
$.CflHN
COl.lJUP, fflA/l>
PLAY wroo
f3f ~
MAKFILES TO
11UJN lEAD
VAT?JYm POKE
~ICK, VAL
ERA WEXT
IN1ER.V~ DEFV~

ON
~m,a
LlX'ATE
GOTO
USTZ
Pll/1/T
Bl>I$~

f/!lf
GOSUB

I! g()p
PVT

A
Programmer/s

Guide
to the

MSXSystem

C. I. Burkinshaiv
and

R. Goodley

_r __ _
SIGMA
---PRESS-

r
I

..

Copyright© 1985, C. I. Burkinshaw and R. Goodley

All Rights Reserved

No part of this book may be reproduced or transmitted by any means without
the prior permission of the publisher. The only exceptions are for the purposes
of review, or as provided for by the Copyright (Photocopying) Act or in order
to enter the programs herein onto a computer for the sole use of the purchaser
of this book.

ISBN: 185058 015 4

Published by:
SIGMA PRESS
5AltonRoad
Wilmslow
Cheshire
UK.

Distributors:
UK, Europe, Africa:
JOHN WILEY & SONS LIMITED
Baffins Lane, Chichester,
West Sussex, England.

Australia:
JOHN WILEY & SONS INC.,
GPO Box 859, Brisbane,
Queensland 40001, Australia.

Acknowledgment
MSX is the registered trademark of Microsoft Corp., U.S.A.

Printed in Great Britain
by J. W. Arrowsmith Ltd., Bristol

FOREWORD

The video display processor originally incorporated in the MSX specification
was Texas Instrument's 9929A. This unit has been replaced by the enhanced
9129. For programming purposes, the two processors may be regarded as
identical.

The VDP constructs the display image from several data tables located in 16K
of dedicated video RAM. The table locations in each display mode are returned
by the system variable BASE(X). We believe these to be consistent between
all models with version 1 BASIC. These table locations, given in Appendix
C, are assumed by the relevant examples.

MSX BASIC permits program files to be handled in several formats. An
undocumented instruction: RUN"filename" may be used to load and run ASCII
program files (in place of LOAD"filename",R). At the time of going to press
we had been unable to confirm the status of this instruction and no further
reference has been made to it.

To our parents,
without whom it would not have been possible

,.
,I.

'
C
C
1

' I
~
I
I
I
~
I

CONTENTS

1. INTRODUCTION 1
Overview .. 1
Memory Organisation . 2
Input/Output Ports . 4
Tape Interface . 4
Display Modes . 5
The VDP and Sound Chips . 5
VDP Display Structure . 7

High resolution graphics . 10
Colour .. 10
Sprites . 12

General Instruments A Y-3-8910
Programmable Sound Generator . 14

2. MSX BASIC . 15
Variables and Functions . 16

Functions . 17
Graphics Commands . 18
General Purpose Commands . 18
Text Modes . 18
Video RAM Manipulation . 21
Example Program - redesigning the character set 23
Sprites ... 26
Example Program - Sprite Designer . 30
High Resolution Graphics . 32
Example Program - Sketch-Pad . 35
Sound .. 37
Program Storage . 39

3. MSX BASIC VOCABULARY 42

4. Z-80 MACHINE LANGUAGE 70
Microprocessors . 70
System Organisation . 71
Binary and Hexadecimal Representation . 73
Logical Operations . 76

5. THE MSX CONFIGURATION 95
MSX Memory Management 95
Accessing the Sound Chip, VDP and PPI 96

The VDP: a general introduction . 96
The General Instruments A Y-3-8910 Sound Chip 97
The Intel 8255 PPI . 96

Interrupt Handling and "RAM Hooks" . 97
Example Program - Real Time Clock . 98
MSX System RAM Usage 101
Using Machine Code Subroutines from BASIC . 103

6. THE VIDEO DISPLAY PROCESSOR 105
The Control Lines . 105
The VDP Registers . 107
Video Display Modes . 110

Graphics Mode I . 111
Graphics Mode II . 111
Multicolour Mode ... 113
Text Mode ... 113
Sprites . 114

The VDP in the MSX Environment . 116
Programming the VDP: hints and tips . 118

The Pattern Plane . 118
Character and Sprite Definition Program . 119
Using the definer . 140
The definer in modes other than Graphics II 141

Dynamic Pattern Definition . 142
Graphics, II Mode as a Bit-Mapped Mode . 143
More from Sprites: interrupt switching techniques 145

Two colour sprites . 145
Quick VDP Access: avoiding time problems . 148

7. THE PROGRAMMABLE SOUND GENERATOR. 150
The Data Registers . 150

The Tone Generators (register 0--5) . 150
The Noise Generator (register 6) . 150
The Enables Register (register 7) . 150
Amplitude Control (registers 8--10) . 151
Envelope Generator (registersk 11--13) . 151
The 1/0 Ports (registers 14--15) . 152
Notes and Note Periods . 152

Accessing the PSG in the MSX Environment . 154
Programming the PSG . 154
Three Channel Music: the computer as a performer 155
Sound Effects on the A Y-3-8910 . 158
Sound Generation in Software: the one bit sound port 159

,.........----

8. INPUT-OUTPUT: THE COMPUTER'S WINDOW ON
THE WORLD . 160
Game 1/0: joysticks, paddles and touchpads . 160
Console input/output . 161
Slot Selection . 162
Keyboard Scanning: checking individual keys . 163

Appendix A: Character Codes . 166

Appendix B: Colour Assignments 167

Appendix C: Video RAM Table . 68

Appendix D: Z-80 Instructions . 169

Appendix E: Extract from the TMS 9118/9128/9129 Data Manual . 172

Appendix F: Extract from the A Y-3-8910
Programmable Sound Generator . 182

r
!
i

F

CHAPTERl

INTRODUCTION
Overview. Memory Organisation.
The tape interface. Display modes.
V.D.P. and Sound chips.
Overview
The MSX standard is a specification introduced by Microsoft Inc. in mid 1983.
It includes the BASIC language, operating system and external connectors
(including R.O.M. cartridge & joystick port). Software is interchangable between
all MSX machines (assuming adequate memory is available). All models (except
the Spectravideo SVl-728 and Yamaha CXSM) feature a built in power supply.
Facilities that are not required in the basic system are also rigidly specified:
parallel 'centronics type' printer port, second joystick port, RS-232C interface
and second cartridge slot.

The disc operating system (MSX-DOS) uses the same disc format as MS-DOS
but no physical disc size has been agreed. MSX DOS requires a minimum
of 64K of RAM.

The central processing unit is a Z-80A or equivalent running at 3.58MHz
supported by the Texas Instruments TMS 9129 (Europe) video display processor.
The VDP has 16K of dedicated video RAM and will support up to 32 sprites,
each of a single colour. All sprites appear in front of the pattern display plane.

The VDP also generates the system interrupt. This occurs on completion of
each display scan (approximately 1150th second UK), and is used for keyboard
analysis, for example.

The Z-80 has sufficient addressing capability to access a memory space of
64K bytes. On power up the system R.O.M. occupies the lower 32K of memory.
An additional minimum of 8K of user RAM is provided. In practice, the method
of memory management will limit the minimum RAM to 16K with almost
all systems providing either 32K or 64K.

The BASIC interpreter is only able to utilize 32K of RAM - irrespective of
additional on-board R.A.M. - with some 28K being available for program
storage. MSX BASIC is Microsoft standard BASIC (version 4.5) with extensions
primarily for graphics and sound manipulation.

Principle features include a full screen editor, interrupt driven commands and
14 digit accuracy with the default variable type.

The sound facilities are provided by a General Instruments A Y-3-8910
programmable sound generator (PSG) which provides 3 voices over a range
of 8 octaves. The PSG also handles joystick input; the minimum MSX
specification requires a single standard D type joystick port.

An 8255 Parallel I/O PPI (Programmable peripheral interface) is used to select
the memory banks which will appear to the processor in four 16K 'slots' (see
later), and for keyboard scanning. If a printer port is fitted (a standardized
extension) this is also serviced by the 8255.

A second optional standardised extension is an RS-232C interface. The LSI
components required for this cartridge are the 8251 communication interface
chip and an 8253 programmable interval timer.

One cartridge slot is obligatory with two the standard. At the time of going
to press the following models had been announced for the UK market:

Hitachi MB-H80
ToshibaHX-10
Sony HB-75 (48K ROM)
Sanyo MPC 100
JVCHC-7GB
Yashica YC-64
Sega- Yeno DPH-64
Goldstar FC-20
Canon V-20
Yamaha CX5M (synthesiser+ MSX computer)
Mitsubishi MLF-48
Mitsubishi MLF-80
Panasonic CF2800

Memory Organisation
The 280 may read and write data to and from a memory area of up to sixty-four
kilobytes. The MSX design permits this 64K to be selected from a larger memory
bank. The bank is composed of four primary 'slots', each of which may hold
up to 64K. Memory selection is handled in blocks or pages of 16K. The memory
area addressable by the 280 contains four 16K pages.

Port A of the 8255 PPI is used to determine which slot provides each 16K
block. The two least significant bits specifing the slot which will provide the
0-16K block and so on.

2

-

&HFFFF

PAGE3

&HCO00 - --- - -
PAGE2

&H8000 -- - - - -

w PAGEl

&H4000 R-----
0

&H0000

32KROM
OPERATING

: SYSTEM

I +
I BASIC !
INTERPRETEB

I
SLOT0
SYSTEM

SLOTl
CARTRIDGE

SLOT2
CARTRIDGE

SLOT3
CARTRIDGE

FIGURE 1.1 MEMORY MAP

,

It should be noted that a block may only appear to the processor in the same
location that it occupies in the primary slot i.e. the block of slot four from
48-64K may only appear to the processor in that position and not from 0-16,
16-32 or 32-48K.

The primary slots are numbered 0 to 3. Slot 0 holds the 32K ROM Operating
system / Interpreter. The majority of MSX computers possess 64K of RAM.
This is normally placed in one slot. For example, the Sanyo MPC-100 uses
slot 3 to house the RAM whilst the Toshiba HX-10 uses slot 2. One of the
remaining slots is for cartridge use whilst the other may be configured as
either another cartridge slot or an expansion bus. BASIC program storage starts
from location 32768.

Input/Output Ports
In addition to being able to address 64K of memory, the ZS0 may input or
output to 256 eight bit ports. Ports 128 to 255 (&HS0- &HFF) are assigned
to system components and extensions: RS-232C, printer, display processor,
sound generator, light pen etc. The remainder are reserved. The NMI (Non
Maskable Interrupt) is not useable as the vector location 66H is used by MSX
DOS.

Input / output should be handled using the resident ROM routines as system
locations are not guaranteed to be consistant between machines. An exception
is made in the case of the display processor where rapid data transfer may
be necessary.

Tape Interface
A dedicated tape unit is not required. The default transfer rate is 1200 baud
(roughly bits per second) and may operate at rates up to 2400 baud. Detection
and adjustment to a non-standard rate is automatic. The external connection
is an eight pin DIN socket with provision for tape motor control. Modulation
is by frequency shift keying under software control. The optimum recording
& playback levels will be determined by the tape recorder; however a near
maximum setting is often necessary. A BASIC command (MOTOR) is available
for tape motor control.

Three categories of file are supported:

1. Program files to cassette. The commands are CLOAD, CSA YE and CLOAD?
to verify.

2. ASCII files using SA VE and LOAD. No verify command is available. ASCII
program files may be merged.

3. Memory image using the BSA VE and BLOAD commands. Again no verify
command is available.

4

-

Display Modes

The TMS 9129A is capable of displaying a pattern plane with up to 15 colours
(plus transparent) independent of any sprites.

Four display modes are supported, two text and two graphic:

1. 40 * 24 cell text mode, 2 colours and no sprites. 8*6 pixel character cells.
256 cell character set.

2. 32 * 24 cell text mode, 16 colours. 8*8 character cells. 256 cell character
set.

3. High resolution 32 * 24 cell Graphic mode, 16 colours. Essentially the 32*24
text mode with a 768 cell character set in order to allow a 'bit-mapped' screen
- plus extra colour information.

4. Multicolour mode, 16 colours - each 4*4 pixel block may be specified to
be one colour. No 'characters' are available.

The display mode is selected using the BASIC 'SCREEN' command or by
amending the three mode bits in two of the 8 VDP write only registers (M3
- bit 6 of register 0, Ml & M2 - bits 3 and 4 of register 1). In all modes except
the 40 column text mode, the border colour may be independently set.

The VDP scans the 16K of dedicated video R.A.M. This R.A.M. is independent
of the Z80 memory area and may only be written to or read from by the CPU
via the VDP. The VDP incorporates no facilities for scrolling the screen.

The BASIC clear screen command (CLS) is slightly unusual in that it operates
in all display modes.

The VDP and Sound chips
Texas TMS 9129A VDP (Video Display Processor)
This is a standard 40 pin dual in line package (D.I.L.I.P.) that uses 16K of
dynamic R.A.M. Only the VDP may directly access this video R.A.M. using
a unidirectional 8-bit data bus. The VDP is controlled using three lines : RAS,
CAS and R/W which derive from the address bus and processor control lines.
The VDP is also connected to the system data bus.

A read or write to video RAM may be achieved from BASIC using the VPOKE
and VPEEK commands or at the assembly language level via the appropriate
ROM routines.

5

F

VDP Display Structure

In all modes the VDP builds up the display primarily from two tables in video
RAM:

1. Pattern generator table

2. Pattern name table

The pattern generator table holds the definitions of each character that may
be displayed (e.g. the pixel definitions of each printed character). The starting
position of the generator table in each display mode is as follows:

Mode O: Text
1: Text
2: HRG

40 : 2048
32 0

0
3 : Multicolour 0

In all but the multicolour mode, each character is defined in the pattern generator
table using eight bytes to specify the pixel pattern - all standard characters
being left justified with the two right hand column and the bottom row blank.

This is illustrated in Figure 1.3

Upto 256 character definitions may be used in the 32 column text mode, in
which case the table is 2048 bytes in length. The HRG mode allows upto 768
characters to be defined producing a table of length 6144 bytes. The 40 column
text mode allows 256 character definitions, again each of 8 bytes, however
the two right hand columns of each character are not displayed. This allows
the 40 column display to be produced as each character cell is 8*6 and not
8*8 pixels as in the HRG and 32 column text modes.

In the multicolour mode, the pattern generator table contains 192 entries, each
of eight bytes consisting of four pairs of two bytes. Each pair does not define
a character but the colour of the four4*4 cells in a 8*8 character cell.

The layout of the pattern generator is shown in Figure 1.4

Example: In 32 column text mode the generator table starts at VRAM location
0, so the character with character code 65 - an 'A' - is defined from locations
65*8 = 520 to 527.

The pattern name table determines which character appears in each character
position (in the multicolour mode the colours are determined).

In the 32 column text mode there are 32 rows of 24 columns and therefore
32*24 = 768 character positions. Each may contain one of the 256 possible
characters and consequently the name table is 768 bytes long - each byte
specifying the character that will appear in a particular position.

7

00

PATTERNGENERATORTABLE PATTERNNAMETABLE

CHARACTER 88

CHARACTER 255

0

1

2

3

4

600

766

767

'-- -

- -

88

- -
>--- -

-.

TEXT SCREEN

[g]

Figure 1.3 TEXT DISPLAY MAPPING

I

\0

PA TIERN GENERA TORT ABLE

ByteO
1
')

PATTERN 3
#88 4

5
6
7

COLOURS
A B

-~
C D
E F
G H

~
I J - K __ L_ / ~--

M N
0 p

PA TIERN NAME TABLE

0

1

64

766

767

88

MULTI COLOUR

SCREEN DISPLAY

RowO

Rowl

Row2

FIGUREl.4

MULTICOLOUR MODE MAPPING

~

In the 40 column text mode, the screen name table is 40 * 24 =960 bytes.
Again, each specifies the pattern displayed in one screen position. As in the
32 column text mode, the choice is from the 256 pattern variants contained
in the pattern generator table.

High Resolution Graphics

In HRG mode there are again 768 bytes in the name table, however as in
this mode, there are 768 character definitions available, how does one byte
perform the selection?

The screen is divided into three layers and the first 256 entries in the name
table select from characters 0-255, the second 256 entries select from characters
256-511 and the final 256 entries select from characters 512-768.

The multicolour name table is 768 bytes in length. The value held in each
byte is a reference to an eight byte block in the multicolour generator table.

Two bytes of this block specify the colours taken by the four 4*4 blocks which
form the character cell. Which of the four pairs is referenced depends on the
screen row of the character cell. If this lies in the top row then the first two
bytes are used, if the second row then bytes 3 and 4 are referenced with the
subsequent two pairs used for the next two rows. Thus rows 0,4,8,12,16,20
will all reference the first two bytes.

Colour

Although the TMS 9129 VDP is capable of displaying 15 different colours plus
transparent (we include black and white as colours), in the 40 column text
mode only two colours maybe used, with the border taking the background
colour.

From BASIC these are set (as for any mode) using the COLOR command,
whilst in machine language, the VDP write only register 7 determines both
colours. This is best amended using the appropriate ROM routine.

In the 32 column text mode, the 2K pattern generator table is divided into
sets of eight character definitions. For each set, the foreground and background
colour is held by one byte in a colour generator table. Thus the colour table
is 32 bytes long.

The foreground colour is held in the high order nibble and the background
colour in the low order nibble. A consequence of this is that in order to display
a letter twice but in seperate colours, the character definition must be duplicated
in another position of the pattern table. It may then be allocated a separate
colour. In the HRG mode, the foreground / background combination may be
specified for each of the 8 'lines' of each character cell. This requires 768*8
= 6144 bytes and is organised in the same format as the 6144 byte pattern
generator table. This method of colour allocation renders a scroll procedure
problematical.

10

-

--

PATTERN

VRAM GENERATORTABLE

6144

6152 i-====---------1

PATTERN

NAME TABLE
VRAM 0 r-i==---c-0----,1

8192 -----256F
:::::---.1 I 8200 1

10240 ~-- - - - 512~0

10248

12287 .__ _____ __, 767 .__ _____ _.

.,, ,,,, ,,,, ,, .,,

/
/

/
/

/
/

,I

,, .,,

,I ,

,,

/

HIGH RESOLUTION GRAPHICS
DISPLAY

FIGURE 1.5 HIGH RESOLUTION GRAPHICS MODE

r
Sprites

A sprite is a pattern block which may be either 1, 2 or 4 character cells square.
It is independent of the pattern plane and is moved by updating the X &
Y coordinates allocated to it. It may be switched on or off at will, and additionally,
any sprite to sprite collision is automatically detected. Each sprite has a priority
and if a non transparent section of a higher priority sprite passes in front
of another, it overlays the part covered. Sprites allow advanced effects i.e.
three dimensional simulations, to be easily obtained.

Sprites are not available in the 40 column text mode. In all other modes upto
32 sprites may be placed on screen with a maximum of 4 on any screen line.
If this number is exceeded, only the four highest priority sprites are displayed
on the line. Additionally, the 'fifth sprite' flag is set and the fifth sprite number
is placed in the VDP's status register.

Each sprite may only take one colour and its priority may not be altered.
From BASIC two commands are used for sprite control. The first, SPRITE$(n),
is used to define a bank of sprite patterns and the second, PUT SPRITE, sets
the position, colour and pattern number of each sprite displayed.

These commands update the two tables in video RAM that contain all the
sprite display data. The sprite pattern table, which starts from VRAM location
14336 - irrespective of display mode - contains the shape data for all sprites.
The sprite attribute table holds the X and Y coordinates, colour and pattern
of each sprite.

Sprites may be either 8*8 pixels or 16*16 pixels in size. In addition they
may be displayed at twice normal size - thus the largest sprite available is
32*32 pixels. Sprites are positioned relative to the top left hand corner of the
display and may be moved one pixel at a time.

The sprite pattern table will accomodate upto 256 blocks of eight bytes. If
sprites are to be 8*8 pixels (8 and 16 pixel sprites cannot be mixed) then
256 seperate sprite patterns may be defined - pattern O occupies locations 14336-
14343, pattern 1 runs from 14344-14351 and so on. If 16 pixel sprites are selected,
each is defined using four consecutive blocks of eight bytes. Each block defines
a quarter section of the sprite, in the following sequence -

1 3

2 4

12

-

w

VRAM SPRITE ATTRIBUTE TABLE

6912

6913

6914

6915

7036

7037

7038

7039

Sprite 0 y coordinate

x coordinate

Pattern Number

CEs1 I Colour

1
I
I
I
l
I
I
I
I
I
I

Sprite 31 y coordinate

x coordinate

Pattern Number

C 1! EB I Colour

VRAM SPRITE GENERA TORT ABLE
14336
14344
14352
14360
14368

16383

r--------------t Pattern 0 (8 bytes)
1
2
3

252
253
254

'-----------_,Pattern 255
FIGURE 1.6 SPRITE TABLES

After setting up the sprites shape, it is placed on screen by an entry in the
sprite attribute table. In all display modes with a sprite capability, the table
begins at the same location in VRAM : 6912 and has a maximum length of
32 sprites * 4 bytes = 128 bytes. Each entry specifies the position, colour
and pattern number for a single sprite. The first two bytes give the Y and
X coordinates and the third identifies the shape by selecting a block or blocks
in the sprite pattern table. The final byte contains in the low order nibble,
the sprites foreground colour. In addition the most significant bit - the 'clock
early bit' - will, if set, shift the sprite position 32 pixels left.

Sprite to sprite collisions are handled in BASIC using the SPRITE ON and
ON SPRITE statements.

Figure 1.2 shows the combined display planes produced by the VDP.

General Instruments A Y-3-8910 PSG (Programmable Sound Generator)

This is a register orientated programmable sound generator providing three
voices over eight octaves. In addition joystick input is handled via two
independent, on-board, 1/0 ports.

Each voice has separate volume control and may produce tone and/or noise.
However, the same noise frequency and envelope shape / cycle is used for
all channels - if two channels produce noise, then they produce the SAME
noise; only the amplitude may differ.

The PSG has 16 internal read/write registers, two of which function as data
storage registers for the two joystick ports. The remaining registers may be
divided into 5 groups on the basis of function:

1. RO - RS : Channel frequency control.

2. R6: Noise generator frequency.

3. R7 : Channel tone and/or noise select register. The two most significant
bits set the data transfer direction of the two 1/0 ports.

4. RlO - R12 (Octal): Envelope controlled or fixed tone select registers.

5. R13 - RlS (Octal): Envelope pattern and period select registers.

The two input/output ports are completely independent of the PSG's sound
generation functions.

MSX BASIC includes a comprehensive array of music commands for which
most parameters are preset. In combination with a timed interrupt capability,
this permits complex sound effects to be easily realised.

14

--

CHAPTER2

MSXBASIC
Outline. Variables & Functions.
Graphics commands. Sound.
Program storage.
MSX BASIC is Microsoft standard BASIC 4.5 with several powerful extensions
primarily in the graphics and sound areas. Principle omissions include
Procedures, the While / Wend or Repeat / Until forms and full keyword
abbreviation.

A full screen editor is featured which allows any line on screen to be simply
amended. Line re-entry occurs if the RETURN key is depressed with the cursor
overanycharacter in the line. No error checking occurs on entry.

A line may be upto 255 characters in length and may contain multiple statements.
Multistatement lines use the colon as a statement separator. A REM statement
forces execution to continue from the following line. Line numbers must lie
in the range 0-65529 inclusive.

Spaces are not necessary and are ignored by the interpreter (except as part
of a string). A consequence of this is that keywords may not be embedded
in variable names (of which only the first two characters are recognised). Upper
and lower case letters are distinguished. Keywords are accepted in either upper
orlower case.

Apart from the main keyboard there are two groups of keys. On the right
is the editing cluster - the arrowed cursor keys and insert/delete options. On
the left is a set of five function keys. On power up the function keys are
preset to ten functions. The unshifted set is displayed on the bottom line of
the screen - this key display may be switched off with the functions maintained
using the command KEY OFF.

To re-define the function of any key, the KEYx,"string" instruction is used.
For example to make key 1 run a program, the following could be used:

KEY1," RUN"+ CHR$ (13)

A program listing or run may be paused by pressing the STOP key once.
A second push restarts the option. To terminate either, the stop key is pressed
with the control key held down.

15

For those unfamiliar with Microsoft BASIC, several features are worth
highlighting:

1. Debugging is simplified by the use of the TRON and TROFF statements. If
the TRON statement is made within a program or directly, then as each line
is executed the line number is printed. This usually overwrites any display.

2. Blocks of lines may be deleted using the DELETEx ,Y command and the program
renumbered with the RENUMx,y,I command. This is also useful for checking
for branches to non existent lines. In such a case, at run time MSX BASIC
will not flag an error. Instead a branch is made to the first line with a higher
number than the one specified.

3. All variables beginning with a particular character or set of characters may
be declared to be a particular type : integer:DEFINT, single precision:DEFSNG,
double precision: DE F DB Lor string: DE FS TR.

4. Arrays may be deleted using the ER AS E command.

5. On power up, the space allocated for string storage is 200 bytes. Further
allocation requires use of the CLEAR command. For example to reserve 1000
bytes use CLEAR 1000

6. The function FR E (0) will return the amount of remaining memory available
for program storage.

7. The string function MID$ may be used to replace a character or characters
in an expression.

8. The GO SUB/ RETURN structure allows a return address to be specified: RETURN
line number

Variables and Functions

Variable names can be of any length but must start with a letter. Only the
first two characters are significant. Lower case letters are distinguished from
upper case. Variables do not need to be initialized to a value - a value of
zero is assumed if non has been declared. Variables do not need to be
dimensioned unless the number of elements exceeds eleven i.e. S(O) to S(lO)
would not need dimensioning.

A variable which is not declared to be of a particular type is assumed to be
a double precision real number and is stored with 14 digits of precision.
Variables declared as single precision are stored with upto 6 digits of precision.
Integers must fall in the range -32768 to 32767.

A single precision variable is declared by an affix of a shreik (!) character
i.e. SP! and an integer type with the percent sign (%). If it is necessary to
declare a variable as double precision, the hash(#) symbol is used.

16

As mentio:ied above that variants of the DEF statement may be used to globally
defme variable types. If the statement DEFINT A was used then all variables
beginning with 'A' would be handled as integers. It is also worth noting that
the variable' A' would not be distinguished from' A%'.

Dimensioning variables is straightforward, for example
0 I MX (2 0, 4 0) , Y (80, 16 0). However there is a limit of 255 dimensions, although
the number of elements is limited only by memory requirements.

As any variable need not be dimensioned unless more than 11 elements are
to be used, economical use of memory is made if those variables with less
than 11 elements are dimensioned.

MSX BASIC includes a command SWAPx,y which is self explanatory. However,
the variables must be of the same type. Another related command is VARPTRx
which returns the element storage location of the variable specified - if it has
been declared.

MSX system variables are:

1. TIME : The system 'clock' - incremented each 50th of a second in the UK.

2. BASE(n) : Returns the first location of the table specified in video R.A.M.
Independent of display mode.

3. VOP(n) : Returns the value in the specified VDP write only register or the
status register.

4. SPRITE$(pattern #) : Used to define each of the 256 possible 8*8 or 64
possible 16*16 sprite shapes. It is set equal to a string of upto 32 characters.
The character code of each character sets the bit pattern for one definition
byte.

Functions
All the old favourites are supported:

XYZ is an arbitrary variable here.

ASC(XYZ$), CHR$(XYZ), LEN(XYZ$), INTCXYZ), EXP(XYZ), ABS(XYZ), LOG(XYZ),
HEX$(XYZ), OCT$(XYZ), BIN$(XYZ), SGN(XYZ), RND(XYZ), MID$(XYZ$,N,n),
RIGHT$(XYZ$,n), LEFT$(XYZ$,n), STR$(XYZ), VAL(XYZ$), STRING$(n,XYZ$),
INSTR(XYZ$,xyz$), ATN(XYZ), COS(XYZ), SIN(XYZ), SQR(XYZ), TAN(X), TAB(n),
SPC(n), INKEY$, INPUT$(n), PEEK(XYZ), POKEXYZ, FRE(0), FRE'"', USRXYZ(n),
VARPTR(XYZ), VARPTR(#XYZ), CINT(XYZ), POS(n) and LPOS(n).

Extensions include :

1. COBLCXYZ) and CSNG(XY2) which convert XYZ to double precision and single
precision respectively.

17

2. VPEEK(n) and VP0KEn,x are the video R.A.M. equivalents of the PEEK and
POKE commands.

3. STICK (n) and ST RIG (n) return the direction or trigger status of a joystick
(or cursor keys and space bar).

4. POINT (X, Y) returns the colour of the specified pixel.

5. PLAY (channel) gives the status of one or all of the music queues.

6. E OF (f i le #) returns -1 if the end of the sequential file has been reached,
otherwise 0.

7. PAD(n) : Here n determines which parameter of the touch pad status is
returned.

8. PD L (paddle#) returns the value ofa paddle.

Graphics commands
The full palette of 15 colours and transparent is available in all modes (see
appendix B).The graphics instructions may be divided into three sections:

1. General formatting and colour

2. Sprites

3. High resolution

General purpose commands
The screen mode is set using the SCREEN command :

SCREEN 0Textmode 40*24
SCREEN 1 Text mode 32*24
SCREEN 2 High resolution graphic mode (HRG)
SCREEN 3 Multicolour mode

This command may also be used to set the sprite size, key click off/on, cassette
transfer rate and printer option. When used to select a text mode, the character
set is copied from ROM to VRAM. The command should not be used if the
user needs to access any redefined characters.

Text modes
The width of either the 40 or the 32 column text screens may be set to any
value from one column upwards using WIDTH i.e. WIDTH20. It is noted that in
both text modes, the two lefthand and the rightmost columns are unused.

18

The majority of television receivers do not display the lefthand column.

In either mode, characters may be placed in a reserved column by poking
the name table in video RAM. For example, to place a capital A in the top
row of the two left hand columns of the 40 column text screen, VPOKE locations
Oandl with 65.

The global colours for any mode are set with the CO LOR command. The format
is:

COLOR foreground,background,border

The default setting is 15,4,4. In the 40 column text mode the border colour
may not be specified seperately and takes the background colour. On screens
1,2 or 3, a change to black background and border with gray ink could be
achieved using: CO LOR 14, 1, 1

Note that in the graphics modes, the new background colour is taken only
after a C LS instruction.

In the 40 column text mode, the VDP does not allow any other colours to
be used. No sprite capability is supported. In the 32 column text mode, the
VDP will display text in colours other than those set by the COLO R instruction.
However, there are no specific BASIC commands for this purpose. Thus for
more than one foreground or background colour to be on screen requires changes
be made to the colour table in V.R.A.M. This is achieved using the VPOKE
command. A similar operation must be performed if it is necessary to re-define
characters.

In both text modes, the cursor position is set by the LOCATE X, Y instruction.
The 40 column text mode permits upto 37 characters to be printed on each
line. Although column positions upto 255 are accepted, only those in the
inclusive range O to 36 are active. For the 32 column text mode, the active
column range is Oto 28.

An alternative to LOCATEO,O is to print CHR$(11). The locate command also
controls the cursor display :

LOCATE2 ,4 ,0 Switches display off

LOCATE2 ,4, 1 Enables the cursor display

The PRINT command, which may be entered as ?, uses standard formatting
characters:

1. The semicolon';' causes the omission of the return character - CHR$(13)
- after the final print item specified. Thus the print position is not moved
to the first column of a new line.

2. A comma moves the print position to the start of the next tabulation zone.
Each tabulation zone is 14 columns wide.

19

3. The'+' sign is used to concatenate strings. For example: A$=8$ + "XYl"

TAB (n) and S PC (n) follow the PR I NT instruction i.e.
PRINTSPC(4);"rET
Notice that the final delimiter(") may be omitted.

The PRINT USING variant allows tables of strings or numerics to be printed
in a specified format. The four principle control characters are:

1. The shriek (!) : This causes only the first character of a string to be printed
i.e.

PR I NT US I NG"!"; "NEWO.RD" would give 'N'

2. The back-slash(\): This is used in the form "\ \" to specify the number
of characters of the string that are to be printed. The number of characters
printed is two plus the number of spaces between the two signs, i.e.

PRINT US ING"\\"; "NEWORD" would give 'NEW'

If the field length exceeds the string length then spaces are added.

3. The ampersand (&) sign : This inserts a specified string in place of an &
sign in another string i.e.

Q$="NEWORD": ?US ING "ON&"; Q$would yield: ON NEWORD

Note that if more than one sub-string is given, the sequence is repeated for
each.Forexample

Q$="W": Z$=" R": ?US ING "ON&"; Q$,Z$ will print: ON WON R

4. The HASH(#) sign : Allows numerics to be printed with a specified number
of digits before and after the decimal point. Additional O's are inserted if the
value is of insufficient length. For example:

? US ING"###.##"; 2 ,4. 684 would give 2.004.68

If the field is too narrow for the data, either a % sign is printed infront of
the value or it is rounded. For example:

?USING"##"; 224444 gives %224444
?US ING"##.##"; 22. 1234 gives 22.12

If the field is too large for the data, either the value is right justified or zeros
are added. For example:

?US ING"##.##"; 22. 2 gives 22.20
?USING"####";22gives 22

The numeric must not be more than 24 digits in length otherwise an error
is flagged.

20

Additional numeric control characters used in conjunction with the '#' sign
are:**,££, coma,+, - and--(carat).

A plus sign to the left or the right of the hash symbols will cause the sign
of the number to be printed in front of or to the right of the value, respectively.

Similarly, a negative sign after the final hash sign will cause a negative sign
to be printed after the value if it has a negative argument.

?USING"##-" ;-2 will print2-

The double asterisk ** combination is used on the left of the hash symbols
and fills the leading spaces with askerisks i.e.

?USING"**#.#"; 4. 2 gives **4.2
?US ING"**##.#"; 4. 2 gives ***4.2

The double pound sign prints a single pound sign in front of the value. This
control character cannot be used in conjunction with the carat character.

If a comma is placed to the left of the decimal point, the number is printed
with a comma to the left of every third digit i.e.

?US ING"####,.#"; 222 2. 2 gives 2,222.2

The quadruplet of carats is used to print the value in the exponential form,
in order to allow room for the E + XX i.e.

?US I NG"##.#--.. ; 2 2. 4 yields 2.2E+Ol

The screen may be cleared in all display modes with the CLS command. In
both text modes, an alternative is to print CHR$(12). The cursor's Y coordinate
is returned by CSR LIN and the X coordinate by PO S (x) (where x is a dummy
argument and any value may be used).

Video RAM Manipulation

To obtain characters in colours other than those set globally by the COLOR
command in the 32 column text mode, the appropriate byte in the colour table
in VRAM is poked with the new foreground/ background combination.

As mentioned, each of the 32 bytes in the colour table determines the colours
of a set of 8 of the 256 available characters. As a result, to print text in other
than the default colours, it is necessary to copy part of the character set to
another section of the pattern generator table.

21

Pattern Generator table 0- 2047

Colourtable8192-8223

Sprite attribute table 6912- 7039

Name table 6144-6911

Sprite pattern table 14336- 16383

Table 2.1 VRAM layout in the 32 column text mode

Note that the graphics characters occupy the first 32 definition blocks in the
pattern table. This is because the first 32 character codes are non printing.
Graphics characters may be placed on screen by printing CHR$(1) + CHR$(65)
to (95). Another non-standard character has the code 255. This character prints
as the inverse of the character covered by the cursor. It is updated each 1150th
of a second.

Example: Multicoloured text

To have the option of upper case text with yellow foreground and black
background colours, the following stages are necessary:

Copy the 26 character definitions to another position in the pattern generator
table. The character set is defined using 8 bytes for each character. Characters
65-90 follow the sequence given in appendix B.

In the 32 column text mode the pattern table extends from VRAM location
0 to 2048. As each character requires eight definition bytes, the first byte to
be copied is at location :

ASC("A")*B = 520

and the final character definition byte is at AS C ("Z") * 8 + 7 = 7 2 7

The 'new' upper case characters will overwrite part of the existing character
set. We will replace characters 145 - 170 which are defined from 145*8 = 1160
to 170*8+7 = 1367, as follows:

10 SCREEN 1:FOR X=0 TO 207:VPOKE 1160+X,VPEEK(520+X):NEXT

The four bytes in the colour table that determine the colours taken by the
32 characters 144---176 are resident in locations 8210-3. The value held by the
most significant four bits in each sets the foreground colour, with the
background colour determined by the least significant four bits.

22

T=----
FOREGROUND BACKGROUND

Yellow: 10 Black: 1

Table 2.2 Colour table entry

So the next line of the routine (see Table 2.2) is:

20 FOR X=0 TO 3:VPOKE X+8210,161:NEXT

= 10*16 + 1 = 161

If CHRS(145) is now printed, a yellow' A' on a black background should result.
Note that if the COLOR command is used, all 32 bytes in the colour table are
filled with the specified colours. To obtain the alternative colours again, line
20 must be repeated.

The characters are left justified, so when printed with a background colour
that contrasts with the screen colour the left hand character may be found
to be indistinct.

This method of determining the screen colours, although cumbersome in some
ways, allows many effective displays to be achieved quite simply. For instance,
a display consisting predominantly of 4-8 characters can be 'animated' or flashed
by manipulation of just two colour table bytes.

The following program allows the entire character set to be redesigned and
saved or loaded from tape. The cursor keys are used to move about the matrix
with the space bar 'flipping' the setting of the respective pixel.

CHARACTER SET EXAMPLE PROGRAM

10 '*********************************
20 '**** CHARACTER SET UTILITY ****
30 '**** WITH SAVE, LOAD AND ****
40 '**** COPY FACILITIES. ****
50 '*********************************
60'
70 'USE THE CURSOR KEYS TO MOVE ABOUT

THE DEFINITION MATRIX.
80 'TO TOGGLE THE TARGET BIT, HIT THE

SPACE BAR.
90 'NOTE THAT THE SCREEN COMMAND

RESETS VIDEO RAM.
100'
110 FOF-: X=OT012: READA$, B$: POKE38000 ! +
X,VALC"&H"+A$J:POKE38200!+X,VALC"&H"+

23

B$):NEXT
120 DEFUSR=38000!:DEFUSR2=38200!
130 DATA 21,21,00,40,00,9C,11,11,40,0
0,9C,00,01,01,00,00,0B,08,CD,CD,59,5C
, 00, 00, C'3, C'3
140 ON KEY GOSUB 240,270,290,430:KEY(
1) ON:KEY(2) ON:KEY(3) ON:KEY(4) ON
150 ON STRIG GOSUB 400:STRIGCO) ON
160 KEY OFF:COLOR 14,1,1:SCREEN 1,0:C
LS
170 LOCATE2,1:PRINT"F1 •• SAVE F3 •• CHA
NGE CHR$":LOCATE2,3:PRINT"F2 •• LOAD F
4 •• COPY CHRS"
180 FORX=OT07:VPOKE14336+X,VPEEK(224+
X):NEXT:PUT SPRITE 0,(144,47),8,0
190 FORX=373T0375:VPOKEX,O:NEXT:VPOKE
371,24:VPOKE372,24
200 A$=STRING$(8,46):FORX=OT07:LOCATE
16,X+6:PRINTA$:NEXT
210 GOSUB 290:X1=1:Y1=1
220 X2=STICKCO):IF X2=0 THEN 220
230 ON X2 GOTO 350,220,360,220,370,22
0,380
240 Z=USRC2):LOCATE2,20:PRINT"RECORD
THEN RETURN"
250 AS=INPUT$(1):IF ASC(A$){)13 THEN
250 ELSE BSAVE"CAS:",400◊0!,42047!
260 LOCATE 2,20:PRINTSTRING$(28,32):R
ETURN
270 LOCATE 2,20:PRINT"LOADING •• ":BLOA
D"CAS:":Z=USR2(2)
280 LOCATE 2,20:PRINTSTRING$(28,32):R
ETURN
2'30 LOCA TEO, 20: PF-: I NT" ENTER # OF CHR$
<F<:ET>": GOSUB 470: CN=XX
300 FOR X=OT07:ASCX)=BIN$CVPEEKCCN*8+
X)):NEXT
310 FORX=OT07:IF LENCASCX>><B THEN A$
CXl=STRINGS(8-LENCA$CX)),79l+ASCX)
320 FOR BT=1 TO 8:LOCATE15+BT,X+6:IF
MIDSCASCX),BT,l)="l"THEN PRINTCHR$(21

24

¥
9) ELSE PRINTCHR$(46>
330 NEXT: NEXT: LOCATE 2, 11: PF-:INT"CHARA
CTER";CN:LOCATE 7,13:PRINT CHF.:$(CN)
340 RETURN
35<) IF Y1=1 THEN 220 ELSE Y1=Y1-i:GOT
03"30
360 IF Xl=B THEN 220 ELSE Xl=X1+1:GOT
03"30
370 IF- v1~0 s THEN 220 ELSE Y1::;Y1+1:GOT
0 390
380 IF X1=1 THEN 220 ELSE X1=X1-1:GOT
0 39()
390 PUT SPRITE 0, (136+X1*8,39+Y1*8),8
,O:FORX=1T080:NEXT:GOT0220
400 LOCATE 15+X1,5+Y1:IF MID$CASCY1-1
),Xl,1)="1" THEN MID$(A$(Yl-1),X1,1)=
"O": PF-:INTCHRS(46) ELSE MID$(A$(Y1-1),
X 1, 1) =" 1 " : PR I NTCHR$ (21 '3)
410 NN=CN*B+Yl-1:IF MIDCACY1-1),X1,
1) =" 1 " THEN VPOKENN, VPEEK (NN) OF-: C 2···, (8-­
X 1 .l) ELSE VPOKENN,VPEEK(NN)AND(255-(2
····(8-Xl)))
420 RETURN
430 LOCATE0,20:PRINT"CHF-:$ TO COPY <RE
T>":GOSUB 470:Cl=XX
440 LOCATE0,20:PRINT"CHRS TO BE REPLA
CED":GOSUB 470:C2=XX
450 FORX=OT07:VPOKEC2*B+X,VPEEKCC1%8+
X):NEXT
460 LOCATE0,20:PRINTSTRINGSC28,32):RE
TUF::N
470 Cl$=""
480 X$=INKEY$:IF XS="" THEN480
490 IF ASCCX$){32 AND ASCCXSl)27 THEN
480

500 IF ASCCXS><>13 THEN C1$=C1$+X$:GO
TO 480ELSE XX=VALCC1$)
510 IF XX>255 OR XX<O THEN 470
520 LOCATE0,20:PRINTSTRING$(28,32):RE
TURN

25

Sprites

The BASIC statements and variables associated with sprite manipulation are:

l.SPRITE$(Patternnumber)=XYZ$

2.PUTSPRITEn,(X,Y),colour,patternnumber

3.PUTSPRITEn,STEP(x,y),colour,patternnumber

4.SCREENMode,Spritesize

5.SPRITEON/OFF/STOP

6. ON SPRITE GOSUB

Sprites can be 8 by 8 or 16 by 16 pixels in size. Additionally, either size may
be used magnified by two. The SCREEN statement sets the size used:

0 = 8 *8
1 = 8 * 8 Magnified
2 = 16 * 16
3 = 16 * 16 Magnified

i.e. SCREEN 2, 2 would enter the HRG mode with all sprites being 16 * 16 pixels.

An 8*8 pixel sprite is defined in the same way as a character using 8 bytes.
The 16 * 16 sprite pattern is defined using four blocks of eight bytes:

1 17
I I

8 24

25 9
I I

32 16

These are defined using the SPRITE$ statement. Each sprite pattern is entered
as a string of either 8 or 32 characters, each character number representing
one byte of the pattern.

For instance to define an 8 by 8 sprite as a'-' sign use:

A$=CHR$(0):B$=CHR$(126)

SPRITE$(0)=A$+A$+A$+B$+B$+A$+A$+A$

26

......

Here the value of 126 is obtained as the value of the bits set:

128 64 32

1 1

16

1

8

1

4

1

2

1

1

An alternative to using the SPRITE$ statement would be to VPOKE the first eight
bytes of the sprite pattern table:

FORX=14336 TO 14343:VPOKEX,0:NEXT:VPOKE14339,126:VPOKE14340,126

If 8 by 8 sprites are in use, then 256 sprite patterns may be defined, otherwise
with 16 by 16 sprites only 256/4=64 patterns are permitted.

The ability to define sprites of such small size facilitates the use of sprite
based character sets. Used in tandem with the magnification option, double
sized multicoloured text is easily generated. Although there is a limitation
of four letters on any screen line, this approach avoids the problems associated
with the left justification of the resident character set.

A sprite may be placed on screen or moved using one of the two forms of
the PUT SPRITE instruction. The screen is 'numbered' from the top left hand
comer which has coordinates 0,0, to the bottom left hand comer which has
coordinates 0,190. The top right hand comer has coordinates 255,0.

Any coordinate given specifies the top left hand pixel of the sprite. In order
that a sprite may be brought slowly into view both the vertical and horizontal
coordinates range from -32. Thus sprites may be positioned "off screen".

Coordinates specified outside these parameters within the range -32768 - 32767
will not produce an error. Instead the sprite will take a position at coordinate
MOD256.

The one exception to this is when a Y coordinate of 208 is given. After the
VDP has encountered this, the sprite in question together with all lower prioity
sprites, are removed from the display. This provides an efficient method of
flashing sprites. The standard form of the PUT SPRITE statement is:

PUT SPRITE plane,(X,Y),colour,pattern number

Plane O is the highest priority plane and consequently any non- transparent
section of a sprite in that plane will cover any part of the display it overlays.
The lowest priority plane is 31. Only one sprite is permitted on any particular
plane.

The same palette of colours that is used with the CO LOR command is available.
Note that only one colour may be defined for each sprite. If a colour is not
specified, the current foreground colour is used. If the sprite coordinates are
omitted, the sprite is displayed at location 209,0. The exception to this is if
a sprite had previously been displayed on that plane. In which case the previous
coordinates are used.

27

For example: PUT SPRITE 0, (40, 40) , 10, 0: PUT S PR IT E0,, 10, 2 will update sprite
pattern O with sprite pattern 2 on plane 0.

The alternative form of the PUT SPRITE statement :
..

PUT SPRITE Plane,STEP(x,y),colour,pattern number

allows the sprite coordinates to be updated relative to it's current position.

Sprites have priority over the character plane. Any non- transparent section
of a sprite will occlude the underlying display. As with the limitation of one
colour to each sprite, the priority limitation is intrinsic to the VDP.

The PUT SPRITE stifl:ement updates a four byte entry in the sprite attribute
table in VRAM. In all modes which support sprites, this starts at location 6912
and is 32 * 4 = 128 bytes in length. The four bytes are allocated:

Byte 1 Y coordinate
2 X coordinate
3 Pattern number
4 Clock early bit/ Colour

In BASIC, the Y coordinate may fall in the range -32 to 209. However, as
an unsigned byte may only contain values in the range 0-255, the table uses
the two's complement notation for negative coordinates (for an explanation
of two's complement see the section on Z-80 assembly language).

This is not the case with the X coordinate due to the 'clock early' bit. If this
is set, the sprite position is shifted left 32 pixels.

For example, to position a blue sprite on plane O with pattern 1 at coordinates
100,100 the following could be used as an alternative to the PUT SPRITE command:

VPOKE 6912,100:VPOKE 6913,100

VPOKE 6914,1:VPOKE 6915,4

To move the sprite left 32 positions either:

VPOKE 6913,68

or: VPOKE 6915,132couldbeused.

All the sprites may be removed from the display, by the following:

VPOKE 6912,208

Our next example copies the upper case character set into the sprite pattern

28

............

.,..--­
j area to allow non-standard text:

' 10 SCREEN1,1:REM 8*8 expanded
20 FOR X=0 TO 207

sprites

30 VPOKE 14856+X,VPEEK(520+X)
40 NEXT

Pattern numbers 65 onwards have been deliberately used to allow a direct
correspondence between the character code and the pattern number. This allows
strings to be 'printed' easily:

10 A$="MSX": FOR X=1 TO 3
20 PUT SPRITE X,(18*X,40),11,ASC(MID$(A$,X,1))
30 NEXT

The two remaining sprite commands:

l.ONSPRITEGOSUB

2. SPRITE ON

enable collision detection and handling. A sprite-sprite collision occurs when
two non-transparent sprite sections overlap.

There are two limitations on the information available on any collision:

1 Only sprite-sprite and not sprite-background collisions are detected.

2 The planes of the sprites involved are not returned by either a BASIC function
or VDP register.

The SPRITE ON statement activates the checking procedure which then occurs
after each BASIC statement is executed. No checks occur in the direct mode.
When a collision occurs, a GOSUB is performed to the routine specified by the
ONS PR I TE GO SUB statement.

The SPRITE OFF statement cancels collision checking. The SPRITE STOP statement
suspends the actual call to the subroutine but maintains the collision checks.
If a collision occurs, it is 'remembered' until a SPRITE ON statement is executed
when the subroutine call is made.

A SPRITE STOP statement is automatically executed on entry to the subroutine.
This is subsequently cleared by a SPRITE ON statement when the RETURN
command is encountered - unless the handling routine contains a SPRITE OFF
statement. It is important to note that the CLEAR instruction performs the SPRITE
0 FF statement.

Often, the movement of sprites is of a fixed, repetitive nature. This only requires
the position be incremented/decremented at fixed intervals. MSX BASIC
incorporates a powerful set of commands which cause program execution to
branch to a subroutine at a regular interval. The time period is specified in
units of 1/SOth of a second (i.e. the VDP system interrupt frequency).

29

The format is similar to the sprite collision handling commands:

1. INTERVAL ON

2.ONINTERVAL=XGOSUB

Again, there are the variants INTERVAL OFF and INTERVAL STOP, the latter
of which is executed on entry to the handler routine.

A slight variation in the period may become noticeable with short intervals,
this is due to the check occuring after the execution of each BASIC instruction.

Two sets of commands which are similar to these are:

1. ON STOP GO SUB and STOP ON/OFF/STOP

2.ON KEY GOSUB line x,line y •••• andKEY(x)ON/OFF/STOP

The ON STOP GOSUB / STOP ON structure must be used with caution as it can
negate any return from the program mode to the direct entry mode. For example:

10 ON STOP GOSUB 40:STOP ON
20 PRINT"NOSTOP":GOTO 20
40 RETURN

cannot be aborted. If it is intended that a program run is not to be interrupted
then the statements in line ten should appear after any CLEAR statement.

SPRITE DESIGNER EXAMPLE PROGRAM

A useful program is listed below. It enables you to design sprites of your
own choosing.

10 '*********************************
20 '**** SPRITE DESIGNER ****
30 '*********************************
40'
50' USE THE CURSOR KEYS TO MOVE

AROUND THE DEFINITION MATRIX.
60'
70 t SPACE BAR TO ALTER THE BIT TO

THE LEFT OF THE CURSOR.
CTRL/STOP TO FINISH AND PRINT
OUT BYTE VALUES.

80'
90 KEYOFF:FORX=OT032:VPOKEX+14336,0:N
EXT

30

.........

t
i

t

' '

!
I

t
l
l
1
f

I

100 ON STOP GOSUB300:STOP ON
110 SCREEN1,2:COLOR14,1,1:CLS
120 A$=STRING$(16,CHR$(250)):FORX=4TO
19:LOCATE11,X:PRINTA$:NEXT
130 X~12:Y=4:LOCATEX,Y,1:PUT SPRITE◊,
(20,100), 14, 0
140 Q=O:ON STRIG GOSUB 250:STRIG(O) 0
N
150 FORL=l TO 60:NEXT:D=STICK(O):ON D

GOTO 170,150,190,150,210,150,230
160 GOTO 150
170 IF Y<>4 THEN Y=Y-1:LOCATEX,Y,1 EL
SE 150
180 IF Y<>11 THEN 150 ELSE Q=Q-1:GOTO

150
190 IF X=27 THEN 150 ELSE X=X+1:LOCAT
EX,Y,1
200 IF X<>20 THEN 150 ELSE Q=Q+2:GOTO

150
210 IF Y=19 THEN 150 ELSE Y=Y+1:LOCAT
EX,Y,1
220 IF Y<>12 THEN 150 ELSE Q=Q+1:GOTO

150
230 IF X=12 THEN 150 ELSE X=X-1:LOCAT
EX,Y,1
240 IF X<>19 THEN 150 ELSE Q=Q-2:GOTO

150
250 IF VPEEK(6145+32*Y+X)=250 THEN VP
OKE 6145+32*Y+X,219:AA=2 ELSE VPOKE 6
145+32*Y+X,250:AA=4
260 BY=14336+Q*B:IF Q=O OR Q=2 THEN B
Y=BY+Y-4 ELSE BY=BY+Y-12
270 IF Q=O OR Q=1 THEN B1=1"3-X ELSE B
I=27-X
280 VL=2ABI:IF AA=2 THEN VPOKEBY,<VPE
EKCBY) OR VL) ELSE VPDKEBY,(VPEEK(BY)

AND (255-VL))
290 RETURN
300 CLS:FORX=OT015:LOCATE2,X+2:PRINTV
PEEK(14336+X):LOCATE8,X+2:PRINTHEX$(V
PEEK(14336+X)):LOCATE12,X+2:PRINTVPEE

31

KC14352+X):LOCATE18,X+2:PRINTHEXSCVPE
EKC14352+X)):NEXT

High Resolution Graphics

MSX BASIC has seven instructions which may only be used in the two graphics
modes:

1) CIRCLE 2) DRAW 3) LINE 4) PAINT

5) PSET 6) PRESET 7) POINT

However, these instructions produce rather clumsy results in the multicolour
mode which has a maximum resolution of 4*4 pixel blocks.

It is not possible to print characters to a graphics screen in the normal manner.
Instead, characters must be output to the display as file data:

1. OPEN "GRP:" FOR OUTPUT AS #1

2.PRESET(40,40)

3. PRINT #1,"Graphi cs text"

Note that unless more than one file has been declared with the MAXFILES
statement, the file number must be one. In the multicolour mode, each letter
is approximately 2.5 em's square.

The workhorse of the graphics instructions is DRAW with the format:

DRAW "single letter commands"

The 13 commands available constitute what Microsoft call a 'graphics micro
language'. They allow lines to be drawn in specified steps either up, down,
left, right or diagonally from the current reference point. Any of the 16 colours
may be used. The statement is best explained by example:

DRAW "D40R40U40L40"

This draws a square proceeding down 40 units (D40), right 40 units (R40),

32

...........

up forty units (U40) and left 40 units (L40). The principle direction commands
are:

u
H E

L + R

G F

D

with C x setting the colour used.

To draw a line to a position specified by absolute coordinates, use M X, Y.
Alternatively, to draw to a location given relative to the current position, prefix
the X or Y value with either a'+' or a'-' sign.

The units of movement are set by the command Sn where n is in the range
0-255 (default = 4). This is divided by four to give the number of pixels to
each unit.

If a command specifies a position off screen but within the range -32768 to
32767 then no error report is produced and the most extreme position possible
is taken.

There are two optional variants of each movement command:

1. A prefix of 'B' will cause the graphics cursor to move the specified distance
with no line drawn.

2. A prefix of 'N' causes the graphics cursor to return to the initial position
on completion of the subcommand.

The direction frame may be rotated anticlockwise through multiples of ninety
degrees by the An command. The numeric must lie in the integer range 0-3
as follows:

0

1 + 3
I

2

Thus DR AW "A 3 L40" will cause a line to be drawn right 40 units.

33

The final sub-command, X; allows a string variable to be included in the
command string.

This prefixes the variable, which is followed by a semi-colon; for example:

ST$="M-20,+40":DRAW"XST$;"

This command is unnecessary if no delimiters are used: DRAW ST$. A numeric
variable may also be used with a command string. Here the variable is prefixed
with an equate sign and followed by a semi-colon: DRAW "U = Y; ".

The line command format is:

LINE(X1,Y1)-(X2,Y2),colour

which draws a line between the two coordinates. Each coordinate may,
alternatively, be specified using the relative STEP variant.

If an additional ',B' is appended to the command, a rectangle is produced
or if' ,BF' is added, a rectangle is produced and filled.

The circle command allows quite advanced diagrams to be produced simply.
Any ellipse specified may be produced in its entirety or a 'slice' drawn. The
'base' form of the command is:

CIRCLE(X,Y),radius

with the options:

,colour,start angle,end angle,aspect ratio

The coordinates X and Y specify the circle's centre with the STEP(X,Y) form
allowing the point to be defined relative to the reference position. If used,
the start and end angles take arguments between O and 2*PI. A negative value
will be accepted but additional lines are drawn between the centre of the
ellipse and the start and end points. The aspect ratio is the ratio of the vertical
and horizontal radii.

Again, the PAINT command is almost self-explanatory, and has the form:

PAINT (X,Y) or PAINT (X,Y),colour

It will fill any enclosed figure from the coordinate specified. If no colour is
specified, the current foreground colour is used. Note that in the HRG mode
the colour of both the borderline and the paint must be the same, otherwise
the whole screen is recoloured. In the multicolour mode the form:

PAINT(X,Y),Fi ll colour, borderline colour

maybe used.

34

..........

......--­
~

1

I

Example: To produce a solid red circle in the HRG mode use:

SCREEN2:COLOR8,1,1:CIRCLE(80,80),40:paint(80,80)

The two remaining commands:

PSET(X,Y),colour

PRESET(X,Y),colour

are identical in that both set the pixel specified to the given colour. The colour
specification may be omitted, in which case PSET defaults to the foreground
colour and PRE SET to the background colour.

SKETCHPAD EXAMPLE PROGRAM

The following program illustrates the use of High Resolution Graphics

10 '*********************************
20 '**** SKETCH-PAD ****
30 '*********************************
40'
50 ' JOYSTICK IN POF::T 1 • DRAW BY

PRESSING THE FIRE BUTTON.
60'
70 'F1 TO CHANGE COLOUR; FOLLOW WITH

COLOUR NUMBER - TWO CHARACTERS
'F2 TO DRAW A CIRCLE; FOLLOW WITH

THE RADIUS - TWO CHARACTERS
90 'F3 TO FILL A SHAPE; IT MUST BE

ENCLOSED & BE OF THE SAME COLOUR
AS THE CURRENT INK

100 'F4 TO SAVE THE PICTURE;
2 MINUTES TO SAVE.

110 'F5 TO LOAD A SCREEN FROM TAPE;
PRESS PLAY AFTER F5
TWO MINUTES TO LOAD.

120'
130 FOR X=38000!T038024!:READA$:A=VAL
("&:H"+A$):POKEX,A:NEXT:DEFUSR=38000!
140 DATA 21,oo,oo,11,40,9c,01,oo,1s,c
D,59,00,21,00,20,11,40,B4,01,00,18,CD
, 5'3, 00, C9
150 FOF.: X=38200 ! T038224 ! : READA$: A=VAL
("&H"+A$):POKEX,A:NEXT:DEFUSR2=38200!
160 DATA 21,40,9C,11,00,00,01,00,18,C

35

◄

D,5c,oo,21,40,B4,11,00,20,01,00,18,CD
,5C,OO,C9
170 ON KEY GOSUB 350,360,370,380,410:
KEYCl> ON:KEYC2) ON:KEYC3> ON:KEYC4)
ON:KEYC5) ON
180 ON STRIG GOSUB 180,240:STRIGCl) 0
N
190 COLOR 10,1,10:SCREEN 2,0:CLS:X=12
5:Y=95
200 FOR 2=14336 TO 14343:READ ZZ:VPOK
EZ,ZZ:NEXT:C=lO
210 DATA 0,32,32,248,32,32,0,0,0
220 PUT SPRITEO,CX-2,Y-4),10,0:IF A=l

THEN RETURN ELSE A=l
230 GOTO 230
240 DN=STICKCl):IF DN=O THEN 240
250 ON DN GOTO 260,270,280,290,300,31
0,320,330
260 IF Y=O THEN 240 ELSE Y=Y-1:GOTO 3
40
270 IF X=255 OR Y=O THEN 240 ELSE X=X
+1:Y=Y-1:GOTO 340
280 IF X=255 THEN 240 ELSE X=X+l:GOTO

340
290 IF X=255 OR Y=191 THEN 240 ELSE X
=X+l:Y=Y+l:GOTO 340
300 IF Y=191 THEN 240 ELSE Y=Y+l:GOTO

340
310 IF X=O OR Y=191 THEN 240 ELSE X=X
-1:Y=Y+l:GOTO 340
320 IFX=O THEN 240 ELSE X=X-1:GOTO 34
0
330 IF Y=O OR X=O THEN 240 ELSE Y=Y-1
:X=X-1
340 IF C<>O THEN PSETCX,Y),C:GOTO 220

ELSE 220
350 PUT SPRITE 2,(20,20),10,0:PUT SPR
ITE 4,C28,20),10,0:A$=INPUT$(1l:PUT S
PRITE 2, CO,O>,,O:B$=INPUT$Cl):PUT SPR
ITE 4,C0,0),,0:C=VALCA$+B$):RETURN
360 PUT SPRITE 2,(20,80),10,0:PUT SPR

36

"""""I""'

ITE 4, (28,80),10,0:A$=INPUT$C1):PUT S
PRITE 2,C0,0),,0:B$=INPUT$(1):PUT SPR
ITE 4, (0,0),,0:R=VALCAS+B$):CIRCLECX,
Y>,R,C:RETURN
370 PAINT CX,Yl,C,C:RETURN
380 Z=USRC2)
3'30 sc~:EEN1: CLS: LOCATE2, 2: PRINT"PRESS

PLAY & RECORD THEN RETURN"
400 A$=INPUTSC1):IF ASCCAS><>13 THEN
400 ELSE BSAVE"CAS: ", 40000 ! , 52288 ! : ST
OP
410 PUT SPRITE 2,(20,20),10,0:BLOAD"C
AS:":Z=USR2(2):PUT SPRITE 2,(0,0),,0:
RETURN

Sound
A simple beep may be produced by the BEEP statement or by printing CHR$ (7).

More complex sounds are generated either using the PLAY statement and macro
language or by directly amending the PSG's registers with the SOUND command.
The latter has the form:

SOUND register#, value

For details of the register functions see the section on the A Y- 3-8910.

The PLAY statement is followed by up to three strings, each of which is a sequence
of one letter commands exclusively for one 'voice' (the format is similar to
the DRAW command).

For example to play a single note using voice 2, the following would be used:

PLAY "" ,"N20"

As default values are set for most parameters, it is not necessary to go through
a lengthy initialization sequence.

There are two methods of specifying the note played:

1. Nx where x is in the range 0-96. If O is used a rest is 'played'.

2. By setting the octave Ox (x must lie in the range 1-8, 4 is default) and
note A-G. For example:

PLA Y"O6ABC D" will play a four note sequence in octave six.

37

l

If this was followed by:

PLAY" BCD" the notes will also be taken from octave 6.

Flats and sharps (only those available on piano) are produced by using #
or + after the note for a sharp and - for a flat.

The default volume is eight on a scale from 0-15 and is set with the V x command.

The length of each note is set using Lx where x is in the inclusive range
1-64. A value of one will produce a whole note, a value of 4, a quarter note
and so on. To obtain a note longer than 1 the tempo needs to be reset using
the Tx command (default 120). The x may take a value from 32-255 and determines
the number of quarter notes played in a minute. For example, to make all
notes twice the default length use T60.

If it is only necessary to change the length of a single note, then the note
reciprocal without the 'L' can just be placed after the note. For example B#8
orD32.

Note that with all the single letter commands, a variable may be used with
the format:

PLAY"N=X;L=Y;N=X;"

To simplify transcription, Microsoft incorporated the ability to append a note
with a period (.) to increase its length by one half. An alternative to using
NO to produce a pause is the Rx command (x default = 4). This produces
a rest of the length specified by x which must lie in the range 1-64 and is
interpreted in the same way as the parameter in the L command.

The two remaining single letter sub-commands, Mx and Sx, allow more
advanced sound effects to be generated by altering the envelope of the sound
produced.

This allows the volume to be varied in a preset manner over the duration
of the note. Each envelope shape commences with one of two sequences:

1. The volume increases from zero to the maximum. Here, the envelope has
an 'attack'valueof4.

2. The volume decreases from the maximum to zero. The envelope has an
attack value of 0.

The remainder of the envelope sequence is determined by three other
parameters. The required setting for each is added to that of the initial attack
stage. The total is used with the S command to select the sound shape required:

1. Continue: If the sound is to terminate after the first cycle, this is set to
zero, otherwise it is set to 8.

38

2. Hold: If set to 1, the attack sequence is continually repeated for each cycle.
If set to zero, the volume is held at the setting at the end of the first cycle.

3. Alternate: A setting of 2 flips the volume setting at the end of each cycle.
No change occurs if a value of zero is used.

Each of the above parameters has two settings, which allow, in total, 16 variants
of envelope shape/cycle operation. However, there is duplication and there
are only eight distinct patterns possible. These are given together with the
parameter settings on page five of appendix E. The default settings are:

Shape:l
Modulation: 255

For example, to produce notes which rise to a maximum volume and hold
there for their duration, use the following parameter settings:

I.Attack: 4
2. Continue: 8
3.Hold: 1
4. Alternate: 0

Total= 13: PLAY"S13 ••••

The duration of the first and subsequent cycles is set by the M command.
This will accept integer values in the range 1 to 65535 inclusive.

One final point on the PLAY command is that (like the DRAW command)
predefined strings may be executed with the X command:

A$="N40N20N40": PLAY "XA$;"

As a variable is used, it must be followed by a semicolon. The status of one
or all the channels can be found with the PLAY function:

PLAY (x)

Here x must be in the range O to 3. If channel 1, 2 or 3 is checked, then
if the channel is active -1 is returned otherwise zero. If PLAY (0) is used, all
three statuses are logically ORed and returned.

Program storage
In all MSX computers with at least 32K of RAM, BASIC program storage
commences from location 32768 (&H8000). Each program line is stored not
as it is entered, but in a condensed form. Keywords are replaced by 'tokens',
whilst variable names and symbols are stored directly. In addition, each line
is prefaced by two pairs of bytes. The second pair holds the line number
and the first the address of the following line. Lines are divided by a null
byte with the program end indicated by a further two bytes with a value

39

of zero.

Just above the program is a variable table. This consists of storage for each
non-array variable used in the program. Finally, above the simple variable
table is an array table.

For example, if the following program is entered:

10 FOR X=32768! TO 40000!
20 PRINTX,PEEK(X)
40 NEXT

storage is organised as follows:

Location Value Comment

32768
32769
32770
32771
32772
32773
32774
32775
32776
32777
32778
32779
32780
32781
32782
32783
32784
32785
32786
32787
32788
32789
32790
32791
32792
32793
32794
32795
32796
32797
32798
32799
32800
32801
32802
32803

0
23 Address of the next
128 line.
10 Line number
0
130 TokenforFOR
32 Space code
88 X
239 Token for=
29 S.P. Constant
69 S.P. Exponent byte
50
118 S.P. Mantissa
128
32 Space code
217 Token for TO
32 Space code
29 S.P. Constant
69 S.P. Exponent byte
64
0 S.P. Mantissa
0
0 End of line marker
36 Address of the next
128 line.
20 Line number
0
145 Token for PRINT
88 X
44 comma
255 TokenforPEEK
151
40 (
88 X
41)
0 End of line marker

40

""""'"'II"'"

32804 42 Address of the net
32805 128 line.
32806 40 Line number
32807 0
32808 131 Token for NEXT
32809 0 End of line marker
32810 0 End of program
32811 0 marker.

Notice that constants are stored in the relevant format. Here the parameters
of the FOR NEXT loop are stored in single precision.

The simple variable table is moved whenever program lines are added or deleted.
The variables are stored in the order in which they occur in the program.
The first byte of each indicates the variable type:

8: Double precision
4 : Single precision
3: String
2: Integer

The following two bytes are the first two character codes of the variable name.
The remaining section differs for each variable type:

1. Integer: The actual value is held in reversed, signed two byte binary form.

2. String: Three bytes are used to store string data. The first specifies the
number of characters in the string. The remaining byte pair holds the address
of the actual string. The address has the low and high order bytes reversed.

3. Single prec1s10n: The value is represented by one byte for the exponent
and a six digit, three byte binary coded decimal mantissa. The m.s.b. of the
mantissa flags the sign of the value: 1 = negative.

4. Double precision: As for a single precision variable, except a seven byte
mantissa is used.

Note that the exponent byte, the location of which is returned by the VARPTR
function, has &H40 added.

Each entry in the subsequent arary table again starts with three bytes holding
the variable type and name. However, prior the the data elements is a header.
This has three sections:

1. A two byte leader containing the remaining number of bytes in the array.

2. A single byte which holds the number of dimensions.

3. A sequence of two byte values sprcifying the size of each dimension.

41

ABS (Y)

CHAPTER3

MSX BASIC
VOCABULARY

A function which returns the absolute value of the numeric expression Y.

Example: ABS(-4) returns4

ASC(YS)

Returns the character code of the first character of the string Y$. A graphics
symbol returns 1. A null string will cause an error report. For a complete listing
of the character codes see appendix A.

Example: ASC ("ABC") returns 65

ATN(Y)

A function which returns the arctangent of the expression Y. The result is
in radians in the range -PI/2 to PI/2. If Y is a variable, it may be of any
type, however the evaluation is performed in double precision.

Example: C=ATN(40) returns0.67474094222354

AUTO

Variants: AUTO
AUTO line number
AUTO ,increment
AUTO line number,increment

Omission default: Line number .. 0
Increment .. 10

Increment and line number .. 10

The subsequent line number is printed after each carriage return. Options

42

----......-

allow the initial line number and increment to be specified. The sequence
is terminated by either CTRL C or CTRL STOP. An asterisk is printed after
any line number which already exists. Pressing return, without any addition,
will leave the resident line unaltered.

Example: AUTO 200, 20 will provide the sequence 200,220,240

BASE(Y)

A special variable which returns the locations in video R.A.M. of the look
up tables used by the VDP to produce the display. Values of Y between 0
and 19 return the start position of one table for a particular mode. See appendix
C for further details. Each display mode has a name table and pattern generator
table. These hold data on the pattern plane.

With the exception of the 40 column text mode, all modes have a sprite pattern
table and a sprite attribute table. The position of each sprite table does not
vary between modes:

Sprite attribute table: 6912
Sprite pattern table: 14336

Example: BASE (0) returns 0: the base of the name table in the text mode.

BEEP

A beep sound is generated.

BIN$(Y)

A function which returns a string of the binary equivalent of the decimal
expression Y.

Y must lie in the range -32768 to 65535. A negative value is expressed in the
two's complement notation.

Example: BIN$(-1) RETURN: "1111111111111111"

BLOAD

Variants: BLOAD"CAS:"
BLOAD"CAS:fi le name"
BLOAD"CAS:",R
BLOAD"CAS:",offset

Loads a machine language program from cassette (The only device supported

43

by version 1 BASIC) to the location from which it was saved.

The R option executes a call to the location specified at BSAVE on completion
of the load. The offset option displaces the position of the program from which
it was saved.

Example: BLOAD"CAS:",R,&H20 will load and call the next machine language
program found. The program will be loaded 32 locations up in memory from
the position from which it was saved.

BSAVE"CAS:",start,end

Variants: BSA VE" CA S : f i le name", start , end
BSAVE"CAS: ",start,end,ca l l location

Used to save a block of memory to cassette. An option is to specify the location
to be called if the program is loaded with the instruction: B LO AD" CA S : " , R .

If BLOA D," CA S: ", R is used without a call location having been specified when
the program was saved, the call is made to the first location occupied.

Example: BSAVE"CAS: ",34000,38000,36000 saves the 4K block between 34000
and 38000 inclusive. If the program is then loaded using the BLOAD"CAS:",R
option, then on completion of input a call is made to location 36000.

CALL statement name

Variants: CALL statement name (argument)
CALL statement name (argument,argument)

Note: CALL may be entered as an underscore'_'

Call is used to execute an extended command provided by a ROM cartridge.

Example: CALL SPS ET (176 ,32)

CDBL(Yl

Yis converted to a double precision number. Y may be of any numeric type.

CHR$(Y)

A single character string with the character code Y is returned. To print a
graphics symbol, first print CH R $ (1) .

Example: CHR$(65) returns A

44

--......--

t
l

I

i
j

t
I

I
i
j ..
!
l
\
;

I
I

t

q
I

• I
l

t
I
~
l

CINT(Yl

Converts Y to an integer number by truncation. An error is flagged if Y is
not in the range -32768 to 32767.

Example: Y=4.8:?CINT(Yl gives4

CIRCLE(X,Yl,radius

Variants: CIRCLE (X, Yl , rad i us , co lour
CIRCLE(X,Y),radius,colour,start angle,end angle
CIRCLE(X,Y),radius,,start angle
CIRCLE(X,Yl,radius,,,end angle
CIRCLE(X,Y),radius,colour,s.a,e.a,aspect ratio

Default start angle: 0 End angle: 2PI

The centre of the circle, specified in absolute coordinates by X & Y, may also
be given relative to the current reference position by STEP (X, Y).

If no colour is specified, the current foreground colour is used. If the start
and end angle options are used, the parameter must be given in radians in
the range -2PI to 2PI. The aspect ratio determines the horizontal : vertical
ratio of the radii of the ellipse.

Example: CIRCLE (20, 20), 10, 10 ,3. 142 ,2 produces a half ellipse from Pito 2PI.

CLEAR

Variants: CLEAR
CLEAR string space
CLEAR string space,memtop

Memtop default: &HF380

All open files are closed, numeric variables are set to zero and strings to null.

Default string space is 200 bytes. Memtop is the highest memory location for
use by BASIC. Memtop may be lowered to allow a machine language program
to be placed above the BASIC area. This ensures that the code will not be
overwritten by BASIC data.

Note that all ON ••• GOTO / GO SUB statements are also cleared by this
instruction.

Example: CLEAR 400,44000 resets the space available for string variables to
400 bytes and alters the BASIC ceiling to 44000 .

45

CLOAD

Variant: CLOAD"f i le name"

C LOAD closes all program files and clears all variables before loading the next
program file from cassette. If a file name is given, only the first six characters
are significant.

Variant: C LOAD? "f i le name"

The program file in memory is compared with the next program file on cassette.
A mismatch produces the report "Ver i f y error" •

CLOSE

Variants: CLOSE
CLOSE #Y
CLOSE #Y,#Z

Note: The hash symbols are optional.

Unless a file number is specified, all open files are closed and any associated
buffers released. Any data contained by an output buffer is first output.

Example: CLOSE 4 will close and release any buffers associated with channel
4.

CLS

Clears the screen to the background colour specified by the COLOR statement.
In a text mode, the cursor is also homed to the top left corner. C LS operates
in all modes.

COLOR foreground,background,border

Variants: CO LOR ,background
COLOR ,background,border
COLOR ,,border
COLOR foreground,,border

CO LOR is valid in all display modes. In either text mode, the background colour
is assumed immediately. The high resolution graphic and multicolour modes
require a CLS instruction to implement the change. In the 40 column text mode,
the border colour takes the background colour. The complete VRAM colour
table is updated in all modes.

46

r
I
\

!
t
!

t
t
I
t
j

t
I

I
4
!
'

•
!
l
t
♦
' I
I
r

' t
i
f
I
I
~

Example: COLOR4,10,14 will set the border to grey (14), the pattern plane to
dark yellow (10) and the ink to dark blue (4).

CONT

Continues program execution after a break or stop.

COS(Y)

Returns the cosine, in radians, of the angle given by the expression Y.

CSAVE"fi le name"

Variant: CSAVE "file name" ,baud rate

The current program file is saved to cassette. Only the first six characters of
the file name are significant. The file may be saved at either 1200 (default)
or 2400 baud:

CSAVE "name",1
CSAVE "name",2

CSNG(Y)

1200 baud
2400 baud

Y is converted to a single precision number.

CSRLIN

Returns the vertical position of the text cursor from Oto 23.

Example: ROW= CSRLIN

DATA

A storehouse of data that is accessed by the RE AD statement. Numeric and
string data may be mixed in one line. Data items must be separated by a
comma. Strings do not need quotation marks unless they contain commas,
colons, semi-colons or significant leading or trailing spaces.

Example: DATA 1.4,6,8.0,,,,4,2

DEF FN Y(A) = Expression

Variant: DEF FNY(A,B,C) = Expression

47

A function is defined by an expression that typically contains the bracketed
parameter(s). When evaluated, the value(s) given in brackets are substituted
into the expressfon. These must be of the same type as the parameter(s) in
the definition. A maximum of eight parameters may be used within the
definition.

Examples:
DE F F N Y (S) = 2 * S: T = 4: W = F N Y (T) yields 8.

DE F F N Y (S, A) = 2 * S + (A+ 4) : T = 2: R = 4: N = F N Y (T, R) yields 2 * 2
+ (4+4)

DEFDBL Y
DEFINT Y
DEFSNG Y
DEFSTR Y

Variants: DEFINT W-Z
DEFDBL A,B-S

Each declares any variable (both simple and array) which starts with the letter
given, to be of that particular variable type. This global allocation may be
over-ridden for an individual variable by a subsequent type declaration.

Example: DEFINT A,B would define all variables starting with either A or B
to be integer variables.

DEFUSRx = address

DEFUSR specifies the start address of a machine code routine. The routine is
called with the US R function. The integer x may be in the range O to 9. If
omitted, a value of zero is assumed.

Example: DEFUSR2 = &H4000

DELETE line number-line number

Variants: DELETE line number
DELETE -line number

Either line number may be ommitted, but if given, an actual line of that number
must exist.

DIM Y(x)

Variants: DIM Y (x) , Z (n)

If more than eleven elements of a variable are to be used then space must

48

----.....-

be reserved in memory by the use of the DIM statement. A string array will
allocate 255 bytes for each element.

Example: DIM Y(20),S$(12) will allow the elements Y(O) - Y(20) and S$(0) -
S$(12) to be used.

DRAW "string of subcommands"

The principle graphics command with a subset of 13 single letter commands.
See chapter 2 for details.

END

Terminates program execution and closes all open files. No break message
is printed.

EOF(fi le number)

Used to test for the file end when inputing data from a sequential file. Returns
zero except at the file end when -1 is given.

Example: IF EOF (8) = -1 THEN 200

ERASE array variable

Variant: ER AS E array v a r i a b le, a r ray v a r i a b le, •...

Deletes the array(s) which start with the specified letter(s). To be re-used,
the array must be re-dimensioned.

Example: ERASE X,YwilleraseXC(16) and YJ (14).

ERL

On occurrence of an error ERL contains the line number in which the error
arose. If an error occurred in the direct mode, ER L contains 65535.

ERR

On the occurence of an error, ERR is set to the respective error code.

ERRORx

Used to force the specified error. The x must be an integer in the range 1

49

to 255. BASIC uses errors in the range 1-59, which, if forced print the relevant
error message. The message "Unprintable error" is produced if an error is
forced using the ON ERROR GOTO instruction, for which no definition has been
made.

Example: 10ONERRORGOTO200

100 ERROR 100

200 IF ERR=100 THEN END

EXPCY)

The value eY is returned where e is the Napierian constant. The expression
ymust evaluate in the range-147.3654459516 to 145.06286085862

FIX(Y)

Returns the integer of the expression Y. This function differs from that of
I NT in the treatment of negative values. Whilst FIX will simply truncate the
fractional section of the value, IN T rounds the value down.

Examples: FIX(-2.8) returns-2
I NT(- 2 . 8) returns -3

FOR Y=x1 TO x2 STEP x3

All subsequent instructions upto the appropriate NEXT statement are repeated
for the inclusive values of Y from xl and x2 in increments of x3. If STEP x 3
is omitted, the step size defaults to one. If it is set to zero the loop is repeated.If
x2 is<= xl with a positive step size, the instructions are executed once.

F RE ("")

Returns the remaining number of bytes available for string storage.

FRE(x)

A function which returns the remaining number of bytes available for program
storage. Any value may be given to x as it is a dummy argument & is not
used in the evaluation.

Example: Z= F RE (2)

50

l

GOSUB / RETURN

Variant: RETURN line number

A specialized form of the GOTO statement. A return back to the statement
following the GO SUB instruction occurs when a RETURN instruction is encountered.

GOTO

A statement which forces a branch to the specified line.

A function which returns the hexadecimal equivalent of the integer Y. The
latter must lie in the range-32768 to 65535.

Example: HEX$(20) returns 14

f IF condition(s) THEN

Variants: IF •• THEN •• ELSE
IF •• THEN •• IF •• THEN •• ELSE
IF .. GOTO
IF •• GOTO •• ELSE

Allows sets of statements to be executed if certain criteria are satisfied. If a
branch is to be made, it is not necessary to use GOTO after THEN and ELSE.
The variant IF •• THEN •• I F •• THEN •• ELSE will continue program execution from
the following line if the initial condition is not true.

Example: 10 X=0: IF X= 1 THEN IF Y=2 THEN 40 ELSE 80
will continue with line 20.

INP(port address)

A single byte of data is read from the port specified.

INPUT Y

Variants: INPUT "prompt string"; Y
INPUT #file number, Y
INPUT$(x)
INPUT$(x,fi le number)

The statement prints a question mark to prompt the user to enter data. This
is then allocated to the variable(s) specified.

51

If the variable has been declared prior to the INPUT statement and the user
enters no data before pressing the RETURN key, the value is unaltered - otherwise
it is set to zero.

Vari9bles may be simple or array and either string or numeric. More than
one variable may be used if separated by a comma in both the statement
and input.

Example: INPUT "X, Y $ <ENTER>"; X, Y $ w i l l print: X, Y $<ENTER> ?

The second variant is similar except that a file number is specified as the
data source. Variants 3 & 4 both return a string of x characters - variant 3
from the keyboard and variant four from the file specified. In either instance,
it is not necessarry to terminate input with a carriage return.

INKEY$

A function that returns the first character in the keyboard queue or, if that
is empty, a null string.

Example: 10 A$=INKEY$:IF A$=""THEN 10
Note that this may be achieved more efficiently by using A$= INPUT$ (1) .

INSTR(A$,8$)

Variant: INSTR(x,A$,8$)

Returns the position of B$ in A$. If B$ is null or is not contained in A$ then
zero is returned. The variant allows the search to commence x characters from
the left of A$.

Example: A= I NSTR (2, "ABCD"," D") sets A to 4.

INT(Y)

Returns the integer of Y. See FIX for comparison.

Example: INT(4.8) returns4

INTERVAL ON / OFF / STOP

Activates, deactivates or suspends the call to a subroutine at the interval
specified by the ON INTERVAL statement. See chapter two for detail.

KEY function key number,"string"

Allocates the given string to the specified function key. The string may be

52

--

i
~
I

i

l
l

I

t

I
I
I

•
l

up to 15 characters in length.

Example: KEY 2,"RUN"+cHR$(13)

KEY LIST

Lists, in order, the strings allocated to the function keys.

KEY ON/ OFF

Switches on or off the function key display on the 24th text screen row.

KEY (function key number) ON/ OFF / STOP

Activates, deactivates or suspends the call to a subroutine specified by the
ON KEY GOSUB statement. If activated, a check to see if the key has been pressed
is made after each BASIC statement has been executed. See chapter two for
detail.

LEFT$ (Y$, x)

Returns the x leftmost characters of Y$. A graphic character occupies two
positions. If x is zero a null string is returned. If x exceeds the number of
characters in Y$, only Y$ is returned - spaces are not added.

Example: ? LEFT$ ("NEWORD", 2) prints NE.

LEN(Y$)

A function which returns the number of characters - including control and
graphic characters - in Y$. A graphic character is a composite of CH R$ (1) and
the character code.

LET Variable=Expression

Used to assign the value of the expression to the given variable.
NOTE: Optional in MSX BASIC

LINE (x1,y1)-(x2,y2)

Variants: LINE (x 1 , y 1) - (x 2, y 2) , co lour
LINE (x1,y1)-(x2,y2),colour,B
LINE (x1,y1)-(x2,y2),colour,BF
LINE -(x2,y2),colour

53

l
I

The STEP (X, Y) form may replace either absolute coordinate specifier. In either
position, the STEP form is relative to the initial reference point.

A graphics mode instruction to draw a line between the given coordinates.
The B option draws a rectangle and the BF option draws and fills a rectangle.
See chapter 2 for detail.

LINE INPUT Y$

Variant: LINE INPUT "prompt"; Y$

Obtains a line of input from the keyboard. The instruction may not be used
in either the HRG or multicolour display modes. The number of characters
entered must not exceed 254 with input assigned when the RETURN key is
pressed.

LINE INPUT# file number, Y$

Inputs and assigns a line (up to 254 characters) from the specified sequential
file to the given string.

LI ST

Variants: LISTlinenumber
LIST linenumber-
LIST linenumber-linenumber
LIST - line number
LI ST.

A command to list all or part of a program. A full stop (period) may be used
to list either:

1. The last line previously listed.

2. The line that caused program execution to be aborted.

LLIST

Variants: As for LIST

L LIST outputs all or part of the current program file to a line printer.

LOAD "file name"

Variants: LOAD"devi ce reference"
LOAD"devi ce reference:fi le name"
LOAD"devi ce reference: file name" ,R

54

i
t
I
I

The LOAD command closes all open files and deletes the current program from
memory prior to loading the speciifed ASCII file. If the R option is taken,
no files are closed and a run is initiated after the load sequence. For a list
of device references see OPEN.

LOCATE column,row

Variants: LOCATE , row
LOCATE ,,cursorswitch
LOCATE column,row,cursor switch

The LOCATE statement may only be used in a text mode and moves the cursor
to the column and row specified. In the 40 column mode, the range is:

Columns O - 36
Rows O - 22/23 (dependent on the cursor key display)

In the 32 column mode:
Columns O -28
Rows O - 22/23 (dependent on the cursor key display)

The unused columns may be utilized by poking into VRAM - see chapter
two for further details. The cursor switch may take one of two values:

0: disables cursor display.
1: enables the cursor display.

LOG (Y) Y>0

~ Returns the natural logarithm of the expression Y. Y must be greater than
zero.

I
I

t

MAXFILES=Y

A statement to specify the maximum number of files which may be open
at one time. The integer expression Y must evaluate in the inclusive range
0 to 15. This statement is required if more than one file is to be open at any
time.

MERGE

Variants: MERGE"f i le name"
MERGE"devi ce reference"
MERGE"devicereference,filename"

MERGE will load and combine the next ASCII program file on tape with the
program in memory. If the line numbers overlap, the initial lines are replaced
by those in the second program.

55

Example: To load and merge the next program on tape use: MERGE "CAS:"

MID$(A$,x)=character

Variant: MID$ (A$, x, n) = n c ha r act er s

An instruction used to replace the xth character of A$. Note that all graphic
characters have a header of CHR$(1). The variant allows a sequence of n
characters to be updated. A null string is returned if x is greater than the
length of A$.

Example:A$="WAS":MID$(A$,1,2)=" I":?A$gives" IS".

MOTOR

Variants: MOTOR ON (default condition)
MOTOR OFF

Unless a state is specified, the cassette motor switch is toggled.

Example: If the cassette motor is stopped then MOTOR will reverse the setting,
switching the motor on.

NEW

The current program is deleted from memory and all variables are reset.

OCT$(Y)

Returns a string of the octal value of the decimal expression Y.

ON Y GOTO x1,x2, .. xn / ON Y GOSUB x1,x2, .. xn

If Y=l a jump or subroutine call is made to the first line in the list: xl. If
Y=2, a jump or call is made to the second line number and so on. If the expression
Y is either zero or greater than the number of lines in the list, then program
execution continues from the next line.

ON ERROR GOTO x

If an error arises, a jump is forced to line x. If line O is specified, error handling
is normalized. The error handling routine is terminated with a RESUME
instruction.

ON INTERVAL Y GOSUB X

56

Defines the subroutine executed after each interval (length Y * 1150th of a
o/ second) has elapsed. The sequence is initiated by the I NT ERVA LON statement.

ON KEY GOSUB x1, x2, .. xn

Initiates a call to the given subroutine when a particular function key is pressed.
The first line number corresponds to key 1, the second to key 2 etc. These
are called if the relevant key is pressed after a KEY (x) ON statement.

,I ExampleON KEY GOSUB 20,,,40keystwoandthreenotsetup.
I

ON SPRITE GOSUB Y

Allocates the subroutine to which trapping occurs after a sprite to sprite collision.
Enabled by the SPRITE ON statement.

ON STOP GOSUB Y

Initiates a call to the subroutine at line Y if the STOP and CTRL keys are
pressed simulaneously. This action only occurs after a STOP ON statement has
been made.

ON STRIG GOSUB x

Variants: ON ST RIG GO SUB x 1 , x 2, x 3, x 4

Identifies the subroutine to which trapping takes place if the space bar is
pressed. Trapping is enabled by the ST RIG ON (Y) statement.

The variant is used to allow either trigger 1 or trigger 2 of either joystick
to initiate a trap. The subroutines must be given in the following order:

1. Space bar
2. Trigger 1, joystick 1
3. Trigger 1, joystick 2
4. Trigger 2, joystick 1
5. Trigger 2, joystick 2

Example: STRIG(2) ON:ON STRIG GOSUB 200,400,600 will initiate a call to the
subroutine at line 600 if trigger 1 of joystick 2 is pressed.

OPEN "devicereference:" AS file number

Variants: OPEN "devicereference:fi le name" AS file number
~ OPEN "devicereference:fi le name" FOR mode AS file No.

57

This statement opens a channel to a device and allocates an I/O buffer. A
file must be opened before an instruction requiring a file number may be
used. For example PRINT #, INPUT #, PUT or GET. Four device references may

be used:

1. CAS: Cassette
2. LPT: Line printer
3. CRT: Screen
4. GRP: Graphic screen

The file number is used by other input/output instructions to refer to the
file and must be in the inclusive range 0-Y where Y is specified by the MAX IF I LES
instruction.

The variant' FOR mode' sets the type of data transfer:

'INPUT' :Sequential input
'OUTPUT': Sequential output
'APPEND': Sequential append

OUT port number, data byte

Transfers a data byte to the specified port. Both the port number and data
must be in the inclusive integer range Oto 255. The standard MSX configuration
does not support I/O to more than 256 ports.

PAD(Y)

Returns the status of a touch pad. Y may take a value in the inclusive range
0-7:

0 - 3 Touch pad connected to Port 1

4 - 7 Touch pad connected to Port 2

Of the four values which may be selected for each port, 0-3 and 4-7, each
returns a different parameter:

0 and 4: Return= -1 if pad pressed, 0 if released.

1 and 5: Return= X coordinate of point pressed

2 and 6 : Return = Y coordinate

3 and 7: Return = -1 if switch pressed, 0 if not.

PAINT (X,Y)

58

.....---
Variants: PAINT STEP (X,Y)

r PAINT (X,Y), colour
PAINT (X,Y), colour, borderline colour

An instruction which may be used in either the multicolour or high resolution
modes. The enclosed object is filled with the foreground colour from the position
specified. Note that in the HRG mode the border line colour must always
be the same as the paint colour. See chapter two for detail.

PDL(Y)

Returns the status of a paddle connected to either terminal A or terminal B.
The expression Y must be an integer in the inclusive range 1 to 12. If it evaluates
to an odd number, input is read from terminal A otherwise terminal B. The
value returned is in the range Oto 255.

PEEK(Y)

Returns the integer value held by the location specified. The numeric expression
Y must evaluate in the inclusive integer range-32768 to 65535.

PLAY "subcommand string"

Variants PLAY "string" ,"string" ,"string"
PLAY "string","" ,"string"
PLAY Y$,Z$,X$
PLAY "Y$; string" ,"string" ,"string"

The principle instruction for the generation of sound. Each of the three strings
specifies the output of one sound channel. See chapter two for detail.

PLAY(Y)

A function which returns the status of the specified music channel(s). Y must
evaluate to an integer in the inclusive range O to 3. If there is data in the
buffer specified, -1 is returned. If the channel is not active, zero is returned.
PLAY (0) gives the status of all three channels.

POINT(X,Y)

Returns the colour code of the specified pixel. The instruction is active only
in the two graphics modes. A value of -1 is returned if either coordinate is
out of range.

POKE X,Y

59

Places the value Y in location X. Y must be in the range O to 255 inclusive.
The address range is -32768 to 65535. A negative address is first added to
65535.

Example: POKE 40000, 2 54 places 254 in location 40000.

POS (Y)

Returns the horizontal position of the cursor in either text mode. Y is a dummy
argument and is not used in the evaluation.

PRESET (X,Y)

Variants: PRESET (X, Y), co lour
PRESET STEP(X,Y)

The specified graphic screen pixel is set to the background colour. The variant
allows the colour to be specified.

PRINT

Variants: PRINT "string"
PRINT "string";
PRINT A$
PRINT y

PRINT ,X$
PRINT CHR$ (Y) +A$

NOTE: PRINTmaybeenteredas?

If no expression(s) follow the keyword then a single line feed is printed. A
carriage return is printed after the final item unless the item is followed by
a semi-colon or comma.

A semi-colon causes the next item to be printed immediately after the last
and a comma advances the print position to the next tabulation zone. Tabulation
zones are 14 characters wide.

Control characters may be printed using the CHR$ (Y) function.

PRINT# file number, expression

As for PRINT albeit the data is directed to the channel specified. A carriage
return and line feed follow the final item.

PRINT USING

Variant: PRINT # file number, USING

60

....--­
f

I
r
;

t
i

Permits items to be printed in a specified format by the use of control characters.
See chapter 2 for detail.

PSET (X,Y), colour

Variant: PSET STEP(X,Yl, colour

The pixel specified, on a graphics screen, is set to the given colour.

PUT SPRITE sprite plane number

Variants: PUT SPRITE plane number, (X, Y)
PUT SPRITE plane number, STEP (x,y)

PUT SPRITE plane number, (X,Y), colour
PUT SPRITE plane number, (X,Y), colour, pattern No.

The principle sprite display command. PUT SPRITE sets the position, colour
and pattern for one sprite. The sprite cursor is moved to the sprite's top left-hand
corner.

Only one sprite may be placed on any plane but any number of sprites may
take a particular pattern. See chapter 2 and SPRITE$ for detail.

Example: PUT SPRITE 0, (40,40) ,4,2

READ Y

Variant:READ Y,X,Z,

The READ statement is used to allocate the constants in DATA statements to the
given variables. The data read must agree with the variables specified.

REM

A statement used to annotate a program listing. Any following statements
on the same logical line are ignored at run time with execution proceeding
from the next line. REM may be entered as a single quotation mark'.

RENUM

Variants: REN UM new number
RENUMnewnumber,oldnumber
RENUMnewnumber,oldnumber,increment
RENUMold line number

Default new number and increment: 10

61

All program lines are renumbered inclusive of references following GOTO, GO SUB,
TH EN, ELSE, ON •• GOTO, ON •• GO SUB, IF TH EN and ER L statements.

The resulting program commences with the line number 10 (or if specified)
the new number. The variant 'old number' causes only part of the program,
from the old number onwards, to be renumbered.

RESTORE

Variant: RESTORE line number

Resets the data pointer to the first item in the initial DATA line. The variant
allows the DAT A line to be specified.

Example: DATA 200 would cause the next READ state:nent to take data from the
DAT A statement in or following line 200.

RESUME

Variants: RESUME NEXT
RESUME line number

The RESUME instruction is used to end an error handling routine that is trapped
to by the ON ERROR GOTO statement. It causes program execution to continue
with the statement that produced the error. The RESUME NEXT statement is similar
except execution recommences with the statement after that which caused the
original error.

RIGHT$(A$,x)

A function which returns a substring consisting of the x rightmost characters
of A$.

If x is greater than the number of characters in A$ then A$ is returned. If
x=O, a null string is returned. A graphics character always includes a prefix
of CHR$(1). Example: RIGHT$ ("LEFT", 20) returns LE FT

RND(Yl

Returns a random number in the exclusive range Oto 1.

IfY > 0 the next number in the sequence is generated.

If Y = 0 the number returned is equal to the previous number.

If Y < 0 the random generator is reseeded for that Y.

62

.............-

i
I

!
I
I

I
~

I
I
t

I
t
I
I

I
I

l
t

Note that the sequence produced after RND(-2) is the same as that produced
by a subsequent RN D (-2). To produce a 'new' sequence use RN D (-TI ME).

RUN line number

Executes the current BASIC program in memory from the line specified. If
no line number is given, execution commences with the first program line.

SAVE "file name"

Variants: SAVE "device reference:"
SAVE "device reference:fi le name"

Outputs a BASIC program file in ASCII format to the device specified. Control
Z equals EOF. Note: it is not possible to verify a file. The transfer rate is
specified by the SC RE EN statement.

Example: SAVE "CAS: PROG4"

SCREEN mode, sprite size, key click switch, cassette baud rate,
printer option

The SCREEN statement is used to assign the six options as follows:

Mode: 0
1
2
3

Sprite size:

40 * 24 text mode
32 * 24 text mode
High resolution mode
Multi-colour mode

0 8 * 8 unmagnified
1 8 * 8 magnified
2 16 * 16 unmagnified
3 16 * 16 magnified

Keyclick switch:

0 Switchon
1 Switchoff

Cassette baud rate:

1 1200baud
2 2400baud

- for both the program and ASCII formats.

63

Printer option:

0 MSX printer
<O> No MSX graphics facilities

If the latter option is taken, all graphics symbols are output as spaces.

SGN (Y)

If Y > 0 then S G N returns 1, if Y = 0 then zero otherwise-I.

SIN (Y)

SIN returns the sine of the expression Yin radians.

SOUND register, Y

The SOUND instruction writes the value of expression Y to the specified PSG
register. Y must be in the inclusive range O to 255. See the chapter on the
A Y-3-8910 for more detail.

Example: SOUND 4,4

SPACE$ (Y)

Returns a string of Y spaces. Y must be in the inclusive range Oto 255.

SPC (Y)

Used in conjunction with either the PRINT or LPRINT statements to produce
Y spaces. Y must be in the range Oto 255 inclusive.

Example: ?SPC(4); "OVERWRITES"

SPRITE$ (Y) = "Definition string"

A system variable for sprite pattern definition. The character code of each
character of the string allocated, is the pattern of one byte of the sprite. The
binary form permits straightforward entry:

CHR$(&B10101011)

If 16 pixel square sprites are in use, 64 sprite patterns may be defined, and
Y must be in the inclusive range O to 63. Eight pixel square sprites allow
upto 255 pattern definitions. See chapter 2 for detail.

64

SPRITE ON/ OFF / STOP

Activates, deactivates or suspends the call to a subroutine in the event of a
sprite to sprite collision. The ON SPRITE GOSUB statement must first be used
to specify the subroutine called.

Example: SPRITE STOP will suspend calls to the subroutine in the event of a
sprite to sprite collision. The call is made when trapping has been enabled
by a SPRITE ON statement.

SQU (Y)

Returns the square root of the expression Y which must be equal to or greater
than zero.

STICK (Y)

Y may take a value from Oto 2:

0Cursorkey
1 Joystick - Port 1
2 Joystick - Port 2

The direction is returned:

STOP

7

1

8 2

0 3

6 4

5

A statement which terminates program execution and causes the message:

Breakin •••

to be printed.

STOP ON/ OFF/ STOP

Activates, deactivates or suspends the call to a specified subroutine in the

65

event of the CTRL and STOP keys being depressed. See chapter 2 for detail.

STRIG (Y)

The integer expression Y must be in the range Oto 4:

OSpace bar
1 Joystick 1, Trigger 1
2 Joystick 2, Triggerl
3 Joystick 1, Trigger 2
4 Joystick 2, Trigger 2

If the 'trigger' is pressed then-1 is returned, otherwise 0.

STRIG (Y) ON/ OFF / STOP

Activates, deactivates or suspends the trapping of a particular 'trigger' button.
Y may be in the range O to 4 as given above. The ON STRIG GOSUB statement
must first be used to define the subroutine called.

Example: STRIG (0) ON enables trapping in the event of the space bar being
depressed.

STRING$ (x,Yl

Variant:STRING$ (x,Y$)

Returns a string of length x containing only the character with character code
Y or the first character of Y$. If a graphics character occurs first, a string of
character 1 is returned.

Example: STRING$(4,65) returnsAAAA

STR$ (Y)

Returns the string representation of the numeric value Y. This provides a
convenient conversion method from the hexdecimal, octal or E forms.

SWAP Y,X

Exchanges the values allocated to each variable. Both variables must be of
the same type.

Example: A$="w":B$="e":SWAP A$,B$:? A$printse

TAB (Y)

66

~

A function which may only be used after either the PRINT or L PRINT statements.
TAB moves the print position to column Y - unless it is already to the right
of that column, when no action is taken. Y must be in the inclusive range
0 to 255.

Example: PRINT TAB(4);"ON 4th COLUMN"

TAN (Y)

A trigonometric function that returns the tangent of Yin radians.

TIME

A special integer variable that is set to zero on power up and incremented
every 1150th of a second (UK). The update occurs during the VDP system
interrupt which is suspended during tape input/output.

TRON / TROFF

The TRON statement causes each line number of the program to be printed
as it is executed. The TRON statement is accepted in either the direct or indirect
modes and is negated by the TROFF command.

Example: 10 TRON
20 REM
30 REM
40 TROFF

will print [20] [30] [40]

Z=USR (Y)

Variant: Z=USR x (Y)

USR x (Y) executes a call to the location specified by the DEFUSRx instruction.
The value of the expression Y is passed to the routine. If no argument is to
be transfered, a dummy value for Y must be given.

On completion of the machine language routine, the value passed back, is
assigned to Z.

At both the call and the return, the data element of the exchange value starts
at &HF7F6. The data type is indicated by the value in the accumulator:

Integer 2

String 3

67

Single precision 4

Double: precision 8

The location of a string element is communicated by the DE register pair.
The element consists of three bytes:

1. The number of characters in the string.

2 & 3. String storage location.

Example:
10 DEFUSR4=&HD000
20 Y=USR 4 (X)

VAL (Y$)

Returns the numeric value of the string Y$. Any preceeding spaces, tabs or
linefeeds are ignored.

VARPTR (Y)

Variant: VARPTR (# file number)

A function which returns the first location of the data table element of the
variable specified.

Any type of variable may be given. If the address returned is negative then
65536 must be addded to give the correct location.

See the section 'Program storage' at the end of chapter 2 for more detail.

VA R PTR (# f i le n umber) returns the first location of the file control block.

VDP (Y)

A special variable where Y must lie in the inclusive range O to 8. Values 0
to 7 return the value held by that VDP write only register. VDP(8) yields the
value in the VDP's status register. See the section on the VDP for more detail.

VPEEK (address)

Returns the value held in the specified VRAM location. The address must
lie in the range Oto 16383 inclusive.

VPOKE X,Y

68

¥
I

A function that places the value Y in VRAM location X. Y must lie in the
range Oto 255 inclusive.

WAIT port, byte value

Variant:WAIT port, byte value, mask

An instruction which pauses program execution until a byte is input from
the port specified. The byte must have a bit set in the same position as has
the byte specified in the statement.

The variant first logically ORes the input byte with the mask byte, then it
isAND'ed with the byte value.

All expressions must be integers in the range Oto 255 inclusive.

WIDTH text screen width

An instruction which sets the width (in columns) of the screen in either text
display mode.

The value allocated must be in the inclusive ranges:

1 - 40 in 40 * 24 text mode
1 - 32 in 32 * 24 text mode

Example: WIDTH 20

69

l
I

Chapter4

Z-80 Machine Language
Microprocessors. The Z-80 Architecture.
Instruction set. Address Modes.

Microprocessors
At the heart of each MSX system computer lies a Z-S0A microprocessor. This
unit is programmed directly using machine code and has three principle
capabilities:

i. Simple arithmetic.

ii. The movement of data between locations.

iii. Logic operations.

A machine code program called the BASIC interpreter is held in R.O.M. (Read
Only Memory). This compiles BASIC instructions into machine code
instructions which are then executed by the Z-80.

The ommission of this 'translation' stage permits a machine code program
to execute more rapidly than an equivalent BASIC routine. Hence, the
description of BASIC as a 'high level language' which supports commands
that are not intrinsic to the microprocessor.

So, speed is the main advantage of using machine language - but what are
the drawbacks? Whereas BASIC was designed to allow the computer to be
used and programmed with as little knowledge of the machine as was practical,
working at the machine language level requires a little more awareness of
what's actually going on and a familiarity with the binary and hexadecimal
number systems - a small inconvenience for the dazzling effects that may be
realised.

Right, we know that there is a Z-80 in there supported by a 9129 VDP and
A Y-3-8910 sound chip, but how does it all interconnect?

Communication between the units is via two main thoughfares: the address
and data buses. The address bus is sixteen lines or wires running between
the Z-80 and the ROM and RAM memory arrays. The data bus runs parallel

70

-

¥
t

but has only eight lines.

Using the 16 line address bus, the Z-80 can specify any location in the range
0 to 65535. Each location - whether RAM or ROM - can hold a number between
0and255.

When the Z-80 outputs an address on to the bus and indicates to memory
that a read and not a write is necessary, the number held by the address
is automatically placed onto the data bus. The processor then gates this into
an internal register.

Plainly, the system needs to be exactly synchronised and a timing reference
- a 3.57 MHz clock - is used. The clock is external to the Z-80.

The VDP also has access to the data bus to allow the CPU to pass data and
instructions. In addition, the VDP has 16K of RAM, which only it may access
directly. For this it has a 'private' bidirectional eight bit data bus.

From the mode instructions given by the processor and the contents of the
VRAM, the VDP builds up a video display. This is output directly to a monitor
or modulated to drive a domestic television.

On power up, the definitions of the character sets held in ROM are transfered
by the CPU (Central processing unit, the Z-80) to the VDP and from there
intoVRAM.

System Organisation
In dealing with memory areas of such size, it is convenient to break them
down into manageable blocks. A common division is into 'pages' each holding
256 addresses. The opening page is known as page zero and contains locations
0 to 255. The term 'page' may also be used to refer to a 16K block of memory.
The time taken by the CPU to transfer data to and from page zero is less
than when a page boundery needs to be crossed. As a consequence, most
small computers reserve zero page for system use.

Instructions to the microprocessor take the form of either one or two bytes.
If either data or an address need to be specified, one or two more bytes may
also be necessary.

Thus a machine language program takes the form of a continuous sequence
of instruction and data bytes.

Certain internal memory locations on the processor are accessible to the
programmer. The most useful include:

1. Program counter

2. Stack pointer

71

3. 2 Index registers: IY and IX

4. The accumulator or A register

5. Six general registers B to L

6. Flag register F

7. Interrupt and refresh registers I and R

8. An alternate register set A' to L'.

The registers from 1-3 are 16 bits wide and may hold any number in the
range O to 65535. The remainder are eight bits wide and are limited to values
in the inclusive range Oto 255.

Plainly, the processor must know where its instructions are located, and this
is the function of the program counter register, which holds the address of
the next instruction.

The flag register holds information on both systems status and the results
of certain operations. For example, if a subtraction resulted in a negative value,
the sign bit (S) would be set.

The flag register is used by the branch options in the instruction menu. These
reset the program counter to point to a new location if one of the flags is
either set or clear.

The two index registers IY and IX may each be loaded with any value the
programmer wishes - as long as it is in range. These registers are primairily
intended to hold the address of data or routines.

The six general registers: B,C,D,E,H,L, may also be loaded with any value
in range. Alternatively, they can be paired - BC, DE, HL - to be used as 16
bit registers.

The A register or accumulator has a special importance which results from
the system architecture of the Z-80. Most 8 bit arithmetic and logical operations
require one of the data values to be initially loaded into the accumulator. After
the operation, the result is placed in the accumulator.

Although this allows such operations to execute quickly, separate instructions
are usually required to first load and then tranfer data from the accumulator.
The Z-80 is also capable of 16 bit addition or subtraction. Here, the HL register
pair replaces the A register as the accumulator. The alternate register set can
be 'switched in' to replace registers A,B,C,D,E,F,H,L with A',B',C',D',E',F',H',L'.
Thus two register sets are available for immediate data storage/handling. In
practice, however, the second set is infrequently used - usually to enable
interrupts to be rapidly serviced.

72

Binary and Hexadecimal Representation

Before you skip this section try these two questions:

1. What are the binary representations of-34 and 0.02?

2. What is the decimal equivalent of &HOFDE?

Microprocessors were not designed to use the decimal number system, and
to program in machine language it is necessary to be fluent in both the
hexadecimal and binary number systems.

In decimal there are ten possible digits 0-9, in binary there are only two:
Oand 1, so any binary number is a string of l's and D's.

The other main difference is that instead of each column representing a value
ten times that of the column to its right, in binary it is double.

Decimal Binary representation
128 64 32 16 8 4 2 1

0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1
2 0 0 0 0 0 0 1 0 ,,

0 0 0 0 0 0 1 1)

4 0 0 0 0 0 1 0 0
5 0 0 0 0 0 1 0 1
6 0 0 0 0 0 1 1 0
7 0 0 0 0 0 1 1 1
8 0 0 0 0 1 0 0 0=8*1+4*0+2*0+1*1
9 0 0 0 0 1 0 0 1

100 0 1 1 0 0 1 0 0
200 1 1 0 0 1 0 0 0 = 128 + 64 + 8

Figure 4.1 Binary column values

To convert a binary number to the decimal equivalent, it is necessary to add
the values represented by the columns in which the number has l's. In figure
1.1, the binary equivalent of 100 is seen as 64 + 32 + 4. Each 1 or O is referred
to as a bit, a number with eight bits being termed a byte.

Clearly, the largest number that can be represented by an eight bit number
is 128+64+32+16+8+4+2+1=255. It is conventional to include D's to the full
eight bits for those values less than 255.

The right hand bit is called the least significant bit (l.s.b.) and the left-most
digit the most significant bit (m.s.b.). These abbreviations should not be

73

confused with M.S.B (Most Significant Byte) and L.S.B. (Least Significicant
Byte). For example, in a sixteen bit address:

1111111100000010

the l.s.b. is 0, the m.s.b is 1 and the M.S.B. is 11111111.

In the following chapters we will often need to refer to a specific bit within
a byte. It is conventional to number the bits as follows:

76543210

Binary addition and subtraction are straightforward with one exception - the
representation of a negative number. As no equivalent of the minus sign is
available, negative numbers are formed in a different manner. The method
of coding used is two's complement notation. This is obtained by taking the
absolute value of the negative number and converting it to it's binary form.
Each digit is then inverted and finally one is added.

For example, to obtain the two's complement of -12, take the binary
representation of it's absolute value (12) 00001100. Invert it: 11110011, and then
add 1 = 11110100. As the processor must be able to differentiate this from
244 decimal, which has the same representation, a limit is imposed on the
range of values: -128 to 127. This prevents any overlap occuring.

Operation

Negative value

Absolute value

Inverted form

Increment

Two's complement

Example

-121

121/01111001

10000110

00000001

10000101

Figure 4.2 Representation of negative values in signed binary

The division by two of a binary value is achieved by moving each bit one
position right. Therefore, to obtain the binary equivalent of 1/2, the byte
00000001 is shifted to give 0.1. Figure 4.3 shows the column values after the
binary point.

74

Decimal

0.5
0.25
0.125
0.0625
0.03125

fraction Binary

0.1
0.01
0.001
0.0001
0.00001

Figure 4.3 Binary fraction equivalents

Any eight bit number may be split to give two four bit 'nibbles' (Half a byte).
In isolation, each represents a value in the range 0 - 15. This is the basis
of a useful shorthand for binary data. Clearly, 16 different digits are needed,
and O - 9 are supplemented with the first letters of the alphabet representing
the values 10 - 15.

Decimal

Hexadecimal

012 3456789101112 1314 151617

0123456789 A BC DE F 1011

Figure 4.4 Hexadecimal notation

This method of representation is the Hexadecimal number system. For example,
to convert 56 decimal to hexadecimal, first take the binary equivalent: 00111000,
and extract the value of each nibble in isolation: 0011 and 1000 = 3 and 8.
The hexadecimal form is therefore 38.

This also illustrates the simplicity achieved over binary groups. To convert
two digit hexadecimal values to decimal, just multiply the left digit by 16
and add it to the righthand value.

You may have noticed that hexadecimal is a number system to the base 16.
To convert from decimal to hexadecimal, it is only necessary to break the value
down into the component powers of 16.

Hexadecimal
Column value
Evaluation

4
4096
4*4096+

3
256
3*256+

A
16
10*16

4
Actual
+4

Figure 4.5 Hexadecimal conversion to decimal notation

75

= 17316

Logical operations
Consider the following problem:

Given two 8 bit binary numbers, you are required to form another byte with
l's only in those positions in which both the original bytes have l's.

The answer? Simple, first load one value into the A register, then perform
the logical AND operation between it and the other byte. On completion the
result - the byte required - is returned in the A register.

The AND operation is one of three logical operations the Z-80 will perform,
which compare each bit of two bytes, & depending on the basis of that
comparison, form a new value in the accumulator. As we have seen, the AND
operation will place 0 in each bit position unless both comparison data also
contain a 1 in that column. The inverse operation to this is the OR instruction,
which only returns a 1 in any position if one or both of the initial data contains
a 1. The third instruction, XOR, is a cross between the previous two. It requires
both data to have dissimilar digits in order that a 1 result in the accumulator.

To the newcomer to machine code, these operations may seem unimportant
- not so - they are often required for certain calculations and the control of
particular functions.

Operation AND XOR OR

Condition for Both data hold Both data have One or both
a 1 to result a 1 in dissimilar digits data is a 1

the column in the column

Figure 4.6 The comparison basis of the logical operations.

The Z-80 Architecture
Zilog manufacture several versions of the Z-80 which differ in the maximum
speed at which they can run. For the Z-S0A in the MSX system, the maximum
clock speed is 4MHz (the Z-S0B may run at up to 6MHz).

In structural configuration the processor is a typical 40 pin Dual In Line Package
(D.I.L.P). The address bus requires 16 lines and the data bus eight. Principle
of the remaining pins are:

1. Power supply

2. Reset and interrupt pins: RESET, INT and NMI.

3. WAIT - pauses the processor, typically to allow memory to retrieve the
necessary data.

76

4. BUSREQ and BUSAK - control lines to allow other processors access to the
data and address buses.

5. RFSH - indicates that the lower 7 address lines are being used to refresh
part of memory.

6. Clock input pins.

7. Read and write (RD & WR) pins.

8. MREQ and IORQ pins.

In addition to being able to transfer data to and from memory, the processor
may input or output data to or from up to 256 8 bit ports. The control registers
of the principle system components are accessed in this way. This permits
most input/output operations to be initiated by the CPU simply writing to
the relevant port.

To gain the attention of the processor in order to carry out an urgent function,
a component may cause an 'interrupt'. The Z-80 then completes the current
instruction and branches to a handler routine. After this has been completed,
control reverts to the original program.

It is often not necessary to use the interrupt procedures if only use of the
address and data busses is required. The Z-80 is able to effectively isolate
itself from the address and data busses. The BUSREQ line requests use of
the busses from the CPU which acknowledges it is isolated using the BUSAK
line.

The MREQ line indicates that the processor is to perform a memory read or
write and has put an address on the address bus. IORQ goes low to either
acknowledge an interrupt or to indicate an I/O operation is taking place.

Internally the Z-80 comprises an Arithmetic Logic Unit (A.L.U.), control unit,
registers and read only memory. Their operation is best shown by looking
at a sample operation:

i. The address pointed to by the program counter is accessed and loaded into
the processor's instruction register. In our illustration it is 01111100 or decimal
124. This instructs the processor to load the accumulator (A register) with the
contents of the H register.

ii. The CPU increments the program counter to point to the next instruction.

iii. The byte in the H register is copied into the A register. This will overwrite
any previous value held.

iv. The next instruction is loaded into the processor

The entire operation completes in 4 T cycles (external clock periods). This gives
an indication of the tempo of the system - it also becomes clear why program
errors are often difficult to trace! Although, in comparison with many 8 bit

77

processors the Z-80 is well equipped with on-board registers, they are frequently
inadequate for stopng all the information we need on hand. Happily, the Z-80
provides a larger store - the stack.

The stack is a section of memory that may be used to store two byte elements
of data. The data stored is from any 16 bit register or register pair with the
exception of the program counter.

The stack is aptly named except that it is upside down! As each byte pair
is added or pushed onto the stack, the 'top' of the stack moves two locations
down in memory. The location of the last byte of the pair pushed is held
by the stack pointer register.

A drawback to the stack is that byte pairs have to be retrieved or 'pulled'
on a last in first out basis.

Example: The contents of the 16 bit IY register are pushed onto the stack followed
by the value in the BC register pair. To retrieve the first pair pushed, it is
necessary to first pull the BC pair. The stack is also used to store subroutine
and interrupt return addresses.

Before we introduce the instruction set, a few final words on the 256 I/O ports.
It is possible to read or write a single data byte to any port using the relevant
instruction. The processor uses the eight low order address lines AO to A7
to select the port (a memory read.or write does not occur as the IORQ line,
not the MREQ line, is asserted). The data byte is then placed onto the data
bus and is latched by either the Z-80 (READ) or the port (WRITE).

The Z-80 Instruction Set

The Z-80 has 158 types of instruction which Zilog group into 11 categories.
Before considering these, it is necessary to look at the main methods used
to input or write machine language programmes.

A quick look in the computer press will reveal that there are two common
methods of documenting machine language routines. The most popular is
simply to list the component hexadecimal byte values. The user simply pokes
these into memory. The program is then run by calling the first location with
the BASIC US R instruction.

The bytes are known as the object code. In this format, the sequence may
be directly processed by the Z-80.

However, to manually poke each byte into memory is both a laborious and
error prone process. A simple solution is to write a short BASIC routine which
accepts two digit hexadecimal numbers. The program then automatically pokes
the decimal equivalent into a sequence of locations. This is known as a hex-

78

loader, an example of which is given below:

HEX-LOADER

200 SCREEN 1:COLOR 10,1,1:CLS
210 LOCATE 2,2:?"HEX LOADER FI TO FINISH":?
220 INPUT"START LOCATION";ST
230 SW=ST-1:?
240 SW=SW+1:?SW;" ";HEX$(SW);" ??";
250 ?CHR$(29);CHR$(29);
260 A$=INPUT$(2)
270 IF A$="FI" OR A$="fi" THEN 320
280 A$(1)=MID$(A$,1,1):A$(2)=MID$(A$,2,1)
290 IF INSTR("0123456789ABCDEFabcdef",A$(1l)=0 OR
INSTR("0123456789ABCDEFabcdef" ,A$(2))=0 THEN 260 ELSE ?A$;
300 A=VAL("&H"+A$):?" ";A
310 POKE SW,A:?:GOTO 240
320 ?:?:?:?"START ";ST;" END ";SW-1

If the machine language program is of significant length, the process of looking
up the byte code(s) for each instruction is not practical and it becomes necessary
to use an Assembler.

An assember program enables a routine to be written using mnemonics for
the operations and if necessary, strings for addresses. The source file is then
converted into object code by the assember. Once a familiarity with the relevant
mnemonics has been gained, the production of machine code is almost as
simple as writing a BASIC program. The source file usually consists of numbered
lines each containing one or more machine language instructions. All respectable
assemblers allow the screen editor to be used and feature single letter commands.

Almost all commercial assemblers consist of three packages:

1. Assembler

2.Monitor

3. Disassembler

Once the source file is complete, it is assembled into code at the position
specified. The file is then saved as it may contain errors which can necessitate
the computer being switched off before it can be reused. Finally, the monitor
is entered to run the program - one instruction at a time, if necessary. The
disassember is used to examine and alter areas of memory and is usually accessed
from the monitor.

In addition to these principle operations a set of secondary functions will be
provided, typically moving/saving/loading blocks of memory, search operations
for strings etc.

The package chosen will be determined by the programming task to be
attempted. The price range is considerable - from a few pounds upwards.

79

For casual use a tape based system will suffice, but for the more serious
applications a cartridge based package is almost obligatory. The main reason
is that almost all machine language programs will initially contain errors, and
reloading the package after each unrecoverable crash can become a source of
some irritation.

Although there are 158 instruction types supported by the processor, there
are 666 individual opcodes. This arises since most instruction categories contain
a range of operations, each of which performs an identical function but specify
the data address in different ways.

The Z-80 supports ten addressing modes which we will examine more closely
in the next section. The instruction menu may be divided into the following
categories:

1. Eight and sixteen bit load operations.

2. Eight and sixteen bit arithmetic operations.

3. Eight bit logical instructions.

4. Rotate and shift operations.

5. Bit instructions.

6. Branch and subroutine operations.

7. Block transfer and search operations.

8. CPU control and I/O instructions.

Eight and sixteen bit load operations

An eight bit load instruction will copy the contents of one register or memory
location into another register or memory location. The sixteen bit instructions
perform an equivalent operation between a 16 bit register and memory or
another register.

Note that when a sixteen bit value is stored from a register to location X,
the high order byte is placed in location X + 1 and the low order byte in location
X. Similarly, if a 16 bit register is loaded with the two bytes from location
X, then the value in location X + 1 is copied into the most significant 8 bits
of the register and location X into the least significant eight bits.

The Zilog assembler mnemonic for this operation is LD X,Y where Y is the
byte which is copied into location or register X.

Examples:

LD A, B Load the A register with the contents of register B.

80

•
LD H, A Load the H register with the contents of register A.

LD B,40 Load the B register with 40.

If an operand is enclosed by brackets, it refers to the address of the data to
be used.

LD A, (40) would load the accumulator with the value held in location 40.

Similarly, LD B, (H L) would load the B register with the byte in the location
held by the HL register pair. Finally, two examples of 16 bit loads:

LD HL,(40) which copies the value held by location 40 into the L register
and that held by location 41 into the H register.

LD I Y, 2 2 loads 22 into index register IY.

Eight and sixteen bit arithmetic instructions

The simplest of these are the increment and decrement instructions. These
either increase or decrease the data specified by one. The respective mnemonics
are INC and DEC.

Examples:

INC A will add one to the value in the accumultor.

DEC IX decreases the value held by the index register IX by one.

There are two mnemonics for both addition and subtraction: ADD, ADC, SUB
and SBC. ADD and SUB are fairly straightforward. The A register is used to
accumulate the result of 8 bit operations and the HL register pair for 16 bit
operations. For example to add 5 and 4, the A register is first loaded with
one value:

LD A,4

and then added to 5:

ADD A,5

The result is returned back in the A register. As we mentioned earlier, for
either 8 bit addition or subtraction, it is obligotory to use the A register. Similarly
for 16 bit arithmetic, the HL register pair must be loaded with one of the
original values and returns the result (the exception which proves the rule
is that an index register may be used as the accumulator for one category
of 16 bit addition).

Example: ADD HL,BC adds the contents of BC to the value in the HL register
pair. The result is placed in HL.

81

The mnemonics ADC and SBC stand for AdD with Carry and SuBtract with Carry.
The 'carry' is a bit or flag in the Flag register. The flag is set if an addition
produced a result too large to be held by the accumulator or a subtraction
operation required a carry.

When an ADC is executed, the data specified, plus the carry is added to that
in the accum,ulator. For example ADC A, 4 would, if the carry flag was set, add
five to the value in the A register.

The instruction set includes two operations which directly amend the carry
bit:

1. CCF : The flag is complemented

2. SCF: The flag is set to 1.

Note that there is no SUB operation provided for 16 bit data. Therefore, it is
not necessary to specify the A register when using the 8 bit SUB mnemonic.

Example: SUB 4 decrements the accumulator by 4.

Eight bit logical operations

All six types require one of the two data values to be placed in the accumulator
prior to the operation. The result is also returned in the accumulator.

Three of the operations were introduced earlier in the chapter:

1. AND

2. OR

3.XOR

The other three are:

1. CP: Compare

2. CPL: One's complement

3. NEG: Two's complement

CPL simply inverts each bit in the accumulator. NEG also inverts each digit but
increments the outcome to give the two's complement of the original value.

CP is unusual in that the data given is subtracted from that held by the
accumulator. However, the result is not returned. Instead, the value in the
accumulator is left unchanged, and several flags in the F register are updated:

1. The ZERO bit is set if the value in the accumulator is equal to the data
specified. For example CP 4 will set the Z flag (zero) if the accumulator holds
4, otherwise the flag is cleared.

82

2. The sign bit (S) is set if the comparison data has a larger value than that
held by the accumulator. Additionally, the N flag is set and the H, P/V and
CY flags are updated.

Examples:

AND 128 will logically AND the accumulator with 10000000.

C PLinverts each digit in the accumulator.

Rotate and Shift operations

If a binary value is shifted one column left, its value is doubled. This shifting
or rotating of a byte is the only form of multiplication or division which the
processor is capable.

The Z-80 has three shift and eight rotate operations, all of which operate only
on eight bit data. When a byte has each bit shifted in one direction, one
end bit is displaced and another is left vacant. The carry bit is used to replace
and/or store the displaced or vacant bits depending on the instruction used.

The eight rotate operations consist of four instructions which only rotate the
byte in the accumulator, and a duplicate set that perform the same operations
on any register or memory location:

1. R Land R LA: Perform an identical operation albeit the RLA operation is specific
to the accumulator. Each bit is moved one position left. The vacant l.s.b. is
filled with the carry bit and the displaced m.s. b. is placed in the carry bit.

Examples: R L B
RL (HL)

RLA

2. RR and RRA: As for RL and R L~ except the rotation is to the right.

Examples: RR H
RR (HL)

RRA

3. RLC and RLCA: Here the displaced m.s.b. is placed in both the carrry and
the l.s.b.

Examples: R LC (H L)

RLC A
RLCA

Note that both RLC A and RLCA perform the same operation. However, as with
many operations, the result updates several bits in the Flag register. RLCA and
RLC A do not update the same flags.

4. RR C and RR CA: As for R L C and R L CA except the rotation is to the right.

83

The three shift operations are:

1. s LA: Shift left arithmetic

Each bit is shifted left with the displaced m.s.b. placed in the carry and the
l.s.b. set low.

Examples: S LA A
SLA CHU

2. SR L: Shift right logical

Each bit is shifted right with the l.s.b. placed in the carry and the m.s.b. set
low.

Example: SRL D

3. SRA: Shift right arithmetic

This is a true arithmetic shift in that the m.s. sign bit is not altered. The
byte is shifted one position left with the displaced l.s.b. placed in the carry.
The m.s.b. is unaltered.

Examples: SRA A
SRA CHU

In addition, there are two binary-coded decimal (B.C.D.) instructions RLD and
RRD.

Bit Operations

There are two of these, SET and RES, which set or clear a specific bit in a
given location.

Examples: SET 4, A sets to 1, bit 4 of the accumulator.

RES 6, (H L) resets to Obit 6 of the location held by register HL.

The BIT instruction is used to test a specific bit in a register or location. The
Z flag is set to the complement of the target bit which is not affected.

Branch and Subroutine operations

Six of the bits in the flag register are used as flags, the remaining two bits

84

¥
'

are vacant:

SZHPNCY

llli t larry
Add/subtract

Parity /Overflow

Z Halfcarry
S. ero
1gn

Figure 4. 7 The Flag register

Many of the operations that the Z-80 will execute, set or reset certain flags
according to the result.

The sign flag, S, is a copy of the most significant bit of a result. This is set
when a negative value (two's complement) occurs. The zero flag is only set
when a result is zero. If an operation is given by appendix D as one which
updates the zero flag, then a non zero result will clear the flag.

The half carry and add/subtract flags are used in operations on B.C.D. values
and are of little interest to the non-specialized programmer.

The parity/overflow flag is unusual in that it is set or reset by certain instructions
according to one criteria whilst another set of instructions use an alternative
criteria.

If the flag is updated according to the parity of a result, it is reset if the number
of ones contained is odd, otherwise it is set. As an overflow flag, it is set
if an addition or subtraction operation caused bit 7 to be changed erroniously.
In signed binary, all negative values have the m.s.b. set. An out of range result
may cause this bit to be incorrectly inverted. The overflow flag enables such
a situation to be detected.

As we mentioned earlier, the flag register is used by the conditional jump
instructions. If a particular flag is either set or clear then the jump is made,
otherwise program execution continues with the next instruction.

The two principle jump instructions are J R (Jump Relative) and J P (JumP).
Both may be conditional or forced. The JR instruction is accompanied by a
displacement byte containing the number of bytes to be jumped from the
address held by program counter. The displacement may be upto 127 locations
forward or 128 locations back. In the case of a negative displacement, the two's
complement form is used.

85

Examples: J P 40000 forces a jump to location 40000 by simply loading that
address into the program counter. J R -120 updates the program counter to
point to a location 120 bytes back from the instruction that would next have
been executed.

The condition codes which may be used with either type of instruction are:

1. Zand NZ: JP Z,40000 would force a branch if the Z flag was set. JR NZ,20
would, if the zero flag was clear, force the relative jump.

2. C and NC: The branch is made if the carry flag is set or clear, respectively.
The J R instruction may only use the Z, NZ, C and NC conditions.

3. PO and PE: The jump is made if the parity/overflow flag is set or clear,
respectively. This condition may only be used with the JP instruction.

4. P and M : Again these may only be used by the JP instruction, and force
the branch if the sign flag, S, is either clear or set, respectively.

Examples: J P P, 2 2000 forces a jump to the location if the sign flag is clear.
J P PO, 12000 executes the jump if the overflow flag is set.

One final branch instruction is DJ NZ which decrements the B register and makes
thejumpifitisnotzero.ForexampleDJNZ - 20.

The Z flag may be set or reset by using the BIT instruction. This tests a specific
bit in a register or location and if it is clear, the Z flag is set, otherwise the
flag is cleared. For example BIT 4, A will set the Z flag if bit 4 in the accumulator
is clear.

Subroutines are implemented using the CALL and RE T instructions. Both
operations may be made conditional by the use of any of the conditions utilised
by the J P instruction.

Examples: CALL 20000 forces a jump to the subroutine at 20000 until a RET
instruction is encountered. The return address is kept on the stack. A conditional
call takes the form CALL NZ, 12000 and a conditional return: RET Z.

A variant of the CALL instruction is R ST x where x is a multiple of eight in
the inclusive range O to 56. This simply performs a subroutine call to location
X.

For example RST 24 performs a call to location 24.

Block transfer and search operations.

There are four tranfer and four search instructions. The transfer instructions
allow blocks of data to be moved with no effect on the accumulator:

1. LD I R : The first location of the block of data to be moved is placed in register
pair HL and the number of bytes in the block in BC. Finally, before the

86

instruction is used, the destination address is placed in DE. As each byte
is transferred, BC is decremented and HL and DE are incremented. When
BC is equal to zero the transfer is terminated.

2. LDDR : Essentially the same as LDIR except that the addresses placed in HL
and DE are decremented after each transfer.

3. L DI : As for L DI R except only one byte is transfered.

4. LDD: As for LD DR except only one byte is transfered.

Example: To copy a block of twenty bytes at 12000 to 14000:

LD HL,12000
LD BC,20
LD DE, 14000
LD I R

This could also be achieved using the LDDR instruction by loading HL with
12019 and DE with 14019.

The search instructions check through a block of data until a match is made
with the value in the accumulator:

1. CPI R : BC is loaded with the block length and HL with address of the first
byte in the block. Finally, the comparison value is placed in the accumulator.
The search terminates when BC is zero or when a match has occurred. The
zero flag indicates which:

If set: A match was made between the accumulator and data byte.

If clear: BC had been decremented to zero.

2. CPD R : As for CPI R except the search precedes down in memory from the
address in HL rather than upwards.

3. CPI : As for CPI R albeit only one byte is checked.

4. CPD: As for CPD R only one byte is checked.

Note that in all block move and transfer operations, the P/V flag indicates
if the count has reached zero:

IfBC = 0 the P /V flag is cleared.

IfBC< >0 the P/V flag is set.

87

.,
I

Example: To search for a byte with value 4 in the 120 byte block from location
42000.

LD BC,120
LD HL,42000
LD A,4
CPIR

If on completion the zero flag is set then the HL register pair contains the
address of the target byte.

CPU Control and 1/0 instructions

The CPU control group may be divided into four sections:

1. Exchange operations.

2. The NOP and HALT instructions.

3. Stack operations.

4. Interrupt and 1/0 operations.

1. Exchange operations.

There are two exchange instructions. EXX swaps the contents of the three register
pairs BC,DE and HL with their alternate set equivalents BC',DE' and HL'.
The second, EX, is used to exchange the value held by two sixteen bit registers.
It has four variants:

i. EX A F, A F' .. exchanges the A and Flag registers with A' and F'.

ii. EX DE, H L .. simply swaps the value in the DE register pair with that in
the HLpair.

iii. EX (S P), I Y & EX (S P), IX .. exchange the index register with the two top
bytes of the stack.

iv. EX (SP) ,HL .. as for iii. except that the HL register pair takes the place
of the index register.

2. The NOP and HALT instructions

The NOP (NO oPeration) instruction does nothing for four T states. It is often
used to either replace redundant code or to fill an area that may be required
for future expansion.

The HALT operation causes the processor to continuously execute NOP's until
the occurence of an interrupt or RESET. NOP's are performed to allow the Z-80

88

r to continue to ,dresh dynamic RAM. The refresh <cgiste, is automatically ! incremented after each instruction has been fetched from memory. The value
•. held constitutes the low order byte of the section of memory to be refreshed.

3. Stack operations

All stack instructions operate on 16 bit data. The contents of any register pair
may be either PUSHed onto the stack or loaded with the top two bytes POPped
from the stack. The PUSH operation does not alter the contents of a register.

After the operation has completed, the stack pointer register holds the address
of the byte on the top of the stack. Hence, if the stack pointer holds X, the
high order byte of the last register pushed was placed in location X-1 and
the low order byte in location X.

Examples:

PUSH BC, POP BC, PUSH IY, POP IY.

The stack pointer register may be manipulated directly using INC, DEC or
LD.

Example: INC SP: INC SP will update the pointer two locations. As the stack
moves down in memory, the top 16 bits of the stack are therefore lost.

4. Interrupt and 1/0 operations.

Interrupt operations: An external component may temporarily interrupt the
processor's normal execution activities. This is achieved using any one of four
of the Z-SO's control lines:

1.BUSRQ

2.RESET

3.NMI

4.INT

1 - 3 are seldom, if ever, used by the programmer. BUSRQ, introduced earlier
in the chapter, permits another processor to use the system address and data
busses. RESET is used lo initialise the system on power up. The I and R registers
are set to zero prior to the commencement of program execution from location
0.

The Non Maskable Interrupt forces the processor to make a special subroutine
call to location &H66. In the MSX configuration this location is allocated for
use by the disc operating system and consequently the NMI will rarely be
implemented.

The INT line may initiate any one of three sequences. The mode is selected
by the programmer with the appropriate instruction: IM 0, IM 1 or IM 2.

89

In each case, the contents of the program counter register are saved too the
stack and a jump made to a specified location. When a RETI (RETurn from
Interrupt) instruction is encountered, the program counter is loaded with the
return location and execution of the interrupted routine is re-commenced.

The INT input is checked by the Z-80 after each instruction executed. The
input is level - not edge - sensitive. Thus the interrupting device must not
continue to hold the line low, unless another interrupt is necessary.

The processor has two internal flip-flops which feature in the interrupt process:
IFFl and IFF2. If IFFl is set to a logical 0, any INT request to the processor
is ignored. If it is set to a logical 1, the maskable interrupts are enabled.

The programmer may set both the IFFl and IFF2 states using the EI (Enable
Interrrupt) or the DI (Disable Interrupt) instructions. IFF2 is used to store the
state of IFFl during a NMI, when IFFl is set to disallow any INT requests.

The address of the routine executed is selected by different means for each
of the three INT modes:

Mode O Interrupt: Enabled by the IMO instruction.

1. IFFl and IFF2 are set to a logical 0. This negates any re- entrancy problems.

2. The Z-80 acknowledges the interrupt on the next clock pulse by taking two
control lines low: IORQ and Ml.

3. The component places a one byte opcode onto the data bus. This may be
either a R ST or a CALL instruction.

4. If a RST opcode is given, the contents of the program counter register are
placed on the stack and a jump is made to the relevant zero page location.

5. After a call opcode, the component must place two further data bytes onto
the data bus. The routine at that address is then executed after the PC register
has been placed onto the stack.

6. When a RETI instruction is encountered, the two top data bytes on the stack
are loaded back into the program counter. The RETI instruction does not set
IFFl to a logical 1 and interrupts must be re-enabled with the EI opcode.

Note that a RET instruction may also be used to force a return to the initial
routine. However, certain components are capable of detecting that the Z-80
has fetched a RETI instruction from memory. This capability may be used
to remove the initial interrupt request.

Mode 1 interrupt: Enabled by the IM 1 instruction.

The initialisation sequence performed by an MSX computer on power up selects
this mode. The sequence executed after an enabled request has been made

90

•
is as follows:

1. The IFFl and IFF2 flip-flops are set to a logical 0.

2. The contents of the PC are placed on the stack.

3. Program execution continues from the instruction at &H38.

4. When a RE TI opcode is encountered, the top two bytes of the stack are
pulled into the program counter, and execution of the interrupted routine re­
commences.

Note that to re-enable maskable interrupts, IFFl must be set to a logical 1
with the EI instruction.

Mode 2 Interrupt: Enabled by the IM 2 instruction.

Mode 2 is the most flexible of the three INT modes. It allows a component
to access upto 128 separate routines. After the interrupt is acknowledged by
the processor, the initiating component places a single byte onto the data bus.
This is joined to the byte in the I register to give a 16 bit address:

I Register byte/ Component byte
bbbbbbbbbbbbbbbb

The two byte pointer at this address gives the location of the routine that
is to be executed:

16 bit address

I H.O.B>
~ 16 bit pointer to

L.O.B the service routine.

The sequence executed is:

1. IFFl is set to a logical 0.

2. The Z-80 acknowledges the interrupt by asserting the IORQ and Ml lines.

3. The component places a data byte on the data bus.

4. The current execution address held by the progam counter is placed on
the stack.

5. The routine given by the pointer at the computed location is executed.

6. When a RETI instruction is encountered, the top two bytes of the stack are
pulled into the program counter register, and the interrupted routine is
continued.

91

Input/Output operations.

This group has two sets of instructions for the input or output of data to
or from an 8 bit port.

1. Single byte 1/0:

The two mnemonics are IN and OUT. Each has two forms, the first may only
use the A register and the second, any of the following: A,B,C,D ,E,H or L.

If the accumulator specific form is used, the port must be given in brackets:
IN A, (port l. The second form uses the C register to select the port: OUT (Cl,
register.

We briefly discussed the 'mechanics' of the 1/0 operations earlier in the chapter.
The Z-80 outputs the port number onto the least significant eight lines of
the address bus prior to placing the data byte onto the data bus.

However, it is noted that both the IN A, (port) and OUT (port), A instructions
also place the contents of the accumulator onto the address lines A15 to AS.
Similarly, the IN register,(Cl and OUT(Cl,register operations, place the
contents of the B register onto the upper address lines. This allows for more
than 256 ports to be utilized - if the relevant decoding hardware is available.

2. Block 1/0 instructions:

The block of data may contain from one to 256 bytes. This group contains
four pairs of two instructions, and is similar in style to the block transfer
and search groups:

i. IN I Rand OT I R : The initialisation data required is:

a. Port number in the C register.
b. First data location in HL.
c. Block size in the B register.

The HL register pair is incremented after each transfer. If the B register has
been decremented to zero the Z flag is set.

ii. INDR and OTDR : As for INIR and OTIR except that HL is decremented
after each transfer.

iii. INI and OUTI : As for INIR and OTIR except that only one transfer occurs.
HL is incremented and the B register is decremented.

iv. IND and OUTD : As for INI and OUTI except that the HL register is
decremented after each transfer.

Addressing Modes

As we have seen, each instruction mnemonic may specify the location of the

92

-

target data in one or more ways. Although the Z-80 has ten address modes,
it is unnecessary for each type of instruction to have a variant for each mode.
The reader will find the majority of formats - many of which have already
been introduced - to be straightforward:

1. Implied: No address is necessary - it is implicit to the instruction.

Example: NEG

2. Immediate: The actual 8 bit data is given rather than an address.

Example: LD A,2

3. Extended immediate: The actual 16 bit data is given rather than an address.

Example: LD HL,20000

4. Relative : This mode is only used by the jump relative and DJNZ instructions.
The byte following the instruction contains a signed value in the inclusive
range -128 to 127. This displacement is added to the address in the program
counter to give the new execution address.

Example J R 20

5. Register: The target data is held by the specified register.

Example LD A,B

6. Register indirect : An index register or register pair holds the address of
the target data. The register or register pair is given in brackets.

Example:LD A,(DE)

7. Extended : The address of the data is given in brackets.

Example: LD A,(4000)

8. Indexed : Essentially the register indirect form with a displacement to be
added to the address held by the index register.

Example: LD A, (I Y+5)

9. Modified page zero : Only the RST instructions use this format. A call
is made to the location specified. This must be a multiple of eight in the
inclusive range Oto 56

Example: R ST 8

10. Bit : The bit mode is unusual in that it specifies a bit and not a byte.
The bit mode is used by three types of instruction: BIT, SET and RES. The

93

bits are numbered as follows:

X
7

X
6

X
5

Example: SET 4,A

X
4

X
3

X
2

X
1

X
0

The stage has now been reached when the readers may wish to try a few
of their own routines. The following guidelines may be helpful:

1. Always save a machine code program before a trial run. If it contains a
bug, the machine will probably hang up and need to be switched off before
it may be re-used.

2. A routine is unlikely to operate correctly straight away. If you are lucky,
one or two sections may perform as expected. Patience is the keyword.

3. If combining a M/C routine with a BASIC program, it is easier to use a
BASIC loop to poke the code into position, rather than loading & saving two
programmes separately.

If values are to be passed between the two, then unless the resident F.P. routines
are to be utilized, peeks and pokes are to be used in preference to the USR
function.

4. Generally, M/C routines require more debugging than their BASIC
counterparts, and it is sensible to structure the program into small sections,
each of which is called by a core program.

94

Chapters

The MSX Configuration
The basic MSX specification calls for a Z80 CPU (or equivalent), clocked at
3.5 MHz, supported by a Texas Instruments TMS-9929A Video Display
Processor, (TMS-9918A in America and Japan) and a General lnstuments A Y-3-
8910 Sound Chip.

In addition to this the specification also calls for an Intel 8255 Programmable
Peripheral Interface, which handles keyboard scanning and manages the
memory paging system. The specification is completed by 32 Kbytes of MSX
BASIC and operating system ROM and by a minimum of 8 Kbytes of user
RAM (although for the European market it would seem very unlikely that
any machine will be released with less than 32 Kbytes of RAM). Further the
VDP is provided with 16 Kbytes of dedicated Video RAM which it uses for
storage of the screen memory, colour, and sprite definitions. The usage of
this 'VRAM' will be fully discussed in chapter 6.

MSX Memory Management

Central to the understanding of the MSX systems memory management is
the concept of 'slots' which I shall now briefly describe.

Since the Z80 is only an eight bit processor its maximum address space is
only 64 Kbytes; however the MSX system is designed to be able to access
up to 1024 Kbytes and so the system of 'slots' is used.

A 'slot' is one set of 64Kbytes address space of which the MSX system may
address four. Each of these four 'primary slots' may be further expanded into
four 'secondary slots' thus giving a total addressable space of 4*4*64 =1024
Kbytes. Each slot (primary or secondary) is further subdivided into four 16Kbyte
pages which are the basic units that the MSX system uses to create its address
space. Whatever slot they may happen to be in the four pages start at addresses
0000H, 4000H, 8000H, and 0C000H. Pages may only ever be addressed at their
respective page addresses (page 0 at 0000H, page 1 at 4000H et seq.). Thus
the MSX system may select any page from any slot but must always select
page Oto be addressed from 0000H, and page 3 to be addressed from 0C000H.

Primary slot selection is performed by writing to port A of the 8255 PPI in

95

the following format;

Bits: 76 54 32 10
:10:01:11:00: PortA8255

Page3t I \ ~eOS!ot
Page 2 Slot Page 1 Slot

Since each slot allocation is allowed two bits of the register it follows that
each allocation may vary numerically between O and 3 (00B and 11B) thus
allowing selection of any of the four primary slots for each of the four pages.
Selection of the secondary slot is performed by writing, in the same format,
to location OFFFFH of the primary slot. When reading this register the value
returned is the complement of its actual value.

On power up or Cold Start the MSX system (which is resident in slot O and
is therefore the first slot read by the CPU) searches for the largest contiguous
area of RAM from OFFFFH downwards and selects tht area for pages 3 and
2. Under normal circumstances therefore it will not be necessary for the
programmer to perform slot selection, except in the case of a 64 Kbyte or greater
RAM system where RAM will be mapped over ROM, or where cartridge based
software is being written to run in slots other than 0.

Accessing the Sound Chip, VDP and PPI
The ZSO in addition to being able to address 64 Kbytes of memory is also
provided with the ability to address 256 i/o ports. These are used to address
the VDP etc. (including the RS232 and other system expansions). However,
in order to allow hardware modifications, BIOS (Basic Input/Output System)
calls have been provided in the MSX system ROM. These allow access to the
MSX system chips in such a way that if in one MSX unit one of the chips
occupies a different position this may be compensated for in firmware. The
difference is transparent to the programmer and ensures complete software
compatibility. The only exception to this rule is the VDP which will be fully
discussed later.

The VDP a General Introduction

The Texas Instruments TMS-9929A Video Display Processor is a microprocessor
in its own right. It is responsible for all screen handling and accesses 16 Kbytes
of dedicated Video RAM. This RAM holds all character definitions, the screen
data, colour data, sprite definitions aand sprite attributes. This frees system

96

RAM for use in programming (the penalty paid being a reduction in the speed
at which Video RAM may be accessed). Under normal circumstances, howeve,
this reduction is not critical. In critical situations various tricks, which are
discussed in chapter 6 may be used.

The VDP has four display modes: Graphics I, Graphics II, Multicolour and
Text mode. The text mode provides twenty-four 40-character rows in two colours
and was designed to maximise the text display capabilities of the domestic
television. The multicolour mode provides an unrestricted 64*48 colour dot
display using fifteen colours plus transparent. Graphics I mode provides a
256*192 pixel display for generating pattern graphics in 15 colours plus
transparent. Graphics II mode is an enhancement of Graphics I mode allowing
more complex colour and pattern displays.

The video display consists of 34 planes stacked vertically. The innermost plane
is the backdrop plane, the next innermost i_s the pattern plane (containing
Graphics I and II patterns) and over these lie the 32 sprite planes.

In addition to the video handling the VDP also keeps user RAM refeshed
and provides an Interrupt Request every 20ms. For more complete details of
the VDP and its programming refer to chapter 6.

The General Instruments A Y-3-8910 Sound Chip

The GI A Y-3-8910 is a three voice, eight octave sound chip incorporating a
simple hardwaare volume envelope and the ability to mix white noise into
any or all of the three voices. The chip also incorporates 2 i/o ports which
are used by the system to read the joysticks, games paddles, and touchpads.
For a description of programming this chip refer to chapter 7.

The Intel 8255 PPI

The 8255 PPI is a very powerful general purpose i/o chip used in the MSX
system for several purposes. It is responsible for handling the keyboard
(including any extension keyboards), the caps lamp, various cassette i/o
functions, the memory management system and provides a 1 bit sound port.

A more complete description of this chip and its varying uses follows in chapter
8.

Interrupt Handling and 'RAM Hooks'
Many MSX ROM routines are indirected through RAM by means of 'hooks'.
In the MSX system a 'Hook' consists of 5 bytes of RAM initilised to contain
a 280 'RET' instruction (0C9H). Indirection is performed by the relevant ROM
routine by means of a 280 'CALL' to the hook. It is therefore a simple matter
to redirect the CALL by inserting a 280 'JP nnnn' into the first three bytes of
the hook.

97

The MSX system runs under interrupt mode 1 and provides two hooks for
handling IRQs.

Firstly a hook is provided at 0FD9AH for handling IRQs which originate in
devices other than the VDP timer. In the basic MSX system this hook is of
little use, but is provided for later eexpansion. Secondly the hook at 0FD9FH
is provided t-o handle interrupts generated at frame flyback by the VDP. This
is the only interrupt available in the basic system. The VDP interrupt also
handles the keyboard scan and various other operating system functiQns. It
is essential that any user routine return to the calling operating system r6utin,
in order to cleanly handle the interrupt.

The operating system pushes all registers (including the alternate set) onto
the stack before calling the hook at 0FD9FH, so all registers may be used with
impunity. However the operating system also fetches the contents of the VDP
status register in the accumulator before calling the hook and so it is essential
that any user routine not modify the AF pair. On return from the hook the
operating system stores the value of the accumulator in location 0F3E7H and
it is preferable to read this location, rather than the VDP status register direct,
when checking any of the VDP status bits in any user routine which is not
interrupt driven.

In addition to these hooks the system also provides a hook at 0FDD6H for
handling NMis. This is of little readily apparent use since the basic system
provides no NMI and in the disc system the NMI entry vector at 66H is occupied
by File Control Block data for the Disc Operating System.

In user applications NMI handling may be necessary and so this hook is
provided for flexibility.

The following program will set up an interrupt driven real-time clock and
is provided as an example of user IRQ handling.

Example Program Real Time Clock

WRTVDP EQU
RDVRM EQU
WRTVRM EQU
FILVRM EQU
LDIRVM EQU
LDIRMV EQU
CHGET EQU
CHPUT EQU
GTSTCK EQU
GTTRIG EQU
RDVDP EQU
SNSMAT EQU
VDPRGS EQU
BASNOS EQU
INTHOK EQU

47H
4AH
4DH
56H
SCH
59H
9FH
0A2H
0D5H
0D8H
13EH
141H
0F3DFH
0F3B3H
0FD9FH

;TABLE OF BIOS CALLS

;END OF BIOS TABLE
;MSX SAVE AREA FOR VDP REGISTERS
;START LOCATIONS FOR VDP TABLES

98

-

sq

ORG 0E000H

START: LD HL,MESS
MPLP: LD A, (HL)

CP I$ I

JR Z,GETIN
CALL CHPUT
INC HL
JR MPLP

GETIN: LD HL,HHMMSS
LD B,3

GTINOL: CALL GETNUM
LD (HL) ,A

GTINIL: CALL CHGET
CP I. I

JR NZ,GTINIL
INC HL
DJNZ GTINOL
LD A,LOW CLOCK
LD (INTHOK+1) ,A
LD A,HIGH CLOCK
LD (INTHOK+2) ,A
LD A,0C3H
LD (INTHOK) ,A
RET

GETNUM: CALL CHGET
CP '0'

GTNUM1:

MESS:
HHMMSS:
CTR:
CLOCK:

JR C,GETNUM
CP I. I

CALL CHPUT
SUB '0'
SLA A
S LA A
S LA A
S LA A
LD B,A
CALL CHGET
CP '0'
JR C,GTNUM1
CP I. I

JR NC,GTNUM1
CALL CHPUT
SUB '0'
ADD A,B
RET
DEFB I ENTER TIME
DEFB 0,0,0
DEFB 0
PUSH AF
LD A,(CTR)
DEC A

;SET HL TO POINT TO INPUT PROMPT

PRINT PROMPT

;GET 2 NIBBLE NUMERIC
;STORE IN HHMMSS
;GET CHARACTER
;IS IT THE SEPARATOR
;IF NOT TRY AGAIN
;POINT TO NEXT IN HHMMSS
;DO IT THREE TIMES
;SET UP ...
;JP ADDRESS

;=280 'JP'

;TO BASIC, HAVING REDIRECTED THE HOOK

;GET CHARACTER

;IS IT NUMERIC?
; PRINT IT
;CONVERT TO NUMERIC

;MULTIPLY BY 16

;PRESERVEE IT IN B
;GET CHARACTER

;IS IT NUMERIC?
;IF NOT TRY AGAIN
; PRINT IT
;CONVERT NUMERIC
;ADD IT TO B
;RETURN WITH NUMBER IN A

HH:MM:SS:$'

;PRESERVE VDP STATUS

99

LO (CTR),A
JP P,OUT
LO A,49
LO (CTR),A
LO IX,HHMMSS
LO A,CIX+2)
INC A
DAA
LO (IX+2),A
CP 60H
JR NZ,CLKPNT
XOR A
LO (IX+2),A
LO A,(IX+1)
INC A
DAA
LO (IX+1l,A
CP 60H
JR NZ,CLKPNT
XOR A
LO (IX+1),A
LO A,(IX+0)
INC A
DAA
LO (IX+0),A
CP 24H
JR NZ,CLKPNT
XOR A
LO (IX+0),A

CLKPNT: LO HL,VDPRGS
LO A,(HL)
LO DE,10
AND 2
JR NZ,GNAMTB
INC HL
LO A, (HL)
AND 8
JP NZ,OUT
LO A, (HL)
AND 16
LO DE,0
JR NZ,NGAMTB
LO DE,5

GNAMTB: LO IX,BASNOS
ADD IX,DE
LO L,(IX+0)
LO H, (IX+1)
LO DE,24
ADD HL,DE
LO IX,HHMMSS
LO A, CIX+0)
CALL NPNT

;ONLY DO CLOCK EVERY 50 •.•
; INTERRUPTS

;RESET COUNTER

;INC SECONDS

;IF NECESSARY ..•

;RESET SECONDS

;AND INC MINUTES

;IF NECESSARY ..•

; RESET MINUTES

;AND INC HOURS

;ROUTINE TO PRINT UPDATED ...
; CLOCK.
;READ SYSTEM RAM COPIES .•.
;OF VDP WRITE ONLY ..•
;REGISTERS.
;TO FIND SCREEN MODE ••.
;AND CALCULATE OFFSET •.•
;FROM START OF BASE(N) .•.
;VARIABLE TABLE.
;TO FIND BASE ADDRESS
;OF NAME TABLE.

;GET NAME TABLE ADDRESS

;AND ADD 24(0FFSET)

;GET ADDRESS OF TIME
;GET FIRST VALUE (HOURS)
;PRINT IT

100

I
I

r

OUT:

NPNT:

LD A,': I

CALL WRTVRM
INC HL
LD A,CIX+1l
CALL NPNT
LD A,': I

CALL WRTVRM
INC HL
LD A,(IX+2)
CALL NPNT
POP AF
RET
PUSH AF
SRL A
SRL A
SRL A
SRL A
ADD A,30H
CALL WRTVRM
INC HL
POP AF
AND 15
ADD A,30H
CALL WRTVRM
INC HL
RET

END

;GET COLON
;PRINT THAT
;INC PRINT POSITION
;DO MINUTES

;DO SECONDS

;RESTORE VDP STATUS ..•
;AND RETURN TO OS ROUTINE
;SAVE NUMERIC
;GET TOP NIBBLE

;CONVERT ASCII
;PRINT IT
;INC PRINT POSITION
;RESTORE NUMERIC
;GET LOW NIBBLE
;CONVERT ASCII
; PRINT IT
;INC PRINT POSITION

MSX System RAM Usage

In the MSX system the locations from 0F380H to 0FFFFH are used by BASIC
and the operating system for various house-keeping functions. Some of those
locations most useful to the assembly language programmer are described
below.

Interslot read/write and call routines are provided at the start of system RAM.

At 0F380H is a routine for reading from any primary slot. This accepts the
value for slot selection (in the format required by the 8255) in the accumulator,
the old slot status in D and the address in the HL register pair. The routine
returns the value read in the E register, leaving all other registers preserved.

The counterpart to this routine at 0F385H expects the same setup but performs
a write operation using the data in E.

101

Finally a routine at 0F38CH performs interslot calls. This routine expects to
find the old slot status on the stack, the new slot status in the accumulator,
any values to be passed in the alternate AF pair and the location to call in
IX. Any values to be returned should be passed in the alternate AF pair.

The system stores call addresses for the BASIC US R function in locations 0F39AH
to 0F3ADH in the order USR0 to USR9, allowing two bytes for each. Locations
0F3B3H to 0F3D9H contain the values accessed by the BASIC BASE(N) pseudo­
variable,two bytes being allowed for each value.

The key click toggle is stored at 0F3DBH. Writing a zero to this location disables
the key click, while any non-zero value will enable it.

The x,y position of the screen cursor is stored at locations 0F3DCH (Y) and
0F3DDH(X).

The eight locations from 0F3DFH onwards are used by the operating system
to store the present values of the eight VDP write only registers. The present
value of the VDP status register is stored during every vertical blanking interrupt
in location 0F3E7H.

Locations 0F3E9H to 0F3EBH are used to store the current foreground,
background and border colours as set by the BASIC CO LOR command.

The system stores the address of the highest location it can find in RAM at
addresses 0F672H and 0F673H. These locations may be altered in order to conceal
areas of RAM from BASIC and the operating system, thus securing any user
code stored in these areas. The two bytes following these locations define
the highest location to be used by the stack.

The 26 locations starting at 0F6CAH are used to store the current default variable
types for variables beginning with A to Z. This table is modified by DEFINT,
DE F S TR, DE F S NG etc. and is read when any variable is encountered that is not
accompanied by a postfixed variable type declaration.(ie. $, %, !). Variable
types are;

Integer
String
Single Precision
Double Precision

:table value is 2
: table value is 3
: table value is 4
:table value is 8

Please note that table entries will always default to double precision.

Finally, from 0FD9AH to 0FFCAH is the block of RAM indirection 'hooks'
each of which consists of five bytes initialised to contain ZS0 'RET' instructions
(0C9H). Most of these are set aside for future system expansion and are of
little use to the general programmer. Those which are of immediate use will
be discussed as they arise.

102

f

I Using Machine Code Subroutines From BASIC
The key to successfully interfacing machine code routines with BASIC lies
in two areas: firstly hiding the routine to avoid BASIC overwriting the code
and secondly passing parameters to and reading results from the routine.

The simplest method of assigning space for code routines is by use of the
BASIC CLEAR n1 ,n2 statement. The first parameter of this sets the amount of
space for string storage and the second sets the highest memory location to
be used by BASIC. Thus to free the top 16 Kbytes of RAM for machine code
routines and data and to set up 200 bytes of string space the command CLEAR
2OO,&HBFFF should be given. Note however that under normal circumstances
the system work area will remain from 0F380H upwards.

Calling machine code routines from BASIC requires the BASIC USRn function.
The syntax of this statement is:

Var= USRn(Var/Constl, or

PRINT USRn(Var/Const)

Where n=user routine number set by DEFUSR and Var or Var/Const may be
of any type.

Thus if we wish to pass a string to a routine which is intended to return
an integer value we may call with:

A%=USR1("abcde")

The US R call passes values in the following manner:

Integer: location 0F663H contains 2, and the value is stored in 0F7F8H and
0F7F9H (low byte first).

String: location 0F663H contains 3, and 0F7F8H and 0F7F9H contain the address
of the string descriptor. A string descriptor consists of three bytes, the length
of the string followed by its address.

Single precision: location 0F663H contains 4, and the value is stored from 0F7F6H
to 0F7F9H.

Double precision: location 0F663H contains 8, and the value is stored from
0F7F6H to 0F7FDH.

Parameters may be returned to BASIC in a directly analogous manner. The
following program illustrates this by accepting a numeric string in base three,
and returning the decimal value, as an integer.

VARTYP EQU 0F663H
VARPTR EQU 0F7F8H

103

ORG 09000H

START: LD A,(VARTYP)
CP 3 ;IS VARA STRING?
RET NZ ;RETURN IF NOT
LD HL,(VARPTR) ;GET ADDR OF DESCRIPTOR
LD B,(HL) ;LEN OF STRING IN B
INC HL

LD E,(HL) ;ADDR OF STRING IN DE
INC HL
LD D,(HL)
LD HL,0 ;CLEAR HL

ICLP: PUSH DE
PUSH HL ;SAVE REGS
ADD HL,HL
POP DE
ADD HL,DE ;BINVAL=BINVAL*3
POP DE ;GET CURR STRING PTR
EX DE,HL ;INTO HL AND BINVAL IN DE
LD A,(HL) ;GET NEXT CHARACTER FROM STRING
SUB '0' ;CONVERT NUMERIC
INC HL ; INC STRING PTR
PUSH HL ;SAVE IT
LD L,A
LD H,0 ; PUT NUM IN HL
ADD HL,DE ;BINVAL=BINVAL+NUM
POP DE ;STRING PTR IN DE
DJNZ ICLP ;IF MORE STRING DO IT AGAIN
LD (VARPTR),HL ;BINVAL IN VARPTR
LD A,2
LD (VARTYP),A ;VARTYP=INTEGER
RET ;TO BASIC

END

104

I

Chapter6

The Video Display
Processor

The VDP interfaces with the CPU via an eight bit bidirectional data bus, three
control lines and an interrupt. Four operations may be performed: writing
data to VRAM, reading data from VRAM, writing to the VDP control registers
and reading from the VDP status register. Each of these operations requires
one or more data transfers over the VDP/CPU data bus interface with the
interpretation of these transfers being dependant on the status of the three
control lines. The CPU may communicate with the VDP asynchronously with
the television raster scan, the VDP allowing access to VRAM at times even
during a raster scan period.

The Control Lines
The three control lines (CSW, CSR and MODE) control the VDP's interpretation
of data transfers. CSW is active (low) when a CPU to VDP data transfer is
to take place. CSR is active (low) when a CPU read from the VDP is to be
effected. CSW and CSR should never be active simultaneously.

MODE determines the source or destination of a data read or write operation,
and in the MSX system is usually tied to CPU address line 0. Refer to figure
6.1 for a summary of CPU/VDP interface operations. These operations are
described below.

CPU write to VDP register
The VDP has eight write only control registers and a read only status register.

Each of the eight write only registers may be loaded by only two eight bit
data transfers from the CPU (the control line status necessary for this and
all other operations may be found in Table 6.1). The first byte to be written
is the data to transfer, and the second byte determines the destination register
(0-7 decimal, with the most significant bit set to distinguish the operation
as a register write as opposed to a VRAM address setup operation).

To rewrite data in internal registers after a data byte has already been transferred
it is necessary to read the VDP status register in order to re-initialise the interface
logic. This situation is often encountered in an interrupt driven environment
such as the MSX system. In general, whenever the status of VDP read/write
parameters is in doubt, this procedure should be used.

105

--7
Table 6.1 CPU/VDP Data Transfers

BIT
-- -

OPERATION 7 6 s 4 3 2 1 0 csw CSR MODE

Write to VDP register
Byte 1: Data write D7 D6 DS D4 D3 D2 D1 DO 0 1 1
Byte 2: Register select 1 0 0 0 0 RS2 RSI RSO 0 1 1

Write to VRAM
Byte 1: Address setup A7 A6 AS A4 A3 A2 Al AO 0 1 1
Byte 2: Address setup 0 1 A13 A12 All AlO A9 AS 0 1 1
Byte 3: Data write D7 D6 DS D4 D3 D2 Dl DO 0 1 0

0
°' Read VDP register

Byte 1: Data read D7 D6 DS D4 D3 D2 D1 DO 1 0 1

ReadVRAM
Byte 1: Address setup A7 A6 AS A4 A3 A2 Al AO 0 1 1
Byte 2: Address setup 0 0 A13 A12 All AlO A9 AS 0 1 1
Byte 3: Data read D7 D6 DS D4 D3 D2 Dl DO 1 0 0

i

CPU write to VRAM
CPU to VRAM data transfers use a fourteen bit auto- incrementing address
register. The first two byte transfers of write to VRAM are used to set up
this register and sequential writes thereafter require only one byte transfer,
since this register has already been set up and increments after every write
operation.

CPU read from VDP status register
The CPU may read the VDP status register using only one byte transfer. MODE
is active (high) for the transfer and CSR is used to signal that a read operation
is required.

CPU read from VRAM
The CPU reads from VRAM in a directly analogous way to that in which it
writes to VRAM, using the auto-incrementing address register.

Timing
Since the CPU interacts with VRAM through the VDP it is obvious that data
transfers may only occur when the VDP is not busy with handling video output;
thus the time necessary for the CPU to transfer a byte of data to or from
VRAM varies between 2 and 8 microseconds, dependant on whether the VDP
is busy with memory refresh or screen display. Approximate timings are given
in table 6.2.

The VD P registers
Of the eight write only registers numbers 0 and 1 contain flags controlling
various VDP functions and modes. Registers 2 to 6 contain values specifying
start addresses for the various sub-blocks of VRAM, and register? is used to
define backdrop colour in all modes and text colours in the 40 column mode.
Detailed descriptions of these registers now follow.

RegisterO
The two least significant bits of this register contain control bits. All other
bits are reserved for future expansion and must be reset.

Bit 0: External VDP enable/disable (1 =enable).

Bit 1: Mode bit 3, see below for details.

Register 1 (8 VDP control bits)
Bit 7: 4/16K RAM selection.(always 1 in the MSX system.)

Bit 6: Blank enable/disable (1 =enable active display). Blanking causes the screen
to blank to backdrop colour.

Bit 5: Interrupt enable (1 =enable, 0=disable).

Bit 4: Mode bit 1.

107

Table 6.2. VRAM access timings

CONDITION MODE VDP TIME WAITING FOR TOTAL
DELAY AN ACCESS WINDOW TIME

Active display Text 2 us 0-1.1 µs 2-3.lµs

Active display Graphics 2µs 0- 5.95 µs 2-Sµs
I,11

.......
0
00 Active display Multicolour 2µs 0-1.5 µs 2-3.5 µs

Register 1 All2 µs 0µs 2µs

blank bit0

4300 µs after All 2µs 0µs 2µs

interrupt

i

Bit 3: Mode bit 2, with mode bit three in register 0 these bits define the screen
mode, according to the following table;

Ml

0

0

0

1

M2

0

0

1

0

M3

0

1

0

0

GRAPHICS I MODE

GRAPHICS II MODE

MULTI COLOUR MODE

TEXTMODE

Bit 2: Reserved for future expansion, must be 0.

Bit 1: Sprite size select: 0 selects 8* 8 sprites, 1 selects 16* 16 sprites.

Bit 0: Selects the magnification option for sprites: 0 selects normal sprites,
1 selects magnified spites.

Register 2
The least significant four bits of register 2 form the upper four bits of the
fourteen bit Name Table address; thus the name table start address is equal
to (Register 2)*400H.

Register 3
Register 3 defines the start address in VRAM of the colour table. The contents
of this register form the upper eight bits of the fourteen bit address. Thus
the address may be calculated by (Register 3)*40H.

Register4
The least significant three bits of register 4 define the start of the Pattern,
Text or Multicolour Generator sub-block, forming the top three bits of that
address. Thus the generator sub-block address is given by (Register 4) * S00H

Registers
The lower seven bits of this register form the upper seven bits of the Sprite
Attribute table; thus the base address is equal to (Register 5)*80H.

Register 6
Register 6 defines the start address in VRAM of the Sprite Pattern generator
table. The address is equal to (Register 6)*800H.

Register 7
The most significant four bits of register 7 contain the colour code for colour
1 in text mode and the lower four bits form the colour code for colour 0 in
text mode and the backdrop in all modes.

The Status Register
The VDP has a single eight bit status register which may be accessed by the

109

CPU. This register contains the interrupt flag, the sprite collision flag, the
fifth sprite flag and the fifth sprite number (should one exist). The format
of the status register is described below.

The status register may be read at any time. However, reading the status register
asynchronously with the frame flyback interrupt will reset the frame flag and
may cause interrupts to be missed. To avoid this problem it is advisable to
read the copy of this register that the operating system keeps in system RAM
(see chapter 5).

Bit 7: The Interrupt Flag.
This flag is set to 1 at the end of the raster scan of the last line of the active
display. Setting this flag will also cause the interrupt pin to go active if the
interrupt enable flag in register O is set. The flag is reset by reading the status
register; please note that it is necessary to read this register at each frame
fly back in order to reset the interrupt flag and re-enable it for the next frame.

Bit 5: The Sprite Coincidence Flag
This flag is set whenever two sprites are in collision (ie. when they have one
or more overlapping pixels). Transparent sprites are considered as are those
which are partially or completely off the screen. Sprites beyond the sprite
attribute table terminator (ODOH), however, are not considered. The flag is
cleared when the status register is read.

Bit 6: The Fifth Sprite Flag.
Bit 6 of the status register is set whenever there are five or more sprites on
a horizontal line. It is cleared whenever the status register is read. Whenever
the flag is set the number of the offending fifth sprite is placed in the lower
five bits of the status register, allowing the user to move the sprite before
the next frame to ensure that all sprites are properly displayed.

Video Display Modes.
The VDP generates an image which may be considered as a number of planes
sandwiched together. The order of priority of these planes is from front to
back, thus if two objects occur in the same position on different planes the
object on the higher priority plane will occlude objects on any lower priority
plane. It may be seen therefore that a sprite on plane O will appear to be
in front of the rest of the display. From front to back the planes are: The
32 sprite planes, followed by the pattern plane, followed by the backdrop plane,
followed by the planes of any external VDP which is connected. I know however
of no intentions of the MSX companies to introduce machines with more than
oneVDP.

The backdrop plane is a solid colour used to display the border areas and
is the default colour for the background of the pattern plane. When switched
to transparent it automatically defaults to black unless an external VDP is active.

The 32 sprite planes lie on top of the pattern plane, sprite 31 having lowest
priority and sprite O the highest. These are inactive in text mode. Sprites are
transparent by default and their positions may be defined pixel by pixel thus

110

allowing smooth movement. The appearance and storage of the pattern plane
tends to differ in the various screen modes and will therefore be discussed
separately.

Fifteen colours are available in all modes, as follows:-

CODE

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

COLOUR

Transparent
Black
Medium Green
Light Green
Dark Blue
Light Blue
Dark Red
Cyan
Medium Red
Light Red
Dark Yellow
Light Yellow
Dark Green
Magenta
Grey
White

Graphics Mode I

In Graphics Mode I the Name Table sub-block of VRAM is comprised of 768
bytes, arranged as 24 rows of 32 characters. Thus the first 32 values in the
table map to the first row of the display, the next 32 map to the second row
and so on. Each entry in the table refers to 1 of 256 pattern definitions stored
in the pattern generator table. Each of the 256 entries in this table consists
of eight bytes thus giving 8*8 bits, and requires 2048 bytes of VRAM in total.
In each eight byte entry in the pattern generator table a set bit is displayed
as colour 1, and a reset bit is displayed as colour 0. The colours for each pattern
are taken from the colour table (which in Graphics Mode I is 32 bytes long).
Each entry defines a foreground (colour 1) and background (colour 0) colour
for eight patterns in the pattern generator table. The first entry in the colour
table defines the colours for patterns 0 to 7 in the pattern generator table,
the second entry defines patterns 8 to 15 and so on. The entries in the colour
table are considered as two nibbles, the most significant four bits defining
the foreground colour and the least significant nibble defining the background
colour. From the above it may be seen that the full implementation of this
mode requires 2848 bytes of VRAM however if the full 256 pattern definitions
are not required it is possible to overlap the tables.

Graphics Mode II

In Graphics Mode II the name table is mapped in the same manner as in
Graphics Mode I, except that each entry in the name table may have its own

111

.....
N

Figure 6.1 Graphics II bit mapped screen map

32COLUMNS
BASE ADDRESS +

0000 0008

0007 000F --
0100 0108

0107 0lOF -------------------------------------

------- -------- -------------------------------------

00F8

00FF
01F8

0lFF
24ROWS

17F8

17FF

i

unique definition in the pattern generator table. This is achieved by splitting
the pattern generator table into three blocks of 256 definitions; entries in the
first 256 bytes of the name table (ie. the top third of the display) refer to
definitions O to 255 in the pattern generator table, and values in the second
and third 256 byte blocks of the name table refer to definitions 256 to 511
and 512 to 767 respectively.

It is also possible to define foreground and background colours for each
horizontal line of each pattern definition. The colour table consists of 768 eight
byte entries. Each of these bytes corresponds to one byte of the pattern generator
table. The most significant four bits of each byte of the colour table defines
the foreground colour of the corresponding byte in the pattern generator table
and the least significant bits the background colour.

It can be seen that by careful arrangement of values in the name table Graphics
Mode II can be considered to be bit-mapped; or by copying the same values
into the three blocks of the pattern generator and colour tables it may be used
in the same manner as the Graphics I Mode but with better colour definition.

Multicolour Mode.

The Multicolour Mode provides an unrestricted 64*48 colour square display,
each colour square containing a 4*4 block of pixels. Each colour square may
be in any of the 15 colours available in the VDP.

The Multicolour Mode name table is mapped similarly to the two graphics
modes, although the name no longer points to an entry in the colour table.
Colour is now derived from the entries in the pattern generator table.

Each value in the name table points to an eight byte block in the pattern
generator table. Only two bytes of this block are used to define the screen
image. These two bytes, considered as four nibbles, define an 8*8 pixel
multicolour pattern. The high order nibble of the first byte defines the colour
of the 4*4 pixel square in the top left of the multicolour pattern, the lower
nibble defines the colour of the square in the top right and the second byte
performs the same function for the colour squares in the bottom left and right
corners of the multicolour pattern. Entries on rows 0,4,8,12,16 and 20 of the
name table use the first two bytes of the eight byte block in the pattern generator
table, entries on rows 1,5,9,13,17 and 21 use the second two bytes and so on.

Text Mode

In text mode the screen is considered as a grid 40 characters across by 24
lines down. Each entry in this grid is 6 pixels across by 8 pixels down. The
tables used to generate the pattern plane are the name table and the pattern
generator table and there may be up to 256 different patterns defined at any
one time. The name table maps the definitions into each of the 960 pattern
cells on the pattern plane. Sprites are not availble in this mode. The pattern
generator table is identical to that in Graphics Mode I except that since each
pattern cell is only six pixels across the two least significant bits of each byte

113

in the pattern generator table are ignored. The foreground and background
colours are set by the value of VDP register 7, the high nibble defining the
foreground colour and the low nibble defining the background and border
colours.

Sprites
The video display may have up to 32 sprites on the highest priority planes.
Their positions are defined from the top left hand corner of the sprite pattern,
and since this position may be defined pixel by pixel it is easy to swiftly
and smoothly move these patterns around. Each of the sprite planes is fully
transparent outside of the sprite itself. The sprites are not active in the 40
column text mode.

The tables in VRAM which are relevant to sprite usage are the sprite attribute
table and the sprite pattern generator table. These tables are similar to their
equivalents on the pattern plane since the sprite attribute table defines the
location of the sprite, while the sprite pattern table contains a definition of
what it looks like.

Each of the 32 entries in the sprite attnbute table consists of four bytes. The
number of pixels down the screen of its top left hand corner, (its vertical position)
followed by its horizontal position (the number of pixels from the left hand
edge of the screen), followed by its name (i.e. its definition in the sprite pattern
generator table), and finally its 'tag', the least significant four bits of which
define its colour, and the most significant bit of which is the 'early clock'
bit. This causes the sprite to appear 32 pixels to the left of its position as
defined by byte two of the entry in the sprite attribute table.

When a sprite is positioned at 0,0 it is butted up against the top left edge
of the border. In many applications, however, it is necessary to bleed a sprite
in from the edges of the screen. To effect this a different method is provided
in each axis, as follows:-

Firstly the vertical position of the sprite is considered to be partially signed
in that values between -31 and 0 (in two's complement) allow the sprite to
bleed in from the top edge. It can readily be seen however that since the
horizontal resolution of the display is 256 pixels this method cannot be used
to bleed in sprites from the left hand edge; it is for this purpose that the
'early clock' bit is provided in byte four of each entry in the sprite attribute
table.

The sprite generator table consists of a maximum of 256 eight byte entries.
The third byte of each entry in the sprite attribute table then defines which
block of the sprite generator table is to be used for the sprite on that plane.
Note that when 16*16 sprites are in use this value is taken div 4, thus pointing
to a 32 byte block of the sprite generator table.

Finally it must be noted that a maximum of four sprites may be displayed
on any horizontal line. Should this rule be violated only the four highest priority
sprites will be displayed; also the fifth sprite flag will be set in the status

114

Figure 6.2. 16x16 Sprite Mapping

VRAM
GENERATOR TABLE

Byte

0 0
0 1

07
08

OF
10

17
18

lF

BLOCK

PATTERN
FOR
QUADRANT
A

PATTERN
FOR
QUADRANT
B

PATTERN
FOR
QUADRANT
C

PATTERN
FOR
QUADRANT
D

I
16
PIXELS

l

115

_____ 16

PIXELS

QUADRANT QUADRANT
A C

QUADRANT QUADRANT
B D

Sprite Pattern

register and the number of the offending fifth sprite will be loaded into the
lower five bits.

The VDP in the MSX environment
In the MSX system the VDP may be accessed in two ways. Firstly the MSX
system ROM provides routines to perform most of the basic functions that
the user may require. In some cases however when these routines may be
inadequate in their function or in their speed of execution, it is possible to
the VDP directly since locations 6 and 7 of the system ROM hold read and
write addresses for the VDP.

It may at first be less than obvious why there are two addresses provided,
but on further inspection it may be seen that the reason lies in the MODE
VDP control line.

Referring to Table 6.1 we may see that for a write to a VDP register the MODE
line must be active (high), whereas for a read from or write to VRAM the
MODE line is held low. Since, as previously noted, the VDP MODE line is
usually tied to one the CPU address lines, we might expect that the addresses
given in locations 6 and 7 would differ by the presence or absence of a single
bit. Examining the ROM we find that location 6 contains 98H and location
7 contains 99H, thus we may deduce that the MODE line is tied to address
line 0. The other two VDP control lines, CSR and CSW are gated to the 280
control lines IORQ, RD and WR such that their control is performed
automatically. The following routine will write to a location in VRAM specified
by a fourteen bit address in HL, the data in the accumulator, and illustrates
the above points:-

WRTVRM: PUSH AF
LD A,(6)
LD C,A
INC C
DI
OUT (C),L
SET 6,H
OUT (C),H
DEC C
POP AF
OUT (C),A
EI
RET

;SAVE DATA
;GET VDP ADDRESS WITH MODE HIGH
;INTO C
;MODE HIGH
;DISABLE INTERRUPTS
;OUTPUT LOW BYTE OF ADDRESS
;SET BIT 6 OF HIGH BYTE OF ADDRESS
;OUTPUT IT
;MODE LOW
;RESTORE DATA
;OUTPUT IT
;RE-ENABLE INTERRUPTS
;AND RETURN

The operating system provides well-written and speed-optimised routines for
all the functions which are likely to be needed and these routines will now
be discussed.

ADDRESS

0041H

FUNCTION

Disables the screen display. This routine requires no parameters

116

___,,,,,,....

0044H

0047H

004AH

004DH

OOSOH

0053H

0056H

0059H

OOSCH

OOSFH

0062H

0069H

006CH

to be passed, but modifies the AF and BC pairs.

Enables the screen display, requiring no parameters to be passed
and modifying the AF and BC pairs.

Writes the data passed in B to the register specified by C, again
modifying the AF and BC pairs.

Reads a byte of VRAM specified by an address in the HL pair
returning the value read in the accumulator, and modifying only
theAFpair.

Writes the data in the accumulator to the address in VRAM
specified by the contents of the HL pair, modifying only the
AFpair.

Sets up the VDP for a read from VRAM, it accepts the address
for the first read in HL and modifies the AF pair.

This routine is the analogue of the above routine but sets up
the VDP for a write operation instead of a read.

This routine fills the number of bytes of VRAM specified by
the BC pair, and starting from the address specified by the HL
pair with the data passed in the accumulator. It modifies the
BC and AF pairs.

Moves a block of memory from VRAM to RAM, its operation
is directly analogous to its corresponding routine below.

Moves a block of memory from CPU memory to VRAM. It accepts
the address of the source in HL the destination in DE and the
length of the block to be moved in BC, modifying all registers.

Sets the VDP to the display mode defined by location 00CAFH.(0
Text 40, 1 Graphics I, 2 Graphics II, 3 Multicolour.) This routine
modifies all registers.

Changes the screen colour, accepting its parameters in 0F3E9H
(foreground colour), 0F3EAH (background colour) and 0F3EBH
(border colour). This routine modifies all registers.

Initialises all the sprites, sprite patterns are set to blanks, sprite
names are set to sprite plane numbers, colours are set to
foreground colour and vertical positions are set to 209. This
routine requires the VDP display mode to be passed in 0FCAFH
and modifies all registers.

Initialises the VDP for the 40 column text mode. This routine
uses the values to be found in the system RAM area from 0F3B3H
onwards and modifies all registers.

117

006FH

0072H

0075H

Initialises the VDP for Graphics I mode, it and the following
two routines are in all ways analogous to the above routine.

Inftialises the VDP for Graphics II mode.

Initialises the VDP for Multicolour mode.

Under normal circumstances direct access to the VDP by the user is unlikely
to be necessary.

Programming the VDP: hints and tips.

The Pattern Plane

In Graphics Modes I and II, which are the VDP modes of greatest interest
to the general programmer, the appearance of the pattern plane is completely
at the whim of the programmer since all character definitions are taken from
RAM. It can readily be seen however that it would be advisable, in the
production of one's own character definitions, to follow certain guidelines.
for instance, in work on the MSX machines it has become clear that it is advisable
to locate at least the upper case character set and the numerics in locations
in VRAM such that it is possible to write the ASCII value of any number
or letter to the name table, in order to display it. For example the definition
of 'A' (ASCII value 65) would lie at an address in VRAM calculable by: (base
address of pattern generator table)+(65*8).

I have found that the simplest way to achieve this is to fetch the basic definitions
from their location in ROM and then redefine those which one is likely to
need. This is done by the operating system in Graphics I mode when a SCREEN
1 command is given, however when the SCREEN command is used to switch
to Graphics Mode II the operating system sets up the VDP with all of the
768 definitions available blank. It then becomes necessary to locate the standard
character definitions in the MSX system ROM. This location may differ from
machine to machine so the following short program will locate the letter 'A'
in the MSX ROM;

10 FOR N%=&H0000 TO &H7FFF
20 A%=PEEK(N%):READ B%
30 IF A%<>B% THEN RESTORE:Q%=0 ELSE Q%=Q%+1
40 IF Q%=8 THEN PRINT HEX$(N%-8):END
50 NEXT N%
60 END
70 DATA 32,80,136,136,248,136,136,0

The following machine code and BASIC programs illustrate many of the points
to be considered when using the VDP. They also provide a powerful character
and sprite definition program for use primarily in Graphics Mode II (but which
may also be used in other modes).

118

WRTVDP EQU 47H ;TABLE OF BIOS CALLS
RDVRM EQU 4AH
WRTVRM EQU 4DH
FILVRM EQU 56H
LDIRVM EQU SCH
LDIRMV EQU 59H
CHGET EQU 9FH
GTSTCK EQU 0DSH
GTTRIG EQU 0D8H
RDVDP EQU 13EH
SNSMAT EQU 141H ;END OF BIOS TABLE

;********GRAPHICS MODE II CHARACTER/COLOUR DEFINER*********

NAMTAB EQU 1800H
COLTAB EQU 2000H ;VRAM ADDRESSES FOR GM2
PATTAB EQU 0000H
SATTAB EQU 1B00H
SPTTAB EQU 3800H ; END VRAM ADDRESSES
RNAMTB EQU 06H ;VDP REGISTER VALUES
RCOLTB EQU 0FFH ;FOR GRAPHICS II MODE
RPTTAB EQU 03H
RSATAB EQU 36H
RSPTAB EQU 07H ;END REGVALS
CHARDT EQU 1CBFH ;LOCATION OF CHARS IN ROM

;MAY BE DIFFERENT

ORG 9000H

REGDAT: DEFB 2,0E0H,RNAMTB,RCOLTB,RPTTAB,RSATAB,RSPTAB,6

START: LD E,8
LD IX,REGDAT ;DATA POINTER IN IX
LD D,0 ; LOAD REGISTERS

SVDPLP: LD B,(IX+0) ;DATA IN B
LD C,D ;REGISTER NUMBER INC
CALL WRTVDP ;TO VDP
INC IX ;INCREMENT DATA POINTER
INC D ;INCREMENT REGISTER NUMBER
DEC E
J R NZ,SVDPLP ; DO 8 REGISTERS
LD HHL,CHARDT ;GET ADDRRESS OF CHARACTERS
LD DE,PATTAB+1100H ;DE IS VRAM ADDRESS
LD BC,60*8 ;DO 60 CHARACTERS
CALL LDIRVM
LD BC,800H
LD HL,COLTAB+1000H
LD A,0F1H ;SET UP COLOURS

119

MLP:

NDFNC:

CALL FILVRM
LD BC,800H
LD HL,COLTAB
LD A, 1FH
CALL FILVRM
LD BC,800H
LD HL,COLTAB+800H
LD A,81H
CALL FILVRM
LD BC,768
LD HL,NAMTAB
LD A,32
CALL FILVRM
LD HL,PZDAT
LD DE,PATTAB+800H
LD BC,24
CALL LDIRVM
LD HL,PZDAT+16
LD DE,SPTTAB
LD BC,8
CALL LDIRVM
CALL FUNCPT
CALL FTTXRM
CALL ARRYPT
CALL S PON
CALL JOY
CALL FUNC
HALT
CALL DOFUNC
HALT
HALT
CALL CHART
CALL CSPT
CALL COLPT
CALL BANKPT
CALL LPTXRM
HALT
J R MLP
RET

SPY: DEFB 0
SPX: DEFB 0

ARRYPT: LD C,8
LD HL,NAMTAB+259
LD IX,HARRY1

APTOLP: LD B,8
APTILP: LD A,(IX+0)

PUSH BC
CALL WRTVRM
POP BC
INC HL

;SET UP COLOURS

;MORE COLOURS

;CLEAR THE SCREEN

;DEFINE CHARS 0 .• 2 IN BLOCK 2

;DEFINE SPRITE 0
;PRINT FUNCTION COLUMNS
;TRANSFER VRAM DATA TO RAM
;PRINT DEFINITION MATRIX
;PUT ON CURSOR
;READ JOYSTICK
;PRINT FUNCTION MESSAGES
;WAIT FOR FLYBACK
;DO FUNCTIONS
;WAIT FOR FLYBACK

;TRANSFER DEFINITION FROM
;MATRIX TO RAM
;AND PRINT STATUS MESSAGES

;TRANSFER VRAM DATA TO RAM
;WAIT FOR FLYBACK
;GO BACK AND DO IT AGAIN

;CURSORY POSITION
;CURSOR X POSITION

;ROUTINE TO PRINT DEF MATRIX
;NAMETABLE ADDRESS+OFFSET
;ARRAY ADDRESS IN IX
;INNER LOOP OF 8
;GET ARRAY DATA
;SAVE COUNTERS
;WRITE ARRAY DATA TO SCREEN
;RESTORE COUNTERS
;INCREMENT SCREEN POINTER

120

INC IX
DJNZ APTILP
LD DE,24
ADD HL,DE
DEC C
JR NZ,APTOLP
RET

FUNCPT: LD HL,NAMTAB+258
CALL ROWOF8
LD HL,NAMTAB+267
CALL ROWOF8
RET

ROWOF8: LD B,8
R08LP: PUSH BC

PUSH HL
LD A,2
CALL WRTVRM
POP H L
LD DE,32
ADD HL,DE
POP BC
DJNZ R08LP
RET

SPON: LD HL,SATTAB
LD A,(SPY)
SLA A
S LA A
SLA A
ADD A,63
CALL WRTVRM
INC HL
LD A,(SPX)
S LA A
SLA A
SLA A
ADD A,16
CALL WRTVRM
INC HL
LD A,0
CALL WRTVRM
INC H L
LD A,15
CALL WRTVRM
RET

;INCREMENT ARRAY POINTER
;END OF INNER LOOP
; LINE LENGTH-8
;ADDED TO SCREEN POINTER
;DEC OUTER LOOP COUNT
;DO IT 8 TIMES

;ADDRESS OF COLUMN LEFT OF ARRAY
; PRINT COLUMN
; RIGHT OF ARRAY
;PRINT COLUMN

;COUNT OF 8
; SAVE COUNTER
;SAVE ADDRESS
; CHARACTER 2
;TO SCREEN ADDRESS
;RESTORE SCREEN ADDRESS
;ADD LINE LENGTH ••.
;TO SCREEN ADDRSS
;RESTORE COUNTER
;DO FOR COUNT OF 8

;ROUTINE TO PLACE CURSOR
;GET CURSORY CO-ORD

;MULTIPLY BY 8
;AS SPRITE POSIS CHARPOS*8
;TOP LEFT OF MATRIX, OFFSET
;WRITE TO SPRITE ATTRIBUTE TABLE
;INCREMENT VRAM POINTER
;GET SPRITE X

;*8
;ADD X OFFSET
;TO SPRITE ATTRIBUTE TABLE
;POINT TO SPRITE NAME
;NAME IS 0
;WRITE SPRITE ATTRIBUTES
; INC POINTER
;SPRITE IS WHITE
; TO ATTRIBUTES

P2DAT: DEFB 255,129,129,129,129,129,129,255
DEFB 255,255,255,255,255,255,255,255
DEFB 255,195,165,153,153,165,195,255

;DEFINITIONS ...
;OF CHARACTERS
;0-2 AND SPRITE 0

HARRY1: DEFB 0,0,0,0,0,0,0,0
DEFB 0,0,0,0,0,0,0,0
DEFB 0,0,0,0,0,0,0,0
DEFB 0,0,0,0,0,0,0,0

121

HARRY2:

JOY:

JOY1:

JOY2:

JOY3:

JOY4:

INY:

DEY:

INX:

DEX:

EX IT:

GETMGS:

DEFB 0,0,0,0,0,0,0,0
DEFB 0,0,0,0,0,0,0,0
DEFB 0,0,0,0,0,0,0,0;CHARACTER ARRAY
DEFB 0,0,0,0,0,0,0,0
DEFB 0,0,0,0,0,0,0,0
DEFB 0,0,0,0,0,0,0,0
DEFB 0,0,0,0,0,0,0,0
DEFB 0,0,0,0,0,0,0,0
DEFB 0,0,0,0,0,0,0,0
DEFB 0,0,0,0,0,0,0,0
DEFB 0,0,0,0,0,0,0,0;TEMPORARY ARRAY FOR
DEFB 0,0,0,0,0,0,0,0;TRANSFORMATIONS
LD A,0 ;TO READ JOY(0) IE.CURSOR KEYS ..•
CALL GTSTCK ;CHANGE AD LIB TO READ JOYSTICKS.
LD HL,(SPY) ;CURSOR X,Y IN HL
CP 1 ;JOYSTICK FORWARDS ?
CALL Z,DEY ;IF SO DEC Y
CP 3 ;JOYSTICK RIGHT ?
CALL Z,INX ;IF SO INC X
CP 5 ;JOYSTICK DOWN ?
CALL Z,INY ;IF SO INC Y
CP 7 ;JOYSTICK LEFT ?
CALL Z,DEX ;IF SO DEC X
LD A,L ;GET Y
CP 8
JR NZ,JOY1
LD L,0
CP 255
JR NZ,JOY2
LD L,7
LD A,H
CP 10
JR NZ,JOY3
LD H,0
CP 255
JR NZ,JOY4
LD H,9
LD (SPY),HL
RET
INC L
RET
DEC L
RET
INCH
RET
DECH
RET
LD A,0
LD (BASFNC) ,A
POP BC
RET
LD A,(MENU)

;IF NECESSARY WRAP IT AROUND

;MORE WRAPAROUND

;IF NECESSARY WRAP X

;PUT CURSOR X Y TO STORE
;RETURN

;EXIT ROUTINE
;EXIT IS FUNCTION 0
;REMOVE RETURN ADDRESS
;RETURN TO BASIC
;MENU 0 OR 1

122

DFUNC:
MGSTAB:
MENU:
FUNC:

FUNC 1:

FPNT:
FNPNT1:

SPPNT:

LD IY,MGSTAB
SLA A
LD C,A
LD B,0
ADD IY,BC
LD A,(IY+0)
LD C,A
LD A,(IY+1)
LD B,A
PUSH BC
POP IX
RET
DEFB 0
DEFW FNMSGS,FNMSG1
DEFB 0
CALL SPPNT
LD A,(SPX)
CP 0
JR Z,FUNC1
CP 9
RET NZ
LD A,8
LD B,A
LD A,(SPY)
ADD A,B
LD B,A
LD (DFUNO,A
PUSH BC
CALL GETMGS
POP BC
CALL MSGFND
LD HL,NAMTAB+515
LD A,(IX+0)
CP I$ I

RET Z
CALL WRTVRM
INC HL
INC IX
JR FNPNT1
PUSH AF
LD IX,NOFUNC
CALL FNPNT
POP AF
RET

MSGFND: DEC B
RET M

MSGFN1: LD ,(IX+0)
INC IX
C p I$ I

JR NZ,MSGFN1
JR MSGFND

NOFUNC: DEFB I

;IY POINTS TO MESSAGES
;MENU BECOMES 0 OR 2

;IY IS IY OR IY PLUS 2
;LOW ORDER OF MESSAGES ADDRESS
;INTO C
;HIGH ORDER
;INTO B
;GET MESSAGE TABLE ADDRESS
; INTO IX

;HOLDS ADDRESSES OF MESSAGE TABLES
;MENU NUMBER
;CLEAR OLD FUNCTION MESSAGE
;GET SPRITE X
;RIGHT HAND FUNCTION COLUMN?
;IF SO GO DO FUNC MESS PRINT
;LEFT HAND COLUMN?
; IF NOT RETURN

;CALCULATE AND STORE FUNCTION NUMBER
;SAVE BC
;GET MESSAGE ADDRESS
;RESTORE BC
;FINDS RELEVANT MESSAGE IN TABLE

;PRINT MESSAGE
;ROUTINE PRINTS SPACES

;FINDS MESSAGE B IN STRING ...

;ADDRESSED BY IX

$' ;NO FUNCTION DUMMY STRING

123

FNMSGS: DEFB 'EXIT$LOAD$SAVE$CLEAR$';MENU 1 MESSAGE STRING
DEFB 'CHARACTER$SPRITE$COLOUR$"
DEFB 'SCROLL LEFT$SCROLL RIGHT$'
DEFB 'SCROLL UP$SCROLL DOWN$'
DEFB 'COPY$INVERT$FLIP VERTICAL$'
DEFB 'FLIP HORIZONTAL$MENU 2$'

FNMSG1: DEFB 'POSITION$SWAP BANK$MAGNIFY SPRITE$';MENU 2 STRING
DEFB 'DEMAGNIFY SPRITE$16*16 SPRITE$'

EDIT:

DEFB '8*8 SPRITE$NOT IMPLEMENTED$'
DEFB 'NOT IMPLEMENTED$NOT IMPLEMENTED$'
DEFB 'NOT IMPLEMENTED$NOT IMPLEMENTED$'
DEFB 'NOT IMPLEMENTED$NOT IMPLEMENTED$'
DEFB 'NOT IMPLEMENTED$NOT IMPLEMENTED$'
DEFB 'MENU 1$'
LD IX,HARRY1
LD A,(SPX)
DEC A
LD C,A
LD B,0
ADD IX,BC
LD A,(SPY)
S LA A
SLA A
SLA A
LD C,A
ADD IX,BC
LD A,(IX+0)
INC A
AND 1
LD (IX+0) ,A
RET

;IX IS ARRAY POINTER

;ADD X OFFSET
;GET Y OFFSET

;TIMES 8

;ADDY OFFSET

;TOGGLE ARRAY LOCATION

DOFUNC: LD A,0
CALL GTTRIG
CP 255
RET NZ
LD A,(SPX)
CP 0
JR Z,DOFN1
CP 9
JR NZ,EDIT

DOFN1: LD IX,DFUNC
LD A,(MENU)
S LA A
S LA A
S LA A
S LA A
ADD A,(IX+0)
S LA A
LD C,A
LD B,0
LD IX,FNTABL
ADD IX,BC

;IS THE SPACE BAR PRESSED?

;IF NOT RETURN

;IF NOT IN A FUNCTION COLUMN

124

-

FNTABL:

NXTMNU:

NIMP:
SPRIT:

CHARF:
CHAR:

CHAR1:

YOBBO:

LD A,(IX+0) ;GET ADDRESS FROM
LD L,A ; JUMP TABLE
LD A, (IX+1) ; INTO
LD H,A ;HL
JP (HL) ;AND GO DO IT
DEFW EXIT,LOAD,SAVE,CLR,CHAR,SPRIT ;FUNCTION JUMP TABLE

DEFW COLR,LSCRL,RSCRL,USCRL
DEFW DSCRL,COPY,INVT,FVER,FHOR,NXTMNU
DEFW POSIT,BANKSW,MSP
DEFW DMSP,SP16,SP8,NIMP,NIMP,NIMP,NIMP
DEFW NIMP,NIMP,NIMP,NIMP,NIMP,NXTMNU
LD A,(MENU) ;TOGGLE MENU
INC A
AND 1
LD (MENU) ,A
RET
LD HL,SPTTAB
LD (CHSP),HL
JR CHAR1
DEFB 0
LD HL,PATTAB
LD (CHSP),HL
CALL GETNUM
LD (CHARF),A
CALL TCHAR
LD A,0
CALL GTTRIG
CP 0
JR NZ,YOBBO
RET

;DUMMY ROUTINE FOR NON FUNCTIONS
;ROUTINE SELECTS SPRITE
; TO DEFINE
;BY SETTING SPRITE ADDRESS
;AND DOING CHARACTER SELECT
;CHARACTER SELECTION ROUTINE
;CHARACTER OR SPRITE TABLE ADDRESS
;NUMERIC INPUT ROUTINE
;STORE CHARACTER NUMBER
;GET IT TO DEFINE MATRIX

GETNUM: CALL SPPNT ;PRINT SPACES
GN1: LD HL,NAMTAB+519

CALL NUMLOP
INC HL
LD B,A
CALL NUMLOP
S LA B
SLA B
SLA B
S LA B
ADD A,B
RET

NUMLOP: PUSH HL
NUMLAP: LD C,0

LD A,0
CALL GTTRIG
CP 0
JR NZ,NUMLAP

NUMLLP: POP HL
SGLOP: CALL NPNT

PUSH H L

;GET TWO DIGIT HEX NUMERIC
;INTO A AND RETURN

;WAIT FOR RELEASE OF SPACE

;PRINT DIGIT

125

LD A,0
CALL GTSTCK
CP 0
JR Z,NUMELP
INC C
LD A,C
CP 16
JR NZ,NUMELP
LD C,0

NUMELP: HALT

NPNT:

NPNT2:

TCHAR:

TCOLP:

TCILP:

TCSKP:

HALT
HALT
HALT
LD A,0
CALL GTTRIG
CP 255
JR NZ,UMLLP
POP H L
LD A,C
RET
LD A,C
ADD A,48
CP 58
JR C,NPNT2
ADD A,7
CALL WRTVRM
RET
LD A,(CHARF)
LD L,A
LD H,0
ADD HL,HL
ADD HL,HL
ADD HL,HL
PUSH HL
POP DE
LD IX,(CHSP)
ADD IX,DE
PUSH IX
POP HL
LD C,8
LD IY,HARRY1
LD B,8
CALL RDVRM
LD D,0
RLC A
JR NC,TCSKP
LD D,1
LD (IY+0),D
INC IY
DJNZ TCILP
INC HL
DEC C

;IF A CURSOR KEY IS PRESSED
;INCREMENT AND WRAP DIGIT

;WAIT A BIT

;DONE THIS DIGIT?

;IF NOT GO DO IT AGAIN
;ELSE RESTORE HL
;DIGIT IN A
;RETURN
;NUMBER IN A
;CONVERT ASCII
;IF HEX A TO F

;THEN FURTHER ASCII CONVERT
; PRINT IT

;THIS ROUTINE TRANSFERS
;VRAM CHARACTER OR SPRITE
;DEFINITION TO THE DEFINITION MATRIX

;SHIFTS DEFINITION BITS
;INTO CARRY
;AND WRITES 0 AND 1
;TO ARRAY AS NECESSARY
;INCREMENT ARRAY POINTER
;AND DO IT AGAIN
:INC VRAM POINTER

126

___,,,......

JR NZ,TCOLP
RET

CHSP: DEFW PATTAB
CHART: LD A,(CHARF)

LD L,A
LD H,0
ADD HL,HL
ADD HL,HL
ADD HL,HL
PUSH HL
POP DE
LD IX,(CHSP)
ADD IX,DE
PUSH IX
POP HL
LD C,8
LD IY ,HARRY1

CTLO: XOR A
LD D,A
LD B,8

CTLI: LD A,(IY+0)
CP 1
CCF
RL D
INC IY
DJNZ CTLI
LD A,D
CALL WRTVRM
INC HL
DEC C
JR NZ,CTLO
RET

CLR: LD IX,HARRY1
LD B,64
LD A,0

CLRLP: LD (IX+0),A
INC IX
DJNZ CLRLP
RET

INVT: LD IX,HARRY1
LD B,64

IVTLP: LD A,(IX+0)
INC A
AND 1
LD (IX+0) ,A
INC IX
DJNZ IVTLP
RET

POSIT: CALL CURPOS
LD HL,(CHSP)
XOR A
LD DE,PATTAB

;AND DO IT FOR 8 ROWS

;THIS ROUTINE IS THE
;INVERSE OF THE PREVIOUS
;ROUTINE

;MATRIX CLEAR ROUTINE
;ARRAY IS 64 BYTES
;0 CLEARS
;THE MATRIX
;INC MATRIX POINTER
;64 TIMES
;RETURN
;IX IS MATRIX POINTER
;MATRIX IS 64 BYTES LONG
;GET MATRIX CONTENTS
;0 BECOMES 1
;AND 1 BECOMES 0
;PUT IT BACK
;INCREMENT THE POINTER
; DO IT 64 TIMES

;POSITION CURSOR
;CHARACTER OR SPRITE?
;CLEAR A AND CARRY FLAG
;ADDRESS OF PATTERN GENERATOR TABLE

127

SBC HL,DE
JR NZ,SPOSIT
LD A,(CYP)
AND 0F8H
S LA A
SLA A
LD B,A
LD A,(CXP)
S RL A
S RL A
SRL A
ADD A,B
LD HL,NAMTAB
LD E,A
LD D,0
ADD HL,DE
LD A,(CHARF)
CALL WRTVRM
RET

SPOSIT: LD HL,SATTAB
LD A,(CHARF)
AND 31

SPOST0:

SPOST1:

LD B,A
INC HL
INC HL
INC HL
INC HL
DJNZ SPOST0
LD A,(CYP)
CALL WRTVRM
INC HL
LD A,(CXP)
CALL WRTVRM
INC HL
LD A,(CHARF)
CALL WRTVRM
LD A,(SPCOLl
INC HL
CALL WRTVRM
RET

;ARE WE DOING A CHARACTER?
;NO, GO TO SPRITE POSITIONING

;DIVIDE CURSOR X ANDY POS BY 8

;CALCULATE NAME TABLE ADDRESS

;AND WRITE PRESENT CHARACTER

;ROUTINE TO POSITION SPRITE
; SPRITE NUMBER
;MOD 32

;IS SPRITE PLANE TO USE

;WRITE SPRITE ATTRIBUTES

SPCOL: DEFB 3 ;HOLDS SPRITE COLOUR
CHCOL:
CXP:
CYP:
CURPOS:

CUP1:

CUPOLP:

DEFB 31H,31H,31H,31H,31H,31H,31H,31H ;CHARACTER COLOURS
DEFB 0
DEFB 0
LD A,16
LD (CXP) ,A
LD (CYP),A
LD A,0
CALL GTTRIG
CP 255
JR Z,CUP1
LD HL,(CXP)

;STARTING POSITION FOR ...
;POSITIONING CURSOR

;HAVE WE RELEASED ...
; THE SPACE BAR

;GET CURSOR X,Y COORDINATES

128

LD A,0
PUSH HL
CALL GTSTCK
POP H L
CP 1
JR NZ,CUP2 ;MOVE THE CURSOR AROUND
DECH

CUP2: CP 3
JR NZ,CUP3
INC L

CUP3: CP 5
JR NZ,CUP4
INCH

CUP4: CP 7
JR NZ,CUP5
DEC L

CUPS: LD A,H
CP 57
J R C,CUP6
LD H,0

CUP6: LD (CXP),HL
LD HL,SATTAB
LD A,(CYP)
CALL WRTVRM
INC HL
LD A,(CXP)
CALL WRTVRM
INC HL
INC HL
LD A,12
CALL WRTVRM ;WRITE NEW SPRITE POSITION
LD A,0
PUSH HL
CALL GTTRIG ;HAVE WE FINISHED MOVING?
POP H L
HALT
HALT
HA LT
HALT
CP 0
JR Z,CUPOLP ;IF NOT GO MOVE SOME MORE
RET

CSPT: LD B,20
LD HL,NAMTAB+547

CS PT0: LD A,32
CALL WRTVRM
INC HL
DJNZ CSPT0
LD HL(CHSP)
LD DE,PATTAB ;THIS IS ALL ANOTHER ...
LD IX,CMESS ;SPACE AND MESSAGE .•.
SBC HL,DE ;PRINTING ROUTINE

129

J R Z,CSPT1
LD IX,SMESS

CSPT1: LD HL,NAMTAB+547
CSPT2: LD A,(IX+0)

CP I$'
J R Z,CSPT3
CALL WRTVM
INC HL
INC IX
JR CSPT2

CSPT3: LD A,(CHARF)
SRL A
SRL A
SRL A
SRL A
LD C,A
CALL NPNT
INC H L
LD A,(CHARF)
AND 15
LD C,A
CALL NPNT ; THESE ROUTINES KEEP THE ...
RET ;STATUS AREA OF THE SCREEN .•.

CMESS: DEFB 'CHAR:$' ;UP TO DATE
SMESS: DEFB 'SPRITE:$'
COLMES: DEFB 'SPRITECOL:$'
COLMS1: DEFB 'CHARCOLS$'
COLPT: LD HL,NAMTAB+579

LD IX,COLMES
COLPT1: LD A,(IX+0)

CP I$ I
JR Z,COLPT2
CALL WRTVRM
INC HL
INC IX
JR COLPT1

COLPT2: LD A, (SPCOL)
SRL A
SRL A
SRL A
SRL A
LD , A
CALL NPNT
LD A,(SPCOL)
AND 15
LD C,A
INC HL
CALL NPNT
LD HL,NAMTAB+532
LD IX,COLMS1

COLPT3: LD A,(IX+0)
CP I$ I

130

JR Z,COLPT4
CALL WRTVRM
INC HL
INC IX
JR COLPT3

COLPT4: INC HL
PUSH HL
LD A,(CHARF)
LD L,A
LD H,0
ADD HL,HL
ADD HL,HL
ADD HL,HL
PUSH HL
POP DE
LD IX,COLTAB
ADD IX,DE
PUSH IX
POP HL
LD IX,CHCOL
LD B,8

COLPTS: CALL RDVRM
LD (IX+0) ,A
INC IX
INC HL
DJNZ COLPTS
POP HL
LD B,8
LD DE,31
LD IX,CHCOL

COLPT6: LD A,(IX+0)
PUSH AF
SR L A
SR L A
SRL A
SRL A
LD C,A
CALL NPNT
POP AF
AND 15
INC HL
LD C,A
CALL NPNT
ADD HL,DE
INC IX
DJNZ COLPT6
RET

BANK: DEFB 0
BPMESS: DEFB 'BANK:'
BANKPT: LD HL,NAMTAB+611

LD IX,BPMESS
BKPT1: LD A,(IX+0)

131

BKPT2:

CP I$ I

JR Z,BKPT2
CALL WRTVRM
INC HL
INC IX
JR BKPT1
LO A,(BANK)
AND 15
LO C,A
CALL NPNT
RET

FTTXRM: LO HL,PATTAB
LO DE,0B000H
LO BC,1800H
CALL LDIRMV
LO HL,COLTAB
LO DE,0C800H
LO BC,1800H
CALL LDIRMV

SPTXRM: LO HL,SPTTAB
LO DE,0E000H
LO BC,800H
CALL LDIRMV
RET

LPTXRM: LO A,(BANK)
LO H,A
LO L,0
ADD HL,HL
ADD HL,HL
ADD HL,HL
PUSH HL
LO DE,0B000H
ADD HL,DE
EX DE,HL
LO HL,PATTAB
LO BC,800H
CALL LDIRMV
POP H L
LO DE,0C800H
ADD HL,DE
EX DE,HL
LO HL,COLTAB
LO BC,800H
CALL LDIRMV
J R SPTXRM

COLR: CALL SPPNT
LO A,0
CALL GTTRIG
CP 255
JR Z,COLR
LO HL,(CHSP)
XOR A

132

LD DE,PATTAB
SBC HL,DE
JR NZ,COLSP
LD IX,CHCOL
LD B,8

COLLYP: LD A,8
SUB B
ADD A,48
PUSH BC
LD HL,NAMTAB+517
CALL WRTVRM
INC HL
LD A, I • I

CALL WRTVRM
INC HL
LD A,(IX+0)
SR L A
SR L A
SR L A
SR L A
LD C,A

HNGON1: LD A,0
CALL GTTRIG
CP 255
JR Z,HNGON1
PUSH IX
CALL SGLOP
POP IX
S LA A
S LA A
S LA A
S LA A
LD B,A
LD A,(IX+0)
AND 15
OR B
LD (IX+0),A
AND 15
LD C,A
INC HL

HANGON: LD A,0
CALL GTTRIG
CP 255
JR Z,HANGON
PUSH IX
CALL SGLOP
POP IX
AND 15
LD B,A
LD A,(IX+0)
AND 0F0H
ORB

133

-
LD (IX+0),A
INC IX
POP BC ...
DJNZ COLLYP
LD A,(CHARF)
LD L, A
LD H,0
ADD HL,HL
ADD HL,HL
ADD HL,HL
LD DE,COLTAB
ADD HL,DE
EX DE,HL
LD HL,CHCOL
LD BC,8
CALL LDIRVM
RET

COLSP: CALL GETNUM
LD (SPCOL),A
RET

MSP: LD A,(9001H) ;GET PRESENT VALUE VDP(1)
OR 1 ;SET THE MAG FLAG
LD (9001H),A ; PUT IT BACK
LD B,A
LD C, 1
CALL WRTVRM ;WRITE IT TO VDP
RET

DMSP: LD A,(9001H)
AND 0FEH ;RESET THE MAG FLAG
LD (9001H),A
LD B,A
LD C,1
CALL WRTVDP ;AND WRITE IT TO VDP
RET

SP8: LD A,(9001H)
AND 0FDH ;RESET 16*16 SPRITE FLAG
LD (9001H),A
LD B,A
LD C,1
CALL WRTVDP AND WRITE IT TO VDP
RET

SP16: LD A,(9001H)
OR 2 ;SET 16*16 SPRITE FLAG
LD (9001 H) ,A
LD B,A
LD C,1
CALL WRTVDP ;AND WRITE TO VDP
RET

LSCRL: LD IX,HARRY1 ;SCROLLS LEFT FROM ARRAY1
LD IY,HARRY2 ;TO ARRAY 2
LD C,8

LS LP: LD A,(IX+0)

134

..
I

LD (IY+?) ,A
LD B,7
INC IX

LSLP1: LD A,(IX+0)
LD (IY+0),A
INC IX
INC IY
DJNZ LSLP1
INC IY
DEC C
JR NZ,LSLP
LD IX,HARRY1 ;PUT ARRAY2 TO ARRAY1
LD IY,HARRY2
LD B,64

LSLP2: LD A,(IY+0)
LD (IX+0) ,A
INC IX
INC IY
DJNZ LSLP2 ;DONE 64 BYTES?

LS LP3: LD A,0
CALL GTTRIG ;WAIT FOR SPACE BAR RELEASE
CP 255
JR Z,LSLP3
RET

RSCRL: LD B,7 ;RIGHT SCROLL DOES LEFT
RSCRLP: PUSH BC ;SCROLL 7 TIMES

CALL LSCRL
POP BC
DJNZ RSCRLP
RET

USCRL: LD DE,8 ;UPWARDS SCROLL IS SIMILAR ...
LD IX,HARRY1 ;TO LEFT SCROLL
LD IY,HARRY2
LD C,8

USRLP1: PUSH IX
PUSH IY
LD A,(IX+0)
LD (IY+56) ,A
ADD IX,DE
LD B,7

USRLP2: LD A,(IX+0)
LD (IY+0),A
ADD IX,DE
ADD IY,DE
DJNZ USRLP2
POP IY
POP IX
INC IY
INC IX
DEC C
JR NZ,USRLP1
LD IX,HARRY1

135

LD IY,HARRY2
LD B,64

USRLP3: LD A,(IY+0)
LD (IX+0),A
INC IX
INC IY
DJNZ USRLP3

USRLP4: LD A,0
CALL GTTRIG
CP 255
JR Z,USRLP4
RET

DSCRL: LD B,7 ;DOWNSCROLL DOES UP ..
DCRLP: PUSH BC

CALL USCRL ;7 TIMES.
POP BC
DJNZ DCRLP
RET

FVER: LD IX,HARRY1 ;VERTICAL MIRROR FROM ARRAY 1
LD IY,HARRY2+56 ;TO ARRAY2
LD C,8
LD DE,8

FVER1: PUSH IX
PUSH IY
LD B,8

FVER2: LD A,(IX+0)
LD (IY+0),A
INC IX
INC IY
DJNZ FVER2
POP HL
XOR A
SBC HL,DE
PUSH HL
POP IY
POP IX
ADD IX,DE
DEC C
J R NZ,FVER1
LD B,64
LD IX,HARRY1 ;THEN PUT TRANSFORMED ..
LD IY,HARRY2 ;ARRAY2 BACK TO ARRAY 1

FVER3: LD A,(IY+0)
LD (IX+0) ,A
INC IX
INC IY
DJNZ FVER3
J P USRLP4

FHOR: LD IX,HARRY1 ;HORIZONTAL MIRROR ...
LD IY,HARRY2+7 ; IS SIMILAR TO VERTICAL
LD C,8

FHOR1: PUSH IY

136

LO DE,8
LO B,8

FHOR2: LO A, (IX+0)
LO (IY+0),A
INC IX
DEC IY
OJNZ FHOR2
POP IY
XOR A
ADO IY,OE
DEC C
J R NZ,FHOR1
LO B,64
LO IX,HARRY1
LO IY,HARRY2

FHOR3: LO A,(IY+0)
LO (IX+0) ,A
INC IX
INC IY
DJNZ FHOR3
J P USRLP4

BANKSW: CALL SPPNT
LO HL,NAMTAB+157
CALL NUMLOP
CP 3
J R NC,BANKSW

BSW1: LD (BANK),A
LO BC,800H
LO DE,0B000H
LO H,A
LO L,0
ADD HL,HL
ADO HL,HL
ADD HL,HL
PUSH HL
LO HL,DE
LD DE,PATTAB
CALL LDIRVM
POP HL
LO DE,0C800H
ADD HL,DE
LO DE,COLTAB
LO BC,800H
CALL LDIRVM
CALL TCHAR
RET

COPBNK: DEFB 0
COPCHA: DEFB 0
COPY: CALL SPPNT ;ROUTINE TO COPY A DEFINITION

LO IX,BPMESS
LO HL,NAMTAB+517

COPYLP: LO A,(IX+0)

137

COPY1:

CP I$ I

JR Z,COPY1
CALL WRTVRM
INC HL
INC IX
JR COPYLP
CALL NUMLOP
LD (COPBNK),A
CALL GETNUM
LD (COPCHA),A
LD A,(COPBNK)
CP 4
J R NC,COPY
CP 3
J p Z,SPCOPY
LD A,(COPCHA)
LD L,A
LD A,(COPBNK)
LD H,A
ADD HL,HL
ADD HL,HL
ADD HL,HL
PUSH HL
LD DE,0B000H
ADD HL,DE
PUSH HL
LD A,(CHARFl
LD L,A
LD H,0
ADD HL,HL
ADD HL,HL
ADD HL,HL
LD DE,(CHSP)
ADD HL,DE
EX DE,HL
POP HL
LD BC,8
CALL LDIRVM
POP BC
LD DE,(CHSP)
LD HL,PATTAB
XOR A
SBC HL,DE
JR NZ,COPSKP
PUSH BC
POP HL
LD DE,0C800H
ADD HL,DE
PUSH HL
LD DE,COLTAB
LD A,(CHARFl
LD L,A

;PRINT MESSAGE
;GET BANK NUMBER
;SAVE BANK TO COPY FROM
;GET CHARACTER/SPRITE NUMBER

;COPY CHAR OR SPRITE

;CALCULATE CHARACTER ADDRESS

;IN RAM

;GET CHAR OR SPRITE VRAM ADDR

;TRANSFER IT FROM RAM TO VRAM

;IF TRANSFERRING A CHARACTER

138

-

LD H,0
ADD HL,HL
ADD HL,HL
ADD HL,HL
ADD HL,HL
EX DE,HL
POP HL
LD BC,8
CALL LDIRVM

COPSKP: CALL TCHAR
RET

SPCOPY: LD A,(COPCHA)
LD L,A
LD H,0
ADD HL,HL
ADD HL,HL
ADD HL,HL
LD DE,0E000H
ADD HL,DE
PUSH HL
LD A,(CHARF)
LD L ,A
LD H,0
ADD HL,HL
ADD HL,HL
ADD HL,HL
LD DE,(CHSP)
ADD HL,DE
EX DE,HL
POP HL
LD BC,8
CALL LDIRVM
CALL TCHAR
RET

LOAD: LD A,1
L 1: LD (BASFNC) ,A

POP HL
LD HL,L2
LD (RTADDR),HL
RET

L2: LD A,(BANK)
CALL GTX
CALL TCHAR
J P NDFNC

SAVE: LD A,2
JR Ll

GTX: LD HL,0B000H
LD DE,PATTAB
LD BC,1800H
CALL LDIRVM
LD HL,0C800H
LD DE,COLTAB

;THEN GET COLOUR TABLE ENTRY
;PUT CHAR TO MATRIX

;SUBROUTINE COPIES SPRITES

;LOAD IS BASIC FUNCTION

;GET RETURN ADDRESS OFF STACK
;GET NEW RETURN ADDRESS
;SAVE IT FOR BASIC
;TO BASIC

;SAVE IS BASIC FUNCTION 2
;GOTO LOAD ROUTINE

139

BASFNC:
RTADDR:

LD BC,1800H
CALL LDIRVM
LD HL,0E000H
LD DE,SPTTAB
LD BC,800H
CALL LDIRVM
RET
DEFB 0
DEFW 0

END

;STORE FOR FUNCTION NUMBER ...
;AND RETURN ADDRESS FOR ...

; BAS IC

The above program should be assembled, and saved to tape as 'GM2'. The
following BASIC program should then be typed in and saved. The program
will load and run the machine code.

10 CLEAR 200,&H8FFF
20 PRINT "LOADING ... "
30 BLOAD"CAS:GMZ"
40 DEFUSR=&H9008
50 A=USR(A)
60 DEFUSR=PEEK(&H9AED)+256*(PEEK(&H9AEE)):REM RTADDR
70 IF PEEK(&H9AEC)=0 THEN SCREEN1,0,0,1:END
80 IF PEEK(&H9AEC)=1 THEN BLOAD"CAS:CHARS"
90 IF PEEK(&H9AECl=2 THEN BSAVE"CAS:CHARS",&HB000,&HE801
100 GOTO 50

Using the Definer.
On running the program you will find that the screen is divided into three
zones. The top zone is black, the middle zone contains a 10 by 8 grid (the
extreme left and right columns of which are marked with a line of crosses)
and the third which displays the functions which the program will perform.
By moving the cursor over the left and right columns of the second zone you
will see messages appearing under the grid, in the third section of the screen.
The cursor is moved by use of the cursor control keys and the space bar has
two functions; when the cursor is the main 8 by 8 body of the definition
matrix pressing the space bar will toggle the cursor position in the matrix
from set to unset and vice versa. When the cursor is situated in one of the
function columns, however, pressing the space bar will perform the function
displayed below the character matrix.

In addition to the function messages the lower third of the screen also displays
certain status messages, most of which are self-explanatory.

The functions which the program will perform are listed below;

EXIT
LOAD

Exits the program.
Loads a file called "CHARS" from tape which contains

140

-

SAVE
CLEAR
CHARACTER

SPRITE
COLOUR

SCROLL LEFT
RIGHT
UP
DOWN

COPY

INVERT
FLIP HORIZONTAL
VERTICAL

MENU 1/2

POSITION

SWAP BANK

MAGNIFY
DEMAGNIFY SPRITES

8*8/16*16 SPRITES

character and sprite definitions and the character
colours.
Saves the file "CHARS" to tape.
Clears the definition matrix.
Selects the character to be modified and transfers its
definition from VRAM to the character definition matrix.
Selects the sprite to be defined.
When defining a character this allows the colours for
the character to be defined row by row. When defining
a sprite this sets up the colour for the POSIT I ON function.

Performs a scroll with wraparound.

Copies a character or sprite definition to the present
character or sprite.
Sets and resets all pixels in the current definition.

Mirrors the definition across either a horizontal or
vertical line drawn across the centre of the definition.
Toggles the function menus accessible by the function
columns.
Allows the positioning of sprites or characters in the
top third of the display.
As we have previously seen the pattern table in Graphics
Mode II consists of three sets of 256 character definitions.
The bank number refers to which of those three sets
of definitions the characters being defined and those
appearing in the third of the screen belong. (Note that
when prompted for a bank number in the COPY function
banks O to 2 arc the three character banks and bank
3 is the sprite definitions).

These two functions set up the VDP registers for sprite
magnification and size.

Numeric input is always considered to be two hexadecimal digits. These digits
are selected by the cursor keys, high order followed by low order.

The character data is left on exit from the program in CPU RAM at the following
locations:-

0B000H to 0CS00H

0CS00H to 0E000H

0E000H to 0ES00H

The pattern generator table, (ie. character definitions).

The colour table.

Sprite definitions.

The definer in modes other than Graphics II
In Graphics Mode I there are only 256 possible character definitions and so
only the first 'bank' need be defined. These definitions will then lie from

141

0B000H to 0BS00H (the colour table may be ignored) and the sprite definitions
remain useful.

To use the definer in text mode the above notes remain in force, except that
the sprites are not available and therefore their definitions are irrelevant. It
must be remembered that in text mode only the left hand 6 columns are used
so it is advisable to leave the right hand 2 columns of any definition blank.

Dynamic pattern definition.
Since the VDP keeps all of its character definitions in VRAM, it is possible
to achieve some effective animation on the pattern plane by redefining a
character while the program is running. When this is done it can be seen
that the new definition will appear corresponding with all references in the
name table. Thus large areas of the screen may be changed by updating a
relatively small number of entries in the pattern generator table. As an example,
let us consider the production of a ladder 7 characters high and 1 wide. This
will appear as an elevator with the rungs travelling from the bottom to the
top and will be achieved by the use of only one character.

Firstly we must produce the basic character definition. A character is needed
which will appear to be part of a ladder, and will tesselatc vertically. The
following pattern definition will serve:

10000001 81H
11111111 FFH
10000001 81H
10000001 81H
10000001 81H
11111111 FFH
10000001 81H
10000001 81H

Having decided on the appearance of our basic character it must be inserted
into VRAM; we will make it character 0.

CHRDEF:
CHARIN:

C I LP:

DEFB 081H,0FFH,081H,081H,081H,0FFH,081H,081H
LO B,8 ;NUMBER OF ENTRIES IN CHRDEF
LO IX,CHRDEF ;GET ADDRESS OF DEFINITION IN IX
LO HL,PGTAB ;GET ADDR OF PGT IN HL
LO A,(IX+0) ;GET BYTE OF DATA
CALL 004DH ;WRITE (HL) IN VRAM
INC HL
INC IX
DJNZ CILP
RET

;INCREMENT POINTERS
;DO IT 8 TIMES

We now have a definition in VRAM which we may alter to achieve the desired
effect. The manipulation required is a vertical scroll of the eight bytes of the
character definition, wrapping the top byte around to become the bottom.

142

-

The following routine will achieve this:­

R DVRM EQU 004AH
WRTVRM EQU 004DH

DSCROL: LD B,7 ;SET UP LOOP COUNTER
LD HL,PGTAB ;SET UP VRAM ADDR OF DEF
CALL RDVRM ;GET FIRST VALUE
LD C,A ;AND SAVE IT FOR LATER

DSCLP: INC HL ;INCREMENT VRAM POINTER
CALL RDVRM ;GET DEFINTION LINE
DEC HL ;AND STORE IT UP ONE ...
CALL WRTVRM ;LINE OF DEFINITION
INC HL ;RESET VRAM POINTER
DJNZ DSCLP ; DO IT 7 TIMES
LD A,C ;OLD TOP LI NE ...
CALL WRTVRM ;BECOMES NEW BOTTOM LI NE
RET

By calling the above routine again and again our ladder character will appear
to have upward-moving rungs. Ladders of any size may be built. The following
program is also needed:-

START:

PLOOP:

LOOP2:

CALL CHARIN
LD HL,NAMTAB+8
LD DE,32
LD B,7
LD A,0
CALL WRTVRM
ADD HL,DE
DJNZ PLOOP
CALL DSCROL
HALT
HALT
JR LOOP2

;DEFINE CHARACTER
;GET NAME TABLE ADDR+8
;LINE LENGTH IN DE
;LADDER IS 7 CHARACTERS LONG
;LADDER CHARACTER IS 0
;PRINT LADDER CHARACTER
;PRINT POSITION DOWN 1 LINE
;DO 7 CHARACTERS
;SCROLL DEFINITION

;WAIT 2/50THS OF A SECOND
;GO ROUND AND DO IT AGAIN

As may be seen from this example the principle of dynamic character definition
is a very powerful tool; its use is only limited by the imagination. In fact
it is the principle of dynamic character definition which (in the next section)
will allow us to consider the Graphics II mode as a bit mapped mode.

Graphics II mode as a bit mapped mode.
If in Graphics II mode we set up the name table such that the 768 bytes of
the table are consecutively numbered O to 255 three times it follows that each
character cell will have its own definition in the pattern generator table, and
as such may be considered to be bit mapped as shown in figure 6.1. Having
set up the name table in this fashion we have now, in effect, a bit mapped
256 by 192 pixel high resolution mode with 15 colours available (although
unfortunately the horizontal colour resolution is only 32 eight pixel blocks).

143

If we consider the origin to be the lower left hand corner of the display the
formula for calculating which byte in the pattern generator table contains the
pixel referred to by any X,Y coordinate is:-

(Pattern table base address)+((((191-Y)div 8)*256)+((191-Y)mod S)+(X AND
OFSH))

and the bit to be set within that byte may be found by,

7-(XAND7)

Using the above formulae, the following routine will set the pixel specified
by the coordinates in HL (L contains the XX coordinate, and H contains the
Y coordinate) to the colour specified by the accumulator:

SETXY: PUSH AF
LD A,191
SUB H
LD H,A
PUSH HL
SRL H
SRL H
SRL H
LD D,H
POP HL
LD A,H
AND 7
LD E,A
XOR A
LD A,L
AND 0F8H
LD E,A
LD A,0
ADC A,D
LD D,A

LD B,L
LD HL,COLTAB
ADD HL,DE
CALL 004AH
AND 15
LD C,A
POP AF
S LA A
S LA A
S LA A
SLA A
ADD A,C
CALL 004DH
LD A,7
AND B

;SAVE COLOUR CODE
;MAKE Y EQUAL ...
;TO 191-Y
;PUT IT BACK IN H
;SAVE X,Y

;Y BECOMES Y DIV 8
;MAKING IT HIGH ORDER OF DE=*256
;RESTORE X,Y
;GET Y
;MOD 8
;MAKE IT LOW ORDER OF DE
;CLEAR CARRY FLAG FOR 16 BIT ADDITION
;GET X

; ADD IT TO DE

;FINISH 16 BIT ADDITION
;DE NOW CONTAINS THE OFFSET FROM
;PATTERN GENERATOR, AND COLOUR TABLE
;BASE ADDRESSES.
;SAVE X
;GET COLOUR TABLE BASE ADDRESS
;ADD THE OFFSET
;GET PRESENT COLOUR VALUE
;MASK OUT BACKGROUND COLOUR
;SAVE IT IN C
;RESTORE COLOUR
;SHIFT COLOUR CODE

;TO HIGH ORDER NIBBLE
;ADD BACKGROUND COLOUR
;AND PUT IT BACK

144

___,,.......

MLP:

LD B,A
XOR A
INC B
CCF
RRA
DJNZ MLP
LD HL,PGTAB
ADD HL,DE
CALL 004AH
XOR B
CALL 004DH
RET

;SHIFT CARRY FLAG INTO A TO FORM
;PLOT MASK
;ADDRESS OF PAT GEN TAB IN HL
;ADD O.FFSET
;GET OLD VALUE
;MASK WITH B
;PUT IT BACK
;DONE

By considering the basics of the Graphics II mode it may easily be seen that
it is a simple matter, by manipulation of the entries in the name table, to
set up many different apparent screen memory maps. In practice, however,
the memory map described above and in figure 6.7 is as easy to use as any
and in many ways is more convenient.

It must also be remembered that although the above technique allows us to
treat the Graphics II mode screen as bit mapped, we may still perform operations
as though it were character mapped. Thus the whole screen may be scrolled,
in 8 pixel steps, by the manipulation of only 768 bytes of VRAM. Alternatively,
we may define the last block of character definitions (those which correspond
with references in the lower third of the name table) to be a fairly standard
character set and treat the top two thirds of the screen as if it were bit mapped.
Further possibilities will doubtless occur to the reader.

More from sprites: interrupt switching
techniques.
There are two obvious problems with sprite handling in the TMS-9929A VDP.
Firstly sprites may only be of a single colour, and secondly all sprites must
at any one time be the same size and magnification. It is however possible
to produce sprites which are apparently of two colours, and it is also possible
to maintain sprites on screen in two different sizes or magnifications. This
may be achieved by interrupt switching of the sprite tables. Note that when
accessing the VDP during an interrupt, it is essential that the interrupt not
occur during VDP access by the background program. This may be achieved
either by putting all background VDP access after a ZSO 'HALT' instruction,
or by flagging that VDP access is occurring.

Two colour sprites.
By switching the sprite name and sprite colour entries in the sprite attribute
table at every frame flyback interrupt, it is possible to produce sprites which
appear to be in two different colours. The following method is suggested:-

145

Firstly define two definitions for the sprite: one definition for each colour.
The definitions should lie in VRAM conseecutively, such that sprite definitions
0 and 1 define one multicolour sprite, definitions 2 and 3 another and so on.

Secondly reserve in memory a 'sprite switching table'. Each entry of this will
contain one byte ccontaining the colour code for the even-numbered sprite
definition (in its high order nibble) and the colour code for the odd-numbered
sprite definition (in its low order nibble). This table should bee written to
whenever a new sprite is placed in the sprite attribute table. Lastly an interrupt
driven routine should be written to switch between the two definitions and
the two colours at each frame flyback interrupt. The following routine illustrates
this:-

SPSWTB: DEFS 32

SPSWIT: LD HL,SATTAB
LD DE,SPSWTB
LD B,32

SPSWLP: CALL 004AH
CP 0D0H
RET Z
INC HL
INC HL
CALL 004AH
XOR 1
LD C,A
CALL 004DH
INC HL
LD A,CDE)
AND A
RR C
JR C,SKP
SLA A
SLA A
S LA A
SLA A

SKP: AND 15
LD C,A
CALL 004AH
AND 80H
OR C
CALL 004DH
INC HL
INC DE
DJNZ SPSWLP
RET

;SWITCH COLOUR TABLE

;BASE ADDR FOR SPRATT TBL IN HL
;ADDR OF COLOUR SWITCH TBL IN DE
;MAX NO. OF ENTRIES TO SWITCH
;READ VERT POS OF SPRITE
;IS IT THE 'END OF SPRITES' MARKER
; IF SO QUIT
;ELSE INC SPRT ATTR TBL PTR
;TWICE, TO POINT TO SPRITE NAME
;READ PATTERN NO.
;PATTERN BECOMES PATTERN+ OR -
;SAVE NEW PATTERN NUMBER
;AND WRITE IT TO SPRITE ATTRIBUTES
;POINT TO SPRITE TAG
;GET SWITCH COLOURS
;CLEAR CARRY FLAG
;ROTATE BIT 0 OF PAT NO. INTO CARRY
;IF PAT IS EVEN NUMBERED DONT .•.
;SHIFT TOP NIBBLE OF COLOUR •••

;INTO BOTTOM NIBBLE
;MASK OUT TOP NIBBLE
;STORE NEW COLOUR CODE INC
;READ OLD TAG
;MASK OUT EARLY CLOCK BIT
;ADD NEW COLOUR
;WRITE NEW TAG TO SPRITE ATTRIBUTES
;POINT NEXT ENTRY IN SPRT ATTR TBL
;POINT NEXT COL SWITCH TBL ENTRY
;DO IT ALL 32 TIMES
;AND RETURN TO O.S. INTERRUPT

Thus, two sprites of different colours and definitions have been made to share
the same entry in the sprite attribute table, each being displayed on every
second frame of the television picture. It can also be seen that a small amount

146

•
of flicker will be seen because of this; under normal circumstances the
persistance of the average display tube is great enough to make the flicker
insignificant.

Different sized sprites: interrupt switching of VDP
registers.
The maintenance of sprites of different sizes or magnifications on screen at
the same time requires two sprite attribute tables to be maintained in VRAM
at the same time - one for each size or magnification. The VDP is then made
to access them one after another for each frame.

In the Multicolour mode and in Graphics Mode I it is usually possible to design
a VRAM memory map to allow this without overlapping the other VDP sub­
blocks. In Graphics Mode II, however, it is necessary to overlap the second
sprite attribute table over one of the other tables. It is most satisfactory to
steal the last 16 sprite definitions for this purpose, and the following memory
map illustrates this:-

0000 H Character generator table
1800H Pattern name table
1800H Sprite attribute table number 1
2000 H Character colour table
3800H Sprite pattern generator table
3 F80H Sprite attribute table number 2

Having designed a suitable memory map it is then a simple matter to write
an interrupt routine which will switch the size and/or magnification bits in
register 1, and the sprite attribute table base address bits in register 5. The
following routine illustrates this by maintaining two attribute tables, one for
16*16 unmagnified sprites, and the other for 16*16 magnified sprites:-

VAL1A EQU
VAL1B EQU
VALSA EQU

VALSB EQU

CTR: DEFB 0

SPATSW: LD A,(CTR)
INC A
LD (CTR),A
AND 1
J R NZ,UNMAG
LD B,VAL1B
LD C,1
CALL 0047H

0E2H
0E3H
036H

07FH

; REG 1 VALUE SETS 16*16 SPRTS UNMAG
;AS ABOVE BUT WITH MAG FLAG SET
;VALUE FOR REG 5 SETS ATTR ADDR TO
;BE 1B00H.
;SETS ATTR TBL AT 3F80H

;SWITCH COUNTER

;GET SWITCH COUNTER
; INCREMENT IT
;PUT IT BACK
;TEST BIT 0
;IF SET SET UP UNMAG SPRITES
;VAL FOR REG1 (MAG SPRITES)
;REGISTER NO.
;WRITE B TO REG C

147

...

UNMAG:

LO B,VAL5B
LO C,5
CALL 0047H
RET
LO B,VAL1A
LO C, 1
CALL 0047H
LO B,VALSA
LO C,5
CALL 0047H
RET

;VAL FOR REG 5, SPRT ATTR AT 1800H

Not only does the above technique allow us to maintain sprites of two different
sizes on screen at the same time, but since we now have two (switched) sprite
attribute tables we may have twice the normal number of sprites on screen
at any one time to aa maximum of 64. Since only one attribute table is active
at aany one time we may now have a maximum of eight sprites on any one
horizontal line, provided of course that only four on the same line occur in
any one attribute table.

It must be borne in mind that in video systems where the tube persistence
is particularly short unacceptable flicker may be introduced - unfortunately
you can't win them all.

Quick VDP access: avoiding time problems.
Although the method of access to VRAM provided for by the VDP has the
advantage of not taking up valuable CPU address space, it has the drawback
that it is slow. It is never possible to completely evade this fact, although
its worst effects may usually be avoided. With respect to VRAM access there
is one cardinal rule, which whenever possible you should follow:-

MAKE USE OF THE VDP ADDRESS REGISTER AND ACCESS VRAM
SEQUENTIALLY

Since sequential VRAM access only requires one data transfer, whereas non­
sequential access requires two data transfers to set up the address register
every time, sequential access is significantly faster. For example, when writing
a routme to scroll the screen it is advantageous to read the entire screen (ie.
the name table) into a buffer in CPU RAM and then put it back into VRAM
enmasse.

Using this method the scroll could be achieved in considerably less than a
50th of a second, whereas a routine using non- sequential VRAM access could
not achieve a scroll in less than 3/S0ths of a second.

If large amounts of VRAM data are to be manipulated at any one time you
should read the data into RAM and perform the manipulation there, before
loading it back into VRAM sequentially.

148

-

By reference to figure 6.2 it may also be seen that access to the VDP is a
great deal faster during the 4,300 microseconds immediately following the frame
flyback interrupt. In cases where timing is extremely critical therefore it is
advantageous to perform all or most of the necessary VRAM access in an
interrupt driven routine.

In summary, fast access to VRAM requires optimisation along the following
lines:-

Firstly you should access VRAM as little as possible. Keep a copy of VRAM
data which you are likely to need to modify in CPU- addressable RAM.

Secondly you should whenever possible access VRAM sequentially, non­
sequential access being time-consuming and with careful thought usually
unnecessary.

Finally, if things are really desperate try to access VRAM only during the frame
flyback period, since at this time access to VRAM is never held up while the
VDP finishes whatever it was last doing.

149

Chapter7

The Prograllllllable
Sound Generator

The Data Registers
The sound generator chosen for the MSX system is the General Instruments
A Y-3-8910 (or equivalent). This chip was briefly discussed in chapter 5. The
device contains 16 read/write registers which allow the user to produce tone
and noise output on any of three separate channels. The sound chip data registers
are as follows: -

Register 0: Channel A tone period fine tune.
Register 1: Channel A tone period coarse tune.
Register 2: Channel B tone period fine tune.
Register 3: Channel B tone period coarse tune.
Register 4: Channel C fine tune.
Register 5: Channel C coarse tune.
Register 6: Noise period.
Register 7: Enables and i/o direction.
Register 8: Channel A amplitude and envelope enable.
Register 9: Channel B amplitude and envelope enable.
Register 10: Channel C amplitude and envelope enable.
Register 11: Envelope period fine tune.
Register 12: Envelope period coarse tune.
Register 13: Envelope shape.
Register 14: Data store for port A.
Register 15: Data store for port B.

The Tone Generators (registers 0 •• 5)
Each channel has two tone period registers associated with it. These set the
period of the sound to be generated (in units of 8 microseconds). The fine
tune registers contain the least significaant eight bits of that period while
the coarse tune registers store the most significant four bits. To instruct the
chip to mix in the output of a given channel the appropriate bit in the enables
register (register 7) must be cleared to 0.

The Noise Generator (register 6)
This is the register which controls the single pseudo-random noise generator
with which the chip is provided. The output from this can be mixed into
any of the three sound channels, as required, by resetting the relevant bit
in register 7. The period of the noise generator is set by the least significant
five bits of this register.

The Enables register (register 7).
Register 7 specifies whether tone or noise or both are to be included in the

150

output of the three channels. It also determines whether the two input/output
ports are to be used in input or output mode. The bits are allocated as follows:

Bit 0: If set disables tone production on channel A.
Bit 1: If set disables tone production on channel B.
Bit 2: If set disables tone production on channel C.
Bit 3: Channel A noise disable.
Bit 4: Channel B noise disable.
Bit 5: Channel C noise disable.
Bit 6: If set determines port A output mode.
Bit 7: If reset determines port B input mode.

Please note that in the MSX system the input/output ports are used to read
the joystick ports, and hence should always be set as inputs.

Amplitude control (registers 8 .. 10).
Each channel has its own amplitude control register. Bit 4 of this register specifies
whether hardware enveloping is to be used for the channel. Setting bit 4 places
the amplitude of the channel under the control of the hardware envelope
generator. If the bit is cleared the amplitude is set by software using bits
0-3, 0 being no volume and 15 setting maximum volume.

Envelope generator (registers 11 .. 13).
The sound chip has a single hardware volume envelope generator which may
be used by any or all of the three channels, as determined by the channel's

Figure 7.1 Envelope shapes

VALUE

8

9

10

11

12

13

14

15

SHAPE

f\~­
'v\/V\

/\IV\
/1...__ __ _

151

?mplitude control register. Bits 0-3 of register 13 control the shape of the envelope
m a ~ather arcane manner. Figure 7.1 gives the values required to generate
the eight hardware envelope shapes available. Any other values will duplicate
either envelope 9 or 15.

The length of each of the ramps, upwards or downwards, is set by the envelope
period.

The envelope period is a full 16-bit value set by register 11 (LSB) and register
12 (MSB). The period is given in 128 microsecond units and is the time between
steps in the ramp. As the ramp has 16 steps (volume settings 0-15) the total
time taken for the ramp is 1024 microseconds times the envelope period. Thus
the envelope period sets the length of the ramp in milliseconds, approximately.

The 1/0 ports (registers 14 .. 15).
Since the input/output registers are used by the MSX system to read the joystick
ports, it is best not to attempt to use them: also they have been buffered
strangely to aid their use in the MSX setup.

Notes and tone periods.
The required tone period can be calculated from the frequency required by
the formula:-

Period = 125000 / Frequency

And the frequency of any note in the even-tempered scale in the full eight
octave range is calculated from the International Standard A as below:-

Frequency= 440*(r(Octave+(N-10)/12))

Where:

Octave is the octave number. 0 is the octave containing middle C,
-1 is the octave below, 1 is the octave above and so on.

N is the note number, 1 is C, 2 is C#, 3 is D, etc.

Since the period is an integer value, it follows that values calculated from
the above formulae will not produce exactly the required frequency. The errors
are however very small and are not usually noticeable.

152

The table below gives the values for Octave O calculated from the above formulae
with the error factor given for each note as a percentage of the required
frequency.

Note Frequency Period Error

C 261.626 478 0.046%
C# 277.183 451 0.007%
D 293.665 426 0.081%
D# 311.127 402 0.058%
E 329.628 379 0.057%
F 349.228 358 0.019%
F# 369.994 338 0.046%
G 391.995 319 0.037%
G# 415.305 301 0.005%
A 440.000 284 0.032%
A# 466.164 268 0.055%
B 493.883 253 0.038%

Given the above formulae the following BASIC routine will calculate tone
periods for notes in the entire eight octave range from string input in the
format 'ON'. However to simply string parsing the octave number (the first
character in the string) varies from O to 7 (low octave to high octave) rather
than from -3 to 4.

The right hand side of the string (the note) may be either one or two characters
in length, and if two must have the # character as its rightmost character.

10 INPUT A$
20 GOSUB 1000
30 PRINT A
40 GOTO 10

1000 O=VAL(LEFT$(A$,1))
1010 AS=MIDS(AS,2)
1020 FOR NC=1 TO 12
1030 READ B$:IF B$=A$ THEN NO=NC
1040 NEXT NC
1050 RESTORE
1060 P=125000/(440*(2-((O-3)+(NO-10)/12))
1070 A=INT(P)
1080 RETURN
1090 DATA C,C#,D,D#,E,F,F#,G,G#,A,A#,B

Using an extension of the above routine it is a simple matter to produce a
program that will provide tone period data for use in machine code music
routines.

153

Accessing the PSG in the MSX environment.

Since the MSX designers reserve the right to alter the hardware specification
of the MSX series computers, as long as they maintain software compatability,
it is only really possible to program the PSG by use of the operating system
calls provided in the MSX system ROM. A description of these routines follows:-

ADDRESS

0090H

0093H

FUNCTION

This routine initialises the PSG, it requires no parameters
to be passed and may modify all registers.
This routine writes the data in E to the PSG register specified
by the accumulator, it returns no values and leaves all registers
unchanged.

0096H This routine reads a value from the register specified by the
accumulator, returning the data in the accumulator, and
leaving all other registers unmodified.

Programming the PSG.

Programming the PSG requires a series of write operations to the chip to specify
the tone period for a given channel, the noise period if required, any envelope
shape which the user may wish to use, the envelope period and (if envelopes
are not to be used) the amplitude of the relevant channel. These actions should
be performed with the channel currently being written disabled (by setting
the relevant ENABLE bit in register 7). As an example of this the following
routine will set up channel A to play middle C with envelope shape 8:-

MIDC: LD A,7
CALL 0096H
OR 9
LD E,A
LD A,7
CALL 0093H
LD E,1
LD A,1
CALL 0093H
LD E,0DEH
LD A,0
CALL 0093H
LD E,8
LD A,13
CALL 0093H
LD E,15
LD A,11
CALL 0093H
LD E,0
LD A,12
CALL 0093H
LD E,16

;READ ENABLES REGISTER
;SET CHANNEL A TONE & NOISE DISABLE

; PUT IT BACK

;SET UP CHAN A PERIOD COARSE TUNE

;AND FINE TUNE FOR MIDDLE C

;SET UP ENV SHAPE

;FINE TUNE ENV PERIOD

;COARSE TUNE ENV PERIOD

154

+
LD A,8
CALL 0093H
LD A,7
CALL 0096H
AND 0FEH
LD E,A
LD A,7
CALL 0093H
RET

;ENABLE ENV CONTROL OF CHAN A

;READ ENABLES REGISTER
;RESET CHAN A TONE DISABLE FLAG

;PUT BACK NEW ENABLES VALUE

Although the above routine is rather trivial, it does quite effectively illustrate
the techniques of programming the PSG. In the case of a chip such as the
A Y-3-8910 which has such enormous capabilities the only way to really know
it is to experiment. The rest of this chapter will present a series of examples
intended to aid in gaining a familiarity with this chip.

Three channel music: the computer as performer.

The following routine is interrupt driven to allow the playing of the three
music channels regardless of any other program which may be running. The
data for the three music chnnels should be stored at the addresses assigned
to the symbols ClDAT, C2DAT and C3DAT as a series of three byte entries.
Byte one of each entry is the fine tune value for the note period, byte two
is the coarse tune value, and byte three is the duration of the note in units
of 20 milliseconds. The end of the tune is signified by writing 255 in the
coarse tune byte of the last entry of the data for channel A. While the program
is running, and hence the tune is playing, the volume of each channel can
be altered by writing to the addresses assigned to the symbols VOLl, VOL2
and VOL3. If you wish to experiment with the hardware envelope generator
this may be achieved by setting it up using the BASIC SOUND command
and then writing a value of 16 to the volume address of the relevant channel.

START:

INTHOK EQU 0F9DFH
PSGINI EQU 00090H
WRTPSG EQU 00093H
RDPSG EQU 00096H
C1DAT EQU 0B000H
C2DAT EQU 0B400H
C3DAT EQU 0B800H

ORG 9000H

LD HL,C1DAT
LD (C1PTR),HL
LD HL,C2DAT
LD (C2PTR),HL
LD HL,C3DAT
LD (C3PTR),HL
LD A, 1
LD (C1CTR),A

;INTERRUPT HOOK ADDRESS
;o.s. ROUTINE FOR PSG INITIALISATION
;DITTO TO WRITE DATA TO PSG
;AS ABOVE TO READ DATA
;START OF CHANNEL 1 TUNE DATA
;DITTO CHANNEL 2
;AND CHANNEL 3. ALL MAY BE CHANGED
;AS REQUIRED

;SET UP DATA POINTERS

155

C1PTR:
C2PTR:
C3PTR:
C1CTR:
C2CTR:
C3CTR:
VOL1:
VOL2:
VOL3:

MUSROT:

LD (C2CTR),A
LD CC3CTR),A
CALL PSGINI
LD A,LOW MUSROT

LD C INTHOK+1) ,A
LD A,HIGH MUSROT
LD (INTHOK+2),A
LD A,0C3H
LD CINTHOK),A
RET

DEFW 0
DEFW 0
DEFW 0
DEFB 0
DEFB 0
DEFB 0
DEFB 15
DEFB 15
DEFB 15

PUSH AF
LD A,(C1CTR)
DEC A
LD (C1CTR),A
OR A

JR NZ,CHANB
LD A,7
CALL RDPSG
OR 1
LD E,A
LD A,7
CALL WRTPSG
LD IX,CC1PTR)
LD E,(IX+0)
LD A,0
CALL WRTPSG
LD A,(IX+1)
CP 255
JR Z,START
LD E,A
LD A, 1
CALL WRTPSG
LD A,CIX+2)
LD (C1CTR),A
LD A,CVOL1)
LD E,A

;SET UP NOTE DURATION COUNTERS
; INITIALISE PSG
;GET LOW ORDER OF ADDRESS OF MUSIC
; ROUTINE
;WRITE TO INTERRUPT HOOK

;WRITE HIGH ORDER TO INT HOOK
;GET Z80 'JP' INSTRUCTION
;INTO INTERRUPT HOOK
;INTERRUPT IS NOW SET UP TO DO
;MUSIC ROUTINE

;SET UP VARIABLE TABLE

;SAVE VDP STATUS
;BEGINNING OF MUSIC PLAYING ROUTINE
;DEC NOTE DURATION

;IS DURATION NOW 0 IE. IS THE NOTE
;FINISHED
;IF NOT DO CHANNEL 2
;IF NOTE COMPLETED

;THEN TURN OFF CHANNEL 1
;GET DATA POINTER IN IX
;GET FINE TUNE VALUE

;AND WRITE TO REGISTER 0
;GET COARSE TUNE VALUE
;IS IT THE END OF TUNE MARKER
;IF SO REINITIALISE

;ELSE WRITE IT TO REGISTER 1
;SET UP NOTE DURATION COUNTER

;GET CHANNEL 1 VOLUME

156

LD A,8
CALL WRTPSG ;WRITE IT TO CHANNEL 1 VOLUME REG
LD A,7
CALL RDPSG
AND 0FEH
LD E,A
LD A,7
CALL WRTPSG ;AND REENABLE CHAN 1 TONE PRODUCTN
INC IX
INC IX
INC IX ;POINT TO NEXT NOTE ENTRY
LD CC1PTR),IX ;SAVE POINTER

CHANB: LD A,(C2CTR) ;DO CHANNEL 2
DEC A
LD CC2CTR),A
OR A
JR NZ,CHANC
LD A,7
CALL RDPSG
OR 2
LD E,A
LD A,7
CALL WRTPSG
LD IX,(C2PTR)
LD E,CIX+0)
LD A,2
CALL WRTPSG
LD E,(IX+1)
LD A,3
CALL WRTPSG
LD A,(VOL2)
LD E,A
LD A,9
CALL WRTPSG
LD A,7
CALL RDPSG
AND 0FDH
LD E,A
LD A,7
CALL WRTPSG
LD A,(IX+2)
LD (C2CTR),A
INC IX
INC IX
INC IX
LD CC2PTR),IX

CCHANC: LD A,(C3CTR)
DEC A
LD (C3CTR),A
OR A
JR NZ,ENDMUS
LD A,7

157

CALL ROPSG
OR 4
LO E,A
LO A,7
CALL WRTPSG
LO IX,(C3PTR)
LO E,(IX+0)
LO A,4
CALL WRTPSG
LO E,(IX+1)
LO A,5
CALL WRTPSG
LO A,(IX+2)
LO (C3CTR),A
LO A, (VOL3)
LO E,A
LO A,10
CALL WRTPSG
LO A,7
CALL ROPSG
ANO 0FBH
LO E,A
LO A,7
CALL WRTPSG
INC IX
INC IX
INC IX
LO (C3PTR),IX

ENOMUS: POP AF

RET

;RESTORE VOP STATUS

Sound effects on the A Y-3-8910.

The production of sound effects is one area where there is absolutely no
substitute for experimentation. While it is true that the PSG can produce virtually
any sound you could wish for, it may be necessary to spend hours trying
various PSG register values before achieving even a close match to the sound
required. This procedure is probably best performed in BASIC using the
SOUND command, whereby one may quickly and simply change any PSG
register. Having found the required register values one may then simply code
up the necessary routines to load values into the PSG.

For example the following BASIC program produces the sound of a gunshot:-

10 SOUND 6,15:SOUNO 7,7
20 SOUND 8,16:SOUNO 9,16:SOUNO 10,16
30 SOUND 11,0:SOUNO 12,16:SOUNO 13,0

158

-

•
This may written in 280 code as follows:-

GUN: LO B,6
LO HL,GUNTBL

GUNLP: LO E,(HL)
LO A,B
CALL 0093H
INC HL
INC B
LO A,B
CP 14
JR NZ,GUNLP
RET

GUNTBL: OEFB 15,7,16,16,16,0,16,0

Sound generation in software: the one bit sound port.
In addition to the generation of sound in hardware by the PSG the MSX system
also sets aside one bit of port C of the 8255 PPI for the generation of sound
in software. An operating system call located at 0135H accepts a value in the
accumulator, and if the value is O turns off the one bit sound port, else turns
it on. By strobing this bit on and off rapidly in software sound may be produced;
try the following routine:-

SFTSNO: LO A,0
CALL 0135H
LO A,1
CALL 0135H
JR SFTSNO

On running this routine a high pitched tone should be heard. Try experimenting
with turning the port on and off at different rates to see what happens.

159

ChapterB

Input-Output:
the cotnputer's window

on the world.
The MSX system provides a comprehensive set of routines to provide such
functions as keyboard reading and scanning, reading the joysticks and game
paddles and printing on the screen. This chapter deals firstly with reading
the joysticks and finally with general console input/output.

Game 1/0: joysticks, paddles and touchpads.
The MSX system supports a maximum of two joysticks, and considers the
cursor keys and space bar to be a third. The following routines are used to
read the joysticks and trigger buttons.

0D5H

0D8H

Reads the current status of the joystick specified by the accumulator,
(0 to 2 with O referring to the cursor keys). It returns a value in
the accumulator which varies between O and 8. See diagram below.
A value of O indicates that the joystick is centralised. This routine
may modify all registers.

1

8 2

7 0 3

6 4

5

This routine reads the joystick trigger specified by the joystick I.D.
in the accumulator. It returns O in the accumulator if the trigger
is not pressed and 255 if it is. Only the AF register pair is modified.
(Note that if this routine is called with a joystick I.D. of O then
the space bar is checked).

The joystick ports are also designed to be able read game paddles. It is possible
in the MSX system to connect six game paddles to each joystick port, making
a total of twelve in all. These are numbered from 1 to 12. Odd numbered
paddles are connected to joystick port 1, even numbered paddles to port 2.

ODEH This routine reads the game paddle specified by the accumulator,

160

and returns a value between O and 255 (dependent on the position
of the relevant paddle) in the acccumulator. It may modify all
registers.

Finally in this section the joystick ports may also be used to read NEC PC-6051
compatible touchpads. The following routine is used to read the touchpad
status:-

ODBH This routine accepts an ID in the accumulator, and returns a value
from the touchpad, modifying all registers. The IDs and values
returned are as follows:

ID

0
1

2
3

4to7

Returns

255 if the touchpad in port 1 is pressed, 0 otherwise.
Returns the X coordinate of the point pressed on pad
1.
As above but the Y coordinate.
Returns 255 if the switch on pad 1 is pressed, or O if
it is not.
IDs 4 to 7 are the same as above but for the touchpad
in port 2.

Console input/output.
The following routines are provided to access the keyboard and CRT;

09CH

09FH

OA2H

OCOH

OC3H

OC6H

OCCH

OCFH

This routine checks the status of the keyboard buffer. It returns
with the zero flag set if the buffer is empty, and modifies the AF
pair.

This routine fetches a character from the input buffer, or if the
buffer is empty waits for a character to be typed in. It returns the
ASCII value of the character typed in the accumulator and modifies
theAFpair.
Prints a character, the code of which is passed in the accumulator,
at the present cursor position, leaving all registers unchanged.

Produces a beep (equivalent of CHR$(7)). It may modify all registers.

Clears the screen, modifying the AF, BC and DE pairs.

Positions the screen cursor at column H row L modifying the AF
pair.

Erases the function key display, modifying all registers.

Displays the function key display, modifying all registers.

The use of these routines is fairly self-evident and the construction of user
applications should pose no problems, as they provide all the basic functions
necessary for console inputs/outputs; for example a simple input and display
routine may be constructed as follows:-

161

IN LP:

LD HL,0
CALL 0C6H ;HOME THE CURSOR
CALL 0C3H ; C LS
CALL 09FH ;GET CHARACTER
CALL 0A2H ;PRINT IT
CP 13
JR NZ,INLP ;IF NOT CARRIAGE RETURN GO DO IT

;AGAIN
Or a routine might be written to request a password to be typed in before
allowing execution to be continued, along the following lines: -

PSSWD: LD HL,PSWORD ;POINT HL TO PASSWORD STRING
PWLP: CALL 09FH ;GET A CHARACTER

CP (HL) ;DOES IT MATCH THE PASSWORD?
JR Z,PWSKP ;IF SO SKIP TO END OF LOOP
LD A, (HL)
CP I & I ;END OF PASSWORD?
JR Z,GO ;YES GO TO OTHER ROUTINES
JP 0000H ;OTHERWISE DO COLD START

PWSKP: INC HL ;INCREMENT PASSWORD POINTER
CALL 0A2H ;PRINT PREVIOUS CHARACTER
JR PWLP ;CHECK NEXT CHARACTER

PSWORD: DEFB 'ANY PASSWORD YOU WANT TERMINATED BY&'

GO: ;INSERT REST OF ROUTINES HERE

Slot Selection.
Since the 8255 PPI need not be addressed at the same location in any two
different MSX computers two routines have been made available to facilitate
the reading and writing of port A in the 8255 (i.e. the primary slot select
register):

0138H

013BH

This reads the current value of the slot selection register, returning
the value in the accumulator and leaving all other registers
unchanged.

Writes the value in the accumulator to the primary slot selection
register, leaving all other registers unchanged.

Thus if one wished to select pages 2 and 3 from slot 2 while leaving pages
0 and 1 unchanged one could perform the following operations:

CALL 138H
AND 15
OR 10100000B

CALL 13BH

;READ SLOT SELECT
;MASK OUT BITS FOR PAGES 0 AND 1
;MASK TO SELECT SLOT 2 FOR PAGES 2
;AND 3
;PUT BACK NEW VALUE

There are two other operating system routines dealing with the 8255 PPI, firstly

162

____,,,......

the routine at 0132H which accepts a value in the accumulator (either zero
or non-zero) and if the value is O turns off the CAPS lamp, else turning it
on. The second routine is used to scan the keyboard.

Keyboard scanning: checking individual keys.
0141H The routine at this location scans the row of the keyboard matrix

(see figure 8.1) specified by the value in the accumulator (0 to 9)
and returns with a value in the accumulator such that the bit
corresponding to a column of the keyboard matrix is reset if the
key in that column of the row scanned is pressed. If no keys in
the row are pressed, the routine will return 255.

Figure 8.1 The Keyboard Matrix

COLUMNS

7 6 5 4 3 2 1 0

0 7 6 5 4 3 2 1 0

1 + [~ - = 9 8

2 B A - I > < I *

J I H G F
I

E D C --- I---------·-.-~

I

R Q p 0 N M L K
I

3
ROWS

4
~ ~

5 z y X w V u T s

6 F3 F2 Fl CODE CAP GRAPH CTRL SHIFT

7 RETCR'.\ SELECT BS STOP TAB ESC FS F4

8 ---> t 1' <--- DEL INS HOME SPACE

9

163

As a clarification of the above consider the following routine, which
will scan the keyboard until the 'Z' and 'X' keys are pressed together:

ZXCHK: LD A,5
CALL 0141H
AND 101000008

JR NZ,ZXCHK
RET

;SCAN ROW 5 OF THE KEYBD MATRIX

;CHECK BITS 7 AND 5
;ARE THEY BOTH RESET
;IF NOT TRY AGAIN

164

¥
j
I

I

t
I

APPENDICES

A Character codes

B Colour assignments

C Video RAM table

D Z-80 Instructions

E Tl9929A VDP

F GIA Y-3-8910 PSG

165

APPENDIX A

CHARACTER CODE
TABLE

Reproduced by kind permission of Toshiba UK Limited.

Most significant 4 bits --

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 - % @ p ' C E a A [~ -p ~ Q -Sooce -
1 I 1 A Q a Q u l:B I a ~ ~ ~ ±

2 INS
,.

2 B R b r e /E. 6 I • ~ r ~

3 ~ 3 C s C s a 0 i -■·, n < u -..

4 $ 4 D T d t a 6 n 6 EJ i _ _il r r
5 % 5 E u e u a 0 N 0 • r ■ ! O" J
6 & 6 F V f V a u a u I • µ

7
,

G u u ~ ~ T BL 7 w g w C 0 :::::

8 (8 H h e y I
r •

0
BS 5fcl~('' X X i., f1 '6 <I>

·--
9 TAB) 9 I y i y e b r i1 J * e .
A LF * J z j z e 0 7 3 .• .') w n •
B HOME EscJ + K I k { I ◊ ½ '\, ~-() ,-

V

C CLS ➔ < L \ I I i £ ¼ ◊ ~ -00
1) . I

D CR + - = M l m } 1 ¥ i 1/.. ~ c; ~
2

l.

:t A ~ A
C C [I r-7 E . > N n Pt <(qr l..J E l .. ~

F " / ? 0 0 - A f ► § ~ ~ () """' - {DE,I ('!')

i Hex numbers

166

"']
E
:,
C

" Q)

:i:

~

t
I
!
'

APPENDIXB

COLOUR TABLE

0 Transparent

1 Black

2 Medium green

3 Light green

4 Dark blue

5 Light blue

6 Dark red

7 Cyan

8 Medium red

9 Light red

10 Dark yellow

11 Light yellow

12 Dark green

13 Magenta

14 Grey

15 White

167

____,,,.,.....

APPENDIXC

Video RAM Tables

40 Column Text 32 Column Text HRG Multicolour

Name table 0 6144 6144 2048

Pattern table 2048 0 0 0

Colour table 8192 8192

Sprite Attribute 6912 6912 6912
table

Sprite Pattern 14336 14336 14336
table

168

qt

APPENDIXD

Z-80 Instructions

The entries under each flag have the following meanings:
R: the flag is updated as a result of the operation.
0: the flag is re-set.
1: the flag is set.
C: the status of the carry flag is copied into the H flag.
Other abbreviations are listed at the end of this appendix.

FLAGS

SZHNPC

FLAGS

SZHNPC

ADC H L, s s R R R 0 R R CPI R R R 1 R -
ADC A,s R R R 0 R R CPIR R R R 1 R -
ADD A,n R R R 0 R R CPL 1 1

ADD A,r R R R 0 R R DAA R R R - R R
ADD A, (HL) R R R 0 R R DEC m R R R 1 R -
ADD A,(IX+d) R R R 0 R R DEC IX - - - -
ADD A,(IY+d) R R R 0 R R DEC IY - - - - - -

ADD HL,ss - - R 0 - R DEC SS

ADD IX,pp - - R 0 - R DI - - - - - -
ADD IY,rr - - R 0 - R DJNZ e - - - - - -
AND s R R 1 0 R 0 EI - - - -
BIT b,(HL) - R 1 0 - - EX (SP),HL - - - -
BIT b,(IX+d) - R 1 0 - - EX (SP),IX - - - - - -
BIT b,(IY+d) - R 1 0 - - EX (SP) ,IY
BIT b,r - R 1 0 EX AF,AF' R R R R R R
CALL cc,nn - - - - EX DE,HL - - - -
CALL nn - - - - - - EXX - - - - - -
CCF C 0 - R HALT - - - -
CP s R R R 1 R R IM 0 - - - -
CPD R R R 1 R - IM 1 - - - - - -
CPDR R R R 1 R - IM 2 - - - - - -

169

___,.......

IN A,(N) LD (IY+d),n
IN R,(C) R R R 0 R LD (IY+d),r - - - -

INC (HL) R R R 0 R LD (nn) ,A
INC IX LD (nn),dd - - - -
INC (IX+d) R R R 0 R LD (nn),HL

INC IY LD (nn),IX - - - -
INC (IY+d) R R R 0 R LD (nn),IY - - - -
INC r R R R 0 R LD R,A - - - -

INC SS LD r, (H L)

IND - R - 1 - - LD r,(IX+d)
INDR - 1 - 1 - LD r,(IY+d)
INI - R - 1 - - LD r,n
INIR - 1 - 1 - LD r,r 1 - - - -
J p (HU - - - - LD SP,HL
JP (IX) - - - - LD SP,IX
JP (I Y) LD SP,IY
JP cc,nn LDD 0 0 R
JP nn LDDR 0 0 R
J R C,e - - - - LDI 0 0 R
J R e LDIR 0 0 R
JR NC,e - - - - NEG R R R : R R
JR NZ,e - - - - NOP
JR Z,e - - - - OR s R R 0 0 R 0
LD A,(BC) OTDR 1 1

LD A,(DE) OTIR 1 1

LD A,I R R 0 0 R OUT (C) , r

LD A,(nn) OUT (n),A

LD A,R R R 0 0 R OUTD - R - 1 -

LD (BC),A OUTI - R - 1 - -

LD (DE),A - - - - POP IX - - - -

LD (Hll,n POP IY - - - -

LD dd,nn - - - - POP qq - - - -

LD HL,(n,1) PUSH IX

LD (Hll,r PUSH IY

LD I,A - - - - PUSH qq - - - -

LD IX,nn RES b,m

LD IX,(nn) - - - - RET

LD (IX+d),n RET C G

LD (IX+d),r - - - - RETI - - - -

LD IY,nn - - - - RETN

LD IY,(nn) - - - - RL m R R 0 0 R R

170

•
RLA 0 0 R SET b,(HL) - - - -
RLC (HL) R R 0 0 R R SET b,(IY+d) - - - - - -
RLC (IX+d) R R 0 0 R R SET b,r - - - - - -
RLC C IY+d) R R 0 0 R R S LA m R R 0 0 R R
RLC,r R R 0 0 R R SRA m R R 0 0 R R
RLCA - - 0 0 - R SRL m R R 0 0 R R
RLD R R 0 0 R R SUB s R R R 1 R R
RR m R R 0 0 R R XOR s R R R 1 R R
RRA - - 0 0 - R SET b,(IX+d) -
RRC m RR 0 0 R R
RRCA - - 0 0 - R
RRD R R 0 0 R R
RST p - - - -
SBC A,s R R R 1 R R
SBC HL,ss R R R 1 R R
SCF - - 0 0 - 1

ABBREVIATIONS:

Register: A, B, C, D, E, Hor L

n A value in the inclusive integer range Oto 255 (unsigned).

s r, n, (HL), (IX +d) or (IY+d).

m A, B, C, E, H, L, (HL), (IX+d), (IY+d)

dd BC, DE, HL, SP [LD HL,(dd) LD (nn),dd]

n n A value in the inclusive integer range Oto 65535.

qq BC, DE, HL, AF [POP qq PUSH qq]

s s BC, DE, HL, SP [ADC HL,ss ADD HL,ss DEC ss INC ss SBC HL,ss]

pp BC,DE,IX,SP[ADDIX,pp]

r r BC, DE, IY, SP [ADD IY,rr]

b bit0 to 7

e A signed displacement byte in the range -126 to 129.

p A zero page address given with the RESTART instruction. Must be
a multiple of eight in the range Oto 56 inclusive.

cc Condition code: C, NC, Z, NZ, P, M, PE, PO

171

APPENDIXE

Extract from the TMS 9118/9128/9128 Data
Manual
(reproduced by kind permission of Texas Istruments Ltd.)

2. ARCHITECTURE

The TMS9118 Video Display Processor (VOPl is designed to provide a simple intertace be­

tween a microprocessor and a raster-scanned color monitor or television. The TMS9128/

9129 VOPs are designed as simple interfaces oerween a microprocessor and a R-G-8 moni­

tor or a video encooer which produces the video signal ta dnve the video monitor. Figure 2- ~

is a block diagram of the ma1or portions of the VOP arcnitecture interfaces to the CPU.
VRAM, and co!or television.

2. 1 CPU INTERFACE

The VOP interfaces to the CPU using an 8-bit bidirectional data bus, tnree control lines, and

an interrupt. Through these interfaces the CPU car, conduct four ooerauons:

1) Write to one of the eight VOP write-only registers

2) Read the VOP Status Register

3) Write display data bytes to VAAM

4) Read display data bytes from VRAM

Each of these operations requires that one or more data transfers take place over the CPU/

VOP data bus Interface. The interpretation of the data transfer is determined by the three

control lines of the VOP.

NOTE

The CPU can communicate with the VDP simultaneously and asynchronously.

with respect to the VOP's screen refresh ooerations. The VOP oerforms mem­

ory management and allows periodic intervals of CPU access to VRAM. even

in the middle of a raster scan.

2.1.1 CPUIVDP Data Bus

The CPU transfers data between itself and the VOP via an 8-bit b1ciirectiona! data ous. C:JO

(MSBl through C07 (LSB) represent the eight brts of this bus as showr. m Table 2-1 and Tao1e

2-2.

NOTE

Throughout this manual, the C?U/VOP interlace is described assuming tne

use of TI chips. Other CPU manufacturers assign data lines DO t:O be the LSB

and D7 to be the MSB. The prooer hookuo 1s snown in Figure 2-2. If not con­

nected properly, there w,ll be no video drsplay.

172

_,,,......

+
t

I I

I I I
I I I
I I I
I I I

l t I I I
I t t t

TI CPU

MSB

LSB

!I

L....j I
lT •
~i~ El!:1 41 0J -- .

TI VOP OTHER CPU TI VOP

00 coo MSB LSB 00 co, LSB

01 C01 01 COB

C02 02 cos
COJ 03 C04
C04 04 COJ
cos 05 C02

08 -C06 08 C01

07 C07 LSB MSB 07 coo .'\1S8

FIGURE 2-2 - CPU TO VOP CONNECTION

173

2. 1.2 CPU Interface Control Signals

The CSW, CSR, and MODE inputs control the type and direction of data transfers. CSW is
the C?U-to-VDP write select. When it is active (lowl. the eight bits on CDO-CD7 are strobed
into the VDP. CSR is the CPU-from-VOP read select. When it is active !lowl, the VDP outputs

eight bits on CDO-C07 to the CPU. CSW and CSR should never be simultaneously low. If
both are low, the VDP outputs invalid data on CDO-CD7 and latches in invalid data.

The MOOE input determines the source or destination of a read or write data transfer. This
input is normally tied to a CPU low order address line.

2. 1 .3 VOP Registers

The VDP has eight write-only registers and one read-only status register. The write-only reg­
isters control the VOP operation and determine the allocation of the VRAM. The status regis­

ter contains the interrupt pending, sprite coincidence. and fihh sprite status flags. Section
2.2 and Section 2.3 contain more detailed descriptions of the write-only registers and status
register, resoectively.

Each of the eight VDP write-only registers can be loaded using rwo 8-bit data transfers from
the CPU. Table 2-3 describes the required format for the two bytes. The first byte transferred
is the data byte. and the second byte transferred controls the destination. The MS8 of the
second byte must be a 1 .

The next four bits are Os, and the lowest three bits make up the destination register number
(from Oto 7). The MODE input is high for both byte transfers.

NOTE

If the two MSas of the second byte indicate that a write to register is in pro­
cess, the first byte is not interpreted as a CPU address byte.

2.1.4 CPU Write to VRAM

The CPU transfers data to the VRAM through the VOP using a 14-bit autoincrementing ad­
dress register. The address register setup requires 2-byte transfers. Each address setup
takes two microseconds for a total of four microseconds (see Table 2·3l. A 1-byte transfer is
then required to write the data to the addressed VRAM byte. The time required is dependent
on the MOOE. The address register is then autoincremented. Sequential VRAM writes re­

quire only 1-byte transfers, since the address register is already set up. During setup of the
address register. the two MSBs of the second address byte must be O and 1, respectively.
MODE is high for both. address transfers and low for the data transfer. CSW is used in all

transfers to strobe the..8 bits into the VOP /see Table 2-3).

TMS9118 TMS9128/9i 29

RAS '
XTALl XTAL1

CAS

'
XTAL2 CAS XTAL2

Jag CP\JCL<'
A07

37 NCt

J6 CQMVlOt yf ~I emoP'
g.yt

34 RESETiSYf..lC A03 RESET I SYNC

JJ vcc A02 Vee
32 ROO ROD

]1 ROl AOO R01 r R/W R02

Vss R03 Vss R03

MOOE R04 MODE R04

csw ROS csw ROS

CSR ROS R06

iNT" R07 R07

C07 coo C07 coo
C06 co, C06 C01

cos C02 cos C02

C04 COJ

AGURE 2-3 - TMS9118/9128/9129 VOP P1N ASSIGNMENTS

174

TABLE 2-3 - CPUNOP DATA TRANSFERS ANO SETUP SEQUENCES

BIT csw CSR MODE
REQ

OPERATION
0 1 2 3 • 5 • 7 TIME

WRITE TO VOP REGISTER

BYT! 1 CAT A WRITE Do D1 o, D3 o, D5 05 07 0 1 1 , ..
BYTE 2 ReGISTER SELECT 1 0 0 0 0 •So RS1 RS2 0 1 1 , ..
WRITE TO VRAM

BYTE 1 AOORESS SETUP •• A7 •• •• •10 .,, •12 A13 0 1 1 2 ..

BYTE 2 AQORESS SETUP 0 1 Ao •1 •2 A3 •• A5 0 1 1 2 ..

BYTE 3 OAT A WRITE 0o 01 o, 03 04 05 09 07 0 1 0 -

RE.AO F~QM STATUS REGISTER

BYTE 1 CAT A READ 0o D1 o, 03 04 05 De D7 1 0 1 2 ..

READ FROM VRAM

BYTE 1 AOORESS SETUP •• A7 •• •• •10 .,, •12 A13 0 1 1 , ..
BYTE 2 ADDRESS SETUP 0 0 Ao •1 ., •• •• A5 0 1 1 -
BYTE 3 CATA READ 0o o, o, D3 04 D5 05 07 , 0 0 -

2.1.5 CPU Read from VOP StatU5 Register

As shown in Table 2-3. the CPU can read the contents of the status register with a single­
byte transfer. MOOE is high for the transfer. CSR is used to signal the VDP that a read opera•
tion is required. Each status register read requires a two microsecond minimum.

2.1.6 CPU Read from VRAM

The CPU reads from the VRAM through the VDP using the autoincrementing address regis­
ter. Once the address is set up, a l -byte transfer is all that is required to read the addressed

VRAM byte. The address register is then autoincremented. Sequential VRAM data reads re­
quire only a 1-byte transfer since the address register is already set up. During setuo of the
address register. the two MSBs of the second address byte must be O. By setting up the ad­
dress in this way, a read cycle to VRAM is initiated. and read data will be available for the
first data transfer to the CPU fsee Table 2-3). MOOE is high for the address byte transfers
and low for the data transfers.

The CPU interacts with VRAM memory through the VDP. It takes four microseconds for the
write address setup and two microseconds for the read address setup. The total time neces•
sary for the CPU to transfer a byte ot data to or from VRAM memory can vary from two to
eight microseconds. Once the VOP has been told to write or read a byte of data to or from
VAAM, it takes approximately two microseconds until the VOP is ready to make the data
transfer. This time is measured from the leading edge of CSW of byte 3 for a write and from
the leading edge of CSW of byte 2 for a read. In addition to this two-microsecond delay, the
VDP must wait for a CPU access window (i.e., the period of time when the VOP is not occu•
pied with memory refresh or screen display, and is available) to read or write data.

The worst-case time between windows occurs during the Graphics I or Graphics II mode
when sprites are being used (refer to Table 2-4). During the active display, CPU windows oc~
cur once every 16 memory cycles, giving a maximum delay of six microseconds (a memory
cycle takes about 372 nanoseconds). In the TeX1 mode, the CPU windows occur at least
once every three memory cycles or a worst-case delay of about 1. 1 microseconds. Finally, in
the Multicolor mode. CPU windows occur at least once every four memory cycles.

If the user needs to access memory m two microseconds, there are two situations where the
time waiting for an access window is effectively zero. Both are independent of the display
mode being used.

The first situation occurs when the blank bit of register 1 is 0. With this bit low, the entire
screen will show only border color, and the VOP need not wait for a CPU access window.

The second sItuatIon occurs during the vertical retrace interval. The VDP issues an interrupt
output at the end of each active area. This signal indicates that the VOP is entering the verti­
cal-retrace mode, and that for the next 4.3 milliseconds there is no waiting for an access
window. If the user wants the CPU to access memory during this interval. the controlling
CPU must monitor the interrupt output of the VOP (the CPU can either poll this output. or use
it as an interrupt input).

The program that monitors the interrupt output must ailow for its own delays in responding
to the interrupt signal, and recognize how much time remains of the 4.3-millisecond refresh
period. The CPU must write a 1 to the interrupt-enable bit of Register 1 at initialization, to
enable the interrupt for each frame. It must then read the status register each time an inter-

175

TABLE 2-4 - MEMORY ACCESS DELAY TIMES

VOP I TIME WAITING FOR TOTAL
CONDITION MOOE DELAY AN ACCESS WINDOW TIME

Actr,,e Display Are.a Te><1 2"' I 0 - 1.1 ..is 2 - 3.1 :.is

Actrve Display Area Graph,cs 2 "' I 0 - 5.95 j.lS 2 - 8 J4
I.II

4300 i..cs after Vemcat All

I
2"' 0"' 2"'

lnterniol S,gnal

Register l All

I
2.s o,.. 2;4

Blank 811 0

Active D1solav Area Mult1col0f 2"' 0 - 1.5 ~ I 2 - 3 5 i6

2. 1 _ 7 Interrupt Driven CPUs

In an interrupt-driven environment !CPUs accepting interrupts), it is possible for an interrupt
to occur before any one of the sequences in Table 2-3 is finished. For example, an interrupt
may occur immediately after loading address byte 1 or byte 2 dunng a write to VRAM opera•
tJon. In this case, the interrupt service routine does not know where the interrupt occurred

within the sequence. Therefore, ,t is necessary to disable and enable interrupts before and
after every setup sequence. This action prevents loss of continuity between the CPU and the
VDP.

If this continuity is not important. the status register may be read. The internal CPU interface
logic is then reinitialized and will accept the nexr byte as the first event in another CPU-to­

VDP interface. If neither technique Is acceotable. polling may be used.

2. 1 .8 VDP Interrupt

The VDP's INT output pin is used to generate an interrupt at the end of each active disolay
scan (approximately every 1 /60 se:ond for the TMS911 8/91 28. and 1.'50 second tor the

TMS9129l. The INT output is active wnen the lnterruot Enable bit OE) in VOP Register 1 is a
1 and the F status flag of the status register is set to a 1. interrupts are cleared when tne
register is read.

The VDP interrupt occurs at the erid of the active pattern plane disoiay. before rhe last few
lines of the backdrop are d1splaveG. This interruot canoe used for moving somes and updat­
ing the panern display, but Is not useful for quickly changing tne oackdrop color.

2. 1.9 RESET /SYNC

The VDP is externally initialized whenever tne RESET/SYNC inoutis active {low) and must
be held low for a minimum of three microseconds. The externai reset synchronizes all clocks
with its falling edge, sets the horizontal and vemcal counters to known states. and ciears

VDP registers O and 1. The vioeo display Is automatically blanKed since the BLANK bit In
VDP register 1 becomes a 0. However, the VDP, continues to refresh the VRAM even though

the display is blanked. To restore the picture. write the correct values to VDP reaisters O and
1. Whiie the RESET/SYNC line is a.:t,ve. the VDP aces not refresh the VRAM. ~

2.2 WRITE-ONLY REGISTERS

The eight VDP write-only registers are shown in Figure 2-4. They are loaded by the CPU as
described in Section 2.1.3. Registers O and 1 contain flags to enable or disable various VOP
features and modes. Registers 2 through 6 define the base addresses for several sub-blocks
within VRAM. These sub-blocks form tables which are used to produce the desired image on
the screen. The contents of these tables must be provided by the microprocessor. Register 7

Is used to define backdrop and text colors.

Each register is described in the following sections.

2.2. 1 Register 0

Register O contains two VOP option control bits. All other bits are reserved for future use and

must be 0s.

BIT 6 M3 (mode bit 31 (see Section 2.2.2 for description)

176

~

I
BIT7 External VOP Plane enable/disable {see Section 3. 7 for explanation)

O disab!es External VDP Plane 1 enables External VDP Plane

REGISTER

STATUS

!READ·ONl Yl

MSB

DON'T

CARE
BLANK " M2

TEXT ~OLOR1

SS

FIGURE 2-4 - VDP REGISTERS

2.2.2 Register 1 !contains 6 VDP option control bits}
BIT O Unused bit

BIT 1 BLANK enable1disable

LSB

MJ EV

SIZE MAG

TA~ BASE ADDRESS
PA~~ GEN~TOR

SPRITE PATTERN

GENERATOR TABLE

BASE AODl'IESS

0 causes the active d1spiay area to b1ank. leaving only the border co!or to be dis­
piayed on the screen.

1 enables the actrve disolay

BIT 2 1:: Onterrvpt Enable)

0 disables VDP interrupt

1 enabies VOP interrupt

BIT 3,4 M1, M2 (mode bits 1 and 2) ..
M 1, M2 and M3 determine the operating mode of the VDP:

M1 M2 M3
0 0 0
Q 0 1

0 1 0
0 0

177

Graphics 1 mode
Graphics II mode

Mult1color mode

Text mode

BIT 5 Reserved

BIT 6 Size (spme size select)

0 selects Size O sprites (8 x 8 bit)

1 selects Size 1 spntes (16 x 16 bITsl

BIT 7 MAG (Magnification option for sorites)

0 selects MAGO sprites (1 X)

1 selects MAG 1 sprites (2X)

2.2. 3 Register 2

Register 2 defines the base address of the Panern Name Table sub-block. The Pattern Name

Table contains the name of or the pointer to a pattern cefinit1on in tne Pattern Generator

Table. The range of Register 2 is from Oto 1 5. The contents of the register form the upoer 4

bits of the 1 4-bit Pattern Name Table aodresses; thus the Pattern Name Table base adoress Is

equal to (Register 2) • 400(hex). Table 2-5 shows the possible starting addresses for the Pat­
tern Name Table sub-block.

2.2.4 Register 3

TABLE 2-5 - REGISTER 2 ADDRESSING

A2 • 400(161,. STAr\7 !..OORESS

R2 ADDRESS

00 0000
01 ()4()()

02 0800
03 OCOO - MAXIMUM NUMBER FOR 4K RAMS

04 1000

05 1400

06 1800

07 ,coo
08 2000
09 2400

OA 2800
08 2COO
oc 3000

OD 3400

OE 3900
OF 3COO - MAXIMUM NUMBER

Register 3 cefines the base address of the Pattern Coler Table sub-block. The Pattern Coler

Table defines the color of tne 1s and Os. The range of Register 3 is from Oto 255. The con­
tents o1 the register form the upper 8 bits of the 14-bit Pattern Colar Table addresses; thus

the Panern Color Table base address is equal to (Register 3) •4Q(hex). Table 2-6 shows the

possible starting addresses for the Pattern Colar Table except for Graphics II mode.

NOTE

Register 3 functions differently when the VDP is in Graphics II mode. In this

mode. the Pattern Cot or Table can only be located in one of two places in

VRAM, either >0000 or >2000. If >0000 is the Pattern Colar Table location,

then the MSB in register 3 must be O. If >2000 is the !ocat1on choice, then the

MSB in register 3 must be one. Bits 1 to 7 in register 3 must be set to 1. There•

fore, m Graphics II mode, the only two values that work correctly in register 3

are >7F and ~F.

2. 2. 5 Register 4

Register 4 defines the base address of the Panern Generator Table sub-blocl<... The Panern

Generator Table contains a library of patterns that can be displayed on the screen. The range

of Register 4 is O through 7. The contents of the register form the upper 3 bits of the 14-bit

Generator addresses; thus the Pattern Generator Table base address is equal to {Register 4)

•aOO(hex}. Table 2-7 shows the possible start.mg addresses for the Pattern Generator Table

sub-block except for Graphics II mode.

NOTE

Register 4 functions differently when the VOP is in Graphics II mode. In this
mode, the Panern Generator Table can only be located in or.e of two places in

178

VRAM, either >0000 or >2000. If >0000 is where the Pattern Gene~ator

Table is to be located, then bit 5 ,n register 4 must be 0. If >2000 is the loca­

tion choice. then brt 5 in register 4 must be one. In either case, brts 6 and 7 in

register 4 must be set to 1 s. Therefore, in Graphics !I mode, the only two val­

ues tnat work. correctly in register 4 are >03 and >07.

CAUTION

Bit 5 of Register 4 MUST have the opposite value of bit O of Register 3 so that

the two BK areas are separate. Otherwise. Graphics ll mode will not work.

TABLE 2-7 - REGISTER 4 ADDRESSING

!R4\ • 8D0t16) "START ADOR::ss

START

R4 ADDRESS

00 0000
01 0800 - Ma,,; = for 4K RAMS

02 1000
03 1800

04 2000
05 2800
06 3000
o, 3300 - Max= for 16K RAMS

2.2.6 Register 5

Register 5 defines the base address of the Spme Attnbute Table sub-block. The Sorrte At·

tribute Table specifies where the spme goes on the screen Tne range at Register 5 is from O
through 1 27. The contents of the register form the upper 7 brts of me 14-br:: Some Attribute

Table addresses; thus the base address Is equal to (Register 5) • 80(hex).

2.2. 7 RP.gister 6

Register 6 defines the base adaress of the Sprite Panem Generator sub-block. :"he Spnte

Pattern Generator Table describes what the spme looks like. The range of Register 6 ,s 0
through 7. The contents of the register form the uoper 3 bits of the 14•b1! Sprite Pattern

Generator adaresses; thus the Sprite Panern Generator oase adaress 1s eoual to /Register 6)
•soO(hexl. Tabie 2-9 shows the possible starting addresses for the Spnte Panern Generator

sub-block.

2.2.8 Register 7

TABLE 2-9 - REGISTER 6 ADDRESSING

STARTING ADDRESS_., AS ·<BOO

START

R6 ADDRESS

00 0000
01 0800 - Max= tor 4K DRAMS

02 1000
03 1800

04 2000

05 2800
06 3000
07 3800 - Max ;:;:- for 16K RAMS

The upper 4 bits of Register 7 contain the color code of color 1 m the Text mode. The lower 4
bits contain me co!or code for color O in the Text mode, backdrop color, and border color in all

other modes.

2.3 STATUS REGISTER

The VOP has a smgIe 8-bn read-only status register that can be accessed by the CPU. The

status register contains the interrupt flag (FI. the sonte coincidence flag !Cl. the fifth sprite

flag (SS), and the fifth sprite number {if one exzstsl. Tne format of the status register is

179

shown below and is discussed ,n the followin-~ paragraphs.

STATUS

(REAO•ONL Yl
5S

The status register mav be read at any time to test me r, C, and 5S status t:ags. Reaomg tne

status register will ciea~ the interrupt flag, F

CAUTION

Asynchronous reads wiU cause the Interruot flag (Fj to be reset and missed.
Therefore, the status register snould be read onIy when tne VOP interrupt is

penaIng.

2.3.1 Interrupt Flag {F}

The F interruot flag in the status register is set to 1 at tne end of the raster scan of the last
line of tne active aisp\ay. lt is reset :o a O aher the statl!s register rs read or when the VOP is

externally rese:. !f the !nterruot Enabie bit OE) in V~P Register i is active (1 l. tne VDP inter­

rupt ournut (INT) will be active IJow J wnenever tne F interruot flag is a 1.

NOTE

The status register needs to be read frame by frame in oraer to clear the inter·

rupt ana receive the new interrupt of tne next Trame.

2.3.2 Sprita Coincidence Flag !C}

The Sprite Coincidence Flag C in the status register is set to a 1 if two or more somes coin.

c1de. Coincidence occurs if any two sornes on the screen have one overlapping pixel. Tran­

sparent colored sorites, as well as those that are partially or cornp!ereiy off the screen, are

also considered. To make an 1nd1v1dual sprite invisible, Jt is necessary to seIect transparent as

its co!or. The C flag is cleared to a O after the status register Is read or the VD? Is externally

;eset. The setting of the C flag will not cause an imerrupt.

Sprites beyond the Sprite Attribute Table terminator {>DO) are not considered. For examole,

if a >DO terminator is put In the vemcal posItIon byte of Sprite 3 In the Spme Attribute Table,

Sprites 4 through 31 will be invisible.

CAUTION

The status register should be read immediately upon powerup to ensure that

the Coincidence flag is reset.

The VDP checks each pixel position for coincidence during the generation of the pixel regard•

less of where it is located on the screen. This occurs every 1160th of a second for the

TMS9118 and TMS9128, and every 1/SOth of a second for the TMS9129. Thus, when
moving sprites more than one pixel position during these intervals, it is possible for the s □ ri•

tes to have multiple pixels overlapo1ng or even to have passed completely over one another

when the VDP checks for coincidence.

2.3.3 Fihh Sprite Flag {5S) and Number

The SS Fihh Sprite Flag in the status register is set to a 1 when there are five or more sorrres

on tne same horizontal line (lines 1 to 192) and the interruot fiag is eoua! to a 0. The fifth

sprite flag is set even if sprnes are oos1t1oned cff-sr::reen. The 5S flag Is cleared to a O after

the status register Is read, or the VDP is externally reset. The number of the fifth some is

placed into the lower 5 bits of me status register when the 5S flag is set. and 1s vaiid wnen­

ever the 5S flag is 1. The setting of the fifth sprite flag will not cause an Interruor.

2.3.4 Oscillator and Clock Generation

lhe VDP Is designed rn operate with a 10. 738635 ! ~ /- 0.00051 MHz crystal input to gener­

ate the reauired in-r~rnal clock s:gna:s .. A. fundamental-frequency parallel-moae crvsral is re­

cuired for the internal clock osc1lIaror, wnich 1s the master time base for all system ooera­

tIons. This master clock Is divided by two to ge:-ierate me 01xei clock (5.3 MHz) and by three

ro oroviae the CPUCLK (3. 58 MHz for TMS 9118 only!.

180

+
i
I
I

I

NOTE

Crystals for the TMS91 1 8/9 ~ 2819129 may be purchased from one of tl'le fol­

lowing companies or their authorized drsrnbutors:

NDK
10080 North Wolfe Road
SUl!e 220
Cupertino, California 95014
Telephone; 408-255-0831
Telex: 352057

CTS Knight Inc.
400 Reimann Avenue
Sandwich, lllinors 60548
Telephone: 815-786-8411

181

APPENDIXF

Extract from the A Y-3-8910 Programmable Sound
Generator Manual
(reproduced by kind permission of General Istruments Microelectronics Ltd.)

1.2
Features

1.3
Scope

□ Full software control of sound generation.
□ Interfaces to most 8-bit and 16-bit microprocessors.
□ Three independently programmed analog outputs.
□ Two 8-bit general purpose I/O ports (A Y-3-8910).
□ One 8-bit general purpose I/O port (AY-3-8912).
□ Single --;-5 Volt Supply.

This Data Manual is intended to introduce the techniques needed to
cause the A Y-3-8910/8912 Programmable Sound Generator to per­
form in its intended fashion. All of the programs, programming, and
hardware designs have been tested to ensure that the methods are
practical rather than purely theoretical.

Although the techniques described will produce powerful results. the
range of sounds to be synthesized is so vast and the PSG capabilities
-so varied that this guide should be viewed merely as an introduction
to the applications possibilities of the PSG.

Fig. 1 TYPICAL SYSTEM DIAGRAM-------------

3

CP1600

14-21

CLOCK- 22

RESET >----__.,,3
9C7

29

AY-3-8910
8C2

,a

BDIR
27

25

;;-g

PARALLEL I 0

182

ANALOG A

ANALOG B

•K

--::- --::-

.,......

t
2.2

Pin Assignments

The AY-3-8910 is supplied in a 40 lead dual in-!ine package with the
pin assignments as shown in Fig. 4. The AY-3-8912 is supplied in a 28
lead dual in-line package with the pin assignments as shown in Fig. 5.

Fig. 4 AY-3-8910 PIN ASSIGNMENTS

Top View

Vss (GND) •1 40 Vee (·+-SV)
N.C. 2 39 TEST 1

ANALOG CHANNEL 8 38 ANALOG CHANNEL C
ANALOG CHANNEL A 37 DAO

N.C. 36 DA1
!087 6 35 DA2
!086 7 34 DA3
!085 8 33 DA4
!084 9 32 DAS
!083 10 31 DA6
!082 11 30 DA7
!081 12 29 8C1
!080 13 28 8C2
!OA7 14 27 8DIR
!OA6 15

'l
TEST 2

!OAS 16 25 AS
IOA4 17 24 A9
!OA3 18 23 RESET
!OA2 19 22 CLOCK
!OA1 20 21 IOA0

Fig. 5 AY-3-8912 PIN ASSIGNMENTS

Top View

ANALOG CHANNEL C 28 DAO
TEST 1 27 DA1

Vee (+5V) 26 DA2
ANALOG CHANNEL 8 25 DA3
ANALOG CHANNEL A 24 DA4

Vss (GND) 6 23 DA5
!OA7 7 22 DA6
!OA6 8 21 DA7
!OA5 9 20 8C1
IOA4 10 19 BC2
!OA3 11 18 BDIR
!OA2 12 17 AS
!OA1 13 16 RESET
!OA0 14 15 CLOCK

183

2.3
Pin Functions

DA7--DA0 (input/output/high impedance): pins 30--37 (AY-3-8910)
Data/Address 7--0: pins 21--28 (AY-3-8912)

These 8 lines comprise the 8-bit bidirectional bus used by the
microprocessor to send both data and addresses to the PSG and to
receive data from the PSG. In the data mode, DA7--DA0 correspond
to Register Array bits B7--B0. In the address mode, DA3--DA0 select
the register# (0--17 8) and DA7--DA4 in conjunction with address
inputs A9 and AS form the high order address (chip select).

AS (input): pin 25 (AY-3-8910)
pin 17 (AY-3-8912)

A9 (input): pin 24 (AY-3-8910)
(not provided on AY-3-8912)

Address 9, Address 8
These "extra" address bits are made available to enable the position­
ing of the PSG (assigning a 16 word memory space) in a total 1,024
word memory area rather than in a 256 word memory area as defined
by address bits DA7--DA0 alone. If the memory size does not require
the use of these extra address lines they may be left unconnected as
each is provided with either an on-chip pull down (A9) or pull-up (AS)
resistor. In "noisy". environments, however, it is recommended that
A9 and AS be tied to an external ground and +5V, respectively, if they
are not to be used.

RESET (input): pin 23 {AY-3-8910)
pin 16 (AY-3-8912)

For ini!ialization/power-on purposes, applying _§J_~ic "0" (ground)
to the Reset pin will reset all registers to "0". The Reset pin is provided
with an on-chip pull-up resistor.

CLOCK (input) pin 22 {AY-3-8910)
pin 15 {AY-3-8912)

This TTL-compatible input supplies the timing reference for the
Tone, Noise and Envelope Generators.

BDIR, BC2, BC1 (inputs): pins 27,28,29 {AY-3-8910)
pins 18, 19,20 {AY-3-8912)

Bus DIRection, Bus Control 2,1
These bus control signals are generated directly by Gl's CP1600
series of microprocessors to control all external and internal bus
operations in the PSG. When using a processor other than the
CP1600, these signals can be provided either by comparable bus
signals or by simulating the signals on I/O lines of the processor. The
PSG decodes these signals as illustrated in the following:

184

--

a:+

2.3
Pin Functions

(cont.)

~
0
IIl

0
0

0

0

"' u 0
IIl IIl

0 0

0 1

0

CP1600
FUNCTION

NACT
ADAR

JAB

OTB

PSG
FUNCTION

INACTIVE See 010 (JAB) below
LATCH ADDRESS. See 111 (INTAKl below.

INACTIVE. The PSG/CPU bus 1s inactive. DA7--DA0
are in a high impedance state.

READ FROM PSG. This signal causes the contents
of the register which is currently addressed to
appear on the PSG/CPU bus. DA7--0A0 are 1n the
output mode

0 0 BAR LATCH ADDRESS. See 111 (INTAK) below.

0 1 OW INACTIVE. See 010 (JAB) above.
0 DWS WRITE TO PSG. This s,gnal 1nd1cates that the bus

contarns register data which should be latched into
the currently addressed register. DA7--OA0 are in

the input mode
INTAK LATCH ADDRESS. This signal indicates I hat the bus

contains a register address which should be latcned
in the PSG. DA7--DA0 are in the input mode.

While interfacing to a processor other than the CP1600 would simply
require simulating the above decoding, the redundancies in the PSG
functions vs. bus control signals can be used to advantage in that
only four of the eight possible decoded bus functions are required by
the PSG. This could simplify the programming of the bus control
signals to the following, which would only require that the processor
generate two bus control signals (BDIR and BC1, with BC2 tied to
+5V):

0::
"'

DSG
PSG 0 0 u

IIl IIl IIl FUNCTION r "'" 0 0 INACTIVE C-RQM

0 1 READ FROM PSG. PROCESSOR >--~
0 WRITE TO PSG

LATCH ADDRESS

ANALOG CHANNEL A, B, C (outputs): pins 4, 3, 38 (AY-3-8910)
pins 5, 4, 1 (A Y-3-8912)

Each of these signals is the output of its corresponding D/A
Converter, and provides an up to 1 V peak-peak signal representing
the complex sound waveshape generated by the PSG.

IOA7--IOA0 (input/output): pins 14--21 (AY-3-8910)
pins 7--14 (AY-3-8912)

IOB7--IOB0 (input/output): pins 6--13 (AY-3-8910)
(not provided on AY-3-8912)

Input/Output A7--A0, B7--B0

Each of these two parallel input/output ports provides 8 bits of
parallel data to/irom the PSG/CPU bus from/to any external devices
connected to the IOA or IOB pins. Each pin is provided with an on­
chip pull-up resistor. so that when in the "input" mode, all pins will
read normally high. Therefore, the recommended method for scan­
fling external switches, for example, would be to ground the input bit.

185

2.4
Bus Timing

TEST 1: pin 39 (AY-3-8910)
pin 2 (A Y-3-8912)

TEST 2: pin 26 (AY-3-8910)
(not connected on AY-3-8912)

These pins are for GI test purposes only and should be left open-do
not use as tie-points.

Vee: pin 40 (AY-3-8910)
pin 3 (AY-3-8912)

Nominal -'-5Volt power supply to the PSG.

V55 : pin 1 (AY-3-8910)
pin 6 (AY-3-8912)

Ground reference for the PSG.

Since the PSG functions are controlled by commands from the
system processor, the common data/address bus (DA7--DA0) re­
quires definition as to its function at any particluar trme. This is
accomplished by the processor issuing bus control signals, previ­
ously described, defining the state of the bus; the PSG then decodes
these signals to perform the requested task.

The conditioning of these bus control signals by the processor is the
same as if the processor were interacting with RAM: (1) the processor
outputs a memory address; and (2) the processor either outputs or
inputs data to/from the memory. The "memory" in this case is the
PSG's array of 16 read/write control registers.

The timing relationships in issuing the bus control signals relative to
the data or address signals on the bus are reviewed in general in the
following section. and in detail in Section 7, Electrical Specifications.

Fig. 3 PSG REGISTER ARRAY----------------

B3 B2 B1 BO

4-BIT Coarse T:.me A

R2
Channel B Tone Period

4-BIT Coarse Tune B

Channel C Tone Penod
4-BIT Coarse Tune C

R6 Noise Period 5-81T Period Control

Tone
R7 Enaole

A C B A

R1O Channel A Amplitude L3 L2 L1 LO

R11 Channel B Ampl1tuae L3 L2 L1 LO

A12 Channel C Amplitude L3 L2 L1 LO

A13
Enve1ooe Penod

R14

R15 Envelope Shaoe/Cycle CONT ATT ALT HOLD

A16 VO Port A Data Store 8-BIT PARALLEL VO on Port A

R17 VO Port B Data Store 8-BlT PARALLEL VO Port 8

186

•

, .

ll>l!AL ACTUAL "12-BIT AEGIS"TEA IDEAL ACTUAL ,2-BIT REGISTER
NOTE OCTAVE FREQUENCY FREQUENCY VALUE IN OCTAL NOTE OCTAVE FREQUENCY FREQUENCY VALUE IN OCTAL

C 1 32 703 32.698 6 5 3 5 C 6 523.248 522.714 0 3 2 6
C# 1 34 648 34653 6 2 3 4 C# 5 554.368 553.766 0 3 1 2
D 1 36 708 36.712 5 7 4 7 D 5 587.328 588.741 0 2 7 6
D11 1 38 891 38 895 5 4 7 4 D# 5 622.256 621.449 0 2 6 4
E 1 41 203 41 201 5 2 3 3 E 5 659.248 658.005 0 2 5 2
F 1 43 654 43 662 5 0 0 2 F 5 698.464 699.130 0 2 4 0
F# 1 46 249 46.243 4 5 6 3 F# 5 739 984 740.800 0 2 2 7
G 1 48.999 48.997 4 3 5 3 G 5 783.984 782.243 0 2 1 7
G# 1 51 913 51 908 4 5 3 G# 5 830.608 828 598 0 2 0 7
A 1 55 000 54 995 3 7 6 2 A 5 880.000 880.794 0 1 7 7
A# 1 58 270 58.261 3 6 0 0 A# 5 932.320 932.173 0 1 7 0
B 1 61 735 61.733 3 4 2 4 B 5 987.760 989.918 0 1 6 1
C 2 65 406 65.416 3 2 5 6 C 6 1046.496 1045.428 0 1 5 3
GIi 2 69 296 69.307 3 I 1 6 C# 6 1108 736 1107.532 0 1 4 5
D 2 73.416 73.399 2 7 6 4 0 6 1174.656 1177.482 0 1 3 7
D# 2 77 782 77.789 2 6 3 6 D# 6 1244.512 1242.898 0 1 3 2
E 2 82 406 82 432 2 5 1 5 E 6 1318.496 1316.009 0 1 2 5
F 2 87.308 87.323 2 4 0 1 F 6 1396.928 1398.260 0 1 2 0
F# 2 92 498 92 523 2 2 7 1 F# 6 1479.968 1471.852 0 1 1 4
G 2 97 998 98 037 2 1 6 5 G 6 1567.968 1575.504 0 1 0 7
GIi 2 103 826 103 863 2 0 6 5 G# 6 1661.216 1669.564 0 1 0 3
A 2 110 000 109.991 1 7 7 1 A 6 1760.000 1747.825 0 1 0 0
All 2 116.540 116 522 1 7 0 0 All 6 1864.640 1864.346 0 0 7 4
B 2 123.470 123.467 1 6 1 2 B 6 1975.520 1962.470 0 0 7 1

C 3 130 812 130 831 1 5 2 7 C 7 2092.992 2110.581 0 0 6 5 - GIi 3 138 592 138.613 I 4 4 7 C# 7 2217.472 2237.216 0 0 6 2
00 D 3 146.832 146 799 1 3 7 2 0 7 2349.312 2330.433 0 0 6 0 --.]

D# 3 155.564 155.578 1 3 1 7 D# 7 2489.024 2485.795 0 0 5 5
E 3 164.812 164.743 1 2 4 7 E 7 2636.992 2663.352 0 0 5 2
F 3 174 616 174.510 1 2 0 1 F 7 2793.856 2796.520 0 0 5 0
FIi 3 184.996 184.894 1 1 3 5 F# 7 2959.936 2943.705 0 0 4 6
G 3 195 996 195.903 1 0 7 3 G 7 3135.936 3107.244 0 0 4 4
GIi 3 207.652 207 534 1 0 3 3 G# 7 3322.432 3290.023 0 0 4 2
A 3 220.000 220 198 0 7 7 4 A 7 3520.000 3495.649 0 0 4 0
A# 3 233.080 233.043 0 7 4 0 A# 7 3729.280 3728.693 0 0 3 6
B 3 246.940 246.933 0 7 0 5 B 7 3951.040 3995 028 0 0 3 4
C 4 261.624 261357 0 6 5 4 C 8 4185.984 4142.992 0 0 3 3
GIi 4 277.184 276.883 0 6 2 4 CH 8 4434.944 4474.431 0 0 3 1
D 4 293 664 293.598 0 5 7 5 0 8 4698.624 4660.866 0 0 3 0
0# 4 311.128 310.724 0 5 5 0 0# 8 4978.048 5084.581 0 0 2 6
E 4 329.624 329 973 0 5 2 3 E 8 5273.984 5326.704 0 0 2 5
F 4 349 232 349 565 0 5 0 0 F 8 5587.712 5593.039 0 0 2 4
FIi 4 369.992 370 400 0 4 5 6 F# 8 5919.872 5887.410 0 0 2 3
G 4 391 992 392 494 0 4 3 5 G 8 6271 872 6214.488 0 0 2 2
G# 4 415.304 415 839 0 4 1 5 G# 8 6644.864 6580.046 0 0 2 1
A 4 440.000 440 397 0 3 7 6 A 8 7040 000 6991.299 0 0 2 0
All 4 466.160 466.087 0 3 6 0 A# 8 7458.560 7457.385 0 0 1 7
B 4 493.880 494.959 0 3 4 2 B 8 7902.080 7990.056 0 0 1 6

f'i9. 23 EQUAL TEMPEnED CHROMATIC SCALE (fccocK=1.78977MHz)

3 OPERATION

Since all functions of the PSG are controlled by the host processor
via a series of register loads, a detailed description of the PSG
operation can best be accomplished by relating each PSG function to
the control of its corresponding register. The function of creating or
programming a specific sound or sound effect logically follows the
control sequence listed:

Section

3.1
3.2
3.3

3.4

3.5

3.1
Tone Generator

Control
[Registers RO, R 1, R2, R3, R4. R5J

Operation

Tone Generator Control
Noise Generator Control
Mixer Control

Amplitude Control

Envelope Generator
Control

Registers Function
RO--RS Program tone periods

R6 Program noise period.
R7 Enable tone and/or nrnse

on selected channels.
R10--R12 Select "fixed" or "envelope-

variable" amplitudes.
R13--R15 Program envelope period

and select envelope pattern.

The frequency of each square wave generated by the three Tone
Generators (one each for Channels A, B, and C) is obtained in the
PSG by first counting down the input clock by 16, then by further
counting down the result by the programmed 12-bit Tone Period
value. Each 12-bit value is obtained in the PSG by combining the
contents of the relative Coarse and Fine Tune registers, as illustrated
in the following:

Coarse Tune Fine Tune
Register Channel Register

R1 A RO
R3 B R2
AS C R4

j s1j B6f ss) s•i BJ f a2f a, f sof j s, j s6 i ssf s• f s3 f s2 f s, i sof

~J V l
USED/ ""' ·---~---~--~--------~--'

TP~ 1 TP10 TP9 TP8 TP7 TP6 TPS TP4 TP3 TP2 TP1 TPC

12-bit Tone Penod (TP) to Tone Generator

Note that the 12-bit value programmed in the combined Coarse and
Fine Tune registers is a [!eriod value-the higher the value in the
registers, the lower the resultant tone frequency.

Note also that due to the design technique used in the Tone Period
count-down, the lowest period value is 000000000001 (divide by 1)
and the b_ighest period value is 111111111111 (divide by 4,09510).

188

~

The equations describing the relationship between the desired
output tone frequency and the input clock frequency and Tone
Period value are:

(a) fr = hoe•
16TP,o

(b) TP,o = 256CT,o + FT,o

Where: fr= desired tone frequency
fcLocK = input clock frequency
TP,o = decimal equivalent of the Tone Period

bits TP11--TPO.
CT10 =decimal equivalent of the Coarse Tune

register bits B3--BO (TP11--TP8)
FT10 =decimal equivalent of the Fine Tune

register bits B7--BO (TP7--TPO)

From the above equations it can be seen that the tone frequency can
range from a low of ;~'.~o (wherein: TP,0=4,O9510) to a high of '';'t
(wherein: TP10= 1). Using a 2 MHz input clock, for example, would
produce a range of tone frequencies from 30.5 Hz to 125 kHz.

To calculate the values for the contents of the Tone Period Coarse
and Fine Tune registers, given the input'clock and the desired output
tone frequencies, we simply rearrange the above equations, yielding:

fcLOCK
(a) TP,o = 16fr

-+- FT,o _ TP,o
(b) CTrn ' 256 - 256

Example 1: fr= 1kHz
fc,oc• = 2MHz

-~-1
TP,o - 16(1x103) - 25

Substituting this result into equation (b):

FT,o 125
CT,o + 256 = 256

. ·. CT,o = 0 = 0000 (83--80)
FT, 0 = 125, 0 = 01111101 (B7--80)

Example 2: h= 100Hz
fcwcK = 2MHz

TP, 0 = 2x10•, = 1250
16(1x10)

Substituting this result into equation (b):

FT, 0 1250 226
CT,o + 256 = 256 = -~ + 256

.·• CT,o = 4, 0 = 0100 (83--80)
FTrn = 226,o = 11100010 (87--80)

189

3.2
Noise Generator

Control
(Register RGI

The frequency of the noise source is obtained in the PSG by first
counting down the input clock by 16, then by further counting down
the result by the programmed 5-bit Noise Period value. This 5-bit
value consists of the lower 5 bits (B4--80) of register R6, as
illustrated in the following:

Noise Period
Register R6

1 0, 1 86 1 85 1 84 1 83 1 82 1 0, 1 80 1

NOT 5-bit Noise Period (NP)
USED to Noise Generator

Note that the 5-bit value in R11 is a i;ieriod value-the higher the value
in the register, the lower the resultant noise frequency. Note also that,
as with the Tone Period, the lowest period value is 00001 (divide by 1);
the t!_ighest period value is 11111 (divide by 3110):

The noise frequency equation is:

fcLOCK

16 NP,o

Where: IN= desired noise frequency
fcLocK = input clock frequency
NP,o=decimal equivalent of the Noise Period

register bits 84--80.

From the above equation it can be seen that the noise frequency can
range from a low of \\~' (wherein: NP,o = 31,o) to a high of -'s~•t
{wherein: NP10 = 1). Using a 2 MHz input clock, for example, would
produce a range of noise frequencies from 4 kHz to 125 kHz.

To calculate the value for the contents of the Noise Period register,
given the input clock and the desired output noise frequencies, we
simply rearrange the above equation, yielding:

NP ~ fcLOCK
,o- 16fN

190

3.3
Mixer Control­

I/O Enable
(Register R7)

Register 7, is a multi-function Enable register which controls the
three Noise/Tone Mixers and the two general purpose I/O Ports.

The Mixers. as previously described, combine the noise and tone
frequencies for each of the three channels. The determination of
combining n·either/either/both noise and tone frequencies on each
channel is made by the state of bits 85--80 of R7.

The direction (input or output) of the two general purpose I/O Ports
(IOA and IO8) is determined by the state of bits 87 and B6 of R7.

These functions are illustrated in the following:

I 87 86

Mixer Control-1/O Enable
Register R7

I 85 I 84 83 I 82 ! 81 I BG

~

~ ~ \ Function Input En a Die

liO Pon 8 A

F-unc11on N01se Enaole

I

Tone [naole

I Channel C 8 A C I 8 I A

Noise Enable Truth Table: Tone Enable Truth Table:
R7 Bits Noise Enabled R7 Bits Tone Enabled

85 84 83 on Channel 82 81 BO on Channel

0
0

0
0

0 0
0 1

0
1 1

0 0

0 1

0

C B A 0 0

C B 0 0
C A 0

C 0 1

B A 0
B 0

A

I/O Port Truth Table:

R7 Bits
87 86

0
0

0
1
0

1/0 Port Status
JOB JOA

Input
Input
Output
Output

Input
Output
Input
Output

0 C B A
1 C B
0 C A
1 C
0 B A

B
0 A

NOTE. D1sab!rng noise and tone does not turn off a channel. Turning a
channel off can onlv be accompl1snecj by writing all zeroes into the
corresponding Amplitude Control register, R10, R11, or R12 (see
Section 3 4).

191

3.4
Amplitude

Control
[Registers RlO. Rl I, R12J

The amplitudes of the signals generated by each of the three D/ A
Converters (one eacn ior Channels A. B, and C) is determined by the
contents of the lower 5 bits (B4--BO) of registers R 10, R11, and R 12 as
illustrated in the following:

Amplitude Control
Register#

R10

R11

R12

1;:;-J
L_a

amplitude
· Mode

Channel

A

B
C

4-bit .. 1J,..e-d.
dmp111uae Level

The amplitude "mode" (bit M) selects either fixed level amplitude
(M=O) or variable level amplitude (M=1). It follows then that bits L3-­
LO, defining the value of a "fixed" level amplitude, are only active
when M=O. When fixed level amplitude is selected, it is "fixed" only in
the sense that the amplitude level is under the direct control of the
system processor (via bits D3--DO). Varying the amplitude when rn
this "fixed" amplitude mode requires in each instance the direct
intervention of the system processor via an address latch/write data
sequence to modify the D3--DO data.

When M= 1 (select "variable" level amplitudes), the amplitude of each
channel is determined by the envelope pattern as defined by the
Envelope Generator's 4-bit output E3 E2 E 1 EO.

The amplitude "mode" (bit M) can also be thought of as an "envelope
enable" bit; i.e., when M=O the envelope is not used, and when M=1
the envelope is enabled. (A full description of the Envelope Gener­
ator function follows in Section 3.5).

192

~

The full chart describing all combinations of the 5-bit Amplitude
Control is as follows:

Amplitude Control
Register#

R10
R11
R12

(s1(ss!ss(s4ls3(s2!s1lso(

---i
+ + + +

NOT
USED

M L3 L2 L1 LO

0 0 0 0 0

0

X X X X

(X=Don't Care)

Channel

A

B
C

* 0

Amplitude
Control
Output

0 0

E3 E2 E1

The amplitude :s
fixed at 1 of 16 levels
as determined by
L3 L2 L 1 LO.

The amplitude is
variable at 16 levels
as determined by the
output of the
Envelope Generator.

*The all zeroes code is used to turn a channel
"off"

Fig, 6 graphically illustrates a selection of variable level (envelope­
controlled) amplitude where the 16 levels directly reflect the output
of the Envelope Generator. A fixed level amplitude would correspond
to only one of the levels shown, with the level directly determined by
the aecimai equivalent of bits L3 L2 L 1 LO,

Fig. 6 VARIABLE AMPLITUDE CONTROL (M=1)

193

- CJ-,ANNEL AT
MAXIMUM
AMPLiTt...:DE

- CHANNE~
OFF

3.5
Envelope

Generator
Control

(Registers Rl 3,

R14, R15)

To accomplish the generation of fairly complex envelope patterns,
two independent methods of control are provided in the PSG: first, it
is possible to vary the frequency of the envelope using registers R13
and R14; and second, the relative shape and cycle pattern of the
envelope can be varied using register R15. The following paragraphs
explain the details of the envelope control functions, describing first
the envelope period control and then the envelope shape/cycle
control.

3.5.1 ENVELOPE PERIOD CONTROL (Registers R13, R14}
The frequency of the envelope is obtained in the PSG by first
counting down the input clock by 256, then by further counting down
the result by the programmed 16-bit Envelope Period value. This
16-bit value is obtained in the PSG by combining the contents of the
Envelope Coarse and Fine Tune registers, as illustrated in the
following:

Envelope Envelope
Coarse Tune Fine Tune
Register R14 Register 813

~6jssjs, I B3 js2j B1 jsoj is, js6 !as is, is3is2 I s1 Isa!

/ l__J ~
EP15 EP14 EP13 EP12 EP11 EP10 EP9 EP8 EP7 EP6 EP5 EP4 EP3 EP2 EP1 EPO

16-bit Envelope Period (EP}
to Envelope Genera:.or

Note that the 16-bit value programmed in the combined Coarse and
Fine Tune registers is a Qeriod value-the higher the value in the
registers. the lower the resultant envelope frequency.

Note also, that as with the Tone Period, the lowest period value is
0000000000000001 (divide by 1); the b.[ghest period value is
1111111111111111 (divide by 65,535, 0).

The envelope frequency equations are:

(a) fe = fc,ocK
256EP10

(b) EP10=256CT1o+FT1o

Where: fE = desired envelope frequency
fcLOcK = input clock frequency

EP1o = decimal equivalent of the Envelope
Period bits EP15--EPO

CT1o = decimal equivalent of the Coarse Tune
register bits B7--BO (EP15--EP8)

FT,o = decimal equivalent of the Fine Tune
register bits B7--BO (EP7--EPO)

From the above equation it can bee seen that the envelope frequency
can, range from a low of 16_;~6~~0,, (wherein: EP10=65,53510) to a high
of Ts''r (wherein: EP1 0=1). Using a 2 MHz clock, for example, would
produce a range of envelope frequencies from 0.12 Hz to 7812.5 Hz.

194

2Q

To calculate the values for the contents of the Envelope Period
Coarse and Fine Tune registers, given the input clock and the desired
envelope frequencies, we rearrange the above equations, yielding:

(a) EP = fcLoc1<
10 256fe

Example: fe = 0.5 Hz
fcLocK = 2 MHz

2x106
EP,o = 2561051 = 15.625

FT,o
(bi CT,o + 256

Substituting this result into equation tb):

FT, 0
CT,o + 256

15,625 9
~ = 61 + 256

CT, 0 = 61, 0 =00111101 (B7--B0)
FT,o = 9m = 00001001 (B7--B0)

EP10
256

3.5.2 ENVELOPE SHAPE/CYCLE CONTROL (Register R15)
The Envelope Generator further counts down the envelope fre­
quency by 16, producing. a 16-state per cycle envelope pattern as
defined by its 4-bit counter output. E3 E2 E 1 E0. The particular shape
and cycle pattern of any desired envelope is accomplished by
controlling the count pattern (count up/count down) of the 4-bit
counter and by defining a single-cycle or repeat-cycle pattern.

This envelope shape/cycle control is contained in the lower 4 bits
(B3--B0) of register R15. Each of these 4 bits controls a function in
the envelope generator, as illustrated in the following:

Envelope Shape/Cycle
Control Register (R15)

le, i es j es i B4163 js2 is1 isoj Function

~ ~~ Hold }
USED ~

Ailernate I o
Envelope

Attack Generator

Continue

The definition of each function is as follows:
Hold when set to logic "1 ", limits the envelope to one cycle,

holding the last count of the envelope counter (E3-­
E0=0000 or 1111, depending on whether the envelope
counter was in a count-down or count-up mode, respec­
tively).

Alternate when set to logic "1 ", the envelope counter reverses
count direction (up-down) after each cycle.

NOTE: When both the Hold bit and the Alternate bit are ones. th,
envelope counter is reset to its initial count before holding

195

3.5
Envelope

Generator
Control
(cont.)

Attack

Continue

when set to logic "1", the envelope counter will count up
(attack) from E3 E2 E1 E0=0000to E3 E2 E1 E0,=1111;
when set to logic "0", the envelope counter will count
down (decay) from 1111 to 0000.

when set to logic "1 ", the cycle pattern will be as defined
by the Hold bit; when set to logic "0", the envelope
generator will reset to 0000 after one cycle and hold at
that count.

To further describe the above functions could be accomplished by
numerous charts of the binary count sequence of E3 E2 E1 E0 for
each combination of Hold, Alternate. Attack and Continue. However,
since these outputs are used (when selected by the Amplitude
Control registers) to amplitude modulate the output of the Mixers, a
better understanding of their effect can be accomplished via a
graphic representation of their value for each condition selected, as
illustrated in Figs. 7 and 8.

Fig. 7 ENVELOPE SHAPEiCYCLE CONTROL ----------

R15 BITS I
eJ s2 a, sol

C
0
N
T

N• A
U' C
E K

A'
TI
E,

H•
O•
l
D

GRAPHIC REPRESENTATION
OF ENVELOPE GENERATOR

OUTPUT E3 E2 E1 EO

,"~
. I

i v1
J ___ J_ -----=======-----

,~; T~>C:: '-JVt ;,~HIOC

OF ,JNE :-;Y'."U:,

196

~

Fig. 8 DETAIL OF TWO CYCLES OF Fig. 7

(ref. wa•,eform "1010·· in Fig. 7) -·--------------
,,

EP
(1/fc)

GRAPHIC REPRESENT ATJQN OF
THE DECIMAL VALUES OF THE

ENVELOPE GENERATOR
OUTPUT E3 E2 E 1 EO

197

EP
(1/IE)

"

6 SOUND EFFECTS GENERATION

6.1
Tone Only

Effects

Fig. 27

6.2
Noise Only

Effects

Fig. 28

One of the main uses of the PSG is to produce non-musical sound
effects to accompany visual action or as a feature in itself. The
following sections outline techniques and provide actual examples of
some popular effects. All examples are based on a 1.78977MHz PSG
clock.

Many effects are possible using only the tone generation capability of
the PSG without adding noise and without using the PSG's envelope
generation capability. Examples of this type of effect would include
telephone tone frequencies (two distinct frequencies produced
simultaneously) or the European Siren effect listed in Fig. 27 (two
distinct frequencies sequentially produced).

EUROPEAN SIREN SOUND EFFECT CHART -------

Register#

Any not specified
RO
R1
R7
RlO

Octal
Load Value

000

Explanation

376} Set Channel A Tone period to 2.27ms
000 (440Hz).
076 Enable Tone only on Channel A only.
017 Select maximum amplitude on Channel A.

(Wait approximately 350ms before continuing)
RO
R1

RlO

126 } Set Channel A Tone period to 5.346ms
001 (187Hz).

(Wait approximately 350ms before continuing)
000 Turn off Channel A to end sound effect.

Some of the more commonly required sounds require only the use of
noise and the envelope generator (or processor control of channel
envelope if other channels are using the envelope generator).

Examples of this, which can be seen in Figs. 28 and 29. are gunshot
and explosion. In both cases pure noise is used with a decaying
envelope. In the examples shown the only changes are in the length
of the envelope as modified by the coarse tune register and in the
noise period. Note that a significantly lower explosion can be
obtained by using all three channels operating with the same
parameters.

GUNSHOT SOUND EFFECT CHART

Register#

Any not specified
R6
R7

R10
R11
R12
R14
R15

Octal
Load Value

000
017
007

020}
020
020
020
000

198

Explanation

Set Noise oeriod to mid-value.
Enable Noise only on Channels A,B,C.

Select full amplitude range under direct
control of Envelope Generator.

Set Envelope period to 0.586 seconds.
Select Envelope "decay", one cycle only.

.......---
Fig. 29 EXPLOSION SOUND EFFECT CHART ----------

Register#

Any not specified
R6

6.3
Frequency

Sweep Effects

R7
R10
R11
R12
R14
R15

Octal
Load Value

000
000
007

020}
020
020
070
000

Explanation

Set Noise period to max. value.
Enable Noise only, on Channels A,B,C.

Select full amplitude range under
direct control of Envelope Generator.

Set Envelope period to 2.05 seconds.
Select Envelope "decay", one cycle only.

The Laser, Whistling Bomb, Wolf Whistle, and Race Car sounds in
Figs. 30 thru 33 all utilize frequency sweeping effects. In all cases
they involve the increasing or decreasing of the values in the tone
period registers with variable start, end, and time between frequency
changes. For example, the sweep speed of the Laser is much more
rapid than the high gear accelerate in the race car, yet both use the
same computer routine with differing parameters.

Other easily achievable results include "doppler'' and noise sweep
effects. The sweeping of the noise clocking register (R6) produces a
"doppler'' effect which seems well suited for "space war" type games.

Fig. 30 LASER SOUND EFFECT CHART -----------•

Register#

Any not spec1f1ed
R7

R10

RO
RO

R10

Octal
load Value

000
076
017

060 (start)
160 (end)

000

Explanation

Enable Tone only on Channel A only.
Select maximum amplitude on Channel A.

(
Sweep effect for Channel A Tone period
via a processor loop with approximately
3ms wait time between each step from 060
to 160 (0.429ms/2330Hz to 1.0ms/1 000Hz).
Turn off Channel A to end sound effect.

Fig. 31 WHISTLING BOMB SOUND EFFECT CHART

Register#

Any not specified
R7

R10

RO
RO

Octal
Load Value

000
076
017

060 (start)
300 (end)

Explanation

Enable Tone only on Channel A only.
Select maximum amplitude on Channel A.

(

Sweep effect for Channel A Tone period via
a processor loop with approximately 25ms
wait time between eacn step from 060 to 300
(0.429ms/2330Hz to 1.72ms/582Hz).

After above loop Is completed. follow with sequence in Fig. 28.

199

6.4
Multi-Channel

Effects

Because of the independent architecture of the PSG, many rather
complex effects are possible without burdening the processor. For
example, the Wolf Whistle effect in Fig. 32 shows two channels in use
to add constant breath hissing noise to the three concentrated
frequency sweeps of the whistle. Once the noise is put on the
channel, the processor only need be concerned with the frequency
sweep operation.

Fig. 32 WOLF WHISTLE SOUND EFFECT CHART --------

Register#

Any not specified
R6
R7

R10
R11

RO
RO

Octal
Load Value

000
001
056
017
011

Explanation

Set Noise penod to minimum value.
Enable Tone on Channel A, Noise on Channel B.
Select maximum amplitude on Channel A.
Select lower amolitude on Channel B.

100 (start) processor loop with approximately 12ms {
Sweep. effect for.Channel A Tone period v1aa

040 (end) wart trme between each step from 100 to 040
(0.572ms/1748Hz to 0.286ms/3496Hz).

(Wait approximately 150ms before continuing/

RO
RO

RO
RO

RlO
Rll

100 (start) l A processor loop with approximately 25ms
060 (end) wait trme between each step (ram 100 to 060

(0.572ms/17 48Hz to 0.429ms/2331 Hz)

060 (start) A processor loop with approximately 6rns
wait time between each step from 060 to

150 (end) 150 (0.429ms/2331Hz to 0.930ms/1075Hz).

000 }
000 Turn off Channels A and B to end effect.

Fig. 33 RACE CAR SOUND EFFECT CHART

Register#

Any not specified
R3
R7

RlO
R11

*Rl/RO
*Rl/RO

Rl/RO
Rl/RO

Rl/RO
Rl/RO

RlO
R11

Octal
Load Value

000

Explanation

017 Set Channel B Tone perrod to 34.33ms (29Hz).
07 4 Enable Tones only on Channels A and B.
017 Select maximum amplitude on Channel A.
012 Select lower amplitude on Channel B.

{
Sweep effect for Channel A Tone period vra

013/000 (start) a processor loop with approximately 3ms wait
004/000 (end) trme between each step from 013/000 to

004/000 (25.17ms/39.7Hz to 9.15ms/109.3Hz).

0111000 (start) A processor loop wrth approximately 3ms

003/000 (end) ;;~~~~~~~;~-:::.i:~~hz st~~ ~~:s~;;~oii:~
A processor loop with approximately 6ms

006/000 (S tart) wait time between each step from 006/000 to
OOl/OOO (end) 001/000 (13.73msn2.8Hz to 2.29ms/436.7Hz).

000
000

} Turn off Channels A and B to end effect

* Decrement Rl/RO as a whole number, e.g. start at 013/000. then 012/377,
then 012/376, etc.

200

INDEX

ABS...................... 42
Accesssing the VDP . 116
Accumulator. 72
Address bus . 71
fflD .. ~
and . 76
Arithmetic logic unit . 77
Arrays . 48, 49
~c.·································· ~
ASCII program files . 55, 63
Assembler programmes ... 79
ATKJ" . 42
AUTO .. 42
Autorun .. 44

BASE .. 43
BASIC interpreter . 70
BEEP .. 37. 43
BIN$... 43
Binary addition/subtraction . 74
Binary representation . 73
Bit mapping . 143
Bit operations . 84
BLOAD..................... 43
Block transfer and search operations . 86
BSA VE ... 44

CALL .. 44
Cassette baud control .. 63
CDBL 44
Central processing unit . 1
Character set utility . 23
Characters - on the graphics screen . 32
CHR$ 44
CINT ... 45
CIRCLE 34, 45
CLEAR ... 16, 29, 45
CLOAD .. 46
CLOAD? .. 46
Clock early bit . 28
CLOSE 46
CLS 21, 46
COLOR .. 10, 19, 46

Colour table . 23
Console input/output . 161
CONT .. V
ms ... ~
er .. ~
CPL .. 82
CPU control instructions . 88
CPU registers . 71
CSA VE ... 47
CSNG .. 47
CSR LIN . 21, 47

DAfA .. V
Data bus ... 71
DEF FN .. V
DEFDBL .. 48
DEFINT .. 48
DEFSNG .. 48
DEFSTR .. 48
DEFUSR .. 48
DELETE .. 48
DIM ... 48
Dimensions . 17
Disc operating system . 1
Display modes . 5
DRAW - subcommands ... 33
DRAW .. 32, 49
Dynamic pattern definition . 142

END ... 49
EOF ... 49
ERASE ... 49
ERL .. 49
ERR .. 49
ERROR ... 49
Error handling . 62
Error messages . 50
EXP .. 50

Fast access to the VDP . 148
FIX .. 50
FOR..NEXT ... 50
FRE .. 50
Function key string display . 53
Functions . 17

Game input/output . 160
GOSUB ... 51
GOTO .. 51
Graphic modes . 10
Graphics characters . 22
Graphics commands . 18

202

HALT .. 88
HEX$.. 51
Hexadecimal notation . 75
High resolution graphics . 32
Hooks .. 97

I/O ports .. 4
IF .. THEN ... 51
INKEY$.. 52
INP .. 51
INPUT ... 51
INPUT$.. 51
INSTR .. 52
INT .. 52
Interrupt handling .. 97
Interrupt processing . 89
Interrupt switching (sprite tables) . 145
Interrupt trapping . 57
INTERVAL ON . 30
INTERVAL ON/OFF/STOP . 52

Joystick input . 65
Joysticks . 160

KEY LIST ... 53
KEY ON/OFF . 53
Keyboard scanning . 163
Keyclick switch . 63

LEFT$.. 53
LEN ... 53
LINE .. 34, 53
LINE INPUT . 54
LIST ... 54
LLIST .. 54
LOAD .. 54
LOCATE ... 19, 55
LOG ... 55
Logic operations . 76
Machine code calls . 67
MAXFILES . 55
Memory management . 95
Memory organisation . 2
Memory organisation . 22
Memtop .. 45
MERGE ... 55
MERGE ASCII program files 55
MID$.. 56
Mode O interrupt . 90
Mode 1 interrupt . 90
Mode 2 interrupt . 91
MOTOR .. 56

203

MSX Configuration . 95
MSX-DOS................................... 1
Multicoloured text
Music

22
160

NEG .. 82
N~ ... ~
NOP .. ~

OCT$. 56
ON ERROR GOTO . 56
ON INTERVAL . 57
ON INTERVAL GOSUB . 30
ON KEY GOSUB . 57
ON SPRITE GOSUB ... 29, 57
ON STOP GOSUB . 30, 57
ON STRIG GOSUB . 57
ON .. GOTO/GOSUB . 56
OPEN .. 57
OR .. 76
or ... 76
om ... ~

~D ... ~
Paddle s~tus .. 59
Paddles . 160
PAINT . 34, 58
Pattern generator table . 7
Pattern name table . 7
ffiL ... ~
PEEK . 59
PLAY . 37, 59
POINT . 59
POKE . 59
POS . 21, 60
PRESET ... 35, 60
Primary slots . 4
PRINT . 19, 60
PRINT USING . 20, 60
Printer output . 64
Program files . 4
Program storage . 39
Programmable peripheral interface . 2
Programmable sound generator . 2, 14
Programming the VDP . 118
PSET .. 35, 61
PSG .. 14
PSG in the MSX environment . 154
PSG registers . 150
PUT SPRITE .. 26, 28, 61

RAM usage . 101

204

Random number generation . 62
READ .. 61
Register exchange operations . 88
REM ... 61
RENUM .. 61
Reserved columns . 19
RESTORE ... 62
RESUME .. 62
RET .. 91
RETI ... 91
RIGHT$.. 62
RND ... 62
Rotate and shift operations . 83
RUN ... 63

SAVE .. 63
SCREEN ... 18, 26, 63
SGN ... 64
SIN .. 64
Sketch-pad example program 35
Slot selection ... 95, 162
Slots .. 2
SOUND . 37, 64
Sound chips . 5
Sound envelopes . 38
SPACE$.. 64
SPC .. 64
Sprite attribute table . 12, 28
Sprite collision detection . 29
Sprite coordinates . 27
Sprite definition . 26
Sprite designer program . 30
SPRITE ON . 29
SPRITE ON/OFF/STOP . 65
Sprite pattern table . 12
Sprite planes .. 27
Sprite priority . 28
SPRITE STOP .. 29
SPRITE$... 2~ 64
Sprites ... 12, 26, 114
SQU ... 65
Stack ... 78
Stack operations . 89
STICK .. 65
STOP .. 65
STOP ON/OFF . 30
STOP ON/OFF/STOP . 65
STR$... 66
STRIG .. 66
String space . 45
STRING$... 66
SWAP .. 66

205

System variables 17

TAB .. 66
TAN ... 67
Tape interface . 4
Tape motor control . 56
Three channel music . 155
TIME ... 67
Touch pad status . 58
Touchpads . 160
TROFF ... 16
TRON .. 16
TRON/TROFF . 67
Two's complement notation . 74

USR ... 67

VAL ... ~
Variable data functions . 68
Variable storage . 41
Variables . 16
VARPTR .. 68
VDP .. 5,105
VDP display modes . 110
Verification - program files . 46
Video display processor . 5
Video RAM .. 5
Video RAM manipulation 21
VPEEK ... 5, 68
VPOKE ... 5, 68

WAIT .. 69
WIDTH . 18, 69

xor .. 76
XOR ... 76

Z-80 address modes . 92
Z-80 Architecture . 76
Z-80 Arithmetic instructions . 81
Z-80 Branch and subroutine operations . 85
Z-80 Control lines . 77
Z-80 l/0 ports . 78
Z-80 Input/Output operations . 92
Z-80 Instructions . 80
Z-80 Load operations . 80
Z-80 Logical operations . 82
Z-80 Machine language . 70

206

For MSX Programmers -
"your constant companion

	Front cover
	Foreward
	Contents
	Chapter 1 - Introduction
	Overview
	Memory Organisation
	Input/Output Ports
	Tape Interface
	Display Modes
	The VDP and Sound chips
	VDP Display Structure
	High Resolution Graphics
	Colour
	Sprites

	General Instruments A Y-3-8910 PSG (Programmable Sound Generator)

	Chapter 2 - MSX BASIC
	Variables and Functions
	Functions

	Graphics commands
	General purpose commands
	Text modes
	Video RAM Manipulation
	Example Program - redesigning the character set

	Sprites
	Example Program - Sprite Designer

	High Resolution Graphics
	Example Program - Sketch-Pad

	Sound
	Program storage

	Chapter 3 - MSX BASIC
Vocabulary
	Chapter 4 - Z-80 Machine Language
	Microprocessors
	System Organisation
	Binary and Hexadecimal Representation
	Logical operations
	The Z-80 Architecture
	The Z-80 Instruction Set

	Chapter 5 - The MSX Configuration
	MSX Memory Management
	Accessing the Sound Chip, VDP and PPI
	Interrupt Handling and 'RAM Hooks'
	MSX System RAM Usage
	Using Machine Code Subroutines From BASIC

	Chapter 6 - The Video Display Processor
	The Control Lines
	The VDP registers
	Video Display Modes
	Graphics Mode I
	Graphics Mode II
	Multicolour Mode
	Text Mode
	Sprites

	The VDP in the MSX environment
	Programming the VDP: hints and tips
	The Pattern Plane
	The definer in modes other than Graphics II
	Using the Definer

	Dynamic Pattern Definition
	Graphics II mode as a bit mapped mode
	More from sprites: interrupt switching techniques
	Two colour sprites
	Different sized sprites: interrupt switching of VDPregisters

	Quick VDP access: avoiding time problems

	Chapter 7 - The Programmable Sound Generator
	The Data Registers
	The Tone Generators (registers 0..5)
	The Noise Generator (register 6)
	The Enables register (register 7)
	Amplitude control (registers 8..10)
	Envelope generator (registers 11..13)
	The I/0 ports (registers 14..15)
	Notes and tone periods

	Accessing the PSG in the MSX environment
	Programming the PSG
	Three channel music: the computer as performer
	Sound effects on the AY-3-8910
	Sound generation in software: the one bit sound port

	Chapter 8 - Input-Output: the computer's window on the world
	Game I/0: joysticks, paddles and touchpads
	Console input/output
	Slot Selection
	Keyboard scanning: checking individual keys

	Appendices
	Appendix A: Character Code Table
	Appendix B: Colour Table
	Appendix C: Video RAM Table
	Appendix D: Z-80 Instructions
	Appendix E: Extract from the TMS 9118/9128/9129 Data Manual
	Appendix F: Extract from the AY-3-8910 Programmable Sound Generator Manual

	Index
	Back cover

