start = BASE(2) + (n"8)

This is only, of course, applicable to Mode 0. This address will be the first
row of the character definition. The below. program will modify the first row
of the “‘space’ character definition.

10 SCREEN 0
20 start=BASE(2)
30 VPOKE (start+(32"8)),255

Run this program. Lo and behold, a lined screen! If we did the VPOKE to
address start+ (32*8)+7 then the line would appear at the bottom of
each space on the screen. Any character in the Mode 0 character set can
be redefined in this way. As an example, let's redefine the character with
the ASCI| code 254 as the block shown in Figure 6.12.

DECIMAL VALUE

255
255
255
255

31
31
31
31

@
=

O N B WN -

FIGURE 612 CHARACTERDEFINITION

Simply follow the grid procedure detailed in the section of this chapter
concerning Sprite definition. | have done this, and the DATA statement in
the program below shows the results. Note that in this mode, the
characters appear to be based upon an 8 row by 6 column grid, the two
right-most columns of the grid being disregarded for definition purposes.

10 SCREEN 0

20 FOR I=0 TO 7: READ n:VPOKE
(BASE(2) +((254°8) +1)).,n

30 NEXT

40 DATA 255,255,255,255,31,31,31,31

130

Run the program, and then type in PRINT CHR$(254). If all has gone well,
your little block should be printed to the screen. This new USER DEFINED
CHARACTER can now be treated as if it were a standard ASCII character.
There is only one drawback to defining characters in this way; when we
execute a SCREEN 0 command, the computer automatically clears the
Name Table, thus clearing the screen. It also resets all character
definitions in the Pattern Table to what they were when the machine was
turned on. Thus after each mode change any special characters required
would have to be redefined. The colours that your new character will
appear in are the same as the other characters. Any '1’s in your defining
bytes will be in the foreground colour and ‘0’s will be in the background
color.

By altering the contents of the appropriate VDP register, it is possible
to have two alternative pattern Tables in the memory at one time. Thus you
can set up an alternate set of characters and switch between them at will
by altering the value of VDP register 4. A similar thing can be done with the
Name Table, enabling us to switch from one screen of data to another
instantaneously. The program below shows this in operation. It could be
vastly improved upon but the routine shows the principles involved. We
are setting the new Name Table to start at location 12*1024 in VRAM by
setting register 2 of the VDP to 12. We then fill this area of RAM with the
VPOKE command. Simply changing the value held in Register 2 displays
the two different Name Tables to the screen alternately.

10 SCREEN 0

20 VDP(2)=12:start=12*1024

30 FOR 1% =start TO start+960:VPOKE 1%,65
40 NEXT

50 PRINT ‘““‘Hello’

60 VDP(2)=0:REM default value

70 13=INPUT$(1)

80 VDP(2)=12

90 I1$=INPUTS$(1)

100 GOTO 60

Line 50 shows that we can write information to the normal screen by the
PRINT command whilst displaying the contents of the alternative Name
Table; this is because the ROM routines that handle writing to the screen
write to specific locations within VRAM. Pressing a key will toggle between
the two Name Tables and hence change the screen contents.

13

L ;

Mode 1

Another text mode, but with 3 Tables. These are the Name and Pattern
Tables, which perform similar tasks to the same tables in Mode 0, and the
COLOUR TABLE, which holds information regarding the colours to be
displayed. The start of the Name Table is given by BASE(5), that of the
Pattern Table by BASE(7) and that of the Colour Table by BASE(6). There
are also two tables in VRAM concerned with Sprites, but we will consider
these later in the chapter. Suffice to say for the moment that the start
address of the SPRITE ATTRIBUTE TABLE is given by BASE(8) and the
start of the SPRITE PATTERN TABLE is given by BASE(9).

The Name Table in this mode is arranged in an analogous fashion to
that in Mode 0. Here, however, it is only 768 bytes long. Itis mapped onto
the screen in a similar fashion to the Mode @ Name Table, and it can be
accessed in a similar fashion using VPOKE and VPEEK. In fact the
demonstration program for directly poking values into the Mode 0 Name
Table will work in Mode 1 by altering BASE(D) to BASE(5), replacing 960
with 768 and replacing SCREEN @ with SCREEN 1. We can change its
start address by altering VDP Register 2 in this mode.

The Pattern Table also serves the same function as it does in Mode 0,
and we can redefine characters in this mode in the same way as in Mode
0. We simply use BASE(7) to get the Pattern Table start address instead of

BASE(2).

The main difference in this mode is the presence of the Colour Table,
which increases the availability of colours to the MSX programmer. In the
manuals, we are told that Mode 1 is a two colour mode; this is not strictly
true, as we shall now see. The Colour Table is only 32 bytes long. Its start
address in VRAM can be altered by writing a different value to VDP
Register 3 whilst in this mode. Each byte in the Colour Table holds a value
relating to the colours used in 8 characters defined in the Pattern Table.
The 4 high bits of the Colour Table entry hold the foreground colour and
the 4 low value bits hold the colour to be used as the background colour
for the characters concerned. The first byte of the Colour Table holds the
colour information for the first 8 characters defined by the Pattern Table;
that is, ASCIl codes 0 to 7. The second byte defines the colours for ASCII
codes 8 to 15, and so on. Thus the 32nd table entry holds the colour
information for the characters 248 to 255. Thus it is possible to change the
values of each entry in this table so as to have all 16 colours available on
the MSX machines on a Mode 1 screen at once! The drawback with this
method is that the colours are "‘attached’’ to certain characters, but by

132

kiR P i W R L

careful selection of Colour Table entries some quite striking effects can be
obtained. The program below shows how to alter the colours used in the
characters with ASCII codes between 64 and 71.

10 SCREEN 1

20 start=BASE(6)

30 VPOKE (start+8),18
40 END

Run the program, and then LIST it to the screen. Pretty, isn't it?

A total of 2848 bytes are required from the VRAM to use Mode 1
Name, Pattern and Colour Tables. Additional VRAM is needed if we want
to use Sprites.

Mode 2

The way in which the VRAM is arranged in this mode is somewhat different
to the way in which it arranged in the two text modes we’ve already looked
at. This is to be expected, due to the high resolution graphics capability of
Mode 2. It is quite a complex mode to understand, but go slowly through
this section and you should (hopefully!) be able to comprehend the
allocation of Mode 2 VRAM. The Name Table start address is given by
BASE(10), the Colour Table start address is given by BASE(11) and the
Pattern Table start address is given by BASE(12). The Sprite Attribute
Table start address is given by BASE(13) and that of the Sprite Pattern
Table is given by BASE(14).

The Name Table is still only 768 bytes long, and the locations in the
Name Table map onto the screen in the same way as we've seen with
Modes 0 and 1. However, the difference is that the image shown at the
position on the screen depends not only on the contents of the
corresponding Name Table location, but also on where in the Name Table,
and hence on the screen, the image is to be placed. If this sounds a little
complicated, don’t worry; I'll try and make it clearer soon.

The Pattern Table in this mode is 6144 bytes long; this is 3 times as
big as the Pattern Table in either of the other modes we've looked at, and it
allows every location in the Name Table to have a totally unique code, thus
enabling every location on the screen to be different from every other
screen location. The Colour Table is also 6144 bytes long, and this allows
each location in the Name Table to have a totally unique colour
combination in it. It is the size of these two tables that gives us the ability for
graphics in Mode 2.

133

The screen and the related memory Tables are best treated as being
made up of 3 parts. This is shown diagrammatically in Figure 6.13.

COLOUR PATTERN NAME
TABLE TABLE TABLE
BASE(7) BASE(6) BASE(5) MODE 2 SCREEN
Nl G aa s DUNAEE o 1 [°
AREA 1 . AREA 1
2047 | __ 2047 { __ ___ 255 | 255
2048 2048 256 256
AREA 2 AREA 2
4005 | | 405 | ____. o T 511
4096 4096 512 512
AREA 3 AREA 3
6143 6143) __ ___ 767 767,

FIGURE 613 MAPPING COLOUR, PATTERN AND NAME TABLES TOTHE
SCREEN, MODE 2

The Pattern Table, despite being much larger, is arranged in a similar
fashion to the Mode 0 Pattern Table; it is split into blocks of 8 bytes, each 8
byte block defining a pattern that can appear on the screen as an image.
The first 2048 bytes of the Pattern Table can thus be seen as 256 blocks of
8 bytes, each 8 byte block defining the image at one of the 256 Name
Table locations in area 1 of the Name Table, and hence defining an image
to appear at the corresponding position on the screen. Similarily, the next
2048 bytes do the same job for area 2 of the Name Table and the final
2048 bytes serve area 3 of the Name Table. Thus if the entry in location
200 of the Name Table, which corresponds to screen location 200, was
the number 2, the image that would be displayed at that screen location
would be defined by the 16th to 23rd bytes of area 1 of the Pattern Table.
In a similar way, if Name Table location 512, which corresponds to screen
location 512, was to hold the value 0, then the image displayed at that
screen location would be defined by the first 8 bytes of area 2 of the
Pattern Table — bytes 2048 to 2057 of the Pattern Table as a whole.
Similar mapping exists between the Name Table and the Colour Table.

Two colours can be possessed by each byte of a Pattern Definition, the
4 high bits of the relevant entry in the Colour Table giving the foreground
colour of that particular byte of the pattern, and the lower 4 bits of the
relevant Table entry giving the background colour for that byte of the
pattern being defined.

Let’s now look at a couple of examples of directly accessing Mode 2

VRAM. The first example fills the top third of the screen with a pattern. Let's
say that the code to appear in the Name Table wherever we want our

134

character to appear is 0. As we are working in area 1 of the screen, we
must put the data defining our character in the first 8 locations of the
Pattern Table. Similarily, the colour codes for this particular character must
go in to the first 8 locations in the Colour Table. In the program below, Line
20 defines the character from the DATA statement. Line 30 sets up the
colour codes for the character. You might like to experiment here by
putting different values in each byte of the Colour Table in use to give a
technicolour character! Finally, line 40 of the program puts the code 0 into
the first 255 locations of the Name Table, thus filling the top third of the
screen with our character.

10 SCREEN 2

20 FOR |=BASE(12) TO BASE(12)+7: READ
n:VPOKE |,n:NEXT

30 FOR |=BASE(11) TO BASE(11)+ 7:VPOKE
1,18:NEXT

40 FOR |=BASE(10) TO BASE(10)+ 255:VPOKE
1,0:NEXT |

50 GOTO 50

60 DATA 56,56,16,56,84,16,40,68

You should be able to extend this program to poke little men to all parts of
the screen by using the information given above.

One thing to note is that once you've defined a character in the
pattern Table, the character defined immediately appears on the screen in
the appropriate position. Thus placing a definition into bytes @ to 7 of the
Pattern Table causes the character thus defined to appear at screen
location @. Similar behaviour is observed with colours. To see this in action,
try the program below.

10 SCREEN 2

20 FOR I=BASE(12) TO BASE(12)+7

30 READ n

40 VPOKE I|,n: VPOKE (I +2048),n: VPOKE
(I+4096),n

50 NEXT

60 GOTO 60

70 DATA 255,255,255,255,0,0,0,0

This program will put a marker on the screen to indicate the 0,256 and 512
image positions on the screen.

Movement can be programmed by directed VRAM access, as the
following program shows. The principles are quite simple; we simply set a

135

location in the Name Table to hold a value that corresponds to the
required image definition in the Pattern Table for that area _of the screen.
We then pause, then set the location to hold a code with no pattern
associated with it in the Pattern Table. After a slight delay, we repeat for the
next location, and so on.

10 SCREEN 2:REM Reset the machine first

20 FOR |1=BASE(12) TO BASE(12)+ 7:READ
n:VPOKE |,n:NEXT

30 FOR |=BASE(11) TO BASE (11)+ 7:VPOKE
I,18:NEXT

40 FOR |=BASE(10) TO BASE(10)+255

50 VPOKE 1,0:FOR J=1 TO 30:NEXT

60 VPOKE |,1:FOR J=1 TO 30:NEXT

70 NEXT

80 GOTO 40

90 DATA 56,56,16,56,84,16,40,68

Pattern 1 in the Pattern Table is assumed here to be a space character, so
that it will blank out the passage of the little man defined as Pattern 0.

The versatility of Mode 2 in terms of its high resolution graphics is
reflected in the amount of memory taken up by the Pattern, Name and
Colour Tables for this mode. 13056 bytes of screen RAM are taken up.
This still, however, leaves us enough room to set up a second Name Table
in VRAM by altering VDP register 2 in this mode. Take care when doing
this not to overwrite parts of the Colour or Pattern Tables.

Mode 3

This is the final MSX screen mode, and gives us low resolution graphics
with all 16 colours. BASE(15) gives the start address of the Name Table,
and BASE(17) gives the start address of the Pattern Table. BASE(18) and
BASE(19) give the start addresses of the Sprite Attribute Table and the
Sprite Pattern Table respectively.

SPRITE SPRITE
PATTERN ATTRIBUTE PATTERN NAME
B;gBLE TABLES TABLE TABLE
E(19) BASE(18) BASE(17 B
: | :). ASE(15) MODE 3 SCREEN
0 ? 0 0 o
256 32
BLOCKS IBLOCKS
OF OF
8 4
BYTES BYTES
L 2047 L7 ‘ 2047 767 767
BASE(19) BASE(18) BASE(17) BASE(15)
+2047 +127 +2047 +767

FIGURE 614 MAPPING THE GRAPHICS TABLES TO THE SCREEN, MODE 3

136

The observant amongst you will have noted the absence of a Colour
Table in the above list. This is because in this mode, the Pattern Table
holds data for both the image to be displayed and the colours in which it is
to be displayed.

The Name Table in this mode is again 768 bytes long, each entry in
the Name Table acting as a pointer to an 8 byte area of the Pattern Table
and not the Colour Table as well. The Pattern Table is arranged in a rather
peculiar fashion in order to code for both colour and image shape. It is
2048 bytes long.

In Mode 2 we can plot single pixels to the screen: the Mode 3
resolution is not as good as this; in fact, it only allows us to plot ‘super-
pixels’, which are 4 normal pixels by 4 pixels. These can be any colour we
want, and due to the reduced resolution each character square on the
screen only needs 2 bytes to define it, as shown in Figure 6.15. However,
we've already said that an entry in the Name Table points to an 8 byte
block in the Pattern Table, so what happens to the other 6 bytes? We'll find
the answer to this question shortly.

EIGHT-BYTE BLOCK
IN SCREEN-PATTERN

TABLE m
L N ——— ™ —

FOUR
BYTE 1|2 | SUPER-
. PIXELS
BYTE 1 314 oN
BYTE 3 .
BYTE4
BYTES
BYTEG6
BYTE7
] — = B
Each nybble defines the SUPER- PIXELS
colour of one superpixel PIXEL

One superpixel is
equivalent to 16 pixels

FIGURE 615 MAPPING PATTERN-TABLE BLOCKS TO THE SCREEN (1)

137

The 4 high bits of byte 1 hold the colour code for super-pixel 1, the
lower 4 bits the code for super-pixel 2, the upper 4 bits of byte 2 code for
the colour of super-pixel 3 and the lower 4 bits of byte 2 code for the colour
of super-pixel 4.

Now, on to the missing 6 bytes. They are split into 3 similar groups of 2
bytes, arranged as above. Which two byte pattern definition gets to be
displayed on the screen depends upon the screen row where the
particular Name Table entry occurred. Figure 6.16 illustrates this.

EIGHT-BYTE
BLOCK IN SCREEN
PATTERN TABLE SCREEN ROWS
SED i ROWS 0 4 8 12 16
BYTE 1
BYTE 2
13 17
v z ROWS 1 5 9 13
BYTE 4
14 1
—— i ROWS 2 6 10 8
BYTE®
A f ROWS 3 7 11 15 19

FIGURE 6.16 MAPPING PATTERN-TABLE BLOCKS TO THE SCREEN (2)

To make matters clearer, imagine that Name Table location ©, which
corresponds to the first character position of row @ on the screen, contains
the value 2. This points to location (2*8), or 16 of the Pattern Table. Here
we would find an 8 byte block, similar to that shown in Figure 6.16. The
colours possessed by the 4 pixels in this location on the screen would be
the colours defined by byte n and byte n+ 1 in Figure 13, due to the Name
Table entry being on row 0 of the screen. If Name Table location 33 held
the value 2, then the image displayed on the screen, which would be at the
first character position of row 1, would be that defined by bytes n+2 and
n+ 3 of the Pattern Table entry. This principle operates throughout the
whole Name Table, thus causing the image displayed on the screen to
depend upon the value held in the relevant Name Table location and the
row of the screen that Name Table location corresponds to. Mode 3 takes
up 2816 bytes of VRAM, not counting the Sprite Tables.

Let's now go on to look at how the VDP stores data about Sprites in
Video memory.

138

20

21

22

23

A T il

e —————————— 208 s ottt orcsl

Sprite Tables

There are two tables in VRAM that are set up by the VDP in each mode
that supports Sprites. These are the Sprite Pattern Table, which holds the
definition of the Sprites available, and the Sprite Attribute Table, which
holds such information as colour and position for each sprite. The start
address for each of these tables in a given mode is provided by the
appropriate BASE command, as we have already mentioned when we
were discussing the screen modes.

Sprite Pattern Table

This is a 2048 byte long area of VRAM that is functionally split into 256
blocks of 8 bytes. This table is accessed by the Pattern Number parameter
in the PUT SPRITE command or the parameter n in the SPIRTE$(n)
command. It holds the definitions of the Sprites and so we can define a
Sprite by poking values into the Sprite Pattern Table directly instead of by
the use of SPRITE$(n). The program below does this, defining Sprite
Pattern @ by poking the bytes making up the definition into the first 8 bytes
of the Pattern Table. If we wanted to define Sprite Pattern 1 then we would
poke the definition into locations 8 to 15 of the Pattern Table. The definition
for Sprite Pattern 256 would thus occupy the last 8 bytes of the Pattern
Table.

10 SCREEN 1,1

20 start=BASE(9)

30 FOR I=start TO start+7
40 VPOKE 1,255

50 NEXT

60 PUT SPRITE 0,(100,100),1

Obviously, if we want to define 16 by 16 pixel sprites, 32 bytes of definition
must be poked into the VRAM to define each quarter of the Sprite, as
we've seen already. The need for more data to define a 16 by 16 sprite
explains why we are limited to 64 of the larger sprites; there is always the
same amount of VRAM available for the storage of Sprite definitions. It is
possible to change the start address of the Sprite Pattern Table by altering
the contents of VDP Register 6.

Sprite Attribute Table

There is one Sprite Attribute Table for each Sprite Plane; as there are 32
planes, there are 32 Tables, each one being 4 bytes long. This gives a total
length for this Table of 128 bytes. Each Table is arranged as shown in
Figure 6.17.

139

FOUR-BYTE
BLOCK IN SPRITE SPRITE PLANE
ATTRIBUTE TABLE ATTRIBUTES

BYTE 0 18 v posimion

BYTE 1 J X POSITION

BYTE 2 ; SPRITE PATTERN NUMBER

BYTE 3 XXX

FIGURE 6.17 FUNCTIONS OF BYTES IN SPRITE-ATTRIBUTE BLOCK

The first 4 byte block in the Attribute Table refers to Sprite Plane 0, the
second 4 bytes to Sprite Plane 1 and so on. As to the Table entries, the
Pattern Number is the number of the Sprite that is to be displayed on that
plane, and the colour is the colour of the sprite when displayed. The first
byte of the table contains the Y coordinate and the second byte contains
the X coordinate of the Sprite. The only part of the Table that may cause
problems to the unwary is the Early Clock Bit. If we set this bit to @ then the
top left corner of the Sprite is positioned at screen position X,Y. However, if
itis setto 1, the top left corner of the sprite is positioned at position X-32,Y.

The program below shows how we can place a Sprite on the screen
by using the VPOKE command to directly access the Sprite Attribute Table
for the Sprite Plane of interest instead of the PUT SPRITE command.

10 SCREEN 1,1

20 start=BASE(9)

30 FOR |=start TO start+ 7:VPOKE 1,255
40 NEXT

50 start=BASE(8)

60 VPOKE start,100:REM Y position

70 VPOKE start+ 1,100:REM X position

80 VPOKE start+2,0:REM pattern number 0
90 VPOKE start+3,1:REM colour black

As you can see, handling sprites in this way is a little cumbersome, but the

principles outlined here are of much greater use to the MSX machine code
programmer.

140

A total of 2176 bytes are needed for the two Sprite Tables, assuming
that all 256 Sprite Patterns are in use. If this is not 8o, then the appropriate
VOP Registers can be changed in order to produce alternate Attribute
Tables or Pattern Tables. Remember not to overwrite other areas of
VRAM.

That finishes this Chapter on the VDP; we shall encounter it again,
rather briefly, in Chapter 11 when we will discuss how to write to the VDP
Registers and VRAM from machine code programs.

141

Joysticks

One of the interesting things about the MSX system is that as well as giv-
ing the user the possibility of plugging joysticks into the computer, MSX
BASIC also provides the commands needed to handle them from BASIC.
It also allows the programmer to simulate joysticks using the Cursor keys
and the Space bar. This is obviously of great use for the games program-
mer, especially if the machine being used has large Cursor keys.

The command used to read which direction the user is pushing the
joystick in is called STICK(n). n has a value between @ and 2, 0 indicating
that the command will read the Cursor keys as if they were the joystick.
n= 1 refers to the joystick plugged in to port 1 and n= 2 refers to the joy-
stick plugged in to port 2.

The value returned by the function depends upon the direction in
which the joystick being read is being pushed by the user. If the Cursor
keys are being read, then the value returned indicates the combination of
Cursor keys being pressed at that time. Figure 7.1 shows the values
returned for various combinations of Cursor keys pressed.

143

6 4
¢0 5 {}d)
234

FIGURE 7.1 READING DIRECTION (1): FROM CURSOR-KEY COMBINATIONS

If no keys are being pressed when the function is evaluated, or if the joy-
stick is not being pushed, then the function returns the value 0.

Figure 7.2 gives the values returned for the direction in which
the joystick is pushed. The directions are given as points of the compass.

FIGURE 7.2 READING DIRECTION (2): FROM THE JOYSTICKS

If the joystick is not being deflected, then the value @ is returned.

Proper joysticks plug into the sockets on the MSX computer
marked A and B, these being accessed as ports 1 and 2 respectively. The
electronic side of the joysticks is handled by the Programmable Sound
Generator device, but this is only of real use to the machine code pro-

grammer.
144

ON STRIG

This command enables us to cause the computer to pass control to a sub-
routine whenever the trigger of a joystick or the space bar is pressed. The

full syntax is

ON STRIG(n) GOSUB line number

where n is between 0 and 4 and line number is a valid line number to
which control is passed when the appropriate trigger is pressed. With real
joysticks, n=1 or 3 will cause a jump to a subroutine when the trigger of
joystick 1 is pressed, and n = 2 or 4 will cause the jump if the trigger on joy-
stick 2 is pressed. If n= 0 then the jump will occur when the space bar is
pressed.

STRIG(n) ON is used to enable the trapping of this event. STRIG(n)
OFF and STRIG(n) STOP have analogous functions to the KEY(n) OFF
and KEY(n) STOP commands; consult Chapter 5 for details.

We will now go on to look at the operation and programming of the
Programmable Sound Generator chip in the computer.

145

The MSX
Sound System

The MSX computers all contain a chip called the Programmable Sound
Generator, or PSG. This device is usually the General Instruments AY-3-
8910, and this device gives its sound output either through the TV set or
through an external plug. This chapter will explore the programming of
the PSG in BASIC, giving an introduction into the programming of tunes
and sound effects.

The simplest BASIC command that uses the sound generator is
BEEP This produces the same tone as you obtain by typing CTRL-G. The
command

PRINT CHR$(7)
will also generate the tone produced by the BEEP command. The other

sound that our MSX computers make all the time is the Key Click, the
noise that the computer makes whenever you press a key. The only thing

147

that we can do with this click is to turn it on or off. The command
SCREEN mode, sprite size, 0

turns the click off and the command
SCREEN mode, sprite size, 1

turns it back on. However, these noises are not exactly mgsica_l. But. M.SX
BASIC comes complete with a command called PL_AY, which, in a similar
'lashion.to the DRAW command, implements a Music Macro Language.

This enables us to play music on the MSX computer with great
ease, as we shall soon see.

PLAY

The full syntax for the PLAY command is

PLAY string for channel 1, string for channel 2, string
for channel 3

The strings can be string constants or variables, as in the case of the
DRAW command. The strings contain letters, numerals and some non-
alphanumeric characters. The strings for channels 2 and 3 are optional.
The PSG can play up to 3 notes at once, each note being of a different
pitch and volume. One note is played on each channel, the channels
being numbered from 1 to 3. The first group of characters that we can put
in @ PLAY command string are the letters A to G. These refer to musical
notes. The command

PLAY “A"

will play the note A on channel 1. The octave to which the note belongs is
the currently selected octave. The command

PLAY “ABCDEFG"

will play the notes one after another on channel 1. Each note can be fol-
lowed by a ‘#','+’, or ‘—'. The ‘#' and '+’ characters indicate that the
note is to be played as a sharp, and the '—* character indicates that the
note is to be played as a flat note. However, the sharp or flat symbol is only
accepted as being legal within the command string if it corresponds to a

148

-

sharp or flat note on the piano keyboard. Thus the command below will
play a series of notes.

PLAY “"C#DD#E"

An octave in the Music Macro Language runs from the note C to the
following C. To change octave, we use the O command. The letter O is fol-
lowed by a number which gives the required octave. The Octave Number,
as it is called, must be between 1 and 8, 1 being the lowest octave avail-
able and 8 being the highest octave. When we start using the computer,
the octave in use is octave 4. Thus the command

PLAY “CDEFGABOSC"

will play a scale from the C of one octave to the C of the following one.
Once an octave command has been issued, then all subsequent notes
are played in that octave until a further octave command is issued. This is
so even if the subsequent notes are played by totally different PLAY com-
mands. Notes can be played on the 3 channels available quite easily; the
notes are played simultaneously, thus giving the musicians amongst us
the possibility for playing chords. For example, the command

PLAY “C"'“E”.“G”
will play the chord of C major, while the command

PLAY “C”,"D#","“G"
will play the chord of C minor. Other chords can be played by putting suit-
able notes in the three strings. However, as this is not a text book on
music, the interested reader is directed elsewhere for the theory and
practice of playing chords.

It is possible to use numbers in the PLAY strings instead of note

names. The letter N is used, followed by a number between @ and 96. The

Cin octave 4 has a numerical value in this system of 36. The below com-
mand will play a string of notes defined by numbers.

PLAY “N1N2N3N4"
To me, this method has no real advantage over the use of note names.

Not all notes in a piece of music will have the same length; so, MSX
BASIC equips us with a means of changing the length of time that notes

149

sharp or flat note on the piano keyboard. Thus the command below will
play a series of notes.

PLAY “C#DD#E"

An octave in the Music Macro Language runs from the note C to the
following C. To change octave, we use the O command. The letter O is fol-
lowed by a number which gives the required octave. The Octave Number,
as itis called, must be between 1 and 8, 1 being the lowest octave avail-
able and 8 being the highest octave. When we start using the computer,
the octave in use is octave 4. Thus the command

PLAY “CDEFGABOSC”

will play a scale from the C of one octave to the C of the following one.
Once an octave command has been issued, then all subsequent notes
are played in that octave until a further octave command is issued. This is
so even if the subsequent notes are played by totally different PLAY com-
mands. Notes can be played on the 3 channels available quite easily; the
notes are played simultaneously, thus giving the musicians amongst us
the possibility for playing chords. For example, the command

PLAY “C","“E","G"
will play the chord of C major, while the command
PLAY “C","D#","G"
will play the chord of C minor. Other chords can be played by putting suit-

able notes in the three strings. However, as this is not a text book on
music, the interested reader is directed elsewhere for the theory and

practice of playing chords.

It is possible to use numbers in the PLAY strings instead of note
names. The letter N is used, followed by a number between @ and 96. The
Cin octave 4 has a numerical value in this system of 36. The below com-

mand will play a string of notes defined by numbers.
PLAY “N1N2N3N4"
To me, this method has no real advantage over the use of note names.

Not all notes in a piece of music will have the same length; so, MSX
BASIC equips us with a means of changing the length of time that notes

149

are played for. The command L n within a PLAY string will set the‘ lqngth of
subsequent notes to a value set by n until the next L command is issued,
Subsequent notes have a length of 1/n times their normal length. The
value of nranges from 1 to 64, a value of 1 giving a full nqte played, 4 giv-
ing a quarter note and 64 giving a note 1/64th of the duration of a full note.
An example of its use is given below.

PLAY “ABCL16DEF"

Again, like the Octave command, this will remain in force until the next L
command is issued. Forgetting this can cause some problems in pro-
grams, so always keep it in mind. If the change in note length is only
required for a couple of notes, then the notes that you want to shorten can
simply be followed by the number without the L command. For example,
in the command below, the note A will be played for 1/16th as long as the
other notes.

PLAY “L1CDEA16DEF”

The value of n that is normally in use without us issuing any L commands
iS4,

If we want to give a short pause between notes, then use the R com-
mand. The parameter of this command is again between 1 and 64, and a
value of 1 following the R command will give a pause equal inlength to a
full note. Thus the command below will give a pause before playing the
three notes in the string.

PLAY “R1ABC"

A value of 4 after the letter R would give a rest equal in length to a quarter
note and a value of 64 would give a rest equal in length to 1/64 note.

We've already seen how we can shorten the time that a note plays
for using the L command; itis also possible to extend the playing time of a
note, using the ‘.. A single dot following a note in a string will extend the
playing time of that note by 1 & 1/2 times. The dot can also be used to
extend the duration of a restin a similar way. The effects of a dot are cumu-

lative; thus the example below will cause a note to be played for 9/4 times
its normal duration,

PLAY “A

Where does 9/4 come from? Well, it's simply 3/2 * 3/2. It is clear that by

150

ysing the . command repeatedly, notes with an extremely long duration
could bé played.

To set the speed at which our composition is played, we set the
Tempo of the piece. This is done by the T ncommand, where n has a value
of between 32 and 255. This number specifies the number of quarter
notes to be played in one minute. The default value is 120.

The Volume of sound produced is set by the V command. The para-
meter n passed to the V. command is between @ and 15, a value of 0 being
inaudible and 15 being loud. The default volume level is 8.

Envelopes

The sounds produced so far have been all of a volume that is set by the V
command, and it has not been possible to vary the volume during the time
that a single note is playing; i.e. the note is the same loudness throughout
the time it is being played. If we compare this to a real musical instrument,
like a piano, then we find that in the piano the note starts off at a loud
volume and decays away slowly. The piano note is ‘'shaped’, and this
shape is called an envelope. We can simulate this to a small degree on the
MSX computers, where there are 8 different note shapes that we can
select. The command used to select the note shape in the Music Macro
Language is called S n, and the parameter n has a value between 0 and
15, certain values of n producing the same envelope as each other.
Figure 8.1 (below and overleaf) shows the various shapes of note that are
available, and the value of n needed to get them.

ENVELOPE HAPE OF
PERIOD (EP) ENVELOPE

AMPLITUDE
(LOUDNESS)

151

Sid

S11

S$13

4

S14

FIGURE 81 ENVELOPE MODIFICATION (1): THE SOUND
MACROCOMMAND S

To see the effect of these envelo

Pes, reset the computer and try the
two commands listed below. Listen to

the sounds and note the difference.

PLAY “S13A”

PLAY “S14A"

All subsequent notes will b
for shape 14, until another
putting in alternative valy

e shaped by the envelope shown in Figure 8.1
S command is issued. Try the other shapes, by
es instead of 1.4. The command below shows

152

that it is possible to change shape within a PLAY string. We can also play
notes on all three channels using an envelope, but the envelope will be
the same for each channel.

PLAY “S13ABCS14ABC"

Although the shape command alters the amplitude of the note being
played, it may not alter the amplitude quickly enough for our purposes, or
it might be too tast. We have at our disposal a command called M which
changes the rate of change of amplitude given by a particular envelope.
This is shown diagrammatically in Figure 8.2.

To hear this in action, try the following commands.

PLAY “S1M255A"

PLAY “S1M600A"
Note how the second command produces a high pitched 'ping’ as
opposed to the barely audible ‘thump’ produced by the first command.

The value of n in the command can be between 0 and 65535. It deter-
mines the length of the area shown in Figure 14 as the ‘EP’, or Envelope

ENVELOPE
PERIOD (EP)

AMPLITUDE
(LOUDNESS) | /

M255
(AREA OF
EP IS SMALL)

Mé6o9o
(AREA OF
EPIS LARGE)

FIGURE 8.2 ENVELOPEMODIFICATION (2): THE SOUND
MACROCOMMANDM

1583

Period. Quite interesting effects can be obtained by varying the value of n
passed over to the S and M commands. For example,

PLAY “L1S14M1000A"

gives an interestingly altered ‘A, and the below command gives a pass-
able impersonation of a trombone!

PLAY “S14M100AR14AR1R4AR14A"

Using the M and S commands in this way can lead us into the generation
of sound effects as well as giving us a wider range of ‘voices’ with which to
play tunes. While experimenting with the various commands in the Music
Macro Language, should you wish to get things back to the way they
were when you started, then typing CTRL-G will reset the PSG. Before
leaving the Music Macro Language, variables can be passed into PLAY
command strings in a similar way to which they were passed to DRAW
command strings. Also, the letter X has the same effects in PLAY strings

as it did in the DRAW command strings. The reader is directed to Chapter
6 for further details.

Direct Access of the Programmable Sound
Generator

Let’s now look at how we can program the PSG by writing data directly to
its registers, in a similar way to that in which we programmed the VDP. The
Programmable Sound Generator contains 16 registers, of which 14 are
directly concerned with the generation of sound. The other two registers
of the AY-3-8910 are input/output registers, enabling the device to be con-
nected to other items of hardware apart from the Central Processor of the
computer. In the MSX system, one of these registers is set up as an input
register to give the computer access to the joysticks, if they are con-
nected. The other register is configured for output, and helps control vari-
ous aspects of the computer which we shall not go into here.

The 14 registers that are concerned with sound generation are writ-
ten to using the SOUND command, which is similar in function to the
VDP(n) command. However, the SOUND command does not allow us to
read data from the PSG registers, as did the VDP(n) command. The full
syntax for the SOUND command is below.

SOUND register, value

Register is a number between 0 and 13, and refers to the PSG register to

154

which datais to be written. Value is the number to be written to the register,
and is between 0 and 255. However, some registers will only accept num-
pers of lower value than this general rule; these will be pointed out when
we consider them. We’'ll now go on to look at the function of each of the
Programmable Sound Generator registers.

Register 0 and 1

The 8 bits of register @ and the 4 lower bits of register 1 form a 12 bit regis-
ter that controls the pitch of the note played on Channel 1. This register
pair is obviously written to by a PLAY command that changes note fre-
quency. The 4 bits from register 1 have higher significance than the other
8 bits, and a variation here has a larger effect on the pitch of the tone
played than does a similar variation in the contents of register 0. For this
reason, register 1 is often called the Coarse Tune Control Register and
register @ is called the Fine Tune Control Register. The actual tone genera-
ted on a given channel of the PSG depends upon the value held in the
relevant pitch control registers, (registers @ and 1 for channel 1) and the
clock frequency being applied to the PSG. The higher the value placed in
the Pitch control registers, the lower pitched the tone is that is generated.

Registers 2 and 3

These two registers perform a similar job to registers @ and 1 respectively,
but for channel 2. Register 2 is the Fine Tune Control Register, and register
3isthe Coarse Tune Control Register for channel 2.

Registers 4 and 5

These registers perform the same jobs as registers @ and 1 but control the
pitch of the note played on channel 3. Register 4 is the Fine Tune Control
Register and register 5 is the Coarse Tune Control Register.

If you now go off to your computer, and write values to the appropri-
ate registers, expecting to hear sound, you'll be rather disappointed. The
information for the pitch of the note to be played will be written to the chan-
nel 1 registers by the command

.

SOUND 0,255:SOUND 1,0

but no data will have been sent to the computer regarding the volume of
the note. To generate a pure tone, we need to send the pitch information
and then send information to the PSG concerning the amplitude of the
note that is to be played. Three registers within the PSG are used to con-

155

trol the amplitude of sound produced, one register controlling each of the
three channels.

Register 8

This register controls the amplitude of sound played on ghannel 1. The
register will hold a value between 0 and 15, 0 being the minimum volume
and 15 being the maximum amplitude, or volume, of the note.

‘Register 9

As.for register 8, but storing the data for the volume of sound on channel
2.

Register 10

This register performs the same job as register 8 but stores the volume
data for channel 3.

Once a value is written to one of these amplitude control registers,
then a note will be played on the appropriate channel. The program
below shows this in action.

10 SOUND 0,255:REM fine tune of channel 1

20 SOUND 1,0:REM coarse tune of channel 1
30 SOUND 8,10:REM amplitude of channel 1
40 TIME=0

50 IF TIME<50 THEN GOTO 50

60 SOUND 8,0:REM after delay, turn note off

Note how we have to deliberately set the amplitude of the channel to @ to
turn the sound off. If we wanted to play tones on all three channels
simultaneously, then we simply write the appropriate values to the rele-
vant pitch control registers, and then finish the job by setting up the am pli-
tude control registers, thus turning on the sound at the selected volume.
The program below does this. Note the use of a DATA statement to give
more efficient register setting up.

10FORI=1TO®6

20 READ reg,v

30 SOUND reg,v

40 NEXT

50 DATA 0,255,1,0,2,200,3,0,4,150.5,0

156

Run the above, then issue the below line as a direct command.
SOUND 8,10:SOUND 9,10:SOUND 10,10

This will set the three amplitude registers up and turn on the sound. To turn
off the sound, try CTRL-G or setting the 3 amplitude registers to zero.
Once we've started a tone playing in this way, we can vary the tone'’s pitch
by altering the Pitch Control registers for that channel. The program

below shows this in action.

10 SOUND 1,3

20 SOUND 8,10
30FOR 1% =0TO 255
40 SOUND 0,1%

50 NEXT

60 SOUND 8,0

Line 10 sets up the Coarse Tune Control Register for channel 1, and line
20 sets the tone going. Lines 30 to 50 then continuously change the con-
tents of the Fine Tune Control Register, resulting in a smooth variation in
the pitch of the tone generated. Once the loop is finished, line 60 turns off
the tone. As well as changing the frequency of the tone in this way, we can
also alter the amplitude of the note while it is being played. The program

below shows this in action.

10 SOUND 0,255:SOUND 1,0:REM set tone pitch
20FORI=0TO 15

30 FOR J=0TO 50:NEXT:REM delay loop

40 SOUND 8,1

50 NEXT

60 SOUND 8,0

This gives a tone of steadily increasing volume, which then is turned off
altogether by line 60. So far, the way we've seen to stop a tone playing is
to set its amplitude to @. However, there is another method, which is useful
if we just want to stop the note for a moment but then wish it to continue at
the same volume. It uses register 7, known as the Enable Register.

157

Register 7

We will consider this register 1 bitatatime, as egch bit controls a different
aspect of the PSG. Bit numberings refer to the diagram below.

Bit @. This is the Channel 1 Tone Enable. When set to 1, tone output from
channel 1 is disabled totally, even if the amplitude set for channel 1 is not
zero. Taking this bit to @ will re-enable tone output on channel 1. As soon
as this bit goes to zero, a tone will be played at the amplitude set by regis-
ter 8, the channel 1 amplitude register. Obviously, if the contents of regis-
ter 8 are 0, no tone is played.

Bit 1. Performs the same function as bit @, but for channel 2.
Bit 2. Performs the same function as bit @, but for channel 3.

Bit 3. When set to zero, this bit enables the playing of white noise on chan-
nel 1, atthe amplitude held in the amplitude register for channel 1. When
setto 1, white noise output on channel 1 is disabled. If both this bit and bit
0 of this register are set to zero, then both tone and noise will be played on
this channel at the amplitude selected by register 8. More details about
white noise will be given shortly.

Bit 4. Performs a similar job to bit 3, but for channel 2.
Bit 5. As bit 3, but acts on channel 3.

Bits 6 and 7. These two bits control the input/output registers of the PSG
and so are not used for sound production. It appears from the MSX sys-

1]0 REGISTER 7

7 6 5 4 3 2 10

l L‘ CHANNEL 1
CHANNEL 2

CHANNEL 3

CHANNEL 1
cranneL 2 | WHITE NOISE

CHANNEL 3 ENABLE

SET TO @ PERMANENTLY

SET TO 1 PERMANENTLY

FIGURE8.3 FUNCTIONS OF BITS IN REGISTER 7,
PROGRAMMABLE SOUND GENERATOR

158

TONE ENABLE

tem specification that bit 6 should be left at @ and bit 7 be set to 1 to ensur "
correct operation of the system.

| find that the best way to write to this register is to represent the
value to be written to the register as a binary number, as this makes it
easier to select the pattern of 1's and @'s that are needed to set up the
desired tone and noise outputs. For example, the command

SOUND 7,&B10111110

will enable tone on channel 1 and disable all other sound outputs. Bit 6 is
set to zero for the reason outlined above. The command

SOUND 7,&B10110110

will enable both tone and noise on channel 1. Similar bit patterns written to
the register will enable other channels in a similar way. For example, the
command

SOUND 7,&B10111000

will enable tone on all three channels.

Noise y
We've already mentioned noise, or White Noise, as it is often called, when
discussing register 7 of the PSG. White Noise is best described in non
technical terms as a rushing, hissing noise - try the program below to see
itin action,

10 SOUND 7,&B10110111:REM enable noise on
channel 1

20 SOUND 8,15

30 TIME=0

40 IF TIME <50 THEN GOTO 40

50 SOUND 8,0

Many natural sounds are made up of noise; typical ones are rainfall, wind
and waves. In games, we can use noise to simulate gunshots or explo-
sions, etc. Noise is defined in terms of its volume, or amplitude, and its fre-
quency. The amplitude of noise being played on a particular channel is
controlled by the amplitude control register for that channel. So, to play a
loud burst of noise on channel 1 we would use register 8 of the PSG to
control the volume. Remember that to play noise on a particular channel,
the relevant bit in register 7 of the PSG will have to be set to zero.

159

e T—

The frequency of the noise is a measure of the relative ampunts of
high and low frequency sounds in the noise. Itis controlled by register 6'of
the PSG, the Noise Pitch Control Register. The value placed in this regis-
ter should be between @ and 31; 31 gives the lowest pitched noise avail-
able and 0 gives a very hissy sounding noise. To hear the difference for
the different values in register 6, try the below program.

10 SOUND 7,&B10110111
20 SOUND 8,6
30FORI=0TO 31

40 SOUNDG6,|

50 1% =INPUTS$(1)

60 NEXT

70 SOUND 8,0

Run the program; pressing a key will cause the next value to be placed in
the register, and so will modify the pitch of the noise being played. The
routine below gives an example of a simple sound effect using the noise
facility; a ‘gunshot’. Line 20 sets the maximum volume for the noise on
channel 1. Lines 30 to 50 vary the quality of the sound produced by vary-
ing the values placed in the noise pitch control register and the channel 1
amplitude register. Line 60 then turns the sound off.

10 SOUND 7,&B10110111
20 SOUND 8,15

30 FOR1=31TOOQSTEP-0.5
40 SOUND 6,1:SOUND 8,1/2
50 NEXT

60 SOUND 8,0

A much easier way to produce sound effects is to use the facility that the
PSG has for shaping the sounds produced. We saw this in action with the
S command in the Music Macro Language.

Envelopes

Three registers are involved in the control of envelopes; these are regis-
ters 11,12 and 13. Let’s look at these in turn to see what they do.

Register 13.

Thisis the Envelope Shape Control register, and can hold values between
0 and 15. The envelope shapes obtained for various values in the register
are the same as those obtained for that value in the S command of the

160

Music Macro Language. Look at Figure 8.1 to see the various envelope
shapes.

Registers 11 and 12.

These are the Envelope Period control registers and are the PSG regis-
ters written to by the M command in the Music Macro Language. Register
11 holds the lower 8 bits of the 16 bit parameter that would be passed
over with the M command and Register 12 holds the upper 8 bits of this
parameter. Thus the commands

SOUND 11,255:SOUND 12,255

and
PLAY “M65535"

perform the same job.

So, we can set the envelope required and the envelope period that
we require, but how can we apply it to a particular tone being played? We
do this by setting the amplitude register for the channel on which we want
the shaped note played to hold a value of 16. Thus to get the note played
on channel 1 to follow the envelope set up by registers 11, 12 and 13 we

| set register 8 to 16.

The program below plays a tone under envelope control on chan-
nel 1.

5SOUND 7,&B10111110

20 SOUND 13,14:REM set envelope shape
30 SOUND 11,255:REM set up the envelope
40 SOUND 12,0:REM period

50 SOUND 0,255:REM set up tone

60 SOUND 1,0
70 SOUND 8,16:REM play tone

This sound will carry on until you set the contents of register 8 to zero, or
until you type CTRL-G. The envelope thus defined can be used to shape
the amplitude of noise on a channel as well as tone. This can be demon-

strated by changing line 5 to the below.
SOUND 7,8B10110111

thus enabling channel 1 noise instead of tone. You could, of course,
enable both at once if you want.

161

——— .

As you may have realised by now, pressing CTRL-G will reset the
PSG registers to the original values that they held before you started
reprogramming them. This can be a very useful thing to know if you've
got into a mess by altering the registers!

That completes the overview of programming the PSG from BASIC.
This device really needs much experimentation to get the best fromit, and
so | suggest that you go away and try some effects of your own. To start
you off, try the following below.

The program below is a loader program reading values from a
DATA statement and putting them in the appropriate PSG register. To
change the sound produced, simply alter the DATA statement and run the
program again. The first item in the DATA statement is the value for PSG
register @, the second item the data for PSG register 1 and so on.

10FOR 1% =0TO 13

20 READN

40 SOUND 19%,N

50 NEXT

60 DATA appropriate data items

Gunshot Plays on channel 1,2 and 3
DATA 0,0,0,0,0,0,17,7,16,16,16,1,5,1

Explosion Plays on channels 1,2 and 3
DATA 0,0,0,0,0,0,31,7,16,16,16,0,60,0

Boing Channel 3
DATA0,0,0,0,0,09,&B10110111,16,0,0,191,5,1

Laser Beam Channel 3
DATA 128,1,0,0.0.0,1,54,16,0,0,251,10,15

Other sound effects can be easily synthesised by using FOR.. NEXT
loops to modify the contents of PSG registers as we've already seen. For
those of you with musical interests, it is possible to synthesise effects that
sound like snare drums and other percussion instruments. However, the
only way to truly master the PSG is through experiment. | wish you luck.

162

The Programmable
Peripheral Interface

PPI stands for Programmable Peripheral Interface. It was discussed
briefly in Chapter 1 in terms of its overall function; in this Chapter we shall
look at it in greater detail. The first thing to note is that it is here that the
standard for MSX falls down slightly - the PPl is written to by the use of
commands called IN and OUT, which do not write to registers, but to parti-
cular addresses, and so we need to know the address in memory of the
PPI before we can access it. The problem is posed by the possibility that
some manufacturers may vary the position of the PPl in memory. Thus,
the addresses given for the PPl in this Chapter will be those for the Sony
HB-55 MSX computer. However, the chances are that they will work pro-
perly on your computer as well. The problem of incompatibility between
machines will be minimized, however, by using routines that exist in the
ROM to access the PPI. However, this is beyond the scope of this book.

The best place to start in this Chapter is with the BASIC commands
that we use to access the PPI. These are OUT and INP.

163

The full syntax of the OUT command is
OUT port number, value

Port number is a value within the range @ to 255, as is value. This is a good
point at which to look at the concept of input and output ports on the MSX
system. The Z-80 Central Processor Unit can, as already mentioned,
access 65535 bytes of memory. But it can also access a further 256 loca-
tions called INJOUT ADDRESSES. These are totally separate to the nor-
mal RAM or ROM, and in the MSX system provide the means by which the
CPU communicates with the Video Display Processor and the Program.-
mable Sound Generator. Some of these addresses are also used to allow
the CPU to communicate with the Programmable Peripheral Interface.
Whereas normal RAM or ROM locations were accessed by PEEK and
POKE, the IN/OUT addresses are accessed by the INP and OUT com-
mands. The full syntax of the INP command is

INP (port number)

where port number is again a value from @ to 255. Thus to read data from
IN/OUT address &HA8 and print it to the screen, we would issue this
command.

PRINT INP (&HAS)

To send a value to IN/OUT address &HAS8, we would issue the command
OUT &HAS8,23

where 23 is the value being written to that address.

Anyway, on with the PP It contains 4 registers, 3 of which are input/
output registers interfacing with things such as the keyboard, cassette
interface and slot selection electronics (the latter will be discussed in
Chapter 10). The fourth register is called the MODE SELECTION REGIS-
TER, and controls whether the 3 in/out registers are configured for input,
output or both. We shall look at this register first. The main thing we can
say about it is - Don’t Touch! If you alter the value in this register, you can
disable the keyboard and occasionally switch out your memory! If you do
want to play with this chip, then | suggest that you restrict yourself to read-
ing or writing to the 3 in/out ports. However, if you are still interested, |
would suggest you get hold of a Data Sheet for the 8255 PPI. This register
is configured so that 2 of the other registers are for Qutput and 1 for Input.

164

rf ..,

The arrangement of the 3 registers in I/0 address space is shown below.
The addresses given are those stated in the standard MSX specification.

&HAB8 Register A: OUTPUT
A9 Register B: INPUT
AA Register C: OUTPUT
AB Mode Selection Register

PPl Addresses

Remember, however, that these may not be the correct addresses for

your particular system, should the manufacturer have decided to alter
things around a little.

Well, what do the registers do?

Register A. This is an output register, and is used to control memory allo-
cation in the MSX system. More details will be given about this register in
Chapter 10. For the moment, it will suffice to say that it is not advisable to
alter the contents of this register unless you are sure of what you are
doing.

Register B. This is an input register, and returns, when read, a value relat-
ing to a keyboard press. This register only returns a sensible response
when used in conjunction with the lower 4 bits of register C.

Register C. This is an output register, the main function of which is to help
read the keyboard. Bits @ to 3 of this register give what is called the KEY-
BOARD SCAN SIGNAL. The MSX system sets these bits to a particular
pattern and then reads the value of register B. For each bit pattern output
from register C, 8 keys can be detected. Each of these keys, when pre-
ssed, causes a bit of register B to be taken to 0. This changes the value
read back from register B and so enables us to read the keyboard directly.

Figure 9.1, the MSX Keyboard map, shows how this functions.

For example, a value of &B0100 put out on the lower 4 bits of regis-
ter C will cause the keys R,Q,PO,N,M,L and K to be detected if any of
them are being pressed at that moment in time. If key R is pressed, then
bit 7 of register B is taken to @, thus returning a value of 127 if we were to
read this register. As can be seen from the table, this method of reading
the keyboard gives us a means of detecting keys such as SHIFT and TAB,

165

ST —

which are not usually directly readable. The below routine shows the prin-
ciples of reading the keyboard in this way,

10 OUT &HAA, &B00000111
20 PRINT INP(&HA9)
30 GOTO 10

Run the program, and press keys such as SELECT ESC and BS.
Obviously, this particular program will only work if the manufacturer of the
machine has stuck to the original specification.

REGISTER B(1) REGClg)TER
Bit patterns read from Bit patterns
Register B written to
Register C
7 6 5 4 3 2 1 0 3210
71654132110 0000
[@ ¥|/N|— |9 |8 | 0001
J | T H{ G| F|E|D|C | 0011
RIQ|P|O|N|{M|L|K]| 01 20
Z| Y[X|{W|IVIU|T|S| o101
F3 2 | caps [GRaPH| cTRL [sHiFT | @110
e |seLecT| Bs | sTop| TaB | Esc | Fs | Fa 2111
| V| 1] <o ns HOME space | 1000

(1) Value read from Register B by an IN from OA9H; all bits are set to 1
except for key being pressed, which is reset to Q.
(2) The low nybble is written to Register C by an OUT to OAAH.

FIGURE 91 THEMSXKEYBOARD TABLE

166

Bit 4. This is the Cassette Control Signal, and it operates the cassette
recorder remote control relay. When this bit is set to 0, the relay is closed,
thus allowing the cassette to operate. When itis set to 1, the relay is open.

Bit 5. This bitis concerned with writing data to the cassette tape.

Bit 6. This bit controls the status of the CAPS LOCK light - that is, the little
lamp that indicates whether or not the Caps Lock is engaged or not.
When this bit is set to @, the lamp is on, and when set to 1 the lamp is off.
This bit has no influence on the status of the Caps Lock function itself, just

the status of the lamp.

Bit 7. Setting this bit to 1 and then back to @ will cause a click to be heard
via the computer sound system. The program below shows this in action.
You will, | think, agree with me when | say that the nature of the sound is

not exactly musical!

10 OUT &HAA,&B00000000
20 OUT &HAA,&B10000000
30GOTO 10

We've now covered all the functions of the PPI except that of register A.

We'll now go on to look at the function of this register when we examine
the memory organisation of the MSX system as a whole.

167

The MSX
Memory Map

The memory map of a computer system is simply a description of how the
computer’s memory and input/output devices are arranged. Before we
proceed any further, you're advised to consult the appendix on number
systems, if you haven't already done so. We've already discussed the
roles of RAM and ROM briefly, when we took an overview of the system in
Chapter 1. In this chapter, we'll take a much greater detailed look at the
arrangement of memory in the MSX system, as well as looking at the

input/output devices that we can access.

The MSX ROM always starts at location @ in memory and extends to
location &H7FFF. The memory locations between &H8000 and &HFFFF
are available for RAM if desired. The memory map for the minimum MSX
specification is shown in Figure 10.1. The minimum amount of RAM that
the MSX system needs is 8k, but this gives a limited system. This is located
from address &HFFFF downwards. Although the minimum system RAM
is 8k, we can only add RAM in blocks of 16k. If we add RAM to the mini-
mum system, then the 16k we add on would occupy the locations in the
memory map from &HFFFF down to &HC000, a total of 16384 locations.

169

s |

This might come as a bit of a surprise if you were expecting to be able to
add 16k of memory to an 8k system and get 24k as a result! As can be
seen, this is not so; the 8k already present is overwritten by the 16k
added, due to the fact that the MSX system handles its memory in 16k
blocks, called PAGES. The addresses shown in Figure 10.1 are called
PAGE BOUNDARIES. Thus an MSX system with 16k of RAM is said to
have 1 page of RAM, extending from &HC000 to &HFFFF, and 2 pages of
ROM occupying the space from &H0000 to &H7FFF.

So far, there is nothing peculiar about the arrangement of memory
in the MSX system. What makes the MSX system different to other compu-
ter systems in terms of memory management is the concept of the slot,
which effectively allows us to add more memory to the system, which may
already have 32k of RAM and 32k of ROM. A system like this has a full
memory map; the Z-80 CPU can only handle 64k of memory at one time.
The slot is a block of 65535 (64k) locations that can be filled with RAM or
ROM. All MSX computers must have at least 2 slots, but can have up to 4.
One of these slots, the one containing the MSX BASIC ROM and the nor-
mal RAM for that machine, is called the SYSTEM SLOT, or slot @. The
second slot possessed by all MSX computers is called Slot 1, or the
CARTRIDGE SLOT. This comes to the outside world as the cartridge
socket on your machine, into which you can plug additional RAM or pre-
written program cartridges. The way in which the computer uses the slots
Is quite involved, but, put in simple terms, the computer can, if needed,
make use of pages from different slots to make up its memory map.
Figure 10.2 shows an example of this in action.

Slot @ contains the MSX ROM and 1 page of RAM, running from
location &HC000 to &HFFFF. Slot 1 contains nothing, but Slot 2 contains 1
page of ROM, occupying the locations from &H4000 to &H7FFF, and 1
page of RAM occupying the locations from &H8000 to & HBFFF.

&HFFFF
i PAGE 3
&HC000
* PAGE 2
&H8000 T
- _ROM t PAGE 1
. (Oeeratin%
H4000 F system and--
- BASIC
interpreter) % PAGE 0
&H0000 | R

FIGURE101 MEMORY MAP OF SLOTQ(SYSTEMSLOT)

170

The computer then puts its memory map together using pages of
memory from different slots, resulting in the RAM in slots 2 and 0 being
treated as a continuous area of RAM, 32k bytes long. If the computer
needs to use the Disc Control Software, then it simply gets its instructions
trom page 1 of slot 2 instead of page 1 of slot . How does the MSX sys-
tem gain access to pages of memory that are in different slots to the Sys-
tem slot? Well, this is where the Slot Select Register plays a vital part in the
control of the computer. This register, as you will probably remember, is
the A register in the PPI.

SHFFF | e - =
s PAGE 3
&HC000 i AL S, Bl st
777
/RAM/ {PAGEZ
&HB000 paah’ ey MR vy GhEtels e
feace
&HA000 PPN SN S firmware) T TR
{ PAGE 0
H . - = = ‘sl - — — ee— - -~ — -
&H000 SLOTO SLOT 1 SLOT2 SLOT3
(SYSTEM
SLOT)

FIGURE10.2 BANKING OF SLOTS

Slot Select Register

This register informs the computer of which slot is to be used to get a parti-
cular page of memory. Bits @ and 1 hold the slot to be accessed to get
page 0 of memory, bits 2 and 3 hold the slot number for page 1, bits 4 and
5 hold the slot number for page 2 and bits 6 and 7 hold the slot number for
page 3. The slot numbers are held as two bit binary numbers, 00 repre-
senting slot @, 01 representing slot 1 and so on.

SLOT-SELECT REGISTER

4 5 2 0

- VN N

PAGE 0
PAGE 1

PAGE 2

PAGE 3
FIGURE 10.3 SLOT-SELECTREGISTER (1): FUNCTIONS OF BITS

1m

Let's look at an example.

[T

7

-~~~

SLOT SELECT REGISTER

—
S
S

oS

1 o
4 3 2

0

3

— PAGE @ OF SLOT @ SELECTED
L— PAGE 1 OF SLOT 1 SELECTED
= PAGE 2 OF SLOT 1 SELECTED
-~ PAGE 3 of SLOT 3 SELECTED

FIGURE10.4 SLOT-SELECTREGISTER (2): SELECTION EXAMPLE

Here, page @ will be page 0 of slot @
page 1 will be page 1 of slot 1
page 2 will be page 2 of slot 1
page 3 will be page 3 of slot 3

If we were to fill all 4 slots with memory, then the Z-80 will be able to select
its 64k of memory from 256k of memory that it can access through the slot
system. However, this is not all - each slot can have associated with it 4
more slots, each of these slots also containing 4 pages of memory. These
slots, arising from our original ones, are called SECONDARY SLOTS. The
4 slots that can be selected directly by accessing the Slot Select Register
are called PRIMARY SLOTS. The control of the secondary slot structure is
somewhat beyond the scope of this book, and mention of it is made here
so that the reader is aware of the potential of the slot system for future
expansion.

The exact allocation of RAM is similar in all MSX computers; BASIC
will examine the RAM in the computer and find the largest continuous
area of RAM that starts at location &HFFFF and works downwards in
memory. RAM present in any slot in the machine may hence become part
of the RAM that is used by BASIC. So much of this memory, at the top end
of RAM, is placed on one side for what is called SYSTEM WORKSPACE,
which is the area of RAM used by the computer as ‘'scrap paper'. More
will be said about this later. The rest of the RAM is made available for the
text of the BASIC program and any variable generated by the program
when it is running. You will note that VRAM never appears as part of the
slot structure, as it can only be accessed directly by the VDP.

172

We'll now look at the IN/OUT map of the MSX computer - that is,
how the 256 locations that can be accessed by the OUT and INP com-
mands discussed in Chapter 9 are arranged and allocated to various
devices. The I/O locations that are listed below are those given in the MSX
specification; they were all correct for my particular machine, but they
may differ if some manufacturers decide to change the map around at all.

Locations &H@0 to &H80. Not used in the current MSX specification.

Locations &H80 to &H88. These locations are used to control the RS232

interface fitted to some MSX computers. As this is not fitted to all
machines, | will not comment on it further.

Locations &H90 to &H91. Control the printer interface, and are thus
used by the BASIC commands LLIST and LPRINT, They are of little use
unless you plan writing a machine code routine that directly controls the
printer via this port. If so, then when you read location &H90, bit 1 indi-
cates whether or not the printer is busy. Writing to this location sends a

strobe pulse to the printer. Writing to location &H91 will write the data to
the printer.

Locations &HAO to &HA2. These locations enable us to directly control
the PSG through INP and OUT commands. The true value of these loca-
tions is seen when we are writing machine code programs, where the
PSG can be controlled by the Z-80 IN and OUT instructions. However, it is
possible to use these locations in BASIC, as we shall now see. The princi-
ples shown here will be of equal value, however, when you come to write
to the PSG in machine code programs.

Location &HAO is called the ADDRESS LATCH of the PSG. To write
avalueto a particular PSG register, we use an OUT command to place the
register number in this location. For example, to write a value to the chan-
nel 1 amplitude control register, register 8, we would first of all write the
value 8 to this location.

Location &HA1 is the DATA WRITE register for the PSG, and is used
when we want to write data to a PSG register. After setting the register
number up in location &HAQ, we write the data that we want to put in that
register to this location. Thus to write the value 15 to PSG register 8, we
could use the commands below.

10 OUT &HAO0,8
20 OUT &HA1,15

173

Locabon &HA2 s called the PSG DATA READ register, and is used to read
data back from the PSG registers. This is a facility that is missing from the
BASIC sound commands. To read, for example, the current contents of
PSG regsster 8, the lines below of text are used. This prints the contents of
the register specified in the PSG Address Latch.

10 OUT &HA0.8
20 PRINT INP(&HA2)

Thes is obwviously quite a useful feature, enabling us to find out at any time
the contents of PSG registers. It also enables us to directly access the two
input/output registers in the PSG that are not normally accessible.

Locations &H98 to &H99. These two locations enable the programmer
to directly access the VOP without using the VDP command. Again, it is of
most use to the machine code programmer. They also enable us to
dwrectly access VRAM locations without using VPOKE or VPEEK.

Again, the exact locations that these two addresses are placed at
may vary from machine to machine. However, in this particular example,
the locations in the 10 map that correspond to the read and write locations
of the VDP are stored in locations 6 and 7 of the MSX ROM respectively.

To read from the VDP status register, we carry out an input com-
mand from location &H99. Thus the command

PRINT INP(&H99)

from BASIC will read the VDP status register. You are directed to Chapter
6 to see what effect reading the register has on its contents. It is very
important to always read this register before attempting to write data to

the VDP registers. This is to inform the VDP to prepare for a write opera-
bon.

_Nriting to a VOP register is quite straight forward. There are 3
operations invqlved. and these are demonstrated in the routine shown
below. which gives the general method for writing data to a VDP register.

100 dummy = INP(&H99):REM dummy read operation
110 OUT &H99,value:REM byte to be written
120 OUT &H99 (register number + 1 28)

Value is the byte of data that is to be written to the VDP register, and so
should be between @ and 255. The second write operation sends the

174

modified register number to the VDP. As a concrete example, the few lines
below write a value of 18 to VDP register 7.

100 dummy = INP(&H99)
110 OUT &H99,18
120 OUT &H99,135

What gbout accessing the Video RAM via these locations? This is slightly
more involved than accessing the VDP registers, but is still quite easy.

Let's start by writing a value to VRAM. Again, it's good practice to
read the location &H99 before initiating a VRAM write operation. Location
&H99 is then written to twice to send the address in VRAM to which we
wish to write to the VDP. We then send the data byte that is to be written to
that location to 10 address &H98. The effect that writing a particular value
to a particular VRAM address will have in any mode is outlined in Chapter
6. The lines below outline the basic technique for writing a byte to VRAM.

100 dummy = INP(&H99)

110 OUT &H99, VRAM address MOD 256
120 OUT &H99,(VRAM address ¥ 256) + 64
130 OUT &H98,value

Note the manipulation of the VRAM address that is needed. Remember
that the ¥ sign stands for integer division. As a real example, the routine
below will write a value of 65 to VRAM address @. The best mode to
demonstrate this in BASIC is Mode 0, as VRAM address 0 in this mode
corresponds to the first location in the Name Table, and so will show on
the screen.

100 dummy = INP(&H99)
110 OUT &H99,0

120 OUT &H99,64

130 OUT &H98,65

Itis very rarely that we will want to write to just 1 VRAM location; the VDP
takes this into account in that once a VRAM address has been set up in
this way and a byte written to it, the next byte that is written to location
&H98 will be written to the next location in VRAM. Thusin the example that
we've just seen, the next OUT &H98 command, assuming that no other
VDP accesses had been issued, would write a value to location 1 of
VRAM, and so on. This feature, which is called AUTO INCREMENT,
makes it possible for the machine code programmer to write sequences
of bytes to VRAM without having to restate the address each time.

175

Obviously, this feature is only of use if the bytes to be written to VRAM fol-
low each other in memory.

To read a value from VRAM, a similar approach is used. We simply
replace the OUT operation that writes to location &H98 in line 130 with an
INP instruction to read that location. Thus the routine below will read the
value of the byte currently held at VRAM location .

100 dummy = INP(&H99)
110 OUT &H99,0

120 OUT &H99,0

130 PRINT INP(&H98)

Locations &HA8 to &HAB. These locations are mapped on to the PPl
registers, so see Chapter 9 for details.

Locations &HB® to &HB3. Used in some machines to control additional
memory.

Locations &HB8 to &HBB. Used in some machines for light pen control.

That completes this study of the areas of the IO map that are of use
to the MSX programmer; you are advised to remember that although
these addresses are the ones set down in the MSX system specification,
some manufacturers may choose to ignore these guidelines. However,
the access that a knowledge of these addresses gives the machine code
programmer to the various system components is quite useful, and
should not be ignored by anyone programming the MSX computers.

RAM Arrangement

Most of the RAM in the computer is given to BASIC for the storage of
BASIC program and variables. We looked briefly in Chapter 4 at how the
basic program is written in RAM. We will look at this again now, in a little
more detail. We will begin by finding out where the BASIC program is
stored in memory. The easiest way to do this is to evaluate the expression
below;

PRINT 65536-(n* 1024)

where n is the number of k of memory possessed by your machine. For
example, this will return a value of 49152 for a 16k MSX computer. In all

subsequent examples, | will regard the start of the BASIC program as
being at address 49152.

176

Let's look at how a typical, small program is stored in memory.

The program is:

10 REM test

20 PRINT ‘Hello’

30 END

If we use a FOR. . .NEXT loop to PEEK out the values held in RAM from
49152 onwards, then we get the below.

49152
49153
49154

49155
49156

49157
49158-49162
49163
49164
49165
49166-49177

49178
49179

49184
49185

0
12
192

10
)

143

o
26
192

32
192

0
0

start of line 10: this is

a two byte pointer to the start of
line 20

low byte of line number

high byte of line number

token for word REM
text of REM statement
end of line 10

start of line 20:as
forline 10

rest of line 20

start of line 30:as
forline 10

address pointed to by the
pointer at start of line 30

The two numbers at address 49153 and 49154 form a single, 16 bit num-
ber. The address pointed to can be calculated by

PRINT 12 +256*192

and this is found to point to the start of line 20. The next two bytes form the
line number, again held as a 16 bit number with the low, or least signifi-
cant, byte held first. The line number can be calculated by a process simi-
lar to that above. There then follows the text of the line, followed by a zero
to mark the line end. This general pattern is then repeated for each line of

‘/

177

the program until we get to the last one. The add(ess po-med to in this
case. which is held in locations 49178 and 49179, i1s ©. This pair of zeros
at address 49184 and 49185 indicate to the computer that that is the last

line of the BASIC text.

Poking locations 49153 and 49154 with the value zero results in the
computer ‘losing’ the program; this is not, however, the same as the effect
given by the NEW command - the NEW command resets the memory
pointers and FRE(0) returns the value displayed on turn on of the compu-
ter After the two POKESs, FRE(0) returns a value that indicates that the pro-
gram is still present. Poking 49152 with any other value than 0 4res'uns in
the computer being unable to RUN the program, even though it still ksts
after a LIST command.

Variable Storage

After the BASIC program is stored, it can be executed and variable;. are
generated. These are stored in the RAM following the program, of, in the
case of certain string variables, in the String Space allocated by the com-
puter for this use. The below observations were made by PEEKing out the
area of RAM that follows the program, and so | accept full responsibility
for any errors in interpretation that may have arisen here.

String Variables
When the variable was assigned explicitly, eg,
a$ = “abcdefg”’

then the area of memory that holds the variable is as below. It is this area
of memory that is pointed to if you use the VARPTR command.

3 indicates variable type

n$ first letter of variable name

n1$ second letter of name

ke length of string

low address of last point in program

high text where an assignment to this variable

was made. It points to the first letter of the
string constant assigned to the vanable.

The latter address can be evaluated in a similar fashion to the pownter
addresses in the BASIC program text. As an example of its use, in the
example above it would point to the position in the program of the letter ‘a’
at the beginning of the string ‘abcdelg’. .

178

Ifthe assignment within the program is of the form

a$=b$

ther_w the pointer. here will point to the first letter in the string that was
assigned to. b$, if b$ was assigned a value from a string constant in the
program. Itis worth noting at this point that when we typein aline such as

a$="‘MSX’

into a program line, an extra byte is inserted into the line to indicate that an
assignment is being made.

If the assignment is made using the CHR$ command, for example,
a$ =CHR$(65)

then extra bytes are again inserted into the program line indicating that an
assignment is being made. Also, the bytes of the pointer now point to the
area of memory in the String Space where the letters making the string up
are stored. Thus, in the example above the pointer would point to the
memory location holding the letter ‘A’ in String Space. The value returned
by VARPTR(a$) in the above examples is the address of the string length
in the variable table.

String Arrays

The block of memory that holds data about the string array contents is
shown below. | am not sure of the significance of the 4th and 5th bytes of
the table, but they could be indicators to the computer of the fact that this
block of memory represents a string array. One point to note here, that is
also applicable to normal string variables, is that if an assignment is made
while in Direct Mode, then the pointer for the variable concerned points

into String Space.

3 identifier

n$ first character of name

n1$ second character of name

? significance unknown

? significance unknown

dim number of dimensions

elo low byte for the total number of elements
ehi high byte for number of elements

179

len® length of first element in array

addo low byte of address of first element contents
add0Ohi high byte of address of first element
contents

the last three entries are then repeated for
every element of the array.

When we say first element of the array, we mean element 0. So the first ele-
ment of array a$ is a$(0). If the length and address entries for a particular
array element are all set to zero, then it indicates that the element in ques-
tion has not yet been assigned a value.

Integer Variables

These are the simplest numeric variables, and can be useful when we
wish to pass values to and from machine code routines. They are
arranged in memory as shown below.

2 identifier
n$ first character of name
ni$ second character of name

vallow low byte of numeric value
val high high byte of numeric value

The value held by the integer variable can be easily evaluated by the
method below:

PRINT PEEK (val low) + 256 * PEEK(val high)

The other numeric variables are not so easy to use or understand, and |
shall not go into great detail here about them.

Real Variables

There are two types of Real Variable, the Single Precision and the Double
Precision variables. They are very similar in the way in which they are
stored by the computer.

8 identifier

n$ first character of name
ni$ second character of name
exp exponent (see below)

180

mantissa A 4 byte mantissa for the Single Precision
variables, the least significant byte being
the last byte in the table.

A 7 byte mantissa for Double Precision

_variables, again with the least significant
byte of the mantissa being the last byte in
the table.

The exponent of the number is stored in coded form, as the expo-
nent +65. Thus an exponent of 1 is stored as 66. If the exponent is nega-
tive, then a further addition is made, negative exponents being
represented by adding 128 to the value that would represent the positive
exponent of the same magnitude.

Integer Arrays
These are similar in structure to the string arrays, as shown below.
2 identifier
n$ first character of name
n1$ second character of name
['4 significance unknown
? significance unknown
dims number of dimensions
elo low byte of number of elements
ehi high byte of number of elements

eled low low byte of element @
ele® high high byte of elements 0

repeated for rest of array elements, at two
bytes per integer entry.

Real Arrays

These are arranged in a similar fashion to the Integer Arrays, but with an
identifier of 8 and either Single or Double Precision numbers as the array
elements. The structure of the array elements is the same as that for
ordinary Real Numbers.

System Workspace

The MSX computer is a very complicated computer, and needs to utilise
some RAM for housekeeping purposes. The RAM that is used by the MSX

181

ROM is called System Workspace, and this is why on entering BASIC on
your machine you never have as much memory for your BASIC programs
as you think you should. Before allowing you to type in your programs, the
computer ensures that it has enough space to perform its own tasks
before trying to run your programs.

In this section | will make a brief mention of a couple of areas of
memory that may be useful to you in your MSX programming. It is
obviously not a comprehensive view of the system, but will give a few
pointers to what the System Workspace takes care of. If you wish to look at
this area, then a simple program can be written that will enable you to dis-
play blocks of, say, 20 bytes on the screen at once, so that you can see if
any of the bytes alter their value with time, for example, the program
below is a simple means of examining any block of memory in this way.
Press any key after the first 20 bytes have been displayed to see them
again. Any bytes that are changing in value will thus become apparent. To
type in a new start value, simply rerun the program.

10 INPUT start

20 FOR | = start TO start + 20
30 PRINT I; * ";:J=PEEK(!)
49 PRINT J;

50 IFJ>31 AND J<127 THEN PRINT CHR$(J) ELSE
PRINT

55 NEXT |
60 1$ = INPUT$(1):CLS:GOTO 20

The System Workspace consists of all the addresses in RAM above
address 62336, and so you should be very careful in POKEing values into
this region of memory.

Soft Key Definitions

The strings held in the function keys are stored in the System Workspace
from address 63615 to address 63774, Thus it is possible to alter the
strings held in the keys by directly accessing the memory. It is also possi-

ble to store key definitions to tape using BSAVE, once these addresses
are known.

Input Buffer

The area of memory from location 64496 to 64576 appears to be used by

the computer to keep a record of incoming key presses. This area of
memory is called the Input Buffer.

182

Start of RAM

The start of RAM to be used by BASIC appears to be held in locations
64584 and 64585. Thus the start of available RAM can be calculated
using

PRINT PEEK(64584) + 256 * PEEK(64585)

Start of System Workspace

This appears to be held in locations 64586 and 64587. The start of the
Workspace can be calculated in a similar fashion to the start of RAM.

TIME counter

64670 and 64671 hold the variable TIME, which is regularly incremented.
Thus setting these two locations to zero will have the same effect as set-
ting TIME to 0 via a statement such as

TIME=0

This is obviously a useful ability from machine code, enabling us to set
TIME from within machine code programs.

These are the areas of the System Workspace that are of most use
to the BASIC programmer. In the next Chapter we'll examine a couple of
sample BASIC routines which may be of interest, and then go on to dis-

cuss BASIC programming practice.

183

|

BASIC Style and
Sample Routines

The role of this Chapter is twofold; firstly to introduce some simple but use-
ful routines for you to use in your programs, and secondly to outline the
techniques involved in writing BASIC programs that are as readable and
error free as possible. This may not seem terribly important to you at the
moment, but should you ever be in the position of returning to a program
written some months previously that has suddenly developed problems,
then you will come to appreciate the readability of your programs.

However, we'll start by looking at a couple of sample routines that |
have found useful. The first of these overcomes an annoying feature of the
MSX machines - their return to a text mode from a graphics mode
whenever an INPUT instruction is executed. If there are graphics on the
screen, this can be extremely annoying! The routine is based upon the
techniques that we first looked at in Chapter 6.

185

General Purpose Input Routine

This subroutine requires a few variables to be set up
These are as follows.

before it is called.

BAC background colour required

FC foreground colour required

XY position on graphics screen at which you
wish the input to occur

L Length of string to be accepted

The last parameter is the length of the longest string that the routine will
accept as input. This version only accepts upper casé letters being typed
in from the keyboard, butit can be modified to accept other characters by
modifying line 1030 of the subroutine. Also, you cannot type return to
leave the routine; some characters have to be typed in first. If you make a
mistake while typing in the text then use BS to delete the wrong letters. On
leaving the routine, A$ holds the string that has been typed in. As an
example of a modification, you could alter the subroutine to accept num-
bers by altering line 1030 to read;

1030 IF (G<47 ORG>57) AND G< >13 AND
G< >8 THEN GOTO 1020

The string will now be made up of numbers containing the digits @to0 9. To
convert this into a numeric value, simply use the VAL command.

1000 REM input subroutine

1010 OPEN “GRP:" AS # 1

1015A8=""

1020 G$ = INPUT$(1):FL=0

1025 G = ASC(G9)

1030 IF (G< 65 ORG>96) AND G< >32 AND
G<>13ANDG< >8 THEN GOTO 1020

1035IFG =8AND A% = “ "THEN GOTO 1015

1M45IFG=8THENFL =1

1050 IF G = 13 AND A$ = “ " THEN GOTO 1050

1060 IF G=13 THEN CLOSE#1:RETURN

1070IF FL=0 THEN A$ =A%+ G$

1080 IF FL =1 THEN
C$=MID$(AS,1,LEN(AS)-1):PRESET(X.Y):
COLOR BAC:PRINT#1,A$:COLOR FC:
PRESET(X,Y):PRINT#1,C$,:A$=C$

1090 A$ = LEFT$(AS,L):PRESET(X.Y):
PRINT#1,A$:GOTO 1020

186

R I

This routine can, of course, be modified for use in the text modes, where it
still offers many advantages over the usual INPUT statements, as it does
away with the possibility of users typing in numbers when strings are
expected and vice versa The program below will provide a demonstra-
tion of the routine above. It assumes that you've typed the routine in at line
1000, as above If you do want 10 put the routine elsewhere in memory,
then simply alter the line numbers in the GOTO statements

10BAC=4FC=15L=5X=100Y = 100
20 SCREEN 3

30 GOSUB 1000

40 PRINT AS

50 END

Detecting specific keys

The routine below offers the programmer a general purpose method of
checking for the user pressing a specific key. The RETURN and SPACE
keys are often used to control the flow of a program; this routine will
enable the programmer to have one routine to check for all legal keys. On
entry to this routine, the variable TEST$ should hold all the letters that are
legal at that point in the program. Upper and lower case letters should be
included in the string. If characters such as that produced by the
RETURN key are to be tested for then they can be put into TEST$ using
the CHR$() command. eg,

TESTS = “AaBbCc"” + CHR$(13)

On return from the routine, the variable PS holds the position, within
TESTS, of the key that was pressed. The routine is not returned from until
alegal key is pressed.

1000 REM key test routine

1010 G$ = INPUTS$(1)

1020 IF INSTR(TEST$,G$) = 0 THEN GOTO 1010
1030 PS = INSTR(TEST$.G$)

1040 RETURN

As a demonstration of its use, try the program below, which will test for the
letters Y or N, in upper or lower case.

10 TESTS = "YyNn"
20 GOSUB 1000
30 IF PS> 2 THEN PRINT ‘No’ ELSE PRINT "Yes'

40 GOTO 20

187

Saving Display Screens

The following routines will enable you to save various sections of the
Video RAM to tape, and then to reload them back into VRAM. Obviously, if
you save the appropriate areas, it is possible to save the image currently
onthe screen. Thisis of particular use if the screen image has taken along
time to draw.

Two methods are outlined here; one, the one using PRINT#, will
work on all MSX micros and will save all screen modes completely,
However, it is rather slow. The second, which uses BSAVE, requires an
area of memory equal in size to the largest area of VRAM to be saved to
be set up as a buffer in normal memory. Although it is faster, this method
can cause problems in the graphics modes on MSX computers with only
16k of memory. However, if you don’t want to save the whole of VRAM,
but just part of it, then either method can be used.

As an example, we will save the Mode @ screen to tape, using these
two methods in turn. Note that if you want to speed up either technique,

you can switch the Tape Speed to 2400 baud for the write operation. See
Chapter 4 for details.

The first routine, using PRINT#, takes 1 minute 20 seconds to write
the Mode @ Name Table and Pattern Table to tape.

1000 REM save screen

1010 NM% = BASE(0)

1020 PM% = BASE(2)

1030 OPEN “"SCREEN" FOR QUTPUT AS#1
1040 FOR 1% = NM% TO NM% + 959

1050 C% = VPEEK(1%):PRINT#1 ,CHR$(C%);
1060 NEXT

1070 FOR 1% = PM% TO PM% + 2047

1080 C% = VPEEK(1%):PRINT#1 ,CHR$(C%);
1090 NEXT:CLOSE#1

1100 RETURN

Thi§ routine, when called, will save the areas of the VRAM that serve to
define the Mode 0 screen. For it to be useful, therefore, itis a good idea to

188

call it from the program while Mode 0 is in use and the screen to be saved
is displayed!

As to reloading it back in, the routine below will perform this task.

2000 REM loading screen for Mode 0

2010 NM% = BASE(0):PM% = BASE(2)

2020 OPEN "“SCREEN" FOR INPUT AS#1
2030 FOR 1% = NM% TO NM% + 959

2040 A$ =INPUTS$(1,#1):VPOKE 1%,ASC(A$)
2050 NEXT

2060 FOR 1% = PM% TO PM% + 2047

2070 AS = INPUTS$(1,#1):VPOKE 19%,ASC(A$)
2080 NEXT

2090 CLOSE #1:RETURN

When you want to call this routine, first put the computer into screen
Mode 0.

The second method, as already explained, transfers the contents of
the VRAM of interest to a block of normal RAM, and then uses the BSAVE
command to save the RAM. This method is faster, as less writing to tape is
involved, but it has higher requirements in terms of memory, especially if
you are saving Mode 2 screens.

The program below demonstrates the principles involved. There is
nothing to stop you writing this as a subroutine, but if you do you are
advised to execute the CLEAR command in line 10 at the beginning of the

program.

10 CLEAR 200,54999

20 J = 55000

30 FOR 1% = BASE(0) TO BASE(0) + 959
40 POKE J,VPEEK(1%)

50J=J+ 1:NEXT

60 J = 56000
70 FOR 1% = BASE(2) TO BASE(2) + 2047

80 POKE J, VPEEK(I%)
90 J=J+ 1:NEXT
100 BSAVE “SCREEN" ,55000,59000

110 END

189

To reload this screen, we use BLOAD instead of INPUT$. Again use the
reload routine in Mode 0.

10 CLEAR 200,54999
20 SCREEN 0:BLOAD “SCREEN"
30 J = 55000:FOR 1% = BASE(0) TO
BASE(0) + 959:VPOKE 1%, PEEK(J)
40 NEXT
50 J = 56000:FOR 1% = BASE(2) TO BASE(2) + 2047
60 VPOKE 1%, PEEK(J)
70 NEXT
80 END

If you use these routines for transferring other areas of VRAM, for exam-
ple. the Mode 2 pattern Table, then ensure that you make a large enough
buffer in normal RAM, as if you don't, you could accidentally overwrite
part of the System Workspace. Any part of VRAM can be transferred to
tape in this fashion. One particular use is the saving of Mode @ and Mode
1 character sets to tape by saving the appropriate Pattern Table. Or, we
could save the Sprite Pattern Table to tape, thus saving the Sprite defini-
tions for a particular program.

Programming Style

Anyone can write a small program with very little planning; however, as
soon as you begin to write large BASIC programs you can encounter pro-
blems due to lack of planning of the program. In this section of the Chap-
ter, | hope to outline a few techniques that may help you write programs
that are error free, efficient and easy to alter and amend.

Let’'s begin with program planning. Before turning the computer
on, sit down and analyse the problem into its constituent parts. For exam-
ple, let's suppose we're writing a program to draw a picture of a house.
This problem can be broken down into 4 smaller parts, as below.

i Draw the Walls
i Draw Roof
i Draw Windows
iv. Draw Door

This analysis of a single, fairly large program into 4 smaller ones, in this
case, is known as TOP DOWN analysis. Each of these small problems can
now be dealt with in turn, and we can write a subroutine to do each job. If
the BASIC instructions needed to perform this job look like being quite

190

long, then we can split the task again into smaller portions, and again sub-
routines written to perform these smaller jobs.

This particular method of program design has several advantages
over simply allowing a program to develop at the keyboard. The first is
that each subroutine developed to solve a particular part of the problem
specified can be tested by itself, as we've seen in the demonstration pro-
gram for the input routine. The subroutine can thus be debugged before it
takes its place in the program, and any problems that arise after the rou-
tine has been placed in the program will thus be caused by something
outside the program section that has been placed in the program.

A second point to remember is that if programs are developed
around subroutines performing particular parts of the program, then if
you don’t like the way that that part of the program behaves, you can sim-
ply alter the appropriate subroutine.

Thirdly, after you have written a few programs, you will begin to
accumulate a collection of subroutines for performing certain common

tasks, such as input, or key testing routines, such as those listed at the
start of this Chapter.

When you write your subroutines, start them with a REM statement
that informs you of what the subroutine does, also possibly listing the
variables that the routine needs to work correctly. It is also useful to note in
these REM statements what variables return the results when the pro-
gram control is passed back to the main body of the program from the
subroutine.

Variable Names

We've already noted the ‘rules’ for naming variables in Chapter 3.
However, it is quite important when writing programs that may need to be
altered in the future to use meaningful variable names wherever possible.
For example, if we are using a string variable to hold the name of a file that
is to be written to tape, we could call the variable a$. But it would be much
more informative if the variable was called name$, or file$.

There are problems with this approach; remember that only the first
two letters of a variable name are relevant. If you don't, then you can
come up against some very confusing program bugs.

191

GOTO’s

The GOTO command is quite useful, but overuse of it can lead 1o an incre-
dibly complicated mess! If you are trying 1o read a computer program that
has GOTO instructions causing program control to pass around the pro-
gram every 5th or 6th line, then you will soon get tired.

Always try to restrict the use of GOTO instructions in your pro-
grams. They are necessary; there is no way in MSX BASIC that you can
totally eliminate the use of GOTO'’s. But you can make programs that use
GOTO instructions more readable. | try and keep the destination line of 2
GOTO command within 6 or 7 lines of the command:; this is quite easy if
we've already split the program into subroutines via a Top Down pro-
grammijng approach.

Other things that help make the program more readable include
putting the loop control variable after a NEXT command, especally if the
FOR is several lines distant, or if nested FOR...NEXT loops are in use.

Areas of the Program

When | write a program, it can be split into several distinct areas of code.
The first few lines | call the BODY of the program:; this often consists of little
more than a series of subroutine calls, as shown below.

10 GOSUB 1000:REM initialise functions
20 GOSUB 2000:REM set up variables

30 GOSUB 3000:REM set up screen

40 GOSUB 6000:REM play game

50 GOSUB 7000:REM new game wanted?
60 IF answer$ = ‘'YES' THEN GOTO 40
7O0END

The program would then continue with the subroutine definitions from line

1000 onwards. | separate these two areas of the program by using a
blank line except for a . Thus

100 :
leaves a blank line within a program. After the main subroutines. which
are those called by the body of the program, | define the subroutines that

are called within the main subroutines. After the subroutine definitions. |
have the DATA statements that are used by the program.

192

MSX Machine Code

The Z-80 CPU that is at the heart of the MSX computers is controlled by
the program that is contained in the MSX ROM. This program is written in
a coded form, called Machine Code. These machine code instructions
are the only things that the Z-80 CPU can understand, and when we type
in a BASIC program and RUN it, the BASIC program is executed as a
series of machine code routines. There are, in total, aimost 700 different
instructions that the Z-80 CPU can carry out, and so it is obvious that this
Chapter can do no more than provide an overview of machine code pro-
gramming on the Z-80. What will be done in this Chapter, however, is to
look at specific points about machine code programming on the Z-80 in
the MSX computers.

Let's begin, therefore, by suggesting a couple of books that will go
into Z-80 programming in detail. My personal favourites are ‘Z-80
Assembly Language Programming’ by Lance A. Leventhal and ‘Z-80
Microprocessor Programming and Interfacing’, Book 1 by Nichols,
Nichols and Rony. The only problem with the latter of these two works is
that it is a book aimed at a particular machine. However, the principles

193

.

r————————————————— S B

and explanations given are well worth looking at. Of these, | would sug-
gest the latter to the absolute beginner.

So, on with the Z-80. The best way to start with the processor is the
Program Counter, a 16 bit register that enables the CPU to keep track of
what part of a machine code program it is executing at that time. When
the computer is first turned on, the PC is set to a value of zero. This causes
the CPU to execute the machine code program that it finds starting at
address 0 in memory, which in the case of the MSX computers is the
ROM. You will remember from Chapter 1 that the CPU gains access to the
memory of the computer by the address bus, and accesses the contents
of a given memory location by means of the data bus. When an instruction
is read from memory, the Z-80 automatically knows if there is data to fol-
low, or if the byte fetched is the first byte of an instruction that consists of
several bytes, and the PC is automatically updated by the correct amount
so that the Z-80 will be able to access the next instruction once it has
executed the current one.

As well as the PC, there are other registers in the CPU. These are
shown in Figure 12.1, and are called the Main Register Set and the
Alternate Register Set.

MAIN REGISTER SET ALTERNATE REGISTER SET
Fids, = o T S N, S e ety
ACCUM A F o PN T U R
o : Pt
1 I |
GENERAL- k- _D_ . E i _j
PURPOSE B (8 | B! | C! I
REGISTERS TR, £ -
H L t HI R
T PRV VS WAL (O A LA
IhéTERHUPT "
VECTOR
VECTOR _ R | REFRESH REGISTER
IX
- INDEX REGISTERS
SP STACK POINTER
PC PROGRAM COUNTER

FIGURE121 REGISTERS OF THE Z80 MICROPROCESSOR

The most import'ant of these registers is probably the A register, or the
accumulator, as it is called. The CPU performs much of its arithmetic on

194

data stored in the accumulator, and there are a wide range of instructions
in the CPU instruction set that access the accumulator. The accumulator
is only large enough to allow numbers between @ and 255 to be present in
it. but the BC, DE and HL registers are each big enough to hold any num-
ber between ® and 65535. These latter registers can also be used as
single registers, each single register being capable of holding a number
between 0 and 255.

The F register is the Flag Register of the CPU; this performs a job
that is similar to that done by the Status Register of the VDP, but here each
bit of the register signals a particular fact about the CPU. The values of the
bits within the Flag register are affected by arithmetic operations, com-
parisons between two bytes of data and other operations.

The IR, IY and IX and SP registers are all fairly specialised regis-
ters, and | will not discuss them here. Anyone wanting to make full use of
the Z-80 CPU should now get hold of a book on the subject, study it, and
apply whatis learnt to the particular case of the MSX computer. The rest of
this Chapter will be about the particular problems of machine code pro-
gramming on the MSX computer. Some machine code routines will be
listed as examples, and the interested reader is advised to work through
them carefully using one of the reference works listed above.

The first problem with regards to machine code programming on
the MSX computers is where to store the code and how to write machine
code programs to the memory.

Storing Machine Code Programs

The most obvious way to store machine code programs on the MSX com-
puters is to use the CLEAR command to set up an area of memory that is
untouched by the BASIC program or variables.

For example, let’s assume that you want to reserve 100 bytes of
RAM in which to place your machine code routines. Use of the CLEAR
command will enable you to set up an area of memory between the end of
the BASIC workspace and the start of the System Workspace. The way to
reserve memory in this way is as follows. First of all, it is useful to know the
normal end of BASIC workspace. On a 16k machine, this is address
61583. You can calculate this by resetting your computer and evaluating
the expression below.

PRINT (start of RAM) + FRE(0)

195

Armed with this knowledge, we use the command below to reserve the
memory.

CLEAR 200,61482

The RAM between 61483 and 61583 is now free for your machine qode
routines, which will be perfectly safe from accidentally being overwritten

by BASIC.

There are not many other places on an MSX computer where it is
feasible to put machine code routines. Other machines have had
machine code stored in rather strange places such as a REM statement in
the first line of the program or as the contents of a string variable.
However, these techniques are a little difficult to apply to the MSX compu-
ters. 8

In the first case, the position of a REM statement as the first line of
the program will be the same for all computers that have the same amount
of memory. However, if the amount of memory possessed by a computer
changes, the position of the REM statement in RAM would alter.

With regards to storing the code in a string variable, the problem of
calculating the position in RAM of the string every time you wish to call the
machine code routine renders this method of code storage inefficient.

Note that it is not possible to store machine code programs in
VRAM. This is because of the fact that the CPU cannot directly access the
Video memory, but has to access it through the Video Display Processor.
If you wished, however, you could store data for use by machine code
programs in unused areas of VRAM. This is, though, a little risky, as .
changing screen mode could easily destroy the data stored. Also, read-
ing this data would be a little slow, as all reads from VRAM would have to
be done through the VDP.

Entering Machine Code Programs

As you will learn from any text on Z-80 machine code programming, a
machine code instruction, such as

LDA,23

which loads the accumulator with the number 23, is represented in
memory as numbers, which are recognised by the CPU as instructions.

196

The command above, for example, is coded as the two numbers
62,23

62 is the number representing the LD A ninstruction, where nis a number
between 0 and 255. 23 is the data item needed for this command.

There are programs available for many home computers that trans-
late the pseudo english instructions such as LD A,23 into the appropriate
numbers. These programs are called ASSEMBLERS, but until one
becomes available for the MSX computer we will have to do the transla-
tion job ourselves. (Or, if we're feeling ambitious, we could write our
own....!) The technique of writing down the Z-80 instructions on paper
and then using a reference book to get the numeric codes for each
instruction, is callgd HAND ASSEMBLY, and is really only suitable for fairly
short programs. Let's look at an example of a Z-80 machine code pro-
gram.

LD A,23
LD (52000),A
RET

The RET instruction at the end of the program is essential to ensure that
control passes back to BASIC after the program has been executed by
the CPU. If it is omitted, then the computer will aimost certainly ‘Crash’.
This is the name given to the result of a machine code program that fails to
work properly. The only way to recover control is to press the RESET but-
ton, but this has the effect of wiping out your program from memory. The
sequence of commands shown here has the same effect as the BASIC

command
POKE 52000,23

The program below will poke the bytes that make up the program into a
particular area of memory. Note how the address 52000 is stored as two
bytes, the least significant byte being poked into RAM first.

10 CLEAR 200,61482

20 FOR1=61483 TO 61488

30 READ N:POKE |,N

40 NEXT

50 DATA 62, 23:REM data for LD A,23

60 DATA 50,32,203:REM data for LD (52000),A
70 DATA 201:REM data for RET

197

The code is now firmly ensconced in a safe area of memory. All ghgt
remains to us to do now is to execute the machine code program. This is
done by using the USR command.

Use of DEFUSR and USR

Although these commands have been previously mentioned, we'll take
another look at them now. Before we can call any machine code program
with a USR call, we must inform the computer of the address of the
machine code in question. Let's assume that we want to call our program
with the USR1 command.

To set the address that we wish the USR1 command to call, we use
a DEFUSR command. The full syntax of the command is

DEFUSR n=integer

where n is a digit between 0 and 9, and integer is a number between @
and 65535 which is the address of the first byte of the machine code pro-
gram that is to be called by the USR n command. As we want to call our
routine with USR 1, n= 1. The start address of the machine code program
is at location 61483, and so the DEFUSR command needed to tell the
computer of the whereabouts of the program to be executed is

DEFUSR 1=61483

This expression must be executed before we try and call the machine
code routine with the corresponding USR call. If we'd wanted to use
another USR call, such as USR 2 to call the routine, then simply replace
the digit 1 with 2.-Note that if you want to call the routine with a USR @
instruction, then the digit is not needed. Thus to call the code with a USR @
instruction,

DEFUSR =61483

would define the address. Also, the number 0 is not required in the USR
call itself.

Once the address has been assigned in this way, then we can use
the USR 1 command to call the routine, as shown below.

PRINT USR1(0)

198

The argument passed over in the brackets of the USR command is in this
case adummy argument, and is ignored by the machine code routine. All
that appears to happen is that the value of the dummy argument is printed
to the screen. However, if we now use the PEEK command to ascertain
the value held in location 52000, it will be found to be 23. The USR com-
mand does not have to be used with the PRINT command; it can be used
as part of a variable assignment. This is particularly useful if the machine
code routine is to return a value to the BASIC program that called it.

L = USR1(0)

is an example of this method of using USR. Although the argument is not
used in this particular application, we will shortly look at how we can make
use of itin our machine code programs.

Passing Parameters

Itis valuable to be able to pass parameters to a user machine code rou-
tine. This means that the values being held in BASIC variables can be
made use of by the machine code routines if required. In the MSX compu-
ters, the value passed over in the brackets of a USR command is placed
at a particular place in memory. The area of memory that holds either the
parameter or information about where the machine code routine can find
the parameter is called the PARAMETER BLOCK. It is in two parts. A
single byte located at address 63075 holds information relating to the
type of parameter passed to the routine - i.e. whether it is integer, real or
string. The rest of the parameter block is located between addresses
63478 and 63485. When you call a USR routine, a value is placed in loca-
tion 63075 relating to the type of variable as follows.

Note that the contents of the parameter block do not appear to
make much sense if you PEEK them out from BASIC. This is not likely to

be a hindrance, however, as we need to access these locations only from
machine code.

Passing Parameters

The parameter passed to a machine code routine for use by that routine

can be of any type: integer, Single or Double Precision or. string. For
example,

L = USR(1%)
L=USR("TEST")
L = USR(3.345#)

are all legal. The various types of parameter are passed as follows.

199

Integers

Location 63075 will hold the value 2. The value of the integer passed over
is stored in the two bytes &HF7F8 and &HF7F9. The value is stored with
the least significant byte in location &HF7F8.

Strings

If a string constant or string variable is passed as a parameter of the USR
routine, then location 63075 will hold the value 3. Locations &HF7F8 and
&HF7F9 hold the address of a STRING DESCRIPTOR, the least signifi-
cant byte of the address being held in &HF7F8.

The String Descriptor is a three byte long block of memory which
holds details about the string. The first byte of the block, which is pointed
to by the value held in &HF7F8 and &HF7F9, is the length of the string
parameter. The next two bytes hold the address of the string being
passed, low byte first.

Single Precision

Location 63075 holds the value 4, and the single precision number is
placed in locations &HF7F6 to &HF7F9.

Double Precision

Location 63075 holds the value 8 on entry to your machine code routine,
and the Double Precision number is placed in locations &HF7F6 to
&HF7FD.

Let's now take a look at a sample machine code routine that
accepts a parameter from BASIC, operates on it, and passes the value
back to BASIC. However, before we do this, we must learn how to pass
values back to BASIC from the machine code routine. One way would be
to leave the result of the machine code routine’s operation in a specific
memory location from which we could PEEK it out. A second method
would be to write the routine so that we use the Parameter Block to trans-
fer the data back to the BASIC program. This method is much more ele-
gant, and so we’ll look at this method now.

Returning Values

Normally, unless we specify otherwise, the value returned by a USR call is
the value, be it string or numeric, that was pased over to the machine
code routine in the brackets of the USR command. However, by suitable

200

v

instructions in the machine code routine it is possible to return a value
calculated by the machine code routine.

Integers

Toreturn aninteger value to BASIC, set location 63075 to hold the value 2.
Then write the integer value to locations &HF7F8 and &HF7F9, putting
the low byte of the number to be returned in location &HF7F8.

Strings
Set location 63075 to hold the value 3. Then set locations &HF7F8 and
&HF7F9 to point to a String Descriptor block somewhere in memory. The

String Descriptor block used here has the same structure as that for pass-
ing parameters to machine code routines.

Single Precision

Setlocation 63075 to hold the value 4, and put the bytes that make up the
number into locations &HF7F6 to &HF7F9.

Double Precision \

Set location 63075 to hold the value 8, and then put the bytes that make
up the number into locations &HF7F6 to &HF7FD.

On return from the machine code routine, the parameter set up by
any of the above methods in your routine will be returned instead of the
argument that you passed over to the routine. Note that it is possible to get
Type Mismatch errors if you configure your machine code to return a
string value and you call the machine code routine using a command, say,
like

100 LET L = USR(0)

Let's examine a routine that accepts a parameter passed over in a USR
statement and returns an integer value, after first adding 30 to the value
passed over to it. It expects an integer to be passed to it.

LD HL,(&HF7F8) 42,248,247
LD DE,30 17,0,30
ADD HL,DE 25

LD (&HF7F8), HL 34,248,247

LDA2 62,2
LD (63075),A 50,99,246
RET 201

201

Thefirst line of this program loads the integer passed over to the routine in
the USR command. The next two lines then add 30 to the integer passed
over, and the next 3 lines place the modified argument in position for the
return to BASIC and set location 63075 to signal that an integer value is to
be passed back. The numbers to the right of the listing are the numbers
representing the instructions. Poke them into an appropriate area of
memory, and then set a USR call to that address, e.g.

DEFUSR1=61483
This statement
PRINT USR1(45)
would then return to the value 75, which would be printed to the screen.

This ability, to return values from machine code routines to BASIC
programs, is rather useful, as it enables the programmer to write routines
to perform tasks that would be slow in BASIC or not feasible, but still main-

tain the use of BASIC variables for getting data to the machine code rou-
tine.

Accessing other Devices

We have already seen how we can improve our programming of the MSX
computer by direct access of devices such as the Programmable Sound
Generator and the Video Display Processor. We've already seen how we
can directly modify the contents of PSG and VDP registers by accessing
the IN/OUT map of the computer using the BASIC INP and OQUT instruc-
tions. This was described in Chapter 10, where we also saw how to
directly modify the contents of Video memory using the VDP

Not surprisingly, we can perform a similar task from machine code
by using the Z-80 commands that directly use the IN/OUT map of the
CPU. Anyone wishing to use these devices from within machine code
programs is advised to read the relevant Chapter, as the techniques for
controlling the behaviour of the VDP, say, by altering the register contents,

will remain the same whether we alter the register in BASIC or machine
code.

No particular problems will be encountered in writing values to the
PSG or the PPI. The command

OUTn,A

202

can be used from Z-80 machine code, writing the contents of the accumu-
lator to I/O location n. Further details of the command will be given in
either of the reference works mentioned at the start of the chapter. To read
a value from a particular I/0 location, the command

INA,n

can be used, which will read a value from I/O location n and placeitinthe
accumulator. The methods used for reading the ports and writing to the |/
O ports for each device will be the same as outlined in Chapter 10.

When it comes to direct access of the VDP from machine code, the
guidelines mentioned in Chapter 10 should be followed, especially with
respect to reading the status register before writing to the VDP. The only
problem with accessing the VDP from machine code is one of timing. We
cannot write values to the VDP registers at a frequency of more than once
per 4.3 milliseconds. Thus, it may be necessary for you to put time delay

loops into your machine code programs to ensure that you write to the VDP
no more often than this. '

Apart from this, the VDP can be accessed in an analogous fashion
to the way in which it was accessed in Chapter 10. It is in machine code
access to the Video RAM that the auto increment feature becomes valu-
able; once an address has been written to the VDP, repeated OUT instruc-
tions can be used to send other bytes to the VRAM, the location to which
the data byte is written being incremented each time. This makes data
transfer between the CPU and the VRAM easier, as we only need to set
the address up once. Itis, obviously, of no use if the locations to be written
to in the Video RAM are non-contiguous.

Hooks

No, this is not about fishing. A HOOK is a means by which the MSX pro-
grammer can modify the behaviour of the computer when it is actually
running the MSX ROM routine. These feat is achieved by virtue of the fact
that various routines in the ROM call, at some point in their éxecution, a
location in RAM. As an example, the routine that is executed each time
there is a VDP interrupt calls a RAM routine at address &HFD9A. Inspec-
tion of this location shows it to contain a RET statement, and so normally
the call to this address has no effect at all. This location, and the 4 bytes
following it, form a Hook SERVICE BLOCK, and on reset or turn on are all
set to hold the value 201, which is the code for RET. The way we modify
the behaviour of the ROM routine is to place a suitable CALL or JP instruc-

203

tion at the address to which the ROM routine jumps. An example of this is
shown below.

CALL 52000
RET
RET

The CALL command occupies the first three bytes of the Service block,

and the two RET statements are’ already occupying the remaining bytes
of the block.

The effect of this routine is to cause a jump to the subroutine at loca-
tion 52000 to be made every time an interrupt occurs. If you try this,
please set up the subroutine at location 52000, or wherever you decide to
put the Hook Service routine, before you change the Service Block to

point to it. If you don’t do this, then the result will almost certainly be an
immediate crash of the computer.

That completes this review of the special knowledge that is useful
when programming on the MSX computers in machine code. Use the
books mentioned to develop your machine code programming skills, and
practice them by writing small routines first. Don’t be too ambitious; MSX
BASIC is an extremely powerful implementation of the language, and
much can be accomplished in it without recourse to machine code.

204

Appendix
Number Systems

Counting is an automatic act for most of us, but when we write down the
number 234, what do we actually mean? To be able to understand this
method of writing down numbers it is necessary to first examine the whole
business of counting — a process that is almost intuitive to us.

The first thing to note is that the number is written in columns, across
the page from left to right. These columns are not all of the same
significance to the value of the number. Let's examine a typical whole
number: 234. We say that the rightmost column in such a number is called
the UNITS column, and in this column we count in what are called DIGITS.
In our system of counting, based on 10 digits and hence called the
decimal or DENARY system, the digits are 0,1,2,3,4,5,6,7,8 and 9.

In any system of counting the number of digits available has a special
name—the RADIX or BASE of the system. Thus, with the 10 digits of the
decimal system, we have a base of 10, as 10 different digits can appear in
the units column. The process of counting in units is simply one of
stepping through the available digits in the correct order. So, for the

205

decimal system, we step through the digits @ to 9 in that sequence.
However, what happens when we've gone through them all?

In more specific terms, what happens when we get to 9 in base 10,
and another count occurs? Well, the units column is set back to zero, and
we move a count over to the next column on the left. The count that is
moved over is called the CARRY. Each count in the column to the left of the
units column differs from the last count in that column by the radix of the
number system. In the decimal system the radix is 10 and this column is
thus called the tens column. Counting then proceeds in the units column
until the next carry is generated and a count is added to the tens column.
Similarly, once we reach 9 in the tens column, a carry is generated to the
next column to the left, in which counts differ from each other by the radix
multiplied by itself. In the decimal system this is equal to 100, and so we
call the column to the left of the tens column in the decimal system the
hundreds column. If we apply this information to the number 234, then we
see that we have 4 units, 3 tens and 2 hundreds. Each count in the units
column increases the value of the number by one, each count in the tens
column by ten and each count in the hundreds column by one hundred.

However, there are number systems other than this decimal system.
The Babylonians used a base 60 system, whence derives our methods of
measuring time and angles. A relic of a base 12 system is used by people
who still measure in feet and inches, there being 12 inches to 1 foot. This
system of measuring also makes use of base 3, as there are 3 feet to the
yard. In any of these number systems, no matter what the base, each
countin the column to the left of the units column increases the value of the
number by the radix of the number system.

If computers worked in base 10 then we would have no reason to
bother about number bases other than 10. However, owing to the fact that
itis easier to build electronic circuits that detect either the presence or the
absence of a signal rather than circuits able to differentiate 10 separate
signal levels, computers work in base 2. Your MSX really recognises 2
digits only, @ and 1, and it recognises these as voltage levels on its internal
wiring. These digits are represented by a +5 volt signal forthe digit 1 and a
@ volt signal for the digit 0. This number system with a base of 2 is called

the BINARY system. So, armed with the digits @ and 1, how do we count in
binary?

.Well, instead of the units, tens and hundreds that we have in the
de_acnmal system, we have units, twos and fours in binary. When we have a
1ina column, and a further count occurs, we generate a carry to the next
column and replace the one with a zero. The carry goes to the column to

206

the left of the one being added to. Thus the process of counting in binary is
entirely analogous to that of counting in decimal.

As a general rule in counting we say that the any column has less
significance to the value of the number than the column to its left. Thatis, a
count in the units column adds less to the value of a number than does a
count in the tens column.

In whole numbers, therefore, the units column holds what is called the
LEAST SIGNIFICANT FIGURE and the column furthest to the right holds
what is called the MOST SIGNIFICANT FIGURE of the number. The table

shows the effects of counting in binary (the subscripts show the radix or
base):

e 0001,
- 0010,
S 0011,
444 0100,

Note that the leading zeros make no difference to the value of the number
If we analyse one of these binary numbers, say 0011, then we can see that
we have one unit and one two. This gives us the value of 3 for the number
in decimal. If we add on a further count, then we generate a carry from the
units to the twos column, placing zero in the units column. However, the
twos column already has a 1 in it and so we must generate another carry
from the twos column to the fours column, placing a zero in the twos
column. Thus, we get @100, or 4 in decimal. If we disregard the first zero,
which makes no difference to the value of the number any way, we see that
to represent the number 4 in binary takes three digits, as opposed to only
one digit in decimal. In the decimal system, the largest number we can
show with three digits is 999, whereas in binary the largest number we can
show in three digits is 111, or 7 in decimal.

This gives us another general rule about numbeg systems: as we
decrease the number of digits available, the value of the largest number
that can be represented in a given number of digits also decreases.
Conversely, by increasing the number of digits available we can increase
the value of the largest number that can be shown in a given number of
digits. As the radix is the number of different digits in a number system, the
value of the largest number that can be shown in a given number of digits
depends upon the radix of the number system.

So far we have dealt with the way a number is made up, apd we_\r.e
looked briefly at the binary system. As our computers work in binary, it's

207

now time to have a look in greater detail at the binary system, and how we
can perform simple arithmetic in this number system.

Binary Arithmetic

The simplest arithmetic operation in the decimal system is addition, as it
can be seen as an extension of the processes that we go through when we
are counting. Let's look at the process of addition in. binary by first
examining the addition of 1 to @010. This addition is a stralght-forwarq act
of counting, but we'll go through the normal processes of perforrr'n'ng a
binary addition. Firstly, we put the figures down so that the least significant
digits of each number line up as shown below.

0010
0001

If we ever encounter a lone number, like the 1 in the example above, we
assume that it is a unit unless we are specifically told otherwise. Similarily,
the binary number 10 would be assumed to be @ in the units column and 1
inthe two’s column. When performing addition, in any number system, we
always start at the least significant figure and work our way across from
right to left.

Thus, in the above example, we start by adding the 1 to the 0 in the
units column. This gives us the value of 1 in the units column, and nothing
to carry over to the twos column. This gives us the situation below.

0010
0001

1

We now add together the digits in the twos column. In this case we add
together 1 and 0. If there was no number in the twos column of one of the
numbers involved in the addition problem, then we would simply assume
that it was a zero, as we have done in this example. Again, this gives a
value of 1 to place in the twos column and no carry, giving us the situation
below.

0010
0001

0011

Wg could now go on to add the digits in the fours column, but there is no
point as all the rest of the digits are zeros.

208

R

Thus we have a result of @011 in binary. Let's now examine some more
binary numbers, and then attempt some more additions. Note the fact that
we need 4 digits to show binary numbers between 8 and 15. The new
column that we use is called the eights column.

Decimal Binary

0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001
10 1010
1 1011
12 1100
13 1101
14 1110
15 1111

Let us now consider the addition of @110 to @111. In this problem, we can
examine what happens in addition when a carry is generated.

0110
0111
Carry

0001

Above, we can see the result of adding together the two units columns. No
carry is generated. Let's now go on to the twos column.

0110
0111
Carry 1

—

0001

The carry is generated and a zero placed in the twos column. Now, on to
the fours column. First of all, we add together the digits in the fours column
ignoring the carry from the twos column. This givesus 1 + 1 =0carry 1
Now add the carry. This gives us 1 from the carry from the twos column

209

added to the zero generated by the addition of the digits in the fours
column. Thus, we get the result below.

0110
0111
Carry 11

0101

Now we move on to the eights column. Although there are zeros in this
column in both the figures that we are adding together, we still have to
consider the carry that was generated from the addition in the fours
column. Simply add the carry to zero:

0110
0111
Carry 11

1101

Thus the sum s completed. If we try to add together 1111 and 0001 then we
generate a whole series of carry digits.

1111

0001
Carry 1

0000

Now we have:;

111

0001
Carry 11

0000

This eventually results in the carry going into the fifth column from the right,
which in binary is called the sixteens column. Although we have only got 4
digits in the two numbers that we are adding, we assume the existence of
zeros ahead in the sixteens column in both these numbers.

01111
00001
Carry 1111

—_—

10000

210

Thus the result of this addition is 16, as we have no units, twos, fours or
eights but 1 sixteen. This indicates that by simple examination of the
binary numbers we can work out the highest value number that we can
represent in a given number of digits.

With four binary digits, the highest representable number is 15, and
with three binary digits, the highest representable number is 7. Try it for
yourself. With five digits, the highest number will be the one that has all the
digits in it set to 1. This would give

1*6)+(1*8)+(1*4)+(1*2)+(1"1) =31

The largest number that can be represented in a five-digit binary number
is thus 31. Examination shows us that in the binary system the largest
number that can be represented in digits is

on 1

Putting this into English, the largest number representable is 1 less than 2
multiplied by itself n times. As a test of this general statement, let us put
some values of n into the equation and see what we get. For n = 2,
2 multiplied by itself twice is 4. Thus the highest number that is
representable in two digits is 4 —1, or 3. To test this, let us count out the
possible numbers with two binary digits in them, writing them down as we

go:

Binary Decimal

00 0
01 1
10 2
11 3

To count any further than this, i.e. to add another unit, would generate a
carry to the fours column, requiring a third digit. Thus, the rule is upheld.
This simple rule can be shown to be true for any number system, and we
can write the equation in @ more general form as

x = R" -1

where x is the largest number that can be represented in a given number
of digits, n is the number of digits and R is the radix of the number system
in use. If we test this for base 10 and two digits, then we get a maximum
value of 10 * 10) —1 or 99, which is correct. To go any higher, i.e. t0
represent the number 100, we need three digits.

211

Before we go any further with binary arithm_etir_:, it is necessary to
bring in a few terms that are commonly used in this field and that you will
certainly meet in machine code programming. The phrase bl_nary digit is
quite a mouthful and has been replaced in common usage with the word

BIT. This comes from Binary DiglIT.

Just as we have the most and least significant digits in a number in
any number system, we can have the most and least significant bits in a
binary number. When talking iri bits, it is not really necessary to quote the
number base in which you are working, it has to be binary. The Least
Significant Bit of a binary number is usually called the LSB for con-
venience. Similarly, the Most Significant Bit is called the MSB. A carry
digit is called a carry bit. The length of a binary number, in terms of the
number of digits in it is quoted in bits. Thus a 4 bit number has four digits in
it. As the highest value that can be shown in a binary number depends
upon the number of bits available, an 8 bit number has a higher maximum
value than a 4 bit number can have.

After that brief interlude, let us get back to the subject of simple
arithmetic. In the decimal system, numbers may have values between 0
and 1, and between the other whole numbers. Some examples are 0.5,
4.7 and 234.567. These numbers are called REAL numbers, and the
whole numbers are called INTEGER numbers. In decimal, we call the “.” in
the number the DECIMAL POINT. The number to its immediate left is in the
units column, and those numbers to the right of the decimal point are said
to be FRACTIONAL parts of the number. In the decimal system, the first
fractional column is called the tenths column, the next the hundredths and
so on. Thus, the significance of a digit in the number decreases as we go
from the decimal point to the rightmost column of the number. In numbers
with a fractional part, the least significant digit is in the rightmost column
instead of in the units column.

234.567

Thus in the above number, the digit 7 is the least significant digit of the
number, and it represents 7 thousandths of the value of one count in the
units column. Fractions are also possible in the binary system, where we
have a binary point instead of a decimal point. In a binary number with a
fractional part, the column to the right of the point is called the halves
column, the next one to the right is called the quarters column and so on.
We add binary fractions together in exactly the same way that we add
together binary whole numbers, starting at the rightmost column and
working across, generating carry bits when necessary. We can carry a bit

from the halves column across the binary point to the units column if this is
needed.

212

After addition, the most commonly used arithmetic operation is that
of subtraction. This is slightly more involved than the addition of two
numbers, and sowe'll look atitin some detail. It is effectively the reverse of
addition. If we examine the simple binary additions, we can draw up some
rules for subtracting binary numbers.

1+1=10 therefore 10-1=1
14+40=1 therefore 1-1 =0
0+0=0 therefore 0-0 =0

The problems start when we consider the subtraction of 1 from . The way
around this apparent problem is that we “borrow” a digit from the next
most significant column of the number. The significance of the borrowed
digit is that of the column from which itis borrowed, so if we were to borrow
a digit from the twos column, the digit would have a value of 10 and not 1.
This is the exact analogy of what we do in decimal subtraction. To provide
a more concrete example, let us actually do a binary subtraction.

1101
—-0101
Borrow

As usual, let us start in the units column, with the subtraction of 1 from 1.
This gives us 0.

1101
-0101
Borrow 0

0000

Moving on to the twos column, we get the situation below. Again, no
borrows are necessary to do the subtraction.

1101
—-0101
Borrow 00

—

0000

We can now calculate the result from the fours column and the eights
column, and it transpires that in this problem we have no need to borrow
any digits. The result is below.

1101
-0101
Borrow 0000

——

1000

213

We must now look at a subtraction with borrow example in decimal
before we can tackle the borrow problem in binary. In a subtraction such
as 432 — 56, school children are taught to decompose the two numbers

as follows:

432 . . 400 + 30 + 2
_56 is equivalent to 5 50 + 6]

The subtraction proceeds by borrowing a ten from the tens column
for the ones column:

400 + 20 + 12
o | 50 + 6]

We see in the tens column that 50 is greater than 20, so another borrow is
required from the hundreds column:

300 + 120 + 12
~[50 + 6]

The problem is now easily solved . . .

300 + 120 + 12
o | 50 + 6]

300+ 70+ 6

. . . to give the answer of 376.

A similar approach may be used with the following binary
subtraction:

_Eg? IS equivalent to _ 12
0111 7

We now proceed to decompose the two numbers in the binary
subtraction:

1100 . ; 1000 + 100 + 0 + O
IS equivalent to
—p1p1 'S €9 [0+ 100+ 0+ 1]

214

I T Y

As before, borrows are required until the numbers on the bottom row are
smaller than their counterparts on the top row.

The ones column borrows from the twos column; since the twos
column in the top row is already 0, this leaves a value of —10:

1000 + 100 +(-10)+10
- 0+100+ 0+ 1]

The twos column borrows from the fours column to eliminate the —10
value:

1000 + 0+10+10
-[_0+100+ 0+ 1]

The fours column borrows from the eights column to eliminate the @
value:

0+ 1000 + 10 + 10
[0+ 100+ 0+ 1

The subtraction now proceeds . . .

0+ 1000 +10 + 10
-0+ 100+ 0+ 1]

0+ 100+ 10+ 1)

.. . o give an answer of 100 + 10 + 1 which is equivalent to 111 or, in
decimal, 7; Q.E.D! This method of binary subtraction is just as laborious
for computers as it is for humans — is there an easier way?

In decimal arithmetic, subtraction can often generate numbers that
are less than zero. These are called NEGATIVE-NUMBERS, and in decimal
are prefixed by a “—" symbol. They are generated when we subtract a
number from another, smaller number. Negative numbers can also be
generated in binary arithmetic, but we shall represent them using TWOS
COMPLEMENT.

Before we go into the details of where this name comes from., let us
see how we can represent both positive numbers (i.e. those with a value of
greater than zero) and negative numbers in 4 bit twos complement. (The
reason it is essential to quote the number of bits when dealing with twos

215

complement will become quite obvious in a short while.) Note closely what
happens as we pass through zero into the negative numbers:

Decimal Twos complement
7 0111
6 0110
5 0101
4 0100
3 0011
2 0010
1 0001
] 0000

-1 - 1111
-2 1110
-3 1101
-4 1100
-5 1011
-6 1010
-7 1001
-8 1000

We very quickly note several things. In four bits we can usually represent
the numbers 0 to 15, that is, 16 separate numbers with 15 as the highest
value that a 4 bit number can possess. Here, however, we still have 16
different numbers represented but the highest value that can be
represented is 7. Half the codes represent positive whole numbers and
zero, and the other half represent negative whole numbers. The part of the
number that says whether the number is a positive or a negative number is
the MSB of the number. In the preceeding example, it is @ for a positive
number and 1 for a negative number. If we had an 8 bit twos complement
number, the MSB would still indicate whether the number was positive or
negative in exactly the same way.

With regards to the range of numbers that can be represented in a
given number of bits, we can work this out from the equation below.

-2 g x < 2"

This equation gives the range of numbers that can be represented in twos
complement notation in a given number of bits. Thus. if we let n equal 4,
we see that the range is —8 TO +7. This is what we found by examination
above. Thus, if we have been told that a number is in twos complement
format we can tell whether it is positive or negative simply by looking at the
MSB. A further point to note is that a positive number shown in twos

ce_)mplement notation is the same as it is when represented in normal
binary notation.

216

| 20 b i - St e DR T

Being able to represent numbers in this way is extremely important.
First, it allows us to show numbers that have values less than zero, and,
second, it allows us to reduce the process of subtraction, with all its
inherent complexity, to one of addition. This latter feature is very important
to us in the field of computing, as it is easier for computer circuits to do
additionthan subtraction. Let us see how thisworks. By examiningthe list of
twos complement numbers given above, we can see that we have both
negative and positive numbers. In decimal arithmetic, if we add togethera
number and its negative equivalent we get zero.

What happens if we attempt this with twos complement numbers? Let
us try it with 1 and —1 in 4 bit twos complement addition.

0001
+ 9919 + (—1

1 0000 0

~— —

Atfirst glance our result of 1 0000 is certainly NOT equal to zero, and
we know from experience that 1+ (—1) most certainly IS equal to zero! The
first thing to note is that we now have a 5 bit number. Remember earlier it
was stated that the number of bits is very important in twos complement
arithmetic? Well, here is where the importance becomes apparent. We
started off with two 4 bit numbers, and so in twos complement arithmetic
the result should be a 4 bit twos complement number as well. If we
dispose of the MSB, we do in fact end up with zero as our answer! Thus,
using twos complement arithmetic, we have made subtraction as easy to
perform as addition. The disadvantage is, of course, that you need more
bits to represent a given positive number in twos complement than you do
in normal notation. However, this is easily offset by the advantages that
twos complement notation gives us.

So, how do we convert a binary number into twos complement
notation? It is quite a simple operation. The process of COMPLEMENTING
is the first stage, and is a term used to designate the process of replacing
every 1in the number with a @ and every zero in the number with a 1. Thus
the number 1010 when complemented becomes 0101. The second stage
of the operation is simply to add 1 to the number obtained by the

complementing step.

Thus to find the twos complement of 0010, we perform the following
steps.

1. Complement the number; this gives 1101.
2. Add 0001 to the number; this gives 1110

217

That is all there is to getting the twos complement of a binary number.
Once this has been done, we can perform subtraction very easily.

The steps in performing twos complement subtraction of two
numbers are as follows.

1. Find twos complement of first number.

2. Find twos complement of second number.

3. Add the twos complements numbers together.
4. Discard the MSB.

What happens about finding the 4 bit twos complement value of
10007 If we follow the above instructions we get the number 1000. This
cannot be right, as we've ended up with the number that we started with!
Also, the first number, with its MSB set to 1, should give a 4 bit twos
complement that has its MSB set to zero. An examination of the equation
on page 199 gives us the solution to this apparent problem. This equation
shows that it is not possible to represent the number +8 in 4 bit twos
complement notation, and so it is not surprising that we get a funny value
for the twos complement. This problem is called OVERFLOW, and occurs
as the result of a twos complement operation that goes outside the range
of numbers that can be represented in the number of bits in use. This
again indicates the importance of the number of bits in use being
specified for twos complement operations.

When using twos complement notation, not only is it important to
quote the number of bits in the representation, but also that the numbers
are in twos complement notation and not in normal binary. This type of
problem can occur when working with different number bases. How do
we tell what radix we are working in? A technique called SUBSCRIPT
NOTATION is used in which a letter or number follows the number being
considered. For example, 123D and 123, both mean 123 decimal.

Addition and subtraction are really the only mathematical operations
in the binary system that we need bother about, as the computer
ultimately breaks down all its arithmetic operations into these simple
procedures. Multiplication can be regarded as repeated addition, though
there are other ways of performing binary multiplication in computers that
will be considered later. Similarly, division can be viewed as repeated
subtraction.

There is one more number system that we must examine before
leaving this chapter, and that is a number system with a radix of 16. It is
called the HEXADECIMAL system, and is of vital importance to the
computing field as a means of conveniently representing binary numbers.

218

When we examine a binary number, it makes very little sense to the
human eye but a great deal of sense to the computer. All numbers that we
putinto a computer eventually end up being represented in the computer
as binary digits and it is often useful to have a rough idea of what a number
will look like in binary without having to go through the long-winded
process of writing down a string of @s and 1s. Decimal is not really suitable
for this representation, as there is no way, in normal binary representation,
that you can easily convert a decimal number into a binary number. The
decimal number 7 is easy to visualise, it being a short binary number:
—0111. But what about 42 or 146? These are not at all easily visualised.

However, in the hexadecimal system, base 16, a single digit
represents 4 bits of binary. As it has a base of 16, we will need some more
characters to represent the digits between 9 and 15. We simply use letters
of the alphabet, and so the digits used in the hexadecimal or HEX system
are0,1,2,3,4,5,6,7,8,9 A, B, C, D, EandF Below we can see a binary
representation of all extra digits.

Hexa- Binary
decimal

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
101
1110
1111

MTMOOWDPOONOOTNLELWN=O

Thus, it is easy to see that we can convert from a hexadecimal numberto a
binary number simply by replacing each hexadecimal digit with its
equivalent in binary. The hex number SE can be converted to binary by
simply writing 0101 instead of 5 and 1110 instead of E, giving the binary
number 0101 1110. Addition and subtraction in the hexadecimal system
work on exactly the same lines as they do in the decimal and binary
systems. |

In most microcomputer systems, including the MSX, the numbers are
all represented in 8 bits, giving a maximum possible value of 1111 1111 in
binary or FF in hexadecimal. Hexadecimal numbers can either be written
as FFH, &FF or $FF, depending upon the notation used. A further

219

advantage of hexadecimal is that it enables us to cut down the number of
digits needed to represent an 8 bit number, from three digits in decimal to
two digits in hex. Although the largest number that the computer's central
processor can handle at once is 255, larger numbers can obviously be
represented by various types of internal coding. The 8 bit number has
reached such heights in the computing field that it has been given a name
of it's own, the BYTE. The byte can be further subdivided into two 4 bit
numbers, each of which is prosaically called a NYBBLE.

Finally, what about converting between the number systems that
we've looked at?

We have already considered the conversion between hexadecimal
and binary, so we'll go on to look at the conversion of normal binary
numbers into decimal. If we examine the binary number 0110 then we see
that we have 0 eights, 1 four, 1 two and @ ones. We can find the decimal
value as follows:

@x8)+(1x4) +(1x2) +(1x0) =6

This process can be carried out on any normal binary number. The
reverse of this conversion, decimal to binary, is the most complex
conversion we will deal with. It is essentially a process of repeated
division. Let us convert 25 into binary:

25 +2=12 remainder 1 LSB of result

12+-2=6 remainder 0
6+2=3 remainder 0
3+2=1 remainder 1
1+2=0 remainder 1 MSB of result

The binary equivalent of 25 is 1 1001, which we can verify by converting
back to decimal. (Try it now.) Note how the digits of the binary number are
generated from the remainders of the divisions. The process continues
until the result of the final division is zero, irespective of the value of the
remainder. The remainder then becomes the MSB. This method is the
basis of a general method of converting from decimal to any other base,

by simply replacing the division 2 with the radix of the number base into
which we wish to convert.

» ¥ *

Of the number systems that we have talked about here, your MSX
machine will understand integers, decimal numbers, hexadecimal
numbers, octal and binary numbers. We will also run into binary numbers
when we begin to write machine code programs.

220

We also need to know the PRECISION of numbers that we use in our
programs. The best way to view the precision of a number is in terms of
“accuracy”. A SINGLE PRECISION number in the MSX system is 6 digits
long, and a DOUBLE PRECISION number is 14 digits long. To see what
this means, the number 10 000 @01 would be represented in single
precision as 1E6; the ‘E6’ representing ‘ten to the power of 6'. Note that
LSD (the 1) at the end of the number has disappeared. In double precision
format the number can be represented in its entirely as 10 @ 00 001, i.e.
with more accuracy. In the MSX system, numeric constants are indicated
by a trailing! or by containing an E. Thus, 10.76! and 1E-3 are both single
precision constants. Double precision numbers are represented to the
system by a trailing #, by containing a D instead of an E as an exponential
sign, or by an absence of any type specifier. Thus typing in 1.2 will cause
the number 1.2 to be represented in the machine in double precision
format. Other double precision numbers are 123.4, 1.234D6 and
1.000345. The double precision format for numbers is the default setting of
the machine and, unless told otherwise, the computer will treat all
numbers as double precision.

221

3

g

W

. CEe

s

s

Index

A

ABS 28
arrays 40-41
ASC 28

ATN 28
AUTO 7

B

baud rate 56
BINS 28

binary, see number systems
bit 4

bus system 4

byte 4-5

C
cartridge slot 3

cassette storage 55-73
bytes 70
data 62-70
errors 72
programs 57-61
CDBL 29
characters 35
CHR$ 29
CINT 29
CIRCLE 100-103
CLEAR 12
CLOSE 65
COLOUR 93-94
concatenation 52
constants 36-37
CONT 8
COS 29

CSNG 29

CSRLIN 29

D

DATA 15

data structures 35-53

DEF USR 18,198

DELETE 9

E

END 18

envelopes 151,160

ERASE 12

ERL 19

ERR 19

ERROR 18

EXP 29

expressions 42

F

FIX 29

FOR . . NEXT 19

FRE 29, 30

functions 49-51

functions, intrinsic 28-30

G

GOSsuB 21

GOTO 21

graphics macro
language 105-109

graphics modes 91, 94-103

H

HEX$ 30

hexadecimal, see number
systems

IF.. THEN 22
iInfout maps 173-176
INKEY$ 30

224

INPUT 13

INPUTS 30

INSTR 30

INT 31

interrupts 75

J

joysticks 143-145

K

KEY 22

KEYLIST 22

L

LEFTS$ 31

LENS 31

LINE 98-99

LINE INPUT 14

LIST 9

LLIST 10

LOCATE 92-93

LOG 31

LPOS 31

M

MAXFILES 64

MID$ 17

motor control 57

MuSIC macro
language 147-162

N

NEW 10

noise 59

number systems 205-221

(o)

OCT$ 31

octal, see number systems

ON ERROR 76

ON GOSUB 23

ON GOTO 23

ON INTERVAL 85

ONKEY 80

ON STOP 84
ON STRIG 145
OPEN 63, 94
operators 42-49
P

pages 170
PAINT 103-105
PEEK 31

PLAY 148
POINT 105
POKE 24

POS 32

PPl 4,163-167
PRESET 95
PRINT 24
PRINT USING 25
PSET 97

PSG 4,147,154

R
RAM 2,176-183
RAM, video 3

READ 15
REM 27
RENUM 10
RESTORE 15
RESUME 78-79
RIGHTS 32
RND 32

ROM 4

RUN 11

S

SGN 32

SIN 32

slots 170-172
sound 147-162
SPACE$ 32
SPC 32

sprites 109-121, 139-141
definition 113-117
positioning 117-120

SQR 33

STOP 28
STRING$ 33
strings 36, 52
SWAP 17

T

TAB 33

TAN 33

text modes 90-91
TIME 33

TROFF 11

TRON 11

U

USR 33,198

\'}

VAL 34

variables 37-41,178-181
VARPTR 34

VDP 3,89-141,174-176
VDP registers 122-127
verify 61

VRAM 127-138

y 4
Z80 CPU, 2,193-204

Write to Us

Melbourne House is always interested in receiving letters fromits readers.

Publishing Ideas

If you have written a book or program that you think would be of interest to
other computer users, we want to hear from you.

We are always interested in discussing new ideas for books with
authors. If you think you have a good book idea, please send a detailed
outline first. We prefer to work with authors as early as possible in the
writing process.

BASIC programs are wanted for inclusion in our books, and machine
language programs are wanted for our list of adventure and game
software. Always send a tape or disk and, if possible, a code printout with
your submission letter.

Fees and royalties are negotiated according to the quality and
ingenuity of the submission, and are more than competitive with those of
other publishing houses.

Send your book or program to the Melbourne House office closest to
you — see the back of the title page for the address. Mark your letter to the
attention of the Editorial Department to ensure an early review of your idea
and a prompt reply.

Bugs and Problems

Every effort is made to ensure that our books are error-free. Occasionally,
however, you may have difficulties — in such instances, do not hesitate to
write to Melbourne House. Send your letter to the Melbourne House office
closest to you — see the back of the title page for the address.

So that we can process your query as quickly as possible, mark your
letter to the attention of Customer Support. Quote the title of this book in
your letter, together with the printing and edition numbers, and the year of
publication. This information is on the back of the title page at the foot.

Describe your problem precisely, quoting the program title and
offending line numbers, or the paragraph of text.

227

1

MSX Exposed

Customer Registration Card

Please fill out this page (or a photocopy of it) and return it so that we may
keep you informed of new books, software and special offers. Post to the
appropriate address on the back.

DAL Lot osnl 5 Bt 19
NaME . .
BB NG, . ioviivrn st e e s ea T v e SO i s B e e g 5 5
City ... Postcode/Zipcode

Where did you learn of this book:
[] FRIEND [] RETAIL SHOP
[0 MAGAZINE(QIVeEName)coiiuuiumeaeeenannnnnn.
[1 OTHER (SPeCifiids sek cun et Sib Sy - s Sogaes » v oonss e ¢

Age? [] 10-15 [] 16-19 [] 20-24 [25 and over
How would you rate this book?
QUALITY: [] Excellent [0 Good [Poor
VALUE: [] Overpriced [0 Good [J Underpriced

What other books and software would you like to see produced for your
computer?

..
..

..

EDITION 7654321

Melbourne House addresses

Put this Registration Card (or photocopy) in an envelope and post it to
the appropriate address:

United Kingdom

Melbourne House (Publishers) Ltd
Castle Yard House

Castle Yard

Richmond, TW10 6TF

United States of America

Melbourne House Software Inc.
347 Reedwood Drive
Nashville TN 37217

Australia and New Zealand

Melbourne House (Australia) Pty Ltd
2nd Floor, 70 Park Street
South Melbourne, Victoria 3205

e

D

2\

+ < A A
1S goo Sc A UJ 34 Couﬂ |
[PLETED

Tvesoay (8T Jowe 201
Tre BenerT Cr Au !

mg\g}

Y Pave Kewwvedy Of
’)T-fwe_so, ScoTaAnDd '

Here is a comprehensive guide to make you total master of your
MSX. MSX EXPOSED is an encyclopaedia of solutions which
begins with BASIC programming and takes you through to
machine language.

The step-by-step format of MSX EXPOSED is designed to ensure
that you will understand exactly how your MSX works, enabling
you to take full advantage of the machine’s capabilities. Every
feature and program statement is carefully explained with the aid
of simple demonstration programs, tables of vital memory
locations and system variables.

- MSXEXPOSED is the indispensable work book for every MSX
- owner — from first time users to the serious programmer.

Melbourne ISBN 0-8blbl-182-1

61182

1 9

S ol
WS\/® Publishers 9 80861

