ON Ink

v

m

il

STARTING

MACHINE CODE

ON THE

MSX MICROCOMPUTER

ISBN NO 07457-0132-9

COPYRIGHT (C) 1984 G. P. RIDLEY

ALL RIGHTS RESERVED

The Author wishes to thank Mike Shaw for his contributions to the
text and programs.

No part of this book may be reproduced by any means without prior
writen permission of the author or the publisher.

The information in this book is supplied in the belief that it
correct, but Kuma Computers Ltd. (the company) shall not be
liable in any circumstances whatever for any direct or indirect
loss or damage to property incurred or suffered by the reader or
any other person as a result of any error in this book and in no
circumstances shall the company be liable to consequential damage
or loss of profit.

Published by:- Kuma Computers Ltd.,
12 Horseshoe Park,
Pangbourne,
Berks RG8 7JW

Telex 849462 Tel 07357 4335

Contents

Machine Code from Basic
Screen Addressing Program
Storing Screens

Z80 Instructions
Inside the Z80 chip
The Assembly Commands
Data Transfer Commands
Data Manipulation & Test Commands
Re-Routing Program Running
Input/Output Commands
System Controls

Using ZEN Assembler
Screen Messages
User Inputs 1
User Inputs 2
Saving Programs

MSX Routines
Table Construction
Hooks
Sprite Program
Loader Program
USR
ROM Routines
RAM Storage pointers

Bytesearcher
Byte Searcher Program

APPENDIX
Hex to Opcode Table
Instructions Table
Hex to Dec conversion table

INDEX

=y

10
15
29
31
41
56
61
62

64
72
75
78
83

86

95
96
104
110
113
118

121
123

127
127
138
150

151

Introduction

This book has been written as an introduction to writing Machine
(‘ode programs and routines using Assembler language on the MSX range
of home computers.

Not so many years ago machine code was the programmers first
language, but with the popularity of the home computer Basic has
become the common language which most micro users cut their teeth on
and machine code remains a somewhat grey area which most of us see
in program listings as a series of numbers within DATA statements
POKEd into high memory locations and then called by the USR command,
and are left without a clue as to what is happening.

Machine code programs, operate far quicker than those written_in
Basic and that is one reason for a Basic program to contain a
machine code routine in order to achieve greater speed, or it could

be used to modify Basic to do tasks it cannot normally do.

This book hopefully will make machine code clearer and more
understandable to the average user, one will not need a degree to
grasp what is happening, and computer jargon will be kept to
minimum levels.

Good Luck.

1
Machine Code
from Basic

The Basic language 1is generally the simplest way of writing
programs, it is easy to follow and debugging a faulty program is
usually made quite easy with the editing facilities for altering

lines in a program, so why use machine code?

The main reason must be speed of execution, not purely based on
games programs such as space invaders or the like which would not be
worth playing if they were written in Basic, but more serious
applications which will be shown in the book. In order to grasp
some idea of the speed of a program written in assembler we will
compare the execution time with a similar program written in

Bagicié=

10 SCREENO:KEYOFF
20 WIDTH40:CLS

30 TIME=0

40 FOR X = 0 TO 959
50 PRINT"B";

60 NEXT

70 PRINT TIME

Now entering the function key 'F5' or by entering 'RUN' followed by
the 'RETURN' key one will see that the MSX took 151 time cycles (or
3.02 seconds if line 70 was altered to TIME/50) to fill the screen.

Another method for displaying characters is to VPOKE directly to a
specific location on the screen. In screen 0 mode the top left
position of the 40 column screen is 0000 hex, let us alter the above

program so that instead of printing one character after another

using the Basic PRINT statement we shall print the characters

directly to the screen area of memory using the VPOKE statement.

Add line 15:-

15 Z=&HO

And alter the following lines to read:-

50 VPOKEZ+X,66
70 LOCATE,23:PRINT TIME

Once again Run the program.

The time was 225, so directly VPokeing to the screen is no quicker.
Note that the cursor remains in the same position whilst a VPOKE
statement is carried out, therefore line 70 repositioned the cursor
to screen 1line 23 by the LOCATE statement. If you find that the
'Ok' is displayed slightly off-screen then enter in direct mode
'WIDTH37' and the 'RETURN' key to clear the screen and return to 37
column display which is the condition the MSX wakes up in when first

switched on.

Now if that program, although not the most interesting in the world
but quite effective as an example, is re-written in machine code and
called by the A=USR(0) function from Basic the dramatic increase in
speed will be instantly obvious.

Program 1 Direct Screen Addressing from Basic

Assembly language instructions used:-
LD HL,nnnn LD BC,nnnn LD A,nn CALL nnnn RET

These instructions are detailed in chapter 2.

Enter 'NEW' and 'RETURN' and input the program:-

10 CLEAR 200,&H9FFF

20 FOR X = &HA000 TO &HAOOB

30 READ A:POKE X,A:NEXT

40 DATA 62,66,33,0,0,1,192,3,205,86,0,201

Enter 'F5' to run the program.

The screen will instantly display the 'Ok' message and one could be
excused in thinking that not much has just happened. But happen it
has in that now a machine code routine has been placed in memory,
starting at location A000 hex (40960 decimal), which will print the
entire screen with the letter 'B' in a fraction of the time taken
previously using normal Basic PRINT or VPOKE statements.

Enter 'NEW' and 'RETURN' and this program will fill the screen:-

10 DEF USR=&HA000:SCREENO
20 TIME=0

30 A=USR(0)

40 LOCATE,23:PRINT TIME

RUN the program.
Its speed is amazingly fast and time was printed as 1 or 2.

As will be seen in the next chapter Assembly language is made up of
several registers which we load with addresses and values, you can
also check the codes in the Appendix. If we disassembled the DATA
which was placed at A000 to AOOB it would look like this:-

1 A000 3E 42 LD A,42H

2 A002 21 00 00 LD HL,0000H
3 A005 01 CO 03 LD BC,03COH
4 A008 CD 56 00 CALL 0056H
5 A00OB 9, RET

We POKEd the DATA into memory starting at address A000 hex which if
we convert to decimal gives us 40960, use the conversion chart in

the Appendix if you aren't sure. The first two items in the DATA

3

line were 62,66 decimal. 62 converts to 3E hex which means we want
to load the A register with the value of the next byte which in this

case was 66 (42 hex) in line 1 on the previous page.

The next three bytes were 33,0,0 which convert to 21,00,00 hex. 21
hex signifies Load the register pair HL with the following two bytes
in reverse order, low address first, in this instance we want to
load HL with the address of the top left corner of Screen 0 (Video
RAM) which is 0000 hex, therefore in this particular case reverse
order doesn't show us much as the address is zero but the next line

will prove the point.

These were followed by 1,192,3 and the number 1 signifies Load BC
with the following two bytes in low byte first, high byte second.
The figure we want to load into BC is the amount of bytes we wish to
print to the screen. Screen 0 has a maximum size capacity of 960
locations, 24 lines by 40 columns, therefore 960 decimal equals 03CO

hex, which in reverse order becomes CO0 03 (line 3).

Next came 205,86,0. 205 converts to CD hex which translates to CALL
the address of the next two bytes which were in reverse order again.
The address of the routine we wish to call is 0056 hex therefore if

we reverse them and convert to decimal these become 86,0.

NOTE The ROM section of memory contains many routines which can be
called upon to perform different functions, location 0056 hex
contains the instruction to jump to a routine which fills VRAM area
with the character contained in the A register. However before
calling the routine one must ensure that HL contains the start
address, BC the number of bytes to fill and A the data. And this

our program has already done in lines 1 to 3.

The final number in the DATA line was 201 which converts to C9 hex,
this command is RET for return, Jjust as one would use after a GOSUB
routine in Basic. Remember that we went to this routine by the
USR(0) statement which is a Call instruction just like the Basic
GOSUB and to quit the routine we enter the RET command to return.

The USR statement can contain within the brackets an 'argument' such
as an integer, string, single or double precision variable to pass
on for the machine code program to use. This is explained in
chapter 4, but for this example no data was required to be accessed

by our routine so a simple call was made with a dummy argument (0).

Now that routine although it executed in a fraction of the time it
took wusing Basic was not quick to program, and a lot of thought
would go into producing a simple output such as that. It is also
more complicated translating decimal values back to hex and then
translating them into assembly language Mnemonics and operands.

In later examples of machine code we will use an Assembler, Editor
called '"ZEN - 2780 Assembly Language Programming System for the MSX
Micro-Computer' which includes a disassembler. An Assembler/Editor
will do most of the dirty work for you and produce a printout such
as we have just seen, furthermore entering assembly language is made
childs-play, well almost, as they allow one to enter opcodes and
operands such as:- LD BC,03COH directly. After entering the listing
one selects the assemble option and the assembler will then
translate all the instructions into machine code automatically and
output a version known as Object code. This small piece of jargon
simply means assembled machine code ready to record on tape for

future loading.

It is virtually impossible to write machine code programs of any
size without an assembler, it will pick up any false statements just
like Basic does with the Syntax errors and it will allow one to run
the programs and use breakpoints to stop the running at certain
points so that one may check on the state of the registers etc.
This is most important as the programs run so fast it would be
difficult to make these checks without the facility.

Program 2 Storing Screens

New Assembly language instructions used:-
LD DE,nnnn

Two other routines within ROM allow the screen area to be copied
into other parts of memory for storage and recalled when required.
One may have a program which is menu driven in which options the
user can make are listed on screen. That complete screen display
could be stored somewhere in RAM and when needed a A=USRn(0)
instruction will immediately transpose that block of memory back to

the screen in a flash.
Enter 'NEW' and 'RETURN'

10 CLEAR200,&HDFFF

20 DEF USR0=&HF000:DEF USR1=&HF010

30 FOR X = &HF000 TO &HFO0O0C

40 READ A:POKE X,A:NEXT

50 DATA 33,0,0,17,0,224,1,192,3,195,89,0,201
60 FOR X = &HF010 TO &HF01C

70 READ A:POKE X,A:NEXT

80 DATA 33,0,224,17,0,0,1,192,3,195,92,0,201

Now enter the 'F5' key or 'RUN' and 'RETURN'
Once again the 'Ok' message was displayed almost immediately, and

we now have this screen move routine in memory.

One does not need to write a separate program to demonstrate this
routine, providing there is a fair amount of text presently on the

screen, if there isn't put something on the screen, anything.

Enter in direct mode (without a line number) A=USRO(0) and 'RETURN'.
The 'Ok' will be displayed instantly and the total displayed area
has been copied into memory locations E000 to E3BF hex. It has not
disappeared off the screen it has been duplicated into the other

area. If one was running a program the screen could now be cleared

6

and the program continue until one needed to bring back the previous
display.

Now clear the screen by entering the 'SHIFT' and 'HOME' keys and to
prove the point enter some characters onto the screen, it does not
matter if one gets 'Syntax error' printed just get something on the
screen.

Enter in direct mode A=USR1(0) and 'ENTER'
The screen will instantly change back to the previous display which
was saved when we entered A=USRO(0)

One could save more than one screen, providing they were moved to
separate areas of memory, the Screen 0 text screen can contain up to
960 bytes so one will need to adjust the program for different
storage areas. Here is the assembled listing, remember it was in 2

sections the first stores a screen:-

1 F000 21 00 00 LD HL,0000
2 2 BO031 11200 EO LD DE,E000
3 F006 01 CO 03 LD BC,03CO
4 FO009 CD 59 00 CALL 0059
5 HE0OCH|CO RET

and the second section recalls it to the display:-

1 FO010 21 00 EO LD HL,E000
2, FO13 10,0000 LD DE, 0000
3. E016 005C0403 LD BC,03C0
4 F019 CD 5C 00 CALL 005C
5., Fole €9 RET

The ROM routines which control the copying are at 0059 and 005C hex
and as with the previous example certain registers need loading with
data before they are called. Whether storing or recalling a screen
of information registers HL require the source address. When

storing a screen in the Screen 0 mode we know that the source will

7

be address 0000, so in line 1 HL is loaded with 0000. DE represents
the destination address and is loaded with the start address of
where in RAM we wish it to be stored from, so in line 2 DE is loaded
with E000 hex. Registers BC always contains the amount of bytes to
move and is loaded with 03CO hex (960 decimal) in line 3, if one
wished to only store the top half of a screen, say lines 0 to 11, BC
could be loaded 480 (01E0 hex). Line 4 is the call to the ROM
routine which carries out the copying and this is followed by RET in

line 5 which returns us to our Basic program.

The second section for recalling a stored screen works in a similar
fashion with only alterations to HL, which contains the source
address, and is loaded with the start of the storage area E000, DE
for the destination which in Screen 0 will be the 0000, and finally
the call to execute the copying back to screen which is at 005C. The
amount of bytes to transfer, in BC, remains the same at 03CO.

As we now have the facility to store and recall one screen display
it is straightforward to modify the program to cater for four
screens. One only needs to alter various items in our basic program

which wrote this machine code routine into memory.
List the program and alter the following lines to read thus:-
20 DEF USR2=&HF020:DEF USR3=&HF030

30 FOR X = &HF020 TO &HF02C
60 FOR X &HF030 TO &HFO03C

And in line 50 alter the sixth number from 224 to 228
and line 80 alter the third number from 224 to 228

NOTE Care must be taken when modifying an existing line on screen.
In lines 50 and 80, which exceed one screen line, ensure that you do
not press 'RETURN' until you have moved the cursor to the end of the
complete program line otherwise the MSX will forget the characters
shown on the next line and shorten the line so producing an error
message. List the program before running it.

8

After running the altered program one should have the facility to
store another screen display in memory, only this time we have
written the copying routine at F020 and the recall routine at F030
hex, and the storing of this second screen commences at E400 hex.
Storing a second screen is achieved by entering:-

A=USR2(0)

and to recall to the display:-
A=USR3(0)

If one requires three screens to be stored the following alterations

should be made:-
20 DEF USR4=&HF040:DEF USR5=&HF050
30 FOR X = &HF040 TO &HF04C

60 FOR X = &HF050 TO &HF05C

And in line 50 alter the sixth number from 228 to 232
and line 80 alter the third number from 228 to 232

Check the listing and run.

And these are the alterations for the fourth screen:-

20 DEF USR6=&HF060:DEF USR7=&HF070

30 FOR X &HF060 TO &HF06C
60 FOR X &HF070 TO &HFO07C

And in line 50 alter the sixth number from 232 to 236
and line 80 alter the third number from 232 to 236

Once again list and run the program. The routines are accessed by:-

A=USR0O(0) stores- A=USR1(0) recalls
A=USR2(0) " " A=USR3(0) " N
A=USR4(0) " " A=USR5(0) " "
A=USR6(0) " " A=USR7(0) " i

2
Z80 Instructions

In this Chapter, we're going to take a broad look at the way the
Z80 chip interprets the machine code numbers, the Z80 Registers and
the way they are generally used, and then at the different types of
Assembler instruction. You'll find a complete list of these mnemonic
instructions in the Appendices - 1listed alphabetically and
numerically by the first byte of their instruction code. There are
several books available which explain each Z80 instruction in
greater depth, rather like an encyclopaedia and almost as large, but
these are general references and do not show examples for specific
micros like the MSX range. However if one requires more detailed
information regarding the 280 instruction set then the purchase

should prove worthwhile.

BASIC has well over 200 instructions - taking into account all the
subtle variations like 'IF-THEN GOSUB' and 'IF THEN PRINT'. %80
machine code has nearly 700 - but don't panic, many of them are

simply variations on a theme.

The difference, as you will have already appreciated, is that one
BASIC instruction «calls up a host of machine code instructions
within the interpreter. When you write in machine code you have to
generate those instructions yourself - although you can, of course,

call up useful routines resident in the ROM section of memory (as

indeed some of the demonstration programs in this book do).

It is possible to write programs without having a full knowledge of
the entire instruction set - indeed many people do quite happily and
successfully, adding to their knowledge as they gain experience.

The same is true to some extent when programming in BASIC.

For example - how would you do a count of 1 to 1000 in BASIC?
Probably: -

10 FOR I=1 TO 1000
20 NEXT
30 PRINT "ALL DONE"

Fine, but supposing you didn't know about FOR-NEXT loops? You'd
probably tackle it this way:-

10 A=0

20 A=A+1

30 IF A<1000 THEN 20
40 PRINT "ALL DONE"

But supposing you didn't know about IF-THEN constructions either.

You'd really have to put your thinking cap on:-

10 A=0

20 A=A+1

30 B=-1*(A<1000)-2*(A=1000)
40 ON B GOTO 20,50

50 PRINT "ALL DONE"

As you can see, the programs become longer - and take longer to run
- when the most suitable commands are not used. Knowing all the
commands at your disposal helps you to make your programs shorter
and/or faster running...and your life easier. Usually machine code

programs run fast enough even when written the 'long way round',6 but

11

when a very large number of repetitive actions are involved, such as
in a Chess Game program, even a few microseconds knocked out of a
loop can result in a considerable time saving when the program is

running.

Having said that, the programs in this book have been written to
demonstrate principles, and are not necessarily the fastest or

shortest way of achieving the desired result.

What do all the numbers mean?

Machine coding, as you know, is all about numbers. A number can
mean one of two things to the Z80 central processing unit in your
computer. It can mean an instruction or part of an instruction to
do something. Or it can mean a piece of information to be worked on
or used in some way. Fortunately, the Z80 knows exactly which of
these the number represents (in a correctly written program), and

acts accordingly.

Take an instruction to load Register A with the value '7' (we'll be
discussing the Registers in more detail later). In Assembly
language mnemonics this instruction is written LD A,7 . 1In machine
code language, the instruction is represented by the two hex numbers
V3BT " When the 280 sees the first of these it says "3E means I
must load the next number along into Register A". It takes up the
7, puts it into Register A, then looks to the number after the 7 for
the next instruction. So it wouldn't be confused if it saw, for
example, the two hex numbers '3E 3E' - this time it would load 3E
hex (62 decimal) into its Register A, then look to the number after

the second 3E for its next instruction.
Note that each single byte of information can have a value from 0 to
FF hex (0 to 255 decimal). Let us take a look at that in more

detail.

A byte consists of 8 bits, each bit being a binary 0 or 1. So the

12

binary number 11001001 can be represented thus:-

Bit*Neg™ 47 68 4-3 2,10
Binary Value: 1 1 0 01 0 0 1

Wherever a '1' appears in the binary representation, raise 2 to the
power of the corresponding Bit Number, add the results together, and
you have the decimal value of the Binary number. Thus, using the

above example:-

2 to the power 7 = 128

2 to the power 6 = 64

2 to the power 3 = 8

2 to the power 0 = 1 (any no. to the power 0 = 1)
201

So the binary number 11001001 is 201 in decimal.

To convert a binary number to Hex, split the eight digits into two
groups of four (called 'nibbles'). Thus:-

Nibble 'bit' no.: Bir 20040 3 20110
Binary value: 1100 ¥ %o 1

Left side: 2A3
242

8 Right side: 273 = 8
280

2 9

Remembering that decimal 12 = C in hex, the hex value of binary
11001001 is C9.

13

How the Z80 handles 2-Byte numbers

Many instructions to the 280 tell it to operate not on one byte
_ as in our 'LD A,7' - but on two bytes. For example, an Assembly
instruction might be 'LD HL,49AFH' (the 'H' at the end tells the
Assembler that 49AF is a hex number). Two-byte numbers increase the
decimal values that can be represented from 0-255 to 0-65535 (0-FFFF
hex) - which is absolutely vital for addressing or pointing to the

memory locations in your computer.

In the instruction LD HL,49AFH, we want the High byte, 49 (hex) to
go into the H Register, and the Low byte AF (hex) to go into the L
Register. The machine code instruction for loading H and L
Registers with 'direct' data is 21 hex. When the 280 sees 21 hex as
an instruction, it ‘takes the NEXT number and loads it into the L
Register. That's right - the L Register. Then it takes the
following number and loads it into the H Register. So the machine
code for LD HL,49AFH looks like this:-

21 AF 49 (hex)

Note how, in actual machine code, the order of the two information

bytes is reversed. Now you know why.

When using an Assembler, you don't have to worry about this point
_ the Assembler sorts it out for you. But if you are entering
machine code by hand, as was shown in chapter 1, forget the order of

the two information bytes at your peril.

Needless to say, when loading any Register pair with data (we'll
discuss Register pairs later on), the Low byte always appears in the
machine code listing before the High byte. In Assembly language
remember, you write the number in the normal way, and let the

Assembler put things in the correct order.

14

Inside the Z80 chip

The elements that go to make up a 7280 chip include an Arithmetic-
Logic-Unit, which performs all the (simple) arithmetical and logical
functions, a 'control box' which makes sure data is passed in,
decoded and acted on in the correct order, and a number of 8-bit
(one byte) and 16 bit (two-byte) Registers. Just to confuse vyou,
pairs of the one-byte Registers can also be used as two-byte

Registers.

The Program Counter

Let us look first at the Program Counter (PC) two-byte Register.
This holds the address of the NEXT instruction. It is automatically
up-dated every time a new instruction is executed. However, the
address it holds can be changed by, for example, a CALL instruction
(like GOSUB in BASIC).

In this case, the address in the Program Counter is put aside - on
the STACK - and the address CALLed is put in the Program Counter in
its place. When the CALLed routine is done it meets a RET (RETURN)
command, which takes the two-byte number ON THE TOP OF THE STACK and
puts it back into the Program Counter. Execution then continues
from that address. If you use the Stack (and you will use it), it
is important to remember that the next instruction address after a
RETurn is taken from the top of the STACK. Many a program has gone
wild because a number has been unwittingly left on the stack: on
the other hand, the fact that you know that the address of the next
(apparent) instruction is on the Stack can be useful when, for

example, transferring data to a subroutine.

A number of other instructions also affect the PC Register - jump
instructions (JP or JR) for example. But for most instructions, the
length of the instruction (including any information data elements)
is added to the PC by the chip's control system, so that it knows

where to look for the next instruction.

15

The Stack Pointer

Another two-byte Register, the Stack Pointer (SP), keeps track of
the top of the Stack - since many instructions enable you, as well
as the 2780, to use the Stack. The Stack area is within the RAM of
your computer - and an address is set up by the ROM routines when

you switch on.

You can if you wish set up your own address for the Stack but you
must remember that the Stack runs BACKWARDS in memory, and it uses a
last-in, first-out system. Think of it as a pile of plates, you can
put plates on top or take them off the top, but you can't touch the
plates anywhere else in the pile.

The other point about the Stack is that it ALWAYS accepts or
delivers two-bytes of data. So, if we put 11A0H, 22BOH and 33COH on
the Stack in that order, and the Stack Pointer is loaded with F090
it will look like this:-

Address Contents
F08B Cco
F08C 33
F08D BO
FO8E 22
FO8F A0
F090 11

The Stack Pointer in the %80 will be pointing to the last (low) byte
of the 33COH data. If another piece of two-byte data - say 4567H
- is put on the Stack, the Stack Pointer is DECREASED by one
(decremented), the first (high) byte 45 hex is put into the address
now pointed to by the Stack Pointer (F08a), the Stack Pointer
address is DECREMENTED again, and then the low byte of the data, 67
hex, is put on the Stack (at F089).

When taking data off the Stack, the system works in reverse. In our
example, first the Low order byte (67 hex) is removed, the Stack

16

Pointer is INCREMENTED, the high order byte (45 hex) is removed and
the Stack Pointer INCREMENTED again. So now the Stack Pointer is
once again pointing to the low order byte of the 33C0 hex data.

The 8-Bit Registers

There are two sets of 8-bit Registers:-
Byi¥e By, 4D, BiuBicl
and A A - S U w LR oS s (U v
(Notice the F and F' Registers have been put next to the respective
A Registers - that's because they are usually associated with the A
Registers, and they have a function all of their own).

Only one set of these Registers can be used at a time. Why have two
sets? So that you can 'stop' in the middle of one operation, switch
to the alternate set, carry out an intermediate operation, then
switch back and continue with the original operation. There are

several ways of passing data between one set and the other.

Registers B and C, Registers D and E, and Registers H and L are also
used as Register pairs to hold two-byte data. In a few commands,
Registers A and F are also treated as a pair.

The A Register

The A Register is the Accumulator. It's where Almost All of
the Action takes place. It is like Grand Central Station and in any
program of consequence, it is kept extremely busy. Practically all
comparisons, single-byte adding and subtracting instructions, and
many special 'transfer' and 'load' instructions demand use of the A

Register. God bless its cotton socks.

The B and C Registers

Several commands use the B Register or the B and C Registers
together as a Byte Counter. (BC = Byte Counter - easy to remember).

17

Take for example the DJNZ Assembly command, which must always be
followed by a Label. This instruction says 'Decrement whatever
value is held in Register B by 1, and if it is NOT zero as a result,
jump to the address denoted by the Label'. It's like a FOR-NEXT
loop in BASIC, with the number of repetitions required being held in
Register B. When B reaches zero, processing continues with the next

instruction. (Note the mnemonic DJNZ = Decrement and Jump on Non
Zero).
Similar commands (e.g. 'LDIR') use Registers B and C as a pair

- permitting for example the transfer of large or small chunks of
data from one area in the computer to another extremely quickly.
The number of bytes to be transferred in this way is held in the
Register pair BC.

Apart from these special uses, these two Registers can be used
together or independently for your own requirements.

The D and E Registers

These too can be used independently, but are used together by some
780 instructions to define a DEstination address. For example, the
DEstination address of a block transfer of data (the 'LDIR' command
again) is taken from Register pair DE: you have to put the address

there, of course.

The H and L Registers

These Registers are used as a pair for quite a number of 780
instructions. In the 'LDIR' command, for example, the start address
of data to be transferred is taken from the contents of HL Registers
- so don't forget to put it there. VYou'll find that there are quite
a few commands which allow you to use the HL Registers to 'point' to
data areas.

18

The F or 'Flag' Register

This is a very important Register indeed. Unlike the other 8-bit
Registers, you cannot load data into it in the normal way. Its
purpose is to hold Flag results of any logic and arithmetic
operation undertaken, and for some other instructions, to 'flag' a
status. The important point 1is that some of the Flags can be
'tested' to provide, for example, conditional jumps, calls or

returns.

NOTE THAT WHILE MOST OF THE INSTRUCTIONS AFFECT SOME OR ALL OF THE
FLAGS, FLAGS REMAIN IN A CURRENT STATE UNTIL AFFECTED BY A
SUBSEQUENT INSTRUCTION. This means the state of a Flag can be
tested several instructions after the instruction that affected it
- but do be sure that the intermediate instructions do not affect
the Flag in question. This feature can help to reduce the amount of
coding needed. For example, all but two of the 'load' instructions
do not affect the Flags at all. So if one of two subroutines are to
be called, depending on the status of a particular Flag, and if both
subroutines require the same 'load' at their start, then the 'load'
can be done before the conditional test is made.

Certain bits of the Flag Register are allocated to specific
functions, as follows:-

Bit iNumber: 4«7 605 144 23t 2 MI40
Function: S 2 - H - P/VN C
Testable: * * * *

The 'Testable' line indicates which of the Flags you can test in one
way or another using the instructions available. Now we'll look at
the functions of each one-bit flag.

19

The S or Sign Flag

This Flag 'repeats' the value of the most significant bit in the
result of an arithmetic or logic operation, including 'shifts'. When
a byte is transferred into the A Register, it 'repeats' the value of
the most significant bit of that byte.

In many instances, bit 7 (the most significant) is used to indicate
a particular condition. 1In 'two's complement' notation, for example
(a brief discussion of which is given later in this chapter), bit 7
represents the SIGN of the number. This means the binary numbers
are only 7 bits 1long, but represent from -128 to +128. In this
instance, Bit 7 is 'SET' (equal to a '1') if the number is NEGATIVE
and 'RESET' (equal to '0') if the number is POSITIVE. Bit 7 of a
data byte can also play a role when a program is 'communicating'
with input/output devices, such as a Printer. The S Flag enables
Bit 7 of such a byte to be tested.

A number of Assembly commands allow the S Flag to be tested, by
adding a 'P' (is it Positive?), or an 'M' (is it NEGATIVE?). The
command JP (Jump), for example, can be turned into a CONDITIONAL

jump by the addition of P - ' Jp P,Label'. This tests the S Flag,
and if it IS positive (i.e., equal to zero) as a result of some
previous action, then the jump will occur. Otherwise processing

continues with the next instruction.

The Z or Zero Flag

This Flag is wused to indicate whether or not the result of an
arithmetic operation is zero, or whether or not a 'comparison' test

succeeds.

When a result is Zero or a comparison test succeeds, the Z Flag is

set to a '1'. Otherwise, it is reset to a YO
The Z Flag can be tested by adding '7' (is it Zero?) or 'NzZ' (is it

Non-Zero?) to certain Assembly commands. For example, 'RET 4

(RETurn on Zero) provides a conditional return from a subroutine: if

20

a previous operation has left the Z Flag set to '1', a RETurn will
be made. Otherwise processing will continue with the next
instruction. (As you can see, you don't have to worry too much about
the actual value of the Z Flag bit - the 2z80 looks at it and acts
accordingly on your behalf).

The H or Half-Carry Flag

This Flag is used by the computer during Binary Coded Decimal

arithmetic operations, to indicate whether or not there's been a
carry, from bit. 3 to'. bit . 4. It cannot be used in any conditional
tests.

The P/V _or Parity Overflow Flag

This Flag has three functions. Some instructions set or reset it
according to whether the byte of a result has an even number of '1's
(Parity Even = Flag set to "1"), or an odd number (Parity 0dd = Flag
reset to "0").

The second use of the P/V Flag is to indicate, during Binary Coded
Decimal operations, whether or not Bit 7 (the 'Sign' Bit) has been
affected by an overflow from Bit 6, thus accidentally changing the
sign of the result.

Finally, during block transfer instructions, such as 'LDIR', this
Flag is used to detect whether the counter has reached zero.

The Flag can be tested by adding 'PO' (is the Parity 0dd?) or 'PE'
(is the Parity Even?) to commands used to transfer program
execution. For example, a CALL command can be turned into a
conditional CALL if the Parity Flag is indicating 'odd', by writing
'CALL PO,Label' instead of the unconditional command 'CALL Label'.

21

The N or Subtract Flag

This Flag is used by the Z80 during its own Binary Coded Decimal

calculations, and cannot be tested.

The C or Carry Flag

This Flag plays a dual role. First, it is used to indicate whether
or not an addition or subtraction has resulted in a 'borrow'. If a
borrow has occured, the Flag is set to AL g Otherwise it is reset
to "0". Since comparison commands (e.g. CP B - which compares the
contents of Register B with the contents of Register A) are achieved
by subtracting the selected Register from Register A (and discarding
the result), the Carry Flag can indicate whether the selected
Register has a value greater than that in Register A (which produces
a Carry), or has a value equal to or less than that in Register A

(which produces a No Carry). Very useful.

The second use of the Carry Flag is in many of the rotate and shift
instructions - which move data along the byte one way or the other
in a particular manner. For these instructions, the Carry Flag is
used as a 'ninth' Bit. For example, the RRA Assembly command
(Rotate Right the Accumulator - Register A), moves Bit 0 of Register
A into the Carry Flag, moves whatever was in the Carry Flag into Bit
7 of Register A, moves what was in Bit 7 to Bit 6 - and so on. Thus,
this particular command effectively rotates the information held by

the bits round one and includes the Carry Flag in the process.

With logical commands AND, OR, XOR, the Carry Flag is always set to
'0' (No Carry). AND A and OR A will leave Register A intact, since
the Register is being ANDed or ORed with itself, whilst XOR A not
only clears the Carry Flag but also clears Register A, as there can
be no ‘'exclusive' bits if it is being XORed with itself.

The Flag can be tested to produce conditional commands by the
addition of 'C' (Carry) or 'NC' (No Carry) to the command. Thus a
CALL command can be turned into a CALL if the Carry Flag is set, by
writing 'CALL C,Label' instead of 'CALL Label.

22

How the Commands affect the Flags

The following Table shows how the Flags are affected by various
types of Command. Commands not listed - e.g. 'PUSH' and most 'LD'
commands - do not affect the Flags at all. Please note that, where
unnecessary, the 'Register' element of the Command has not been
included in the Table: thus the OR command could be OR A, OR B, OR C
and so on - all having the same effect on the Flags. Only those

Flags that can be tested have been included.

FLAGS
o] 7 P/V S
COMMAND

ADD A,ADC,SUB,SBC,
CP,NEG ? ? 2V ?
AND, OR, XOR 0 ? 2P ?
INC,DEC = ? 2V ?
ADD RR,CCF ? £ = =
RLA,RLCA,RRA,RRCA ? = - o
RL,RLC,RR,RRC,
SLA, SRA, SRL,DAA ? ? 2P ?
SCF 1 st = =
IN = ? 2P ?
INI,IND,OUTI,OUTD - ?
INIR,INDR,OTIR,OTDR - 1
LDI,LDD e ?
LDIR,LDDR = 0
CPI,CPIR,CPD,CPDR - ? ? ?
LD A,I; LD A,R; = ? IFF ?
BIT = ?

23

? = Depends on the result of the operation.
?P = Depends on the Parity of result

?V = Depends on overflow in result

0 = Flag reset to zero

1 = Flag set to 1

= Flag unaffected: previous state retained

IFF= Contents of interrupt flip-flop

Where there are blanks, the Flags contain irrelevant information.

To summarise the conditional tests available for JumP, CALL,Jump
Relative and RETurn commands:

7 = If result is Zero, act.

NZ = If the result is Not Zero, act.

C = If there's a Carry, act.

NC = If there's No Carry, act.

PO = If Parity is 0dd, act.

PE = If Parity is even, act.

P - 1If the Sign Flag is 'positive (S=0), act.
M = If the Sign Flag shows a minus (s=1), act.

The Index Registers IX and IY

We now come to two very valuable 16-bit Registers in the 280, the
'Index' Registers. Unlike Registers A to F, there is no 'second
set' of Index Registers: their contents are accessible to both of
the A to F Register sets.

The 'load' instruction commands related to these Registers can
(indeed must, even if it's 0) include a displacement value. This
enables, for example, data tables to be very easily set up, using
the Register IX or IY to point to a 'base' address, and the
displacement to point to the particular place required in the table.

An example will help to explain this. Supposing we decide to have a

24

Table of information that contains a number of names, addresses and
telephone numbers. We allocate, say, 20 bytes to cover the name
data, 60 bytes to cover the address data, 12 bytes to cover the
telephone number data.

Our Table will then consist of a series of chunks, each 92 Dbytes
long (20+60+12). We know that the telephone data for any name
begins at the 80th byte from the start of the name. If we 'point'
the IX Register to the start of the name in the Table, we know that
the Telephone data will start at IX+80. This saves counting out the
bytes to get to the correct address. A typical program might look
like this:-

LD B,11

LD IX,NAME3

LD DE,BUFFER
GETTEL:LD A, (IX+80)

LD (DE),A

INC IX

INC DE

DJIJNZ GETTEL

Next operation

The first instruction sets up Register B as a counter.

The second instruction 1loads up the IX Register with the 2-byte
address we require - that for NAME3.

The next instruction loads up Registers DE to point to a BUFFER
area, where we want to hold the Telephone number - possibly for

printing out.

We then come to the start of a little loop which will collect the
bytes of data from the Table. We collect one byte, then increment
the value in the IX Registers, increment the value in the DE
Registers (i.e move both to point to the next address along), then

collect another byte and so on until our 'counter', B reaches zero.

25

Note that LD A,(IX+80) means load Register A with the data byte teo
be found at the address pointed to by IX+80. Similarly, LD (DE),A
means load the data byte in A into the address held in the Register
pair DE.

The IY Register can, of course, be used in a similar way. As well
as 'loads', the Index Registers can be used for ADD, INC, RLC, BIT
and SET commands - INC (IX+80), for example, means go to the address
pointed to by IX+80, and whatever byte is stored there, add one to
it

How big can the displacement value be? Glad you asked - because the
displacement value is treated as a signed number. That means it can

be 7 bits long, with the Most Significant Bit representing the sign

of the value. So, to answer your question, the displacement value
can be anything from -128 to +127, '0' being treated as a positive
value.

The I and R Registers

Two more 8-bit Rregisters exist in the 280 which can be accessed
by commands. These are 'I', which stands for the Interrupt-Page
Register, and 'R', which is the Memory-Refresh Register.

The I register is used in a special interrupt mode of operation to
which the 7z80 can be set (by command), and it stores the high-byte
of an address that will be called in the event of an 'interrupt'
process. The low-byte is generated by the device generating the

'interrupt'.

Let us briefly examine the concept of an interrupt. When you write
a program, providing all is well, it will run the way you want it
to, branching to subroutines and returning to the main program as
scheduled. However, some input/output devices demand attention even
while your program is running quite happily. The 'video Display

Processor' (VDP) in your MSX is one of these 'devices'.

26

An interrupt signal is sent by the device to the 280. It says 'Hang
on, I need attention'. Your 'main' program stops while the
interrupt request 1is attended to - in the case of the VDP it is to
'refresh' the screen display - and then control is passed back to
the main program, to continue where it left off (see footnote).

The programmer can call on the interrupt process himself, and
indeed, you'll find a ‘'hook' at address FD9A and FDI9F which is
accessed 50 times a second. A Hook is 5 bytes in RAM which are
initialised to Returns (they contain code C9 for RETurn) and the
user can utilise these 5 bytes to do a CALL nnnn to his own
interrupt routine and return to the main program.

There are three interrupt modes, called up by the commands IM 0, IM
1, and IM 2. In Interrupt Mode 0 - which is the mode your machine
is in when you switch on - the external device must provide the
instructions for what it wants the 280 to do when it makes an
interrupt request.

In Interrupt Mode 1 (which is the mode the ROM places the z80 within
microseconds of you switching on), when an interrupt request occurs
an automatic jump is made by the 280 to memory address 38 hex. The
current location of any program running at the time is, of course,
temporarily stored so that after the interrupt routine is complete,
a return can be made to the original program. This interrupt mode
always calls to address 38 hex. On the MSX, 38 hex provides a jump
to the Hardware Interrupt routines at address 0C3C hex.

Footnote

Users who require further information on the VDP should refer to the
publication 'Behind the Screens of MSX Home Computers' by Mike Shaw,
which examines in detail the operation of the VDP and the way it is
used in the MSX.

&%

The third mode operates in a similar manner, except that it starts
by going to one of 128 addresses (instead of one), as supplied by
the calling device in conjunction with the contents of the I
Register. Note that bit 0 of the address byte from the calling

device is always zero.

The address pointed to, plus the next address, provide the 2-byte
address of the interrupt handling routine, to which control is then

passed.

In some programs it may be necessary to ensure that an interrupt
does not occur during a specific process: a Dissable Interrupt
command (DI) lets you do this - but for heaven's sake remember to
Enable Interrupts (EI) again when that part of your program is

complete.

Finally, the Refresh 'R' Register: this is provided to refresh
dynamic memories automatically. You can use this as a kind of
'software clock', but since its values run only from 0 to 255
decimal, it's not exactly the most useful Register available.

28

THE ASSEMBLY COMMANDS

There are a number of ways to classify the many Assembly commands
you have at your disposal. We are going to herd them together under

five headings to cover instructions which:

. Transfer data from one place to another
. Manipulate and test the data in some way

1
2
3. Re-route program running sequence
4. Handle input/output devices

5

. System controls

Before we go into the commands, it may be useful to spend a few
brief moments looking at the way a command 1is carried out by the
Z80.

Every instruction is executed in three phases. In Phase 1, the
instruction is fetched from the correct place in the program. The
Program Counter tells the Z80 where to look (we dealt with this
earlier). The first - perhaps only - byte of the instruction is
then placed in a Register the 280 keeps all to itself (called,
believe it or not, the Instruction Register). In Phase 2, the
instruction is decoded by the 2Z80 - that is, it sets up the cycle of
operations for the third phase, which is to actually execute the

instruction.

Each phase operates within finite steps, called clock cycles or T-
States. The cycles themselves operate in 'machine cycles' - called
'M Cycles'. The shortest machine cycle lasts three clock cycles.
Now as each cycle means a discrete unit of time, the more cycles an
instruction needs for its fetching, decoding and execution, the
longer it takes to execute. Pretty obvious really.

29

The point of all this is, generally speaking the more bytes there
are to an instruction, the longer it takes to execute. However, the
'complexity' of the instruction also plays a part, so some
instructions take longer than others of the same byte length. For
example, the one-byte instruction to Decrement Register pair BC
_ DEC BC - takes 1 machine cycle, 6 T-States, while DEC A, also a
one byte instruction, takes 1 machine cycle, 4 T-States. DEC A is
faster by 2 T-States - or one miserable microsecond if the clock is
'running' at 2 MHz. or even less at 3.58 MHz on the MSX.

For the newcomer to machine coding, this discussion on machine
cycles and T-States should be quite enough to cope with: it is
beyond the scope of this book to discuss the actual speed of every
instruction, since that becomes important only when one has gained
experience. As mentioned before, most machine code programs run

quite fast enough without any fine pruning.

The 'Brackets' Convention

Before we finally get down to the commands, there is one
'convention' you must be perfectly clear about - and that is the use

of 'brackets' within a command.

An address can be referred to in two ways. If we want the address
itself, it is written in the normal way - 1234H, for example. If we
wish to refer to the CONTENTS of the address, then the address is
placed in brackets.

Thus the command 'LD HL,1234H' means 'load Registers HL with the
address 1234 hex'. You will recall from an earlier discussion that
the Low byte goes into Register L (34 hex), and the High byte goes
into Register H (12 hex).

The command 'LD HL,(1234H)', on the other hand, means 'go to address

1234 hex, and whatever byte you find there, put it in Register L.
Then go to the next address - 1235 hex - and put the byte you find

30

there into Register H'. (Look back a few pages to refresh your
memory on how the Z80 requires addresses to be stored). 80 1f
addresses 1234H and 1235H hold bytes 89 hex and 67 hex respectively,
then HL will be left holding the value 6789 hex after this command.

Similarly, take the command 'LD A,(HL)'. This means 'go to the

address pointed to by Registers HL, and put the byte you find there

into Register A'. If the HL Registers had been 'set up' to hold

1234H, then whatever byte is at that address (in our example above,

it was 89 hex) is loaded into Register A. If HL Registers had been
1

'set up to hold 6789H, as in the second example above, then
whatever byte is at the address 6789H gets loaded into Register A.

Note that the command 'LD A,HL' cannot exist, since you will be
trying to load two bytes of data into a one-byte store. Even an MSX
computer can't do that.

1. Data transfer commands

In this section, we will be looking at all the different ways you
can shift one or more bytes of data from one place in memory to
another - and that includes shifting data around the Registers
themselves. For convenience, it also includes the 'creation' of new
data - that is, loading a Register with a specific value rather than
a value to be found elsewhere in RAM. What we won't include in this
section are the commands which read or write to input or output

devices.

You may think this an obvious point to make, but we'll make it
nonetheless: data remains in an address or Register wuntil it is
'overwritten'. Thus, if we say 'Load Register A from Register B (LD
A,B) then both Registers A and B will be holding the data that was
in B, and the data that was in A will be lost.

31

The 8-Bit Load Group

All 8-bit transfers are achieved by a straightforward 1load
instruction which takes the following format:-

LD destination,source

Thus a typical example might be LD B,D - which means load the

contents of Register D into Register B.

The following table shows the 8-bit load commands available:-

Source of the load
ABCDEHL (HL) (BC) (DE) (IX+d) (IY+d) (nn) n
Load Dest.

A i AL ARG i S80Sl <SR S X X X X % X
B XXX XX XX X X X X
C oKUK X _SELX A X > ¢ bd
D X R Kog B X X X% X X X
E X 36 Ko A Ky et K X X X
H %1% X XX R ¥ X X
L Xy X KR KK, K K X X X

(HL) S 53 0T (9. K. X X

(BC) X

(DE) X

(IX+d) x

(IY+d) x x

(nn) X

The Registers down the left hand side represent the DESTINATIONS of
a load, and the Registers across the top represent the SOURCE of a
load, in the command format 'LD destination,source'. The x's denote
where a command is available.

32

So reading across the top line, you can have as valid commands: LD
A,A; LD A,B; LD A,C; and so on. Notice that no command is
available to load Register D from the address pointed to by Register
pair BC (i.e. there's no LD D,(BC) command). Sad - but no problem.

In the Table, 'nn' means a two-byte number, which could represent an
address. You'll notice that only Register A can be loaded from the
contents of a specific address (top line - LD A,(nn)). Also, at the
end of the Table, you'll see only Register A can be loaded into a
specified address. Let's discuss the ramifications of this.

If you want to load a specific address with a data byte, you can
either do it by first placing the data byte in Register A (if it
isn't already there), then do a 'LD (nn),A' command (nn being the
required address). Or - take a 1look at the horizontal line for
'(HL)'. If HL is loaded with the desired address - i.e. LD HL,nn
(we'll come to that command later on), then data from any of the
Registers A,B,C,D,E and yes, even H and L can be loaded into the
desired address - using the LD (HL), 'register' command.

If you study the Table, you'll see that the same applies 'in
reverse' - that is, you can load any of the Registers (including H
and L.) from the address pointed to by the HL Registers (vertical
column (HL)). Thus, you can write LD C,(HL) - meaning load
Register C with the contents of the address pointed to by HL. Easy
isn't it, when you know how.

Now let's 1look at another aspect of this Table - that 'n' column oa

'n' stands

the right hand side. As you've probably already guessed,
for a data byte - any value from 0 to FF hex or 255 decimal.
Notice, now, how you can load a specific byte of data into the

address pointed to by HL - the LD (HL),n command.

You may wonder, looking at the table, how you can load for example
the contents of Register D into an address pointed to by Register
pair BC - that is, how do you cope without a command LD (BC),D.
Well, good Register management, in the first place. But that isn't

33

always feasible. So you'll have to transfer the data in D to A
(having first 'saved' A somewhere, if you want to keep it), using LD
A, D; then simply use LD (BC),A.

Four commands missing from the Table which were discussed earlier

but will not be required for a while are:-

LD A,I (load A from the Interrupt Register)
LD A,R (load A from the Refresh Register)
LD I,A (Load Interrupt Register from A)

LD R,A (load Refresh Register from A)

The 16-bit Load group

The basic format for 16-bit (two-byte) data loads is essentially
the same as that for 8-bit loads, namely:-

LD destination, source

There are however some important exceptions, which we will come to
in a moment. Since we are talking about two-byte loads, either the

source or the destination must, of course, be a Register pair.

The following Table shows the commands available within the format
'LD destination,source':-

Source of the load
BC DE HL SP IX IY nn (nn)
Load Dest.

BC
DE
HL
SP X x %
IX
LY

(D030 8%, R X o 3y 3K

xoOoX X X X X
XX X X X X

34

Doesn't look a very busy Table, does it? It would appear that you
can't - as an example - directly 1load Register pair BC from the
contents of, say, Register DE. Appearances are correct: there is no
LD BC,DE command. But as we shall see, this isn't really a problem.

In the Table, 'nn' of course represents two bytes of data - which
could be an address, or simply a number for some arithmetical

‘nn'.

operation - while '(nn)' represents the CONTENTS of address
Probably the most important things to notice about this table are
the absence of the A Register in a pairing, and the fact that the
Stack Pointer Register, SP, can be loaded from the contents of
Register pair HL, or the two-byte Registers IX or IY, or with an
immediate address -'nn', or from the contents of a specific address
= (nn)t So there are several ways to set up the Stack Pointer
- or even to change it during a program (as long as you know what

you're doing).

The reverse isn't true, however: as far as load - LD - commands are
concerned, the SP address can only be loaded into '(nn)' - to save

its value.

Now, what about the other ways we have to transfer two bytes of
data, and what about the poor old A Register? What the Table could
have shown is an extra column and an extra row headed (SP) - that
is, for example, a LD (SP),BC command, or a LD BC,(SP) command.
These functions are possible - but they are not invoked by this type

of command.

Let's see what LD (SP),BC means. '(SP)' means the contents of the
address 'named' in the Stack Pointer Register. That's the top of
the Stack. So 'LD (SP),BC' means - 'put the contents of Register
pair BC onto the Stack'. Similarly, 'LD BC,(SP)' means - 'load
Register pair BC from the contents at the top of the Stack'. In
both instances, the address held in the Stack Pointer Register is
'updated' after the transfer of each byte (see the earlier

discussion on the Stack Pointer).

35

There is a command all of its own to put the contents of a Register
pair on the Stack, and another command to take two bytes off. The
commands are PUSH and POP, respectively.

These are the Register pairs and two-byte Registers you can PUSH and
POP: -

AF,BC,DE,HL,IX,IY

Thus, to store the contents of Register pair DE on the Stack, you
can write PUSH DE. And to get the data at the top of the Stack into
DE, you can write POP DE.

You noticed, didn't you - Register pair AF can be PUSHed and POPed
to and from the Stack. That's so you can conveniently put aside
what may be important data in both or either the A Register and the
Flag Register.

Now, what about that poser we set earlier - loading BC from DE, for
example. How do we do that? There are two ways. One, you can PUSH
DE, then POP BC - that puts DE's data on the Stack, then reads it
off into BC. Method two - use the two single-byte load commands, LD
B, Dy LD C,E. Both methods work, both methods are exactly two
instruction bytes 1long, both methods are used quite extensively.
But, the PUSH and POP method makes the Z80 look 'beyond' itself and

into RAM area to execute the commands - whereas the LD
Register,Register method doesn't. So the LD Register,Register
method is faster (by 16 T-States, as it happens). If you want to

put the two byte data that's in one of the Index Registers IX or IY
into a Register pair, then you have no option but to go via the

Stack. Notice, though, you do not specify the 'displacement' with
the Registers: it's PUSH IX, not PUSH IX+d.

There are some more commands that enable you to shift two bytes of
data from one place to another. They are called 'Exchanges'. Here
they are:-

EX (SP),HL
EX (SP),IX
EX (SP),IY
EX DE,HL
EX AF,AF'
EXX

An Exchange is different from a load, in that the contents of both
places designated are 'swapped'. Thus, the first three commands
swap the contents at the top of the Stack with the respective
Register named - HL,IX or IY.

For example, when a subroutine is called (through a CALL command)
the address of the next instruction after the CALL is put on the
Stack. That's the address that will be put back into the Program
Counter when a RETurn is made from the subroutine. But supposing we
choose to put after the CALL command not the next instruction, but
an item or items of data that we wish to pass into the subroutine.

In the subroutine, we do an EX (SP),HL command. So now what was in
HL is on the top of the Stack, and what was on the top of the Stack
- the address of where our data is - is in HL. We can pick up the
data now by doing, for example, a 'LD A,(HL)' command. Now - and

this is important - we increment HL so that it points (or 'bumps')
over the information byte(s) to the address of the next instruction,
and then do another EX (SP),HL. The correct address for the next
instruction when we RETurn is now in the right place ready to be
picked up by the Program Counter, and we've passed data into the
subroutine for processing. That's by no means the only way to pass

data into a subroutine, but it is a useful way.
The EX DE,HL command is invaluable when doing arithmetical

operations, or when you want to exchange a DEstination address in DE
and a source address in HL.

37

The EXX command exchanges the contents of the three Register pairs
BC,DE and HL with their counterparts in the second Register set
- BC', DE' and HL'. But not, you'll notice, the AF Registers - they
have their own command EX AF,AF'. The information contained in the
second Register set is not worked on, merely 'held in abeyance', so
you have another way of temporarily holding onto data without
setting up storage addresses or using the Stack. However, vyou'll
find in some computers, the second set is used quite extensively to
handle interrupt routines and so on, so if you unwittingly wipe out
or leave ‘'strange' data in the second set, you could have some
peculiar things happening.

38

The Block Transfer Group

We now come to the commands which enable any number of data bytes
to be transferred from one place in RAM memory to another. These

commands and their functions are:-

LDI Load (DE) from (HL)
Increment DE and HL

Decrement BC

LDIR - Load (DE) from (HL)
Increment DE and HL
Decrement BC
Repeat until BC = 0

LDD - Load (DE) from (HL)
Decrement DE and HL

Decrement BC

LDDR - Load (DE) from (HL)
Decrement DE and HL
Decrement BC
Repeat until BC = 0

All of these commands transfer the data byte found at the address
pointed to by the Register pair HL, to the address pointed to by the
Register pair DE. After each data transfer the value held in
Register pair BC is decremented. (Obviously, these three Register
pairs must therefore be 'primed' before the block transfer command

is invoked).

In the case of the LDI and LDIR commands, DE and HL are incremented
after eath transfer, while for the LDD and LDDR commands they are
decremented after each transfer. Thus HL and DE are always left

pointing to the correct addresses for the next data byte transfer.

39

With the LDIR and LDDR commands, the transfer of data continues
until BC becomes zero, at which point processing continues with the
next command.

With the LDI and LDD commands, processing continues with the next
command after each transfer: this enables other actions to be taken
before the next transfer of data - though you must remember not to
'upset' the values in the DE,HL, or BC Registers (unless that is all
part of your cunning program). The LDI and LDD commands set the P/V
Flag to =zero if they decrement BC to zero. The following program
will transfer only those data bytes that have their most significant
bit (Bit 7) 'set' - that is, equal to '1': the program assumes that
DE and HL have been set up with the Destination and Source 'start'
addresses, and that BC is set to count the maximum number of bytes
to be examined, and transferred if Bit 7 is equal to '1'.

NEXT:LD A, (HL) ;Get 'next' byte

BIT 7,A ;Test top bit

JR NZ,MOVE ;Byte wanted - shift it

INC HL ;Byte unwanted - increment HL

DEC BC ; and decrement the counter BC
TEST:LD A,B ;Check if BC is zero

OR C ;by ORing B with C

JR NZ ,NEXT ;Do it again if BC not zefo

JR DONE ;BC is zero - so finish
MOVE:LDI ;Move the byte

JP PE,NEXT ;Do again if BC not zero
DONE:Your next command...

Instead of the 'JP PE,NEXT' command after the LDI, one could do a
relative jump back to the 'TEST' point - JR TEST - which checks if
BC has reached zero after being decremented. But we wanted to
demonstrate the use of the JP PE command. Note, incidentally, one
cannot do a Relative Jump (JR Label) when testing for parity. But
more about this, and the other commands 'BIT 7,A',INC and DEC later.

40

You may ask why do we need both LDIR and LDDR commands. It is &0
that we never 'overwrite' data we want to shift.

Suppose for example we want to shift a data block of 1001H bytes
from 8000H to 8500H. If we use the LDIR command with HL pointing to
8000H and DE pointing to 8500H, the first byte will be transferred
from 8000 to 8500H - overwriting data within the block of 1001H

bytes we're going to transfer.

In this instance, we would use the LDDR command - and set the HL
Register to point to the END of the block we wish to shift (i.e.
9000H), and DE to the END of the destination area (i.e. 9500H). So
now, by the time DE has been decremented to 9000H, we've already
shifted the data from there, so it's o.k. to overwrite it.

2. Data manipulation & test commands

The 8-Bit Arithmetic and Logic Group

The simplest arithmetical operation that can be done. on a single
byte is to add one to it (INC) or deduct one from it (DEC). These
operations can be performed on the following Registers and addresses
pointed to by Registers:-

A, B, ¢, D, E, H, L, (HL), (IX+d), (IY+d)
The Z, P/V and S Flags are affected as a result of the operation.
The rest of the operations in this section ALL operate on Register
A: the OTHER data byte source - even if that is Register A as well,
must be specified. The following sources can be used for the

'other' data byte:-

A, B, C, D, H, L, (HL), (IX+d), (I¥+d), n

41

The 'n' of course represents a specific value.
The commands available are:-

ADD A; ADC A; SUB; SBC; AND; OR; XOR; CP
We will examine each command:-

ADD A (examples - ADD A,B; ADD A,(HL); ADD A,2)

Note the A Register must be specified. This command simply adds the
specified data byte to that in Register A. Thus ADD A, (HL) means add
the contents of the address pointed to by HL to the contents of the
A Register, leaving the result in the A Register. If the result
exceeds FF hex (255 decimal), the Carry Flag is set, and A holds the
result minus 256. Thus, with FF hex in Register A 'ADD A,2' would
result in A holding '1', and the Carry Flag set to '1'.

The Z, P/V and S Flags are also affected according to the result of
the ADD operation.

ADC A (examples - ADC A,B; ADC A,(HL); ADC A,2)

This is exactly the same as the ADD command, except that the
contents of the Carry Register before the operation commences are
also added to Register A. Thus if the Carry Flag is set and
Register A holds 21 hex, 'ADC A,2' results in A holding 24 hex, and,
because the operation did not require a 'carry', the Carry Flag

would be reset to zero.

SUB (examples - SUB B; SUB, (HL); SUB 2)

Note that Register A is not specified (unless one wants to SUB A,
i.e. subtract the contents of A from A). This command subtracts the
specified data from Register A, and leaves the result in Register A.

As with 'ADD', the Flags are affected according to the result.

42

SBC (examples - SBC B; SBC (HL); SBC 2)
Similar to the SUB command, except that the contents of the Carry
Flag are also subtracted from Register A.

AND (examples - AND A; AND (HL); AND OFH)
This performs a logic AND function between the A Register and the

specified data byte, leaving the result in Register A.

'ANDing' means 'compare the two bytes, bit by bit. If both bits are
a i, then the corresponding bit of the result will be a '1'.
Otherwise it's '0' '.

Thus, with OA7H in Register A, 'AND OFH' produces:-
10100111 (A7 hex, 167 decimal)

00001111 (OF hex, 15 decimal)
Result = 00000111 LT)

This technique is often used to provide a 'mask' - that is, to
eliminate parts of a byte that are not wanted. The 'masking' data
- in the above example 'OFH' - covers that part of the data byte we

want to keep.

ANDing always resets the Carry Flag to zero. Thus AND A will reset
the Carry Flag to zero, and leave Register A as it was before the
operation: this command can therefore be used to clear the Carry

Flag without upsetting Register A.

OR (examples - OR A, OR (HL), OR 80H)
This performs a logic OR function on the A Register, leaving the
result in the A Register.

'ORing' means 'test the two data bytes, bit by bit. If either or
both bits are a '1', then the corresponding bit in the result will

be a '1'. Otherwise it's a '0' '

43

Thus with 1B hex in Register A, OR 80H produces:-

00011011 (1BH, 27 decimal)
10000000 (80H, 128 decimal)
Result = 10011011 (9BH, 155 decimal)

This can be a useful way to add in bits to a byte: if A for example
holds a value between 0 and 9, OR 30H will leave in A the ASCII

code for that number.

OR always clears the Carry Flag, and affects the other Flags
according to the result. Thus, OR A leaves Register A unchanged, but

clears the Carry Flag.

XOR (examples - XOR A, XOR (HL), XOR OFH)
This performs a logic XOR function on the A Register, leaving the

result in the A Register.

'XORing' means 'compare the two data bytes bit by bit. If one is a
'1' and the other is a '0', then the corresponding bit of the result
will be set to a '1'. Otherwise it will be '0' '. Thus if Register
A holds 14H, then XOR 17H produces:-

00010100 (14H, 20 decimal)
00010111 (17H, 23 decimal)
Result = 00000011 (3)

XOR always resets the Carry Flag, and affects the other Flags
according to the result. XOR A must always result in Register A
becoming zero - thus this is a useful command to clear Register A
and the Carry Flag to =zero: the Zero Flag will be set to '1'
- meaning the value of Register A is zero.

44

CP (examples - CP B, CP (HL), CP 9)

This subtracts the specified data byte from the value held in
Register A - AND DISCARDS THE RESULT: thus, only the Flags are
affected by the command.

If the Test byte is greater than that in Register A, then the Carry
Flag will be set.

If the test byte is the same as that in Register A, then the Zero
Flag will be set.

If the test byte is equal to or less than that in Register A, then
the Carry Flag is reset.

The Sign Flag and the P/V Flags will be set or reset according to
the value in Register A.

The 16-Bit Arithmetic & Logic Group

As with the 8-bit Group, the simplest commands in this Group are
INC and DEC. These commands can be used to increment or decrement
Register pairs:-

BC, DE, HL
and the 16-bit Registers:-

SP, IX, IY

Note however that, unlike the 8-bit INC and DEC, for the 16-bit
versions, the Flags are completely unaffected.

The following Table shows the ADD, ADC and SBC commands available
(indicated by the x's):-

45

This with
pair BC DE HL SP IX 1Y

ADD HL KX Sx

ADD IX RKiu % X, X
ADD TIY Xy % X X
ADC HL p IR | X

SBC HL X x X

Note that the SUB command is not available - the Carry Flag is
always involved on a subtract operation. If you don't want the
Carry Flag involved - in case it may be set to '1', wuse an OR A
command first to clear it.

The ADD, ADC and SBC functions are the same as those for the 8-bit
commands except, of course, here they are operating on 16-bits.

The 8-Bit Shifts and Rotates

These commands operate on a specified byte of information, shifting
or rotating its contents 'to the left' or 'to the right'.

The byte operated on can be in:-

A, B, C, D, E, H, L, (HL), (IX+d), (IY+d)

The commands available are as follows:-

RLC (Examples - RLC B; RLC (HL))

This moves the contents of bit 0 to bit 1, bit 1 to bit 2 and so on.
Bit 7 is moved into the Carry Flag AND into bit 0. The data is thus
ROTATED Left, with the Carry Flag reflecting Bit 7. Note, for
Register A the command can be written RLC A or RLCA: RLCA is a
different command, requiring one less instruction byte.

46

RRC (examples - RRC B; RRC (HL))

This moves the contents of bit 7 to bit 6, bit 6 to bit 5 and so on.
The contents of bit 0 are moved into the Carry Flag AND bit 7. The
data is thus ROTATED Right, with the Carry Flag reflecting bit 0.
Note for Register A, the command can be written RRC A or RRCA: RRCA
is the shorter, faster version of the two.

RL (examples - RL B; RL (HL))

This moves the contents of bit 0 to bit 1, bit 1 to bit 2 and so on.
Bit 7 is moved into the Carry Flag, and the Carry Flag contents are
moved into bit 0. Thus nine bits are involved in a ROTATE Left.
Note that for the A Register this command can be written RLA instead
of RL A, RLA being a shorter, faster command.

RR (examples RR B; RR (HL))

This moves the contents of the Carry Flag into bit 7, bit 7 into bit
6 and so on. Bit 0 is moved into the Carry Flag. Thus nine bits
are involved in a ROTATE Right. For the A Register, the command can
be written RRA instead of RR A, RRA being the shorter and faster of
the two commands.

SLA (examples - SLA B; SLA (HL))

This moves bit 0 into bit 1, bit 1 into bit 2, and so on. Bit 7 is
moved into the Carry Flag. A '0' is placed in bit 0. Thus the data
is SHIFTED left.

SRA (examples - SRA B; SRA (HL))

This moves bit 7 into bit 6, bit 6 into bit 5 and so on. Bit 0 is
moved into the Carry Flag. Bit 7 is ‘'refilled' with its original
value (this is for 'signed' arithmetic' operations, to preserve the
sign bit 7). Thus the data is SHIFTED right, arithmetically.

47

SRL (examples - SRL B; SRL (HL))

This moves bit 7 to bit 6, bit 6 to bit 5 and so on. Bit 0 is moved
into the Carry Flag, and a '0' is placed in bit 7. Thus the data is
SHIFTED right.

Decimal Arithmetic Rotates

We now come to two very special rotate functions, used when
handling Binary Coded Decimal Arithmetic. Both commands operate
between Register A, and the data byte in the address pointed to by
the Register pair HL (i.e. '(HL)'). They are:-

RLD
This command puts the bottom nibble (lower four bytes) of the A
Register into the bottom nibble of (HL), the bottom nibble of (HL)
into the top nibble of (HL), and the top nibble of (HL) into the
lower nibble of Register A. The nibbles are thus rotated. The top
nibble of Register A is unaffected by the operation.

RRD
This does the same as RLD, but in the other direction. Thus, the
bottom nibble of Register A is moved to the top nibble of (HL), the

top nibble of (HL) is moved to the bottom nibble of (HL) and the
bottom nibble of (HL) is moved to the bottom nibble of Register A.
The top nibble of Register A is unaffected by the operation.

48

BIT MANIPULATION

Quite often, one wants to test a specific bit in a data byte, to
see whether it's a '"1' or a '0'. Equally it can be very useful to
be able to set a specific bit to a '1', or reset it to '0'. The 2Z80
allows you to do this.

The three basic command words available are:-

BIT b,l: Test bit 'b' at location 'l'
SET b,l: Set bit 'b' at location 'l' to a '1'
RES b,1: Reset bit 'b' at location 'l1' to a '0'

The bit 'b' can, of course, be any bit from 0 to 7. (Remember that
bit 7 is the most significant, and bit 0 is the least significant).

The location 'l' can be any of the following:-
A, B, ¢, D, E, H, L, (HL), (IX+d), (I¥+d)

Thus there are three basic commands, each of which can operate on
one of eight bits in ten different locations - a total of 240
commands in all. Typical examples of the three basic commands are

now given.

BIT 3,B
This tests whether bit 3 of Register B is a '0' or a '1'. If it is a

Lo, the Zero Flag is set to a '1' so that a subsequent test for

Zero would succeed. Thus, in this program segment:-

BIT 3,B
JP Z,WASZERO

a JumP will be made to the program segment labelled 'WASZERO' if BIT

3 of Register B is '0'. Otherwise, processing continues with the

next command.

49

Note that whilst the Zero Flag is specifically set or reset by BIT
commands, the Sign Flag 'S' and the Parity/Overflow Flag 'P/V' may
or may not be affected - the information they contain is irrelevant
and untestable. The Carry Flag is unaffected by the operation - it
will contain a previously held value.

SET 7, (HL)
This command makes bit 7 of the data byte at the address pointed to

by the HL Register pair equal to a '1'.

RES 5, (IX+3)
This command operates on the data byte at the address pointed to by

the IX Register PLUS 3, resetting its bit 5 to a '0'. Thus if the
IX Register holds '8000H', then the data byte at address '8003H"
will have its bit 5 turned into a '0'.

These bit manipulation functions can prove invaluable in some types
of program. To give just one broad example, in an Adventure game
one data byte may be used to indicate the possible exits from a
given location - a '0' meaning 'no exit', and a '1' meaning 'exit
possible'. Bit 7 could represent North, bit 6 East and so on, with

'up', ‘'down' and two other

four bits 'left over' to represent say
possible ways out. Checking whether or not an exit is possible is
then simply a matter of testing the appropriate bit: changing the

status of an exit is simply a matter of 'SETting or RESetting it.

50

A% e S

o u R S5 o B 0O WU

SPECIAL A and F REGISTER MANIPULATIONS

There are five instructions which operate specifically on Register

A or on the Carry Flag in Register F. These are as follows:-

DAA

This is a very special command for use when performing Binary Coded
Decimal arithmetic (BCD). In BCD, a four-bit nibble is used to store
one decimal digit: thus one byte can store two decimal digits (this
is referred to as 'packed BCD'). The values '11' to '15' decimal
can all be represented within one nibble: however, for BCD we only
want one decimal digit per nibble, and so the binary representations

of '11' to '15' decimal are meaningless and not wanted.

Let us look at two examples. First, we will add '22' decimal to
'43' decimal. The program to do this in Binary Coded decimal could

be: -

LD A,22H;22H = 0010 0010 binary,'22' in BCD
ADD A,43H;43H = 0100 0011 binary,'43' in BCD

As you can see, adding the binary values would yield 0110 0101
- which in BCD is '65'. Just what we wanted, so there's no problem.
Now let us look at what happens if we add '26' decimal to '17'
decimal. Using the program segment as before, the binary
representation for this would be:-

0010 0110 (26H)
0001 0111 (17H)

and if we add these, we get
0011 1101 (3DH)
Here, the 'D' is meaningless as a decimal number. And that, patient

reader, is where the DAA command comes in. Added after the 'ADD A'

instruction in the program above, it Decimal Adjusts any result in

51

the A Register. Thus, in the first example, the 'DAA' command wou
do nothing, for all is fine and dandy. But in the second example
it would see that things have gone wrong with the lower nibble, sor

out exactly what had gone wrong (depending on whether we'd bee

adding or subtracting), and adjust the result accordingly. In th
second example, it would leave Register A holding 0100 0011 - '43H
or 43 in BCD - which 1is correct. In this specific instance i

achieves this result by adding a further 6 to the lower nibble, bu
don't worry about that. sufficient to know that it makes th

correct adjustment.

What you should know, however, is that to sort things out the DA
command makes use of the Flags - so after a DAA command, all the

Flags are affected in some way.

CPL

This command 'complements' whatever value is held in the A Register:
that is, every '0' becomes a '1', and every '1' becomes a '0'. Thusy
if the A Register held the binary value '00101100', after a CPL
command it would hold the binary value '11010011°'.

This is called the 'one's complement' of the number, and is a way of
representing positive and negative values. For example, a '5' in
binary is represented by '00000101'. On the other hand '-5' can be
represented by the 'one's complement', namely '11111010"'. Notice
that bit 7 is now '1' - representing a minus value. (See also the

discussion on Flags).

The 'testable Flags are not affected.
NEG

In this command, the contents of Register A are subtracted from

zero, and the resulting value is stored back in Register A. This is

called the 'two's complement' of the number.

52

ey N—

In two's complement representation, positive values are represented
just as in 'one's complement' - i.e. in the usual signed binary way,
with bit 7 showing the sign (O=positive,l=negative). Negative
numbers however are represented as the 'one's complement' value PLUS
one. Thus the two's complement of '-5' is '11111011'.

Why go to all this bother? Two's complement makes signed arithmetic

easier for the computer to handle. Consider the sum '3 minus B3

00000011 (+3)
11111011 (-5)

Adding these (since we are representing the 'minus' as -5 in two's

complement), we get:-
11111110

Here, bit 7 tells us the answer is negative. Taking the two's
complement of 1111110, therefore, we get 00000010 (two's complement,
remember, is the one's complement of 1111110, which is 0000001, plus
1). Thus, the value is '2', and the Sign is negative. Answer, -2.

Just what the doctor ordered.

The Z80 command NEG, then, obtains the two's complement of a value
in Register A and leaves it in Register A, thus saving the bother of
doing a one's complement (CPL) and adding 1 (ADD A,1). This is a
very scant description of the principles behind one's and two's
complement arithmetic, but it should be enough to give the newcomer

to machine coding an idea of what it's all about.

Note that all the Flags may be affected by NEG command.

CCF

This command 'complements' the Carry Flag in the F Register. If the

Carry Flag is '0', then CCF makes it a '1'. If the Carry Flag is
Y1, CCF makes it '0°'.

53

SCF
This command makes the Carry Flag equal to a '1' (i.e. 'Set Carry
Flag').

There isn't a command to 'reset' the Carry Flag - that is, to clear
it However, as mentioned before, AND A and OR A will do this,
without affecting anything else. XOR A clears the Carry Flag as
well, but also clears Register A - makes it '0' - and consequently
also sets the Zero Flag and possibly affects the Sign Flag (which
reflects bit 7, remember). Observant readers might see that an
alternative way to clear the Carry Flag would be to set it firsg
(SCF), then complement it (CCF) - but this takes two bytes of
instruction code, whereas OR A takes one. So it's not much good as

an alternative. But well spotted anyway.

54

BLOCK COMPARISONS

The last 'manipulation and test' commands to be examined are the
'block comparisons'. In many respects these are similar to the
'block transfer' commands discussed earlier. They enable a whole
chunk of data to be 'searched' to find a byte that is the same as
that in Register A. Like the block transfer commands, they need you
to set up the Registers first: HL with the start address of the area
to be searched, BC with the number of bytes to be searched, and A
with the data byte we're looking for. The commands are:-

CPI Increment HL
Decrement BC

CPD Decrement HL
Decrement BC

CPIR Increment HL
Decrement BC
Continue until BC=0 or A=(HL)

CPDR Decrement HL
Decrement BC
Continue until BC=0 or A=(HL)

As with the block transfers, the CPI and CPD commands enable other
operations to be undertaken within the 'search loop'. When a match
is found, the Zero Flag is set. When BC reaches zero, the P/V Flag

becomes 0 (Reset).

The CPIR and CPDR commands whiz through the block to be searched

until BC reaches zero, or a match is found.

When a match is found, of course, Register pair HL will be pointing
to the matching byte in the data block.

55

3. Re-routing program running sequence

We now come to the commands which let you change the 'batting
order' of your program instructions - the commands which emulate the
'GOTO's' and 'GOSUB'S' in BASIC, and of course 'RETURN'. In machine

coding, however, you have more scope.

Jumps and Relative Jumps

The BASIC 'GOTO' instruction can be emulated by a JumP (JP) or a
Relative Jump (JR). A straight Jump is like a straight GOTO. The

format is:-

JP Label or JP address

'Label' of course representing the label you have given at a
particular point in your Assembly Language program, or which has
been defined by an EQUate.

Jumps can also be conditional - that is, any of the Flags can be
tested, and the Jump made if the test succeeds. The format for this

is:-
JP cc,Label or JP cc,address
where cc represents any of the Flag conditions that can be tested

(e.g. NZ,%,NC,C,PO,PE,P,M - see the section on 'Flags'). Thus a
typical instruction might be JP NZ,ENDGAME, which means 'if the Zero

flag is not set (non zero condition) - as a result of a previous
operation - then continue processing from the address labelled
ENDGAME ' .

Relative jumps need a little explaining. Their instruction codes

are shorter than straight jumps. The address they provide a jump to
is relative to the current address, and is given by a displacement

value: consequently the actual address doesn't figure in the

instruction code itself. If none of the addresses within the"

56

w

w

routine itself are 'mentioned' directly, the routine can be located
anywhere in memory. It is thus called a 'rellocatable' routine.
Many programmers write small subroutines (to do specific functions)
in a rellocatable form, so that they can add the routines to any
major program they are preparing. All they need then is the 'start'
point of the routine - which is done by a label.

The format for a relative jump is:-
JR Label or JR sc,Label

where 'sc' represents a conditional test. Unlike Jumps, which can
test any of the Flags, only the Zero and Carry Flags can be tested
for a conditional relative Jjump - i.e. Z, NZ, C or NC. So you
cannot write, for example 'JR M,LABEL'.

The relative jump can be made forwards or backwards. The
displacement value is in two's complement, and is added to the
Program Counter plus 2. If you work it out, you'll find that
relative jumps can be made to addresses within -126 and +129 bytes
of the address of the first byte of the 'JOR' instruction:
fortunately, the Assembler calculates the displacement value for you

when generating the machine code.

Special Jumps

There are four more kinds of jump you can do in machine coding.
Three of these enable you to jump to an address specified in the

Registers. They are:-

JP (HL)
JP V(EXY)
JP (IY)

and they're extremely useful when wusing 'jump tables'. One could

for example have a data table of items, each item being three bytes

57

long. The first byte of each item would be the 'menu selector'.
The next two bytes would be the address (in the order Low byte, High
byte, remember) of the 'action' routine for that menu item. The
'menu selectors' through the table are searched (jumping over the
next two bytes of the item where no match is found) until a match is

found.

With HL pointing to the matching byte, it is then a simple matter
to: INC HL (so it points to the Low Byte of the action address); LD
E,(HL) - pick up the low byte in E; INC HL - point to the High byte
of the action address); LD D,(HL) - pick it up; EX DE,HL - put the
address into HL; JP (HL) - and go.

This procedure is just one of the many, many ways in which one can
pick up the address of a required routine. It's also a fairly crude

way, but it demonstrates a point.

The fourth kind of jump emulates to some extent the 'FOR-NEXT' loop
in BASIC. It is a type of Relative Jump, and has the format:-

DJIJNZ Label

For this instruction Register B is used as a counter, so you must
set it up with a value equal to the number of times you want the
operation done. At the beginning of the 'loop', you have a Label.
When the DJNZ command is met, Register B is decremented and, if it
is not zero as a result, a jump is made to the Label address. It is
a Relative Jump, so the Label address must be within -126 and +129
bytes of the DINZ instruction's address (the Assembler calculates
the displacement for you).

You can Jjump out of the loop at any time - if a subsidiary test
succeeds, perhaps. Register B will then be holding the number of
operations left to do when the test succeeded - which may be useful

information.

58

Calls

A 'CALL' command is just like 'GOSUB' in BASIC. Like the JP jump

command, it can be unconditional:-
CALL Label or CALL address
or conditional:-
CALL cc,Label or CALL cc,address

the 'cc' representing one of the Flag tests, Jjust as for the

conditional Jump command.

When a CALL command is met, the Program Counter address for the next
command 1is put on the Stack, ready for when a RETurn is made - we
discussed this when reviewing the Registers of the 780. You must
therefore ensure that the Stack still has the RETurn address 'on
top' when the RETurn is made (it's utter disaster if you don't).

Restore

There is another kind of special Call command, called RST - which
stands for ReSTore. The format is:-

RST a
where 'a' stands for one of the following:-

00H, O08H, 10H, 18H, 20H, 28H, 30H or 38H.
When the RST command is encountered, the Program Counter address is
put on the Stack (just as in a CALL command), and a jump is made to

the specified address. The point about this instruction is that it
is only one byte long, and provides an extremely fast jump.

59

You'll notice though that all the addresses concerned lie within the
ROM area. So, for example, RST 00H gives you a cold start - like
pressing 'reset', if your MSX has one. The other addresses provide
jumps to specific routines used by MSX Basic, getting the next
character in a Basic 1line of text, for slot management, for

outputting to a currently operative device, and so on.

Returns

These RETurn control from a subroutine, just like 'RETURN' in
BASIC. The format is:-

RET or RET cc

where 'cc' is one of the Flag tests, as for the jump (JP) and CALL

commands.

There are two special Return commands. The first is RETI (return
from an interrupt), which must always be preceded by an EI (Enable
Interrupt) command. The second is RETN, which provides a return
from a non-maskable interrupt, and resets the 7Z80's interrupt Flag

to the condition it held before the non-maskable interrupt was made.

60

4. Input/Output commands

There are a number of commands available for inputs from or
outputs to peripheral devices. In many ways most of these are like
the block transfer commands, in that they enable blocks of data to
be transmitted either automatically or within a 'loop' performing
other functions. These particular commands are:-

Input commands Output commands
INI OUTI
INIR OTIR
IND OUTD
INDR OTDR

For the input commands, the peripheral device addressed by Register
C is 'read', and the information is loaded into the address pointed
to by Register pair HL. Then Register B is decremented, and
Register pair HL incremented (INI, INIR) or decremented (IND, INDR).

For the Output commands, the procedure is reversed - that is, the
contents of the address pointed to by HL is output to the peripheral
device addressed by Register C, B being decremented and HL
incremented or decremented after each transfer.

For the input or output commands ending with 'R', the procedure
continues apace until B = 0.

Four other input and output commands are available. These are:-

Input commands Output commands
IN A, (p) OouT (p),A
IN r,(C) ouT (C),r

IN A,(p) loads Register A with a byte of data read from the
peripheral Port 'p'. Similarly, OUT (p),A outputs the data byte in A

to the port 'p

IN r,(C) and OUT (C),r do the same kind of thing, except the port
device is addressed by the C Register, and the specified Register

'r' can be any of:-

AMoE CHMDISEFEHY L

5. System controls
These commands are used for controlling the 780 'system':-

NOP

This means, quite simply, No OPeration. That is, do nothing. Carry
on with the next command you find. It's useful when writing programs
in Assembly language, to provide a suitable spot for a 'Breakpoint'.
Since it takes time to 'execute', it can also be used to provide a

very short (a very, very short) delay.

HALT
This shuts down the operation of the 780 completely, until an

interrupt is received, or a 'reset' performed.

DI,EI
These Disable or Enable the Interrupt procedures. Interrupts are

discussed in the section on the 780 Registers.

IM 0,1 or 2

The IM commands set the Z80 in a particular Interrupt Mode. See the

discussion on Interrupts in the section on Z80 Registers.

62

NON 7Z80 COMMANDS (Pseudo Ops)

If wusing an Assembler, you'll find other commands are available
which are essential for writing in Assembly Language. These are
used by the Assembler to tell it what to do - reserve data space,
assemble at a specific address and so on. They do not 'translate'
into 280 instruction codes, and will not normally appear in a
dissassembled listing. Please refer to the manual for vyour

Assembler for details of these commands.

Line 1 of the program was an equate line and this simply tells the
assembler that the Label 'LOOP' equates to A003H which is the
address we wish to jump to at the end of the program as one can see
in line 9 we have entered JP LOOP, we don't need to specify an
address to jump to as the assembler has noted which address LOOP
equals. One reason for these equates is that if we wished to alter
the address at some future stage we would not need to list the whole
program and alter each line which contained this address, all that
is required is to change the first line to the different address and
the assembler will do the work for us. This address is the warm
start entry point to the ZEN Assembler, when this short program
finishes running we need to tell the computer where to jump to and
the mainloop of ZEN seems to be as good a place at this stage, we
don't want the program running off wildly into memory.

NOTE Whenever a hex number begins with a letter (A-F), as in
this case, it must be prefixed with a zero as is shown in line 1
otherwise the Assembler could confuse it for a label which always
start with an alpha letter. Secondly a colon must be entered
between the label and the letters EQU.

Line 2 calls a ROM routine at address 0849H which simply clears the
screen and returns to our program. This is similar to a GOSUB in
basic but in this case the subroutine is already in ROM and all our
program needs to do is call it.

Line 3 loads the A register with the value of the letter 'A'. ZEN

is quite versatile in that it allows entries within quotes and it

simply converts this to the Hex equivalent value of the letter, in
fact this line would have the same meaning if we entered LD A,41H
which is how it would be assembled and loaded into memory by ZEN
anyway. 41Hex is the hexadecimal ASCII value for the letter 'A', or
we could have entered LD A,65 which is the decimal ASCII value of
the letter 'A' and so omitting the suffix H which signifies to ZEN
that the value is decimal and ZEN must convert it to Hex.

66

Line 4 contains the label NEXT as we will jump back here to continue
printing letters. It is followed after the colon by CALL to 00A2H
which once again is a subroutine in ROM which prints the ASCII

value currently stored in register A, and returns to our program.

Line 5 increments register A so the first time round after printing
A on the screen we want it to increase its value by 1, so it will
increase from 41H to 42H, the letter 'B'.

Line 6 compares the value of register A to see if it has reached 7 +
1, and if it hasn't line 7 tests and jumps back to NEXT to do it all
again. Once again it is easier to enter line 6 as "Z"+1 but when it
is assembled this will be automatically altered to the ASCII Hex
value of 7z plus 1 making 5B hex.

Line 7 is the relative Jjump and here one can see the advantage of
giving lines a label for one does not need tc calculate the number
of bytes to jump back as the assembler does it for us. Furthermore
one could add extra lines between 4 and 7 which will obviously alter
the amount of bytes to jump back over without the need to adjust
anything else as the assembler will adjust the relative jump

automatically providing the jump does not exceed -126 or +129.

Line 8 is only reached when register A equals Z+1, when the alphabet
is completed, then line 8 loads register A with the ASCII code for a
carriage return, which returns the cursor to the left most position

on the line, and line 9 calls 00A2H again to print it.

NOTE ASCII codes below 20 hex are control characters, for
positioning the cursor etc., and can be used with a call to 00A2
as was done with the alphabet.

Line 10 loads A with the ASCII code for a line feed (0A) as not only
do we require the cursor to return to the left of the screen we also

want it to move down to the next line, so a further call is made to

00A2 in line 11 to carry out the task.

Line 12 puts us back under the control of ZEN when the program

finishes with a jump to Loop (A003H).

The next task is to find out if we have entered the program
correctly, some bright sparks may have noticed some errors already,
as one will get errors when entering and it is better to discover
some of the more common types of error messages at this early stage.
Enter 'A' and 'RETURN', this tells ZEN we wish to assemble the
program.

The screen will prompt for an 'OPTION' which will determine if we
wish to assemble to a printer by entering 'P', or 'E' for an
external device, or by entering 'V' for video to print on screen the
assembled version, or if we just enter the 'RETURN' key on its own
it will be assembled internally only stopping at a line which
contains any errors, which is the fastest option. So after the
'OPTION' prompt enter 'RETURN'.

The screen will display:-

ORG !
2 START:CALL 0849H
ZEN >

which simply means we did not enter the origin of the program, which
is where in memory we want it to reside. This is obviously a major
omission as the assembler must know where to place the program.

Enter 'T' followed by 'RETURN' and the first line of the program
will be displayed. 'T' is the target line you wish to be displayed,
entering 'T4' would display line 4, whereas just entering 'T' on its

own moves up to the first line.

Entering 'E', as we did to begin entering the program, will let us
enter extra program lines from the current line, which after
entering 'T' will be line 1, and as we enter these extra lines all
the lines already in the program will simply shift wup a line, the
existing line 1 will remain intact but will now become line 2 etc.

We should also enter a line to determine where we wish the program

68

to load into memory once it is assembled, this does not need to be
the same address as the ORG address, but to keep this program as
simple as we can we will load in the same place.

TO
DISPLAYED ENTER

ZEN > E
1 ORG OEOOOH
2 LOAD OEO00OH
3

ZEN >

Note the full stop to bring us back into command level.

Entering 'T' and 'RETURN' will display line 1:-
1 ORG 0EOOOH
ZEN >

Now entering 'P16' and 'RETURN' will list the program from line 1
through to the end of the program which is always displayed as
'EORY & If one entered 'P8' only the first 8 lines would be listed,
so if the whole program is to be listed ensure you enter 'P'
followed by a value equal to, or larger than, the last line number.

Notice that the original lines in memory have been moved up 2 lines.

Once again enter 'A' and 'RETURN' followed by 'RETURN' in response

to 'OPTION' prompt to see if our program is correct and will

assemble. If one entered the program as shown it should stop and
display:-
HUH?
6 NEXT:CALLOOA2H
ZEN >

Faced with this error one must look at the line and discover the
mistake because the prompt 'HUH?' does not tell us much, only this
will happen many times when writing your own programs. The line
looks O0.K. but the fault lies in the basic fact that we did not

69

enter a space between CALL and the address.
Enter 'N' and 'RETURN' and the 1line will be displayed with the
cursor to the right of the line of characters:-

6 NEXT:CALLOOA2H
Simply delete the characters from the right, by using the YBs:!
backspace key as the cursor keys are inoperative under ZEN, until
the cursor is over the first =zero after CALL and enter a space
followed by 00A2H and 'RETURN'.
The line should now look like this:-

6 NEXT:CALL 00A2H

Entering 'A' followed by 'RETURN' twice should result in no error
message this tim= and the 'ZEN' prompt should be displayed almost
immediately on the next line, which tells us that it assembled O.K.
and is loaded into memory.

Enter 'GEOOOH' followed by 'RETURN' and the screen will display:-

BKPT >

this is asking us to enter a breakpoint in the program, for if one
is testing certain parts of a lengthy program it can be halted at a
specified address in memory, and control will pass back to ZEN.
This can be very useful as machine code programs run so quickly that
it is very hard to keep track of them.

In this case we do not want to enter a breakpoint, so in response to
the 'BKPT' prompt enter the 'RETURN' key.

The screen should clear and this display should appear:-

ABCDEFGHIJKLMNOPQRSTUVWXYZ
ZEN >

Don't expect too much from your first machine code program, this was
only to demonstrate the principles in entering code, but now we have
lost all the bugs it seems a good time to assemble the program onto
the screen to see what has happened. Enter 'A' and 'RETURN' and this

70

time when prompted for 'OPTION' enter 'V' and 'RETURN' and the
result should be as follows:-

PAGER 1
ORG O0EO000H
LOAD 0E00O0H
LOOP: EQU 0AO003H
E000 CDC300 CALL 0849H
E003 3E41 ED AU
E005 CDA200 NEXT: CALL O00A2H
E008 3C INC A
E009 FESB CP Ly aled |
EOOB 20F8 JR NZ,NEXT
E00D 3EOD LD A,ODH
EOOF CDA200 CALL 00A2H
E012 3EOA LD A,0AH
E014 CDA200 CALL 00A2H
E017 C303A0 Jp LOOP
END
ZEN>

In the above program, due to its simplicity, we did not document the
functions of any lines but in a longer program it will be essential
to describe certain parts of the programs. Comments can be included
in any line by simply entering a semi-colon followed by the comment.
To add a comment to line 3 enter 'T3' and 'RETURN' followed by 'N'
and 'RETURN' and line 3 should be displayed with the cursor to the

right of the characters:-

3 LOOP:EQU OAO0O0H

add the following:-
;JUMP ON END and 'RETURN'

This 1line when 1listed will now show the comments after the semi-

71

colon which will remind one at a future date what the 1line was
achieving. Unlike Basic ZEN only allows entry on a single screen
line therefore if one required additional space for comments a line
may be entered with no instructions just a semi-colon followed by
the comments, these will be used on subsequent listings for clarity.
If one has a printer the assembled listing to 'P' for printer will
show the comment fields after an instruction formatted to the right
of the paper, but they will not be displayed on screen when
assembling to the 'V' for video option due to the limitations of the

37 column screen, unless they are entered on separate lines.

Alterations and Additions

If one followed and understood the instructions and how they worked
try the following:-

Alter the program to print the alphabet from Z down to A.

Change line 5 to LD A,"2"

line 7 to DEC A

line 8 to CP "A"-1

This will initially load register A with letter Z and instead of
incrementing in line 7 it will decrement, so the first time round
the value in register A will reduce to the letter Y and so on. Line
8 checks if has reached A-1 and if not loops back to print again.

SCREEN MESSAGES

One will almost certainly require messages and inputs to be printed
on screen, and as this test program is short it is ideal for
modifying quite simply. The first line after the Clear screen call
is line 5, so enter 'T5' and 'RETURN' and 1line 5 will get
displayed:-

5 LD A,"2"
ZEN>

72

Entering 'E' and 'RETURN' will now enable one to add 1lines to the

program, and move the existing lines up in memory.

TO
DISPLAYED ENTER

5 LD HL,MESG1
6 CALL 6678H
7

ZEN >

These new instructions are thus:-

LD HL,MESG1 loads register pair HL with the address in memory of the
start of a screen message which will have the 1label MESG1 assigned
to it. CALL 6678H is a ROM routine which prints, at the cursors
current position on screen, the message which starts at the address
stored in HL. The message, as you will see below, also contains any
control characters to move the cursor which can be entered before or
after the quotes containing the string. Furthermore the message
must terminate with the NOP code (0) which is wused as the 'End of

String' marker.

The next job is to enter MESG1 into our program. List the program
on screen to discover the last line number, as it is here we will
place the string of characters in our message. END should appear as
line 17, so enter 'T17' and 'RETURN' followed by 'E' and 'RETURN'

TO
DISPLAYED ENTER

17 MESG1:DB"TEST" , 0DH, 0AH, 0
18
ZEN>

If your message was longer than can fit onto one line then finish
the first 1line of the message by adding the closing quotes and
continue the message on the following 1line making sure it commences

73

with 'DB"' and only enter ',0' at the end of message.

In order to run the program it must be assembled again, making sure
no bugs have crept in. When assembling to the screen it will be
seen that long messages are not printed in full to the right of the
screen, however the bytes representing that message are entered into
memory as will be seen on the left of the screen. If the MESG1 line
was entered as shown above the display would actually cut off after
the comma following 'ODH'

Running the program can be entered as 'GEQOOH"'. It will be seen
that the screen clears and 'TEST' gets printed on the first line,
and the alphabet gets printed, in reverse order, on the following
line. One could have entered additional codes for line feeds 'OAH'

to print further down the screen.

Ensure your program lists as below, as we shall alter it further.

ORG OEO00OH

LOAD OE000H

LOOP:EQU OA0O0O0H;JUMP ON END
CALL 0849H

LD HL,MESGI1

CALL 6678H

LD#AG 24

NEXT:CALL O00A2H

DEC A

cp "a"-1

JR NZ,NEXT

LD A,ODH

CALL 00A2H

LD A,O0AH

CALL 00A2H

JP LOOP
MESG1:DB"TEST" ,0DH, 0AH, 0
END

® N o s W N =

S A Sh- kB aa e ed =W
o N O LW NN = O v

EOF

74

USER _INPUTS 1

We will assume that we wish the user to input a number from 1 to 9
in order for the alphabet to be printed several times. A routine
exists within the ROM that will stop the program and wait for a key

to be pressed before continuing and can be utilised quite simply.

Alter line 17 by entering 'T17' and 'RETURN' followed by 'N' and
'RETURN' to alter MESGIT. With the cursor to the right of the line
delete back with the Backspace key to the start of the string and
alter the line to the following:-

17 MESG1:DB"INPUT 1to9",0AH,0DH,0
We also need to change the program to accept an input from the

keyboard between 1 and 9. Enter 'T7' and 'RETURN' followed by 'E'
and RETURN'.

TO
DISPLAYED ENTER
7 TIMES:CALL 009FH
8 cp 31H
9 JR C,TIMES
10 CP 3AH
11 JR NC,TIMES
12 SUB 30H
13 LD B,A
14
ZEN>

A label must be added to the current line 14 as it will be required

to loop back. Alter it to read:-

14 START:LD A,"2"

75

Line 7 (labelled TIMES) now calls a routine within ROM (009FH) which
halts the program and waits for a key to be pressed. Once a key is
pressed the subroutine returns to our program with the ASCII value
of the key stored in register A.

As we only require keys 1 to 9 to be accepted the contents of‘
register A must be checked, and line 8 checks that the key pressed
was equal to or greater than 31H, which is the ASCII code for the
number 1 (check with the ASCII code table). It simply subtracts
(temporarily) 31H from the A register and if it contained a lower
ASCII code than 31H the carry flag will be set, hence line 9 1is a
relative jump back to line 7, for the processor to wait for another'

key to be pressed, if there was such a carry.

Subsequently the program must now check for a higher key than 9.
Line 10 compares for 3AH, which in the ASCII table will be seen to
equal the colon ':' which is one higher than 9. Line 11 is a
relative jump back to line 7 if after subtracting 3AH from register
A the carry flag is not set then the key pressed must have been
equal to or higher than 3AH, which means the key was higher in the

ASCII table than 9 and we must jump back and wait for another key.

Assuming that a correct key was entered we now know register A
contains a number between 31H and 39H and we must convert this to
between 1 and 9, and line 12 does exactly that it subtracts 30H from
register A leaving it with a value 1 to 9.

Line 13 loads register B with the contents of register A, as B is to
be the counter for the amount of times we will print the alphabet.
There is one extra line. Enter 'T23' 'RETURN' and 'E' 'RETURN'

TO
DISPLAYED ENTER

23 DJNZ START
24

This command was discussed in the 'Special jumps' section in chapter
2 and is a unique Z80 instruction for the B register which
decrements B and executes a relative jump back to wherever you
nominate, to carry out the instructions in the loop again until B
decreases to zero, similar to a FOR..NEXT loop in Basic. 1In this

case it jumps back to line 14 which is labelled START.

One will have to assemble the program before it is capable of being
run. If errors occur during assembly refer back to the specified
line and check it in this chapter. To run enter 'GEOOOH' 'RETURN'
and for BKPT enter 'RETURN'.

The assembled listing:-

PAGE 1
1 ORG OE000H
2 LOAD OEOOOH
3 LOOP: EQU O0AO0OOH ;JUMP ON END
4 E000 CD4908 CALL 0849H
5 E003 2130E0 LD HL,MESGI
6 E006 CD7866 CALL 6678H
7 E009 CD9F00 TIMES: CALL 009FH
8 E00C FE31 CP 31H
9 EOOE 38F9 JR C,TIMES
10 E010 FE3A CP 3AH
11 E012 30F5 JR NC,TIMES
12 E014 D630 SUB 30H
13 E016 47 LD B,A
14 E017 3E5A START: LD . Az
15 E019 CDA200 NEXT: CALL 00A2H
16 E01C 3D DEC A
17 E01D FE40 CRILIS R
18 EO1F 20F8 JR NZ,NEXT
19 E021 3EOD LD A,ODH
20 E023 CDA200 CALL 00A2H
21 E026 3EOA LD A,O0AH
22 E028 CDA200 CALL 00A2H
23 E02B 10EA DINZ START
24 E02D C300A0 JP LOOP
25 E030 494E5055 MESG1: DB "INPUT 1to9",0AH,ODH,0

25 E034 54203174
25 E038 6F390A0D
25 EO03C 00

USER INPUTS 2

This section deals with user inputs of unspecified length, as
against single key inputs, entering a string from the keyboard to b
printed a number of times.

In this example all addresses have been labelled, as one would whe
writing a longer program, and entering should be good practise at
getting it right. Enter 'K' and 'RETURN' to kill the existing
program followed by 'E' and 'RETURN'.

TO
DISPLAYED ENTER

1 ORG OEOOOH

2 LOAD OEOOOH

3 LOOP:EQU OAOO3H
4 ;ROM ROUTINES

) PTMESG:EQU 6678H
6 PINLIN:EQU OOAEH
7 CLS:EQU 0849H

8 INPBUF:EQU OF55EH
9 CHGET:EQU 009FH
10 CHPUT:EQU 00A2H
11 ; CONTROL CODES
12 BL:EQU 7

13 CR:EQU ODH

14 NEWLNE:EQU 0AH
15 i

16 CALL CLS

17 LD HL,MSGI1

18 CALL PTMESG

119 CALL BELL

20 CALL PINLIN

21 CALL CRLF

22 LD HL,MSG2

23 CALL BELL

78

as

at
ng

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
ZEN

CALL PTMESG

TIMES :CALL CHGET
CP 31H

JR C,TIMES

CP 3AH

JR NC,TIMES

SUB 30H

LD B,A
AGAIN:CALL CRLF
LD HL,INPBUF
NEXTCH:LD A, (HL)
CP 0

JR Z,FINI

CALL OUTPUT

INC HL

JR NEXTCH
FINI:DJINZ AGAIN
CALL CRLF

JP LOOP

7

;OUTPUT ROUTINES
BELL:LD A,BL

JR OUTPUT
CRLF:LD A,NEWLNE
CALL OUTPUT

LD A,CR
OUTPUT:CALL CHPUT
RET

;

;MESSAGES
MSG1:DB"ENTER A "
DB"STRING",0DH,0AH,0
MSG2:DB"INPUT 1to9",0DH,0AH,0
END

79

Line 16 commences the program with a call to the clear screer
routine, (CLS) assigned an address in the equates, at 0849H. The
message to enter a string is loaded into HL and printed by a call t¢
6678H (PTMESG). :
Line 19 calls BELL which 1is entered in the output routines in liné
45 where register A is loaded with the desired character, in thigs
case BL (7), and the program jumps to OUTPUT (line 50) where a cal%
to CHPUT (00A2H) outputs the contents of reg A afterwhich a returr
is made back to the next line (20). This line calls the ROM routiné
PINLIN (OOAEH) which allows input from the keyboard wuntil the
'RETURN' key is pressed and stores the string in the input buffer
(INPBUF) at OF55EH. Line 21 calls the carriage return and line feeé
subroutine (line 47) where once again reg A is loaded with the ASCIf
value of the control character, first with NEWLNE (OAH), and i{
outputted by a call to OUTPUT in line 50. Line 51 returns to the
line after the 1last call (line 49) where A is loaded with the Cﬂ
code (ODH) and this time the program runs into, it does not callé
line 50 to output the character in A once again. This time line 51
will return to the program line after the original call (line 22)
whereupon the second message is loaded into HL and is followed by &
call to BELL and the message is printed in line 24. |

Lines 25 to 31 get a number from 1 to 9 as the previous program.
Line 33 1loads the start of the input buffer, where the string i§
stored, into HL and line 34 loads the first character of the strin§
into reg A and it gets printed in line 37 which calls OUTPUT. whe@
a string is stored in the input buffer the byte after the last byté
of the string is loaded with a zero, therefore in line 35 we comparé
the contents of reg A for zero and if the test is positive g
relative jump to FINI (line 40) is carried out in line 36. Line 3§
increments HL to move it wup to the next character in the inpuﬁ
buffer and 1line 39 Jjumps back to NEXTCH (line 34) to load thé

character into reg A once again and compare it with zero.

Line 40 decrements reg B, which was set up as a counter, and loops
back to 1line 32 (AGAIN) to print the string once more. Line 41

80

3¢}

e

]

A O w H QA R © 0 85 —~ 0

D ~ =~

® r © D 0 00 5 Q9 »n

performs another line feed and carriage return before the program
jumps back to LOOP (0A003H) the warm start address of ZEN. The main
difference with the ZEN addresses O0A000 and 0A003 is that on
completion a jump to 0A003 will maintain the condition of the
registers allowing one to enter 'X' and 'RETURN' to examine the user

registers. Very useful when programs are playing up.

The following assembled listing 1is reproduced using the 'P' option
for printer, the main differences between this and the 'V' video
option is that line numbers are included in the printout and the any
comment fields are shown in full due to the additional columns being
available. To run the program enter GE000OH and 'RETURN' twice,
afterwhich the screen will clear and the 'ENTER A STRING' message
will be printed. After one has entered a string of characters the
"INPUT 1to9' message will be shown and on entering a value between 1

and 9 the string will be printed.

PAGE 1
1 ORG OEO0O00H
2 LOAD OE000H
3 LOOP: EQU 0AO003H
4 ;ROM ROUTINES
2 PTMESG: EQU 6678H L
6 PINLIN: EQU OOAEH
7 CLS: EQU 0849H
8 INPBUF: EQU OF55EH
9 CHGET: EQU O0O09FH
10 CHRUT: EQU 00A2H
1 ; CONTROL CODES
12 BL: EQU 7
13 CR: EQU ODH
14 NEWLNE: EQU O0AH
15 ;
16 E000 CD4908 CALL CLS
17 E003 2151E0 LD HL,MSGI
18 E006 CD7866 CALL PTMESG
19 E009 CD42E0 CALL BELL
20 E00C CDAEO0O CALL PINLIN
21 EOOF CD46EO CALL CRLF
22 E012 2162E0 LD HL,MSG2
23 E015 CD42EO CALL BELL
24 E018 CD7866 CALL PTMESG
25 EO01B CD9FO00 TIMES: CALL CHGET
26 EOTE FE31 CP 31H
27 E020 38F9 JR c,TIMES
28 E022 FE3A cP 3AH

29 E024 30F5 JR NC,TIMES

30 E026 D630 SUB 30H

31 E028 47 LD B,A

32 E029 CD46E0 AGAIN: CALL CRLF

33 E02C 215EF5 LD HL,INPBUF
34 E02F 7E NEXTCH: LD A, (HL)

35 E030 FEO0O cCP 0

36 E032 2806 JR z,FINI

37 E034 CD4DEO CALL OUTPUT

38 E037 23 INC HL

39 E038 18F5 JR NEXTCH

40 EO3A 10ED FINI: DJNZ AGAIN

41 E03C CD46E0 CALL CRLF

42 EO3F C303A0 JP LOOP

43 7

44 ;OUTPUT ROUTINES

45 E042 3E07 BELL: LD A,BL

46 E044 1807 JR OUTPUT

47 E046 3EOA CRLF: LD A,NEWLNE
48 E048 CDADEO CALL OUTPUT

49 E04B 3EOD LD A,CR

50 E04D CDA200 OUTPUT: CALL CHPUT

51 E050 C9 RET

52 s

53 ;MESSAGES

54 E051 454E5445 MSG1: DB "ENTER A "
54 E055 52204120

55 E059 53545249 DB "STRING" ,0DH,0AH,0
55 EO5D 4E470DOA

55 E061 00

56 E062 494E5055 MSG2: DB "INPUT 1to9",0DH,0AH,0

56 E066 54203174

56 E06A 6F390D0A
56 EO6E 00

82

SAVING PROGRAMS

Although one probably won't need to save this program on tape it
is a good idea to wuse this small program to practise getting it
right,, it is motise straightforward as saving a basic program, SO
making mistakes now will be less costly than when your own machine

code masterpiece is at stake.

7EN has 2 methods of saving machine code programs. The first is to
save the source file as an ASCII text file. ASCII text files (or
programs) are made up of the pure text which has been entered from
the keyboard. One will require this option for saving unfinished
programs, which obviously cannot be assembled in that state, for
future loading using ZEN which would be achieved by entering 'R' and
'RETURN' after the ZEN prompt.

Entering 'H' and 'RETURN' will now display the start and end of the
source file and the top of memory. At this stage the last program
should display, if one hasn't added extra spaces or comments: -

C000 C2A7 F37F

If one enters 'QCO00OH' and 'RETURN' the text entered will be shown
in memory byte by byte. To save an ASCII text file using ZEN enter
'w' and 'RETURN' and one will be prompted for a file name,
"afterwhich it will be saved on tape as normal. Afterwhich one
should verify the saved file.

The second method is for saving the object file as a binary file.
Binary files are the assembled program, and what gets saved is the
pure machine code file, without comments, ready to run. In the last
program it could be saved and then run directly from the loading,
without ZEN being present, by simply BLOAD although one would need
to alter line 42 from JP LOOP to RET as we would not require a jump
to A003 if ZEN was not loaded.

83

To test that one is conversant in saving an binary file carry out
4

the following:-

Alter what should be line 42 to read:-
42 RET ;

One will need to assemble the program once again but if the abové
entry is correct that will take no time at all only this tim

assemble to the screen by entering 'V' and 'RETURN' as we MUST know
the end address of the file. After altering line 42 the program
will be 2 bytes shorter making the end of program E06CH. i
Place a fresh tape in the cassette and enter 'WB' which stands for
write binary. One will be prompted for the START address so enter
'EO00H' and 'RETURN', it is important to enter the suffix 'HG

otherwise ZEN will believe it is a decimal number which it is not. |

Next prompt is for the STOP address so enter 'E06CH' and RETURN'
which is the last byte of the program.

The next prompt is for the EXEC address which is where the program
should run from. In this case we want to run from the same address
as it loaded from so enter once again 'EOOOH', 'RETURN'. EXEC is
added because a program does not always execute from its start
address in memory. It may be that a program is written and then ha;
some screen graphics titles added to the end of it but which one
wants to run first, so the execution address could well be different

J

to that of the loading one.

i

This is followed by the LOAD prompt for the address at which it
should load into, and again enter 'EOOOH'.

The final prompt is for a file name, we could simply call this
'TEST' and all that remains is to set the cassette to record mode.

Once the file has been saved switch off the computer, wait a few

seconds, (never switch off and on quickly) and turn it back on and

84

a1t

e
ne
OW
1m

T
2
1 '

load the test program by entering:-

BLOAD"TEST" ,R
which after a few seconds, will automatically run if you saved it

correctly, and when finished will jump into the Basic mainloop and

display the 'Ok' message.

Please understand that this was an exercise to correctly save and
subsequently load and run machine code programs, which normally
should be far more exciting than the Test program, and it is far
less costly in programming hours to get it right at this stage than

get it wrong and lose many hours work.

CRASHES

When testing programs in ZEN it is quite feasible that there may
be something wrong with your program and it may crash, fall out of
Zen's control, into Basic or even re-initialise and display the
switch-on MSX screen message. One should be able to jump back into
ZEN by entering:-

DEF USR=&HA000

A=USR(0)

and hopefully ZEN, and your program, will still be in memory and
debugging can continue. This may also happen when accessing Basic
routines from a machine code program for if an error occurs the
error trap routine within Basic could pick up the error, display an
error message, and dump you into Basic's mainloop with the 'Ok'
message. To simplify the restoration one could enter the above 2
lines with line numbers, making it a 2 line Basic program, and if
the crash was not too severe entering the 'F5' key for Run should

restore control to ZENs mainloop.

85

4
MSX Routines

This chapter demonstrates more routines which are provided in the
ROM of the MSX and how to access them.

TABLE CONSTRUCTION

The following program uses keyboard input to produce notes in the

range C to B in any of the 8 octaves, which gives it some appeal,

but its main purpose is to demonstrate one method of accessing

tables. The keys which will produce sounds are as follows:-
R W'T 'Q
DFGHJKL

The lower row are used for notes C to B whilst the keys on the top

row signify the sharp keys (C+ etc). Pressing the '£' key exits the
program. The Octave is set to 4 when the program runs but can be

altered by entering keys 1 to 8 while it is running.

The current note and octave are displayed on the screen. The
program uses the Basic PLAY routine at 73E5H, therefore the string
to be played must look as it would in a Basic program line with
quotes (") surrounding it and, like the previously used print
strings, must terminate with a zero value byte otherwise an error
will occur and the program will drop into Basic and display an error

statement.

One should now be familiar with entering programs so only the

assembled listing is shown, however the various ROM routines which

are utilised are described after the listing.

86

E000
E003
E004

E007
EOOA
EOOC
EOOE
E011

E014
E017
E019
E01B
EOTE
E021

E024
E026
E028
E02B
EO2E
E031

E034
E037
E039
EO03C
EO3E

CDCCO00
AF
32DBF3
CDC300
2608
2E02
CDC600
21CCEO
CD7866
260C
2EOA
CDC600
21EQEQ
CD7866
260E
2E0C
CDC600
21E9E0Q
CD7866
C34CEO
CD9CO00
28FB
CD9F00
FE23
CAO03A0

QUIT:
CHGET:
CLS:
POSIT:
PTMESG:
CLIKSW
CHPUT?
ERAFNK:
CHSNS:

’

START:

INPUT:

ORG
LOAD
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

CALL
XOR
LD
CALL
LD
LD
CALL
LD
CALL
LD
LD
CALL
LD
CALL
LD
LD
CALL
LD
CALL
JP
CALL
JR
CALL
CP
Jp

0OEOOOH
OE000H
0A003H
009FH
00C3H
00C6H
6678H
OF3DBH
00A2H
00CCH
009CH

ERAFNK

A
(CLIKSW),A
cLS

H,8

g
POSIT

HL ,MESG1
PTMESG
H,12
L,10
POSIT

HL ,MESG2
PTMESG
H,14

ey o)
POSIT

HL ,MESG3
PTMESG
PTOCT
CHSNS

Z, INPUT
CHGET
ngn

7 ,QUIT

; ZEN MAINLOOP
;WAIT FOR KEY
;CLEAR SCREEN
;CURSOR SET UP
;PRINT MESSAGE
;KEY CLICK SW
;OUTPUT CHARACT.
;ERASE FUNC KEY
;KEY SCAN

;FUNC KEYS OFF
;ZERO A

; TURN OFF CLICK

; CLEAR SCREEN

; SET CURSOR COLUMN
; SET CURSOR LINE

; POSITION CURSOR

; PRINT OCTAVE VALUE
;IS KEY DOWN

;NO LOOP BACK

;GET KEY IN REG A
IS IT € KEY

;YES FINISH

87

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

E041

E043
E045
E047
E049
E04C
EO4E
E050
E053
E056
E059
EO5B
EOSE
EO5F
E062
E063
E065
E067
E068
E069
E06B
EO6C
E06D

EO6F
E070
E073
E074
E075
E078
EO07B
EO7E
E080
E082
E085
E088
EO08B

88

FE31
38EF
FE39
3012
3295E0
2615
2EOA
CDC600
3A95E0
CDA200
18D9
CD9000
47
21A7EO
7E
FEOF
28CD
23

B8
2804
23

23
18F3

7E
32A3E0
23

7E
32A4E0
2193E0
CDE573
2615
2E0C
CDC600
3AA3EQ
CDA200
3AA4E0Q

PTOCT:

SAMOCT:

COMPR:

FOUND:

CP
JR
Cp
JR
LD
LD
LD
CALL
LD
CALL
JR
CALL
LD
LD
LD
Cp
JR
INC
Cp
JR
INC
INC
JR

LD
LD
INC
LD
LD
LD
CALL
LD
LD
CALL
LD
CALL
LD

31H

C, INPUT
39H

NC, SAMOCT
(OCTVE+1),A
H,21

L,10
POSIT

A, (OCTVE+1)
CHPUT
INPUT
0090H

B,A

HL, TABLE
A, (HL)
OFH
Z,INPUT
HL

B

7% ,FOUND
HL

HL

COMPR

A, (HL)
(NOTE) ,A
HL

A, (HL)
(NOTE+1) ,A
HL, STRING
73ES5H

H,21

L2

POSIT

A, (NOTE)
CHPUT

A, (NOTE+1)

;TEST FOR 1

; IF LESS GET NEXT
;TEST FOR 9

;STILL SAME OCTAVE
;DISPLAY OCTAVE

; POSITION CURSOR

;TO PRINT OCTAVE No.

;NEW OCTAVE

s PRINT IT

;GET NEXT KEY
;NO QUEUES
;SAVE KEY IN B

;TABLE IN A
;END OF TABLE?
; YES WRONG KEY

; COMPARE KEY/TABLE
;GO PLAY

;NOT FOUND. BUMP OVER
;NOTE STRING AND
;TEST NEXT IN TABLE

;NOTE TO PLAY

i

; SECOND PART OF NOTE

;s HL=PLAY STRING
;BASIC PLAY ROUTINE
;POSITION CURSOR TO
;RIGHT OF NOTE: -

;PRINT CURRENT
;NOTE, AND
;PRINT + CHARACTER

/5 EO8E CDA200 CALL CHPUT ;OR SPACE

/6 E091 18A1 JR INPUT ;GET NEXT KEY
\ 17 ;
; /8 E093 22 STRING: DB 22H ; START WITH QUOTES
‘ /9 E094 4F34 OCTVE: DB "o4" ;OCTAVE 4
10 E096 543630 TEMPO: DB "T60" ; TEMPO 60
. i1 E099 4C38 DURAT: DB L8 ;DURATION 8
. 12 EO9B 5330 ENVPAT: DB "sol ;ENV WAVEFORM SO
3 E0O9D 4D313030 ENVPER: DB "M10000" ;PERIOD M10000
§3 EOA1 3030
b4 NOTE: DS 2 ;NOTE STORAGE
1 l5 EOAS5 22 DB 22H ;PLAY END QUOTES
6 EOA6 00 DB O ;END STRING WITH 0
u7 ;
18 EOA7 444320 TABLE:) IR s LA o I
19 EOAA 524323 DB R e+
90 EOAD 464420 DB b o o T
91 EOBO 544423 DB . “T","D+"
92 EOB3 474520 DB e U ik
93 EOB6 484620 DB < & 41 e
: 94 EOB9 554623 DB gy, PRl
] 95 EOBC 4A4720 DB b0 PR e
96 EOBF 494723 DB "I","G+"
97 EOC2 4B4120 DB i
98 EOC5 4F4123 DB Q% , A"
) 99 EOC8 4C4220 DR. LML MB N
100 EOCB OF DB OFH ;END OF TABLE MARKER
3 101 1
102 EOCC 43555252 MESG1: DB "CURRENT NOTE "

102 EODO 454E5420

102 EOD4 4EAF5445

102 EOD8 20

103 EOD9 53544154 DB "STATUS",0
103 EODD 555300

104 EOE0O 4F435441 MESG2: DB "OCTAVE:-",0
104 EOE4 56453A2D

104 EOE8 00

89

105

EOE9 4E4F5445 MESG3: DB '‘NOTE:-",0

105 EOED 3A2D00

106

END

Where practical the names, or 1labels, assigned to the ROM routine
are as used in the MSX specification and should be compatible wit
other publications on MSX. They have a maximum length of ‘
characters and are wusually an abbreviation of the function - CHGE
is assigned to the routine which gets a character from the keyboard,

CHaracter GET.

Analysis

Line 13-CALL ERAFNK (00CCH) turns off the function key display. Th
sister routine is CALL DSPFNK (00CFH) which turns it back on.

Line 15-CLIKSW (F3DBH) is the switch for the key press click. Here
we zeroed A with XOR A and loaded zero into F3DB which turns it off,
any other value switches it back on.

Line 16-CALL CLS (00C3H) clears the screen but only if register A
has been cleared by XOR A. 00C3H contains a jump to the actual CLS
routine at 0848H, if you wish to clear the screen but aren't sure of
the contents of A, a CALL 0849H will achieve the same goal by
skipping the test on the flag. Used in the previous chapter.

Line 19-CALL POSIT (00C6H) positions the cursor depending on the
value of HL. 1In lines 17/18 the column was entered into H and the

line into L.

Line 21-CALL PTMESG (6678H) as used previously, prints a message
with the start address in HL and must terminate with a zero. MESGI

is shown in line 102.

Lines 22-31 The same as above. To aid readability H and L are loaded

on separate lines and decimal values have been used, not hex.

90

24
1,

Lines 27/28 could have been entered using only one line by
converting the column and line values to hex (14 and 12 become OE
and 0C) so entering:- LD HL,0EOCH would make the program shorter.

Line 33-CALL CHSNS (009CH) checks the keyboard buffer, where a
pressed key is stored, and returns with Z flag reset if there was.
It does not return with the character. If there was no key line 34
is a relative jump back to line 33 to do it again. The program will

not pass these 2 lines until a key is entered.

Line 35-CALL CHGET (009FH) waits until a key is entered and returns
with the ASCII value in register A. 1In fact we could have dispenced
with lines 33/34 as this routine waits for a key but it also
displays the cursor if it needs to do any waiting, and in my opinion
spoilt the display, therefore using the CHSNS routine first means
that the program does not reach here until a key is in the buffer
and this routine picks up the key and does not need to wait thereby

the cursor is not displayed.

Line 36-checks if it was the 'g£' key and if so line 37 quits the
program. This line jumps back to ZEN but if one saved this as a
binary file and ran it without ZEN this instruction would be altered
to' RED) Zis

Lines 38/41- check for input of keys 1 to 8 to change the octave.
Similar to the last chapter except that if the key is higher than an
8 the program jumps to the SAMOCT label in 1line 49 to check on a
note to be played.

Line 42- is reached if the key was between 1 and 8 and loads the
value into OCTVE+1, where the octave is stored.

Lines 43/45 position the cursor next to the octave message on screen
with a call to POSIT.

Line 47-CALL CHPUT (00A2H) outputs the character in the A register,
which was loaded in line 46, at the current cursor position already

o1

specified in lines 43/45 and line 48 jumps back to INPUT for the
next key. One could alter line 47 from CALL CHPUT to RST 18H which
outputs register A to the current device, be it printer, screen o

whatever.

Line 49-CALL 0090H (GICINI) initialises the Programmable Sound
Generator (PSG) and has been used to eliminate a queue of notes
being stored and so not continuing to play for minutes after the ke

was released. Try deleting this line for different results.

Line 51-LD HL,TABLE loads HL with the start address of the table of
notes in line 88. The key entered has been stored in register B in
line 50 and the first entry of the table is loaded into A in line
52. Line 53 compares A with OFH as this defines the end of the
table and if the key was not found it is assumed that an alien key,
such as Z or X, was pressed and therefore nothing should be played
and a jump back to INPUT is made for another key.

“
Line 55 increments HL, moves it up a byte, and line 56 compares the
key pressed (in B) with the table (in A) and if the two match a
relative jump is made to FOUND to play the note (first time round it
would be comparing with the first key in the table, key D). If the
key did not match then HL must be moved up past the following bytes
and must now point to the key 'R' in line 89, remembering it has
been incremented once, so lines 58/59 incement HL twice more and
line 60 jumps back to compare the next entry in the table. This
comparing continues until HL is looking at the first byte in 1line
100 (OFH) as this is where lines 53/54 checked for the end of the
table, which OFH is, and aborted back to INPUT.

Line 62-FOUND is reached when the key pressed matched a key in the
table and a note must be played. Remember that HL is pointing to the
table and has previously (line 55) been incremented. Assume the 'D'
key was entered and HL will now be pointing to the byte after 'D' in
line 88 of the table. This is the letter of the note to be played
and therefore gets loaded into register A (line 62). Line 63 loads

this note into position in the string, labelled NOTE in line 84.

92

2 N

W

w

T

v

W G el W

w

w

w

o _

i

In fact 2 bytes have been reserved for this note in 1line 84 by
entering it as 'DS 20K The first is the letter of the note while
the second byte is used to store the '+' sign. The first note in
the table (line 88) is not followed by '+' and therefore a space is
entered after the note - spaces are allowed in PLAY strings,
although no action is taken - which will subsequently overwrite the
previously stored note along with the '+' sign if it contained it.
To load in the second part of the note line 64 increments HL,
'

register A is either loaded with a space or +' sign and line 66
stores it into NOTE+1 which is the second byte of the storage.

Line 68-CALL 73E5H calls the Basic routine for PLAY which requires
the start of the string to be played to be in HL, which line 67

achieves.

Lines 69/71- position the cursor adjacent to the NOTE:- message on

screen in order to display the note being played.

Lines 72/75- 1load the note into A and print it with CALL CHPUT as
used for the octave print in lines 43/47. As the note is always 2
characters long register A is subsequently loaded with the second
byte of the note storage and similarly gets displayed in line 75.
The cursor does not require positioning for the second byte as it
will have been automatically moved along one screen position after
the previous CHPUT in line 73. This is then followed by JP INPUT to
get the next key.

Line 78- STRING is where the whole of the PLAY string is stored.
Line 78 contains the ASCII value for '"' which must open and close a
play string. As we are accessing a Basic function it must appear
syntactically correct else an error will be instituted and our
machine code program will crash back into Basic, not a pleasant
thought. Line 79 stores the octave and commences with the character
0, not zero, and is followed by the starting value 4. This second
byte obviously gets altered if one presses keys 1 to 8 whilst the
program is running and so changes the octave.

93

Lines 80/83- set the remainder of the string for Tempo (T60),
Duration (L8), Envelope waveform (SO =zero this time, not O) and
Envelope Period (M10000). These values remain constant, the only
alterations via the keyboard are to the note and octave, although
one can change them and re-assemble the program which takes seconds,
for different results. One could also alter the program to accept

the cursor keys for instance to alter tempo, duration or waveform.

Line 84- contains the note storage which is blank when the program
first runs. Line 85 is the ASCII value for the closing '"' sign and
line 86 contains a byte with a zero value which must be entered to
signify the end of a string, just like the print strings.
Lines 88/100 contain the table of keys followed by there respective
notes and the line 100 contains the end of table marker OFH.

Lines 102/105- are the print strings which one should be familiar
with by now, taking note of the trailing zero byte after each.

To save as a binary file use the same procedure as in the last
chapter. Alter line 37 to RET Z and note the last byte of the
program when re-assembling to video and enter it when prompted as
the STOP address.

This program was written to run on screen 0 but is quite possible to
run on screen 1 except the display will be slightly moved to the
right, it will not wupset the POSIT routine which positions the
cursor. One could enter a line at the start of the code to

initialise the screen:-

CALL 006FH
(INIT32) will initialise to screen 1.

CALL 006CH
(INITXT) initialises screen 0.

94

),
nd
ly
gh
Sy
ot

e

8

HOOKS

The MSX allocates memory locations FD9A to FFC9 to what is known
as a Hook area. There are 112 hooks each containing 5 bytes.
Several routines within ROM make a call to these hooks to find if
they contain additional instructions for tasks that should be
performed. Normally they all contain the value C9 hex, which is the
code for the RETurn instruction. Quite simply the routine in ROM
calls the hook, finds it must return and do nothing, and carries on
from where it left off. As sophisticated software becomes available
for MSX these hooks will be used to hook up to disc drives and other
peripheral devices in order to expand the system without the need to
change the ROM. 1In order to write to a hook one must obviously know
from which ROM routine it is called, so indiscriminant use could
cause all sorts of problems, the rule should be, if you aren't sure

leave it.

The following program writes instructions into one such hook, at
FD9F, labelled HTIMI. It is called from the timer interrupt handler
routine, which means it is accessed 50 times a second whatever task
the MSX is performing, excluding reading or writing to tape. This
obviously lends itself to be used as a buiit in timer as one knows

how many times a second it will be encountered.

It has been used in the next program to slow down the movement of
sprites, as without the delay they would move too quickly for the
eye to see. Yes we could have written a machine code routine to

create a delay, but that would not have demonstrated the use of a
hook.

SPRITES

The Video Display Processor (VDP) used in the MSX is extremel
powerful and at first may appear rather complex to the average user,
but then again so did Basic once upon a time. Your awareness of its
capabilities will probably depend on the amount of information give
in the manual supplied for your particular machine. In order to get
the best from the VDP in the MSX one should at least be conversan
with the Basic VDP system variable commands and how to access the
various registers. This, unfortunately, cannot be described in onr
chapter and is beyond the scope of this introduction to machine
code. For a fuller knowledge of its workings one would be wel
advised to obtain a book specifically written on the VDP of the MSXJ
one such book is titled 'Behind the Screens of the MSX' by Mike Shaw

and should answer most if not all of ones questions.

The main task of this next program is to set up 2 sprite pattern
and move one across the screen until it collides with the othe
whereupon it will move up to the top of the screen. This program is
only a demonstration of how to get sprites moving and detectin
collisions, but with the machine coding practise you should hawv
now, it could prove a good core program to fire-up the grey matte:
in order to get a complete display moving. One could try testing
for the cursor keys being pressed and move the sprites accordingly,
altering the shape and colours of the sprites etc.

The explanations follow the assembled listing.

96

ORG OEO00H

1
2 LOAD OEOO0OH
5% 3 CHSNS: EQU 009CH
"y 4 HTIMI: EQU OFD9FH
s 5 ERAFNK: EQU 00CCH
n 6 WRTVDP: EQU 0047H
't 7 RDVRM: EQU 004AH
1t 8 WRTVRM: EQU 004DH
e 9 INIT32: EQU O0O06FH
e 10 RG1SAV: EQU OF3EOH
e 1M STATFL: EQU OF3E7H
bl 12 ATTRI1: EQU 1BOOH
¥ 13 ATTR2: EQU 1BO04H
Y 14 ;
15 ;WRITE CODE TO HOOK (HTIMI)
16 EO00 219EEO LD HL ,CODE
S 17 E003 119FFD LD DE,HTIMI
r 18 E006 010300 LD BG,3
g 19 E009 EDBO LDIR
ef 20 H
e 21 EOOB CDCCO00 CALL ERAFNK ; TURN OFF FUNC KEYS
B 22 EOOE CD6F00 CALL INIT32 ; SCREEN 1
g 23 i
g 24 ;ALTER SPRITE PATTERN
25 ;GENERATOR BASE ADDRESS TO 0000
26 EO11 AF XOR A
27 E012 47 LD B,A
28 E013 OEO06 LD C,6
29 EO015 CD4700 CALL WRTVDP
30 H
31 ;ALTER BIT 0 OF VDP REG 1
32 ;TO 1. TO INCEASE MAGNITUDE
33 E018 3AEOQOF3 LD A, (RG1SAV)
34 EO1B F601 OR 1
35 E01D 47 LD B,A
36 EO1E OEO1 LD Gl
37 E020 CD4700 CALL WRTVDP

97

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

E023
E025
E028
E02B
E02D
E030
E033
E035
E038
E03B
EO03D
E040

E043
E045
E048
E04B
E04D
E050
E053
E055
EO058
EO5B
EO5D
E060

E063
E064

E067
E06A
EO6C
EO6F
E071

3E8C
21001B
CD4D00
3EC8
21011B
CD4D00
3E41
21021B
CD4D00
3E01
21031B
CD4D00

3E8C
21041B
CD4D00
3E1E
21051B
CD4D00
3E42
21061B
CD4D00
3EOF
21071B
CD4D00

AF
3298E0

CD9C00
2024
3A98E0
FEO1
38F4

;SET UP SPRITE 1

-
’

;SET UP SPRITE 2

~

;DELAY COUNTER CHECK

CKMOVE:

LD A,140

LD HL,ATTR1
CALL WRTVRM

LD A,200

LD HL,ATTR1+1
CALL WRTVRM

LD A,65

LD HL,ATTR1+2
CALL WRTVRM

LD A,1

LD HL,ATTR1+3
CALL WRTVRM

LD A,140

LD HL,ATTR2
CALL WRTVRM

LD A,30

LD HL,ATTR2+1
CALL WRTVRM

LD A,66

LD HL,ATTR2+2
CALL WRTVRM

LD A,15

LD HL,ATTR2+3
CALL WRTVRM

XOR A

LD (COUNT),A
CALL CHSNS

JR NZ,QUIT
LD A, (COUNT)
CPy 11

JR C,CKMOVE

;s VERTICAL POS

sHORIZ POS

; CHARACTER 65=A

7 COLOUR BLACK

;VERTICAL POS

;HORIZ POS

; CHARACTER 66=B

; COLOUR WHITE

7 ZERO COUNTER

; IF LESS DONT MOVE

/E

75
76

77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108

E073
E076
E079
EO7A
EO7D
EO7E

E081
E084
E086

E088
E08B
E08D

E090
E092
E095

E098

E099

E09C

E09D

EO9E

21051B
CD4A00
3C
CD4D00
AF
3298E0

3AE7F3
CB6F
28DF

21041B
3E28
CD4D00

3EC9
329FFD
C303A0

00

2198E0

34

€9

C399E0

~

7MOVE SPRITE 2

LD HL,ATTR2+1 ; VERT POS

CALL RDVRM ;PUT INTO A

INC A sMOVE 1 PIXEL RGHT
CALL WRTVRM ;NEW POS OF SPRT 2
XOR A

LD (COUNT) ,A 7 ZERO COUNTER

;CHECK FOR COLLISION
LD A, (STATFL)
BIT 5,A ;TEST COLLISION BIT
JR Z ,CKMOVE ; IF ZERO KEEP MOVING
i

;COLLISION OCCURED

LD HL,ATTR2 ;HORIZ POS
LD A,40
CALL WRTVRM ;MOVE IT UP

i
;PROG END, SO REPLACE RET
; INTO HOOK (HTIMI)
QUIT: LD A,0C9H
LD (HTIMI),A
JP 0AO0O3H

.
’

COUNT: DB 0
i

7 INCREMENT COUNT 50 TIMES A SEC

INCCNT: LD HL,COUNT
INC (HL)
RET

i

CODE: JP INCCNT

i
END

99

Lines 16/19 load code into the hook labelled HTIMI at FDI9F. The
LDIR instruction has been used which, as you should know by now,
loads code from the address pointed to by HL into that pointed to by
DE. The amount to transfer is held in BC, in this case 3 bytes
which are shown in line 106 which tell the hook to jump to INCCNT
which increments the counter. This has the effect of slowing the

movement and can be speeded up or slowed as will be seen.

Line 21 is the erase function key routine and this is followed by
INIT32 which switches the display to screen 1, as you cannot have

sprites on screen 0.

Lines 26/29 Write to the VDP register whose number (0 to 7) must be
in register C and the data to be loaded into the VDP held in
register B. Here we are loading VDP register 6(C) with 0(B). This
in effect is altering the base address of sprite pattern table to
that of the character generator base address. So we now have the
full ASCII character set stored as sprites.

Line 33 Loads the value of RG1SAV (F3E0) which stores the current
value of register 1 of the VDP. The only bit of VDP 1 we are
interested in is bit 0 which controls the magnification for sprites.
Zero is the normal size whilst altering it to 1 magnifies the
sprites, so in 1line 34 we OR 1 which will not effect the remainder
of the bits but will turn bit 0 to a 1, putting it in magnify mode.
And once again we must load the contents of A into register B,
select the VDP register in C and call WRTVDP, which will write to
the VDP register 1.

Now if that appeared slightly beyond you don't panic, as practise
makes perfect, Jjust enter the code and alter it later, it can only

get easier and you will pick it up.

Lines 40/51 set up sprite 1. The sprite attribute table in screen 1
commences at address 1B00H and contains 4 bytes for each sprite.
Therefore the attributes for sprite 2 will commence at 1B04H. These
were given equates in lines 12/13, ATTR1 and ATTR2. The first byte

100

holds the vertical pixel position of the sprite and line 40 loads
register A with 140. The screen pixels are from 0 (top) to 191
(bottom). Line 41 1loads HL with the address of ATTR1 (1BOO0H) and
line 42 loads register A into VRAM at 1BOOH by CALL WRTVRM.

The process continues with loading the horizontal position into
register A and storing it in the second byte of the attribute for
sprite 1 at 1BO1H by loading HL with ATTR1+1.

NOTE Line 47 could be entered as INC HL as when the program
returns from the WRTVRM routine register HL is not changed in any
way, therefore it still points to the previous location, and one
could simply increment it. But it was shown in this form for
clarity and not program elegance. '

The third byte of the attribute holds the sprite character number.
But we have not defined our own sprite we have shifted the sprite
pattern table so it is looking at the ASCII characters, purely for
convenience. Therefore the ASCII for the letter A is 65 decimal,
and line 46 loads register A with 65 as the letter A is to be our
sprite 1. This 1is then loaded into the third byte in the
attributes, ATTR1+2. Note that the although the decimal value was
used for clarity, the assembler converted it to hex, as one will see
in the left column.

Lastly the colour must be defined and loaded into the fourth
attribute byte ATTR1+3, and line 49 defines the colour number s
which is black and this concludes the set up for sprite 1, having
its co-ordinates, character and colour stored in 1B00 to 1B03H.

The procedure is duplicated for setting up sprite 2 except the
information must be stored at 1B04 to 1BO07H, which was labelled as
ATTR2 in line 13. The vertical position is the same as sprite iy
the only differences being the horizontal (30) in line 57 s 4 the
character which this time is the letter B (ASCII 66 decimal) and the
colour which is 15 for white.

101

Once the program is running these co-ordinates can be altered for

different effects, providing one remembers to assemble each time.

Lines 67/68 zero register A and loads this into COUNT.

Lines 70/71 is the CHSNS routine which checks for a key being
pressed and jumps to the QUIT routine, and has been included so that
one can stop the program before it finishes to modify it Jjust in

case one has slowed it down too much.

Line 72 loads the value stored in COUNT into register A and if it
has not reached 1 line 74 jumps back to check it again. This loop
continues until register A is equal or greater than the value in
line 73. Remember the hook at FD9F is incrementing COUNT 50 times a
second, therefore CP 1 will only cause the loop to continue for
1/50th of a second before carrying on with the program and moving
the sprite by 1 pixel. If line 73 was altered to CP 50 the sprite
would move by 1 pixel only once a second, very slow. Without the
delay at hook HTIMI the sprite would move so fast it would simply
appear at the finishing point.

Lines 77/82 move sprite 2 and zero the counter for the next delay
before moving again. The only attribute we are changing is the
horizontal position, ATTR2+1, therefore this must be loaded into HL
and a call to read VRAM (RDVRM) will return the value in the A
register (its current horizontal position). To move the sprite we
INCrement A and write it back to the VRAM address still pointed to
by HL by WRTVRM.

Lines 84/86 check for a collision of the 2 sprites. STATFL (F3E7H)
holds the status register of the VDP and bit 5 is set to (IR 65 - 1
collision, 2 sprites overlap by at least 1 pixel, has occured.
Therefore line 85 tests bit 5 of the status flag and line 86 jumps
if it was zero back to CKMOVE again. If a collision had taken place
bit 5 would be 1 therefore the zero flag would not be set and the
test would fail and the program would fall through to the next line.

102

Line 90 is only reached after a collision and will shoot sprite 2 to
near the top of the screen by loading HL by the vertical attribute
ATTR2, leaving the horizontal ATTR2+1 intact, loading A with 40 and
calling WRTVRM again to re-position it.

Line 95 QUIT 1is reached after a collision or if a key has been
pressed while the program was running. It simply replaces the
contents of hook HTIMI with its original byte the code for RET
(C9H), 1in case one is going to run another program as you will not
want the hook accessing COUNT 50 times a second, and jumps back to
ZEN.

Line 99 is the storage byte for the counter.

Lines 102/104 are accessed only from the hook HTIMI, and simply add
1 to count each time the interrupt occurs.

Once running experiment with altering the positions of the sprites
and time delays and try adding a routine for moving each sprite on
the press of certain keys.

103

LOADER PROGRAM

When loading a machine code program one may have seen a different
screen message displayed than the usual one or, as is becoming more
popular, the complete display could alter to a graphics title while
the program appears to be still loading.

The answer can lie in the fact that two programs have been loaded,
the second automatically. The first short program contains the
titles and a Jjump to the loading routine for the second larger
program. When the first program has loaded it executes immediately
so printing the titles on screen and enters a loading routine for
the second. Execution is so fast that the tape stops for a minimal
time and starts again almost without being noticed. Only one
'Found:program name' message appears on screen whilst the first
program is loading.

The loader program begins with the screen title message, in the
example it will display 'NOW LOADING MAIN PROGRAM', but this can be
expanded upon as will be explained. It is advised to only add the
loader jump section after fully debugging and testing the graphics
titles. Although the ORG is set at 9000H, which is ideal for
testing, before saving the object file it could be altered to
another memory location, this also means that the second program
could be set to the same ORG before saving and the loader program
will be overwritten and dissappear from memory as the main program
loads in. If one has recorded an ASCII file of one of the earlier
programs it will be simple to test this loader. First complete the
entries on the next page, making sure it runs correctly, then add in
the loader section carefully and save as a binary file by the 'WB'
command. Verify the tape and do not rewind as the main program will
be recorded starting from where the first finished, on the next
section of the tape. Kill the loader program from memory and load
in a program from the earlier chapter Assemble and save the second
program with the 'WB' command onto the tape, and one should possess
two programs on the tape, the second will automatically load and

run.

104

o N s W N =

W W W w w w w wh NN DD DNDNDNNDND = = =2 =2 2 a2 a2 a2
N =2 =2 =2 =2 O O © VW O N O U & WN = O VW oo Jo 00 W NN = O v

9000
9003
9005
9008
900B
900D
9010
9013
9016
9018
901B
901E
9021
9024
9027
902A

902D
9031

9035
9039
903D
9041

9045

IENTES2:s
ERAFNK:
FORCLR:
BAKCLR:
BDRCLR:
CHGCLR:
T32NAM:
LDIRVM:
FILVRM:
i

CDCCO00

3E09

32EAF3

32EBF3

3E01

32E9F3

CD6F00

210018

3ED1

010003

CD5600

212D90

116319

011A00

CD5C00

C300A0

’

204E6F77 DISPL:
204C6F61
64696E67
204D6169
6E205072
6F677261

6D20

ORG
LOAD
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

CALL
LD
LD
LD
LD
LD
CALL
LD
LD
LD
CALL
LD
LD
LD
CALL
JP

DB

DB

END

9000H
9000H
006FH
00CCH
0F3E9H
OF3EAH
OF3EBH
0062H
1800H
005CH
0056H

ERAFNK
A,9
(BAKCLR) ,A
(BDRCLR) , A
A,
(FORCLR) , A
INIT32
HL,T32NAM
A,0D1H

BC,768

FILVRM
HL,DISPL
DE,T32NAM+355
BC, 26

LDIRVM

0A000H

" Now Loading"

Main Program

105

Analysis
Line 13 which has been used before erases the function keys.

Lines 14/18 set up the colours. Register A is first loaded with the
code for the colour light red, and this is loaded into the storage
bytes for background (BAKCLR) and border (BDRCLR) colours at F3EA
and F3BE respectively. The character colours (FORCLR) is loaded
with register A, this time 1 for black, at F3E9.

Line 19 initialises screen 1 which will clear the screen and change

it to the new colours.

NOTE If one wished to simply alter the existing colours whilst
remaining in the same screen mode and maintaining what was
currently displayed on screen, a call to 0062H (CHGCLR) would
suffice after setting up the colours.

Line 20 loads HL with the start of the Name table for screen 1
(1800H), the top left position.

Line 21 loads register A with the code for the character which will
cover the screen whilst line 22 loads our byte counter (register BC)
with the number of positions we will write to. As screen 1 contains
24 lines of 32 characters BC is loaded with 768 decimal, it could of
course been converted to hex to read LD BC,300H.

Line 23 calls a routine (FILVRM) at 0056H which writes the data in
register A to VRAM, which has its source address in HL and the
number of bytes in BC, all of which has been done. If one only
wanted to write to the centre 4 lines of the screen then HL would
instead have required loading with the start of the name table plus
the offset. The tenth screen line starts at 288 positions (32x9 as
first line is 0) higher than the start of the screen, therefore
progam line 20 could have read:- LD HL,T32NAM+288. But obviously
the byte counter would require reducing too, for 4 lines of print it
should be loaded with 128 decimal (32x4).

106

' Now

Lines 24/26 1load the start of our actual screen message
Loading Main Program ' (labelled DISPL) into HL, load the
destination address of its position into DE, and load the length of
the message into BC (26 bytes including the leading and trailing
spaces). As the message should commence 3 positions in from the left
on line 12 the actual screen position is calculated thus:- 32x11+3,
the top (first) line is 0 therefore to calculate the 12th line, the

line width of 32 is multiplied by 11.

Line 27 calls LDIRVM at 005CH which was used in chapter one to load
VRAM directly with the contents of an area of RAM.

Line 28 jumps back to the ZEN mainloop so the titles can be altered
and run until it reaches your satisfaction. This jump address will

be altered when we add the loading section.

Aftering entering G9000H the display will switch into screen 1 mode
and cover the screen with the ASCII character of 'D1' and the centre
line will print our message. Get it running first and then make
your alterations to colour, length of message etc., remembering to
assemble after each change in the program otherwise the changes will
not be entered into memory. After each test the 'ZEN' message will
appear at the top of the screen and in order to clear the screen and
return to screen 0, which is the wusual screen in ZEN, enter the
'RETURN' key on its own.

The Loader

To append the loader routine make the line which contains the
'END' message the current line, if one has not altered the program
it should be line 32, and enter 'E' and 'Return' and add the lines

listed on the following page.

107

TO

DISPLAYED ENTER
32 LOADER:LD A,O0FEH
33 LD (OF41CH),A
34 LD HL,STRING
35 JP 6EC6H
36 STRING:DB 22H,'"CAS:"
347 DB 22H,2CH,"R",0
38
ZEN

Line 28 which is the jump to Zen requires altering to:-
JR LOADER

this will then make the program jump to the loader routine after the
titles have been displayed. Make sure the last line is still 'END'
and assemble the program to (V)ideo and make a note of the last byte
of the program. If one has not altered the program it should be
905AH but obviously your program could be longer. The final section
of the program would have assembled like this:- ‘

32 9047 3EFE LOADER: LD A,OFEH

33 9049 321CF4 LD (0F41CH) ,A

34 904C 215290 LD HL ,STRING

35 904F C3C66E JP 6EC6H

36 9052 22434153 STRING: DB 22H,"cAas:"

36 9056 3A

37+9087 222€5200 DB 221, 2¢H,"R" ,0
38 END

Quite simply we have loaded the value FE Hex into the contents of
F41CH which stops a second 'Found:' message being printed when the

second program is loading, which would spoil the display. Line 34
loads HL with the start of a string which are the characters that
could normally follow a BLOAD command i.e. "CAS:",R. We then jump
to the BLOAD routine in ROM at 6EC6H.

108

b

e

To save the program as a binary file enter:-

WB

START 9000H

STOP 905AH

LOAD 9000H

EXEC 9000H

and give the loader the name of the main program that will follow it
on tape. Afterwhich rewind the tape and verify by entering 'VB' and
'RETURN', and if all is well move the tape on slightly to allow a
gap between the end of the 1loader and the start of the second

program.

Also, as a safety measure, save the ASCII file of this loader
program on a separate tape for other programs and also in case it

does not operate correctly when the second program is appended.

Now kill the file by entering 'K' and 'RETURN', similar to 'NEW' in
Basic, and load in or enter from the keyboard the main program. If
one saved the ASCII file of one of the earlier example programs in
chapter 3 this will be ideal for testing. Alter the ORG and LOAD of
the second program to 9000H, the same address as the loader used,
and assemble to (V)ideo in order to note the last byte of the
program and save as previously shown onto the same tape that
contains the loader program, but press 'RETURN' when prompted for a

name.

To test switch off for a few seconds, and when turned back on
enter:-

BLOAD"CAS:",R

and the first program found on the tape will 1load and run,
displaying the titles, and in doing so should automatically load and

run the second, main program.

109

Argument Transfer using USR

The USR function was used in chapter 1 with what is termed as a
dummy argument within the brackets i.e. USR(0). It is possible to
pass up to a machine code routine an integer, string, single or
double precision variable. A=USR(&H1234) would store in a storage
area in RAM the hex value 1234 and call up the machine code routine.

Misuse of this function could cause a program to crash.

The type of argument passed to the routine is always stored at
address F663, so the routine can check what type has been passed up,
and would contain:-

2 for an integer

3 a string

4 a single precision real type variable

8 a double precision real type variable.

Take an example: -
First one needs to DEFine the USeR address as was shown in chapter 1
(i.e. 10 DEF USR2=&HE000). Our machine code routine is called from
Basic to - execute a certain task, it could be to move a block of
memory, and requires the destination address (for example A020H) to
be passed from the Basic program and stored in order to load into
register DE. The Basic line could be:-

100 A=USR2(&HA020)
This would then call the machine code routine at address EO00H and
carry out any tasks until it RETurned to the Basic program. The
integer (or address) A020H is always stored at address F7F8 and F7F9
hex. Therefore to load the integer into register DE all the machine
code program needs to do is:-

LD DE, (OF7F8H)
and DE will contain A020H. IE, while still in the machine code
routine, one wished to alter the integer and pass it back down to
the Basic program when it RETurns simply:-

LD (F7F8H),DE
and the new value will be placed into variable A on returning to the

Basic program.

110

® 8 O P

m

f

Strings operate in a slightly different manner in that F7F8 and F7F9
hex will contain NOT the string, but an address where the string
descriptor is located. This string descriptor contains 3 bytes.
The first signifies the string's length and the second and third the

address where it is stored, and could be used thus:-

100 B$="MSX"

110 A$=USR2(B$)
This time, as it is a string, F663H contains the value 3. Addresses
F7F8 and F7F9 hex contain the address of the descriptor, for example
802D, and at address 802D will be the length of the string, 3, while
802E and 802F will contain the actual location where the string is

stored in reverse order naturally. Did I mention it was complicated?

Single precision values, type 4, are stored at F7F6 to F7F9 hex and
Double precision, type 8, at F7F6 to F7FD hex.

WARNING One cannot access the storage addresses (F7F6H onwards)
after the routine has returned to the Basic program (they cannot be
PEEKed), as they will not be stored. Oonly the variable which was
used in the USR line (in the last example A$) will contain the data.

For an example of how an integer would be passed into a machine code

routine load ZEN in the normal way, and enter this short program:-
1
2
3
4
5
6
7

and assemble.

ORG OE000H

LOAD OEO0OOH
LOOP:EQU 0A003H
LD DE, (OF7F8H)
JP LOOP

END

If all is well enter 'B' to return to Basic and enter this Basic

program: -

10 DEFUSR2=&HA000

20 A=USR2(&H1234)

30 PRINT HEX$(A)
and RUN.

The program will enter the ZEN mainloop so enter:-

GEOOOH and 'RETURN' twice. The short program will execute
immediately and return with the ZEN prompt. Now enter 'X' to
examine the registers and one will find DE contains 1234, which
proves that an integer can be passed up to a routine.

To discover how it passes back an integer enter 'MF7F8H' and the
contents will be displayed as 34. Enter 35H and 'RETURN' followed
by the full stop '.' and 'RETURN' which alters the contents of
memory, as you will obviously know by now. Enter 'B' to return to
Basic and line 30 will then execute and print the hex value of
variable A, which one will see has changed to 1235H.

The 'Q' command in ZEN is useful for displaying the contents of

memory and could be used here to discover how the single and double
precision variables are stored, as once control is passed back to

Basic the storage area is corrupted.

112

This section lists some of the useful routines found in ROM which
can be used by your own machine code program, some have been used
already in previous chapters, and some may be too advanced for ones

immediate use.

The start of ROM contains a table of jumps to the various routines,
some of the more straightforward have been listed to assist if one
wishes to disassemble certain sections of memory, but normally a
call to the appropriate location in the table is all that will be
required, providing one knows which registers should be loaded with
the relevant data before the call is made. Each routine carries an
abbreviated name, or label up to six characters in length, as used

in the MSX specification.

Addr Jump Name Function

0000 02D7 CHKRAM The first byte disables the interrupts and a jump
to 02D7 checks RAM and sets slots for the command
area, this is followed by the address of the
character generator table and also the ports for
VDP read and write.

0008 2683 SYNCHR Called by RST 8. Checks the current character
pointed to by HL is the required one and falls
into CHRGTR if true, else gives Syntax error.
Character to be checked must be the next byte
after this RST. Carry flag set if it is a number,
7 flag set if end of statement.

Modifies AF,HL

0010 2686 CHRGTR Gets next character, or basic token, in basic
text. Entry HL. Exits with HL pointing to next
char, A contains char, carry flag set if number, 2
flag set if end of statement.
Modifies AF,HL

113

Outputs contents of reg A to current device, VDU,
printer etc. Called by RST 18H

Compares HL with DE and sets Zero flag if matched.

Performs hardware interrupt procedure 50 times a

Modifies nothing.

Disables screen, blanks out screen.
Modifies AF, BC

Enables screen, switches it back and restores
characters which were previously displayed.
Modifies AF, BC

Writes data to VDP register. Enter with reg in C,

Modifies AF, BC

Reads VRAM pointed to by HL, returns data in reg

Writes to VRAM pointed by HL, data in reg A.

Sets up VDP for Read. HL on entry.

Sets up VDP for Write. HL on entry.

Fills VRAM starting at HL with data in reg A and

Modifies AF, BC

Addr Jump Name Function
0018 1B45 OUTDO
0020 146A DCOMPR

Modifies AF
0038 0C3C KEYINT

second.
0041 0577 DISSCR
0044 0570 ENASCR
0047 057F WRTVDP

data in B
004A 07D7 RDVRM

A,

Modifies AF
004D 07CD WRTVRM

Modifies AF
0050 07EC SETRD

Modifies AF
0053 07DF SETWRT

Modifies AF
0056 0815 FILVRM

length in BC.
114

Moves block of VRAM to memory. VRAM source in HL
to destination in DE and length in BC.

Moves block of memory to VRAM from source in HL to
VRAM destination in DE and length in BC.

Initialises screen according to value of reg A, 0
to 3. Stores A at FCAFH.

Changes colour of screen to colours specified in:-
Foreground colour (FORCLR) at F3E9, Background
(BAKCLR) at F3EA and Border (BDRCLR) at F3EB.

Performs non-maskable Interrupt procedure. Entry

Modifies none.

Initialises all sprites. Patterns are set to

Initialises screen to text mode, screen 0 and sets

Initialises for screen 1, and sets VDP.

Initialises to screen 2, and sets VDP.

Addr Jump Name Function
0059 070F LDIRMV

Modifies all.
005C 0744 LDIRVM

Modifies all.
005F 084F CHGMOD

Modifies all.
0062 07F7 CHGCLR

Modifies all.
0066 1398 NMI

none.
0069 06A8 CLRSPR

nulls.
006C O050E INITXT

VDP.

Modifies all.
006F 0538 INIT32

Modifies all.
0072 05D2 INIGRP

Modifies all.
0075 061F INIMLT

Initialises to screen 3, and sets VDP.
Modifies all.

115

A

Addr

Jump

Name

Function

0078
007B
007E
0081

0084

0087

008A

008D

0090

0093

0096

0099

009C

116

0594

05B4

0602

0659

06E4

06F9

0704

1510

04BD

1102

110E

11C4

0D6A

SETTXT

SETT32

SETGRP

SETMLT

CALPAT

CALATR

GSPSIZ

GRPPRT

GICINI

WRTPSG

RDPSG

STRTMS

CHSNS

Sets VDP for screen 0

Sets VDP for screen 1

Sets VDP for screen 2

Sets VDP for screen 3

Returns address of sprite pattern table in HL.
Entry reg A = sprite no.

Modifies AF, DE, HL.

Returns address of sprite attribute table in HL.
Entry sprite no. in reg A.

Modifies AF, DE, HL.

Returns current sprite size in reg A (no. of
bytes) Returns carry flag set if 16x16 sprite
otherwise reset.

Modifies AF.

Prints a character on graphic screen in reg A.

Initialises PSG.
Modifies all.

Write data in reg E to PSG register number in A.
Reads data from PSG register in A, returns with
data in A.

Modifies AF.

Checks and starts the background music.

Checks the keyboard for pressed key. Returns with

Zz flag set if key in buffer.
Modifies AF.

Addr Jump Name

009F

00A2

00A5

00A8

00AE

00B7

00CoO

00c3

00C6

00C9

oocc

10CB

08BC

085D

0884

23BF

046F

11113

0848

088E

0B26

0B15

Function

CHGET

CHPUT

LPTOUT

LPTSTT

PINLIN

BREAKX

BEEP

CLS

POSIT

FNKSB

ERAFNK

Waits until a key is typed. Returns with ASCII of
key in reg A.
Modifies AF.

Outputs contents of reg A to screen.

Outputs contents of reg A to printer. Carry flag
set if aborted.
Modifies F.

Checks printer status. Returns FFhex in A and Z
flag reset if printer ready, 0 in A and 2z flag set
if not ready.

Modifies AF.

Stores line of input from keyboard in buffer,
terminates when RETURN entered. Returns start of
buffer in HL, carry flag set if STOP was entered.
Modifies all.

Checks for CTRL/STOP keys. Carry flag set if
pressed.
Modifies AF.

Sounds bell.

Clears screen if 7Z flag set.

Positions the cursor. Entry H=column, L=line.
Modifies AF.

Checks if function keys should be on, if so
displays them, else does nothing.
Modifies all.

Turns off function key display.
Modifies all.

Addr Jump Name Function

00CF OB2B DSPFNK Turns on function key display.
Modifies all.

00D2 083B TOTEXT Forces screen into text mode.
Modifies all.

0132 OF3D CHGCAP Switches CAPS light on/off, but does not affect
CAP status. Entry 0 in reg A turns on, any other
turns. offi
Modifies AF.

0156 0468 KILBUF Clears keyboard buffer.
Modifies HL.

Addresses F380H upwards are assigned to storage areas for
accessing from ROM or equally from your own program in RAM. The /
more common of which are listed below followed by their MSX name and

amount of bytes and purpose.

For example the current line length of screen 0 is held at F3AEH,
and is usually set to 25H (37 dec) and can naturally be altered as
this is in RAM. To check on the contents of a location in memory
one could enter a Basic line:- ?PEEK(&HF3AE) or from ZEN :-QF3AEH.

Addr Name Size Function

F39A USRTAB 20 Addresses assigned to the 10 USR functions (0 to9).
Until a DEF USR statement been initialised these
addresses all contain 475A which loads error 5 into
the error flag.

F3AE LINL40 1 Line width in screen 0

F3AF LINL32 1 Line width in screen 1

Addr Name Size Function
F3B0 LINLEN Line length.
F3B2 CLMLST Lines on screen.
Screen 0
F3B3 TXTNAM Name address table start. (0000H)
F3B5 TXTCOL Colonz-*" b % (unused)
F3B7 TXTCGP Character Generator table start (0800H)
F3B9 TXTATR Attribute Table start (unused)
F3BB TXTPAT Sprite Pattern Generator table start (unused)
Screen 1
F3BD T32NAM Name address takble start. (1800H)
F3BF T32COL Colotix! « " b o (2000H)
F3C1 T32CGP Character Generator table start (0000H)
F3C3 T32ATR Attribute Table start (1BOOH)
F3C5 T32PAT Sprite Pattern Generator table start (3800H)
Screen 2
F3C7 GRPNAM Name address table start. (1800H)
F3C9 GRPCOL Colour " b Y (2000H)
F3CB GRPCGP Character Generator table start (0000H)
F3CD GRPATR Attribute Table start (1BOOH)
F3CF GRPPAT Sprite Pattern Generator table start (3800H)

Addr Name Size Function

Screen 3
F3D1 MLTNAM 2 Name address table start. (0800H)
F3D3 MLTCOL 2 Colour " pk . (unused)
F3D5 MLTCGP 2 Character Generator table start (0000H)
F3D7 MLTATR 2 Attribute Table start (1BOOH)
F3D9 MLTPAT 2 Sprite Pattern Generator table start (3800H)
F3DB CLIKSW 1 Key click switch. 0=off, any other=on
F3DC CSRY 1 Cursor Y position (line)
F3DD CSRX 1 Cursor X position (column)
F3DE CNSDFG 1 Function key display switch. 0O=off

VDP Register values
F3DF to 8 Stores VDP 0 to VDP 7
F3E6
F3E7 STATFL 1 Stores VDP Status register
F3E9 FORCLR 1 Foreground colour
F3EA BAKCLR 1 Background colour
F3EB BDRCLR 1 Border colour
F55E BUF 256 Input Buffer
F672 MEMSIZ 2 Highest location in memory

120

5
Bytesearcher

This utility program is loaded from ZEN and simply appends a byte
search routine which is useful when disassembling sections of

memory. One can either search for a two byte address or string.

Two byte search

The keyboard routine within ZEN commences at address A742H, and let
us suppose one wanted to discover where and how often the keyboard
routine was referred to within the memory area which ZEN occupies.
One would enter:-

YA742H

Note that the address is entered correctly, not as it would be found
in memory low byte first, as the search routine adjusts for this.
The command 'Y' has been used as most other letters are already
utilised, although this could be altered in line 11 to a lower case

(small) letter such as 's' which is not otherwise used.

One will be prompted to enter the 'START' address followed by 'H',
so 1if ZEN was to be searched enter the first memory location of
ZEN: -

A000H

Logically the next prompt is for 'END', so in this example one could
enter the last address of ZEN:-

BB5CH

The final prompt is for 'OPTION' and for the screen to display the
locations one would enter 'V'. The screen will then display:-

Occurences of A742H
between:-A000 and BB5C

A7F4 A92A
ZEN

String search

Strings may be searched for by entering the string within quotes:-
Y"ok"

which will search for the 'Ok' message. To find its location withi
the ROM one would enter the Start address as '0000' or simply '0',
and for the End address enter the top of ROM '8000H'. The scree
would then display:-

Occurences of "Ok"
between:-0000 and 8000

3FD7
ZEN

which is the location in ROM where this message resides.

The two byte search could then be used to discover which areas of
the ROM access the 'Ok' message by searching for 3FD7 between 0 an
8000H, and the display would reveal that it is referred to at:-

412F 53FB and 7072

Bytesearcher accesses many routines within ZEN only once calling a
routine outside at 0020H which is a ROM routine to compare HL with
DE, and the routines are 1listed in the comment field and may be

checked against your ZEN reference manual.

The program can be saved as an ASCII file, where one simply enters
'W' and enters the filename, and can be loaded back in and assembled
only when one requires the extra byte search facility, for

disassembling.

NOTE After entering the code, or loading from tape, it is
essential to assemble the bytesearcher BEFORE modifying the 3
bytes at A251H, as this area is within the mainloop of ZEN and a
jump is made to E000H to discover if the key pressed was 'Y', and
if it has not been assembled the bytesearcher program will not be

at EOOOH and ZEN could crash and the program lost.

122

1 s BYTESEARCHER
2 ;jAFTER ASSEMBLY ALTER
: 3 ;ZEN BY:- MOA251H
f 4 ;and enter these 3 bytes
5 ;0C3H 00 OEOH
n 6 s
(7 ORG OEOOOH
: 8 LOAD O0E000H

9 ;
10 E0O00 CAAS5A3 EXTRA: JP Z,0A3A5H ;0rig routine

‘ 11 E003 FE59 CP ho ;For Bytesearcher
12 E005 2803 JR Z ,BYTSCH ;It's what we want

-
w
~

14 ;New commands go here
15 -
16 E007 C354A2 JP 0A254H ;Back to Zen
‘ 17 H
18 EO0OA 118AA1 BYTSCH: LD DE,0A18AH ; (TBUFF+1)
19 EOOD 21D6EO LD HL ,SCHSTR ;jStore Input
: 20 E010 070000 LD BC,0 ;String counter
21 H
22 ;Transfer the string
23 3
24 EO013 1A TRSTR: LD A, (DE)
25 E014 77 LD (HL) ,A
3 26 E015 23 INC HL
27 EO16 13 INC DE
28 E017 03 INC: . BG
29 E018 FEOD CP ODH jReturn?
30 EOTA 20F7 JR NZ ,TRSTR ;No-keep transfering
i 3i 3
32 ;Transfer complete-Check that
33 ;jsomething is there
j 34 L3
. 35 EO1C 78 LD A,B
9 36 E01D 0D DEC C ;Don't count 'CR'
A 37 EO1E B1 OR c
)

123

38 EO1F CAD5AS8 JP Z,0A8D5H ;Error, so 'HUH?'

39 3

40 ;Now get START/STOP parameters

41 s

42 E022 CDC5A8 CALL OA8C5H ; 'STARTSTOP'
43 E025 2B DEC HL

44 E026 19 ADD HL,DE

45 E027 ED532CA1 LD (0A12CH) ,DE 3 =START

46 E02B 222EA1 LD (0A12EH) ,HL ; =STOP

47 EO2E CD39AB CALL OAB39H

48 H

49 ;Print title

50 ;

51 E031 21EOEO LD HL ,MSG1

52 E034 CDDCA7 CALL OA7DCH ;Z2EN "STR1"
53 E037 21D6EO LD HL,SCHSTR

54 EO3A CDDCA7 CALL OA7DCH

55 E03D 21EFEO LD HL ,MSG2

56 E040 CDC4A6 CALL O0A6C4H

57 E043 CDDCA7 CALL OA7DCH

58 E046 2A2CA1 LD HL, (0A12CH) ;Start of Data
59 E049 CD95A9 CALL 0A995H ; ZEN "WORDSP"
60 E04C 21F9EO LD HL ,MSG3

61 EO04F CDDCA7 CALL OA7DCH

62 E052 2A2EA1 LD HL, (OA12EH) ;End of Data
63 E055 CD95A9 CALL 0A995H

64 E058 CDC4A6 CALL O0OA6C4H ;ZEN "CRLF"
65 EO05B CDC4A6 CALL OA6C4H ;another CRLF
66 H

67 ;Check for H or Quote at end

68 ;

69 EOS5E 21D6EO LD HL ,SCHSTR

70 E061 0600 LD B,0 ;Counter for convert
71 E063 7E FENDS: LD A, (HL) ;Find string end
72 E064 FEOD Cp 0DH

73 E066 2804 JR Z ,COMP

74 E068 23 INC HL

124

onvert
nd

E069
EO6A

EO6C
E06D
EOGE
E070
E072
E074
E077
E078
EO7B
EO7E
E081

E083
E086

E088
EO8A
EO08D
E091
E092
E093

E094

E095
E098
E099
E09A
EO9B
E09C
E09D
EOAQ
EOA2
EOA3
EOA4

04
18F7

2B COMP:
7E
FE22
2816
FE48
C2D5A8
23
11D6EO
CDDAAS
22D7E0
3EO0D
32D9EO
1802

SEEK:
FIND:

360D
2A2CA1
ED5B2EA1
2B

D5

ES

~

AF

~

32D5E0

E1 FINDIT:

D1

23

D5

E5
CD2000
2008
E1l

D1
CDC4A6

INC
JR

DEC
LD
CP.
JR
Cp
JP
INC
LD
CALL
LD
LD
LD
JR

LD
LD
LD
DEC
PUSH
PUSH

XOR

LD
POP
POP
INC
PUSH
PUSH
CALL
JR
POP
POP
CALL

B
FENDS

HL
A, (HL)

22H

7 ,SEEK

g

NZ,0A8D5H

HL

DE, SCHSTR
0A8DAH
(SCHSTR+1) ,HL
A, ODH
(SCHSTR+3) ,A
FIND

(HL) , ODH
HL, (0A12CH)
DE, (0A12EH)
HL

DE

HL

(COUNT) ,A
HL

DE

HL

DE

HL
0020H
NZ ,LOOK
HL

DE
0A6C4H

;Back-up to 'H' or "

;It's a quote string
;Not hex
;Back to end

;ZEN convert routine

;ROM Compare HL'DE

;Finished so CRLF

125

75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
11

E069
EO6A

EO6C
E06D
EO6E
E070
E072
E074
E077
E078
E07B
EO7E
E081
E083
E086

E088
EO8A
E08D
E091
E092
E093

E094

E095
E098
E099
E09A
E09B
EO09C
E09D
EOAQ
EOA2
EOA3
EOA4

04
18F7

2B

7E
FE22
2816
FE48
C2D5A8
23
11D6EO
CDDAAS8
22D7E0
3EOD
32D9EO
1802

360D
2A2CA1
ED5B2EA1
2B

D5

E5

AF

32D5E0
E1

D1

23

D5

E5
CD2000
2008
E1l

D1
CDC4A6

COMP:

SEEK:
FIND:

~

~

FINDIT:

INC
JR

DEC
LD
(@)
JR
Cp
JP
INC
LD
CALL
LD
LD
LD
JR

LD
LD
LD
DEC
PUSH
PUSH

XOR

LD
POP
POP
INC
PUSH
PUSH
CALL
JR
POP
POP
CALL

B
FENDS

HL ;Back-up to 'H' or "
A, (HL)

22H ;It's a quote string
% ,SEEK

ny"

NZ ,0A8D5H ;Not hex

HL ;jBack to end
DE,SCHSTR

OA8DAH +2EN convert routine
(SCHSTR+1) ,HL

A,ODH

(SCHSTR+3) ,A

FIND

(HL) , ODH
HL, (0A12CH)
DE, (0A12EH)
HL

DE

HL

(COUNT) ,A

HL

DE

HL

DE

HL

0020H ;ROM Compare HL'DE
NZ,LOOK

HL

DE

0A6C4H ;Finished so CRLF

125

112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
1135
136
1317
138
1:39
140
140
140
140
141
141
141
142
142

EOA7

EOAA
EOAD
EOAE
EOBO
EOB2
EOB3
EOB5
EOB6
EOB7

EOB9
EOBA
EOBB
EOBE
EOC1

E0C2
EOC4
EOC7
EOC9
EOCA
EOCD
EODO

EOD2
EOD5

EOEO
EOE4
EOES8
EOEC
EOEF
EOF3
EOF7
EOF9
EOFD

C300A0

11D7E0Q
1A
FEOD
2807
BE
20E3
13

23
18F4

E1

E5
CD95A9
3ADSEO
3C
FEO5
32D5E0Q
20CF
AF
32D5EQ
CDC4A6
18C6

C300A0
00

47636375
72656E63
6573206F
66200D
62657477
65656E3A
2D0D
616E6420
0D

’
LOOK:
LOOKIT:

FOUND:

COUNT:
SCHSTR:
MSG1:

MSG2:

MSG3:

JP

LD
LD
CP
JR
cP
JR
INC
INC
JR

POP
PUSH
CALL
LD
INC
CP
LD
JR
XOR
LD
CALL
JR

JP
DB
DS
DB

0AO000H ;Back to ZEN

DE, SCHSTR+1
A, (DE)

ODH

% ,FOUND
(HL)

NZ ,FINDIT
DE

HL

LOOKIT

HL ;Address this srch
HL ;Restack it
0A995H

A, (COUNT)

A

5

(COUNT) , A

NZ ,FINDIT

A

(COUNT) ,A

0A6C4H

FINDIT

0AO00H
0

10
"Occurences of ",0DH

"between:-",0DH

"and " ,O0DH

= =

Appendix

HEX to OPCODE Conversion Table

This first table is to assist when one knows the Hex value and
wishes to know the opcode and the amount of bytes it should be
followed by. When one attempts to convert decimal values in Basic
DATA statements to Opcodes and Operands be sure to start with the
first byte in the routine, else one could get false information.

As an example take program 1 in chapter 1. The first byte in the
DATA line has the decimal value of 62, convert this to hex and one
will see it 1is 3Ehex. Now look in the table below to find what 3E
signifies. It is LD A,nn which means load register A with the value
of the next byte which is 66 dec (42hex). Now continue with the
third value in the DATA line which is 33 which converts to 21hex. On
checking below one will see it signifies LD HL,aabb and must have
the next two bytes loaded into HL and so on. If one began converting
at the wrong place, say at the second byte, and tried to convert 66
to hex (42) and then looked in the table below it equals on its own
LD B,D which would be totally wrong, therefore it is essential to
start at the beginning.

In the table nn equals a one byte value in the range 00h to FFh (0
to 255 dec) and bb aa two bytes in the same range.

00 NOP oc ING,C

01 bb aa LD BC,aabb 0D DEC C

02 LD (BC),A 0OE nn LD C,nn
03 INC BC oF RRCA

04 INC B 10 nn DIJNZ nn
05 DEC B 11 bb aa LD DE,aabb
06 nn LD B,nn 12 LD (DE),A
07 RLCA 13 INC DE

08 EX AF,AF' 14 INC D

09 ADD HL,BC : 15 DEC D

0A LD A, (BC) 16 nn LD D,nn
0B DEC BC 17 RLA

127

Ul

18
19
1A
1B
10
1D
1E
1F
20
21

22
23
24
25
26
27
28
29
2A
2B
2C
2D
2E
2F
30
31

32
33
34
35
36
37
38
39
3A
3B
3C

128

nn

nn

nn

bb aa
bb aa

nn

nn

bb aa

nn

nn

bb aa
bb aa

nn

nn

bb aa

JR nn

ADD HL,DE
LD A, (DE)
DEC DE

INC E

DEC E

LD E,nn
RRA

JR NZ,nn
LD HL,aabb
LD (aabb),HL
INC HL

INC H

DEC H

LD H,nn
DAA

JR Z,nn
ADD HL,HL
LD HL, (nn)
DEC HL

INC L

DEC L

LD L,nn
CPL

JR NC,nn
LD SP,aabb
LD (aabb),A
INC SP

INC (HL)
DEC (HL)
LD (HL),nn
SCF

JR C,nn
ADD HL,SP
LD A, (aabb)
DEC SP

INC A

3D
3E
3F
40
41

42
43
44
45
46
47
48
49
47
4B
4C
4D
4E
4F
50
51

52
53
54
55
56
5
58
59
5A
5B
5C
5D
5E
5F
60
61

nn

DEC
LD
CCF
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD

A

A,nn

B,B
B,C
B,D
B,E
B,H
B,Ln
B, (HL)
B,A
Cc,B

€ ;e
(o5 1)
C,E
¢,H
Cc,L

C, (HL)
Cc,A
D,B
D,C
D,D
D,E
D,H
D,L

D, (HL)
D,A
E,B
E,C
E,D
E,E
E,H
E,L

E, (HL)
E,A
H,B
H,C

62 LD H,D 85 ADD A,L
63 LD H,E 86 ADD A, (HL)
' 64 LD H,H 87 ADD A,A
f 65 LD H,L 88 ADC A,B
| 66 LD H, (HL) 89 ADC A,C
67 LD H,A 8A ADC A,D
68 LD L,B 8B ADC A,E
69 LD L,C 8c ADC A,H
62 LD L,D 8D ADC A,L
‘ 6B LD L,E 8E ADC A, (HL)
‘ 6C LD L,H 8F ADC A,A
6D LD, L 90 SUB B
6E LD L, (HL) 91 SUB C
6F LD L,A 92 SUB D
70 LD (HL),B 93 SUB E
71 LD (HL),C 94 SUB H
72 LD (HL),D 95 SUB L
73 LD (HL),E 96 SUB (HL)
. 74 LD (HL),H 97 SUB A
75 LD (HLYKL 98 SBC A,B
‘ 76 HALT 99 SBC A,C
77 LD (HL),A 9a SBC A,D
78 LD A,B 9B SBC A,E
79 LD A,C 9c SBC A,H
7A LD A,D 9D SBC A,L
7B LD A,E 9E SBC A, (HL)
7C LD A,H 9F SBC A,A
7D LD} A /14 A0 AND B
7E LD A, (HL) Al AND C
7F LD A,A A2 AND D
80 ADD A,B A3 AND E
81 ADD A,C A4 AND H
82 ADD A,D A5 AND L
83 ADD A,E A6 AND (HL)
: 84 ADD A,H A7 AND A g

A8
A9
AA
AB
AC
AD
AE
AF
BO
B1

B2
B3
B4
B5
B6
B7
B8
B9
BA
BB
BC
BD
BE
BF
co
C1

Cc2
@3
c4
G5
Cé
c%
c8
c9
CA

130

bb
bb
bb

nn

bb

aa

aa

aa

aa

XOR
XOR
XOR
XOR
XOR
XOR
XOR
XOR
OR
OR
OR
OR
OR
OR
OR
OR
CP
CP
ad
Cp
CP
cp
CP
Cp
RET NZ

POP BC

JP NZ,aabb
JP aabb

CALL NZ,aabb
PUSH BC

ADD A,nn

RST 00

RET Z

RET

JP Z,aabb

HL)

> ~ B @nm O QW

HL)

P ~ P Dn MO OQOW» ~F XD HUOQW

CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB

CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB

00
01

02
03
04
05
06
07
08
09
0A
0B
0c
0D
OE
oF
10
11

12
13
14
18
16
17
18
19
1A
1B
1€
1D
1E
1F
20
21

22

RLC
RLC
RLC
RLC
RLC
RLC
RLC
RLC
RRC
RRC
RRC
RRC
RRC
RRC
RRC
RRC
RL

RL

RL

RL

RL

RL

RL (HL)
RL A

RR
RR
RR
RR
RR
RR
RR
RR A

SLA B
SLA C
SLA D

H OOQOWwWw» ~ - H O QO

m O OQw
> ~ B m

e =

~ 0 @n®m O QW

HL)

CB 23 SLA E CB 46 BIT 0, (HL)
CB 24 SLA H CB 47 BIT 0,A
CB 25 SLA L CB 48 BIT 1,B
CB 26 SLA (HL) CB 49 BIT 1,C
CB 27 SLA A CB 4A BIT 1,D
CB 28 SRA B CB 4B BIT 1,E
CB 29 SRA C CB 4C BIT 1,H
CB 2A SRA D CB 4D BIT 1,L
CB 2B SRA E CB 4E BIT 1, (HL)
CB 2C SRA H CB 4F BIT 1,A
CB 2D SRA L CB 50 BIT 2,B
CB 2E SRA (HL) CB 51 BIT 2,C
CB 2F SRA A CB 52 BIT 2,D
CB 30 SLI B CB 53 BIT 2,E
CB 31 SLI C CB 54 BIT 2,H
CB 32 SLI D CB 55 BIT 2,L
CB 33 SLI E CB 56 BIT 2, (HL)
CB 34 SLI H CB 57 BIT 2,A
CB 35 ShLE B CB 58 BIT 3,B
CB 36 SLI (HL) CB 59 BIT 3,C
CB 37 SLI A CB 5A BIT 3,D
CB 38 SRL B CB 5B BIT 3,E
CB 39 SRL € CB 5C BIT 3,H
CB 3A SRL D CB 5D BIT 3,L
CB 3B SRL E CB 5E BIT 3, (HL)
CB 3C SRL H CB 5F BIT 3,A
CB 3D SRD) T CB 60 BIT 4,B
CB 3E SRL (HL) CB 61 BIT 4,C
CB 3F SRL A CB 62 BIT 4,D
CB 40 BIT 0,B CB 63 BIT 4,E
CB 41 BIT 0,C CB 64 BIT 4,H
CB 42 BIT 0,D CB 65 BIT 4,L
CB 43 BIT 0,E CB 66 BIT 4, (HL)
CB 44 BIT 0,H CB 67 BIT 4,A
CB 45 BIT 0,L CB 68 BIT 5,B

131

CB
CB
CcB
CB
CB
CB
CB
CB
CB
CB
CcB
CB
CB
CB
CB

TB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CcB
CcB
CB
CB
CcB
cB
CB

132

69
6A
6B
6C
6D
6E
6F
70
71

72
73
74
45
76
77
78
79
7A
7B
7C
7D
7E
E
80
81

82
83
84
85
86
87
88
89
8A
8B

BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES

6, (HL)
6,A
7,B
7/c
7,D
7,E
7,H
7 45
7, (HL)

CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB

8C
8D
8E
8F
90
91

92
93
94
98
96
97
98
99
9A
9B
9C
9D
9E
9F
AOQ
Al

A2
A3
A4
A5
A6
A7
A8
A9
AA
AB
AC
AD
AE

RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES

1,H
i
1, (HL)
1,5
2,B
2,¢
2,D
2,E
2,H
3T
2, (HL)
25
3,B
3,C
3,D
3,E
3,H
3 s
3, (HL)
3,A
4,B
4,C
4,D
4,E
4,H
4
4, (HL)
4,A
5,B
54
5,D
5,E
5,H
5,L
5, (HL)

CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB

AF
BO
B1
B2
B3
B4
B5
B6
B7
B8
B9
BA
BB
BC
BD
BE

RES CB D2 SET 2,D
RES CB D3 SET 2,E
RES CB D4 SET 2,H
RES CB D5 SET 2,L
RES CB D6 SET 2, (HL)
RES CB D7 SET 2,A
RES CB D8 SET 3,B
RES CB D9 SET 3,C
RES CB DA SET 3,D
RES CB DB SET 3,E
RES CB DC SET 3,H
RES CB DD SET 3,L
RES CB DE SET 3, (HL)
RES CB DF SET 3,A
RES CB EO SET 4,B
RES 7, (HL) CB E1 SET 4,C
RES 7,A CB E2 SET 4,D
SET 0,B CB E3 SET 4,E
SET 0,C CB E4 SET 4,H
SET 0,D CB E5 SET 4,L
SET 0,E CB E6 SET 4, (HL)
SET 0,H CB E7 SET 4,A
SET 0,L CB E8 SET 5,B
SET 0, (HL) CB E9 SET 5,C
SET 0,A CB EA SET 5,D
SET 1,B CB EB SET 5,E
SET 1,C CB EC SET 5,H
SET 1,D CB ED SET 5,L
SET 1,E CB EE SET 5, (HL)
SET 1,H CB EF SET 5,A
SET 1,L CB FO SET 6,B
SET 1, (HL) CB F1 SET 6,C
SET 1,A CB F2 SET 6,D
SET 2,B CB F3 SET 6,E
SET 2,C CB F4 SET 6,H

133

CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
cc
CD
CE
CF
DO
D1

D2
D3
D4
D5
D6
D7
D8
D9
DA
DB
DC
DD
DD
DD
DD
DD
DD
DD

134

B5
F6
F7
F8
F9
FA
FB
FC
FD
FE
FF
bb
bb

nn

bb
nn
bb

nn

bb
nn
bb
09
19
21

22
23
29
2A

aa

aa

aa

aa

aa

aa

bb aa
bb aa

bb aa

SET 6,L

SET 6, (HL)
SET 6,A

SET 7,B

SET 7,C

SET 7,D

SET 7,E

SET 7,H

SET 7,L

SET 7, (HL)
SET 7,A
CALL Z,aabb
CALL aabb
ADC A,nn
RST 08

RET NC

POP DE

JP NC,aabb
OUT (nn),A
CALL NC,aabb
PUSH DE

SUB nn

RST 10

RET C

EXX

JP C,aabb
IN A, (nn)
CALL C,nn
ADD IX,BC
ADD IX,DE
LD IX,aabb
LD (aabb),IX
INC IX

ADD IX,IX
LD IX,(aabb)

DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD

2B
34
35
36
39
46
4E
56
5E
66
6E
70
74

T2
73
74
75
T
7E
86
8B
96
9E
Ab
AE
B6
BE
CB
CB
CB
CB
CB
CB
CB
CB

nn

nn

nn

nn

nn

nn

nn

nn

nn

nn

nn

nn

nn

nn

nn

nn

nn

nn

nn

nn

nn

nn

nn

nn

nn

nn

nn

nn

nn

nn

nn

nn

nl

06
OE
16
1E
26
2E
36
3E

DEC IX

INC (IX+nn)
DEC (IX+nn)
LD (IX+nn),nl
ADD IX,SP

LD B, (IX+nn)
LD C,(IX+nn)
LD D, (IX+nn)
LD E,(IX+nn)
LD H,(IX+nn)
LD L,(IX+nn)
LD (IX+nn),B
LD (IX+nn),C
LD (IX+nn),D
LD (IX+nn),E
LD (IX+nn),H
LD (IX+nn),L
LD (IX+nn),A
LD A, (IX+nn)
ADD A, (IX+nn)
ADC A, (IX+nn)
SUB (IX+nn)
SBC A, (IX+nn)
AND (IX+nn)
XOR (IX+nn)
OR (IX+nn)

CP (IX+nn)
RLC (IX+nn)
RRC (IX+nn)
RL (IX+nn)
RR (IX+nn)
SLA (IX+nn)
SRA (IX+nn)
SLI (IX+nn)
SRL (IX+nn)

DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DE
DF
EO
E1

E2
E3

CB nn
CB nn
CB nn
CB nn
CB nn
CB nn
CB nn
CB nn
CB nn
CB nn
CB nn
CB nn
CB nn
CB nn
CB nn
CB nn
CB nn
CB nn
CB nn
CB nn
CB nn
CB nn
CB nn
CB nn
E1

E3

E5

E9

F9

nn

bb aa

46
4E
56
SE
66
6E
76
7E
86
8E
96
9E
A6

B6
BE
Cé6
CE
D6
DE
E6
EE
F6
FE

BIT 0,(IX+nn)
BIT 1,(IX+nn)
BIT 2,(IX+nn)
BIT 3,(IX+nn)
BIT 4,(IX+nn)
BIT 5, (IX+nn)
BIT 6,(IX+nn)
BIT 7,(IX+nn)
RES 0, (IX+nn)
RES 1,(IX+nn)
RES 2, (IX+nn)
RES 3, (IX+nn)
RES 4, (IX+nn)
RES 5,(IX+nn)
RES 6, (IX+nn)
RES 7,(IX+nn)
SET 0, (IX+nn)
SET 1, (IX+nn)
SET 2,(IX+nn)
SET 3,(IX+nn)
SET 4, (IX+nn)
SET 5, (IX+nn)
SET 6,(IX+nn)
SET 7,(IX+nn)
POPWLXS

EX (SP),IX
PUSH IX

JP (IX)

LDMSP jIX

SBC A,nn

RST 18

RET PO

POP HL

JP PO,aabb
EX (SP),HL

E4
E5
E6
E7
E8
E9
EA
EB
EC
ED
ED
ED
ED
ED
ED
ED
ED
ED
ED
ED
ED
ED
ED
ED
ED
ED
ED
ED
ED
ED
ED
ED
ED
ED
ED

bb

nn

bb

bb
40
41

42
43
44
45
46
47
48
49
4A
4B
4D
AF
50
51

53
56
57
58
59
5A
5B
5E
SF
60

aa

aa

aa

bb aa

bb aa

bb aa

bb aa

CALL PO,aabb
PUSH HL

AND nn

RST 20

RET PE

JP (HL)

JP PE,aabb
EX DE,HL
CALL PE,aabb
IN B, (C)

ouT (C),B
SBC HL,BC

LD (aabb),BC
NEG

RETN

M 0

LD I,A

IN C,(C)

ouT (C),C
ADC HL,BC

LD BC, (aabb)
RETI

LD R,A

IN D,(C)

ouT (C),D
LD (aabb),DE
IM 1

LD A,E

IN E,(C)

ouT (C),E
ADC HL,DE

LD DE, (aabb)
IM 2

LD A,R

IN H,(C)

135

ED
ED
ED
ED
ED
ED
ED
ED
ED
ED
ED
ED
ED
ED
ED
ED
ED
ED
ED
ED
ED
ED
ED
ED
ED
ED
ED
ED
ED
ED
EE
EF
FO
F1

F2

136

61
62
67
68
69
6A
6F
70
72
73 bb aa
78
7.9
7A
7B bb aa
A0
Al
A2
A3
A8
A9
AA
AB
BO
B1
B2
B3
B8
B9
BA
BB

nn

bb aa

ouT (C),H
SBC HL,HL
RRD

IN L,(C)
ouT (C),L
ADC HL,HL
RLD

IN F,(C)
SBC HL,SP
LD (aabb),SP
IN A,(C)
ouT (C),A
ADC HL,SP
LD SP,(aabb)
LDI

CPI

INI

OUTI

LDD

CPD

IND

OUTD

LDIR

CPIR

INIR

OTIR

LDDR

CPDR

INDR

OTDR

XOR nn
RST 28
RET P

POP AF

JP P,aabb

F3
F4
F5
F6
F7
F8
F9
FA
FB
FC
FD
FD
FD
FD
FD
FD
FD
FD
FD
FD
FD
FD
FD
FD
FD
FD
FD
FD
FD
FD
FD
FD
FD
FD
FD

bb

nn

bb

bb
09
19
21

22
23
29
2A
2B
34
35
36
39
46
4E
56
5E
66
6E
70
71

72
73
74
75
77

aa

aa

aa

bb
bb

bb

nn
nn

nn

nn
nn
nn
nn
nn
nn
nn
nn
nn
nn
nn
nn

nn

aa
aa

aa

nl

DI

CALL P,aabb
PUSH AF

OR nn

RST 30

RET M

LD SP,HL

JP M,aabb
EI

CALL M,aabb
ADD IY,BC
ADD IY,DE
LD IY,aabb
LD (aabb),IY
INC IY

ADD IY,IY
LD 1IY,(aabb)
DEC 1Y

INC (IY+nn)
DEC (IY+nn)
LD (IY+nn),nl
ADD IY,SP

LD B,(IY+nn)
LD C,(IY+nn)
LD D,(IY+nn)
LD E,(IY+nn)
LD H,(IY+nn)
LD L,(IY+nn)
LD (IY+nn),B
LD (IY+nn),C
LD (IY+nn),D
LD (IY+nn),E
LD (IY+nn),H
LD (IY+nn),L
LD (IY+nn),A

FD
FD
FD
FD
FD
FD
FD
FD
FD
FD
FD
FD
FD
FD
FD
FD
FD
FD
FD
FD
FD
FD
FD
FD
FD
FD
FD
FD
FD
FD
FD
FD
FD
FD
FD

7E
86
8E
96
9E
A6
AE
B6
BE
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB

nn

nn

nn

nn

nn

nn

nn

nn

nn

nn

nn

nn

nn

nn

nn

nn

nn

nn

nn

nn

nn

nn

nn

nn

nn

nn

nn

nn

nn

nn

nn

nn

nn

nn

nn

06
OE
16
1E
26
2E
36
3E
46
4E
56
5E
66
6E
76
7E
86
8E
96
9E
A6
AE
B6
BE
Ccé
CE

LD A,(IY;nn)
ADD A, (IY+nn)
ADC A, (IY+nn)
SUB (IY+nn)
SBC A,(IY+nn)
AND (IY+nn)
XOR (IY+nn)
OR (IY+nn)

CP (IY+nn)
RLC (IY+nn)
RRC (IY+nn)
RL (IY+nn)

RR (IY+nn)
SLA (IY+nn)
SRA (IY+nn)
SLI (IY+nn)
SRL (IY+nn)
BIT 0,(IY+nn)
BIT 1,(IY+nn)
BIT 2,(IY+nn)
BIT 3,(IY+nn)
BIT 4,(IY+nn)
BIT 5,(IY+nn)
BIT 6,(IY+nn)
BIT 7,(IY+nn)
RES 0,(IY+nn)
RES 1,(IY+nn)
RES 2,(IY+nn)
RES 3, (IY+nn)
RES 4,(IY+nn)
RES 5,(IY+nn)
RES 6,(IY+nn)
RES 7,(IY+nn)
SET 0,(IY+nn)
SET 1,(IY+nn)

FD
FD
FD
FD
FD
FD
FD
FD
FD
FD
FD
FE
FF

CB
CB
CB
CB
CB
CB
E1

E3
E5
E9
F9

nn

nn

nn

nn

nn

nn

nn

D6
DE
E6
EE
F6
FE

SET
SET
SET
SET
SET
SET
POP

2,(IY+nn)
3,(IY+nn)
4,(IY+nn)
5,(IY+nn)
6,(IY+nn)
7,(IY+nn)
LY

EX (SP),IY
PUSH IY

JP (1Y)

LD SP,IY
CP nn

RST

38

137

Instruction set in Alphabetical order

8E ADC A, (HL) DD 39 ADD IX,SP
DD 8E nn ADC A, (IX+nn) FD 09 ADD IY,BC
FD 8E nn ADC A, (IY+nn) FD 19 ADD 1Y,DE
8F : ADC A,A FD 29 ADD IY,IY
88 ADC A,B FD 39 ADD IY,SP
89 ADC A,C
8A ADC A,D A6 AND (HL)
8B ADC A,E DD A6 nn AND (IX+nn)
8C ADC A,H FD A6 nn AND (IY+nn)
8D ADC A,L A7 AND A
CE nn ADC A,nn AQ0 AND B
ED 4A ADC HL,BC Al AND C
ED 5A ADC HL,DE A2 AND D
ED 6A ADC HL,HL A3 AND E
ED 7A ADC HL,SP A4 AND H
A5 AND L
86 ADD A, (HL) E6 nn AND nn
DD 86 nn ADD A, (IX+nn)
FD 86 nn ADD A, (IY+nn) CB 46 BIT 0, (HL)
87 ADD A,A DD CB nn 46 BIT 0, (IX+nn)
80 ADD A,B FD CB nn 46 BIT 0,(IY+nn)
81 ADD A,C CB 47 BIT 0,A
82 ADD A,D CB 40 BIT 0,B
83 ADD A,E CB 41 BIT 0,C
84 ADD A,H CB 42 BIT 0,D
85 ADD A,L CB 43 BIT 0,E
C6 nn ADD A,nn CB 44 BIT O0,H
09 ADD HL,BC CB 45 BIT O,L
19 ADD HL,DE
29 ADD HL,HL CB 4E BIT 1, (HL)
39 ADD HL,SP DD CB nn 4E BIT 1,(IX+nn)
DD 09 ADD IX,BC FD CB nn 4E BIT 1,(IY+nn)
DD 19 ADD IX,DE CB 4F BIT, 1A
DD 29 ADD IX,IX CB 48 BIT 1,B

138

CB
CB
CB
CB
CB

CB
DD
FD
CB
CB
CB
CB
CB
CB
CB

CB
DD
FD
CB
CB
CB
CB
CB
CB
CB

CB
DD
FD
CB
CB

49
4A
4B
4AC
4D

56
CB
CB
57
50
51
52
53
54
55

5E
CB
CB
5E
58
59
5A
5B
5C
5D

66
CB
CB
67
60

nn 56
nn 56

nn 5E
nn 5E

nn 66
nn 66

BIT
BIT
BT
BIT
BIT

BIT
BIT
BET
BIT
BIT
BET
BXT
BIT
BIT
BIT

BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BET
BLT

BIT
BIT
BIT
BIT
BIT

~

~

oV =3 A e =
£ - H O Q

~

2, (HL)
2,(IX+nn)
2,(IY+nn)
2,A

2,B

2 ;€

2,D

2,E

2;H

2,5

3, (HL)
3,(IX+nn)
3,(IY+nn)
3,A

3,B

3,C

3,D

3,E

3,H

3,L

4,(HL)
4,(IX+nn)
4,(IY+nn)
4,A

4,B

CB
CB
CB
CB
CB

CB
DD
FD
CB
CB
CB
CB
CB
CB
CB

CB
DD
FD
CB
CB
CB
CB
CB
CB
CB

CB
DD
FD
CB
CB

61
62
63
64
65

6E
CB
CB
6F
68
69
6A
6B
6C
6D

76
CB
CB
27
70
i
72
73
74
5

7B
CB
CB
TF
78

nn 6E
nn 6E

nn 76
nn 76

nn 7E
nn 7E

BIT 4
BIT 4
BIT 4

BIT
BIT

BIT
BIT
BIT
BIT
BIT
BIT
BIT

BIT
BIT

BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BOT
BIT

BIT
BIT
BIT
BIT
BIT

5, (HL)
5, (IX+nn)
5,(IY+nn)

5,A
5,B
5,C
5,D
5,E
5,H
5,L

6, (HL)
6, (IX+nn)
6,(IY+nn)

6,A
6,B
6,C
6,D
6,E
6,H
6,L

7, (HL)
7,(IX+nn)
7,(IY+nn)

7,A
7,B

139

CB
CB
CB
CB
CB

DC
FC
D4
CD
c4
F4
EC
E4
cc

3F

BE
DD
FD
BF
B8
B9
BA
BB
BC
BD
FE

ED
ED
ED
ED

79
7A
7B
7€
7D

bb
bb
bb
bb
bb
bb
bb
bb
bb

BE
BE

nn

A9
B9
Al
B1

aa
aa
aa
aa
aa
aa
aa
aa

aa

nn

nn

BIT 7,C
BIT 7,D
BIT 7,E
BIT 7,H
BIT 7,L

CALL C,aabb
CALL M,aabb
CALL NC,aabb
CALL aabb
CALL NZ,aabb
CALL P,aabb
CALL PE,aabb
CALL PO,aabb
CALL Z,aabb

CCF

CP (HL)

CP (IX+nn)
CP (IY+nn)
CP A

CP
CP
CP
CP
CP
CP
CP nn

ton 8o 0w

CPD
CPDR
CP1
CPIR

2F

27

35
DD
FD
3D
05
0B
0D
15
1B
1D
25
2B
DD
FD
2D
3B

F3

10

FB

E3
DD
FD
08
EB
D9

76

35 nn
35 nn

2B
2B

nn

E3
E3

CPL

DAA

DEC (HL)
DEC (IX+nn)
DEC (IY+nn)
DEC A

DEC B

DEC BC

DEC C

DEC D

DEC DE

DEC E

DEC H

DEC HL

DEC IX

DEC IY

DEC L

DEC SP

DI

DJINZ nn

EI

EX (SP),HL
EX (SP),IX
EX (SP),IY
EX AF,AF'
EX DE,HL

EXX

HALT

ED
ED
ED

ED
DB
ED
ED
ED
ED
ED
ED
ED

34
DD
FD
3C
04
03
ocC
14
13
e
24
23
DD
FD
2C
33

ED
ED
ED
ED

46
56
SE

78
nn
40
48
50
58
70
60
68

34
34

23
23

AA
BA
A2
B2

nn

nn

IM 0
IM 1
IM 2

IN A

I(C)

IN A,(nn)
IN B, (C)

IN C
IN D
IN E
IN F
IN H
IN L

INC
INC
INC
INC
INC
INC
INC
INC
INC
INC
INC
INC
INC
INC
INC
INC

IND
INDR
INI
INIR

,(C)
,(C)
+(C)
+(C)
+(C)
,(C)

(HL)
(IX+nn)
(IY+nn)
A

B

BC

{04

D

DE

E

H

HL

IX

EY

L

SP

E9
DD
FD
DA
FA
D2
€3
c2
F2
EA
E2
CA

38
18
30
20
28

02
12
i/
70
Al
72
138
74
75
36

DD
DD
DD
DD
DD

E9
E9
bb
bb
bb
bb
bb
bb
bb
bb
bb

nn
nn
nn
nn

nn

nn

19
70
71
72
73

aa
aa
aa
aa
aa
aa
aa
aa

aa

nn
nn
nn
nn

nn

JP
JP
JP
JP
JP
JP
JP
JP
JP
JP
JP
JP

JR
JR
JR
JR
JR

LD
LD
LD
LD
LD
LD
LD
LD
LD
LD

LD
LD
LD
LD
LD

(HL)
(IX)
(1Y)
C,aabb
M,aabb
NC,aabb
aabb
NZ ,aabb
P,aabb
PE,aabb
PO,aabb
Z ,aabb

C,nn
nn
NC,nn
NZ,nn

Z,nn

(BC),A
(DE) ,A
(HL) ,A
(HL),B
(HL) ,C
(HL) ,D
(HL) ,E
(HL) ,H
(HL) ,L
(HL) ,nn

(IX+nn)
(IX+nn)
(IX+nn)
(IX+nn)
(IX+nn)

A
B
+C
,D
,E

141

DD
DD
DD

FD
FD
FD
FD
FD
FD
FD
FD

32
ED
ED
22
DD
FD
ED

0A
1A
7E
DD
FD
3A
7P
78
79
7A
7B
7C
ED

74
15

77,
70
74l
72
73
74
75
36

bb
43
53
bb
22
22
73

7E
7E
bb

57

nn
nn

nn

nn
nn
nn
nn
nn
nn
nn
nn

aa
bb
bb
aa
bb
bb
bb

nn
nn

aa

nl

ni

aa

aa

aa
aa
aa

LD
LD
LD

LD
LD
LD
LD
LD
LD
LD
LD

LD
LD
LD
LD
LD
LD
LD

LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD

(IX+nn),H
(IX+nn),L
(IX+nn),nl

(IY+nn),A
(IY+nn),B
(IY+nn),C
(IY+nn),D
(IY+nn) ,E
(IY+nn) ,H
(IY+nn),L
(IY+nn),n1

(aabb) ,A
(aabb) ,BC
(aabb) ,DE
(aabb) ,HL
(aabb) ,IX
(aabb),IY
(aabb) ,SP

A, (BC)

A, (DE)

A, (HL)

A, (IX+nn)
A,(IY+nn)
A, (aabb)
A,A

A,B

AL,iC

A,D

A,E

A,H

B, T

7D
3E nn
ED 5F

46

DD 46 nn
FD 46 nn
47

40

41

42

43

44

45

06 nn

ED 4B bb aa
01 bb aa

4E

DD 4E nn
FD 4E nn
4F

48

49

4A

4B

4C

4D

0E nn

56
DD 56 nn
FD 56 nn

LD
LD
LD

LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD

LD
LD

LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD

LD
LD
LD

A,L
A,nn
A,R

B, (HL)

B, (IX+nn)
B,(IY+nn)
B,A

B,B

B,

B,D

B,E

B,H

B,L

B,nn

BC, (aabb)
BC,aabb

C, (HL)
C,(IX+nn)
C,(IY+nn)
C,A

C:;B

G

C.,D

C,E

¢ H

C,5L

C,nn

D, (HL)
D, (IX+nn)
D,(IY+nn)

57 LD D,A 2A bb aa LD HL, (aabb)

‘ 50 LD D,B 21 bb aa LD HL,aabb
51 LD D,C
52 LD D,D ED 47 LD I,A
53 LD D,E
i LD D,L DD 21 bb aa LD IX,aabb
16 nn LD D,nn
FD 2A bb aa LD IY,(aabb)
‘ ED 5B bb aa LD DE,(aabb) FD 21 bb aa LD IY,aabb
11 bb aa LD DE,aabb
6E LD L, (HL)
5E LD E, (HL) DD 6E nn LD L, (IX+nn)
DD 5E nn LD E, (IX+nn) FD 6E nn LD L,(IY+nn)
FD 5E nn LD E,(IY+nn) 6F LD L,A
5F LD E,A 68 LD L,B
58 LD E,B 69 LD L C
59 LD E,C 6A LD L,D
5A LD E,D 6B LD L,E
5B LD E,E 6C LD L,H
5C LD E,H 6D LDAL
5D LD E,L 2E nn LD L,nn
1E nn LD E,nn
ED 4F LD R,A
66 LD H, (HL)
DD 66 nn LD H, (IX+nn) ED 7B bb aa LD SP, (aabb)
FD 66 nn LD H,(IY+nn) F9 LD SP,HL
67 LD H,A DD F9 LD SP,IX
60 LD H,B FD F9 LD SP,IY
‘ 61 LD H,C 31 bb aa LD SP,aabb
62 LD H,D
63 LD H,E ED A8 LDD
64 LD H,H ED B8 LDDR
65 LD H,L ED AO LDI
26 nn LD H,nn ED BO LDIR

143

ED

00

B6
DD
FD
B7
BO
B1

B2
B3
B4
B5
F6

ED
ED

ED
ED
ED
ED
ED
ED
ED
D3

ED
ED

F1
Cc1
D1
E1

44

B6 nn
B6 nn

nn

BB
B3

79
41
49
51
59
61
69

nn

AB
A3

144

NEG

NOP

OR (HL)

OR (IX+nn)
OR (IY+nn)
OR A

OR B

OR C

OR D

OR E

OR H

OR L

OR nn
OTDR

OTIR

ouT (C),A
ouT (C),B
ouT (C),C
out (C),D
ouT (C),E
ouT (C),H
ouT (C),L
OoUuT (nn),A
OUTD

OUTI

POP AF
POP BC
POP DE
POP HL

DD
FD

Eb
C5
D5
E5
DD
FD

CB
DD
FD
CB
CB
CB
CB
CB
CB
CB

CB
DD
FD
CB
CB
CB
CB
CB
CB
CB

CB
DD
FD

E1
E1

E5
E5

86
CB nn 86
CB nn 86
87
80
81
82
83
84
85

8E
CB nn 8E
CB nn 8E
8F
88
89
8A
8B
8C
8D

96
CB nn 96
CB nn 96

POP
POP

PUSH
PUSH
PUSH
PUSH
PUSH
PUSH

RES
RES
RES
RES
RES
RES
RES
RES
RES
RES

RES
RES
RES
RES
RES
RES
RES
RES
RES
RES

RES
RES
RES

IX
1Y

AF
BC
DE
HL
IX
1Y

0, (HL)

0, (IX+nn)
0,(IX+nn)
0,A

0,B

0,C

0,D

0,E

0,H

0,L

1, (HL)

1, (IX+nn)
1,(IY+nn)
1A

r

~

-

R R e Lo
e B3 O QW

~

2, (HL)
2,(IX+nn)
2,(IY+nn)

CB
CB
CB
CB
CB
CB
CB

CB
DD
FD
CB
CB
CB
CB
CB
CB
CB

CB
DD
FD
CB
CB
CB
CB
CB
CB
CB

CB
DD
FD
CB
CB

97
90
99
92
93
94
95

9E
CB
CB
9IF
98
99
9A
9B
9C
9D

A6
CB
CB
A7
A0
Al

A2
A3
A4
A5

AE
CB
CB
AF
A8

nn 9E
nn 9E

nn A6
nn A6

nn AE
nn AE

RES

RES 2

RES
RES
RES
RES
RES

RES
RES
RES
RES
RES
RES
RES
RES
RES
RES

RES
RES
RES
RES
RES
RES
RES
RES
RES
RES

RES
RES
RES
RES
RES

2,A
,B
2;¢
2,D
2,E
2,H
2,L

3, (HL)
3,(IX+nn)
3,(IY+nn)
3,A

3,B

3 /€

3,D

3,E

3, H

3L

4, (HL)
4,(IX+nn)
4,(IY+nn)
4,A

4,B

4,C

4,D

4,E

4,H

4,L

5, (HL)
5,(IX+nn)
5,(IY+nn)
5,A

5,B

CB
CB
CB
CB
CB

CB
DD
FD
CB
CB
CB
CB
CB
CB
CB

CB
DD
FD
CB
CB
CB
CB
CB
CB
CB

c9
D8
F8
DO
co
FO
E8

A9
AA
AB
AC
AD

B6
CB
CB
B7
BO
B1
B2
B3
B4
B5

BE
CB
CB
BF
B8
B9
BA
BB
BC
BD

nn B6
nn B6

nn BE
nn BE

RES

RES 5
RES 5

RES
RES

RES
RES
RES
RES
RES
RES
RES
RES
RES
RES

RES
RES
RES
RES
RES
RES
RES
RES
RES
RES

RET
RET
RET
RET
RET
RET
RET

6, (HL)
6, (IX+nn)
6,(IY+nn)

6,A
6,B
6,C
6,D
6,E
6,H
6,L

7, (HL)
7,(IX+nn)
7,(IY+nn)

7,A
7,B
7,C
7.,D
7.,E
7,H
7,L

NC
NZ

PE

145

EO
c8

ED
ED

CB
DD
FD
CB
CB
CB
CB
CB
CB
CB

CB
DD
FD
CB
CB
CB
CB
CB
CB
CB

07

ED

CB

4D
45

16
CB
CB
1@
10
11
12
13
14
15

06
CB
CB
07
00
01
02
03
04
05

6F

1E

146

nn 16

nn 16

nn 06
nn 06

RET PO
RET Z

RETI
RETN

RL
RL
RL
RL
RL
RL
RL
RL
RL
RL

(
(
(
A

B SEiE e iR

RLA

RLC
RLC
RLC
RLC
RLC
RLC
RLC
RLC
RLC
RLC

RLCA

RLD

HL)
IX+nn)
IY+nn)

(HL)
(IX+nn)
(IY+nn)
A

H D B U QW

RR (EL)

DD
FD
CB
CB
CB
CB
CB
CB
CB

18

CB
DD
FD
CB
CB
CB
CB
CB
CB
CB

OF

ED

c7
CF
D7
DF
E7
EF
F7
FF

CB
CB
1F
18
19
1A
1B
1C
1D

0E
CB
CB
oF
08
09
0A
0B
oc
0D

67

nn 1E
nn 1E

nn OE
nn OE

RR (
RR (
RR A
RR
RR
RR
RR
RR
RR

&t E 8 O QW

RRA

RRC
RRC
RRC

RRC A

RRC
RRC
RRC
RRC
RRC
RRC

RRCA

RRD

RST
RST
RST
RST
RST
RST
RST
RST

IX+nn)
IY+nn)

(HL)
(IX+nn)
(IY+nn)

B - B8 U QW

0
8h
10h
18h
20h
28h
30h
38h

-y L

9E
DD
FD
9F
98
99
9A
9B
9e
9D
DE

ED
ED
ED
ED

37

CB
DD
FD
CB
CB
CB
CB
CB
CB
CB

CB
DD
FD
CB
CB

9E
9E

nn

42
52
62
72

C6
CB
CB
Cc7
co
c1
c2
G3
C4
€5

CE
CB
CB
CH
c8

nn

nn

nn C6
nn C6

nn CE
nn CE

SBC
SBC
SBC
SBC
SBC
SBC
SBC
SBC
SBC
SBC
SBC

SBC
SBC
SBC
SBC

SCEF

SET
SET
SET
SET
SET
SET
SET
SET
SET
SET

SET
SET
SET
SET
SET

A, (HL)

A, (IX+nn)
A,(IY+nn)
A,A

A,B

A,C

A,D

A,E

A,H

A,L

A,nn

HL,BC
HL,DE
HL , HL
HL,SP

0, (HL)
0,(IX+nn)
0,(IY+nn)
0,A

0,B

0,6

0,D

0,E

0,H

0,L

1, (HL)
1,(IX+nn)
1,(IY+nn)
1,A

.8

CB
CB
CB
CB
CB

CB
DD
FD
CB
CB
CB
CB
CB
CB
CB

CB
DD
FD
CB
CB
CB
CB
CB
CB
CB

CB
DD
FD
CB
CB
CB
CB

c9
CA
CB
cc
CD

D6
CB
CB
D7
DO
D1

D2
D3
D4
D5

nn D6
nn D6

DE

CB
CB
DF
D8
D9
DA
DB
DC
DD

E6
CB
CB
E7
EO
E1
E2

nn DE
nn DE

nn E6
nn E6

SET
SET
SET
SET
SET

SET
SET
SET
SET
SET
SET
SET
SET
SET
SET

SET
SET
SET
SET
SET
SET
SET
SET
SET
SET

SET
SET
SET
SET
SET
SET
SET

~

-

£V o, o L0 B
{ =l < - < s R = B

2, (HL)
2, (IX+nn)
2,(IY+nn)

2,A
2,B
2iC
2,D
2,E
2,H
20

3I(HL)
3, (IX+nn)
3,(IY+nn)

3,A
3,B
3,C
3,D
3,E
3,H
3,L

4, (HL)
4,(IX+nn)
4,(IY+nn)

4,A
4,B
4,C
4,D

147

T ——

CB
CB
CB

CB
DD
FD
CB
CB
CB
CB
CB
CB
CB

CB
DD
FD
CB
CB
CB
CB
CB
CB
CB

CB
DD
FD
CB
CB
CB
CB
CB
CB
CB

E3
E4
ES

EE
CB
CB
EF
E8
E9
EA
EB
EC
ED

F6
CB
CB
F7
FO
F1
F2
r3
F4
F5

FE
CB
CB
FF
F8
F9
FA
FB
FC
FD

148

nn EE
nn EE

nn F6
nn F6

nn FE
nn FE

SET 4
SET 4
SET 4

SET
SET
SET
SET
SET
SET
SET
SET
SET
SET

SET
SET
SET
SET
SET
SET
SET
SET
SET
SET

SET
SET
SET
SET
SET
SET
SET
SET
SET
SET

5, (HL)
5,(IX+nn)
5,(IY+nn)
5,A

5,B

BhC

5,D

5,E

5,H

5,L

6, (HL)
6,(IX+nn)
6,(IY+nn)
6,A

6,B

6,C

6,D

6,E

6,H

6,L

7, (HL)
7,(IX+nn)
7,(IY+nn)
7,A

7,B

Ty C

7 ¢D

7,E

T B

Teola

CB
DD
FD
CB
CB
CB
CB
CB
CB
CB

CB
DD
FD
CB
CB
CB
CB
CB
CB
CB

CB
DD
FD
CB
CB
CB
CB
CB
CB
CB

CB
DD
FD

26
CB nn 26
CB nn 26
27
20
21
22
23
24
25

36
CB nn 36
CB nn 36
37
30
31
32
33
34
35

2E
CB nn 2E
CB nn 2E
2F
28
29
2A
2B
2C
2D

3E
CB nn 3E
CB nn 3E

SLA
SLA
SLA
SLA
SLA
SLA
SLA
SLA
SLA
SLA

SLI
SLI
SLI
SLI
SLI
SLI
SLI
SLI
SLI
SLI

SRA
SRA
SRA
SRA
SRA
SRA
SRA
SRA
SRA
SRA

SRL
SRL
SRL

(HL)
(IX+nn)
(IY+nn)
A

- 8 O QW

(HL)
(IX+nn)
(IY+nn)
A

D@3 0O 0w

(HL)
(IX+nn)
(IY+nn)
A

e m &8 0O 0QW

(HL)
(IX+nn)
(IY+nn)

CB
CB
CB
CB
CB
CB
CB

96
DD
FD
97
90
91
92
93

3F
38
39
3A
3B
3C
3D

96 nn
96 nn

SRL
SRL
SRL
SRL
SRL
SRL
SRL

SUB
SUB
SUB
SUB
SUB
SUB
SUB
SUB

Bt e Q wtde B

(HL)
(IX+nn)
(IY+nn)
A

Hm o QW

94
95
D6 nn

AE

DD AE nn
FD AE nn
AF

A8

A9

AA

AB

AC

AD

EE nn

SUB

H

SUB L

SUB

XOR
XOR
XOR
XOR
XOR
XOR
XOR
XOR
XOR
XOR
XOR

nn

(HL)
(IX+nn)
(IY+nn)
A

=m0 0w

149

HEX DEC DEC|H D D' [H D D |H D DiH D D
*x256 *256 256 *256 *256

00 00000 034 13312 52|68 26624 104{9C 39936 156|D0 53248 208
01 00256 1{35 13568 53|69 26880 105(9D 40192 157|D1 53504 209
02 00512 2|36 13824 54 |6A 27136, 106|9E 40448 158({D2 53760 210
03 00768 3(37 14080 55(|6B 27392 107|9F 40704 159{D3 54016 211
04 01024 4138 14336 56|6C 27648 108 |A0 40960 160|D4 54272 212
05 01280 5(39 14592 576D 27904 109|Al 41216 161|D5 54528 213
06 01536 6(3A 14848 58 (6E 28160 110|A2 41472 162 D6 54784 214
07 01792 7 (3B 15104 59|6F 28416 111|A3 41728 163|D7 55040 215
08 02048 8[3C 15360 60|70 28672 112|A4 41984 164|D8 55296 216
09 02304 93D 15616 61|71 28928 113|A5 42240 165|D9 55552 217
0A 02560 10(3E 15872 62|72 29184 114|A6 42496 166|DA 55808 218
0B 02816 11 (3F 16128 63|73 29440 115|A7 42752 167|DB 56064 219
0C 03072 12{40 16384 64|74 29696 116|A8 43008 168|{DC 56320 220
0D 03328 1341 16640 65|75 29952 117|A9 43264 169|DD 56576 221
OE 03584 1442 16896 66|76 30208 118|AA 43520 170|DE 56832 222
OF 03840 15|43 17152 67|77 30464 119({AB 43776 171|DF 57088 223
10 04096 16|44 17408 6878 30720 120|AC 44032 172|EO0 57344 224
11 04352 17|45 17664 69|79 30976 121|AD 44288 173|E1 57600 225
12 04608 18146 17920 70|7A 31232 122|AE 44544 174|E2 57856 226
13 04864 19(47 18176 71|7B 31488 123[AF 44800 175|E3 58112 227
14 05120 20(48 18432 72|7C 31744 124|B0 45056 176|E4 58368 228
15 05376 21}49 18688 73|7D 32000 125|B1 45312 177|E5 58624 229
16 05632 22|4A 18944 74 |7E 32256 126|B2 45568 178|E6 58880 230
17 05888 2314B 19200 75|7F 32512 127(B3 45824 179|E7 59136 231
18 06144 24]14C 19456 76|80 32768 128|B4 46080 180|E8 59392 232
19 06400 25{4D 19712 7781 33024 129|B5 46336 181|E9 59648 233
1A 06656 26(4E 19968 7882 33280 130|B6 46592 182|EA 59904 234
1B 06912 27|4F 20224 79(83 33536 131|B7 46848 183|EB 60160 235
1C 07168 28{50 20480 80|84 33792 132|B8 47104 184|EC 60416 236
1D 07424 29{51 20736 81|85 34048 133|B9 47360 185/ED 60672 237
1E 07680 30{52 20992 82|86 34304 134|BA 47616 1B6|EE 60928 238
1F 07936 31|53 21248 83|87 34560 135(BB 47872 187|EF 61184 239
20 08192 32|54 21504 84(88 34816 136|BC 48128 188|F0 61440 240
21 08448 33|55 21760 85(89 35072 137|BD 48384 189|F1 61696 241
22 08704 34156 22016 86|8A 35328 138|BE 48640 190|F2 61952 242
23 08960 35{57 22272 87|8B 35584 139|BF 48896 191|F3 62208 243
24 09216 36({58 22528 88|8C 35840 140|{CO 49152 192|F4 62464 244
25 09472 37(59 22784 89|8D 36096 141|C1 49408 193|F5 62720 245
26 09728 38{5A 23040 90|8E 36352 142|C2 49664 194|F6 62976 246
27 09984 39|5B 23296 91(8F 36608 143|C3 49920 195|F7 63232 247
28 10240 40|5C 23552 92|90 36864 144|C4 50176 196 F8 63488 248
29 10496 41|5D 23808 93(91 37120 145|C5 50432 197|F9 63744 249
2A 10752 42|SE 24064 94|92 37376 146|C6 50688 198|FA 64000 250
2B 11008 43({5F 24320 95|93 37632 147|C7 50944 199/FB 64256 251
2C 11264 44|60 24576 96|94 37888 148|C8 51200 200[FC 64512 252
2D 11520 4561 24832 97|95 38144 149|/C9 51456 201|FD 64768 253
2E 11776 46{62 25088 98|96 38400 150{CA 51712 202|FE 65024 254
2F 12032 47|63 25344 99|97 38656 151|CB 51968 203|FF 65280 255
30 12288 48;64 25600 100|98 38912 152|CC 52224 204

31 12544 49165 25856 101{99 39168 153|CD 52480 205

32 12800 50(66 26112 102|9A 39424 154|CE 52736 206

33 13056 51|67 26368 103|9B 39680 155|CF 52992 207

The left column is the Hex code.
The centre column is the decimal equivalent multiplied by 256 for
calculating the M.S.B
The third column is for use with the L.S.B.

150

or single byte.

i
00 TRy

A & F reg manipulation
ADD A/ADC A

AND

A Register

Assembly commands

B & C Registers

BIT

Bit manipulation
Block comparisons
Block transfer group
Brackets convention
Byte search program

Calls

Carry flag

cer

CP
CPI/CPD/CPIR/CPDR
CPL

Crashes

D & E Registers

DAA

Data manip. commands
Data transfer commands
Decimal arith. rotates
Direct screen addressing
DJINZ

EX/EXX

Flag Register
Flag table

H & L Registers
Half carry flag
Halt

Hex to opcode table
Hooks

I & R Registers

IN

Index registers
INI/INIR/IND/INDR
Input/Output commands

Jumps

LDI/LDIR/LDD/LDDR
Loader program

Machine code from Basic
MSX Routines
Music program

NEG

104

86

52

INDEX

Non Z80 instructions
NOP

OR
ouT
OUTI/OTIR/OUTD/OTDR

Parity overflow flag
Program counter

RAM pointers
Re-routing programs
RES

Restore

Returns

RL

RLC

RLD/RRD

ROM routines

RR/RRC

Saving programs
SBC

SCF

Screen messages
SET

Sign flag
SLA/SRA

Sprites

SRL

Stack pointer
Storing Screens
SUB

Subtract flag
System controls

Table construction

User inputs 1

User inputs 2

Using ZEN Assembler
USR

XOR

Z80 Instructions
7Z80 Instruction table
Zero flag

8 bit arithmetic group
8 bit load group

8 bit registers

8 bit shift/rotate

16 bit arithmetic group
16 bit load group

63
62

43
61
61

86

78
78
64
110

44

10
138
20

41
32
17
46

45
34

151

STARTING MACHINE CODE
ON THE MSX

Even with a good knowledge of machine code programming the
user still requires additional information in how to access the
inbuilt routines of a particular micro in order to achieve the
simplest of tasks such as displaying messages on screen.
Starting Machine Code on the MSX not only shows the ways the
Z80 instructions are used but demonstrates these fundamental,
but nevertheless crucial, routines in action in a way that even a
first time user will find straightforward.

From how to access machine code routine from Basic to using an
Assembler, moving sprites and playing music in machine code on
the MSX are all explained and demonstrated so lessening the
imaginary and sometimes daunting divide between Basic and
machine code programming.

— e

" Published by
Kuma Computers ; ‘kshire, England

Telephone 07 ’i I
! 1

| 1

Il 62 TELFAC

