

GETTINGMORE
FROMMSX

with Spectravideo and
All MSX Computers

Brian Boyde-Shaw

Copyright © 1984, Brian Bodye-Shaw
AllRights Reserved

No part of this book may be reproduced or transmitted by any means
without the prior permission of the publlsher. The only exceptlons‘ are
for the purposes of review, or as provided for by the Copyright
(Photocopying) Act or in order to enter the programs herein onto a
computer for the sole use of the purchaser of this book.

ISBN 090510489 7

Published by:

SIGMA PRESS,
5 Alton Road,
Wilmslow,
Cheshire,

UK.

Distributors:

UK, Europe, Africa:

JOHN WILEY & SONS LIMITED
Baffins Lane, Chichester,

West Sussex, England.

Australia:

JOHN WILEY & SONS INC.,
GPO Box 859, Brisbane,
Queensland 40001, Australia.

Printed and bound in Great Britain by
J. W. Arrowsmith Ltd., Bristol

Acknowledgments

MSX s a trademark of Microsoft Inc.
Spectravideo is a trademark of Spectravideo International Ltd.

CONTENTS

Chapter 1: Editing and Debuggmg
BASIC Education :

Cursor Controls

Insert and Delete .

Command Mode

Debugging . :
Incorrect Language Use .

ing Errors
']l:zgvmgg Out Important Parts of Statements

Author’s Note
[ntroduCtlon

Chapter 2: Screen Test .

How to put text on the screen;

use of PRINTTAB; LOCATE; SCREEN; COLOR
and INPUT.

Important BASIC commands: FOR..TO..STEP;
IF. THEN..ELSE; IF..GOTO..ELSE;
READ/DATE; GOSUB/RETURN; GOTO

Sound output: BEEP; MOTOR ON; MOTOR OFF
SOUND ON; SOUND OFF.

Chapter 3: Gymnastic Characters
Using built-in graphics characters .
Moving About .

Chapter 4: Sprite Characters .
Designing a Sprite

Character String Sprites . . :
Replacing block graphics by Sprxtes :

Chapter 5: Draw Strings . . :
Using DRAW to produce complex shapes :
Using PAINT, GET and PUT

Chapter 6: Pixel Set . . .
PSET, PRESET and POINT
Dotted Lines

Coloured Lines . . .
Moving Pixels and Collisions
Drawing Graphs

LINE, CIRCLE

Drawing Lines .

Dotted Lines

Coloured Lines .

Circles . :
Magic Circles and Explosmns
Separate Circles . .

More GET and PUT .
Problem Time! .

Chapter 7: The Circle Line

SW®OWAAOUT U1\

(==Y

W =

—
—

20
20
24

350
33
36
48

51
51
56

61
61
64
64
65
67

70
70
70
71
72
75
76
76
78
81

Chapter 8: Play Strings
PLAY . . « « - =+ =
Note Play . . -

Sharps and Flats

Long and Short Notes
Rhythm and Spqed
Sounds Extraordinary
Stringing it Altogether .
Two and Three of a Kind

Nl Valués

Chapter 9: Synthetic Sounds .
SOUND g @ m m WX
NOISE -

Register 6 .

Envelopes . . .

Envelope Shapes

Channels 2 and 3 .

Register 7.
Multi-Channel Sound

Chapter 10: Screen Effects
Caterpillar . ol B
Square Waves 5, W@ 0 d
Slow Growth - circle to cylinder
Sputnik = = -

Square Growth .

A Call for You .

Stairs

Curtains

Chapter 11: A Change of Face .
AnMSX representation of the ageing
process, to the accompaniment of
“Forty and Fadin’”.

Appendix 1: BASIC Mathematics

Appendix 2: BASIC Grammar Statements.

Appendix 3: BASIC Strings . .
Appendix 4: BASIC Commands .
Appendix 5: BASIC Interrupts . . .
Appendix 6: Screen Modes and Sprites

Appendix 7: BASIC Graphics Commands

Appendix 8: BASIC Sound . . .

Index

- 100
. 102
. 102
. 103

83
83
83
83
86
87
88
89
91
93

9%
94
97
98
98

. 107
. 107
. 108
. 109
. 109
. 1
s 12
. 2
s 213

. 114

. 120
. 123
s 133
» 139
. 144
. 146
. 148
. 152

5 49D

AUTHOR’S NOTE

..o a description of a new computer is a daunting and exciting
To ng;t;ecia]]y one that uses anew and updated dialect of BAS|C. i
task,

igating a new machine can be both surprising and disappointing.
Inve-‘;filsging’ %vhen you find the new'and wonderful things it can do, and
Sgrf pointing when at the same time you realise that your grandiose
-dézagdo not quite fit in with the capabilities of the language.
i

: ring the capabilities of MSX BASIC and the Spectravideo has
E;Z;O:iciti%g, and will no doubt continue to be so for s
but any author of technical books must be honest and ad
is all the work his own.

ome time yet,
mit that rarely

[n my case, this is quite true. I have a number of people to thank for
help received during, and before, the writing of ‘Getting More from MSX’.

For example, Mick Ellick from Byte Home Computer Club of Nailsea,
Avon, who was completely responsible for the initial draft of the final
chapter, ‘A Change of Face’, and for the fundamental research into chapter
one, the chapter on editing and debugging programs.

[have also to thank Nailsea Office Equipment, The High Street, Nailsea,

from whom I bought the computer, and who repeatedly allowed me access
to various other pieces of software to aid my investigations.

Finally, I wholeheartedly thank my long suffering family, Valerie,
Charlotte and Hannah, for their tremendous help during the writing,
and for allowing me complete peace and quiet for the whole of July
and August 1984, Daddy was in computerland and was not to be disturbed!

- except to be ushered in for validations and opinions on various aspects
of the book as and when required.

Although MSX BASIC goes a long way towards being a complete all

round home computer programming language, we have yet to discover
the perfect one.

When we do, I hope I will be asked to write the book.

Brian Boyde-Shaw, Nailsea, August 1984.

m—

INTRODUCTION

This book is aimed at filling the need of home computer users who
have recently purchased a Spectravideo and, having played the games
and experimented with the manual supplied with the computer, now

want to find out what exactly the computer is capable of doing by using
its built-in BASIC language.

It is also aimed at those interested in the MSX language itself, and wish

to become familiar withe the new language - the Spectravideo being
just the vehicle for the investigation.

Lastly, it is aimed at owners of other home computers who wish to make
a comparison of their machine’s BASIC and MSX BASIC. This is one
of the main reasons for the unusual layout of the book, in that the

description of the language is contained in eight appendices at the end
of the book.

The book does not pretend to be a complete description of the Spectravideo
BASIC, nor of MSX BASIC, which would probably require a book of
two or three times the length of this one. But
thorough evaluation of the lan
investigate further on their own.

it does, I hope, give a
guage, which will encourage readers to

The book concentrates on the graphics, including sprites, sound, colour
and animation side of the language, as it is the author's opinion, from

personal research, that this is what the majority of home computer users
will be most interested in initially.

In the main, a problem solving approach is used to produce the programs
used to demonstrate the various facilities of the computer, as this, I feel,
will remove the abstract approach many books on programming produce.

The book starts with a short introduction to editing and debugging of
programs (chapter one) - a facility not dealt with, at the time of writing,
by the user’s manual supplied with the Spectravideo computer.

Thereafter, the book is divided into six further parts. Part one, chapters
two and three, deals with the text and block graphics of the language,
and part two, chapter four, with the sprite facility.

Part three, chapters five, six and seven, deal with the graphics commands

of the language, while part four, chapters eight and nine, with the musical
side.

Part five, chapters ten and eleven, describe some of the special effects
that can be achieved with the language. Finally part six comprises eight
appendices dealing with the MSX BASIC language itself, which describe,
in detail where the previous chapters of the book do not, all the commands,
statements and functions in common use, including the mathematical
functions of the machine, to cater for those who are not yet overly
interested in graphics.

Those of a mathematical leaning will no doubt register that although
there are eleven chapters, they are divided between eight parts, 0 to

g

7,if we include this introduction as part 0!

ces are also divided into eight separate but complete part
S,

The appendi
he first 16 bit home computer book!

making thist

CHAPTER ONE
Editing and Debugging

This short chapter is an attempt to give the reader an insight into the
screen editing facilities of the computer, with the hope that this will
help when it comes to debugging, or finding the errors, in programs.

BASIC EDUCATION

The process of writing most computer programs can be divided into
three possible areas, similar to the three R’s of basic education, Reading,
wRiting and aRithmetic.

With computer programs we can call these three areas wRiting, Reading
and Running. Of course wRiting consists of the necessary planning and
pre-testing of the proposed program, Reading the listing of parts of the
program, and eventually the complete one, and Running the experimental
and final running of the program to check it against the aims and objectives
setoutin the writing part.

As with basic education the three R’s are inseparable from each other,
and develop together as the final program reaches completion, and again
as with one’s total education, there is always room for improvement
even when the program is complete.

In other words, once the initial ideas of the proposed program have
been formulated, the lines of the program have to be written out, usually,
if a structured format is attempted, in sections at a time, with each separate
section individually tested as the development proceeds.

It is during this development that many of the various ‘bugs’ appear
and have to be dealt with by intelligently reading the error statements
that the computer reports to you.

In order to avoid as many of these bugs as possible from cropping up
the Spectravideo provides the facility to test out a number of the language’s
commands and statements before putting them into a program, and this
facility is used a great deal in this book, especially in the chapters dealing
with the sound facilities.

CURSOR CONTROLS

But before we go on to consider this let us take a look at the cursor
controls that the computer provides.

Depending on the model of computer in use the cursor, the white square
below the word OK, can be moved in command mode by either the
built in joystick or the cursor keys to any position on the screen inside
the viewing screen area. The viewing screen area is that area of the screen

5

order areas at the top and bottom of the screen, anq
by the command COLOR,C<ENTER>, where
0 and 15. Use of the two symbols <> indicates
tten between them should be presseq,

he ENTER key.

between the two b
can be changed in colour
C is any number between 0 .
that whatever key or keys is wrl
forexample <ENTER> means presst

Moving the cursor by this method results in a CLICK sound from the
TV loudspeaker, the same sound that pressing akey produces.

This sound can be removed by typing in CLICKOF F<ENTER>, though
this is not advised as it is a good indication that something is indeed

happening, and allows the programmer to keep his eyes on the keyboard
and not the screen.

To illustrate this facility, practice typing in the statement PRINT first
with the C LI CK facility off, and then with it on again.

The click sound can be replaced by typingin CLICKON<ENTER>.

Characters from the keyboard can be placed in any position on the screen
purely by moving the cursor and pressing a key.

It follows, therefore, that any program line that is called up to the screen
by the command LIS T, can be edited by moving the cursor to the required

osition in the line and typing in the necessary letter or letters, and
the ENTER key pressed when the line has been amended to suit.

INSERT AND DELETE

Pressing a key will overwrite any character that is already in the cursor
position, but extra characters can be inserted into a line of program by
first pressing the INS/PASTE key at the point where the characters
are to be inserted.

The cursor then changes to a third of its height until it comes out of
insert mode by pressing either the INS/PASTE key again, or moving
the cursor with the cursor control joystick or keys, or by pressing the
ENTER key.

CaI:Q must be taken when in the INSERT mode that the joystick is not
accidently moved when using the SV 318 model.

Characters can also be deleted from a program line by first positioning

lt(he cursor over the character to be deleted and then pressing the DEL/CUT
ey.

The height of the cursor is not affected in this mode, and pressing the

INS/PASTE while in delete mode has no effect except to reduce the height
of the cursor.

COMMAND MODE

As mentioned previously numerous programming ideas can be tested

6

in command mode by using those commands and statements that the
computer canreact to whilst in that mode.

For example, try the following simple demonstrations to give you some
ideas, there is no requirement to go into CAPS LOCK mode unless you
wish to:

PRINT35<ENTER>
PRINT"BOO"<ENTER>
A=67<ENTER>

PRINTA<ENTER>

A$="B00 AGAIN"<ENTER>
PRINTAS<ENTER>
PLAY'"CDEFGABOSC"<ENTER>
FORR=TTOT@:BEEP:NEXT<ENTER>
SOUND1,5:SOUND8 ,15<ENTER>

Your screen will not look exactly like this because the results of the various
statements will appear on a separate line between the statements you
have typed in, together with ‘0K’ and the cursor.

The last command, the SOUND pair, will require the CTRL/STOP keys
to be pressed together to stop the note playing when you’ve heard enought!

Now is your opportunity to practice using the edit facility, via the cursor
controls, to change some or all of the statements and commands in my
list, you can call it experimental editing!

But note that lines shunted off the top of the screen will be lost for
ever, we are in command mode.

All you need to do to get the statements and commands to produce either
a visual or aural result again and again is to move the cursor to any

position on the line containing the statement of your choice and press
the ENTER key.

No doubt after a little while your screen will be in quite a mess; where,
for example, you have pressed the ENTER key on a line NOT containing
a statement or command and produced an error statement.

Don’t worry, just press the CTRL/L keys together, and the screen will
automatically clear and you are ready to start all over again, and improve
on your last creation!

Try typing in some decision statements, for example:

IFP=1THENPLAY"O5CO04BAGFEDC"ELSEPLAY"L16AC"
<ENTER>

P=1<ENTER>

P=@B<ENTER>

Now move the cursor around telling the computer what you want by
pressing the ENTER key on the correctline and listening to the result.

This is what [mean by experimental editing while developing a program
- you have more than twenty lines on screen to scratch around on, consider
it then as a visual scratch pad!

DEBUGGING

A program whilst RUNning wi!l pormally ‘crash’, that s, g
and return to command mode, if it comes across a statemen
or function that it doesn’t understand, or discovers that yoy
to do something in the program which must be done before t

can continue.

top TUnnjn8
i COMmang
have failed
h(.‘ program

Usually, an indication of the error it.has found is reported to you o
the screen in text mode, and, if in high or low resolution mode YOUI:‘

display will be lost.

A certain amount of error trapping is available on the computer, that
is, methods of dealing with errors as and when they occur, byt | shall
only consider those that trap user errors, and these will be dealt with
in the chapters that follow, where it is more relevant.

Debugging really refers to correcting errors that the programmer hag
himself created by one of three things:

1. An incorrect use of the language.

2. A typingerror.

3. Leaving out important parts of a statement.

INCORRECT LANGUAGE USE

The first reason will only improve with age!

The more you use the language the more you will understand it and
be able to use it correctly, as with any foreign language.

Using the experimental edit idea will greatly increase your awareness
of how the language works.

You cannot break anything, neither can you insult the computer with
a wrong use of the grammar or syntax, as it is all too easy to do in
the early stages of learning say French or German.

The question ‘will that work’ should always be answered by ‘let’s try
itand see’, and then typing your idea into the computer either in command
or program mode and studying the results. The method adopted in the
chapters of this book will help in that way, as frequently full explanations

are given of each line in the computer program used to solve a particular
problem.

TYPING ERRORS

The second possible error producing reason, typing errors, can again
only improve with age, and I advise the writer of any program, no matter
how expert or assured, to RUN the developing program at every available
point in it. It is much easier to debug a short program of a few lines

8

than to try to find the error, or even multiple errors, in a complete program.

Testing of non-text mode program ideas in program mode is quite
possible; high and low resolution programs return to text mode when
the program ends, by using a ‘hold everything’ or ‘suspended animation’

line of:
5000 GOTO5000

The line number is quite artificial, but should always be greater than
the last line of the bit you are testing. To restart you can either press
CTRL/STOP and RUN it again, or press CTRL/STOP and use GOTO line
number, the line number being where you stopped, after, or even before
it. The latter is preferable as any variables filled in the program while
it was running prior to being held will not be lost, as they would be

with the use of RUN.

The program can also be put into suspended animation by pressing the
STOP key, restarting it by pressing the STOP again.

For example, type in this short program and practice, stopping the ellipse
from being filled as often as you like, before the program ends and reverts
back to command mode and the text screen by pressing the STOP key

on and off :

1@ COLOR1,15,15:SCREEN1
20 CIRCLE(128,96),70

3@ PAINT(128,96)

4@ END

Now use your newly found abilities to edit the screen by:

1. Changing the SCREEN mode to 2.

2. Altering the numbers in both the CIRCLE, PAINT and COLOR
commands.

Don't forget to press the ENTER key after each ‘edit’ to get the computer
to accept your amended program line.

Now see if you can spot the FOUR typing errors in the following program,
they can happen quite frequently:

1@ COLOUR1,15,6:SCREN1

20 CIRCLE(128,96),70

30 PRINT(128,96)
4@ END

Your first error reported will be:

Syntaxerrorin 10

If you find a mistake in line 10 then correct it, but you will still get:

Syntax errorin 10

as there are two errors on this line.

' IL.
There are syntax errors on lines 20 and 30 as we

‘tine facilities to correct the mistakeg!.
the screen editing

ted by th
be the most frequent error reported by the ¢
Synta?etrﬁcgsesaefemat%umber of others, and these are all listed op -\
thoug

117 to 119 of the computer manual. However number 26 does not Wor

i d is completely ignored by 41"
FOR is not reported, an o
g;:ctrr\laafirégi FORless NEXT is reported though.

Mputey

i ded as both the WHILE
29 and 30 can both be disregar : i
EVrEogllgosctlaetsemeralts are not available on the Spectravideo.

LEAVING OUT IMPORTANT PARTS OF
STATEMENTS

The last reason, leaving out an important part of the BASIC language,
can sometimes NOT produce an error, for example:

PRINT"The second inverted commas are not
required<ENTER>

As previously noted a FOR without a NEXT, and vice versa, will always
be reported as an error.

Semi-colons are not required between multiple PRI NT statements either,
forexample:

A$="bang"<ENTER>
PRINTAS;A$;A$;AS

will produce the same result as:

A$="bang"<ENTER>
PRINTASASASAS<ENTER>

This chapter has been, therefore a short discussion dealing with the

various ways of getting your programs to RUN correctly, and the chapters
that follow will take this discussion further.

Now on to the main part of the book.

10

CHAPTERTWO

Screen Text

REM; PRINTTAB; LOCATE; LET (assumed
use); SCREEN; COLOR; INPUT;
FOR...TO...STEP; NEXT; IF...THEN...ELSE;
IF...GOTO...ELSE; READ; DATA; GOSUB;
RETURN; GOTO; BEEP; MOTOR ON;
MOTOR OFF; SOUND ON; SOUND OFF;
CLS; ASCII codes; CHRS; Variables;
Operators; Punctuation.

In this chapter we shall begin to make the Spectravideo produce text
output on the screen.

Text in a computer program usually does one of a number of things.

It can give the necessary information about how to interact with the
computer during the program, as far as we are concerned this text is
called ‘instructions’. Or, it can give the state of play of that interaction,
commonly called results, or even more commonly ‘the score’. Text is also
useful for titles, though more often than not now it is also associated
with some sort of graphics, and possibly sound as well.

The first thing we shall look at, therefore, is producing a title screen.
Solet’s start straight away with a short problem.

Ok Gk ok R % % R R % o Ok Ok Ok ¥ K K F K ¥ F X F Ok Ok ¥ Ok % % ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥

Write a program to display centrally on the screen a title for a program
of your own choice. The whole screen must be the same colour, and
preferably have no distractions. Allow the screen to continue to the next

part of the program by whatever means you feel are appropriate.
Ok ok ok R R % R R R R % Ok ok ok K H ¥ % ¥ % % % % % H % % X ¥ * ¥ * ¥ ¥ ¥

As we are about to write text, then it is reasonable to assume that we
should use a text screen. The text screen is obtained by using SCREENO.
This is OK, but the moment the computer RUNs out of something to
do, you get the OK prompt and the cursor back on the screen.

This means that the title screen would have at least a cursor in view,
as the title would not be the end of any program you were writing,
[hope. This is what the problem means by distractions.

The problem asks that the screen should be one colour, that is no
discernible border. This means that we shall have to use the COLOR
statement, which has three parameters, COLORtext colour,background
colour,border colour. In text mode the border is always the same colour
as the background, so that part of the problem is easily solved.

11

Our problem therefore has four parts:
1. Choose the correct screen mode.

2. Choose the correct colour statement.
3. Position the title text.

4. Continue the program.

The only two points left to discuss are positioning the text, and continuijn
the program. We could, of course, use cursor cont.ro].s to position the
text, similar to the procedure required on less sophisticated computers
But on the Spectravideo, to position anything anywhere on the screen
in any screen mode, we use LOCATE X)Y, where X is the screen column,
and Y is the screen row.

If we want to centralise a piece of text it is usual to count the number
of characters in it before using the LOCATE statement, and then to
calculate the X parameter, or position, by subtracting half the number
from half the screen width. This means we could use the formula ‘screen
width divided by 2, minus (total characters divided by two)’, or in
computing terms:

4@/2-LEN(TS$)/2
which will near enough centralise the text, T$.

This could be done automatically within a program by getting the
computer to either LET various strings, T1$, T2$, T3$ etc., equal the
pieces of texts, or to READ them from D AT A statements first.

For example we could say:

20 SCREEN@:COLOR4,11,11

30 T1$="GETTING MORE":T2$="FROM
YOUR" :T3$="SPECTRAVIDEO"

40 LOCATE2@-LEN(T1$)/2,10:PRINTT1$
50 LOCATE2@-LEN(T2%$)/2,12:PRINTT2$
60 LOCATE20-LEN(T2$)/2,14:PRINTT3$

This would print a reasonable title of my choice in the centre of the

screen but I would have the cursor there as well, of course. There is

no real need to use the command SCREEN® here, but I do it to complete
the process.

Alternatively we could change line 30 to:
30 READT1$,T2%$,T3$%
and add line, say 100, for the DATA

100 DATA"GETTING MORE" ," FROM
YOUR" ,"SPECTRAVIDEOQ"

which would have the same effect.

12

These two short routines would carry out the necessary positioning
calculations automatically for you, but if maths are not your weak point,
then the program could be done just as simply by the following routine.
L have used large line numbers here as [want to build up a small complete
program, and therefore will want to structure my program as near as

I can. This means, as we do not have the facility of PROCEDURES in

MSX BASIC, T will have to use subroutines instead, calling them by line
number instead of by name.

1000 REM title screen
1010 SCREEN@:COLOR4,11,11

1020 LOCATE15,1@:PRINT"GETTING MORE"
1030 LOCATE16,12:PRINT"FROM YOUR"

1040 LOCATE15,14:PRINT"SPECTRAVIDEO"
1050 RETURN

If you type this in and RUN it you will get an error, as the computer
has at the moment nowhere to RETURN to. You can put on line 1045
GOTO1B45, which will hold the computer program in suspended
animation until you press the CTRL and the STOP keys together, and
no error will be produced. You could instead start to write the main
or control program by typing in DELETE3@-6@<ENTER> :

10 REM main program
20 GOSuUB1000
99 END

and delete lines 30, 40, 50 and 60.

This will remove the error situation, and the computer will have
somewhere to go back to now, the END statement on line 99.

But we have the problem of the cursor still, which is an intrusion on
our otherwise nicely laid out title screen.

We also have another problem, at the bottom of the screen are the five
function key windows! More distractions.

So, how do we remove those?
Try changing line 1010 to:
1010 SCREEN,@:COLOR4,11,11

RUN the amended program, and as if by magic the function key windows
disappear, but the screen is not automatically cleared anymore.

When using either SCREEN@, SCREEN1T or SCREEN?2 the screen will
automatically clear when the computer reads either one of them in a
program, so there is no need to use CLS, the clear screen statement.
We mustadd CLS to our program as it now stands:

1810 SCREEN,@:CLS:COLOR4,11,11

Or we can write:

13

] ' 4 ; . 0 R 10 7
. Jovar » Screen, l\“[\\.”h(\l]t (‘l .
' 3 8% ¢ againd lear the sc s
1¢ / \ l\\llbl\ Onde 3
\\'hth \\l“\\b)
erpl
N TR I ~ <) !
l'll‘\\'k‘\'t‘f lhl‘.\' Stl“ lt.‘d\ () th&‘ CUursot
.) ' Ll “‘\vt a cursor,; the CUrsor 1§ used to il\ lie
) 'S Screen we dO ne $ i
Una grdphlk‘ h

SR i1s to go, and as we are assumed to be
where the next piece of text1s i 8 2 A e 108 BORE e t
‘pictures’, and not text, onagraphics screen, itis not required,
pictures’,

\“Q
d l‘d\\ring
Line 1010 can now be changed again, to:

1910 SCREEN1:COLOR4,11,11

CLS isnotrequired, [hope you remember why!

Now RUN this latest addition to our‘.mmndod m‘}tine,‘and you will
see that my three pieces of text are printed very quickly in the top left

hand corner of the screen. Why?

A SCREEN1 graphics screen, has a different reso!utioq to a SCREEN(Q
textscreen, and the LO CATE parameters must allow for this.

Each character in a piece of text occupies an area of 6x8 pixels, or dots,
like this:

* K ¥ ¥ K ¥ % #*
* * * * ¥ * ¥ *
* k H * % * ¥ %
* K * H H ¥ ¥ *
* % X ¥ * ¥ ¥ *
* K X ¥ ¥ * ¥ *

and the LOCATE statement when using SCREEN1 locates a pixel at
a time, so LOCATE15, 1@ means print 15 pixels in from the left hand
side of the viewing screen, and 10 pixels down from the top. I say viewing
screen now, as this is somewhat different from the TV screen. The viewing
screen for text and SCRE EN@, and the viewing screen for anything on
SCREENT, are not the same. SCREEN 1 » or the high resolution graphics
screen, as itis called, is slightly wider.

To translate from a text screen to a high resolution graphics screen we
must use some more simple mathematics.

SCREENT1 column =SCREENO((columnx6) +12)
SCREEN1row = SCREENO(rowx8)

So we can now amend our subroutine once more, change lines 1020
to 1040 to:

1020 LOCATE102,80:PRINT"GETTING MORE"
1030 LOCATE1G8,96:PRINT"FROM YOUR"
1040 LOCATE102,112:PRINT"SPECTRAVIDEO"

14

P VTR e e el vt e vt will Breelend qee thyee 1itle ,Hlllf"l’
e e e e e i Iun'n' T T E T AT T bver firiehiedd i

:\\\\\‘H\'\”\l\“\ POV b ”hr fiiwl My, ,.”,l W Wi e "",N ’]”’I' (1
;‘,l‘l““\h"""'““”“‘\v ”II'||||l'|||‘Hl'l|H‘1|l'I

bbb E vt ot peeviomaly tianed ek of including a
WO bt b Bt i e by i o e

YR oun

P Wil B b vttt bovpng, the title on the screen antil you
p\r-mal\\v' PR iy B vy oot b

Vv ab e oo indng o tine

WIHERZ S LENCINZ2)) %G thal in
VOCATEANOA/ 2= CLENCTR) /2D %6 on
LOCATETARSCLENCIR) /P w6

Ancatn ttereatigy abile fanne, the make up of the acreen characters can
B oy By vmbgy the thind screen mode, SCREVEN2, which is called
e o remobition mcreen, bevavae everything is diaplayed in giant size,

AR e o Ties oy o progran

I RCREENSTCOLORTS 1,1
¢ PRINY"D

PRINTIARCA) "= ight graphicesy"”
WOTOA

S

When the program e RUN, you will see the letter ‘D’ In large script,
together with the alternate dot praphic rectangle, that is what 1 mean
by seight graphics anything in between the <> slgns should not be
typed b bt e nevesnary Imﬁmlml key pressed instead,

Yo will notive that the "D s somewhat hidden, that is why you musl
Al 12 piveta to the previous text W graphics calealation, You will also
B able to count the enlarged pixels in the rectangle, S CREEN2 multiplies
everything by axi, that "n. any character s aix times wider and eight
Hmens igher l‘mn IMBCREENDand BCREENT,

Remove the tour Hnen 12, Yand 4 when you have Hinished experfmenting,

Now to carey on with our Hitle seveen, that {a solving the ‘continue the
Program’ part,

To vontinue the wurmm wi mual make a cholee between doing |t
automatically or allow g the urer to take control,

I the cholee s tor antomation then a sultable time delay will have to

bhe ;\vlm'ml I the program at the correct polnt to enable enough time
for the title acveen to be read and underatond,

It da better, T think, tor the veer to declde when the next part of the
program should start, and therefore the computer will have to be set
up to vecogndae some sort of slgnal from the keyboard, But this signal

I

od in order that the user willknow whatto 4q

will have to prompt
«t line in our short routine therefore could be:
ne

The
TE6@,136:PRINT"DO you need

1050 LOQA 5
instuctions:
e to make a decision and then make that deCision

ill hav o
Here the user wi by pressing key or typing in an answer:

known to the computer
1060 LOCATE96,152:PRINT"Type yes or no":Bggp

EP will hopefully get the attention f)f tbe user, and the PRINT
nt indicates what has to be done, ‘yes’ or 'no’ must be typed
umed that the user knows that the ENTER key must
II. If you feel that this extra information needs to be
s well, then it should be included in the PRINT

The BE
stateme
in, and it is ass
be pressed as we
placed on the screen a
statement on line 1060.

Line 1070 completes the information loop:

1070 INPUTANSWERS$:BEEP

If this routine is now RUN, you will notice that the screen changes back
to a text one, complete with the function key windows, and we have
lost our title screen, quite upsetting for the user of the program. The
reason for this is that the INPUT statement can only be used on a text
screen, as INPUTs are usually in text, either letters of the alphabet,

numbers or symbols.

We can use the screen statement SCREEN@ ,@ to remove the function
key windows, but the computer is still awaiting an INPUT at the top

of the screen.
1070 SCREEN@,B:INPUTANSWER4:BEEP

To improve matters we can use the INKEY$ function in place of the
INPUT statement in line 1070. INKEY$ only recognises one character
for each statement, the first one taken from what is called the keyboard
buffer, the holding part of the computer’s memory that stores key
depressions.

So there is no requirement to type ‘yes’ or ‘no’, just to press the Y or
N key, but this also means that line 1060 must also be changed

1060 LOCATE1@2 152:PRINT"Press Y or N":BEEP
1070 ANSWER$=INKEYS$:BEEP

We now have either a Y or an N in the computer’s memory called
ANSWER$, and we must tell the computer what to do with it in order
to continue the program.

1088 IFANSWERS="Y"QRA = Uyl 2p00:

s pEaHsY NSWER$="y"THENGOSUB
IFANSWER$="N"0OR =tn" N
L ER ANSWER$="n"THENRETUR

16

o A
- - * LN % — - -
- - - & £ | -
i3t UNE 2> LR AN 87 Car
e —— - - I - - —
= = s O R -
SO LE s 1 IIET S0 e UT L SEUS
BT Pare s e B TR s T3 3
bkt T, 7 PR —
<UL DOssiDinnhes. [ne T UL ¥ afiSWEY
———— o — > R % s) 5
lame R Nt - — p— - - - o T — ——— -
Tounme A0 fo wrs T, We DOope, e mmsirucons
SCE e 8D reiunrn 0 e et e ———
e S &0 STRAIIR D e At PR, dq” iad =
e COmDureter Fark 3m fhie e e
- =il UadX T e marn DToeTam
s - = = .
> e ——T e e mm e S e o
-t i B _—a (4 ™ s
<. Qs ot make the dOmMpPUGier Cnange
RS- P PR e £ . =
= e e crroer The s
s B ARCR AT U Ol sCeen. [ne use
=2 2t the commrrfer wel bl et en
—_——— sl L AUTNPuUteEr W L =

2= UL8hW ITUUEIST

ANSWERS '

- = e awmare aof ic that iF e e<s the STOP kv ihe nrmnorare
L TRRE W0 D€ aware of 1s that, if you press the STOP kev, the proeram
Wl b Foref s e e & B = ,._.’~' B P 2B > = o - 2 i
WIS SOCK. 2ut you mav not be aware of it because nothing is happenine
= - ey - - - -
—— - ——— - - - - - - - - - - =3
T ¥ou press the Y or N kevs. I this occurs trv pressing the STOP
and then the Y or N ke 5 coe 6 $3e T T =
and then the ¥ or N kev to see if the program continues. Pressine
—— -— - = ™ - = b
i ol : . -
C 21VUT K&V a

R R - = 2hao S—— 4 o & 1S A B~
v 2 Sen Tme frees the program mom the hold or lock

-~ -

STange tings after the short 4 line program, on kines 1 to 4. has been
Sxperimentad with. This is because calling a screen and then colouring
1t does not necessarily have the same effect as colouring the display and
i © avoid anything untoward happening it is alwavs

idea to colour first and call the screen second. This means changing

»

1818 COLOR4,11,11:SCREEN1

You may be wondering how, if we remove the function key windows
with SCREEN®,8. we can get them back again. It is relatively simple
®© do this, use SCREENB,1 or SCREENBG,2, or in fac any
SCREEN®,X. where X is any number, to bring them back again.
SCREEN® will only dear the screen in this instance, its use will not
replace the windows.

A second experiment will perhaps indicate the use and abilities of the
various S CREEN statements:

SCREENB:PRINT"screenB8":60SUB7
CLS:SCREEN,B:PRINT"screen,B8":60SUB7
SCREENT1:PRINT"screen1":G0SUB7?
SCREENZ2:PRINT"screen2":60SUB7
CLS:SCREENB,1:PRINT"screen®,1 or ,2 etc."
:GOSuUB7 -

END

FORD=1TO02888:NEXT:RETURN

END

QO ~NON WV NN =

Type this short program in and RUN it. It will serve to indicate what
17

; t program in and RUN it. It will Serve to ingje
e g:liv?tl;‘oihg vfrious SCREEN statements. It wi]) also Sh(i:te What
Kou gens to the viewing screen and the border when the C LOR Statewhat
isafﬁ used together with the S CREEN statement. Meng

Typ

iti ‘instructions’ for our example
ow come to writing the ‘ins ! Ple program
;,:\rlee srzlpposed to be atline 2000, so let’s put them there. that
We will use the text screen to display the instructions, which e
that the LO CA T E parameters will have to locate characters not Pixels.

One facility that the SPECTRAVIDEO has unlike man
is that you can play an audio tape at the same tim
running, using the dedicated cassette recorder.

y other Computers
€ as a program is

To switch the cassette motor on you must use the MOTOR ON
and MOTOR OFF to switch it off. Likewise to switch on
audio channel you must use the SOUND ON and SOUND OF F st

statement’
nd off the
atementg,

So while our instructions are on the Screen, we can either play some
music to pass the time, or someone’s voice previously recorded on tape
(and why not your own?), and then play it actually speaking the words.

This is difficult to show in a book, so it’s up to you to experiment.

My routine allows for this to happen, and just in case you have chosen
to play music, I have programmed the space bar, CHR$ (32), to end
the playing with INKEYS$. You can, of course, time the amount of time
required to speak all the words of the instructions, and then put in a
FOR....NEXT delay loop to switch off the cassette MOTOR and the
cassette SOUND channel at the right time. Here is my routine:

2000 REM instructions

2010 COLOR10,4,4:SCREENG,B:D$=CHR$(31)

2020 MOTORON:SOUNDON

2030 LOCATE14,1:PRINT"INSTRUCTIONS"

2040 PRINTDS$;DS$;D$;TAB(6)"This book on the
SPECTRAVIDEO"

2050 PRINTD$;D$; TAB(7)"presents you with
problems"

2060 PRINTDS$,;D$;TAB(16)"to solve,":PRINTDS;
D:;TAB(4)"The book helps you to solve
them"

2070 PRINTDS;D$;TAB(4)"then extends the study

by giving"
2080 PRINTD$;D$;TAB(13)"you some more."

2090 PRINTD$;DS$; TAB(6)"Press space bar to
continue."

2100 PRINTDS;D$;TAB(9)
2110 AS$=INKEYS$

2120 IFA$=CHR$(32)GOT0213@ELSEZ1ﬂﬂ
2130 SOUNDOFF:MOTOROFF:RETURN
Why, you may ask, have I used this D$ variable?

To move the cursor down the screen we can use an empty PRINT

18

statement, and used like this it will just print a blank line. But the computer
has control characters that actually move the cursor around the screen,
and each of these control characters have string variables that we can
use in a proz-;ram called CHR$ (X). Every character on the keyboard

has a CHR$ (X) code we can use, for example the capital letter A has
CHR$(65).

The CHR$ (X) for ‘move the cursor down the screen one row or print
line’ is CHR$(31). So in line 2010 I have called this character D$,
and then used it whenever [wanted to move the cursor down the screen.

You must remember that as it is a character it needs to be PRINTed

to be used correctly, so every time it is used in my program it comes
aftera PRINT statement.

Instead of using LOCATE all the time now, I have LOCATEd the first
line of the display and then moved the cursor down with D$, or
CHR$ (31),and across the screen with the TAB (X) function.

Line 2100 does a special trick with it. We cannot remove the cursor because
we are using a text screen, but I have positioned it in the centre of
the bottom of the screen, under the last printed line of text, and used
itas decoration. Now itis not a distraction, but an ornament!

[have, on line 2120, also used CHR$ (32), the space bar character code,
to tell the computer only to recognise the space bar as the key to continue
the program, by usingthe IF....GO0TO....ELSE statement.

As a final experiment in this chapter, you can now delete the previous
experiment from lines 1to 8 and type in the following lines:

COLOR15,1,1:SCREEN?2
FORR=33T0126:PRINT"CHRS$";R; CHR$ (R)
FORD=1TO5@@:NEXT:SCREEN2:NEXT
FORR=15@0T0215:PRINT"CHRS$" ; R; CHR$ (R)

FORD=1TO5@0@:NEXT:SCREEN2:NEXT
END

(o G IRV NS R

CHR$(127) to CHR$(149) are blank so we need two

FOR....NEXT loops to print out all the characters in the
SPECTRAVIDEO’s BASIC in large print slowly at the top of the screen.

To look more closely at any particular character, just press the STOP
key, then to resume the parade, press it again.

As a fitting end to this second chapter, can you write a program that
will display, one at a time, all the available characters in low resolution
screen size, but displayed vertically up the screen? The clue is that the

screen can hold vertically six characters in SCREEN2 size, before it needs
to go back to the top of the viewing screen again.

And can you also amend my last program so that only one FOR....NEXT
loop is required.

A clue?

IF you can THEN you R 150 times better than before!

19

4

CHAPTER THREE

G ymnastic characters

i ivided into four maj
i the Spectravideo can t?e d1v1' . ain areas
Graphics on P low resolution, high resolution and g Eloc

or character graphics, Y sible to mix th As
we have seen in chapter two it is possib em, when we Placeq

text on a high resolution screen, SCREEN 1.

hing more complicated than specialised block graphj
he shapes used represent the alphabet, the nymj, eCs,
bols required to punctuate both the pro;:

Text, after all, is not
specialised in that t
0 to 9, and the necessary sym
used and the programming statements.

we also saw in chapter two the graphics characters, or alphanumer;
gfaracters, the phrase used to describe both the alphabet and the numbggc
is designed on a 6 x 8 grid, and a close study of the last experiment
should have shown this. The shape therefore that the character has g
entirely up to the designer of the character set supplied in the READ
ONLY MEMORY of the computer. This is why the text on some computers
looks different on the screen to that on other computers, and similarly

the text in books is different too.

In this chapter I want to have a look at the ways we can make use of
the computer’s built-in graphics characters, those that are accessible from
the keyboard by using the left and right graphics keys, together with

the letter keys.

I will keep the shape used as a demonstration as simple as possible,
and allow you to experiment with whatever fantastic arrangement of

characters you may wish. Each graphic shape has a CHR$ code as well,
and a table of these will be found in your computer manual. I shall

also be showing you how to use these too.
So, for the time being, let us do some more experiments.

To draw alittle man in profile we could program into the computer:

180 CLS
185 PRINT"<right graphic>H"
PRINT"<right graphic>P<left graphic>N"

]

5 PRINT"<right graphic>P"
@ PRINT"<left graphic>H"
5 PRINT"<left graphic>B"

When RUN this short program, will produce a ‘little man’ at the top
left hand corner of the screen, together with the 0K sign and the cursor.

In future, to save writing <right graphic> and <left graphic> I shall
write <rg> and <lg> in thelistings, so that line 105 would be:

105 PRINT"<rg>H"
to produce the little man’s head.

20

This short program could also be written as:

@@ CLS
PRINTCHR$(193)
PRINTCHR$(2@1);CHR$(173)
PRINTCHR$(281)
PRINTCHRS$(167)

(161)

1

10
11
11
12
125 PRINTCHRS

vauviawn

if we wanted to make use of the CHKk $ codes for the characters.

Naturally, every time we wanted to use our little man in our program
we should have to rewrite the lines 105 to 125, which would be a little
wasteful in the use of memory. To avoid this we can use assumed LET

and some variables, as follows:

CLS
H1$="<rg>H"
A1$="<rg>P<Lg>N"
B1$="<rg>P"
L1$="<Llg>H"
F1$="<lg>B"
PRINTH1S$
PRINTA1S
PRINTB1S$
PRINTL1S
PRINTF1$

JE T T QU QR QNI QU Q. S e Y
U'l-&-\-l-\LNUJNN—\—\SQ
SWSWSW&U\S\HS

which will again, when RUN, produce our little man at the top of the
screen. I have used the first letter of the part of the body that the string

variable describes for the five variables codes.

We could also have lines 105 to 125 as follows:

H1$=CHR$(193)
A1$=CHR$ (2
B1$=CHR$(2
L1$=CHRS$ (1
F1$=CHR$ (1

+CHR$(173)

JE T N
NN
uvusuniawun

81)
81)
67)
61)

You will notice the main difference between the two line 110’s. Assigning
the variable A$ to normal characters by pressing the character keys is
the same as assigning text to a variable, you just enclose it all in inverted
commas. But to use the CHR$ eodes you must ‘add’ them together with

aplus sign. This facility will be used alot later.

We now have our little man in the computer’s memory, with the parts
of his body labelled, so that we could use them as often as we wished

toinaprogram.

For example, we could make his legs longer by adding these lines to

the program above:

146 PRINTL1S
147 PRINTL1S

21

.

is legs three times longer than bef,
e his leg ould also make his feet longeref,ywsdh{we

ich would mqk
mtcleld L1$ three times. You ¢

this to line 150:
150 PRINTF1$;F1$;F1$;F1$

. _ lie Chaplin, - fegt four .times as long. No
?hlelt;l:rr{;].(:oggalraetween each string variable to PRINT the ‘feet’ L

to each other on the same screen row.

i i INT our man in the ¢ 1
ram as it stands will only PR top left 1,
ZSreng:oogf the viewing screen, but we may want to put him anywh :rg
on the screen.

; must make use of the LOCATE statement, with LOC
Ffl:)orizgﬁligiNT. If we only used one LOCAT? statement, one forA tThE
first PRINT, then only the head would be printed where we Wanteq
it to be, the computer would start the next PRINT statement, the , ,
at the beginning of the next row. Our amended program wouylg ther,
look like this:

CLS

H1$="<rg>H"
A1$="<rg>P<Lg>N"
B1$="<rg>P"
L1$="<Lg>H"
F1$="<lg>B"
LOCATEX,Y:PRINTH1$
LOCATEX,Y+1:PRINTA1S$
LOCATEX,Y+2:PRINTB1$
LOCATEX,Y+3:PRINTL1$
LOCATEX,Y+4:PRINTF1$

—_
(SRS
v

R T QT I QU T QT G G Y
VMIHEPHAWWNIN
auviaviaviauvis

Where X was the column we wanted to place him, and Y the first row

for his head, and his arm being placed on Y“1 row, his body on Y“2,
etc.

f you attempt to RUN this short program now, it will of course ‘crash’

I
because the computer does not know the values for X and Y. You could
amend line 100 to:

100 CLS:INPUTX,Y:CLS

which would allow the user to assign values to X and Y before the main
part of the program was RUN by the computer. Note the use of the

comma between the X and Y in the INP :
computer to acce UT statement, this allows the

SEilemant pt more than ja single variable with one INPUT

22

But H we tried to print this on the sereen using PRINT M18$, the computer
would do exactly what we had told it to do, it would PRINT our little
man’s head, arm, body, legs and feet all on the same screen row, next
to each other, not quite how we want him!

To get him into one variable, and looking upright and tall as he should
be we will have to resort to some trickery.

Once the computer prints out our man’s head, the next thing it does
is print out his arm next to the head, but we want the arm on the next
row and underncath the head. To do this we must tell the computer
to do just that, go to the next row and move underneath the head.

The computer has a few CHR$ that carry out this sort of instruction,
we saw one in the last chapter.

To get the computer to move the cursor during a program RUN, we
can use CHR$C18) to move down one screen row, and CHR$(29)
to move backwards across the row, that is from right to left.

We can therefore create a string that tells the computer to do this, for
example:

R1$=CHR$(1@) : FORR=1T02:R1$=R1$+CHRE(29) : NEXT

This will create a string that tells the computer to move down one row,
and then move back across the row two character spaces. This is how
R1$ grows as the computer reads thatline:

R1$=CHR$(10)
R1$=CHR$(1@)+CHR$(29)
R1$=CHR$(10) +CHR$(29) +CHRS(29)

Why do we only need a loop variable of 2? Well, there are only a maximum
of two characters in the parts of the man’s body, so the cursor needs
only to move back two character spaces each time. But this now brings
in another complication to our program. If we attempted to use this trick
the parts of his body that only had one character would upset the smooth
running of the display. His arm would be printed one space too many
to the left, and so on. To avoid this we must make a basic change to
our program in lines 100 to 125, by adding an extra character space to
those lines that only have one, so:

CLS:INPUTX,Y:CLS
H1$="<rg>H "
A1$="<rg>P<Lg>N"
B1$="<rg>P "
L1$="<Lg>H "
F1$="<lg>B "
LOCATEX,Y:PRINTH1S
LOCATEX,Y+1:PRINTA1S
LOCATEX,Y+2:PRINTB1$
LOCATEX,Y+3:PRINTL1S
LOCATEX,Y+4:PRINTF1$

ST QUG G QU L QI QI I Y
msaHUWUWNN-2 O
[SRG R SRR SRR SRV, R SRV, RS

is the corrected program, and to correct those lines using CHRS$ to create

23

the parts of the body we must do as follows:
e

—CHR$(193)+CHR$(32)
:'}:=EHR$(201)+CHR$(173)
B1$=CHR$(2ﬂ1)+CHR$(32)
L1$=CHR$(167)+CHR$(32)
F1$=CHR$(161)+CHR$(32)

G G G NN
NN
v wn

which adds a character space, CHR$ (32),toeach variable.

We can now rewrite M1 $ as folows: |
M1$=H1$+R1$+A18+R1$+B1S+RI1S+L1S+R1$+F1g

which will print each part pf the little man’s body in the correct place
wherever we may want to print him. !
We can now delete the lines that place the little man in 4 particular

place on the screen, lines 130 to 150, and replace them with one LOCATE
statement and the M1 and R1 variables, as follows:

138 R1$=CHRS$(1@) : FORR=1T02:R1$=R1$+
CHR$(29) : NEXT

135 M1$=H1$+R1S+ATS+R1S+BIS+R1S+L1S+R1$+F1g

145 LOCATEX,Y:PRINTM1$

Don't forget that as we are using the power up screen, SCREEN 0, to
printon, we must use the text character LOCATE codes, not the pixel,

We can now place our man anywhere we want to on the viewing screen,
butthatis all we can do with him at the moment.

It would be a good idea if we could move him about the screen, and
create some very simple animation.

Moving About

To do this, once we have placed him somewhere and want to move
him on, we must remove him from where he was before.

The simplest way to achieve this is to print spaces in the old position
after we have moved him, for example:

FORD=1T020@:NEXT: LOCATEX,Y:PRINTsome spaces

But where do we get the right amount of spaces from? From:

M2$=somes spaces

But how do we create M2§? In exactly the same way as we created M 1$.

By making the same charac i i but this
: peci ter strings, adding them together,
time filling them with spaces. . g i

Again we can amend our short program to suit:

24

=2

CLS:INPUTX,Y:CLS

H1$="<rg>H ":H2$=" "
A18="<rg>P<Lg>N": A2%="

B1$="<rg>P ":B2$=" "

L1$="<Llg>H ":L2%=" "

F1$="<Llg>B ":F28="
R1§=CHR$(1M):FORR41TO?:R1$GR1$+CHR$(29):
NEXT
MIS=HTS+RIS+ATE+RIS+BISHRISHLISHRIGHFTS
M2E=H23+RTIS+A2E+RTISYB2F+RIG+L2E+RIS+F2S
LOCATEX,Y:PRINTM1S
FORD=1TO2AD:NEXT:LOCATEX,Y:PRINTM2$

.—\.A-—\—).A—\—\
nN,mE]s

snewn Susunewn

S QUL T QU
v W W N

We can now use this to move the little man around the screen by making,
line 150 his next position,

Lines using the CHR$ routine would also need to be amended to suit,
for example:

105 H1$=CHR$(193)+CHRS(32) :SPE=CHRS(32)+
CHR$(32):H2%=SP%
A1$=CHR$(201)+CHRS(173):A2$=SP$
B1$=CHR$(201)+CHR$(32) :B2$=SP$
L1$=CHR$(167)+CHRS(32):L2%=SP$%
F1$=CHR$(161)+CHR$(32) :F2%$=SP$

— — - —
NN = =
vneawvs

We now know how (o move a sequence of block graphics characters
around the screen, but only in a straight line. But they can be moved

from left to right, right to left, top to bottom, bottom to top, and diagonally
both left to right and right to left.

This can be achieved by ecither placing the LOCATE and PRINT
statements inside a FOR. .. . NEXT loop, or just by using a series of
LOCATE and PRINT statements, which either increment the X axis,
the Y axis, or both at the same time. To move from left to right we
increment the X axis by a plus value, from right to left with a minus
value. To move from top to bottom we increment the Y axis with a plus
value, and bottom to top with a minus value. To move diagonally we
increment both the X and the Y axes at the same time with either plus
orminus values depending in which direction we want to go.

We can, of course, use the text screen with SCREEN @, which clears
the screen, but leaves the function windows intact, or we can use
SCREEN@, @, which removes the windows, and clears the screen.

We can use the high resolution screen, SCREEN 1, but if we did we
would have to use pixel co-ordinates with the LOCATE statement. We
would also have to remove the little man cach time we moved him by
printing background coloured space characters instead of spaces. A high
resolution screen, of course, allows for asmoother animation ormovement,

that is a pixel at a time, instead of, as in SCREEN @, where movement
is one character space ata time.,

We could also play around with the low resolution screen, SCREEN
2, using our ‘little man’, or whatever you have created. Again, we would
have to remove him by printing background coloured space characters,

5

xels at a time, the same as ope

moving six pi : _ g
oy hegwould of course be eight times ag tall, :Sracter

but he would be
An interesting screen mode for animatjp, Vel

space at a time, ar
as six times as wide.
characters.

his block or character graphics idea any fy

ramming problem. her we

Before we develop t
will posea small prog

%#******#*************#**************&******‘*
* %

Write a program to demonstrate block graphics animation using Varioyg

block graphics background.
Sirfin*rzlg(iis*af*df**»*xg»*p*w***n&*»******************‘**
*

One way to write a program is to set out all the mi.ni-prob]‘ems that
solving the main problem throws up. Another way is to write down
headings of all the steps that the program must take to sol_ve the Problem,
and then to write a main program that covers all this, using either
procedures Or subroutines. As we are unable in MSX BASIC to Write

named procedures we must resort to subroutines.

We have to give a block graphics demonstration using a block graphics
background. This will require two mini-problems, one to create all the
strings we may need and the other the background.

But we must decide what sort of a demonstration we are going to give.
The best graphics demonstrations are those that involve colour, sound
and animation. Be patient, we aren’t going into sound yet, and in block
graphics each separate colour change will have to be separately
programmed. That leaves us with animation. But as it is always best
to go forward slowly, I shall keep the animation simple. I shall use a
‘little man’, and move him around the screen. Animation infers movement
in all directions, so how about some gymnastics, hence the title of the
chapter. Our little man can run up some steps, to show individual
movement in both the X and Y directions at once; jump onto a trampoline,
showing continuous movement; bounce off it, more continuous
movement, but in the opposite direction. Then coming down again, say
after jumping, or not, over a high jump; the or not can be arranged
by a random X or Y location. Finally, we can get the little man back
to the start position.

So first of all, we’ll write the main program to cover all that:

4000 REM graphics demonstration program
4010 GOSUB41@BP:REM create strings

4020 GOSUB42@@:REM draw background

4030 GOSUB430D:REM place Little man
4B4@ GOSUB44PB:REM display message

4050 GOSUB46BB:REM move man

4060 GOSUB48BP:REM check and return man

}'\”hy you ask haye I arranged for a message to be displayed, well as
it's a demonstration, the user will want to start it when he is ready,
so the message should control this.

Line 4060 mentions a check, if the man is going to jump randomly over
a high jump, then we shall want to know if he has cleared it or not.

26

The background must have some ste
The steps can be made from blocks
or <rg>P, as can the trampoline, a
little man we already have, but [h
now, the M3$ and H3$ strings etc, be

Ps, a trampoline, and a high jump.
of the square character, CHR$(201),
nd the sides of the high jump. The
ave also drawn him in both profiles
ing the second profile.

My interpretation of this is as follow
slow build up of the steps in lines
the trampoline, while S6S is the canvas,

s and I hope you can follow the
4105 and 4110. S5$ is the foot of
rather thick I'm afraid.

4108 REM create strings

4105 SP$=CHR$(281) :S18=SP$+SP$:52$=5S1$+51$
4110 S3$=S2%+S1$:54%$=52%$+S2%

4115 R2$=CHR$(1@)+CHR$(29) :S58=SP$+R2$+SP$
4128 FORR=1T010:5S6$=S6$+SP$:NEXT

4125 H1$="<rg>H ":H2%$=" ":H3g$=" <rg>H"

4130 A1$="<rg>P<lg>N":A28$=" "1A3$="<g>N<rg>pP"

4135 B1$="<rg>P ":B2%$=" ":B3g=" <rg>pP"

4140 L1$="<Llg>H ":L2%=" ".L3¢=" <Lg>H"

4145 F1$="<lg>B ":F2%$=" ".fF3¢=" <lg>B"

4150 R1$=CHR$(18) : FORR=1T02:R1$=R1$+CHRS$ (29) :
NEXT

4155 M1$=H1$+R1$S+A1S+R1$+B1S+R1S+L1$S+R1S+F1$
4168 M2$=H2S+R1$S+A28+R1$+B2S+R1S+L2S+R1$S+F2$

4165 M3$=H3$+R1$+A28S+R1$+B3$+R1$+L3$+R1$+F3$
4170 RETURN

To begin with I shall use the text screen to draw the background on,
you can then see all the disadvantages with it. I shall make use of the
high resolution screen with the same background in the next chapter
when we discuss sprites. But this means we must use SCREEN .0
to remove the function key windows. I shall do this in the main program

as, once drawn, we can leave it alone, it’s the little man we are interested
in. So change line 4020 to

4020 CLS:GOSUB42@B:REM draw background

Lines 4220 and 4230 draw the steps, 4240 and 4250 the trampoline, 4260

to 4280 the high jump, CHR$(193) is not only the man’s head, but the
thick rope of the high wire.

4200 REM draw background
4218 SCREENG,O
4220 LOCATE3 ,17:PRINTS4$:LOCATES,16:PRINTS3$
4239 LOCATE7 ,15:PRINTS2$:LOCATEY9,14:PRINTS1$
4248 LOCATE13,16:PRINTSSS
4250 LOCATE13,16:PRINTS6$;S5%
4260 LOCATE26,17:PRINTS4S
4270 FORR=16TO1BSTEP-1:
LOCATE28 ,R:PRINTSPS$:NEXT
4280 LOCATE28,R:PRINTCHR$(193)
4290 RETURN

The next job is to place the man on the first step, but as we are drawing
him downwards, placing his head first, then the first location must be
the position for his head. The first step is X=3, Y=17, he is five characters

27

five characters higher than the first 5
e he must be o
tall, therefor .

ittle man
geM place L1

Z;?g EOCATE3,12:PRINTM1$

4320 RETURN

Now for the message to start everything going.

M display message)
22?3 §E$=upress space bar to start :L=LEN(ME$)
4420 LOCATEZQ-L/Z,E:P'R"'I'NTME$
430 A$=INKEY$:IFA$<> THEN4430
4 :IFA$<>CHR$(32)THEN41+3(ZIE|_SE44Sﬂ

=INKEY$
2228 I:g$=SPACE$(24) :LOCATEZ20-L/2,0:PRINTMBS
4460 LOCATE3,12:PRINTM2S

4470 RETURN

If we are to place messages on the screen in a ba.llanced and attractive
way then they should be placed cen'trally more times than not. To 4,
this I have put the message in a string, ME$, measured the length of
it with LEN(MES$), then X LOCATEJ it by dividing the width of the
text screen by two, and then subtracting half the message length from
that, see line 4410 and 4420. This method will always place a message

in the centre of a screen row within half a character.

Line 4430 ensures that any key that was pressed inadvertantly before
the message was displayed, will be ignored, the computer keeps looking
in the keyboard buffer until it is empty. Then it moves to the next line
and waits for the space bar to be pressed, before first blanking out the
message on line 4450, and then blanking out our little man waiting on
the first step, prior to moving on up the steps in the next subroutine.
As a quick test, can you see anything unnecessary in line 4440? - no
prize for getting it right, the answer is at the end of the chapter.

Line 4450 uses the special SPACE$ function to blank out the message
drawn in line 4420.

Now comes the task of moving the litle man across the screen in a
gymnastic fashion, that is to run up the steps, jump onto the trampoline,
and then bounce over the high jump or not. This is all to be catered
forat subroutine 4600, REM move man.

The last thing we did was to remove the man from the first step when
the user was ready to start, so now we must place him on the gecont
step, and so on up the stairs. To do this we can use a FOR...NEXT
loop, and each time through the loop take a step of two for the X location
because each step is two characters wide. To move up the screen at the
fl?erenf time we must increment the Y location by one each time throty
i rec;;l)p. /zis the little man, M1$, is moved up to the next step he ml.lit
: short(:ivﬁ fLom the previous one by blanking him out with Mz WIﬁe
oflin fe ay between the two operations. We can do all this in a cOUp
€s atter writing the delay subroutine:

28

4900 REM delay routines
4910 FORD=1TO400@:NEXT
4920 FORD=1TO020@:NEXT
4930 FORD=1TO1@0@:NEXT
4940 RETURN

Using this arrangement of delay loops we can get various time delays

with only one routine, all depending where we enter it. 4900 - 700 units,
4920 - 300 units and 4930 - 100 units.

Now to move the little man:

4L6BB REM move man

4610 Y=11:FORX=5TO9STEP2:LOCATEX,Y:PRINTM1S:
GOSUB4L9BD

which declares where the man must be first of all, Y=11, on the second
step, and starts the loop going.

4620 LOCATEX,Y:PRINTM2$:Y=Y+1:NEXT
which removes the man, and increments the Y location for the next step.

Now the man must run off the top step and eventually jump down onto

the trampoline. The run can be achieved with another FOR. .. .NEXT
loop:

4630 FORX=1BTO17:LOCATEX,9:PRINTM1S$
4640 GOSUB493@:LOCATEX,9:PRINTM2$:NEXT

X is now at 17 and Y is at 9. To get the man to drop down onto the
trampoline we can LOCATE and PRINT him just above it, if we put
him actually on it we would have removed part of the trampoline when

we moved him on, and the whole screen would have to be redrawn,
we will save this trick for later.

4650 LOCATE18,10:PRINTM1$:G0SUB4930:
LOCATE18,10:PRINTM2S

Now for the random part of the whole program, the distance he actually
jumps and whether he clears the high jump or not. The maximum number
of changes of the Y location to get the man to clear the jump is ten,
the height of the jump plus stand, so we need a random number generated
between 1 and 10 each time to bounce the man off the trampoline.

4660 N=INT(RND(-TIME)*10)+1

This number for Y’s eventual position can then be put in a
FOR....NEXT loop which increments the LOCATE statement up and

across the screen, both for Y and X. The next position for X is 19, and
forYit's11,so:

4670 X=19:FORY=11TONSTEP-1:LOCATEX,Y:
PRINTM1$:G0SUB4930
4680 LOCATEX,Y:PRINTMZ2$:X=X+1:NEXT

will bounce our man to arandom height.

29

N

What goes up must come down, so he must now fa]] to thegrmmd

With.

4690 FORY=NTO017: LOCATEX,Y:PRINTM1$:
LOCATEX,Y-T:PRINTM2$:NEXT

This loop prints the new man, and immediately goes back
out the old one without any delay. This way he rapidly fa)js i tand
But he will remove part of the background as he drops, as we a5 he Toung
the character spaces, so we must now redraw the screen ase T€print;

lands, but as he landed and was immediately blanked out we N as hq
reprint him, with: Mus

4700 LOCATEX,18:PRINTM1$:GOSUB42@Z
4710 RETURN

We must now communicate with the user once more, tellin
results of the jump, and asking him if he wants to do it a
we will need three subroutines, one for good jumps, on
and one to get the man back to the start of run.

g hlm the
gain. For this
e for the bad,

4500 REM fail message

4505 ME$="Hard Lluck, try again? Y or
N":L=LENC(MES$)

4510 LOCATEZ28-L/2,08:PRINTMES

4515 A$=INKEY$:IFA$<>""THEN4515

4520 A$=INKEYS$: IFA$<>"Y"ANDA$<>"y"ANDA$<>

"N"ANDAS$<>"n"THEN4520
4525 RETURN

Using this routine will write the fail message over the previous message
at the top of the screen, but it is just that bit shorter. To overcome this
messy arrangement, we can blank out the first message as soon as the

user has started the program by adding line 4405 to the ‘display message’
routine:

4405 LOCATED,B:PRINTSPC(4@)
which blanks out the whole row, forty characters.

Notice that in line 4520 the computer is trapped to only accept eithelr
upper or lower case Y or N, but also that when ©, ‘is not equal to’,

is used we must use the operator AND and not OR to give the computer
achoice of decisions to make.

We can now also write a similar win message routine:

4550 REM win message

4555 ME$="Well done,
N":L=LENC(MES$)

4560 LOCATE20-1L/2,8:PRINTMES

4565 A$=INKEY$:IFA$<>""THEN 4565

4570 A$=INKEY$:IFA$<>"Y"ANDA$<>"y"ANDA$<>

"N'"ANDAS<>"n"THEN 4570
4575 RETURN

try again? Y or

We now have to check the X position of our little man to see if his

30

bounce was in fact a win or a fail, and if the user wants to do it all
again. The high jump is located at X=28, see line 4270, 50 any X position
after the jump greater than 28 will be over the rope and therefore a
win, anything less afail

48ﬂg REM ggeck and return man

481 LFX< THENGOSUB45@G:IFA$:H " =tyn
GOTO4B30ELSELR7p Y RAS=TY

4820 1FX>28THENGOSUBL55@:TFAg="y g=rry
GOTO4830ELSELB7Q i

Here we have used ‘IF A$=" and can therefore use the OR operator for
multiple choices.

If the decision is to do the r

' un again then the little man must be got
back to the steps, if not the

nwecan end the program:

4830 LOCATEX,18:PRINTM2$:REM blank out man
4840 FORR=X-1TO01ST

EP~11 LOCATER,18:PRINTM3$:
GOSUB493p
4850 LOCATER,18:PRINTM2%

These two lines will turn the
M3$, and then move him bac
at the random X position mi
FOR....NEXT loop here f
for the random X location.

man round to face the other way, using
k across the bottom of the screen, starting
nus 1. We have to use R for repeat, in the
or the X location, as X is already being used

Once he is at the left hand side of the

again and put him on the bottom st
pressed again.

screen we must turn him round
ep to wait for the space bar to be

Our main program stopped at this point with the ‘check and return man’

subroutine at line 4060, so we must now take some action as a result
of the user’s decision:

4870 LOCATE1,18:PRINTM2$:IFA$="Y"ORAS="y"
GOTO04B30

4080 GOSUB49PP:CLS:SCREEN,1
4098 END

Line 4070 will start the whole routine again, whereas line 4080 will, after
a short delay, clear the screen and put the function key windows back
on the screen. I have designed some of the programs in this book to

be part of a big demonstration, that is why this routine started at line
4000, so line 4090 coula just as well be:

4090 RETURN
making the routine at 4000 a subroutine.

This short program has shown the use of SCREEN 1 together with block
graphics, and the following program shows the use of animation with
block graphicson SCREEN 2, the low resolution screen:

100 SCREEN2

105 LOCATE120,64:PRINT"<rg>H"

31

ATE96,96:PRINT"<rg>0<rg>p<p i
tggATE'lZﬂ,'lZB:PRINT"<rg>p" g>L
LOCATE96,16@:PRINT”<rg>o<SpC><rg>L"
FORD=1TO03@@A:NEXT:CLS
LOCATE120,32:PRINT"<rg>H"
LOCATE96,64:PRINT"<rg>c<rg>P<rg>E”
LOCATE120,96:PRINT"<rg>p"
LOCATE96,128:PRINT"<rg>c<spc><rg>E"
LOCATEE,160:PRINT“<rg>P<rg>p<rg>P<r ,
P<rg>P<rg>P<rg>P<rg>P<rg>p<rg>P” g
FORD=1TO03@@:NEXT:CLS
A$S=INKEY$:IFA$=""GOTO0105
IFAS<>""THENCLS:END

i e
(o e NV, | NMEPSFAUWUHNDND -
viaewm auviauviauviau e

_)

On the low resolution screen you can of course locate anywhere
screen exactly as you can with SCREEN 1, the high resolution SCr: the
but to position characters or blocks so that they do not overlap eeer;{
other, it is best to assume that the screen is divided up into nine s Catc
positions on the X axis, and six character positions on the Y axis, thoy e}:
the last X position may put your character somewhat outside your screen,g

The locations for this are as follows:

X=0, 24, 48, 72, 96, 120, 144, 168, 192
Y=0, 32, 64, 96, 128, 160

You will notice that on the X axis the increment is 24, that is 6 times
4,and on the Y axis 32, 8 times 4.

The reason for this is that in the low resolution mode each pixel in the
character is blown up or magnified by a factor of four, so as a character
is six pixels by eight pixels normally, it will now occupy a twenty four
by thirty two pixel area instead.

If you didn’t want to place your first character, a space or character,
at location 0 in either axis, then to avoid overlapping, you would have
to increment each position by either 24 for the X axis, and 32 for the
Y axis.

In my short demonstration program, I have started at the 0 location in
both X and Y axes, and have printed a big man doing some exercises,
jumping up and down moving his arms and legs. The program alternates
between two pictures, with a short delay between each picture, where
the man has to jump up to avoid the carpet being rolled out underneath
him each time.

Lines 160 and 165 allow the program to be ended by pressing any key.
In the next chapter we will see how much better it is to use sprites:

although a little more complicated, to get objects to move around the
screen. Block graphics will still be used though to draw the background.

32

CHAPTER FOUR
Sprite Cbaracters

Jock \::.t.r,:;:e-\ are all right 1
| t

"\’-‘ AS VOou want o ma

AR

:,,

r’
w

tthev aretoa degree auzte cnunkw.
ia'ﬂ\mc out pmcedu*e

.9!

> - B v - - i ~
and moving them requires a clumsy

g.\-.-e; on the other hand can be s

haped to suit vour requirements. They

KUpyY a

OCCU g ! the screen than a single block character,
nfact either an 8 x 8 pixel block, or a 16 x 16 pixel block, remember

<
black \....:‘:z::::s occupy only a six ’m eight pixel area. And moving them

is simphlicity itself, it’s all built in to the sprite facility, as we shaﬂ soon
.
Te SAmTar 203 12

In order to use the sprite facilities we must first design our sprite,
:\::::::t'\‘:-_:‘.:; that we can have up to 32 different ones at any one time,
and all on the screen at the same time too, each one on a different plane,
as 1t 1s called. Naturally vou also can also use the same sprite pattern

over and over again in any one of the 32 planes.

So the first thing to do is design a sprite. | am going to use much the
same screen little man’ character that I used in the last chapter, vou

——y RO o sk >y

can design them how vou wish, the variations are such that there are
o3 possible full-size patterns available. The manual describes one method

-S
P e e e e T -
R -\\..‘-\-.s -

sprites and [shall look at this first. in order to explain
how sprite patte

‘l

"/

ms are designed and created. But there is another method,
Sasier, in my opinion, that we shall discuss later.

Designing a Sprite

As the spnite is made up of eight rows of eight bits of information,

st naturally have 8 x §, or 64, bits of information somewhere that
the computer can THN are stored in DATA statements in the
program, 64 c»«arac&ers r bits of data, for each different sprite, and it
: tt h DATA statements at the end of the program.

¥
‘
53
l" L)
(IQ

Each row of DATA has to be READ inte the sprite character string called
SPRITES(S), where S is any number from 0 up to 235, the number
vou have called the sprite. If we are going to READ DATA eight times,

na FOR...NEXT loop is necessar_\ to do this eight times, but the
r::e:l':ocl s somewhat strange in that the sprite string is made up by
stringing together the binarv value of each DATA statement by using
the expression:

STS=S1S+CHRS(VAL("&B"+DAS))

where:

DAS is the information in each DA T A statement,

&B tells the computer that what follows is a binary number,

VAL tells the computer to find the VALue of what follows,

CHRS () tells the computer to find the CHaRacter STRING of what

=
33

WS/ and, . .
fso!]lg is the name given to that particular sprite pattern

Our little example program on how to create a sprite looks like thi
1s:

10 COLOR1,7,7:SCREEN1

20 FORT=1TO8:READDAS

30 S1$=S1$+CHR$(VAL(”&B“+DA$)):NExT
4@ SPRITE$(1)=S1%

5 PUTSPRITED,(128,96),1,1
60 GOTO060 .

10@ REM data for Llittle man
110 DATAQO0011000

120 DATAQONO11000

130 DATAPOA10000

140 DATAPOB11100

150 DATABOA11000

160 DATAB1111000

170 DATAR1001000

180 DATABOBOO1100

Line 40 makes the first sprite, called SPRITES$ (1), from the informat
available in memory called S1$. We could, of course, have made lt?‘n
program shorter by calling S1$, SPRITE$ (1), straightaway, in lin:
30 by: ’

30 SPRITE$(1)=SPRITE$(1)+CHR$(VAL("&B"+DA$)%
NEXT |

and leaving out line 40, but then it is easier to call some other sprite,
say SPRITE$(2) for example, the same pattern, by making it equal
to $ 1$ asrequired, then by sayingnow SPRITE$ (1) =SPRITES$(2).

Sowhere did I get the DATA from for the sprite pattern?

As I mentioned earlier a sprite is made up from an 8x8 grid or matrix,
exactly as in figure 1, the squares you do not want are called 0, and
those you do are called 1. So as our little man, now with his leg up,
running, is as in figure 2, you can see how the DATA statements in
lines 110 to 180 are arrived at.

To create a sprite, first draw your blank matrix, or photocopy mine in
Figure two, then fill in the squares that you need to create your pattern,
then fill in the 0’s and 1’s, next put the binary numbers in the DATA
statements, and, lastly, put the information into the computer’s memory
with lines similar to 20,30 and 40 in my short program.

Line 50 just places the sprite in the centre of the screen, similar to 2
LOCATE statement, and tells the computer which plane you want the
sprite on, 0 in this case, colours the sprite black, the first 1, then tells
the computer which sprite to putat thislocation, in this case a 1again.

You can in, fact, put more than one sprite on one plane, although 1t
not usual, because the computer will put one sprite on that plane, remove
it, then put the second sprite there, then remove that, and s on dealing
with all the sprites you have programmed to be on that plane. This means

34

ASCIl 128643216 8 4 2 |

Figure 1

ASCIl 128643216 8 4 2 1 28643216

24

»

24

16

28 =

24 T

120

H| 72

X

o|o|ojo o000
olo|—=|o|o|o|o|C

oo—-—.—l—l—l—‘

12

Figure 2

35

N

i i ; i d off, at a rate ¢
t all the sprites will be flashing on an e determ;
:ﬁ: naumber (E)f sprites you have on any one plane. [do not recoge by
this method though, unless you want this type of special effect. Meng
i i lanes, and in diff

The same sprite can be placed on different p n differen;
purely by Izhanging the plane number, the parameter P, immg_glfufs,
after PUTSPRITE, and the colour number, C, immediately afterate]y
location parameters in PUTSPRITEP,(X,Y),C,sprite ”Umbet,}\]e
Running this short program will produce a very small black “ljt]e man"

sprite character in the centre of the screen.

CHARACTER STRING SPRITES

Now for the ‘quick and easy’ way of producing sprites in MSX BAS|c
on the Spectravideo.

Looking at line 30, repeated here, from my program, you will notice
that the sprite variable S1$ is in fact a string made up of characters
or CHR$s, which has a value depending on the binary number in the

eight DA TA statements all added together.
30 S1$=S1$+CHRS(VAL("&B"+DAS$))

This means that in actual fact S1$ is:

S1$=CHR$(VAL("&B"+00011000))
+CHR$(VAL("&B"+00011000))
+CHR$(VAL("&B"+00010000)) + etc.

It is usual to write CHR$s with a decimal number, for example
CHR$(65) means “A”, and CHR$(66) means “B”, that is why we
had to write “&B” to tell the computer that it was reading a binary number.
And by the way the binary number was also a string, notice the inverted
commas in the brackets around &B, and the READ DA$ in line 20, not
READ DA as it would be for a true numerical variable. This is why
we had to use the function VAL to find its value before it could be
put into the CHR$ function, which only uses number variables, not

strings.
From the above it is reasonable to suppose that S1$ could be written

as a series of CHR$s added together, but written in the usual fashion,
thatis with decimal numbers inside the brackets.

So how do we convert the binary number into a decimal in order to
do this?

The eight numbers in each DATA statement in lines 110 to 180, are 1
fact a * byte’ of information, and each number is called a ‘bit’ Of'f.hat
byte. Each bit in a byte has a decimal value depending on its position
in the binary number, and each bit can be either a 0 or a 1. This 18
what is meant by ‘binary’, a counting system with only two numbers,
0 and 1, ‘bi’ means two. In decimal we have ten numbers 0 to 9,

‘dec’ means ten.

36

The equivalents are as follows:

binary number T 1 1 1 1 1 1 onebyte-8bits
decimal number 128 64 32 16 8 4 2 1

This means that if our binary number has 1’s in each bit then the decimal
equivalent number is:

128+64+32+16+8+4+2+1 or255

[f any of the bits are 0, then that decimal bit number is not counted.
Forexampleline 110 has:
110 DATADOPO11000

This means that we have a decimal value of:

binarynumber 0 0 0 1 1 0 0 0
decimalnumber0 0 016 8 0 0 0=16+8=24

Similarly we can convert the other seven DATA statements into decimal
numbers, as follows:

line120 00011000 = 24
line130 00010000 = 16
line140 00011100 = 28
line150 00011000 = 24
line160 11110000 =120
line170 01001000 = 72
line180 00001100 = 12

We can now rewrite S1$ as follows:

S1$=CHR$(24)+CHR$(24)+CHRS$(16)+CHRS$(28)
+CHR$(24)+CHR$(120) +CHR$(72)+CHR$(12)

This means that our short sprite program is now even shorter:

1@ COLOR1,7,7:SCREEN1T |

20 S1$=CHR$(24)+CHR$(24)+CHRS(16)+CHRS(
+CHR$ (24)+CHRS$(120) +CHRS(72) +CHR$ (12

30 SPRITE$(1)=S1$%

40 PUTSPRITEM@,(128,96),1,1

50 GOTO5@

28)
)

This can now be written using READ and DATA statements as before
by changing line 20 and adding line 100:

20 FORR=1TO08:READDA:S1$=S1$+CHRS$(DA) :NEXT
100 DATA 24,24,16,28,24,120,72,12

and our sprite creation program is simplicity itself.
This again will place our little man in the centre of the screen.

37

thod it is still advisable to (_iraw out the sprj
method ! dd up the decimal equivalcntrs)rtl(t)ef

matrix, and then a
bers required or the numbers forthe DATA statementg

e of this method is that we can replace many i
$

Using this Patte
n the 8x8 ind gp

CHR$ num

One further advantag ' gy

- i SCII equlvalents straight from the keyb
—— WltgHt!;lngéS) we know is “A”, and CHR$(66) iZ ’%a”rd. For
113 to 115 of the user’s yro (U

example/ . .

: des is given on pages

ist of the CHRS OS5 CHR$ (35) are incorrect. CHR$ (fgazn;,a.,,
18

that CHR$ (32) to
:?;;cztgr blank, and the other three move down one.

could be possible to create a sprite of your own deg;
though in my experience it is somewhat Unlikelg;

This means it
horter program for creating a sprite:

by just using the keys,
Anyway, look at thisevens

: EN1
20 S1$="AAAAAAAA":SPRITE$(1)=S1$
30 PUTSPRITEﬂ,(128,96),1,1
4@ GOTO040

This will create a sprite made up from two parallel vertical lines, because
as A=ASCII code 65, or CHR$(65), we have 65=64+1, that is in binary

01000001, repeated eight times like this:

01000001
01000001
01000001
01000001
01000001
01000001
01000001
01000001

This short program could be made even shorter by combining lines 20
and 30, as follows:

1@ COLOR1,7,7:SCREEN1

20 SPRITES$(1)="AAAAAAAA"
30 PUTSPRITE@,(128,96),1,1
40 GOTO040

Or could even be written on just two lines as follows:

10 COLOR1,7,7:SCREEN1:SPRITE$(1)="AAAAAAAA":
PUTSPRITEDQ,(128,96),1,1
20 GOTO020

What could be simpler than playing around with a lot of DAT A statements,
if all you really want to do is practice using the sprite facillty?

at lines 10 {0

This now means that our previously shortened program,
s where this

50, can have its CHR$s replaced with the key equivalent
is possible:

38

10 COLOR1,7,7:SCREENT
20 S1$=CHRS(24)+CHRS(24)+CHRS
+CHRS (24)+" XxH" +CHRS (12) RO HEHRSICEE)
30 SPRITES(1)=S1$
40 PUTSPRITE®,(128,96),1,1
5@ GOTOS50

DON'T FORGET THAT THE KEYS MUST ALWAYS BE INSIDE
I T SOMMAS, i¥s all part of a string. Lower case ‘x’ is
CHR$(12@), and upper case ‘H' is CHRS (72) Any of the keys can
be used, including the -

punctuation, numbers and graphics, but using
READ and DAT A statements would Create some diffics,lt\'r.)

Our little man is very small, as basic s
an 8x8 pixel matrix block, but there are a
bigger. An exciting one is to combine fou
and create what is known as a magnified

design. A planning chart for this is in t
but we could say that instead of:

prites are only made up from
number of ways to make them
r matrix blocks of 8x8 together,
sprite, but with a more detailed
he Screen and Sprite Appendix,

11111111
11111111
11111111
11111111
11111111
11111111
11111111
11111111

we can have this, four blocks of 8x8 bits:
1111111111111111

1111111111111111
1111111111111111
1111111111111111
1111111111111111
1111111111111111
1111111111111111
1111111111111111
1111111111111111
1111111111111111
1111111111111111
1111111131 11111
1I11131131113111
1111111111111111
1111111111111111
1111111111111

Each block of 8 x 8 bits must be calculated separately and then programmed
into the sprite strings as before, but in a particular order, after drawing
your 16x16 pattern out using the block matrix pattern, see Figure 5.

The four lots of information are programmed in alphabetical order as
follows:

A C
B D

That s, the left hand two first and the right hand two last.

39

-

|
wwLouwwwwwl
|

OO
AIA o
| |5

o

(@)

Figure3

We must also change the SCREEN statement somewhat, by adding a
2toit:

SCREEN1,2

And we can only use numbers up to 63 for the sprite numbers when
we are using magnified sprites.

This tells the computer to expect four lots of DATA, and give a
magnification of two.

You can, of course, READ into the computer 32 lines of DATA statements,
copying the blocks of eight data bits straight into the statements, but
[think the shorter method is better, which means you can either create
four strings, say SA$, SB$, SC$ and SD$, and then add them all together,
S1$=SA$+SB$+SC$+SD$. Or you can create only two strings, one
for the left hand pair of blocks, AB$, and one for the right hand pair,

CD§$, remembering to get them in the correct order, and then add these
twotogethertoform S1$,S1$=AB$+CD$.

Figure four shows you my creation for my magnified little man, and
the CHRS$ codes required to program him. Remember I have deliberately

kept my sprite pattern as simple as possible to aid understanding, you
can make them as involved as you wish.

You will notice in the program that follows that I have used CHR$ (@)
to get a blank string of eight zeros, you won't find this CHR$ in the
table, but the computer will accept it and realise what you mean. More
experienced users of BASIC are warned not touse CHR$ (256) .

40

19 COLOR1,7,7:SCREEN1,2

20 AB$=CHRS$(3)+CHR$(3)+CHR$(3)+CHRS$(3)
+CHR$(3)+CHR$(3)+CHRS(3)+CHRS(3)
+CHR$(3)+CHR$(3)+CHR$(63)+CHRS(63)
+CHR$(48)+CHRS(48)+CHRS (D) +CHRS (D)

3@ CD$=CHRS$(192)+CHRS(192)+CHR$(192)
+CHR$(192)+CHRS(B)+CHRS(B)+CHRS$(240)
+CHR$(240)+CHR$(192)+CHR$(192)
+CHR$(192)+CHR$(192)+CHR$(240)+CHRS$(248)

4@ S1$=AB$+CD$:SPRITES$(2)=S1%$:REM or
SPRITE$(2)=AB$+CD$

5s@ PUTSPRITEB,(128,96),1,1

6@ GOT060

The only limitation to putting all the sprite information into one string
from the start is that one line of BASIC is restricted to only 255 characters.
The maximum number of CHR$ (XXX) you could get into one line is
twenty eight, but if the CHR$s did not all contain three numbers, and
there are a lot that don’t, then it would indeed be possible sometimes.

It's up to you to experiment, but remember that the longer a line of
BASIC is, the more difficult it is to understand.

We can of course put all the sprite information into the computer using
READ and DATA statements, that is, replacing lines 20, 30 and 40 with

the following, it is a much simpler and shorter method when dealing
with the bigger sprites:

20 FORR=1TO032:READDA:S1$=S1$+CHR$(DA) : NEXT

38 DATA 35,3,3,3,3,5,3,5,5,5,63,63,48,48,0,0,
192,192,192 ,192,06,0,240,240,192 ,192,192,
192,240,240

4@ SPRITES$(2)=S1%

This short program when RUN will now place a magnified little man
sprite in the centre of the screen.

You can make the sprites even bigger by joining magnified ones together,
albeit on different planes, this is how explosions can be simulated, starting

with, say, four sprites joined together, moving them around together
and then moving them apart after the explosion.

To demonstrate this let us alter the previous program to suit.

1@ COLOR1,7,7:SCREEN1,2

20 FORR=1T032:READDA:S1$=S1$+CHR$(DA) : NEXT

30 DATA 3,3,3,3,3,3,3,3,3,3,63,63,48,48,0,0,
192,192,192,192,0,0,240,240,192,192,192,
192,240,240

40 SPRITE$(2)=S

45 SPRITE$(3)=S1%$:SPRITE$(4)=S1$:
SPRITE$(5)=S

50 PUTSPRITE@,(128,96),1,2

55 PUTSPRITE1,(144,96),2,3:PUTSPRITEZ2,
(128,112),3,4:PUTSPRITE3,(144,112),5,5

68 FORD=1TO03000:NEXT

70 PUTSPRITEQ,(20,0),1,2:FORD=1T0200:NEXT

1%
1%
1%
12
1

41

:FORD=1T020@:Ng
4:FORD=1T02ﬂﬂzné;T
5

/7

g,0
pPUTSPRITE1, (200,
38 PUTSPRITE2, (20,17
100 PUTSPRITE3, (200,
118 G0T0110

when RUN will place four little men on the
he middle, as the top left hand.plxel of the to
d to be located in the middle of the sc

) 2,3
4) ,3,
174),

This program
not quite in t
sprite is programme
is the middle.

SCreen, p,,
P left handt
reen, 128;96

delay, in line 60, the four men will jump apart ang 0sitj

gf;gsa:els;/};(s)ritn theyfour corners pf the screen, each one a.fter a shoft dle'llao;
[f [had used 192 as the Y location codg for the two Sprites at the botton{
of the screen, then they would have disappeared frpm view, as a Y ¢oge
of 192 would have positioned the top left hand pixel at the bottom of
the screen. Similarly the code 0 in the X position would mean that half
the sprite would be missing on a normal television screen, so be carefu]
These positioning difficulties must be allowed for when deciding whg;
location codes to use to position your sprites.

You can now see that we could have a single sprite made up from the
whole 32 sprites available on screen at any one time, and each one
magnified. The programming of their movement could be a little clumsy,
but it is quite possible. You will probably also have noticed that there
was no requirement to remove the sprite from the last position it occupied,
as | said before this is automatic, once the PUTSPRITE statement has
been changed.

This brings us nicely onto the programming requirements to make oyr
sprites move around the screen. Movement can be achieved by two
methods, first by jumping from one location to another as in the last
program, or secondly by putting the PUTSPRITE statement into a
FOR....NEXT loop, and incrementing either the X or the Y location,
or both.

For example, amending the previous program again will show this second
method:

10 COLOR1,7,7:SCREEN1,2

20 FORR=1T032:READDA:S1$=S1$+CHR$(DA) : NEXT

30 DATA 3,3,3,3,3,3,3,3,3,3,63,63,48,48,0,0,
192,192,192,192,0,0,240,240,192,192,192,
192,240,240

4@ SPRITE$(2)=S1$

45 SPRITE$(3)=S1$:SPRITE$(4)=S1$:
.SPRITE$(5)=S1$

58 PUTSPRITE@,(128,96),1,2

55 PUTSPRITE1,(144,96),1,3:PUTSPRITE2,
(128,112) ,1,4:PUTSPRITE3, (144,112),1,5

60 FORD=1T030@0:NEXT

70 PUTSPRITED,(20,8),1,2:PUTSPRITE1, (200,0)

1,3:PUTSPRITE2, (20.174) .1.4:PUTSPRITE3
(200,174) 1,5 7 "7 T ’

80 FORD=1T03000:NEXT

90 FORX=21T0128:PUTSPRITE®,(X.@).1,2:NEXT
100 FORY=1T096:PUTSPRITEM, (128,Y5,1,2:NEXT

42

LA FORY=11090PUTSPRITET, (200,Y) ,1,3:NEXT
|00 FORN=199 101448 TEP-1:PUTSPRITET, ¢

|, SINEX S
180 Y= 178 FORX=21T0128: PUTSPRITE?

(X,Y) .
VoY= 1 LEYSTI2THENY =117 BB Ty 0

1A NEXI

IS0 FORY=1/731008TEP- PUTSPRITE3, (200,Y),1,5:
Nt X

1ol FORX=199T020STEP- :PUTSPRITE:’),(X,@),'],S:
NEXI

|70 FORY=1T0174:PUTSPRITES, (20,Y),1,5:NEXT

80 Y=178:X=21:FORR=1T0100: PUTSPRITES, (X,Y),
1,5:Y=Y=TaXaX+1:NEXT

190 Y=72:X=122:FORR=1T039:PUTSPRITES, (X,Y),
1,5 FORD=1TOR25 sNEXT:Y=Y+1:X=X+1:NEXT

200 FORX=162TO14A4STEP-1:PUTSPRITE3, (X,112),
1,5:FORD=1TOS@:NEXT :NEXT

210 GOTO210

Fach line of this program moves a sprite in a particular direction, and
L have made them black ineach PUTSPRITE statement help understand
what ix happening in the program. You will also note that each sprite
has the same pattern, but you could, of course, make them all different,
and 1 have written the program as if they were. If you use sprites all
o the same pattern, then you can use the same sprite number and just
place cach one you want to use on a different plane, for example in
line 70, which places the tour sprites in the corners of the screen, I have
removed the time delays, and the line can be written:

70 PUTSPRITEQ,(20,0),1,2:PUTSPRITE1,
(200,0) ,1,2:PUTSPRITER2,(28,174) ,1,2:
PUTSPRITE3,(200,174) ,1,2

ln this way the same sprite has been used four times, SPRITE$(2), but
has been placed on different planes. You could in fact have 32 sprites
on the screen, all the same, and then mix and match them as you please
until you have 32 different sprite patterns on the screen all at the same
time. Sprite graphics are indeed a complex and involved subject, and
this chapter willonly whet your appetite to experiment a lot more.

Now to explain what is happening.

Line 10 - chooses the colours for the text, (not being used), or foreground,
(not needed here, sprites are independent colourwise), for the background
and for the border and then selects the high resolution screen.

Line 20 - defines the pattern for the left hand side of the sprite, AB$.

Line 30 - defines the pattern for the right hand side of the sprite, CD $.

Line 40 - defines the whole sprite pattern as S1, and defines
SPRITES (2) ashavingthe patternof 1.

Line 45 - defines SPRITE$(3), SPRITE$(4) and SPRITES(5)
as having the same S 1$ sprite pattern.

43

Line 50 - locates sprite 2 on plane 0, in colour black, colour code |
ocation X=128, Y=96. ., at

Jocat
> three sprites, 3, 4 and 5, on p]
.o 55 - locates the other) , on planes 1
;l?ctspectively' also in black, at various X and Y locations i the’cinatnd
r
area of the screen. al

Line 60 - delay loop.

Line 70 - Locates the four sprites in the four corners of the screep

Line 80 - delay loop.

Line 90 - moves sprite 2 along the X axix, horizontally along the .
of the screen, 107 pixels.

Line 100 - moves sprite 2 down the screen, back to its original positiop
in the central area.

Line 110 - moves sprite 3 vertically down the screen.

Line 120 - moves sprite 3 horizontally across the screen back to the centra|
area.

Line 130 - moves sprite 4 in a diagonal direction up the screen towards
the central area. When it arrives at location Y=112, it then moves ip
a horizontal direction across the screen back to its original central are;
position.

Line 140 - a NEXT is needed to be placed here and not on the previoys
line, as it would not be read until Y=112, and therefore prior to that
the program would crash as the NEXT would be hidden.

Line 150 - moves sprite 5 vertically up the right hand side of the screen.
Line 160 - moves sprite 5 horizontally across the top of the screen.
Line 170 - moves sprite 5 vertically down the screen to the bottom.

Line 180 - moves sprite 5 diagonally up the screen towards the central
area.

Line 190 - moves sprite 5 diagonally down the screen, showing that one
sprite can pass completely over another without changing the display,

and that sprites can be made to move slower than normal with the addition
ofatime delay loop.

Line 200 - moves sprite 5 back to its original position in the central
screen area at a slower rate still.

Line 210 - keeps the program from ending, until a CRTL/STOP is executed.

We have seen now how sprites move, and how they can be moved
horizontally, vertically and in both directions at the same time, by the
useof FOR. .. . NEXT loops, and changing the X and Y location variables
within them by using either negative or positive increments.

44

D a0wId s Do noted that every time a PUTSPRITE statement is
s, MRV, O i g: e parameters in it can be changed, including the

.

~Nane ovaton, colour and sprite number.

ren v TN ONSNET

NN \" Jemonstrated that sprites could pass over each other,
we Dow U o e last program, and this depends on their priority, that

TS sawe s] 2 ks

S WINPT plane ey are i, the lower the number the higher the

g N
S G

Py [Res mwans tat sprites in plane 0 move over the top of any

g N [N \\ Y TR N T

QUNRT SPTRRS Il i e g 4 nes. [t vou didn't quite see the sprite priority
Sen change e olour of the sprite in line 190 to white, colour code

. -~

A " P » 2SI

> X KU \ R e 4 VN 1..-.‘.:\‘1“;
N

The selection of the cormect plane is, of course, important if you don't

s & it

wand partcular sprites to disappear when they cross each other’s paths.

The tact 13t sprites can cross each other’s path has another advantage,
232 13 they can also be shown to collide when they do cross, and hits
J3 e registered in the computer's memory. This occurs when a switched

om iz of one sprite coincides pixel location wise with a switched on
il of another sprite. To use this facility we use the ON SPRITE GOSUB
statement w‘:t::":: gives the computer somewhere else to go if a collision
QooueTs, @ subrouine in tact. But it must be enabled by using the statement
SPRITE ON justbeforeitis required.

k i a Btde bmiting :"f that any collision between any sprites will be
mooced. but this can be overcome to some extent by an intelligent use
¢t = SPRITE ON and SPRITE OFF statements. To terminate the

wse of the ON SPRITE GOSUB facility in a program completely use
the statement SPRITE STOP.

sirate the use of these interrupt control statements, as they
the fact that they interrupt the flow of the program
"&:’ on, ina ttrm[a.r wavto IF....THEN statements,

ONSPRITEGOSUBS508
S SPRITECN

S SPRITEOQFF

5 SPRITESTOP

58@ CLS

51@ RETURN

Here's the explanation of them:

Line 5 - enables the facility for detecting sprite collisions, and tells the
mputer which subroutine to go to for post-collision action. It is best

to put this at the start of the program, as we do not need to switch
the faclity on until we need it.

Line 183 - switches on the sprite collision facility.

Line 195 - switches off the sprite collision facilty, not strictly necessary
in this program as no other collision will occur in the program, but it
is alwavs good practice to switch it off when it is not required.

Line 203 - disables the collision facility altogether.

45

e B

Line 500 - the subroutine here just clears the screen, heed
complicated in a demonstration. But it could be used g, p to by
score, or creating some other screen effectasarcsultofthtrC(yllisiOn Ating .

; - returns the computer to where it detected the cofjie.
Eal?:ess?n with the program from where it left off. ’“‘Smn, ang
You will perhaps notice that at the moment you can only hay,

subroutine for collisions, as there is only room for one in the gy SPR One
GOSUB statement. But it is possible to set a flag, or indicator, 1Te
other routines can be used depending on what exactly happeneq (e)'that
priorto, or at, the time of the collision. ithey

To do this you canuse a IF....THEN....ELSE statement ;
subroutine,yor aON....GOSUB, or ON....GOTO, PFOVidi;;;ncthe
is taken never to RETURN to the original program before RETURN_are
to the first subroutine and RETURNing from there. Without proper Clan
and experienced control you could get your program in quite , mesrse
so take great care when you feel the need to extend the ONSPRITEGOSUB'
facility in this manner.

Sprites can, of course, be used in SCREEN 2 mode in exactly the same
way as they areusedin SCREEN 1.

So it is quite possible to give, for example, the big man in the SCREEN
2 program in the last chapter, blue eyes by creating two circular Sprites
in a subroutine, and calling them from lines 122 and 147, making the
locations different to suit for each part of the program. The extra lines
may look like this:

122 GOSUB2@@:PUTSPRITE@B,(X,Y) ,4,0:
PUTSPRITE1T,(X,Y) 4,1

147 GOSUB2@Q@:PUTSPRITED,(X,Y) , 4 ,0:
PUTSPRITE1T,(X,Y) , 4,1

200 REM create sprite eye

210 S1$=CHR$(24)+CHRS(6B)+CHRS(126)+CHRS(231)
+CHR$(231)+CHR$(126)+CHRS(6B) +CHRS$(24)
220 SPRITE$(P)=S1$:SPRITE$(1)=S1$

230 RETURN

Can you rewrite line 210 making use of READ and DATA statements,
you will have to use an extra line as well.

It is up to you to calculate your own X and Y locations, your idea of
where to place the eyes may be different to mine!

A second method of obtaining magnified sprites is to place a 1 after
the screen command, instead of a 2, SCREEN1. This means that the
computer is asked to magnify the normal small 8x8 pixel sprite to a 16x16
magnified size. But with this method, as you will see, the sprites therefore
contain less detail, they have only 64 pixels now instead of 256, as they
have with SCREEN2. I suppose these could be called ‘low resolution
magnified sprites’. Here is a resume of the sprite types:

SCREENT,2 or SCREEN2,2 — high resolution magnified sprites:
16x16=256 programmable pixels.

46

*

SCREEN1,1 or SCREEN2,1 —

low resoluti ifi g
8x8=64 programmable pixels. olution magnified sprites,

programmable pixels. ! rmal size sprites, 8x8=64
You can leave the O outof the SCREEN1 ,0 and SCREEN?2 , B commands
and the sprite will automatically be of the normal unmagnified size. 0
is the default sprite valueofthe SCREEN 1 and SCREEN2 commands.

The following program demonstrates the versatility of spri it i i

L Yy ot sprites, 1t 1s quite
short and well worth the time taken to type it in. I will)l explain i?line
by line, and how to use it as well:

S5 REM Sprite demo

1@ COLOR1,7,7:SCREEN@,®

20 CLS:LOCATEZ2,2:PRINT"size: @, 1 or
2" ;INPUTSIZE:IFSIZE<@AORSIZE>2G0T020

30 CLS:LOCATEZ2,2:PRINT"colour: 1 to 15"::
INPUTCOLOUR:IFCOLOUR<T10RCOLOUR>150R i
COLOUR=7G0TO030

40 CLS:LOCATEZ2,2:PRINT"height: 1 to 32%E s
INPUTHEIGHT:IFHEIGHT<T1ORHEIGHT>32GOT040

50 COLOR1,7,7:SCREEN1,SIZE

60 FORR=1TOHEIGHT:S$=S$+CHR$(127) :NEXT:
SPRITE$(1)=S%

70 PUTSPRITE®,(128,96) ,COLOUR,1

80 KEYON:ONKEYGOSUB1080,110

9@ GOTO090

1080 RUN

110 END

Line 20 asks the user to type in the size of sprite wanted, either normal,
a0, magnified normal, a1, or magnified, a 2.

Line 30 asks the user for the colour that the sprite must be displayed
in, a number from 0 to 15, but it won't accept colour code 7, as this
is the background colour of the screen, and if this colour, cyan, were
used the sprite would be invisible.

Line 40 asks the user for the ‘height’ of the sprite, this will determine
how many bytes of sprite information is READ from the DATA, which
are all filled in spaces, CHR$ (127) . Experiment with this particularly,
and see just how many different sized sprites you can actually get.

Line 50 selects the high resolution screen, but you can change this to
the low resolution, it won’t make any difference.

Line 60, this line READs all the necessary DATA to correspond to the
HEIGHT inputofline 40.

Line 70 places the sprite in the centre of the screen.

Line 80 switches on and enables the Function Key select facility, and
provides two illegal subroutines for the computer to go to when either
function keys 1 or 2 are pressed. The command ONKEY cannotuse GOTO,

47

we therefore have to cheat a little to get the program to work in 5 Simple

fashion.

‘e in sus d annimati ;
Line 90 holds the screen display in suspended ann on unti] 3 f”"Ction
key is pressed.

Line 100 RUNs the program again, and allows fresh choices to be made,

Line 110 ENDs the program.

When you have typed the program in, RUN it, and choose the Varioys
parameters you wish to see displayed concerning the sprite. Then when
you want another choice press function key 1, or press function key

2to end the program.

And so now to the problem for this chapter.
ﬁ'***&*lfI"(-i(-#ﬂ-#*’(-’('t#*********%******#***************

Amend the problem program in chapter three so that a sprite can pe
used instead of a block graphics character for the little man.

*i(-****i-10-3(»#!l-***%****************************ﬁ******

The first thing to do is to reorganise the graphics demonstration program
around the use of sprites. The subroutines at lines 4300, 4600 and 480
need to be changed as they deal with the block graphics character. Also
the subroutines that draw the background and display the messages must
be amended as we are now using SCREEN 1, the high resolution screen,

and all the locations will be incorrect.
I shall deal with each subroutine in turn.

REM draw background

Obviously line 4210 must indicate a change of screen and a different
coloured background, if we are to use one, so:

4210 COLOR1,7,7:SCREEN1,2

will suffice.

All the locations must now be changed using the formula we discussed
previously, bearing in mind that where a location is used in a
FOR....NEXT loop, these variables will have to be amended as well.

For example lines 4220 and 4270 could be:

4220 LOCATE3@,136:PRINTS4$:LOCATE42,128:
PRINTS3$

4270 FORR=128T08BSTEP-1:LOCATE‘ISE,R:
PRINTSP$:NEXT

REM place little man

This routine must now also be used to create the little man sprite, SO

will contain the lines we used previously to create the magnified sprite,
but note that we cannot now use S1$ for the sprite pattern store as

48

we have used this for the space string in the create string subroutine
therefore use some other variable name, say SAS$, or 8o straight into
calling the sprite with SPRITE$(2)=AB$+CDS$, as suggested in the
R EM statement on line 40 in that program.

Instead of the LOCATE and PRINT statements on line 4310 we can
now use:

4350 PUTSPRITEQ,(30,96),15,2

which places a little white man on the first step. The change in line
number makes room for the four lines required to create the sprite.

REM display message

Again the locations will have to be amended, especially the lines that
place the message in the centre of the screen, bearing in mind that the
total number of pixels across the screen is 256, therefore the number
required for the centralisation routine on line 4420 is a half of 256, or
128. But if we subtract half the length of the message we shall not have
the correct location even now, as the function LEN(ME$) only counts
the number of characters in the message, not the number of pixels. We
must therefore multiply the variable L we get by 6, and then add 12
as before. Line 4420, for example, will now be:

4420 LOCATE128-((L*6)+12)/2,B8:PRINTMES

Line 4450 will also have to be similarly changed.

REM move man

In this routine we can use one PUTSPRITE statement to replace both
the LOCATE and PRINT statements on each line, calculating the new
locations each time to allow for the use of SCREEN 1, remembering
torecalculate the S TEPs as well!

Line 4660 generates a random number to decide how high the little man
will be able to jump, but is calculated in characters. We must therefore
change this also to allow for pixels. Each character is eight pixels high,
therefore the random number generated must be multiplied by 8 to use
itinthe FOR. . . . NEXT loop for the Y direction.

Therefore:

4660 N=INT(RND(-TIME)*1@+1):N=N*8
4678 X=126:FORY=88TONSTEP-1:PUTSPRITED,(X,Y),
15,2:X=X+1:G0SUB4930@:NEXT

Line 4680 will of course be deleted.
REM check and return man

This routine is similar to the previous one, in that all the PRINT and
LOCATE statements can be replaced with PUTSPRITE statements, the
new X and Y locations calculated, as should the limits for X in lines
4810 and 4820. It will also be a good idea to define a new sprite, one
with the little man facing the opposite way, but I will leave that up
to you.

49

REM fail message, and

REM win message
These two routines will have to have their X and Y location
inorder to printout the message. ? recﬁlculated

One final reminder, don’t forget to remove all the lines th
the little man block characters, sprites do this automaticall ;t b
ev

their location is changed.

lank out
€ry time

If you have persevered to the end of this problem
a block graphics background, drawn on a high re’s}:)(l)::tiS hould ng
magnified sprites todothe gymnastics. On scree

W have

In the next chapter weé shall be looking at
backgrounds in high resolution graphics rr%ode.one of the ways to draw

50

CHAPTER FIVE

Draw Strings

Built into MSX BASIC and the Spectravideo is an extra graphics or drawing
system based.on the DRAW statement. This allows any shape of any
size to be built up on the screen, even circular ones if you have the
patience, though other BASIC graphics commands can do this quicker
and better, so it is best to use this facility for drawing straight lines.
Other graphics commands, such as PAINT, GET and PUT, can be used
to operate on the graphics picture produced with the DRAW statement,

to produce quite interesting effects, and it is this facility that we shall
belooking at in this chapter.

Basically, the DRAW statement allows specific shapes to be built up on
the screen in SCREEN 1 mode, though some very interesting effects

can be obtained in the low resolution mode, but their description is
outside the range of this particular book.

The DRAW statement is followed by a string expression containing all
the information required to draw a particular shape, but this information
should not exceed 255 characters as such. There are ways of overcoming

this, by building into the expression other strings that have been
previously defined in the program.

Using this facility does require some small knowledge of co-ordinate
geometry, but don't let this put you off, providing you can draw shapes
on a piece of graph paper, all should be well. Planning in advance, as

with most forms of programming, is all that is required to produce even
the most complicated shapes and graphics screens.

Lines can be drawn in any direction by using various single letter codes
together with numerical values to indicate the distance that the line has
to move. The codes are as follows, where the lower case ‘n’ is the numerical
distance to be moved, and ‘x’ and “y’ are the normal location codes:

Un - move vertically upwards.

Dn - move vertically downwards.

Ln - move horizontally to the left.

Rn - move horizontally to the right.

En - move diagonally up and to the right.
Fn - move diagonally down and to the right
Gn - move diagonally down and to the left.
Hn - move diagonally up and to the left.
Mx,y

- move to a particular screen location using high resolution

51

Ad

Cc

N

mode location codes. Moves may be relative, that ;¢
respect to the previous last location, or absolute, startj,. ;Vlth
the top left hand corner of the screen again, P]acingg rom
sign before the ‘x’ location code will force a relative a ‘4
otherwise the move will be absolute. Move,

- move to the new location, but' do not plot any points
the screen, that is, will not draw aline. on

- move, draw a line if required, and then return to the

origi
position before the move was made. ginal

- sets an angle to move .throu_gh before plotting or drawin
the line, ‘d’ has the following values and parameters: &
0 - 0 degree, no angular movement.

1-90 degree, aright angle.
2 - 180 degree, two right angles.
3-270 degree, threeright angles

- sets a particular colour for drawing the lines, until changed
by another C code number, ‘c’ has the following values and

colours:
0 -transparent, draws in background colour.

1 -black.
2 -medium green.

3 -light green.

4 -darkblue.
5 -lightblue.
6 -darkred.

7 -cyan,abluishtinge.
8 -mediumred.
9 -lightred.
10 - dark yellow.
11 - light yellow.
12 - dark green.
13 - magenta, darkish pink.
14 - grey.
15 - white.
52

e

Sr - sets a scale factor, ‘r' may have a value from 0 to 255, but
r divided by four, r/4, is ‘f’, the actual scale factor, which
is multiplied by the ‘n’ value given in the U,D,LR,EF,G,H
and relative M commands to give the actual distance moved.
The default value, the value used if no code ‘r’ is used, is

1, that is no-scaling, and will be the same as using a command
of 54, (f=4/4=1).

X(string variable); - tells the computer to draw a shape according to the
information contained in the string variable X$, which must
have been previously defined elsewhere in the program.

In any of the foregoing DRAW commands the arguments n, x, y, ¢, and
r can be either a constant, a given number, or a numeric variable, such

as A or B for example, and could therefore be used to move a shape
around the screen, as will be seen later.

To draw a black empty SQUARE shape in the top left hand corner of
the screen, type in this short program:

18 COLOR,7,7:SCREEN1

20 DRAW"C1BM15,10D10BR64U100BL64"
100 GOTO0100

Line 10 selects a cyan background screen and a cyan border, but notice
that no text or foreground colour has been selected, there is no number

before the first comma. It is best to select colours within the DRAW
command itself.

Line 20 selects the colour black, then executes a blank move, a move
without any drawing taking place, to position x=15, y=10, then draws

the square. Try changing the R and L codes to 100, and you will get
arectangle drawn.

Now change line 20 to:

20 DRAW"C1BM15,18D1@@C4R64C6UTAACTISLEL

This will give the square four different coloured sides, black, dark blue,
dark red and white.

Now add line 30:
30 A$="D10PBL32BUSOR64" :DRAW"BR32XAS;"

This line defines the variable A$ as a set of movements that draw a
cross, but uses the blank move code ‘B’ to move first left, BL, and then
up, BU. Then a DRAW command is executed to first blank move right
32 points before using the variable A$. Notice how the A$ variable has
a ‘X’ before it and a ‘;’ after it. When the program is RUN, the square
is drawn and then divided into four by the crossed lines. Notice also

how the lines are drawn in white, white being the last colour code used
before line 30, a C15 code.

If we now wish to change the colour of the cross in the square, we

53

must make achange to line 40:
30 A$="D1GGBL328USGR64"
ding ‘C1’ to the DRAW command the

:DRAW'BR32C1XAS;"
cross willnow be black.

By ad
Now change line 20 as follows:
20 DRAW"BM15, 19s1C1 D1@OBC4LR64LCO6UTAABCISLE4L"

ing ‘S1’ to the DRAW command on line 20 has reduced the ¢;
ﬁdfﬁg %quare by a factor of 16. Each line has been reduced by a failtzi
of four, which means we can get 16 small squares inside the big one.

Now add line 40:
40 DRAH"BM15,1ESZC1D1ﬂﬂC4R64C6U1ﬂﬂC15L64"

which is the same as line 20, except that the scaling factor is a half insteaq
of a quarter, S2 has been used instead of S1. You should now have ,
square four times as large as the line 20 one, or four times as small
as the original one, which we shall now put back with line 50:

50 DRAH"BM‘]S,1ﬂS4C1D1ﬂﬂC4R64C6U1ﬂ0C15L64"

hree squares in the top left hand corner of the
h other except for the cross. Line 30 draws the

You should now have t
t in the smallest square, as it follows line

screen, all replicas of each ot
cross, and of course draws 1
20 which draws the smallest square.

To put the cross into the other two squares we must repeat line 30 after

lines 40 and 50:

$="pD1@@BL32BUSAR64" : DRAW"BR32C1XAS;"

45 A
4" :DRAW"BR32C1XAS;"

55 A$="D1@@BL32BU5@R6

Naturally as we are drawing crosses three times in this short program
we can put line 30 into a subroutine, and replace the original lines 30,

45 and 55 with:

30 GosuB2@#@
45 GosuB20@d@

55 GosSuB20@
200 REM draw cross routine
210 A$="D1ZZBL328U50R64":DRAH"BR32C1XA$;"

210 RETURN

You will also notice that the outside lines of the smaller squares have
been overdrawn by the bigger square as it is drawn, so that they are

now all black.

If you wish to watch the action taking place then you can add the following:

25 GOosuB30@0
35 GosuB3@d
42 GosuB3@0
47 GOsSuB3@0

54

52 GOSUB300@

300 REM time delay
310 FORD=1TOS5@@:NEXT
320 RETURN

Here is asomewhat compacted version of this demonstration program:

1@ COLOR,7,7:SCREEN1

20 DRAW"BM15,10S1C1D10BC4R64C6UIBBCT5LE4"
3@ GOSUB3@@:GOSUB20M@:GOSUB3AM e
4@ DRAW"BM15,1052C1D1@@C4R64C6UIDBCT5LE4"
50 GOSUB3@@:GOSUB2@A:GOSUB30DP

6@ DRAW"BM15,10S4C1D1@0C4R64C6U1BBCTSLEL"
70 GOSUB30@@:GOSUB200

100 60T0100

200 A$S="D10@BL32BUSBR64" : DRAW"BR32C1XAS; "
210 RETURN

30@ FORD=1T0500:NEXT

310 RETURN

You will also notice that the final square, the largest and the original,

must now have a scaling factor in its DRAW string otherwise the scaling
factor previously used would be acted upon.

This program can now be further amended and reduced to demonstrate
one other facility of the DRAW command. The line which draws the square
is also used three times, but each time with a different scaling factor.
We can make the scaling factor a variable, ‘R’, and use a subroutine
to draw the square, as follows, amending the compacted program:

20 R=1:G0SUB4@O
40 R=2:G0SUB4@O
60 R=4:G0SUB4AO
400 REM drawing square routine

410 DRAW"BM15,18S=R;C1D1B@C4R64C6UTAACI5L64"
420 RETURN

Notice how the variable ‘R’ is used followed by a semi-colon, that is:
S=R;, this means ‘the scaling factor S equals the numeric variable R’.

The semi-colon indicates to the computer that what follows are normal
DRAW commands not associated with the variable ‘R’. It is used in the
same way with ‘XA $;" inline 200.

For the variable ‘R’, either a lower case or an upper case letter can be
used, the computer will recognise them both.

The full program could now look like this:

1@ COLOR,7,7:SCREEN1

20 R=1:G0SUB4PPA:G0SUB3PA:GO0SUB2AB:G0SUB3@A
30 R=2:G0SUB4@PA:G0SUB3PA:GO0SUB20A:G0SUB30A
40 R=4:GOSUB4PPA:G0SUB3PA:G0SUB2BPA:G0SUB3A0
108 GOTO0100

200 A$="D100BL32BUSBR64" :DRAW'"BR32C1XAS;"
210 RETURN

55

390 FORD=1TO5@0@:NEXT

TURN
310 SEAN..Bms,ws:R;C1D100C4R64C6U1ogc15L64"

410 RETURN

ines 20, 30 and 40 assign a value to the variable ‘R, th
gége;uter to the routine that draws the.square at line 40 g:?xie;)d the
delay at line 300, and then the cross is drawn at line 200, ysi short

revious scaling factor to fit it into the already drawn Square I8 the
short DRAW command demonstration program most of jts facilit; en this
been demonstrated, with the exception of N and A. A is an advs have
form of U, D, L and R, where lines can be drawn at the fur anceq
from any point on the screen, which may have been draWing a%l
at some particular angle by the use of the Mx,y command. ine

N allows lines to be drawn from a cgntral. point, by retuming the st
point back to the beginning of the previous line each time. art

The second part of this chapter gives a further demonstration of th
use of the DRAW command, together with the associated advanceg
graphics commands, PAINT, GET and PUT.

The following short program draws a small Square using the DRAW
command, then colours it in using magenta. Then the computer takeg
the square and places it in another part of the screen.

10 COLOR,7,7:SCREEN1
20 DRAW"BM112,71C13D5@R32U5@0L32"

30 PAINT(113,72),13

40 DIMA(10,10)

50 GET(112,72)-(144,122) ,A
60 PUT(158,125) ,A,PSET

70 GOTO70@

Line 10 chooses the colours for the background and border.
Line 20 draws a square at location x=112, y=72in colour 13, magenta.

Line 30 fills in the square with the same colour, 13, using the PAINT
command.

Line 40 creates or dimensions an area in memory called an array which
reserves sufficient space to store whatever you are going to tell the
computer to put there.

Always make sure you have reserved enough memory space or your
program will crash, you can always reduce the amount in the array until
you have the minimum. We’ll discuss this in greater detail later.

Line 50 takes an area of the graphics screen and places it in the array
dimensioned in line 40. It is usual to declare the area of the graphics
screen required by mentally drawing a diagonal line across the ared
required and reading the end location, this is then placed in the secon
bracket. The first bracket takes the start location.

Line 60 places or puts this array of graphic screen information in 2

56

particular place on the screen determined b
Y=125. The command PSET ensures that
in the correct colour, that is,

&; the twg co-ordinates, X=150,
e graphics array is dj
the colour it was copied in y 1s displayed

.

Other commands anq operators are available and will be dealt with in
a later chapter. Leaving out the operator or a

. _ rgument altogether allows
the array to be displayed ina complementary colour.

Line 70 stops the program from ending untila CTRL/STOP is used.

The following full demonstration program shows how the DRAW

command can be used, together with PAINT, GET and PUT to draw
ahouse, garage, bushes and flowers.

10 DIMW(10,18) :DIMDC18,10) : COLOR,4,4:SCREEN
20 H$="R120D110L120U118" 7 ;
30 DRAW"BM78,50S4C6XHS ;"
40 PAINT(88,52),6
50 DRAW"BM9D,6@51C10XHS; "
60 PAINT(95,65),10
70 GET(90,68)-(120,185),w
PUT(161,6@8) ,W,PSET
98 PUT(9@,11@8) ,W.PSET
100 PUT(161,118) oW ,PSET
110 DRAW"BM128,180C13S4R25D60L25060"
128 PAINT(130,102),13
130 GET(128,1080)-(153,168) ,0
148 LOCATE145,134:PRINT" " <rg>H"
15@ LOCATE139,109:PRINT"7"
168 DRAW"BM78.,50C12E7BF7@L140"
170 PAINT(75,48),12
180 PUT(20,180),D:PUT(45,188),D
190 B$="U6L1QU2L5U3L4U4R6U2R5U3R4U5R1202
R2D5R2D3R8D3R2D4LED3L12D6L 4"
200 DRAW'"BM225,17@C2XBS;"
210 DRAW"BM175,19@C2XBS+"
220 PAINT(226,169),2:PAINT(176,189),2

230 F$="C12U10C=P;NU2NE2NR2NF2ND2NG2NL2NH2"
240 P=10:DRAW"BM82,180XF$;"

250 P=13:DRAW"BM+8,15XF$;"

260 P=15:DRAW"BM+10 ,5XF$;"

270 P=13:DRAW"BM+20,15XF$;"

280 G0T0280

Line 10 saves enough space for the two arrays H and D, colours the

border and background dark blue, and selects the high resolution screen
mode.

Line 20 defines H$ as a rectangle 120 pixels wide x 110 pixels deep,
this will be used for the house.

Line 30 draws the house, at location x=78, y=50, with a normal scaling
factor of 1. The scaling factor must be used, because if the program is
run a second time, as it is sure to be, then the house will be drawn
with the last scaling used. The house will be drawn in colour 6, dark
red. A colour code must be used in the DRAW command if the house

57

-

tilled in, otherwise when the colour is specified jn th

: » filled, but the rest of th Ny PMNT
{, the house will not be filled, . e scr '
f)(()»m/r&:‘l:gdyou cannot specify a different coloured outline for Yollerors]h;vl“

\ f pe

to the filling, they must both be the same.

is to be

. fills in the house in dark red. Notiqe that the start po:
t[r:::u}ll?%r paint must be inside the area to be filled, otherwige tﬁ:‘;ltrefor
will be filled instead. It is best to drop inside the area by one ¢ o
pixels in both the X and Y positions and use that location, The p AINO
command can lead to a lot of confusion if care is not taken over th'T
and the previously mentioned fact that the border and the fjj] Cololii

must always be the same, and always declared.

Line 50 draws a smaller version of the house, a window, scale ygeqg 51
orone sixteenth, with a dark yellow border at location x=90, y =60, ,

Line 60 fills in the window in dark yellow.

Line 70 takes the area indicated by the diagonal (90,60)-(120,105)/ the
dark yellow window, and places it in the array W. This will save drawing
and painting another three, we can PUT them instead.

Lines 80, 90 and 100 places three dark yellow windows in three different
locations on the house. You will notice the small difference between
the DRAW and PAINT and the PUT commands when they are executed
with the former, the border is drawn and then the shape filled, wit};
the latter, the complete shape is drawn and filled at the same time. This
is because the complete graphics picture is stored in memory, and not
the way in which it is first drawn.

Line 110 draws at location x=128, y=100, the outline of a magenta rectangle
with a scaling factor of 1, a door.

Line 120 paints the door magenta.

Line 130 takes the door and stores it in memory with the variable array
nameD.

Line 140 places a door knob on the door.
Line 150 places a number 7 on the door.

Line 160 draws the outline of the roof and eaves in a dark green colour,
using two diagonal movement commands.

Line 170 fills in the roof, in dark green.

Line 180 draws two garage doors using the front door of the house stored
in memory as variable array D, but with a pixel overlap.

This effect creates a line between the two doors to simulate a join.
Line 190 defines, in small steps, a bush, B.

Linle 200 draws a bush at location x=225, y=170 with a medium green
outline.

58

Line 210 draws another bush at location x=175, y=190 again with a
medium green outline.

Line 220 paints the bushes in medium green.

Line 230 creates a flower called F$, with a green stem, but the petals
depend on the variable P. The petals are drawn using the ‘N’ command,
ensuring that all the short lines start from the top of the stem.

Lines 240 to 270 draw flowers at various locations in front of the house.
Line 240 posﬁ}ons the first flower with an absolute blank move. Lines
250 to 7170 position three more flowers using relative blank moves. Each
line assigns the colour, P, of the petals before the flower is drawn.

Line 280 halts the program.

The DRAW command is a rough and ready means of drawing graphics,
but nevertheless a very useful one.

In the next chapter I shall look at another simple means of drawing
pictures, one that plots only one point or pixel at a time, the PSET
and PRESET graphics commands.

All that remains now is to apply what we have learnt in this chapter
to our ongoing problem.

B ok S ok ok ok ok ok 3 % ok ok ok ok ok ok % o ok ok % % K kR N R K KR K N kK KRR R AR

Amend the demonstration program to use the DRAW command to draw

the background screen.
#***********!(-***’l’*******#**##****#*tﬁ****#*ﬁ*&t*ﬁﬁ

The first change to make will be to line 4210 in the ‘'REM draw background’
subroutine, to change it to:

4210 COLOR,4,4:SCREEN1

The remaining lines, which all contain LOCATE and PRINT statements
using the strings created in the ‘REM create str ings’ subroutine,
will have to be changed to DRAW commands, with the various strings
that draw the boxes redefined within the subroutine as DRAW strings.

For example, a step, which was two characters long by one character
high, can now be:

ST$="R12U8L12D8"

These ST$s must now be positioned with the DRAW command:
DRAW"BMx ,yC15XST$;"

You can, of course, change the colour of each step to suit yourself by
changing the C code. The x and y codes will have to be calculated from
the locations in the ‘REM draw backg round’ routine for each step,
not forgetting that all the steps except the top one will be made up from
more than one basic S T$ step.

The trampoline can again be made up from these basic ST$’s, but the
legs will have to redefined as LG$’s:

59

e (2 -l
¥ m S
[

LGS$="U16R6DT16LE" !

But they can also be used for the high jump, by building
of another. Ing one on top

The rope will still have to be the block circle, CHR$ (193)

You could, of course, make each of the three parts that maje
display from three separate DRAW commands, drawing out eachuiithc
ece

in full; this is up to you.

As mentioned earlier the DRAW command can be used to create move
and an interesting short program follows, which will give you ’;“(‘nt,
of scope for experimentation: Plenty

18 COLOR,15,15:SCREEN1
20 BO$="U1BR10D1ALI0":5=1
39 X=1:Y=5:LOCATES@,10:PRINT"Colour code";s

4@ DRAW'"BM10,10C=S;XB@A%$;"
50 DRAW"BM+=X; ,=Y,;(C=S;XB0S$;"
60 X=X+1:IFX>6BTHENCLS:S=S+1:1FS>14THENS=p

ELSES=S:G0T030
70 GOTO5@

This program draws coloured empty boxes down the screen in a curve
disappearing off the right hand side, and then waits until X5
whereupon it clears the screen and starts all over again, but this time
with a different coloured box. When all the colours have been used
the colours start at black again. The colour code is indicated at the to;;

of the screen.

Interesting effects can be achieved by blanking out parts of the boxes
by including line 55:

55 DRAW'"BM+=X; ,=Y;COXB0S$;"

which draws the box in transparent.

Try experimenting by changing the values of Xand Y, and the X increment.

Even more effects can be achieved by changing the screen mode to
SCREEN2, which will perhaps enable a better understanding of the low
resolution mode. Remember each pixel, when located, fills in four pixels,
not one, as in the high resolution mode. All the locations are the same
though, including those used with the DRAW command, for example

U,D,LandR.

Finally, remove the ‘+’ sign from the X parameter in lines 50 and 55,
and you will see what I mean be simulating movement with the DRAW

command, the little rectangle should move right across the screen in
ange the value of

14 glorious colours, leaving its ‘gun’ behind. Or ch ,
Y in line 30 to a bigger number, this way the gun will not be left behind
and the whole rectangle will move across the screen.

I hope you find this experiment interesting and you can see that M5X
BASIC is quite powerful.

60

CHAPTER SIX
Pixel Set

PSET, PRESET, POINT.

Block graphics use a 6 x 8 pixel area of the screen to draw with, as
does text. Sprites use an 8 x 8, or a 16 x 16 area. DRAW fills in a pixel
at a time to create lines in any direction, and therefore can use an area
of any size of the screen you want. The graphic command PSET only
uses an area covered by one pixel in SCREEN 1 mode, or a rectangular
group of pixels in SCREEN 2 mode. This means, of course, that lines

of any length can be drawn, of any thickness, and therefore, any size
area of the screen can be used.

Depending on the instruction used to draw the line of pixels, the line
can be made to bend or turn in particular directions, which means the
command could be very useful for drawing graphs.

PSET, short for Pixel SET, colours in the pixel at an assigned location
on the screen in the foreground colour, if no particular colour is specified,
orin aspecified colour if set within the command parameters.

PRESET, short for Pixel RESET, on the other hand, changes the pixel

at the assigned location to the background colour, or to another colour
if specified.

POINT, reads the colour of a pixel at an assigned location, and returns
this colour code number as a numeric variable, or it can be used directly
ina PRINT statement.

For example, in the following short demonstration program, using PSET,a
pixel is randomly set to a particular colour in the centre of the screen.
It is then read with POINT, and changed using PRESET, whereupon

it is read again, with all the information printed out at the top of the
screen.

1@ COLOR1,7,7:SCREEN1

20 C1=INT(RND(-TIME)*15):C2=INT(RND(-TIME)
*15):IFC1=@BORC1=70RC2=@ORC2=70RC1=C2G0T020

30 PSET(128,96) ,C1

40 GOSUB1@@:G0SUB20@P

>0 PRESET(128,96),C2

60 GOosSuB100

gg K$=INKEY$:IFK$=""GOTO7PELSEGOSUB20B:60T020

END

180 CODE=POINT(128,96):LOCATE25,10:PRINTCODE:
FORD=1TO1000:NEXT

118 RETURN

200 LOCATE25,18:COLOR7:PRINT"<rg>P<rg>P
<rg>P":COLOR1

210 RETURN

61

To get the program to repeat just press any kvy, line 70 does it
* thig for

you.
a small area that it is quile difficyy l
0 §¢

A single pixel is such
st therefore thatyou change line 1y, "¢ on
) Q!

anormal television set. [sugge

10 COLOR1,7,7:SCREENZ

This will select the low resolution screen mode, SCREEN ?
in the shape of a rectangle, to the selected ("()]a()l:d will
lrv th(l

set more pixels,
ft hand one of the group,

assigned one, (128,96), as the top le

The PRESET command will still read this pixel, so try changing |
. 8 ifli:

100 to:

108 CODE=POINT(129,96):LOCATE25,10:p
FORD=1T0100@: NEXT , RINTCODE,

That pixel, at X=129, Y=96, being in SCREEN 2, is still in the ags;
colour and will now be returned with the same code as before, HEDR

Try changing the location used in line 100 to (129,97), is the same cod

still returned? But change the location to (128,95) and you will ctC (;'Q
the colour code for cyan, the background colour, all the time, as (gizs 92'
is outside the area covered by the group of pixels making up the enlarg ec{
SCREEN 2 dot. This is an important point to remember for l?tor

experiments. Now try changing line 50 to:

50 PRESET(128,96)

that is, leaving out the C2 colour code change. You will find now, that
each time, the colour is RESET to the background colourcyan, 7.

To double check this you could change line 10 to:

1@ COLOR1,15,7:SCREEN1

But, of course, line 20 will not now error trap for the unwanted colours,

those that will not show up because they are either transparent, 0, or
ou will find that you get a

the same colour as the background, but y
useful rectangle of border colour, still cyan, around the displayed colour

codes at the top of the screen.

This demonstrates what PRESET does if a colour is not assigned.

Finally, change line 30 to:
30 PSET(128,96)
ground colour,

You will now find that the pixels are always in the fore

in this case black, code 1. Change line 10 to another foreground colour
just to prove it, but this also means you will have to change the colour
at the end of line 200 to the new colour as well!
Hopefully this short program has indicated how PSET, PRESET a}‘[g
POINT work, now let's go on to some movement and animation Wi

these commands.

62

Type in the following short program:

19 COLOR12,15,7:SCREEN1
20 FORX=21T018@:PSET(X,11) :NEXT
100 GOTO0100

This program, when RUN, will draw a dark green straight line across
the top area of the screen; X is incremented by 1 along Y=11 for 160
pixels.

Changeline 20 to:
2@ FORX=21TO018@:PSET(X,11):PSET(X,170) :NEXT

We will now get two lines drawn horizontally across the screen 160 pixels
apart.

Now add:
30 Y=11:FORX=21TO0180:PSET(X,Y):Y=Y+1:NEXT

which will draw a diagonal down between the two horizontal lines.

4@ FORY=17@0TO11STEP-1:PSET(1808,Y):PSET(20,Y):
NEXT

will draw two lines up the screen 160 pixels apart, to join the two horizontal
lines to complete the RECTANGLE, which tends to indicate that the pixel
itself is indeed a rectangle shape, longer in the horizontal axis than the
vertical.

Finally add line 50:

50 Y=11:FORX=1808T021STEP-1:PSET(X,Y):Y=Y+1:
NEXT

which will complete the ‘flag’ with a second diagonal.

Now change the screen to the low resolution mode, SCREEN 2, and
notice the thicker lines drawn. The diagonals are of course very chunky,
hence the name for this screen mode, low resolution. The chunkiness
can be somewhat reduced by changing the above program, that is change
line 50 to:

50 Y=11:FORX=180T021STEP-4:PSET(X,Y):Y=Y+4:
NEXT

Now RUN the program again and compare the two diagonals. In line
50 allowance has been made for the fact that each pixel set in SCREEN
2 sets a group of pixels, with the assigned pixel the top left hand one.

Now only every fourth pixel is assigned, which produces a higher
resolution line.

63

DOTTED LIN ES
In addition to continuous lines, PSET can also draw dotted oneg, Charie
line 30 to: e

5@ y=11:FORX=21T018BSTEPB:PSET(X, V) 1V=y4g,
NEXT

Now the other diagonal will be made up from a thick dotted line,

The FOR. . . - NEXT Joop steps eight pixels each time through the fo
and so only sets every othergroup of pixels. P,

Changeline 40to:

40 FORy=17ﬁT011STEP-6:PSET(180,Y):
PSET(20,Y) :NEXT

this line will give two unevenly spaced dotted lines.

Changeline 20 to:

20 FORX=21TO18BSTEP2:PSET(X,11):
PSET(X,17@) :NEXT

will have no effect at all, do you know why? We are in SCREEN mode
2, remember!

You should remember by this stage of the book!

Now revert to SCREEN mode 1 and notice the kinds of dotted lines
we have. Line 20 now has an effect on the display, were you right?

COLOURED LINES

We can also program for the lines to be self-coloured instead of being
automatically in the foreground colour. To do this we must assign the
colourinthe PSET, (or PRES ET), command, for example line 50:

5@ Y=11:FORX=180T021STEP-4:PSET(X,Y),1:
Y=Y+4:NEXT

will draw a diagonal in black, and:

30 C=1:Y=11:FORX=21T018@STEP8:PSET(X,Y),C(:
Y=Y+8:C=C+1:IFC>15THENC=1

35 NEXT

will produce coloured dots every eight pixels, each one a different colour

unt@l all the colours have been used, and will then start the run of colours

again. Occasionally a dot will be missing, do you know why?

Oragain:

64

A e B s A e

30 Y=11:FORX=21T0180$TEP8:PSET(X,Y),
INTCRND(-TIME)*15):Y=Y+8
35 NEXT

will produce randomly coloured dots in the diagonal.

Changeto SCREEN 2 inline 10 fora more obvious result.

MOVING PIXELS AND COLLISIONS

Movement can be achieved using the SET commands, by putting them
inaFOR....NEXT loop, for example:

10 COLOR6,7,7:SCREEN1

20 PSET(200,20),15

30 C=1:FORX=20T0256:PSET(X,20),C

40 IFPOINT(2(6@,2@)=1THENLOCATE185,2Q:

PRINT"BANG":C=@:ELSEPRESET(X,20) :NEXT
50 PRESET(X,20)

100 GOTO100

Line 10 declares the text colour to be dark red for the ‘BANG’ in line
40.

Line 20 positions a target, a white dot, at location X=200, Y=20.

Line 30 starts a black dot moving across the screen.

Line 40 continuously tests the white dot position to see if the black dot
has arrived, if it has, then the pixel will have been changed from white
to black. If it hasn’t, then the PRSET command changes the previous
black dot position to background colour. When the black dot arrives

the IF....THEN statement tells the computer to PRINT 'BANG'
atlocation X=185, Y=20.

Line 50 resets the black dot to the background colour after the collision
has taken place.

We have achieved movement and collision detection, though the object
used is not quite as big as a sprite!

Changing line 10 to SCREEN 2, will allow a bigger dot to be on the
move, and is therefore more noticeable, but you will have to change
the PRINT location in line 40 to LOCATE 165,28 to get all the large

letters in one line on the screen, but of course the rest of your display
will have to be in the low resolution mode too!

A slightly larger moving ghostly block can be made to move by nesting
two FOR. . . . NEXT loops, changelines 30 and 40 to:

30 C=1:FORX=20T0256:FORY=20T024:PSET(X,Y),C:
NEXT

4@ IFPOINT(200,20)=1THENLOCATE185,20:
PRINT"BANG" :C=@:ELSEFORY=28T024:
PRESET(X,Y) :NEXT:NEXT

65

NT is a very useful command for detectip,

nd POI ;
'Or}qiocr?tf:crtn%etween two pieces of screen display, when ejthe, bot}I, T
are

on the move or justone of them.

ding the previous program we can get the |},
version to be randomly ejected from j, unl,ack dot

e screen, towards a ’ca'stle’ at the right han dat _the
hit is detected an explosion, 'BANG’, can ey side

For example, amen
in its single pixel
left hand side of th
of the screen. When a

Here is my amended program:

OLORG,7,7:SCREENT
1 05 66s0B300: Y=INT (RND (~TIME) %20) +25
3@ $=1:60SUB20D
40 FORX=48T0256:PSET(X,Y+7),6
cgd IFPOINT(21@,4B)=6THENLOCATE208,38:
PRINT"BANG":PRESET(210,40) :
G0T080:ELSEPRESET(X,Y+7) :NEXT

60 S=7:60SUB200

70 GOTO020
83 PRESET(X,Y+7):T=7:G0SUB300

9@ K$=INKEY$:IFK$=""GOTO9PELSE1D

100 END

200 DRAW"BM20,=Y-20;C=S;D15R15U15L15BM+15,
SR1@D4L10"

21@ RETURN

300 DRAW"BM200,4BC=T;D1BR2BU2BL5USL1BD5L5p1p"
PSET(210,40) ,4

31@ RETURN

Line 10 colours the screen, choosing dark red as the foreground colour.

Line 20 assigns the colour white, code 15, to the variable T, then going
to the subroutine at 300, draws a white ‘castle’ at X=200, Y=40, and
places a dark blue dot in its middle, the target.

Line 30 assigns the colour black, code 1, to the variable S, then going
to the subroutine at 200 draws a black ‘gun’ at X=20, Y=Y-20.

Line 40 starts to move a dark red dot, a red hot shell, across the screen
starting at X=48. When you have studied the two chapters on sound
why not give it some noise as well!

Line 50 checks to see if the colour of the pixel at X=210, Y=40 is dark
red yet; until the ‘gun’ dot hits that exact location it is still dark blue.
If the colour is dark red, colour code 6, then ‘BANG’ is printed at location
X=200, Y=38 and the dot at location X=210, Y=40 is reset to the background
colour. Then via line 80 the moving dot is reset and the castle is redrawn
in background colour, code 7, and of course disappears. If the ‘shell’
has not arrived, then the last position of the ‘shell’, the red dot, is reset
to background colour.

At line 60,' once the red dot has moved across the screen and has not
collided with the blue target dot inside the castle, the ‘gun’ is redrawn

in background colour, code 7, and so disappears ready to draw another
oneinanew position.

66

Line 70 sends the computer back to the beginning of the program to
redraw the gun in a new position and fire another shell, providing the

shell did not hit the target. The castle is also redrawn to ‘mend’ any
holes that the shell might have made.

Line 80 wipes out the castle on a successful hit.

Line 90 awaits a key press to start the program again.

DRAWING GRAPHS

Movement can be used in other ways, for example in drawing graphs.

The following simple program draws a curve based on the square root
of anumber:

1@ COLOR1,7,7:SCREEN1

20 A=1:X=20

30 PSET(X,190-SQR(A)*1B),1 tX=X+1:A=A+1
40 I1FA=200GOTOSPELSE3Q

50 GOTO050

Sine waves can also be drawn, and similarly cosine and tangent waves,
it all depends on the formula you use for incrementing the Y axis as
the program moves through the X axis.

For example, the following PSET command will draw sine waves
depending on the value of three variables P, H and N:

PSET(X,P+H*SIN(X/N))

The formula P+“H*SIN(X/N) calculates the position for the dot on the
Y axis, where:

P = the dots starting position on the Y axis,

H = the maximum height or amplitude of the curve or wave
drawn,

N = the approximate number of cycles drawn.

The variable X will have to be steadily incremented to move the dots
across the screen, and is used in the formula for calculating the number
of cycles drawn, so that the dot’s Y position, it’s particular height at
that point, is ata position to allow the necessary number of cycles.

This next program allows sine waves to be drawn on a pair of axes:

18 COLOR15,7,7:SCREENB:SCREENG,0Q

20 CLS:LOCATE3,22:PRINT"Waveshape
number"; :INPUTN$

30 IFASC(N$)<490RASC(N$)>57G0T020
ELSEN=VAL(NS)

4@ CLS:LOCATE3,22:PRINT"1 wave or multiple
waves, 1 or N";:INPUTNS

50 IFASC(N$)=490RASC(N$)=78GOTO6PELSE4LD

60 IFASC(N$)=78THENN=1/NELSEN=N

70 GOSuUB20@

80 LOCATESO,180:PRINT"Again, Y or N?":

67

L A AAd
.

G=INKEY$:IFKS<>"Y"ORKS<>"N"GOTogg
90 K KS="Y"GOTOTPELSEEND

ND
ECREEN1:DRAN”BM38,1GC1D14BR165H

ORX=4@T0196
FOET(X,78+50%SINCX/N))

NEXT

240 RETURN

n screens in a program can sometimes cause

on the Spectravideo, in that you do not get the screen you Want, eg rouble

if you are using INPUT, which as mentioned previously, wil| né"t‘-’cml}y

on a high or low resolution screen. It is a good idea therefore twf)rk

10, if INPUT is to be used, and the function keys are not to be djs ai line

to change to SCREEN@,@ to remove the function windows, FAayed,
having already drawn a sine wave, can come back to li;et};(e]

program, alre
to do it all again, this is what I have done here.

Swapping betwee

Line 20 prompts the user to type in a wave shape number, the p;
the number the fewer the number of cycles. In fact, in this ex:mb;lgege;
the program, the number 25 gives one complete cycle, and anything ovgr

1000 is liable to give a straight line.

Line 30 checks that the first number typed in, you can type in any number
except 0, is in fact between 1 and 9. To carry out the division in the
formula in line 220 we naturally need a number, but here I have used
a string. This allows me to check that 0 has not been typed in, the ASCII
codes allowed are between 48 and 57, decimal numbers 1.and 9, and
also that a letter hasn’t been accidently or deliberately typed in, their
ASCII codes are greater than 57, the alphabet starts at 65. This, of course,

is a subtle type of error trapping.

Line 40 then asks if a single wave is to be drawn or multiple ones.

Line 50 checks, in the same manner as line 30, that only the required
1 or N is typed in, and sends the computer to ask for the information
again if they aren’t. Don’t forget that only a capital N has been allowed
for. If you want to allow for a lower case m, then extra ASCII codes

must be put into the statement.

Line 60 checks the value of N$ again. If N$="78", the ASCII code value
of capital N, then it turns the inputted number into its reciprocal, 1/N,

which enables the computer to draw multiple waves instead of just the
one. Three phase wave shapes are normally drawn, though it is.posmble
to get two phase with some numbers. If the inputted number is 1 then

only one wave isdrawn, N=N.
Line 70 sends the computer to the subroutine for drawing the wave shape.

Line 80 asks the user if another display is required, and ensures that
only capital Y or capital N is typed in.

Line 90 deals with both Y and N. Y sends the computer back t
beginning of the program, N ends the program.

o the

Line 100 is a safety END program line, not strictly necessary here.

68

in adnmeli e i,

EPV L OC NI PSP Wvase 3 3

JoH I

ROBATLH LIPS ENVT S~

Line 200 changes the display to a high resolution screen, and draws

the Y and X axes for the graph. Try changing this DRAW command to

a PSET command, you will see it's a lot easier using the macro graphics
language, DRAW.

Line 210 starts the FOR. .. .NEXT loop for incrementing the dot across
the X axis.

Line 220 draws the curve or wave shape, at a particular heightand position,
depending on the value of N.

Line 230 completes the FOR. . . .NEXT loop.
Line 240 returns the computer to the main program.
Lines 200 to 240 could of course all be written on one program line.

In this chapter we won't be attempting to change any of the ongoing
problem program. PSET, PRESET could be used to draw the display,
but it is much easier with DRAW. POINT could be used to detect whether
the gymnast has cleared the high jump, but then he would have to be
drawn using a graphics command, and sprites are more convenient for
this. Consider then this small respite as a half term holiday, seeing as
we are approximately half way through the book.

In the next chapter we shall be looking at the final commands of the

graphics language on the Spectravideo and in MSX BASIC, LINE and
CIRCLE, twovery versatile commands.

69

CHAPTER SEVEN
The Circle Line

LINE, CIRCLE

In this final chapter on simple graphics I shall be looking at the ¢
commands LINEand CIRCLE. wo

DRAWING LINES

But before I start it will be a useful exercise I think to compare the §,
means of drawing a line in MSX BASIC on the Spectravideo. These are: ur

1. PRINTinga graphics character,

2. DRAWingaline,

3. PSE Ting pixels, and,

4. LINE drawing.

PRINTing, of course, relies on the fact that there are block graphics
characters on the keyboard to PRINT with, and the ones that will draw
a one pixel thick line in a horizontal direction are <Ig>L, and <Ig>0
and in a vertical direction are <rg>L and <rg>O. As each character is
printed the computer must be told to step on the correct number of
pixel locations, because PRINTingin SCREE N 1 or SCREEN 2 requires
the use of the LOCATE statement, and stepping on requires the use
of FOR....NEXT loop as well. The line is coloured in the present

specified text or foreground colour, unless this is changed just prior to
the PRINT statement.

DRAWing only requires the start location, usually with a blank move,
or a move relative direct from a present position, and the information
necessary to draw the line a given number of pixels. Colouring uses

either the present foreground colour, or one specified in the DRAW

command.

PSETting sets one pixel at a time, but again requires a FOR...NEXT
loop to draw a continuous line of pixels, but does tend to be rather
slow, as a separate action on the computer’s part is required for each

pixel to be set.

The graphics command LINE is designed for the job, but will only draw
lines between the specified locations X1,Y1 and X2,Y2 in the command:
LINE(X1,Y1)=-(X2,Y2)

It automatically LOCATEs the first location, a blank move, and then
draws a line to the second one, but if the line drawn isn’t straight through

a continuous line of pixels then the line may be staggered.

To demonstrate these facilities type in the following short demonstration

program:

70

1@ COLOR1,7,7:SCREEN1

20 LOCATE2@,10:PRINT"PRINT":FORX=61T70210
STEP6:LOCATEX,1@:PRINT"<lg>L":
NEXT:GOSUB2@0

30 LOCATE2@,50:PRINT"DRAW":DRAW"BM61,
5@R150":GOSUB2@0

40 LOCATE2D,9@:PRINT"PSET":FORX=61T0210:
PSET(X,9@) :NEXT:60SUB200

5@ LOCATE2@,130:PRINT"LINE":
LINEC61,130)-(210,130)

100 GOTO0100

20@ FORD=1TO8B@:NEXT:RETURN

You should get four single pixel width lines across the screen together
with a description of the command or statement used for each one.

PRINT you will notice has its line drawn at the bottom of the word,
as we used <Ig>L, to get it to the top like all the others you should
use <lg>O0.

DRAW, PSET and LINE have the line at the top of the word, indicating
that the position for the pixel located by the location codes is the top
left hand corner of the group. This is more obvious if you RUN this
short programin SCREEN 2.

DOTTED LINES

To create a dotted line effect with these four methods amend the program
as follows:

20 LOCATE20,1@8:PRINT"PRINT":FORX=61T0210
STEP12:LOCATEX,1@:PRINT"<Llg>L" :NEXT:
GosuB2@0@

All we need to do here to produce dotted lines is to increase the STEP
variable, any number over 6 will produce a dashed line.

30 LOCATE20,50:PRINT"DRAW":DRAW'"BM61,50":
FORS=1TO012:DRAW'"BM+6,0R6" :
NEXT:G0SuUB200

Here the DRAW draws a line of 6 pixels, R6, after moving on from the
last location 6 pixels, BM+6, twelve times.

4@ LOCATEZ20,9@0:PRINT"PSET":FORX=61T0210STEP6:
FORS=1TO06:PSET(X,98) : X=X+1:NEXT:
NEXT:G0SUB200@

In this line using PS ET, again the command is putintoa FOR. . . . NEXT
loop which is programmed to set 6 pixels at a time, before stepping
on another 6 pixels, STEP 6.

50 LOCATE20,130:PRINT"LINE":X=61:FORS=1T7013:
LINECX,138)-(X+6,130) : X=X+12:NEXT

71

s igned to the variab]

the value 61 is first assigne e X an

l-ier:tinand is put into another FOR NEXT loop draw lh}\ LINg

gf 6 pixels. Then the variable X Is Incremented by 12, Whi“}:hmt lin

effect of starting the next short line, or dash, at a point ¢ Pixels o the
0

the previouS one. A fr()m

COLOURED LINES

iously the lines drawn can be coloured as well, the p
?g\(l)llc_)g R)’change before and after the line drawing commaRnIdN T;eq“iﬂng ¢ ::1 |
requires its colour code 1;151de the DRA.N command, which mee DRAW
each dash could also be a different colour, if required. The p§ ET'oc
requires any colour command.to be after the location codes oy
could be programmed to have different colours for each dash.

Mang
+and again

For example:

30 LOCATE20,50:PRINT"DRAW":P=1:DRAW"BYg1 5g0
FORS=1TO12: DRAW"BM+6,BC=P;R6" : p=pyq, /0"
IFP=7THENP=8

35 NEXT:GOSUB200

3 Lo Jp
AL R e o

will draw each dash in a different colour, and also allow for the s

when the colour is cyan, code 7, by changing it to code 8 wi?ﬁ
1FP=7THENP=8. Notice that the NEXT : GOSUB2@ has been .|
onto a new line, line 35, otherwise the program will Stop at line 30 after

only one dash.

The LINE command also requires a colour code after the pair of location
codes:

LINE(X1,Y1)-(X2,Y2),C
where C equals the colour code.

Now DELETE the short program, lines 20 to 50 we’ve been experimenting
with, and type in the following line:

20 LOCATEZ20,20:PRINT"LINE":LINE(61,20)-
(210,20) ,4

which will draw a long blue line at the top of the screen. If the colour
code is left off then the line will be drawn in the assigned foreground
colour. Delete the ,4 from line 20, and prove it!

LINE is a very versatile graphics command, it will also draw rectangular
shapes, squares as well.

Amend line 20 to the following:
20 LINE(31,28)-(90,60) ,4,B

W)hen RUN this short program will draw a blue rectangle, exciting isn't
it?

72

Compare thisline to the DRAW command in the new line 30:
30 DRAW"BM31,80C4R60D4LOL6BULD"

which also draws a blue rectangle of the same size.

But here is the big difference, to fill
command needsaPAINT command:

35 PAINT(33,82),4

in the shape with colour, the DRAW

and when RUN the filling takes a little time, and if you don’t get the

colour codes right or you make a mistake with the locations the rest
of the screen will fill with colour instead.

But with the LINE command all you have to do is add the letter F
to the B inline 20!

20 LINE(31,20)-(90,60) ,4,8BF

Now when RUN compare the two rectangles and the speed with which
they fill!

If you only want the shape to fill with the assigned foreground colour

then you must still put in the two commas which would have been either
side of the colour code:

20 LINEC(31,20)-(90,608),,8BF

If you only put in the one comma, as you might expect would be
permissible, then the computer will try to draw the lines in colour code

BF, and will try for ever, as the program will not crash, but just ‘hang’
indefinitely:

20 LINE(31,20)-(90,60) ,BF

If, somewhere in your program you have assigned a value to a variable
BF, then you will get a diagonal line instead of a filled shape.

20 LINE(31,20)-(90,60)BF
will crash with a syntax error.

20 LINE(31,20)-(90,60),,BF
will produce a black square in our program.

Itis also possible to draw on top of other shapes using the LINE command:

25 LINE(46,30)-(75,508),6,B

will draw the outline of a rectangle in the middle of the black square,
and

25 LINE(46,38)-(75,50),6,BF

will fill it in in dark red.

73

Lines can be drawn in different directions in a continuous fagh;
lete, with: “on, gim

extending the LINE command. De Pl

be

DELETE2@-2P@<ENTER>

the unwanted lines for the next part of the experiment ang 1o;

the extra lines are achieved by using LINE with only the SL‘('ongt;C“ how
Ocation

bracket, for example:
20 LINE(3ﬂ,2ﬂ)~(7ﬂ,20):LINE-(?Z,éo)

100 GOTO0100
will draw a first line 40 pixels long, and then a second line 4g
pchls

downwards at right angles.

Similarly:
2@ LINE(30,20)-(70,20):LINE-(70,60):
LINE-(30,60):LINE-(30,20)

will draw a square, in the same way that:

20 LINE(30,20)-(70,60),,8B

will. But the following line will draw a five sided figure:

20 LINE(50,28)-(80,28):LINE-(95,35);
LINE-(8@,50):LINE-(50,50) : LINE-(50,20)

and will give you some idea of how a diagonal is displayed. Th
through which it has to travel will determine the sgaightnesseo?ntg}::

line, or whether it is staggered or not. For example change line 20 to:

20 LINE(50,28)-(80,208) :LINE-(125,85):LINE-
(80,50): LINE-(50,50): LINE-(50,20)

which will produce an oddly shaped five sided figure but will indicate
the amount of stagger produced.

Filling this odd shape with colour will require the use of the PAINT
command, because neither the ‘B’ nor the 'F’ parameter could have been
used in the LINE command. But the only colour that we can fill the
shape with is black, because black was originally called in line 10 of
our original program, we didn’t delete line 10 remember! To get the
shape to fill with some other colour requires each part of the outline
of the shape to be given a colour code, the same colour code. We can
always have shapes with different coloured sides, but we are then not
allowed to fill them. The PAINT colour MUST ALWAYS be the sameé
colour as the sides of a shape or the whole screen is liable to be filled

instead!

To get our five sided shape to fill then, we must assign the same colour

code toeach LINE command, as follows:

74

20 LINE(S50,2@8)-(80,20),12:LINE-(125,85) ,12:

LINE-(50,20),12

This willnow draw the shape in green, and fill it in green too.
If you don’t believe me then try changing one or two of the colour codes!

By the way, it would be difficult to draw this shape with the DRAW
command.

To get some idea of the resolution of diagonal lines, and as an example

of the versatility of MSX graphics, change line 20 to the following, and
add line 30:

20 X=20:Y1=96:Y2=0

30 FORDR=@TO196:LINE(X,Y1)-(X+100,Y2):
Y2=Y2+1:NEXT

As this short routine is running you will be able to see the change in
resolution of the diagonals as they are drawn, and to stop the display
at any point, of course, you can press the S TOP at the top of the keyboard.
To restart the display press the S T OP button once again.

To get more individual lines, and not a filled shape, change the value

of the Y2 increment to a bigger number, say 5 or 10. A value of 25 produces
one diagonal of each resolution.

And so to circular shapes.

CIRCLES

The graphics command CIRCLE is similar to the LINE command, in
that it contains a number of parameters, but does not have the facility

for automatically filling the shape with colour, the PAINT command
would have to be used to do this.

To draw acircle changeline 20 to:

20 CIRCLE(128,96),10

This will draw a small circle in the centre of the screen, but the circle
would be better called an ellipse. The two numbers in the bracket are,
as usual, the X and Y locations of the centre of the circle, and the first

figure outside the bracket is the radius in MSX units, whatever they
are!

To create a true circle then we must employ another parameter of the
CIRCLE command, that which gives it a particular ‘aspect ratio’, or
its shape with regard to its two axes, Xand Y. Changeline 20 to:

20 CIRCLE(128,96),10,,,,1.4/1

This will produce a reasonably round circle, but the horizontal and vertical
areas may be straight, depending on it’s size. The reason for the four

75

commat will be explained shortly, for the time pg;
there are four, or you won‘t getacircle! g jusy Mak
. 5“!:.
The aspect ratio is now 1.4 to 1, which means that “
now 1.4 times more than the horizontal as regards ;c: the Verticyy
effect has been cancelled out. One point to note 9'}gth, and t(, Xty g
works on my television, it may not on yours, it wi;lb atl?zt
e

our television horizontal and vertical axes are set and Pend
’ th@rc’ ‘ hgw

[can do about that. So to produce ne

I can do : i aber produce near enough perg ot

you want them you will have to use this aspect ra; €, wh

with the two numbers to suit your television, and :)h by CXperim, on

of the ratio required. N make , nQ”f
Ote

To indicate the resolution of the circles dependi
’ n i
is change line 20 to: & on how big the radijys

FORR=ATO96: CIRCLE
0 NExT (128,960 ,R,5,,,1.4/4,

which will slowly display a large round blue plate. Th

it indicate the pixels that have not been filled in dye 1, 2" 90ts in

the circular shape is not truly circular, but sets two OE; tt(l)1 e fact thy

a straight line now and again. Now you can see one of three el

the extra four commas. One is to accommodate the COlourec;fiaes?ns 7
Or the

outline of the circle.

MAGIC CIRCLES AND EXPLOSIONS

To further illustrate the versatility of a machine using MS

line 20, and add line 30: BYSAEECIG, change

20 C=Q:FORR=@T096:CIRCLE(128,96) ,R,C,
1.4/1:C=C+1:1FC>15THENC=0 7’

30 NEXT

This will have a spectacular effect on the ‘plate’, and will also indicate
how adjacent pixels, depending on their location, have an effect on each
other. The effect is also useful for simulating explosions in arcade games
and the like, but using much smaller loops of course.

SEPARATE CIRCLES

Now to get back to normal graphics change line 20 to:

20 C=1:FORR=@TO096STEP4:CIRCLE(128,96),R,C,
,,1.4/1:C=C+1:IFC>150RC=7THENC=1

30 NEXT

t coloured circles at a four pixel separation,

e colour still has an effect on adjacent pixels
at you will have to go

t this will also depend

This will produce differen
but you will notice that th
even at this distance. You will probably find th
as far as a STEP of 12 to stop this happening, bu

on where the centre point of the first circle is.
You will also notice that the circle is drawn in four parts, which allows

76

- B Cupdilny foanio.
R ¢
¥ , oAl °
L] k1 t .
’

EREI PSR T

|
1
1
.‘!
5 |

i

the computer to present the next facility, and the reason for the extra
three commas. We can also draw parts of a circle, and this all depends
on what two numbers we put between the other three commas.

putting 2Pl in both places will not draw a circle, it confuses the computer.
2Pl is the true circumference of a circle, half of this, 1PI, is therefore
only half a circle, 0.5PI is a quarter, and so on. The first PI number
will tell the computer where to start drawing the circle, and the second
Pl number where to stop. For example:

2@ C=0:FORR=BT096:CIRCLE(128,96),R,C,0,
22/7,1.4/1:C=C+1:1FC>15THENC=0
30 NEXT

tells the computer to start at position 0 and draw as far as 22/7, 22/7
is P, as is 3.142, you can choose your own way of doing it.

A ‘0" in the first PI location tells the computer to start at three o’clock.
This particular line 20 will draw a RAINBOW!!

Changing the two PI numbers around will draw a rainbow reflection,
to do this add lines 40 and 50:

40 C=P:FORR=@T096:CIRCLE(128,96),R,C,
22/7,0,1.4/1:C=C+1:IFC>15THENC=0
50 NEXT

and temporarily delete line 30, which has the effect of stopping line 20
from being executed!

Now insert line 30 again, and you will get the multi-coloured circles
back again, proving that the circles are drawn from 2PI to 2PI, or 22/7
to22/7!

Delete lines 40 and 50.

Changeline 20 to:

20 C=0:FORR=BT096:CIRCLE(128,96),R,C,0,11/7,
1.4/1:C=C+1:IFC>15THENC=0
30 NEXT

This will have the effect of drawing only quarter circles, 1 prefer the
22/7 PI number for this reason, you can easily work with it, more easily
than 3.142, which is only approximate anyway.

Now adjust line 20 to:
20 C=@:FORR=@T096:CIRCLE(128,96),R,C,0,5.5/7,

1.4/1:C=C+1:IFC>15THENC=0
30 NEXT

This will draw eight circles or small arcs, or a nice slice of birthday
cake.

7y

MORE GET AND PUT

NEW<ENTER> will allow us to type in a new Program Witk
oyt

Typias he lines of the old program.

deletingall t

he following few lines, I'll explain them as ,,

Now, 7pe ullusesof GET and PUT: € 8o, Whicp,

will also explain the f
LOR1,15,7:SCREENT:DIMRC(C18,13)

1 ORCLEC126,96),98,12,,,6/1

3¢9 PAINT(126,96) ,12

These three lines will colour up the screen, then draw a filled - s
green tall elipse.

40 LINE(31,171)-(22(3,180),2,BF:L0CATE31,14g_
PRINT"LINE" :

ill draw a medium green long rectangle at the bottom of the
:;ld then print the word line on the right hand end of it. SCreen,

50 GET(31,171)-(226,188) ,R

will place this area of the screen in memory, to be used later with the
PUT command. The variable R has to be dimensioned correctly, ysin
an array, and this is what I have done in line 10. But how did I kno“g,

what numbers to use in the array?

A simple way to carry out the calculation to arrive at the two numbers
in the DIM bracket is to take the diff_erence between the X locations’
and the difference between the Y locations, and then multiply these twg

numbers together.

Then divide the result by 15. This final answer is the multiple of the
two numbers in the DIM bracket, and the easiest way to get this is to
divide the final answer by 10, and then use 10 and this answer as the

two numbers.

For example, I had an X difference of 190, 220-31, and a Y difference
of 10, 180-171, which gives me, XxY=190x10=1900. Then divide this 1900
by 15, which gives 126.66666666667, or 127 to the nearest whole number.
Divide this answer by 10, and we get 12.7, which to the nearest whole
number again gives 13. Therefore I dimensioned my array as (10,13),
but it could just as well have been (13,10). You could then, if you were
short of memory in a program you were writing, start to reduce one
or both of the DIM numbers until the program came up with the error
‘ILLEGAL FUNCTION CALL’, whereupon you could go back one step
in your experiment.

60 KEYON:ONKEYGOSUB20@,300,400,500,600,700
70 GOTO78

Here I have used the ON KEY command to tell the computer what to
do when a function key is pressed. First initalise this facility with the
command KEY ON, then after the ONKEYGOSUB statement, put the
various subroutines that the computer must go to in numerical order,

78

i " A

that is KEY 1 will send it to 200, KEY 2 to 300, etc. The subroutines

can be in any order, but the the computer will assign them in positional
order to the function KEY numbers.

Line 70 justs keeps the program from ending when any of the subroutines
have been executed.

Here are the six subroutines:

200 PUT(31,140) ,R,PSET:LOCATE31,140:
PRINT"PSET"

390 PUT(31,11@) ,R,PRESET:LOCATE31,110:
PRINT"PRESET"

4@0® PUT(31,80),R,AND:LOCATE31,80:PRINT"AND"

500 PUT(31,508) ,R,0R:LOCATE31,50:PRINT"OR"

600 PUT(31,20) ,R,XOR:LOCATE31,2@0:PRINT"XOR"
700 SCREEN@:LIST:END

Now RUN the program and stand by for instructions!

Each subroutine, 200 to 600, PUTs the GET rectangle, R, in a particular
position on the screen, then prints the means of colouring it on the left
hand side of the rectangle. These means of colouring it all depend on
the use of a particular operator at the end of the PUT command.

These are explained as follows:

PSET: colours the area selected by the GET command in the same colour
as it was originally. Press the F1 key to prove it.

PRESET: colours the area in the inverted colour, that is the colour code
arrived at by the formula 15 minus the original colour code number.
Here this is 15-2=13, which gives the colour code 13, magenta. Press
the F2 key and see this magenta rectangle appear.

AND: colours the area according to a binary calculation as follows.
Translate the colour codes of the colour being PUT and the colour already
on the screen display in the area where the new PUT area is to go,
into their binary equivalents from the following table:

colour code binary number
transparent 0 0000
black 1 0001
medium green 2 0010
light green 3 0011
dark blue 4 0100
light blue 5 0101
dark red 6 0110
cyan 7 0111
medium red 8 1000
lightred 9 1001
dark yellow 10 1010
light yellow 11 1011

79

12 1100

R e 13 1101
EAgRiA 14 1110
Then obtain the new code by the use of AND on the twq colouyrg Presen,

according to the following rules:

1liftwo1l’s, 1AND1=1
Oifalanda0,1ANDO0=0,0 AND 1=0

0iftwo(’s,0 AND 0=0.

le we have when added together:
MR medium green 0010, together with

awhite background 1111, giving
aresultof 0010, colour2, or medium greenagain

Press the F3 key to find out.

We also have the medium green rectangle on top of the dark green ellipse
SO)
medium green 0010, together with

dark green 1100, giving
aresultof 0000, colour0, or transparent.

You will find that the area over the ellipse is indeed transparent, it shows
the border colour through, colour code 7, or cyan! Change the bordey
colour yourself and experiment. To do this press <SHIFT><F1> ¢, get
the listing, this is what the subroutine at line 700 is there for.

Now RUN the program again.

OR: colours the area accordin g to the following rules:

10R1=1
10R0=1
0OR1=1
0ORO0=0

We have:
medium green 0010, together with
awhite background 1111, giving
aresultof 1111, colour 15, or white.
Press the F4 key to find out.
Wealso have the rectangle on top of the dark green ellipse, so
medium green 0010, together with

dark green 1100, giving
aresultof 1110, colour14, orgrey.

80

The area inside the ellipse is indeed grey. You can experiment by changing
r the colour of the background or the ellipse.

XOR: colours the area according to the following rules:

1XOR1=0
1XOR0=1
0XOR1=1
0XOR0=0

we have:

‘medium green 0010, together with
awhite background 1111, giving

aresultof 1101, colour 13, ormagenta.

Press the F5 key to find out. We also have the rectangle on top of the dark
green ellipse, so

medium green 0010, together with
dark green 1100, giving
aresultof 1110, colour 14, orgrey.

Again you can experiment to prove the rules.

You will notice that the new areas are not exactly in line with the old
in the ellipse, this is due to the fact that the colours creep once you
have been removing and replacing bits with PUT. You will also notice
that the letters LINE are stored in the array as well, but don’t necessarily

reappear, it all depends on the colour used for the foreground or text,
sometimes you just get a blotch of colour instead.

A big area for you to experiment with there!

Finally, if you do experiment and find that when you press <SHIFT> <F1>
to stop the program and get the listing, nothing appears but a blank
screen, press <SHIFT><F1> again, this should colour the text the right
colour for you to be able to see it. If you are not quite sure then type

KEYLIST<ENTER> and you'll get a list of all the programmed function
keys, number6is COLOR 15,4 ,5.

PROBLEM TIME

Applying your new found knowledge to the ongoing gymnastic display

problem program should be very easy, and I'll not give you any clues
on what to do.

But in the chapter on DRAW [drew a screen display of a house, garage,
bushes and flowers. So let’s attack a new problem.

W% % ok % R % % % % % o % o %k bk % % ok Kk F kR K K k% % ok bk ok ok % % % N ¥ ¥ N ¥ % % ¥ ¥ ¥

Rewrite the DRAW screen display in chapter five using LINE, CIRCLE,
GET and PUT, making the windows all different colours.

IEEEREEEEREEEEEEEEEEEEEEREEREREEEREREREEERERE R EE EEEEEEE]

81

Rewriting this program should not prove too difficult eithey,

[would suggest that you experiment with the PUT operaors
AND, OR a%w% XOR to get the windows different colours, \(,)(:L :’RESET
make the bushes from small circles, and maybe also pyt 4y, ould)
in the garden with the CIRCLEand LINE,BF commands, Umbpe),

The next two chapters will deal with the SOUND facilitie

$ of
and the Spectravideo. of Msx BAs|C

82

CHAPTER EIGHT
Play Strings

PLAY

MSX BASIC and the Spectravideo offer a marvellous range of music
making and sound effect facilities, and with it own built-in sound

synthesizer, it does not have much competition from other micro
computers, (at the time of writing).

PLAY is the command used to produce music, and SOUND the one

used to produce sound effects, although this command can also produce
music, it does tend to do it in a more complicated manner.

Sounds are vibrations of the air that are picked up by the ear, and which,
via the brain, are interpreted into the sounds that are all around us.
Musical sounds are purely those sounds that to man are pleasant and
worth listening too. Different races of people throughout the world have
different ideas of what is a musical sound and what is not, but in the
main there are certain frequencies, or speeds of air vibration, that are

accepted as being ‘right’, and to this end have been laid down as a
set of rules.

Craftsmen spend their lives touring their localities ‘tuning’ instruments
of various sorts to these particular frequencies, so that they will be ‘in
tune’ with all the others. But each separate instrument has different
harmonics, extra frequencies based on the main one being played, that
alter the way in which we hear a particular sound. To achieve this effect

we have to use the SOUND command in MSX BASIC, this command
will be dealt with in the next chapter.

The PLAY command can only produce the main or fundamental frequency
or NOTE, but it can be disguised, as we shall see later. The sound you
hear has to come from your TV sound system, fed to the TV from the
computer by the video lead, which itself introduces various extra
harmonics, which are then added to the note being played. That is why

different makes of TV produce slightly different sounds for the same
music.

NOTE PLAY

The command PLAY can produce the seven notes that go to make this
set of musical rules, and these seven notes are named as follows:

A B CDETFG

Each of these seven letters has a particular frequency associated with
it. The letters are not normally arranged in this order, but:

C DEFGAHB

83

' up the complete set of seven
which go 10 ol 018, calleq a
S OCTAVE. el

matters more all the frequencies can be doUbled

To comP“C““: C but at a higher frequency, and so, ag
the sam¢ N‘Oifz %ng this sour;ld' Wﬁ hear a different soUno;, rae,ar Will y;
;. We say then that the note is in a highey Soy
o lzltg?i:deo can produce eight different OCTAVES tO%CTAV.E' he
lS v\ezcst frequency set and 8 the highest. This means that haing the
oo 7x8=56 notes available to PLAY, from OCTAVE 1, NOTE Cea fang,

t; OCTAVE 8, NOTEBor O8B.

: ith the computer to prod
\t us experiment now wi Produce an
;‘eext/c‘rl\ avaﬁable notes in OCTAVE 4, the octave that the Comgu?:e of the
up inwhenyou first switch on, called the ‘default’ octave. T Powerg

Typein the following short program:

OR1,7,7:SCREEND,0
;g Egl(EATEgﬂﬂ:PRINT"CAPS LOCK ON"
39 LOCATE6,12:PRINT"note please";
40 INPUTN$:IFASC(N$)<650RASC(N$)>71GOTOW
50 IFN$="H"THENSCREEND@,1:LIST
60 PLAYNS
70 FORD=1TO45@*LEN(NS) :NEXT:G0T010@

Lines 10 to 50 should not really need any explanation at this stage i

the book, but music might be your reason for buying the Spectravideq ang
you may have opened the book at this chapter first, then tum to chapter
eleven and look up any statements or commands in these lines that you
do not understand.

Line 60 tells the computer to PLAY the note that is contained in NS,
and this will be either C,D, E, F, G, A, or B, line 40 ensures this.

Line 50 tells the computer to END the program if key ‘H’ is pressed.

Line 70 ensures that you do not get the prompt screen again until the
note, or notes, have finished playing.

When you RUN the program you will be asked for the note you wish
to hear, press that key and then the ENTER key, and listen.

Experiment with all the seven notes, running up the scale and down
again, and compare them, but don’t forget to turn the volume up on

your TV set, don't forget to press the CAPS LOCK key, and check that
thelightison!

Now when you have heard enough of the single notes, take the experiment

one step further, and press more than one key per screen prompt, for
example:

CDEFGAB<ENTER>

You will get the first seven notes of the scale C Major, or the notes
inOCTAVE 4.

84

i ad o s R SRR SR SR il v o

R e ot e’ i S8 s s

To those with an ‘ear for music’ something will of course be missing,
the last note in the scale, the higher C, and we’ll deal with that shortly.

For the moment try composing short melodies, for example:
CEDFEGC<ENTER>

Bg careful not to include non-note letters in the string or the program
will crash. If you do, just press F5 to RUN the program again.

How does the computer play these notes?

Each letter that you type in is placed, in the normal fashion, in a string
variable, N§, which the computer reads and translates into the required

frequency or frequencies. The computer plays PLAY strings, in exactly
the same way that it draws DRAW strings.

Soincommand mode you can type:

PLAY"CDEFGAB"<ENTER> or

PLAY"cdefgab'"<ENTER> oreven
PLAY"CAEfGab"<ENTER>

and produce the musical notes. The reason I asked you to type in capital
letters was to save complicated I F THEN statements.

Experiment now in command mode typing in yourown PLAY commands.

SHARPS AND FLATS

You can also get the computer to play sharpened and flattened notes,
notes and which are slightly altered from the original, that are used to
create different scales. To do this follow the note letter with a <SHIFT>3

or a <SHIFT>0 or ‘+’, for the sharpened note, a ‘-’ produces a flattened
note.

But this means we will have to amend our program a little and remove
the error trapping or safety precautions from it.

Our amended demonstration program will now look like this:

1@ COLOR1,7,7:SCREENG,Q

20 LOCATE3,20:PRINT'NS$ = "N$:LOCATE6,12:
PRINT"notes please";:INPUTNS

30 IFN$="H"ORN$="h"THEN SCREEN@,1:LIST

40 PLAYNS:FORD=1TO15@*LEN(NS) :NEXT:G0TO010

You must be extra careful from now on not to type in any wrong notes

or symbols, or any in the wrong order, if you do the program will ‘crash’.
Remember just press F5 to RUN it again.

We could error trap this program completely, but it would take some
tedious IF....THENing.

Also, notice the use of the extra LOCATE and PRINT in line 20, this

85

will show you the state of N$. If you want to hear the same
again all you have to do is press <ENTER>, any othe, ke P
by <ENTER>, willimmediately change the state of N§$. Yo f

To show you quickly what a sharpened or flattened note prq . ‘
the amended program and typein: Produces, RUN
C+D-<ENTER> 7

and you will only get one long note, this is because C+ =
sharp = D flat. You can now experiment and find out what all th~' or ¢
sharpened and flattened notes are equivalent to! € Othey

You will perhaps also notice now that all the notes Jast for th
amount of time, either in my program or in command mode. € same

This is due to the fact that the computer powers up with a
note length, L8, a crochet’s worth in musical terms. A cro
in black circle with a line attached to it, but see table
explanation of all the notes and their lengths that you can h
scores.

certain defay),
chet is filled
1 for a fylle,
ave 1n mUSica]

LONG AND SHORT NOTES

To get longer notes with my program, or in command mode, type the
same letter twice for a minim, or four times for a semibreve, three times
will give you a dotted minim. A dot after a note increases the length
by a half again, and this even works in the program string, try it, and
type in a dotted crochet. A ‘C.” should do it.

You can now have any length of note you want greater than a crochet.

This also means that you can’t have two notes the same together, two
C’s produce a double length note. But you can type in a ‘R’ between
the notes, this tells the computer to Rest before playing the next note,
but the Rest will be the same length as the single note, called R8 in
MSXlanguage.

So how do we get notes and rests shorter than a crochet?

The length of a note on the computer is controlled by the letter ‘L’ or
‘', but would advise the use of the capital letter only, to avoid confusion
with the number 1, not for the computer, but for you!

Each note therefore can be programmed to last a given time by typing
in the letter I and a number. The length command, L, will be executed
on each note in a string until changed by another L command.

The command ‘L’ has the values 1 to 64, with 1 having the longest value,
and 64 the shortest, see the table of note values. So try:

L64CL32DLT16ELBFL4GL2ALTIB<ENTER>

to get a feel of all the values. Of course, there is nothing to stop You

86

using any number between 1 and 64 for the length of your note, it’s
up toyou, you're writing the music!

RHYTHM AND SPEED

Tempo is another way of changing the length of your notes, in fact,
as its name implies, this command changes the whole speed of the PLAY

string, and alters the length of the range of L commands to suit. For
example, type in:

TCDEFG<ENTER>

This will play the notes in the normal fashion, at the default speed or
tempo, T=64. Type in:

T64CDEFG<ENTER>

to proveiit.

Now try other values of T, 255 is the quickest and 32 the slowest.
Careful, values less than 32, or greater than 255, are not allowed.
Now try:

L32CL16DLBE<ENTER>
T32L32CL16DLBE<ENTER>
T255L32CL16DLBE<ENTER>

and notice the difference, or even:

T128L32CDET255EDCT32DEC<ENTER>
T128L32CDF+T255B-CDL2DFG<ENTER>

So far we have only been playing in the scale of C Major with only

seven notes, now let’s get a little more adventurous by using the OCTAVE,
O, command.

Typein:
O4CDEFGABOSC<ENTER>

which will now play the complete scale, middle Cto C". Or:
O5CO4BAGFEDC<ENTER>

which will play the scale in reverse order, or
04CDEFGABOS5SCO4BAGFEDC<ENTER>

and you'll get the normal practice scale.

Placing T32 in front of this particular N$ will of course play it quite
alotslower.

We can also change the volume in a string as it is being played, by

87

using the command V for Volume. V has the

: values 1 ¢,
the loudest and 1the quietest. Try:

15, wig |,
VI5CVI3DVI1EVIFV7GVSBV3AVIOSC<ENTERS

but plug your eardrums first!

If you play this more than once by just pressing <ENTER>
will notice that you start in the O5 octave, showing thlit 'thhen you
commands remain as they are set until changed - this s € PLAY

point in writing computer music. Can you work out hoy, Izolrnportant
octave playing the C Major scale, however often you play p €p the
pressing of the <ENTER> key? Oh, for a clue! Y Tepeateq

SOUNDS EXTRAORDINARY

There are two other commands we can experiment with, ysin
demonstration program. These are S for SHAPE and M f
S, as its name implies, gives the notes a certain
or envelope, (more about that in the next cha
whole note wobble or modulate.

g this gh
or MODULA]%?

Preé-programmed gh .
pter,) and M makes 2}22

The command ‘S’ has the values 0 to 15, and the ¢

65535, and tends to replace any ‘T" and ‘V' comma
used.

ommand ‘M’ 1 ,
nds we may haye

M really has to jump in thousands to make any noticeable difference
but you will get some amazing surprises. It’s up to you to experiment, '

Try these for starters:

SOM1PBOCDE<ENTER>
S4MT1OBOCDE<ENTER>
SBM1PPBBCDE<ENTER>
ST15M1B0BBCDE<ENTER>
ST5M1CDE<ENTER>
S15M1200BCDE<ENTER>
S1OM1PPBOCDEFGAB<ENTER>
S9M4LOPOCDEFGAB<ENTER>
S11M8PPPL64LCDEFGABOSC<ENTER>

The combinations are almost limitless, but many of the sounds you can
make are the same, at least to the human ear. I haven't tried them on
the neighbour’s cat, though I'have been tempted at times.

The length of the note used does have some effect on the shaping and
modulating of the notes, for example, try:

S2M4PPBLLOLCDEFGABOSCL32CO4BAGFEDC<ENTER

notice the difference in the rising and falling scales produced. It is even
more noticeable if you use an L of 64, the shortest note.

Notes are automatically separated when using the S and M commands,
so that:

88

o r.-rw—-r-\v-v,r'—*ﬂr’s“j

S1OM4BPBCCCC<ENTER>

will produce four separate notes. Similarly:

S10M4OOBBBBBB<ENTER>

will produce an alarm call!

The S and the M commands can be used separately, together with the
other.co.mmands, but then the default value, or the value last used, of
the missing command will be used by the computer.

Forexample:
S1OM30OCDEFGAB<ENTER>
and:

ST10CDEFGAB<ENTER>

and:

M3BOCDEFGAB<ENTER>
and:

CDEFGAB<ENTER>

will here all produce the same very interesting sound, notice M=300
only here.

Once having used the M and S commands while developing a program,
it is always a good idea to CSAVE it, switch off the computer, then
CLOAD itback in again, and test all your PLAY commands in the program.
Gremlins are everywhere. Typing in M65535 in my program should
get the M command back to normal, as does S8, but you will have to
adjust the volume with V8 to suit. So:

M65535S8VB<ENTER>
should return our program to normal.

PLAY'"M6553558Vv8"

will hopefully do it under normal circumstances without my
demonstration program.

If you want to save the demonstration, I should do it now, as we are
now going to P LAY with different strings.

STRINGING IT ALTOGETHER

As we saw with the DRAW command, strings can be joined together
by ‘adding’ them, for example, type in, in command mode:

89

1$="03CDE" <ENTER>
:2$=“OSEDC"<ENTER>
M3$=n06A3c"<ENTER>

Then:

LAYM1$+M2$<ENTER>
gLAYM2$+M1$<ENTER>
PLAYM1$+M1$+M2$<ENTER>

You should get an immediate reponse. Then:

FORR=1T03:PLAYM1$+M2$: NEXT<ENTER>

will produce six sets of notes.

The other commands can also be stringed, and then used to form
concatenations, as they are called, strings all added together, byt not
added in the true arithmetical sense.

For example, still in command mode:

T1$="T100":L1$="1L32":V1$="V7"<ENTER>
PLAYT1$+L1$+V1$+M28+"L2"+"VI5"+M3S<ENTER>

will produce two sets of notes, one quick and quiet, one loud and slow.

Naturally these sequences can be put into a program, purely by adding
line numbers:

19 M2$="0S5EDC":M1$="03CDE"
20 T1$="T100":L1$="L32":V1$="V7"
30 PLAYT1$+L1$+VIS+M28+"R4A"+"L2"+"V1I5"+M18

40 END
RUN<ENTER>

and:
GOTO3P<ENTER>
will play it again and again thereafter.

Thg same operators can be used, as in the DRAW commands, to assign
variables from outside the string, for example, rewrite line 30:

30 PLAYT1$+L1$+VIS+M2S+"R4"+"L=D;"+"V15"+M1$
and add line 5:
5 CLS:LOCATE2,2:PRINT"Duration™;:INPUTD

where the length of the note ' L’ is made equal to ‘D’, the variable obtained
from the keyboard.

RUN the program again, and input a few durations.

90

R —

Similarly line 20 can be changed to:
zﬂ T1$="T1ﬂg" . L1$=HL=D; 1] : V1$="V7"
where again ‘L’ is made equal to ‘D’.

You can, of course, have as many ‘external’ variables as you have room
for, for example:

5 CLS:LOCATE2,2:PRINT"Duration set two,
1 to 64";:INPUTD?2
6 CLS:LOCATE2,2:PRINT"Duration set one,
: 2L§0L84”;:INPUTD1
:LOCATE2,2:PRINT"Tempo set one
32 to 255"; INPUTTE " i
8 CLS:LOCATE2,2:PRINT"Volume set one,
1 to 15";:INPUTVO
18 M1$="03CDE"

20 L1$="L=D1;":T1$="T=TE":V1$="V=V0;"
Zg EhAYT1$+L1$+V1$+M1$+"R4"+"L=Dz"+"v15"+M1$
D

allows the values for Length, (duration), Tempo and Volume for the first
set of three notes of M1$ to be chosen, and for the duration of the second
set, so that comparisons can be made at the same time.

Naturally, values for S and M can also be experimented with in this
way, butIshall leave you to your own devices to do this.

TWO AND THREE OF A KIND

It is also possible to play two, or even three, notes at the same time,
in harmony, in other words to play two and three note chords.

Try this sequence in command mode:

AS="A":B$="B":($="C":D$="D":ES="E":F$="F":
G$="G"<ENTER>
PLAYES$,GS$,BS<ENTER>

This will produce a top quality ‘car horn’ sound, and you only have
to type it in once to repeat it over and over again. Use the screen as
a musical drawing board by moving the cursor to the PLAY line and

pressing <ENTER> each time you wish to play the chord. Change the
variables and experiment to get different three note chords, some I expect

will be pretty dreadful!

Notice the use of the commas between the notes of the chords, but the
use of the full colon when writing in the strings.

You can also write two note chords by the same method:
PLAYCS ,ES<ENTER>
The notes will play in the default length and the default octave.

91

To change the octave type in, for example:
PLAY"02"<ENTER>
but this will only change the first note of the chord.

All the other commands can also be used in this way buyt again w:
only change the first note of the chord, but experimenting in th;s \::,;]J

can lead to some interesting sounds.
You can also play two and three note chords by just entering the notes:

PLAY"E","G"’"B"<ENTER>
PLAY"E" ,"B"<ENTER>

In fact, this sort of command mode programming can be quite excitin
try for example: &

PLAY"05S15M40P0CEG" ,"03S10M400PEGB",
"O7S2M120007AAA"<ENTER>

which plays three three note chords with startling effect, then add L16
to the first string and play it again, and notice the difference.

You will perhaps notice now the main trouble with programming the
computer to produce chords that are always in step. Rests can be used
to even things up, but whatever you have done to the mini-mini-computer
that looks after the sounds the computer makes it will stay that way
until you change them again. This is why it is best to practice in command
mode; because you can always switch off the computer and start again,
and you don’tlose your program, as you didn’t write one.

Three part harmony is not easy to write, and requires some musical
knowledge, but at least you don’t have to know where all the keys are,
or which holes to cover up, or even which strings to pluck! There are
seven notes to learn and that’s all, from then on in you are on your
own, butladvise you to turn the volume down on the TV set!

To end this chapter here is a little three part harmony you might like
to try, just to get you started:

1@ COLOR1@0,5,1:SCREENZ2,1

20 LOCATE4OD ,80:PRINT"harmony?"

30 A1$="04CDEFCBBO5SCDEFGAOQOG6A"

L@ A2%$="O4LEBRGGDRCO6RCO4RARCL4C"

50 A3$="04GGEREGDFO06GOSC+FO3A05CAAR"

60 SPRITE$(1)="cDefgAbC(C"

70 INTERVALON:ONINTERVAL=1GOSUB100

80 GoSuB2@0

9@ END

100 FORX=0T0255:PUTSPRITED,(X,89),5,1:
FORD=1TO18 :NEXT:NEXT

1710 RETURN

200 PLAYA1%$,A2% ,A3$

210 RETURN

92

The problem for this chapter is to sort out the end of the harmony in

this last program, and then you can remove the question mark in line
20!

NOTE VALUES

crochet L4
a 1L N
mimim 12

semi=treve L1

Table1

93

CHAPTER NINFE
Synthetic Sounds

SOUND

While the command PLAY is capable of producing anything from
note to a full blown three piece ensemble, SOUND is the specig) effects
facility of MSX BASIC. Admittedly you can make some ghastly Noises
with PLAY, using the commands ‘S’ and ‘M’, and some pretty discordam
blasts with the multi-channel facility, but SOUND will amaze you with
its versatility.

a Sing]

Allinall, PLAY is designed for playing music, for example:
PLAY"T20004F+.E.D."<ENTER>

will play the opening bar of the nursery rhyme ‘Three Blind Mice’, anq.
PLAY"T20004F+.E.D." ,"T200D.03A.F+."<ENTER>
will play it in two part harmony, while:

PLAY""T200F+.E.D." ,"T20@8D.03A.F+.",
"T20002B.B.B."<ENTER>

will play it in three, type thisline in, and we’ll experiment.
Now typein:
PLAY"ST1OM4BB" <ENTER>

and PLAY the chord again, by moving the cursor up the screen to the
previous PLAY command, and pressing <ENTER>, and you will get a

modulated or wobbly sound effect to the music, but it is still recognisable
as ‘Three Blind Mice’.

Change the M400 in the SM PLAY command to M4000, and repeat the

PLAY chord command, and now you will get a stepping sound, but
the tune is still recognisable.

Change the $§10 in the SM command to S7 and you will now get a
scraping sort of sound, but the tune’s still there.

With tﬁe SOUND command on the other hand the sounds you get are
noises, or special effects, though you may be able to get a melody out
of it, it’s up to you.

So with PLAY, we can say that it's music first, effects second, but with
SOUND, it’s effects first, and melody second.

Both the PLAY and the SOUND commands use the computer’s PSG,

94

or Programmable Sound Generator, which in itself is a mini-mini-
computer.

This computer has a number of registers, or memory areas, that can hglve
their contents switched either on or off, or partly on and off, by setting

the eights ‘bits’ of each register, exactly as we did when creating a sprite
in an earlier chapter.

Solet’s see what sort of sounds we can get using the SOUND facility.

Once again we are going to use the command mode to carry out some
experiments with the computer.

Type in the following, after first switching the computer off and on again,

and then clearing the screen by pressing the CLS/HM/COPY key next
to the STOP key.

SOUND1 ,@B<ENTER>
SOUND8 ,B<ENTER>
SOUND8 ,15<ENTER>

Each command will now be separated on the screen by the word OK,
and the moment you enter the last command, SOUND , 15, you will
get a clear high tone from the TV speaker. To stop the tone playing
use the cursor controls to position the cursor on the SOUND8 ,@ and
press <ENTER> again, and the tone will dutifully stop!

Now using the cursor controls once more, move up to the SOUND1 ,0
command and change this to SOUND1,1, and press <ENTER>, the
tone will change, it will be a lower frequency now.

Carry on in this fashion, changing the SOUND 1 codes as far as the number
15, and notice the different tones you get, all reducing in frequency.
SOUND 1,16 will start at 0 again and so on, so it is obvious that the
codes for the SOUND 1 command are 0 to 15, giving 16 different tones.

So what have we been doing, and what do all these commands mean?

The Spectravideo, as you already know, has three sound channels, it
produced a three note chord just now with the PLAY command.

The first channel has the SOUND commands SOUND 1 and also SOUND®,
the second channel SOUND3 and SOUNDZ2, and the third channel
SOUNDS5 and SOUND4. The odd numbered channel gives a coarse
frequency change when you change the code number, as I have just
demonstrated, and the even numbered channel produces a fine adjustment
when you change the code.

For example, typein:
SOUNDB ,58<ENTER>
below the third OK on the screen. Now cursor up to SOUND8 ,15 and

press <ENTER>, and notice the fine difference to the tone played with
whatever SOUND 1 has. The coarse code has arange of 0 to 255.

a5

have 16x255 tones available, or 4080 which s qQuite o

this way we g ‘
In y | should think, for even the most discriminating soung

range. Enough,
effects men and women,

The command SOUND8 controls the vn]_unw for channel 1, with
silence and 15 aw the loudest. Try changing the value of the SOUNDS
command using the cursor controls and’ pressing <ENTER> w.hxle a note
is playing, As you will see the control is quite fine, though finer at the
top end of volume than the lower.

tones that MSX BASIC can produce o

These then are the 4080 pure ‘
a look at how we can enable all the

the Spectravideo, now let’s have
various channels, 1,2and 3.

0 get the computer to play the sound out through the channel that
3\2} ’\i/‘.anl we havg to code {)heys OUND7 register. Register 7 has, of course,
eight bits that can be switched on or off, but bits 6 and 7 are not used,
which leaves us with six to play with. Bits 3, 4 and 5 deal with the
noises that the PSG can make, and bits 0, 1and 2 deal with the tones,

To disable all the channels, the three for the tones and the three for
the noise, all the bits must be switched on, that is we must use the

command SOUND7 ,255.

Now type into the computer:
SOUND7 ,255<ENTER>

Even the key clicks have disappeared!

Try entering SOUND8,15 commands, you won't get any sound at all,
OK?

Now amend the SOUND 7 to:
SOUND7 ,@<ENTER>

you should now have your sound again. And by the way, CTRL/STOP
will also switch off the sound volume registers.

As you remember, 255 in decimal is 11111111 in binary, therefore with
decimal 255 each bit is set to 1, or switched on.

Bits 7 and 6 must always be on, binary 11000000, which equals a decimal
number of 128+64=192, because each bit is equivalent to a decimal
number, and to find the total decimal number we add all the switched
on bits together. Remember:

T 11 %= 3.2 1" 1bipary,is:
128 64 32 16 8 4 2 1decimal

Therefore:
1 1 0 0 0 0 0 Obitsband’Zon.
128464 0 0 0 O O 0=192decimal.

96

s

T R T e) S 2,

b sl i

- .,_,_1

TONE

To enable only channel 1 with a tone we must switch off bit 0, and
bit 0 only. Bit 0 has the decimal value of 1, therefore to switch on channel
one only we must subtract 1 from the total of 255, giving 254:

1 1 1 1 1 1 1 O0bitloffonly.
12864 32 16 8 4 2 0=254

Type in now:

SOUND7 ,254<ENTER>

as the nextline on the screen.

Channel 1is now enabled, you won’t notice any difference to the tone.

Be careful not to use both SOUND1,0 and SOUND@ ,@ together, or
you will get no sound at all!

Experiment with these five commands now in command mode, bearing
in mind the double SOUND X , @ commands.

Your screen should look like this at this stage of the experiment:

SOUND1,5
0K
SOUND8,0@
oK
SOUNDS8,15
0K
SOUNDB,85
0K
SOUND7,254
0K

But the numbers after the commas in the 1st, 3rd and 4th SOUND
commands may well be different to mine.

NOISE

We can now start adding some noise to the tone being played by enabling
the channel 1 noise facility. This is controlled by bit 3, and bit 3 has
a decimal value of 8:

7 6 5 4 3 2 1 0 bitnumber

1 1 1 1 1 1 1 1 register7 allbitson.

12864 32 16 8 4 2 1 decimalnumbersin bits

1 1.1 1 0 1 1 0 »binaryarrangementforchannell,

tone and noise.

97

wy

Therefore, to switch on the noise, as well as tone, for channel 1‘ WE Mgy
also switch off bit 3, by subtracting another 8 from the number, 254 he 246,
or 9 from the full bit total of 255, 255-9=246.

We can now amend our SOUND 7 command to:

SOUND7,246

Obviously, if we only want the noise on channel 1, without the tone
then we will have:

1.4 1 14 O 31 3 1
12864 32 16 0 4 2 1=247

and the SOUND 7 can be changed to:
SOUND7 ,247

Experiment now with this SOUND7 command, changing from 246, to
247, to0 254 and 255, where:

255 - no sound at all.
254 - pure tone, channel 1.
247 - noise, channel 1.

246 - tone plus noise, channel 1.

REGISTER 6

Register 6 can make some considerable difference to the tone plus noise

sound, or the noise only sound by emphasizing a particular noise
frequency. For example, with an available code range of 0 to 32, we can
add yetanotherline to our screen by:

SOUND6 ,B<ENTER>

Then changing it, with the SOUND 8 at say 15, to:
SOUND6,20

and notice the difference it makes. Yo

, , u now have four registers to
experiment with, which could keep you bu

sy for some time!

But we are not finished yet, we can now alter the envelope of the sound

being made in a similar way to the M commands we used with the
PLAY command.

98

ENVELOPES

But what do I mean by the word ‘envelope’?

Any sound does not, while it is being ‘sounded’, remain at a fixed volume.
Consider a piano note for example, when it is struck by the hammer
on the wire, the initial sound is very loud, a loudness that rises very
quickly, called the attack period. Then it starts to decay from this maximum
volume, and falls slowly away to nothing, this period is naturally called
the decay period. Other instruments have different envelopes. Some have
extra periods, such as a sustain period, which occurs after the decay
period, where the sound remains at a reduced but fixed level for some
time. Others then fall away, either quickly or slowly, from that level,
after the sustain period time interval, to nothing. This is called the release
period. We have, therefore, in any note some form of what is known
as the ‘attack, decay, sustain, release’ envelope, or ADSR for short.

In MSX BASIC on the Spectravideo we have three channels that arrange
for the sound to be ‘enveloped’, two for timing, and one for selecting
the shape of the envelope.

Registers 11 and 12 look after the timing, and register 13 the shapes.

We can now, therefore, type in two more SOUND commands onto the
screen:

SOUND11,1<ENTER>
SOUND12,1<ENTER>

after the SOUND 6 command and OK.

These two will enable the timing registers, though SOUND 12, being
the coarse control, with values between 0 and 255, will not make a great
deal of difference when used with a low number. SOUND 11, the fine
control, also has codes between 0 and 255.

The next thing to do is to enable the envelope control of the note being
made. With the normal method of tone, or noise, or tone plus noise
production, the sound is continuous until it is switched off with the
SOUNDS8 , @ command, for channel 1, but with envelope control the sound
made could be a one off production, depending on the envelope chosen.

To enable this fully we have to change the SOUND8 command, register
8, to SOUND8,16. The reason for this is that the envelope command
controls the volume itself, depending on its shape, and a code of 16
in SOUND 8 tells the computer to select the particular envelope you have
selected with the codein SOUND 13.

Do this now, in the usual fashion, by changing the third command on
the screen.

Now complete the setting up procedure with:

SOUND13 ,1<ENTER>

The screen should now look like this, though some of your codes may
be different to mine:

99

SOUND1,4
0K
SOUNDS8,0
(11,4
SOUND8,16
oK
SOUND®@,25
oK
SOUND7,254
0K
SOUND6,0
0K
SOUND11,0
0K
SOUND12,10
0K
SOUND13,12
0K

Newcomers to computing, especially using the command mode of
addressing the computer, will find that things can very quickly gowrong,

If the screen does get out of hand, or if you want to impress your friends
with MSX BASIC sound effects, then switch off first, and type in this
experimental screen, and away you go!

What you have now is a ‘command sound generator’, controlled only
by the cursor controls, the keyboard, and the <ENTER> key. You can
produce any sort of sound, with or without noise, using 4080 different
tones, and nine different envelopes, with a vast array of timing sequences,
either one off or continuous.

When you have the sound you are looking for, all you have to do is
write down the various SOUND commands you need, and put them
into your program.

Always make sure that the SOUND8 ,@ command comes at the end of
the sound you want to make, otherwise the sound will continue playing,
unless, of course, it has been enveloped to only produce one blast of
sound, suchas SOUND 13 commands0, 1,2, 3, 4, 5,6,7,90r15.

ENVELOPE SHAPES

I will now describe the various sounds you can get by using the envelope
shapers 0 to 15.

0 - instant attack, slow decay, one pulse only.
1 - instant attack, slow decay, one pulse only.
2 - instant attack, slow decay, one pulse only.
3 - instant attack, slow decay, one pulse only.
4

- medium attack, instant decay, one pulse only.

100

ML IA DD NARH ; SN I e LR

T N R S R R R B

-medium attack, instant decay, one pulse only.

6 - medium attack, instant decay, one pulse only.

” -medium attack, instant decay, one pulse only.

8 - instant attack, medium decay, repeated continuously.

9 - instant attack, slow decay, one pulse only.

10 - insfant attack, gradual decay, small sustain, slow release, repeated
continuously.

11 - instant attack, very quick decay, instant second rise to a sustained
full volume.

12 -medium attack, instant decay, repeated continuously.

13 -slowattack, sustained full volume.

14 - slow attack, no decay, small sustain, slow release, repeated

continuously, sine wave pattern.

You may think that you will need ei
asound, which may seem alot, but yo
is not really needed, unless you need
unless you need to make a particula
all the others. SOUND11 is not ne
to fine tune the selected repetition ti

ght SOUND commands to produce
u can use less. For example SOUNDOQ
to fine tune. SOUND 6 is not needed
r noise frequency predominant over
eded either, unless again you need
me of the continuous envelopes.

And when using the envelope patterns, if a SOUND1 command is not

used, the computer will default to a given low frequency value, and you
will still get a sound produced.

We could therefore reduce our experimental screen to:

SOUND8 ,@<ENTER>
SOUND1,5<ENTER>
SOUND8,16<ENTER>
SOUND7,254<ENTER>
SOUND12,1@B<ENTER>
SOUND13,14<ENTER>

to produce a whole range of sounds, either enveloped or not.

The two SOUND commands, 11 and 12, control the number of times
that a pattern will be repeated per second, with 255 the slowest and
0 the quickest meaning that theoretically we have 256x255 variations of
speed. A total of 65280, that’s enough for anyone!

layout will produce a vibrating gong-like, rising and
—fl:l\]einagb;‘;ft;:;?ir‘;mgﬁscem of the Doppler effect, well loved of physics
teachers.

Try changing the values in SOUND 12, and you will see what I mean
about the repetition of the pattern.

101

and you will have a tiny by
Change SOUND1 to SOUND1,@ an T B witl
fee??fnning past your window, Wee Willie Winkie? '

Changeitto SOUND 1,15 and you willhave aJewish harp instrumep,

Have fun, that's what home computing is all about!,

CHANNELS 2 AND 3

We now know how to program channel 1 to producc a variety of sound,,
but there are two other channels we can use, channels 2 and 3,

Channel 2 has the tone select register of SOUND3 and SOUND?, 3 (,,
the coarse tuning, and 2 for the fine.

Channel 3 has the tone select register of SOUND5 and SOUND4, 5 ¢,
the coarse tuning, and 4 for the fine.

Channel 2 has SOUND9 foritsamplitude, and channel 3has SOUND 19,

The noise predominant frequency of SOUND6 applies to all channels,
as does the envelope repetition frequency select of SOUND11 and
SOUND 12, and the envelope shape selectof SOUND 1 3.

REGISTER 7

Thisleaves SOUND 7, the enable channel register.

To enable the correct channel we must calculate what code number, X
to place after the commain SOUND7 , X.

4

As I mentioned before we are only allowed to use the first 6 bits of
this register, and must therefore always leave bits 6 and 7 switched on.
Not much will happen to the sound if we do switch them off, but
something may be happening elsewhere if we do, like the IN and OUT

ports of the computer, and we have enough gremlins and bugs in
computing already, so leave them on!

To do this, the code number must always be at least decimal 192, 128+64.

This leaves a possible 64 variations to enable all the other tone and noise
channels, either together or on their own.

To find the correct number for the channels of tone or noise that you
may wantfor SOUND 7, use the following table:

bit 5 4 3 2 1 0
channel N3 N2 N1. T3 T2 T1
code number 32 16 8 4 2 3

Where N stands for Noise, and T for Tone.

Decide which channel or channels you wish to enable, and whether you

102

- o : p et ik
i S S AL s 2 D s e S

R ST

ST IR SRS T R T e R TR

Y

Tt

FLRNER BT PRI A GNVTE T L

want tone, noise, or both. Add up the numbers for each bit needed
to be enabled, and subtract the total from 255.

Forexample:
255-0=255 - all channels off.

255-1=254 - channel 1, tone only.
255-2=253 - channel 2, tone only
255-3=252 - channels 1 and 2, tone only.
255-6=249 - channels 3and 2, tone only.
255-7=248 - channels 1,2 and 3, tone only.
255-8=247 - channel 1, noise only.
255-9=246 - channel 1, tone and noise.
255-18=237 - channel 2, tone and noise.

255-63=192 - channels 1, 2 and 3, tone and noise.

MULTI-CHANNEL SOUND

Now clear the screen, which is equivalent to using NEW when you have
a program, and type in the following commands in command mode:

SOUND1,2:SOUND3,7:SOUNDS5,15<ENTER>

This will place a high frequency tone in channel 1, a medium frequency
note in channel 2, and a low frequency note in channel 3.

SOUND8,16:SOUND9,16:SOUND1@,16<ENTER>

This will switch the sound registers of the three channels to ‘envelope
control’.

SOUND7 ,248<ENTER>

Will enable the three channels for tone only.

SOUND12,18<ENTER>

Eventually produces a continuous medium slow repeated sound.
SOUND13 ,14<ENTER>

Produces a continuous sound of slow attack, small decay, no sustain

and slow release, in a sine wave pattern. The sound you should be getting
is somewhat similar to a faulty motorbike, with a loose metal mudguard.

SOUND8 ,B<ENTER>

103

i

Ip——
> st e ey sl

Allows you to switch off channel Tonly, which fixes the metal mudgy,, 4

SOUND9,G<ENTER>
tch off channel 2, which makes you wish the dameg

llows you to swi f ‘
Gling wguld rev up and disappear.

souno1ﬂ,0<ENTER>

Which is what it now does, channel 3 is switched off too.

SOUNDB,ﬂ:SOUND9,ﬂ:SOUND1@,0<ENTER>

This line allows you to switch off all three channels at once, the motorbik
has suddenly run out of petrol! e

Your screen should now look like this, which will allow you to experiment
with one, two, or three channels either mixed or independently, using

either tone, noise or both:
SOUND1,2:SOUND3,7:SOUNDS,1S

0K
SOUN08,16:SOUND9,16:SOUND1G,16

0K
SOUND7 ,248

0K
SOUND12,10

0K

SOUND13,14

0K

SOUNDS8 0

0K

SOUND9,0@

0K

SOUND10,0

0K

SOUND8,@:SOUND9 ,0:SOUND10,0

0K

If)ierg are a few ideas for you, but in the main you are on your own.
t Olljl t (orget that 1f you get the screen in a mess, use the cursor controls
o line it all up again. If, by chance, you <ENTER> a wrong code number,

f}?g 1infsttead of 50 with SQUN D13 for example, you'll get an error code,
del te K arow key will wipe out the words you don’t want, as will the
elete key, or just use the space bar as a screen rubber.

Try these to get you goi ii - ~
: going, the possibilities are endless, especially if

Zgg ftype In the extra SOUND6 register, which has a range of 0 to 31,
orce a particular noise frequency through.

Change SOUND7 to SOUND7,19 :
will sound a bit I » 192 to get all three noises as well, which
illsound abit like Dad filing the dining room tatfle legsl.s T

Change SOUN
fashiogned steath:azin?to SOUND12,2, does this sound like an old

104

Kol

STRSFSTR NS

RPN AN

Switch out the channels one by one, and the train moves off down the
line.

Change SOUND 12 to 2@@, and SOUND7 to 232, noise only on channel
2,and you get the chap next door with his motor mower.

Change SOUND7 to SOUND7,239, SOUND12 to SOUND12,255,

and SOUND13 to SOUND13 » 10, ‘puffing billy’ has at last arrived at
the station, but it’s raring to go again.

Change SOUND 12 to SOUND12,108, and it has!

Change SOUND9 to SOUND9 »15, and someone keeps turning the
waterfall on and off, switch off channel 1and 3, and it’s on all the time.

AsIsaid, the experiments are limitless.
Allthese sounds of course can be putinto programs as required.

FOR....NEXT loops are very useful to repeat single sounds or

continuous ones that are broken up by a SOUND off call, SOUND8 , 0
for example.

For example type in this short demonstration program:

1@ COLOR4,9,1:SCREEN2,0
20 LOCATE4LD,80:PRINT"mixtures"

30 SOUND7,254:PLAY"T20004 FGAB-O5CCDEFEDCO4B-
AGF" :FORD=1TO0370@:NEXT

Line 30 PLAYs the F Major scale, up and down, but has to have quite
a long delay loop as the music computer plays independently of the
rest of the computer’s operating system. SOUND7 , 254 is there to enable

the correct sound channel again, because this demonstration program,
as you will see, is in a continuous loop.

40 SOUND7,192:SOUNDG,225:SOUND1,12:SOUNDS,15
50 FORD=1TO 2@P@B:NEXT:SOUNDS,D

These two lines play a motorbike or motor boat sound for 2000 units
worth, before switching off the sound channel.

60 GosuB2@0@
A short gap between demonstrations.

70 SOUND1,15:SOUND8,16:SOUND3,18:SOUND9,16
83 SOUND12,38:SOUND13,12
980 FORD=1T025@@:NEXT:SOUND9,D

These three lines produce the whirr of helicopter blades for a while,

using two channel enveloped sound. After which channel 2 is switched
off.

100 SOUND12,180:SOUND7,254:SOUND1,1:
SOUND13,11

105

S Jk“ A‘

110 FORD=1T0125@:NEXT
The dinner gong!

120 SOUND7,247:SOUND6,8:SOUND13,8:SOUND12,3g
138 FORD=1703688:NEXT-SOUND7,255:SOUNDS,p”
140 GOSUB2@@:60TO30

Six gun shots blast out, and round we go again, after switching everything
necessary off.

150 END
200 FORD=1T010@@:NEXT:RETURN

Line 150 stops the program from running into the subroutine, and the
subroutine for the short delay is in line 200.

Thank goodness for FOR. . . « N EXT loops!
That is the end of this brief two chapter look at the sound facilities
in MSX BASIC, and on the Spectravideo. Hopefully what I have shown

you has just whetted your appetite. Now for some special effects of a
third kind and they are waiting for you in the next chapter.

106

R ot T s L S " s,

g

L
¢

CHAPTER TEN

Screen effects

In this chapter I shall be discussings ways of using the computer to
produce various screen effects, which when associated with the special
effects in the last chapter, could produce some interesting highlights into
your programs. The demonstrations I am going to show you can be
endlessly adapted to create designs of your own invention.

When you are developing your programs, it is always a good idea to
bg able to flash back and forth between the listing and the screen display,
without having to stop the programand type LIST.

To achieve this use the following routine, which uses the command

ONKEY, but as this command, on the Spectravideo, can’t be used with
GOTO,wehavetocheatand use GOSUB.

1000 KEYON:ONKEYGOSUB1020

1010 GOT0101@

1020 CLS:SCREEN@,B:LIST
CATERPILLAR

10 COLOR1,4,7:SCREEN1

Sets up the screen.

20 X=4@:Z=X:FORBUMP=1T08

30 LINE(X-8),95)-(X+15,96),1
4@ CIRCLE(X,96),40,1,0,22/7,5/1
58 PAINT(X,94),1:X=X+17:NEXT

These four lines draw eight, black filled, half circles across the screen,
the caterpillar’s ‘BUMPS'.

60 CIRCLE(Z-1@,1086),106,10,12
2,

1
70 CIRCLE(X+25.104).12,10

Draws the outline of the caterpillar’s rear end and head in different colours.
80 PAINT(28,98)12:PAINT(203,98),10

Fillsthem in, in green and yellow.

90 LINE(30,96)-(200,116),12,BF

Draws the caterpillars’s body with a filled in green rectangle.

100 LOCATE206,94:COLOR4:PRINT".":COLOR1

Gives the caterpillar a blue eye.

107

1000 KEYON:ONKEYGOSUB1020
1810 GOT01010

1020 CLS:SCREEN@,@:LIST
This is the program development routine mentioned above.

This program shows that you can have two different colours adjacent
to each other, but you have to be careful where you start to PAINT
in each case. Line 50 ensures that the PAINT start point is well inside
each circle.

It also shows how you can develop a screen display by painting one
colour on top of another to simplify the mechanics of the drawing program,
For example, if I had drawn the caterpillar’s body before the head, because
the head is in a different colour, the head would have been filled in
on top of the body. The way I have done it simplifies the circle command
required, in that I have drawn a full circle and then covered the part
[don’t want with the body. Swop lines 90 and 60, which will demonstrate
what I mean, and also show you how the whole screen can produce
quite unexpected effects if you get the order or location codes wrong,
This program, after the line swop, (and don’t forget to use the screen
editor to do this), draws the bumps, tail and head, then fills the screen
with green, and then yellow, finally ending up with a yellow screen,
a green circle and a blue dot!

SQUARE WAVES

This short demonstration program will give you the opportunity to
experiment with making rectangles and filling them in, and to see how
the nearness, or otherwise, of one block of colour to another affects the
ways in which the blocks are filled. It also gives you a program to draw

unlimited square waves, depending on the width, height and number
of waves required.

When the program RUNs, input the width of your square wave, and
the height, bearing in mind that the number inputted will be used as
a reciprocal. Then input the start point, which will show how the first
block is affected by its nearness to another colour, and then input the
number of waves required. Next you are asked for the colour for the
top of the square wave, and then for the bottom of the square wave.

19 COLOR1,4,6:SCREEND,D
2@ LOCATE4,4:PRINT"WIDTH, X, 5 TO 58" ;:INPUTX
30 CLS:LOCATE4,4:PRINT"HEIGHT, 1/Y,
Y=20 TO 90" ; :INPUTY
40 CLS:LOCATE4,4:PRINT"START POINT, Z,
50 TO 8@0'";:INPUTZ
50 LOCATE4,4:PRINT"NUMBER OF WAVES, W,
1T TO 20"; :INPUTW
60 CLS:LOCATE4,4:PRINT"COLOUR WAVE TOP, C1,
@ TO 15";:INPUTC1
70 LOCATE4 ,4:PRINT"COLOUR WAVE BOTTOM, C2,
@ TO 15";:INPUTC2
80 SCREEN1

90 LINE(50,96)-(248,96):LINE(50,5)-(50,185)

108

@@ FORR=1TOW

19 LINECZ,Y)-(Z+X,96),C1,BF

20 LINE(Z+X,96)-(2+2%X,96+96-Y),C2,BF
30 Z=7+2*X:NEXT

P00 KEYON:ONKEYGOSUB102@

210 GOT01010

1020 CLS:SCREEN@,@:LIST

1
1
1
1
1
1

The ‘F’ can be removed from the ‘BF’ in either line 110 or 120, or both,
to show what happens to the colours when only lines are drawn.

A similar sort of program to this one could be used to draw bar charts
orhistograms, by the suitable adjustment of the X and Y parameters.

SLOW GROWTH

In this demonstration a circle grows upwards to form a cylinder, giving
a good example of how screen figures can be made to slowly increase
insize.

19 COLOR1,4,6:SCREEN1,0

20 FORY=120TO4@STEP-1

30 CIRCLE(88,Y),20,6:PAINT(88,Y),6
40 FORD=1TO3@:NEXT:NEXT

50 CIRCLE(88,Y),20,1

1000 KEYON:ONKEYGOSUB1020

1810 GOTO01010

1020 CLS:SCREEN@,@:LIST

It will be noted that when the circle has finished growing, and the end
or top of the cylinder is drawn with an unfilled circle, other areas of
the shape are filled in as well. This again is due to the computer filling
in adjacent areas of screen display and this is because some pixels affect
other nearby pixels. The position of the shape on the x axis, and the
Y axis, can alter and sometimes improve this difficulty; it will be up
to you to experiment to get the best display for your screen.

SPUTNIK

This growth routine can be used to design a ‘sputnik’ or satellite:

1@ COLOR1,4,6:SCREEN1,0
20 DRAW"BM128,96CT15NU4ONRLDONDLONLSLA"

30 FORRADIUS=0T020
4@ CIRCLE(128,96) ,RADIUS,6:PAINT(128,96),6:

NEXT
1000 KEYON:ONKEYGOSUB1020
1810 GOT01010
1028 CLS:SCREEN@,@:LIST

With the addition of a few extra lines it could also be the North Star.
25 DRAW'NE3ONF3ONG3OMH30"

109

T T T .

L BTV S S —

providing the aspect is changed by amending line 40 to suit:

4@ CIRCLE(128,96) ,RADIUS,6,,,1.4/1:
PAINT(128,96) ,6:NEXT

By swapping round the order of the lines of the program, you can
demonstrate once again the ‘pixel creeping’ effect of the screen:

10 COLOR1,4,6:SCREEN1,0

20 FORRADIUS=0T020

30 CIRCLE(128,96) ,RADIUS,6:PAINT(128,96) ,6:
NEXT

40 DRAW"BM128,96C15NU4DONR4LOND4LOANLALD"

50 DRAW'"NE3@NF3@NG3ONH30"

The order in which screen graphics commands are carried out in a program
is very important to the final visual look of the screen.

By changing slightly the locations of the DRAW command, (126,98), you
will see that in fact it is the vertical and diagonal lines that have the
worst effect on the display. Horizontal lines do not incur ‘pixel creep’.

To demonstrate this delete line 50 from the above program, and RUN
itagain, only the vertical line now has an effect.

Next delete the ‘U4 @’ movement command from the DRAW command
inline 40, and RUN the program, note the difference.

Lastly, delete the ‘D 4 @’ command as well, RUN and take note.

No pixel creep.

Swap the order of the lines again, the DRAW before the CIRCLE, and
you will notice how in this location of the DRAW command parts of
the white line are unchanged as the circle grows. Change the location
of the DRAW command back to (128,96), and all the line within the circle
will be removed or recoloured.

Now copy the DRAW command into the loop, and RUN the program.

You will notice the CIRCLE changing the pixel colours in the line as
itisdrawn.

Now replace the ‘U4@’ and ‘D4@’ commands back into the two DRAW

commands, and RUN the new program. You will notice now the pixel
creep in the vertical axis.

Finally, change the first DRAW command to (128,96), the original location,
and the centre of the circle. Change the DRAW command in the loop
to (120,92), and the colour code to black, 1. Then increase the area of

the circle by increasing the loop variable to 30, and reRUN the program.
This should complete the picture.

[fyou have the time put back the diagonals!

110

SQUARE GROWTH

The following short program will draw a thick black line on the screen:

10 COLOR1,4,6:SCREEN1,0

20 X=100

30 FORR=1TO04@:LINE(X,808)-(X+1,84),10,8B
4@ X=X+1:NEXT

1000 KEYON:ONKEYGOSUB1@280

12010 GOTO01010

1020 CLS:SCREEN@,@:LIST

Changinglines 20 and 30 to:

20 X=100:Y=80
30 FORR=1TO4E:LINE(X,Y)-(X+1,Y+1),1@,B
40 X=X+1:Y=Y+1:NEXT

will draw a thick diagonal line, SCREEN2 ON SCREENT.

The increments will determine the thickness of the line in the first
program, and the steps and angle of the diagonal, eventually producing
dotted diagonals, in the amended one.

Changing the sign of the increments wil determine in which direction
the line is drawn, and including a time delay loop will affect the speed

the line is drawn. Changing the value of the number added to the X
and Y in the second bracket in the L INE command in line 30 will increase

the thickness of the line.

This now naturally leads to the drawing of cubes. Change the following
lines:

20 X=100:Y=80
30 FORR=1TO25:LINEC(X,Y)~-(X+28,Y+30),1,B
40 X=X+1:Y=Y+T:NEXT

Line 20 determines where on the screen the cube will appear, or where
the thick lines will start from.

Line 30 draws the cube or the lines.

Line 40 looks after the angles at which the cube or lines appear by changing
the sign of the increments, and can have an effect on the picture by

staggering the repeat.

Changeline 40 to:

40 X=X+4:Y=Y-2:NEXT

Add ‘F’ to the LINE command and the staircase will be filled in.

Change the screen mode to SCREEN2, and you’ll get a concertina!

111

A CALL FOR YOU

'!‘h(' ring of the telephone bell can be simulated by using the third sound
facility of the computer, the BEEP command.

1@ COLOR1,4,6:SCREEN2,0

20 FORTELE=1TO4

30 FORRING=1TO02

40 FORBELL=1TO1@0:BEEP:NEXT
50 FORQUIET=1T020@:NEXT

60 NEXT

70 FORQUIET=1TO50@:NEXT

80 NEXT

90 LOCATEG6D,8@:PRINT"HELLO?"
1000 KEYON:ONKEYGOSUB1020@
1810 GO0T01010

1020 CLS:SCREEN@,@:LIST

Here, by the use of five nested FOR. . . . NEXT loops, I have recreated
the necessary sound, quite realistically, I think.

The whole bell ringing routine could, of course, be written on one program
line, butl have splititup to indicate it’s construction.

10 COLOR1,4,6:SCREEN2,0

20 FORTELE=1TO4:FORRING=1T02:FORBELL=1T010:
BEEP:NEXT:FORQUIET=1T0200:NEXT:NEXT:
FORQUIET=1TO500:NEXT:NEXT

90 LOCATEG6O,80:PRINT"HELLO?"

STAIRS

Stairs or steps can be drawn without complicated DRAW or LINE
statements, providing the routine is RUN at the beginning of the program,
by partly clearing the screen to some other background colour, or one
to match the border.

1@ COLOR2,1,6:SCREEN1,0

20 Y=8:X=30

30 FORR=1TO039:LINE(X,Y-8)~-(256,Y),6,BF
4O Y=Y+8:X=X+5:NEXT

50 SPRITES(1)="222222121":%X=143
60 FORY=1TO0178TOBSTEP~-8

70 PUTSPRITEB,(X,Y) 15,1

80 FORD=1T02080:NEXT

90 X=X-5:NEXT

100 FORD=1TO30@:NEXT

11@ FORR=XTOX+210

120 PUTSPRITE@B,(R,Y+6),15,1
130 FORD=1TO3@:NEXT:NEXT

1000 KEYON:ONKEYGOSUB1020

1910 GOTO01010

1020 CLS:SCREEN@,0Q:LIST

112

i SRR 15 G DA st A Lo s s e o SR

This program will draw a set of stairs from half way across the bottom
of the screen to the top gf the viewing screen. At the top is a long tube.
A white ghost, (sprite), climbs the stairs, and runs along the tube.

Line 30 draws the stairs and the tube, the rest looks after the sprite.

CURTAINS

The previous routine can be adapted to lower the curtain on the screen,
whichIthink s afitting end to the chapter:

90

COLOR1,6,1:SCREEN1,0

X=0:Y=0
0R:0T0175:LINE(X,Y)-(256,Y+1),1,BF
=Y+

FORD=1TO1@:NEXT

NEXT

LOCATE110,181:PRINT"THE END"
FORD=1TO 1880 :NEXT

X=0:Y=176

100 FORR=ﬂT014:LINE(X,Y)-(256,Y+1),1,BF
110 Y=Y+1
120 FORD=1TO020:NEXT

130 NEXT

1000 KEYON:ONKEYGOSUB1020
1010 GOTO01010

1020 CLS:SCREEN@,@:LIST

113

CHAPTER ELEVEN
A change of face

Computer graphics and sound on modern home computers have extensiye
facilities, and MSX BASIC on the Spectravxdeo is no exception.

Graphics can be drawn extremely easily, with little mathematicy]
knowledge, by complete novices with a good knowledge of BASIC.

Music requires some musical expertise, but is not difficult to master,
once the fundamental musical theory is understood. Speech, though, is
still in its infancy, and the spoken word using MSX BASIC, at the moment
of writing, is not readily available.

But you can take a short cut, and by using the cassette control commands
of the language, input speech into your programs.

The two commands to do this are MOTOR ON and SOUND ON, and
their complements MOTOR OFF and SOUND OFF, which control the
motor and audio channel of the cassette recorder respectively.

In the following program I have made arrangements for the graphics
to follow a well known modern song ‘Forty and Fadin’, by].J. Barrie,
available on Magic Records from your local record shop.

If this program is loaded into the computer from tape, after you have
typed it all in and saved it, and then the audio tape is placed in the
cassette recorder, and started when the program is RUN, the graphics
should coincide with the story line of the song.

An alternative is to record the song at the end of your computer program
on the same tape, and then load the program. When the program is
RUN the cassette recorder will automatically start and you will hear the
song through the TV loudspeaker.

[have only used those commands and statements discussed in the chapters
of this book. In a nutshell, the program draws a face, which slowly,
in time with the words of the song, grows older, until at the end the
old man cries for his lost youth.

To help in understanding the program I have broken it into parts, each
with a short explanation.

1@ MOTORON:SOUNDON

20 COLOR1,14,TZ:SCREEN1,D

30 REM OUTLINE OF FACE

4@ CIRCLE(128,90),80,9,,,1.5/1:
PAINT(128,96),9

5@ REM EYELIDS

6@ CIRCLE(152,8@),108,15,,,1/3:
CIRCLE(104,80) ,10,15,,,1/3
70 PAINT(152,88),15:PAINT(104,88),15

80 REM EYES
9@ CIRCLE(152,88),10,1,,
CIRCLEC104,808),10.1, .
100 REM TIME DELAY:GOSUB
11@ REM MOUTH
120 CIRCLE(128,137),22,
30 CIRCLE(128,137),22,
480 PAINT(128,137),75:¢
5@ REM NOSE
60 LINEC130,128)-(14
-(126,120) ,1,

[QRN QEEY
W & 00
~ &N N
NN
L] 1
N —
o0 &
LN
— —
~~
wVion

NSNS A
NS N N

NN s ONOO N

o OON =N =2

N N8N

[I S Y

-t

nNZ

ocom

N o~

—

N —

[~ Yo 8

~N

. 3

O~O~O~O~O~O~ B8N VanN vhutn
o (S

AN O\
w
@ N se
—
=2

230 CIRCLE(152,7
240 CIRCLE(152,7
250 CIRCLE(152,7

GOSUB1730
260 REM PUPILS
270 CIRCLE(152,80),2,13:CIRCLEC
280 PAINT(152,88),13:PAINT(104)
290 CIRCLE(152,8@0),1,1:CIRCLEC(1
300 REM EARS

NNNNNN
P I T

000000000000 ONONNIMNIN N
EaR SR AR R 1P - I e Vip A~

NN NN NN
NN NN NN e
WNWWWUWW ()
-—) cmd =} D
NN N N NN
—) =) - —
Ny Ty Ny N, N, ~
PR AR - Ak ko W

,80),2,13

B4
13
4,80),1,1

1
’
9

- N
=2
~

310 LINEC176,71)-¢195,155) ,14 ,BF:LINE(64,71)

-(78,155) ,14 ,BF:G0SUB1730

320 LINE(176,68)-(176,130) ,6:LINE(78,68)~-
(78,138) ,6:60SUB1730

330 CIRCLE(78,100) ,30,6,1.37,4.81,4/1:
CIRCLE(176,100) ,30,6,4.61,1.45,4/1

340 PAINT(77,108) ,6:PAINT(179,100) ,6:
GOSuUB1738

350 REM HAIR

360 GOSUB1760

370 FORR=1T03:GOSUB173@:NEXT

This part of the program draws the complete ‘young’ face of the man.
If you wish to RUN it, it is necessary to type in the two subroutines,
one at 1730, the time delay, and the other at 1760, the routine to draw
the hair.

The repeated reference to the delay subroutine at 1730 is to keep the
program in time with the song, if you wish to dispense with the music

and the song then you can leave out all the GOSUB 1730's.

380 REM FIRST LINES UNDER EYES

390 CIRCLE(152,80),18,6,3.92,6,1/3
400 CIRCLEC104,80),18,6,3.14,5.5,1/3
410 GOSUB1738:G60SUB1730

The first part of the ageing process!

115

420 REM GLASSES

430 LINE(72,68)-(178,7E),12,BF
440 LINE(125,68)-(123,85),12,BF
450 LINE(131,68)-(133,85),12,BF
460 LINE(171,68)-(169,85),12,BF
470 LINE(85,68)-(87,85),12,BF

480 CIRCLE(1@5,85),20,12,3.14,6.28,1/4
490 CIRCLE(1G5,86),2G,12,3.14,6.28,1/4
500 CIRCLE(151,85),20,12,3.14,6.28,1/4
510 CIRCLE(1G5,86),20,12,3.14,6.28,1/4

And the next stage, his eyesight is beginning to fail.

520 REM BLACK MOUSTACHE

530 CIRCLE(128,137),27,1,6.28,3.14,1/4
540 CIRCLE(128,137),27,1,6.28.,3.14.1/2
250 PAINT(128,129),1:6050B1738
560 REM BLACK BEARD

570 CIRCLE(128,96),55,1,3.14,6.28,1.2/1
580 CIRCLE(128,98),93,1,3.76,5.66.4.2/1
590 CIRCLE(128,98),90,1,3.76,4.67.2.2/1

600 CIRCLE(128,98),90,1,4.75,5.66,2.2/1

610 CIRCLE(128,98 ,80,1,3.7,4.3,1.5/1

620 CIRCLE(128,98),8G,1,5.1,5.72,1.5/1

630 LINE(8@,9G)-(82,14Z),1,BF

640 LINE(174,9G)-(176,14%),1,BF

650 LINE(105,143)-(151,158),1,BF

660 PAINT(128,16@),1:PAINT(1ﬁ4,16G),1:
PAINT(157,158),1:PAINT(157,143),1

670 FORR=1T03:GOSUB173@:NEXT

Life suddenly takes on a different aspect, as a beard is grown, and a
position of authority is achieved.

680 REM THE FIRST BALD PATCH

690 CIRCLE(128,11),25,9,,,1/3:PAINT(128,1E),9
780 REM GREY HAIR

710 GOSUB1190@

Now the corner has been turned, and the man is on the downward slope,
his hair is turning grey, and next the lines start to form on his face.

720 REM FROWN LINES

730 CIRCLE(128,52),36,6,6.28,3.14,1/8
740 CIRCLE(128,57),36,6,6.28,3.14,1/8
750 CIRCLE(128,62),36,6,6.28,3.14,1/8
760 CIRCLE(1ﬂ4,96),16,6,3.14,6.28,1/2
770 CIRCLE(152,96),16,6,3.14,6.28,1/2
780 CIRCLE(1Z4,96),32,6,4.19,5.23,1/2
790 CIRCLE(152,96),16,6,3.14,6.28,1/2
800 GOSUB1730:G0SUB1730:G0SUB1730

Now his hair begins its greying process, and the end is at last in sight,
forty is around the corner.

810 REM GREYING HAIR
820 CIRCLE(128,86),85,14,6.28,3.14,1.4/1

116

830 CIRCLE(78,100),32,14,1.37,3.14,4
840 CIRCLE(128 98> ,85,9, G 9,2.24,1.5

585 GOSUB1730
LINEC128,146)-(128,198) .14
86@ CIRCLE(125,168),20" 16,1.57,4.71,8/1
87@ CIRCLEC131,168),20.144.71.1.57.8/1
880 CIRCLE(120,164),18.14.1.574.71.8/1
898 CIRCLE(136,164),18,14.4.71.1.57.8/1
900 CIRCLE(115,164),18,14.1.574.71.8/1
910 CIRCLE(141,164),18,14.4.71.1.57.8/1
920 CIRCLEC110,168),14.14.1.574.71.8/1
930 CIRCLE(146,168),14.14.4.71.1.57.8/1
94@ CIRCLEC105,155),11.14.1.574.71.8/1
950 CIRCLE(151,155),11.14.4.71.1.57.8/1
96@ CIRCLE(180,152).9,14,7.57,4.71,8/1
978 CIRCLE(156,152).9,14.4.71.1.57.8/1
980 CIRCLE(128,137),27,14,08.085,3.05,1/3
990 CIRCLE(128,137),27,14.0.05.3.09.1/2.3
1000 CIRCLE(95,147).9,14,1.57,4.71,8/1
1810 CIRCLEC161,147),9,14,4.71,1.57,8/1
1020 CIRCLE(9@,142),8,14,1.57,4.71,8/1
1030 CIRCLE(166,142),7,14,4.71,1.57,8/1
104@ CIRCLE(171,132).10,14,4.71,1.57,8/1
1850 CIRCLE(85,132),8,14,1.57,4.71,8/1:
GOSUB1730
1060 REM MOUTH CHANGE
1878 CIRCLE(128,137),22,6,6.28,3.14,1/6
1088 CIRCLE(128.,137).22.6.3.14.6.28.1/5

PAINT(128,137) ,6
1090 FORR=1T03:G0SUB1730:NEXT

Age affects all parts of our body.

REM WHITE TEARS

S$=CHR$(B)+" pppp ":SPRITE$(1)=S$
FORR=80ATO0196

PUTSPRITE@, (104 ,R) ,15,1:PUTSPRITE1,

(152 ,R) ,15,1

PUTSPRITEZ (104 ,R+380) ,15,1:PUTSPRITES3,
(152 ,R+38) ,15,1

FORX=1TO15:NEXT

IFR=1606G0T01120
Q=Q+1:1FQ=500G60T01800

NEXT

-) -)

- - - e)
—)) - -
S 8O ssen

Even men are allowed to cry, but he still looks pretty good!

17185 REM
119@ REM GREYING HAIR: :GOSUB1730:W=10
1200 FORY= 1T0383;$Eg2
FORX=WTO
}S;g PSET(X,Y),1T4:NEXTX:W= W+1:NEXTY:RETURN

Something that happens to us all, in time.

117

Ty |

APPENDIX ONE
BASIC Mathematics

As with any computer langauge there are many and various mathematicy)
functions in the MSX BASIC language used on the Spectravideo computer,

In this appendix the majority of them are explained, in alphabetical orde,
together with a few examples of their use. ’

ABS(n)

Returns the ABSolute value of the expression n, that is, turns negative
numbers into equivalent positive numbers, but leaves positive numbers
unaffected. For example, the absolute value of -79.8 is 79.8, and the absolute
value of 79.8 is again 79.8. It can be used to calculate the difference between
two numbers where it is not known which of the two numbers is the
greater. For example, expressing the numbers as variables, A-B will always
be positive if A is greater than B, but will be negative if and when
B is greater than A. But, using the ABS function, the computer will
always return a positive value to the function ABS(A-B), where (A-B)
is equal to (n), regardless of which is the greater of the two numbers.

ATN(n)

This function calculates the value in radians of an angle expressed as
atangent.

CINT(n), INT(n) and FIX(n)

These three functions convert an expression n into an INTeger, that is
remove the decimal part of the expression, and therefore return a whole
number less than the number supplied or calculated. For example:

PRINT CINT(58/1.0088)<ENTER> returns 49, as does:
PRINT INT(50/1.008)<ENTER> and:

PRINT FIX(50/1.008)<ENTER> whereas: :
PRINT 50/1.008<ENTER> returns 49.603174603174 4

FIX(n), if the expression n has a value greater than 15 digits, may return
a whole number 1 greater than the expression, in other words rounds
up the expression.

COS(n)
This function calculates the COSine of an angle (n) that has been expressed |
inradians. |

CSNG(n) and CDBL(n)

These two functions convert numbers between single and double
precision respectively, for example:

n=50/1.008<ENTER> :
PRINT CSNG(n)<ENTER> returns 49.6032 !
PRINT CDBL(Nn)<ENTER> returns 49.603174603174 3
PRINT CSNG(49.603174603174)<ENTER> returns 49.6032, |

120

but of course:

PRINT CDBL(49.6@832)<ENTER> returns 49.6032

Single precision numbers contain only 7 digits including the decimal
point, and double precision numbers contains 15 digits. Use of the CSNG
function rounds up to the nearest number for the last number of the
expression. A single precision number uses 4 bytes of memory, and a
double precision uses 8 bytes, whereas an integer uses only 2.

Remember that n, a number depending on the use of CSNG or CDBL,
and n%, an integer or whole number, are two different variables as far
as the computer is concerned. In the above example PRINT n7% will
produce 0, whereas PRINT n will produce 49.603174603174, and PRINT
INT(n) and PRINT CINT(n) will both return 49. If you wish to
use a number expressed only as an integer, then the variable must be

followed by the symbol %, and conversions on it with CS NG and CDBL
will always be returned as awhole number. That is:

n%=50/1.008<ENTER>

PRINT n%Z<ENTER> returns 49

PRINT CDBL(Nn%)<ENTER> returns 49
PRINT CSNG(Nn%)<ENTER> returns 49,

EXP(n)

This function calculates e, where e=2.7183...., raised to any power n,
but the calculation is performed on a double precision value fore.

LOG(n)

This function returns the natural or common logarithm of the expression
n to base 10.

(n1)MOD(n2) and (n1) \ (n2)

MOD returns the remainder after an inte
whole numbers. If non inte
truncate the number to
operation on them.

ger division, that is when using
ger numbers are used the computer will
roduce an integer before performing the
P 8 P 8

\, more commonly known as DIV, returns the whole number part of
an integer division. For example:

PRINT 2@MOD3<ENTER> returns 2, the remainder, whereas:
PRINT 2B8\3<ENTER> returns 6, as:

20 divided by 3 equals 6, with 2 remaining.

Do not confuse the \ symbol with the / symbol, the latter performs
normal untruncated arithmetic, that is:
PRINT 20/3=6.6666666666667

SGN(n)
Returns +1,00r-1depending on the value of the expressionn.

Forexample returns:
+1if the result of nis positive,

121

0if the result of n is zero,
-1if the result of nis negative.

SIN(n) ’ .
Calculates the sine of an angle n expressed in radians.

SQR(n)
Returns the square root of the number or expressionn.

For example:

PRINT SQR(6)<ENTER> returns 2.4494897427831, and
PRINT SRQ(3*2)<ENTER> also returns 2.4494897427831.

TAN(n)

This function returns the tangent of the given angle n, which must be
expressed in radians.

122

APPENDIXTWO
BASIC Grammar
Statements

CLS

This statement CLears the Screen, and is e

quivalent to pressing the CTRL
and L keys together.

DEF

Allows particular variables to be allocated to specific types, that is either
INTeger, DBL, double precision, SNG, single precision, or STR, string.

Forexample:

DEF STR A,B,C,D

defines variables A, B, C and D to be string variables, and thereafter
do not have to be defined, that is PRINT A will result in the string

value of A being printed. The following short program should indicate
the use of this statement:

1@ DEFSTRA,B,C,D

20 A="FRED":B="AND":C=ALICE":D=" "
30 PRINTA;D;B;D;C

RUN

FRED AND ALICE

Indicating that the ‘$’, to define a variable as a string, need not then
be used.

Line 10 could also be written as:
18 DEFSTRA-D

This facility also applies to the numerical variables.

DIM

This statement allows the programmer to allocate specific amounts of
memory to be used for a particular variable or variables, and to allocate
a given number of subscripts to a particular variable.

Thatis:

DIMA(N)
DIMA(n1) ,B(n2),C(n3)

allocates single variables, called single dimension numeric arrays, for
example:

DIMAC(9)

123

allocates to variable A, 10 subscripts, that is there will be 10 variableg
called A: A(0), A(1) as far as A(9), indicating that the lowest array element
is 0 in a single array. Any attempt to use an element outside the range
previously declared will result in a ‘Subscript out of range’ error. Any
attempt to redimension an array later in a program 18 illegal and wij|
resultin a ‘Redimensioned array’ error.

Arrays can have more than one dimension, but btfyond 3, depending
on size, the computer will quickly run out of available memory, and
produce an ‘Out of memory’ error.

DIMD(n1,n2) isanexample of atwo dimensional numericarray.

Arrays may also be of a string form, for example:
DIMna$(1,2) isanexample of atwo dimensional string array.

Once an array has been dimensioned, ‘information’ can then be entered
into each element of that array, for example in the two dimensional string
array:

na$(@,@)="fred"
na$(@,1)="peter"
na$(@d,2)="john"
na$(1,@8)="alice"
na$(1,1)="charlotte”
na$(1,2)="hannah"
ERASE

Having once dimensioned an array, the occasion may arise where the
space allocated is no longer required, or more memory space is needed
for it, with the result that the array will either have to be removed or

redimensioned.

The statement ERA S E will allow this to be done by erasing that particular
array, and allowing it to be redimensioned if and when required, for
example the array ‘na$’ in the previous example requires more elements,
so that more names can be included. To do this use:

ERASEna$
DIMna$(3,4)

whereupon more elements of the array na$ can now be filled as required.

ERASE can be used in exactly the same way as DIM in that more than
one array can be erased per statement.

END

Indicates the end of the program, beyond which the computer will not
go, unless sent there by some specific call, for example GOTO, GOSUB
or READ. Closes all files when read by the computer and returns to
command mode.

FORR=nTO mSTEPs....NEXT
This statement instructs the computer to execute a statement, or series

124

of statements, a specified number of times, with a given step between
executions. The loop variable R can also be used within the statement
or statements, and in consequence will itself be incremented a step each
time through the loop. The variable n can have any value, including
0 and negative values, and where the variable m is greater than n, the
step is positive, but where it is less than n must be indicated as negative
with -s. The executed statements can also include another
FOR....NEXT loop or loops, the whole then being called a ‘nested
loop’. Too many nested loops may force an ‘Out of memory’ error. The
statement, or series of statements, is always executed once regardless
of the loop variable, and the value of the variable R at the end of the
loop is always one step greater than the value of m.

For example:

FORR=-2TO6STEP2:PRINT345:NEXT:PRINT"R="R
<ENTER>

will produce on the screen:

345
345
345
345
345
R= 8
oK

and:
FORR=1TOS5:PRINTR:NEXT<ENTER>

will produce:

VIS WWN -

0K

and:

FORD=1T02000@:NEXT

will produce a reasonable time delay, that is nothing has been
programmed to happen within the loop, except for the computer to count

from 1 to 2000 round the loop.

Making the loop variable D in the above example an integer will produce
_an approximately three times faster loop response time.

For example these two loops produce about the same delay times:

FORD=1T01880:NEXT
FORD%Z=1T03000:NEXT

125

...... e J hmg!' y

FRE

This statement when used as PRINTFRE (M) will return the
of remaining available memory in the computer's RAM
programmers use, for example:

aMoypy
for the

PRINTFRE(M) <ENTER>

will return a number indicating the number of free bytes of user memg
still available. It is always a good idea to keep a check on this Whe
writing a large program. But compare this to PRINTFRE (M$) fn thz
Appendix dealing with strings, Basic Strings.

For example, try this experiment in command mode:

1. Switch the computer off and on again.

2. You will see that you have 12815 bytes free.

3.Typein: FORR=1T0500:S=S+6:NEXT<ENTER>
4. Thentypein PRINTFRE(M) <ENTER>

5. You should get the number 12787, or thereabouts, which means you
have used 12815-12787=28 bytes to RUN number 3.

6. If you now use the screen edit system to change the variable to sa

D and reENTER the line and then the next line, you will find that the
available memory is again reduced. Experiment in this way and you
may eventually use up all the memory without even doing one bit of
programming!

GOSUB line number and RETURN line number

Sometimes when writing a program a group of lines in that program
need to be used in a number of different places within the program.
To avoid repeating this same few lines over and over again, they can
be separated out into a small sub program called a subroutine, and then
called from a number of different places from within the main program.

The format of the subroutine should always be such that its last line
is a RETURN statement, though the routine can be RETURNed from
any point within it as well. The line that calls the subroutine must say
GOSUB line number, but need not necessarily be the first line number
of the full subroutine, providing the last line the computer is made to
read in the subroutine is a RETURN statement. But the computer does
not have to RETURN to the line number following the GOSUB line
number statement as it would normally, it can be sent to an alternative
line number by the use of the statement'RETURN Line number’.

GOTO line number

Directs the computer to a specific part of the main program, usually
used as part of a decision routine.

IF....THEN....ELSE and IF....GOTO....ELSE
These two statements set up a test condition, or a decision making routine,

126

which are used to control the subsequent action of the computer, for
example:

IF A=9 THEN PRINT"enough'" ELSE PRINT"more
please"

The statement following THEN and the statement following ELSE can

be any legal statement, or series of statements, for example in this short
program:

18 FORA=0TOS5
20 IFA=5THENPRINT"enough,

I have';A;
"NOW"ELSEPRINT"I have";A;"so more please"
30 NEXT

will print five rows of text stating how many I have and asking for more,
and then one row stating that I have 5 and therefore enough.

The value of m cn be changed in the FOR....NEXT loop in line 10

and the value of A in line 20 in the IF....THEN statement, with
subsequent changes to the screen print out.

Changingline 20 to:

20 IFA=1BTHENA=@ELSEPRINT"I have";
A;"again please"

will indicate further the use of the statement, and how the loop variable

changes ina FOR. .. .NEXT loop, as the loop carries on printing until
stopped by the STOP or CTRL/STOP keys, and after the first 0, no more
are printed, and neither is the number 10.

The statement can be used without the ELSE statement, whereupon only
one action is allowed, that is the one where the statement is true, for
example, changing line 20 to:

20 IFA=10THENPRINT"finished"

will only print out oneline.

THEN can be replaced by GOTO with or without ELSE, but the GOTO
must have a line number to go to. For example, change line 20, and
add lines 40, 50, 60, 70 and 80 to the previous short program:

20 IFA=1BGOTO5PELSEGOSUB70

4@ END

50 PRINT"finished now"
60 END

70 PRINT"more please"
88 RETURN

which should demonstrate the use of the GOTO and GOSUB statements.
Changinglines 20 and 60 to:

20 IFA=1BTHENGOSUBSPELSEGOSUB7@

127

-

60 RETURN

will produce the same result and show how subroutines can be useq
inIF....THEN statements.

INKEY$
This function will return a one character string from the keyboard. The

computer on reading this function in a program scans the ‘keyboard
buffer’ and if a key has been pressed will return that key character as

the declared string variable, for example:

20 K$=INKEY$:IFK$=""THEN20

will stop the computer from proceeding with the program until a key
has been pressed, and K$ returned with some character from the keyboard.

The keyboard buffer can, of course, fill up with key presses and store
all the characters received until an INKEY$ function is used, but only
one character will be read from the buffer at a time. It is advisable therefore
to empty the keyboard buffer before testing it for the key or keys you
want by using line 10 as follows:

10 K$=INKEY$S:IFK$S<>""THEN1O
20 K$=INKEYS$:IFK$=""THENZ20
30 IFK$="Y"THENPRINT"You pressed Y"ELSEZ20

This short program will only respond to a capital letter Y being pressed
after line 20 has been executed. To allow for both upper and lower case
Y’s then change line 30 to:

30 IFK$="Y"ORK$="y"THENPRINT"You pressed
the correct key"

INPUT

Allows a longer length string to be returned from the keyboard than
INKEYS.

For example:
18 PRINT"Type in your name"

20 INPUT N$:CLS
30 PRINT"Your name is "N$

Or can accept numbers:

40 PRINT"Type in your age"

50 INPUT N:CLS

6@ PRINT"And you are'"N

INPUT N will not accept letters, whereas INPUT N$ will accept both.

INPUTscan be grouped togetherasin:

18 PRINT"Type in your name and age"
20 INPUTNS$,N:CLS
30 PRINT"Your name is "N$" and you are'N

128

1

Notice the lack of semi-colons in line 30.

The length of the INPUT string can also be limited to a particular number
of characters by using the statement INPUTS$(n),asin:

1@ PRINT"Type i
20 N$S=INPUTS$(6)
30 PRINTNS

n X letters or numbers"

s
CLS

V}_’lwn RUN the program will clear the screen and then print out the
six letters typed in as soon as the last letter of the group of six has

been typed, but without line 30, the letters would remain in memory
under N$. INPUT, on its own, echoes

the letters typed in onto the screen,
whereas INPUTS$ and INKEYS donot. ypeam

LET

Allows variables to be assigned in memory, but the statement LET is

itself not necessary. It is sufficient to say A=10 or A$="cat", and
not LETA=10or LETA$="cat".

LOCATEx,y

This statement allows text to be placed at a particular position on the
screen, where, when using the text screen, x=0 to 39, and y=0 to 23,
and 0,0 is the top left hand corner of the viewing screen. But note that
the computer powers up with only 39 characters per screen row, and

must be changed to 40 by the use of WIDTH4B<ENTE R>, see under
WIDTH N atend of this appendix.

The LOCATE statement must be followed by the PRINT statement as
in:

10 CLS:LOCATE1@,10:PRINT"HELLO"

The LOCATE statement may also be used with LINE and POIN T, refer
to the Appendix on graphics.

ON N GOTO and ON N GOSUB

These two statements allow the computer to be sent to a particular line
number, ON N GOTO, or to a particular subroutine ON N GOS UB, when
a particlar number key is pressed. They are similar to a combination
ofan INPUT andan IF....GOTO statement, where:

18 CLS:INPUTN

20 IFN=1GOTO0100

30 IFN=2G0T0200

40 IFN=3G0T0300

58 IFN<>1ANDN<>2ANDN<>3THEN1@ is the same as:
19 CLS:INPUTN

20 ON N GOTO0100,200,300

30 IFN>3THEN1@

but is more sophisticated in that it does not require the use of multiple
IF....THEN statements.

This short program could be put all on one line of program, as follows:

129

10 CLS: INPUTN:0NNGOT01EE,2Q0,3@@:IFN>3THEN1g

Remember GOSUB can be used in place of GOTO if subroyt;
to be used. e have

READ, DATA and RESTORE

The use of the READ statement allows DATA in the form

or strings to be read by the computer and allocated to parti
variables, for example:

of Numberg
cular defineq

19 READNS
180 DATA word
or:

10 FORR=1TOS:READNS$:NEXT
180 DATA WORD ,word ,WORDS ,words,more words

The variable name must always coincide with the DATA read, but can
be mixed:

10 READNS ,N
100 DATA word,S

or:

10 FORR=1TO5:READNS ,N:NEXT

180 DATA NORD,S,word,6,w0RDS,2,words,88,
more words,29

To include commas in a DATA statement requires the DATA to be
wrapped in inverted commas:

10 READNS$
100 DATA "WORDS,WORDS"

similarly to use spaces at the end and the beginning of DATA

19 READNS
100 DATA " 6 words, "

It is usual to place the DATA at the end of the program, but it can be
used more than once by using the RESTORE statement, which on its
own will RESTORE the READing of the DATA to the first line of DATA.
To start from any other line of DATA, where there is more than one,
use the statement‘'RESTORE Line number’.

REM

This statement allows instructions to be placed in a program whi_ch the
computer itself will always ignore. This is useful at the beginning of
subroutines, and where the program starts to execute a new sequence
to give some indication of what that particular part of the program is
doing.

RND(n) ;
Allows a random number to be generated by the computer depending

130

on the value of the parameter n used.

N=RND (1) will produce a 14 figure decimal number that will be the
same each time the program using this function is RUN, but will produce
continuously different random numbers within the same program.

N=RND (@) will produce the same random number each time the
programis RUN and the same number throughout the same program.

N=RND (-TIME) will produce a different random number each time

the number is RUN, and a different number each time it is used in
the same program.

To produce random whole numbers the random number must be
multiplied by another number and the whole number part taken:

N=INT(RND(-TIME)*10)

will produce random whole numbers between 0 and 9, as will the use
of INT with the other two parameters. And:

N=INT(RND(-TIME)*10)+1

will produce random whole numbers between 1 and 10.

N=RNDC(INT(-TIME)*15)+2

will produce numbers between 2 and 16, the formula to use being:

N=RNDCINT(-TIME)*X)+Y

where Y is the lowest number, and X+(Y-1) is the highest number in
the range. To generate a particular range of numbers, first, pick the lowest
number you want in your range, Y, and then calculate the value for
X from X=(HN-Y)+1. For example, to generate numbers between 25 and
100, Y=25and X=(100-25)+1=75+1=76, and therefore:

N=RND(INT(-TIME)*76)+25.

SPC(n)
Used with PRINT statements to place blank character spaces before a
printed string, for example:

N$="1 moved 10 spaces":PRINTSPC(1@)NS$
STOP

Puts a temporary stop to a program, it does not close files, but does
return the computer to command mode. One program can be restarted
by GOTO Line number<ENTER>, using the next line number after
the one indicated by the ‘Break in line number’ statement.

SWAP

This statement allows the values of two different variables to be
exchanged. For example:

10 CLS:Q=1:W=0
20 PRINT"Q ="Q;"AND W ="W

131

30 PRINT"SWAP Q,W":SWAPQ,W
4@ PRINT"NOW Q@ ="Q;"AND W ="W
50 END

SWAPs the values of the variables Q and W. Thi§ statement works also
with strings, and it does not matter which variable you put first, as

this program shows:

10 CLS:Q$="QWERT":W$="TREWQ"

20 PRINT"Q$ = "Q$;" AND W$ = "W$

30 PRINT"SWAPQS,WS$":SWAPQS ,W$

40 PRINT"NOW Q$ ="Q$;" AND W$ = "W$

50 PRINT"SWAPWS,Q$":SWAPWS,Q$

60 PRINT"AND NOW Q$ ="Q$;" AND W$ = "W$
70 END

Please note that the variable separator is acomma, not a semi-colon.

TAB(n)

Used with PRINT statements to place blank character spaces before a
printed string, but the calculation is always from the left hand edge of
the screen, for example:

N$="tabbed 6":PRINTTAB(5)N$;TAB(15)NS"+10"
Remember that the first TAB character space is called 0.

VAL(NS)

Allows the computer to translate the numerical value of a string into
a numerical variable, but it will not work on strings only containing
letters, as it then returns a zero as the value. In any string containing
numbers and letters, the letters will be ignored, and only the number
translated. For example:

N$="67"<ENTER>
PRINTNS<ENTER>

produces:

67
PRINTVAL(NS$S)<ENTER>

also produces:

67

but with a blank space in front.

WIDTHN

Allows the screen to have either 40 or 39 characters across a screen row.
This is useful if the screen display does not come up to the edge of
your TV screen. The computer powers up in WIDTH39, 39 characters
per screen row. WIDTH4@ will fill to the left hand edge, and will clear
the screen at the same time when used, as will achange backto WID TH39,
but does not affect the function key windows displayed at the bottom
of the screen.

132

| o

g et <

APPENDIX THREE
BASIC Strings

String variables have a special part of the BASIC lan guage all to themselves,

and in this appendix those used on the Spectravideo computer will be
explained, with examples where possible.

ASC

ASC stands for American Standard Code II, ASCII, meaning 2 not eleven,
and is the standard used to give every character used in the computer
a particular code. When we ask the computer to store a particular character
it does so, but it does not store the character as such, but its ASCII

code number, for example A, which in this case is 65. Therefore:
PRINTASC("A")<ENTER>

will produce 65, and:

PRINTASC("a")<ENTER>

will produce 97, as will:

PRINTASC("alphabet")<ENTER>

as the function only gets the computer to read the first letter of a string.
Notice that the letter, word or phrase must always be wrapped in inverted
commas, as we are dealing with string variables, not numbers.
X$="alpha" :PRINTASC(X$)<ENTER>

will produce a code 97 as well, as the computer reads the string, X$,
and then prints out the first character code of it.

CHR$

This string function is the reverse of ASC, and allows the computer to
generate a character from the number given, as follows:

PRINTCHRS$ (65) <ENTER>
will produce A, and:
PRINTCHRS$(97)<ENTER>

the lower case‘a’.

This function can be very useful where we would find it difficult to
express what we want by using a normal string variable, for example:

PRINTCHRS$(12) <ENTER>

will clear the screen, as CTRL/L clears the screen, and CTRL/L equates
to ASCII code 12.

133

e |

PRINTCHR$ (7) <ENTER>

will produce a short beep sound, as CTRL/G equates to ASCII code 7
and CTRL/G produces a beep from the computer.

You will find that CHR$ (X) will be used quite a lot in this book, angq
is especially useful when programming sprites.

FRE
When used as:

PRINTFRE(M$)<ENTER>

will return the amount of free string memory space remaining, any string
variable can be used, and it is called adummy.

On power up 200 bytes are automatically reserved, but this can be
increased by the use of the CLEAR statement. To demonstrate, this type
in the following program, having first switched the computer off ang
then on again:

10 PRINTFRE(MS$)
20 CLEAR300

30 PRINTFRE(MS)
40 FORR=1TO06@:A$=A$+CHRS$(65) :NEXT
5@ PRINTFRE(MS$)
6“ A$=llll

70 PRINTFRE(MS)
RUN<ENTER>

200

300

240

300

Will show that the computer has 200 bytes of free string memory space
available when it is first switched on, line 10. Then more space is reserved
by the CLEAR3B@ statement on line 20, the number after the CLEAR
statement indicating the total amount reserved. String space is then used
by incrementing the ‘value’ of A$ by the letter A, CHR$ (65), with the
result that string memory space is down to 240 on line 50, having
incremented A$ 60 times, 300-60=240. Then A$ is emptied by line 60,
A$="", an empty string, and once again string memory is back up to

300 bytes, showing that each character occupied one byte of string
memory.

HEXS$

This function allows a decimal number to be automatically converted
to a hexadecimal number. Hexadecimal numbers use a base of 16, as

against decimal which uses a base of 10, and binary which uses a base
of 2.

The following short program will show hexadecimal numbers against
their decimal equivalents:

10 FORR=0TO20:PRINT"HEX "HEX$(R)"=DEC"R:NEXT

134

Changing the values of the loop variables will allow other equivalents
to be calculated as required, and to get just one equivalent use:

PRINTHEX$S (N)<ENTER>

where N is the decimal number you wish to convert to hexadecimal,
asin:

PRINTHEX$(65356) <ENTER>

will give the hexadecimal number FF4C.

INSTR

This function, an abbreviation of IN STRing, allows the position of the
first occurrence of a particular string in another string to be read, and
if required printed out or used elsewhere in a program. For example:

10 A$="computer":B$="put"
20 PRINTINSTR(1,A%$,B%)
RUN

will produce the number 4, indicating that the FIRST occurrence of B$
in A$ starts at character position 4. Changing line 20 to:

20 PRINTINSTR(5,A$,B$)

will produce the number 0, the position asked for is too late in the string
AS$ for B$ to be found.

INS TR canbe turned into a numerical variable by, for example,

C=INSTR(1,A$,B%$)

The computer does not discriminate between upper and lower case
characters when searching for the second string. Line 10 could just as
well have been:

19 A$="computer":B$="PUT"
producing the same results.

LEFT$

This function allows part of one string, from one character to the whole
string, to be defined as another string.

For example:
1@ CLS:A$="computer"”
20 C$=LEFTS$(AS,7)

30 PRINTCS
RUN

will produce the word ‘compute’, that is the first 7 characters of AS,
‘computer’, starting at the furthest left hand character.

135

LEN

Calculates the
programin LEFT $:

character length of a string, for example, adding to the

';LEN(Cs);”LetterS’"

4@ PRINT"CS$ contains " LENCAS)

5@ PRINT'"computer contains

LEN can also be defined asa variable, for example:
60 L1=LEN(A$): L2=LEN(CS$)

MID$

This function allows a part of one string tobe defined as another string,

For example continuing with the same program:

70 N$=MIDS$(AS$,4,3)
will produce the word put, and:
70 N$=MID$(A$,4,3):PRINTN$" has 3"

will complete the sentence. MID$ (A$,4 ,3) returns 3 characters of
A$ starting at the 4th character.

OCT$
This function is similar to HEX$, but returns a string to a base of eight,
the OCTal base. The following line will give some indication of its use:

FORR=@TO2B:PRINTOCTS(R) :NEXT<ENTER>

RIGHT$S
This function is similar to the LEF T$ function but the count starts from

the right hand character of the string.

Forexample, we can say that:
LEFT$(AS$,5)+RIGHTS(AS$,3) =A%

where A$="“computer”.

Prove it with:

80 A$="COMPUTER"

90 PRINTLEFTS$(A$,5);RIGHTS$(AS,3)
100 PRINTLEFT$(A$,8);RIGHT$(AS$,8)

SPACES$

Allows a string of a given number of spaces to be defined and used
in a program, for example, amend line 100 to:

100 PRINTLEFT$(AS$,8);SPACES(5);RIGHTS(AS,8)
The maximum number of spaces allowed in one string is 255.

As before, a string variable can hold the SPA C E string, as in:

136

——

R e

SP$=SPACES$(20)

Care must be taken to type in SPACE$(2@) and not SPACES (20),
thatis inadvertently typing a capital S in place of a$ symbol.

STR$

This function allows a numeric variable to be converted to a string variable,

which can then be used to print a number without its attendant trailing
space, for example:

PRINT"THE NUMBER";35;"IS 5 X 7"<ENTER.
produces:

THE NUMBER 35 IS 5 X 7
But:

PRINT"THE NUMBER";STR$(35);"IS 5 X 7"<ENTER>

produces:

THE NUMBER 351IS 5 X 7

The function is the opposite of VAL, which turns a string representation
of anumber into the number.

STRINGS

This function allows a string to be created that contains up to 255 repeats
of one particular character, for example:

RE=STRINGS$(39,187) :PRINTRS$<ENTER>

will produce a line of 39 small heart shapes, useful therefore for producing
borders and decorated patterns.

In this example the codes used were the number of characters required
followed by the ASC code for the character to be printed.

The function can also use the character itself, for example:
RE=STRING$(39,"a") :PRINTRS<ENTER>

will print 39 lower case “a”’s. The character required must then of course
be placed inside inverted commas. A further variation is to use a string,
forexample A$, where A$="a”, to produce the same result:

R$=STRINGS$(39 ,A$) :PRINTRS<ENTER>

Or even where A$="angle” for example, when the computer will use
only the first character of the defined string.

VAL

This function instructs the computer to translate the numerical value
of astring into a number, for example if:

137

B |

N1$="35":N2$="63"<ENTER>

we cannot instruct the computer to add N1$ to N2§ with N1$+N2g
obtain the answer 98, because the computer is unable to perform numerica|
computations on strings.

But we can tell the computer to:
PRINTVAL(N1$)+VAL(N2$)<ENTER>

which will give the numerical answer 98.

We can, of course, ask the computer to add N1$ to N2§ with:
PRINTN1$;N2$S<ENTER>

which produces:

3563

oreven:

PRINTN1S$;"+";N2$<ENTER>

which produces:

35+63

and also:

PRINTN1$,;"+";N2%;" =";VAL(N1$)+VAL(NZ2S$)
<ENTER>

which will produce the arithmetical equation:
35+63 = 98

without one numerical variable in sight!

138

[

APPENDIX FOUR
BASIC Commands

Every computer has a given number of commands that tell it to carry
out some particular operation, the Spectravideo is no exception.

In this Appendix these commands are listed and explained.

AUTO

This command al.lows line numbers to be automatically generated, with
any startline and incremental step required.

For example:

AUTO<ENTER>

generates the line number starting at line 10 in steps of 10.

The formula AUTO L,S will give any combination required, where L
is the startline, and S is the incremental step, for example:

AUTO28,5
starts at line 20 and continues in steps of 5 lines.

Calling up a previously written line number while in AUTO mode will
result in the line number together with an asterisk, «*«, being printed,
but with no information about what is on that particular line, however,

this does warn the programmer that he is in danger of overwriting the
line if he proceeds.

To escape from AUT 0 mode press the CTRL/STOP keys together.

CONT

This command allows a program to be restarted once it has been STOPped
with the S TOP command, for example:

1@ CLS:PRINT"HERE WE GO AGAIN"

280 STOP

30 CLS:PRINT"HALLO AGAIN":FORD=1TOS5@@:NEXT
40 GOTO10

will print

HERE WE GO AGAIN
Break in 20

Typingin:
CONT<ENTER>

will continue the program, unless any other command has already been

139

given to the computer suchas LIST or RUN.

J . d CONTINUE e
ber of characters of the comman , whick
égN%usr:;n(;s for, greater than or equal to 4, (CONT, CONT I c01:| *P,Ih;:t
etc.), will continue the program. :

DELETE . | |
One way to delete a line of program is to type in the line Number yng
then press the ENTER key, for example:

35<ENTER>

But when you have a lot of lines to remove they can removeg in block
with the DELETE command.

DELETE SL-EL<ENTER>

will delete the lines you want, where SL equals the Start Line, of first
line of the deletion, and EL is the End Line, or last line. Notice the
dash between the parameters, not acomma.

DELETE-EL<ENTER>

will delete all lines from the beginning of the program up to the EL
orend line indicated. ‘

DELETE SL<ENTER>
will delete just one line.

Any attempt to delete an undefined line number will result in an ‘illegal
function call’ error.

KEYLIST

This command lists all the commands that have been programmed into
the ten function keys, for example:

KEYLIST<ENTER>
will result in two columns of commands being listed in this order of
function key:
1 2
3 4
5 6
7 8
9 10
LIST

This command lists all the BASIC program lines in memory together
with the instructions on each one. The following variations are possible:

LIST - produces the full program, but the listing can be paged b '
/ ged by pressing
the STOP key on and off as required to stop and start the listing.

LIST LS-LE - produces a listing of the required part of the
o . » N . program’
LS indicating the first line of the program, anqu E thell)ast line.

140

R

LIST =LE - will list from the beginning of the program to the line
indicated by LE.

LIST LS= - will list to the end of the program starting at the line
numberindicated by LS.

LIST can also be used inside a program, whereupon once that line is

read by the computer, the complete, or as required portion, program
islisted, and the computer then returns to command mode.

LLIST

This command lists a program to a printer, and the same rules as in
LISTapply. LLIST canalso be used from inside a program.

MOTOR

The cassette motor can be turned on and off with this command, both
from command mode and from within a program.

MOTORON<ENTER>

switches the cassette motor on, providing one of the cassette recorder
keys have been pressed down prior to the command being executed.

MOTOROFF<ENTER>
switches the motor off.

NEW

By typing in this command the complete program will be deleted, together
with all the program variables. This is much more drastic than DELETE,
which does not remove the variables.

RENUM
Program lines can be renumbered by the use of the RENUM command.

The listing can be renumbered, with alternative steps as required, as
follows:

RENUM<ENTER?> - will renumber the complete program to start at line
10, in steps of 10.

RENUM SL,EL,IN - will renumber a program with a newline SL,
the first line, with EL, the old line, in increments of IN, to the end
of the program. Any GOTO line numbers will be automatically
renumbered too, thank goodness!

RENUM SL,,IN<ENTER> - will renumber the whole program listing
from the beginning with anew startlineof SL, inincrements of IN.

One way to find out which line numbers have been used before
renumbering is to:

AUTO<ENTER>

and then keep your finger on the ENTER key, noting when an asterisk
appears against a line number as that line will already have been used.

141

B 11 Y

AUTO1,1<ENTER>

will of course deal with every possible line as far as line number 65529
any line number beyond this will result in a ‘Syntax error’ error. '

RUN

The most important command you have, it tells the computer to RUN
your program, and also shows you what mistakes you have made!

You do not have to RUN the complete program, you can RUN from a
particular line number by typing in:

RUN LN<ENTER>
where LN is the line for the program to start from.

SOUND

This command, similar to MO T OR, can be used to switch the audio channe]
of the cassette recorder ON and OFF.

TRON and TROFF

These two commands switch the trace facility of the computer on and
off, that is each line, as it is executed, will have its line number displayed
in a square bracket at the left hand side of the screen. This is useful
when trying to trace a error in a program, as it will indicate all the GO T 0s
you have used, and the results, line number wise, of IF....THEN
statements!

Type in the following short program for a demonstration of TRON.

TRON<ENTER>

10 PRINT34

20 PRINTS6

30 IF X=1 THEN 10

40 PRINT89

50 PRINT123

6@ FORD=1TO5:PRINT99:NEXT
70 PRINT"finished"

This will produce:

L1861 34
£20]1 56
[301C40] 89
£50]1 123

(701finished

At the moment there is no action on line 30 due to the IF....THEN
stateme 1t, therefore lines 30 and 40 are reported together. Now type
in:

142

X=1<ENTER>
GOTOT@<ENTER>

will produce:

[18] 34
£281 56
(3010101 34
(201 56
C301C181 34

ad infinitum, until the CTRL/STOP keys are pressed, showing the result
ofthe IF....THEN statementonline 30.

Typing RUN will of course remove all variables, that is why when we
type in the value of X in command mode, we must use GOT0 18, which
RUNs the program but does not remove the variables.

Now typein:

TROFF<ENTER>
RUN<ENTER>

and the tracing facility will be removed.

TRON and TROFF can both be used from inside a program. Add the
following lines and see what happens:

1 TRON
35 TROFF

143

APPENDIXFIVE
BASIC Interrupts

We frequently wish to interrupt the normal flow of a computer program,
while it is running. To do this we can use the Interrupt Commandg
some of which appear to allow two things to happen at th '

€same time,
ON ERROR GOTOline number

This command tells the computer which line number of the program
to go to when it detects an errorin your program.

ONINTERVAL=n GOSUBline number

This command allows the com
are happening at the same ti
out some other part of the
left off with the main prog

puter to give the impression that two things
me, by sending it to a subroutine to car
program, before coming back to where it

ram. It does it all so quickly that the two
parts of the program RUN at the same time. The interval ‘n’ tells the

computer how many times per second to carry out the subroutine, 60
is one second in time, therefore:

100 ONINTERVAL=30GOSUB1000

will send the computer to subroutine 1000 every half a second.

The fastest interval is:

100 ONINTERVAL=1G60SUB10080
every one 60th of a second.

The facility needs to be enabled at the

particular point in the program
where it needs to be used, and disabled ag

ain when not required, with:

18 INTERVAL ON
300 INTERVAL OFF

If the facility needs to completely switched off then the command:
2000 INTERVAL STOP

must be used.

ON KEY GOSUB line number, line number,line number,etc

This command sends the computer to a particular subroutine when a
function key is pressed at any time in the program, for example:

100 ONKEYGOSUB100,200,300,400

will send the computer to subroutine 100 when function key 1 is pressed,
subroutine 200 when function key 2 is pressed, etc.

144

The subroutines do not have to be in numerical order, but the function
keys do, for example:

100 0NKEYGOSUBZEO,400G,3GZ,1ﬂﬂﬂ,1ﬂ0

where function key 1 is subroutine 200, function key 2 subroutine 4000,
etc.

To enable the facility use:

18 KEYON

and to disable:

300 KEYOFF

and to completely switch off the facility:
2008 KEYSTOP

The line numbers used are completely fictitious, but indicate the order
in which the commands could be used.

ON STOP GOSUBline number

This command must be enabled by STOP ON, and disabled with STOP
OF F, and completely switched off with STOP STOP.

It could be used to stop a computer program from ending once it has
been RUN, for example, the only way to switch off this short program
is to switch off the computer, but it can be stopped by pressing STOP,
but then it is only in suspended animation until the STOP key is pressed
again:

10 ONSTOPGOSUB6@

20 STOPON

30 PRINT"Try and stop me"
40 GOTO020

50 END

60 PRINT"TRY AGAIN"

70 RETURN

Pressing CTRL/STOP will print:
TRY AGAIN

in between all the:
Try and stop me’s

ON SPRITE GOSUBIline number

This command allows a separate subroutine to be carried out once two
sprites have collided with each other, again it must be enabled with
SPRITE ON, and disabled with SPRITE OF F,and completely switched
off with SPRITE STOP. See the chapter on SPRITES, chapter four, Sprite
Characters, for a fuller explanation of this command.

145

0w

APPENDIX SIX
Screen Modes and Sprites

The Spectravideo, in common with a few other computers, has a number
of different screen modes. In MSX BASIC there are three; a text mode,
alow resolution mode, and a high resolution mode.

To call up the various screen modes the command SCREEN is used
as follows:

SCREENG® - text mode, 40 x 24, or 39 x 24 characters.
SCREENT1 - high resolution mode, 256 x 192 pixels.
SCREENZ -low resolution mode, 64 x 48 large pixels.

SCREENO

This mode usually has the function key windows displayed at the bottom
of the screen, but these can be removed by the command:

SCREENO,0Q
To replace the function key windows use:
SCREENO,1

The statement INPUT will only work in text screen mode, INPUT$ may
be a better alternative in other modes.

SCREEN1

This mode is the high resolution mode, and does not have the function
key windows, but does have the facility to use sprites. Normally sprites
are an 8 by 8 pixel size, and to use these, use either:

SCREEN1
SCREEN2
SCREEN1,0
SCREEN2,0

The default sprite mode for SCREENT and SCREEN2 is0.

To use the magnified normal sprites use:

SCREEN1,1
SCREEN2,1

which will produce a 16 by 16 size sprite of the same design as the
8 by 8 without any extra programming.

To use the magnified reprogrammed 16 by 16 sprites use:

SCREEN1,2
SCREENZ2,2

146

ASCII 128643216 8 4 2 1128643216 8 4 2 1 ASCII

But these sprites can be made smaller by only programming a smaller
part of them. A SCREEN1,2 and SCREEN2,? magnified sprite
requires 32 bytes of DATA, but can be made smaller by only programming
a portion of the 32 bytes starting at byte number 1.

In other words:

bytes 1to 8, (0to7), fill the top left hand pixel area,
bytes 1to 16 the complete left hand side of the sprite area,
bytes 1to 24 the complete left hand side plus the top right hand portion.

It is advisable to colour the text or foreground, background and border
of ascreen before calling the screen, for example:

COLOR1,14,14:SCREEN1,0

not:

SCREEN1,8:COLOR1,14,14

PUTSPRITE and SPRITE$(S) are two other sprite commands used

in MSX BASIC. For a fuller explanation of the sprite facility see chapter
four, Sprite Characters.

147

APPENDIX SEVEN
BASIC Graphics
commands

Various chapters within this book explain the use of the graphics
commands and statements in great detail and this appendix will list them
with a short description of their use.

CIRCLE

This command allows a circle or ellipse to be drawn on either the high
resolution or low resolution screens. Parts of a circle or ellipse can also
be drawn by defining the extent to which the circumference is drawn.
The circle cannot be automatically filled with colour, the PAINT command
must also be used. The colour of the circumference can be either defined
or not, if it is not defined, then the default declared text or foreground
colour in the COLOR command will be used. Care must be taken to
use the same colour in a PAINT command as that used for the
circumference to avoid the whole screen being filled with colour. The

*shape of the ellipse can be changed by defining the aspect ratio of the
circumference drawn, as can the size of the shape by defining the radius,
but this measurement will be used by the computer to measure the
horizontal radius only.

The command is:
CIRCLE (x,y),z,c,a,b,v/h

where:

x = the horizontal location of the centre of the shape,

y = the vertical location of the centre of the shape,

z = the horizontal radius of the shape,

¢ = the colour of the circumference,

a and b = those fractions of 2PI that determines the amount of the
circumference to be drawn,

v/h = determines the aspect ratio by use of the two parameters v/h.

COLOR
Allows the colour of the text, in screen 0, the foreground in screens 1
and 2, the background, and the border to be defined.

The command is:
COLORf ,ba,bo
where:

f = the text or foreground colour,
ba = the background colour,

148

T T o |

bo = the border colour.

Notice the spelling of the command ‘COLOR’, ‘COLOUR’ will produce
a‘Syntaxerrorinline N’.

Any number of parameters may be defined by the command COLOR,
but the correct number of commas must be used so that the computer
can recognise which colour needs to be changed, for example:

COLOR,,15

will colour the border white.

COLOR,15,15

will colour the whole screen white.

COLOR,15

will colour just the viewing screen white and leave the border in the
previous defined colour.

COLOR15

will colour the text white.

COLOR15,,15

will colour the text white and the border white, but leave the background
in the previous defined colour.

All these commands must be used in a program, and with the exception

of the text command CO0LORnN, will have no noticeable effect in command
mode.

COLOR3<ENTER>

will have an immediate effect on the colour of the text, and is a good
thing to remember if your program listing suddenly disappears for no

apparent reason!
DRAW

This is called the Graphics Macro Language, and enables various shapes
to be drawn by the use of D RAW strings. This is fully explained in chapter

five, Draw Strings.
GET and PUT

These two commands allow particular areas of the high and low resolution

screens to be stored in memory, with GET, and then redisplayed in
different areas of the screen, with PUT.

To use GET an area of string memory, an array, must first be reserved
with a D I M statement, and then the area to be stored defined by a diagonal
across the required area with the command:

GET(x1,y1)-(x2,y2) ,A

149

_ f the requj
i te the top left hand corner o quired ,
where x1 andzy:hl:%lgft:m right hand corner of the area. The codereea'

.angl Xg;:: ofy the array into which the stored pixels have been placeq.
is the

To use PUT the top left hand corner of the position where the storeq
area is to be placed must be defined by:

PUT(X,)’)/AIO

e the two positions, A the array name, and O the particy]a,

where xand y ar e colour that the PUTted area will be diSp]ade

operation that determines th
in. This can be either:

PSET - the same colour as the GETted area.
PRESET - the complementary colour of the GETted area.

AND - compares logically the two colours, the array colour and the PUTted
area screen colour, to determine the colour used for the displayed area.

OR - same as AND, but differentlogic.
XOR - same as AND, but again different logic to either AND or OR.

For a fuller explanation of GET and PUT see the chapters on graphics.

PAINT

This command instructs the computer to fill with a particular colour any
completely enclosed screen shape. Trying to fill or PAINT non-enclosed
shapes will result in the whole screen being filled with colour, as will
using a different PAINT colour code to that used to draw the shape

in the first place.
The command is:
PAINT(x,y),C

where x and y are the locations where the PAINTing has to start, which
should always be well inside the shape to be filled, and C is the PAINT
colour to be used. If the code C is omitted, the default or previously
defined foreground colour will be used.

POINT

Allows the colour of a particular screen pixel to be read by the computer.
The command is:

POINT(x,y)

where x and y are the two loactions that define the position on the screen
of the pixel to be read.
PSET and PRESET

These two commands allow individual pixels in SCREENT1 to be coloured,

?r: Sg(l;c;?uEpé Noé,low resolution pixels to be coloured in the same colour

150

Basically PSET will colour a pixel to a new colour with:

PSET(x,y),C

;vnfziere x and y are the pixel’s location, and C the colour to be used,

PRESET(x,y)
will set the pixel back to the background colour.

But the use of the two commands is more complicated than this. In fact

the same fhings can be done with both commands, as PRESET can also
have a defined colour with

PRESET(x,y) ,C

A fuller explanation of these two commands is given in the chapter entitled
Pixel Set.

LINE

This command allows lines to be drawn in either the SCREEN1 or
SCREEN2 modes, from one pixel location to another.

The command is:
LINE (x1,y1)-(x2,y2),C,BF

where x1 and y1 are the start location of the line and x2 and y2 the
end location.

Cis the colourof theline.

B tells the computer to draw an enclosed rectangle, and F to fill it with
the colour defined as C.

To draw an enclosed rectangle the diagonal must be defined by the two
locations.

Continuous lines can be drawn by using continuous LINE commands,
for example:

LINE(x1,y1)-(x2,y2):LINE-(xS,y3):LINE—(x4,y4)

151

APPENDIX EIGHT
BASIC Sound

MSX BASIC and the Spectravideo have two main ways of pmgramming

sound.

The first, using the command PLAY, is designed to produce Mmusica]

sounds, as the name implies.

d SOUND, is th

ond, programmed by the comman , is the commang
El;:dsteoc prodLIx)ce special sound effects, a'nd although it is quite capable
of producing music, the programming for it tends to be more complicated.

r sounds can be produced by the computer, both indicato
;rovrx(zl;;,h \i/hich are used to inform the user that something has happene:{
and both of these can be simulated by the SOUND command, They are
the BE EP sound, which indicates to the user that a command has been
executed, and CLICK is the sound used to indicate that a key has been

pressed.

BEEP
This sound, while being produced by the computer itself automatically

as required by the operating system, can also be used in a program,
orin command mode to produce the BE EP sound.

The command is:
BEEP<ENTER>

in command mode, which produces a reasonably high frequency, short
duration sound.

In program mode the command is used as normal:
1 (ZF BEEP
RUN

which will again produce the same sound.

To increase the length of the BEEP sound the command can be repeated
in two ways, first:

10 BEEP:BEEP:BEEP:BEEP:BEEP
RUN

will produce a longer duration sound, and:

19 FORR=1TO10:BEEP:NEXT
RUN

will produce a vibrating sound, the length of which is determined Dby
theloop variable.

Interesting effects can be simulated with the simple BEEP command,

152

for example:

10 BEEP
20 GOTO010
RUN

This short program produces a continuous whistle, with a vibrating
rumble underneath, but can be used to simulate morse code by repeatedly
pressing the STOP key. To stop the program press CTRL/STOP.

CLICK

This sound is produced by the operating syst h ti key i l
depressed. The sound can be sw?tched ogff \}:vit;r:n B

CLICKOFF<ENTER>

and on again with:
CLICKON<ENTER>

Itcanalso be used in a program to silence the keyboard with:
18 CLICKOFF
orre-enabled with:

188 CLICKON
PLAY

This command is the music makers command, and allows music to be
simply written in the form of strings, in a similar manner to the DRAW
command. The Spectravideo has seven octaves of sound, and the ability
to play both sharpened and flattened notes. The computer has three
channels of sound, which can be played individually or in harmony,
and the volume of each can be individually programmed. Although notes
of different lengths can be used, the tempo of the overall piece of music
can also be changed to suit the mode of the player, and to a degree
some control of the envelope of sound produced is available.

A complete description of the PLAY command is available in chapter
eight, Play Strings.

SOUND

As mentioned before this is the command used to produce special effects
as well as musical sounds.

The SOUND command has thirteen registers, which allow all three

channels to be individually programmed, either on their own or in
harmony.

Noise is available, together with a complete envelope facility with eight
different basic envelope shapes. Each channel can be individually
programmed as regards volume, and a facility exists to make a particular
noise frequency predominant over the rest.

An introductory explanation of the SOUND facility is available in chapter
nine, Synthetic Sounds.

153

154

R o

INDEX

Main reference to a BASIC call is enclosedin < >

ABS(n) . . . <120>
Addingstrings

. 22 24 27 38 41 42 89
AND . 30 79 <150>
and . . 30 79 <150>
Animation 20 24 65
AE . o o s 5o ow . . o T
ASC . . <132>
ATN(n) <120>
AUTO . €139> <141>
BEEP .16 112 <152>

Binary numbers . 37 96 97 102

Cassette program controls
T 18 114
CDBL(n) <120>
Chords . : 8 & 91 94 103
CHRS$(X) 19 21 24 38 <133>
CINT(n) ... <120>
CIRCLE

70 75 76 107 109 114 <148>
Clear screen - P
CLICK . <153>
CLS . <123>
color . . <148>
COLOR . <148>
COLOUR . (colour) 11
Coloured lines . . 64 72
CONT . <139>
COS(n) . <120>
CSNG(n) <120>
Ctrl/Stop keys13
Cursorcontrols 5
DATA . . . 12 37 <130>
Debuggin 8
DEF 'gg. B 2 <123>
Delay routines . . . s 3 129
DELETE . . 74 <140>
Delete key 6
DIM . . <123>
DIV . . <21>
Dotted lines . s o« o« 10471
DRAW . . 51 70 <149>

DRAW stri.ng demonstration . 57

Editing - . : = = s « » : ©
ELSE : . <26>
END. . . . : <124>
Envelope shapes o m uw » OF
Envelopes.99

ERASE . . <24>
Error finding .. 8
EXP(n) . <121>
Explosions . 76
FIX(n) . . . <120>
FOR...NEXT <124>
FRE . . <125> <134>
GET .. 4 . 56 78 <149>
GOSUB . .. <126>
GOTO . 15 <126>
Graphs . . 67 108
HEX$ <134>
IF...GOTO...ELSE <126>
IF...THEN...ELSE .. <126>
INKEY$ 16 17 <128>
INPUT <128>
INPUT$(n) <129>
Insert key : o« 6
INSTR <135>
INT(n) . <120>
Key click . .« & B
KEYLIST <140>
LEFTS$. .+ S136>
LEN(X$) 12 <136>
LET . ¢ <129>
LINE . 70 74 107 <151>
LINE drawing demonstration . 71
LIST L. <140>
LLIST . v o ow ow o ow <141
LOCATE 12 14 27 107 <129>
LOG(n) . G ow e 12
Logic operators . . 30 79 <150>
Mathematical functions . . 120
MID$ <136>
Motor on and off . 18 114
MOTOROFF . <141>
MOTORON . <141>
Multi channel sound . 91 94 103
Multi-sided figures . 74
Musical rhythm . 87
Musical scales . 84
NEW <141>

155

NEXT

Noise . , |
Note lengths |
Notes values .

<124> STOp
. 97 St(,p kl'
. 86 STR$!

.93 STRING$

OCT$ SWAP |
by <136> TAB(
ON INTERV : , n) .
ONERROR " 144> TAN()
<]44> ']th
ONGOSUB koo
<129> THEN
ONGOTO . %
ONKEY LI <129> Plone i 4
- - 78 107 <144> TROFF
ONSPRITE . :
~ ONSTOP b an SSON
OR 3079 <1505 VAL(rsy
R Y . . n$
II;{,\}\I\@T - - . 107 109 148 <150> WIDSI'H).
POINT | ¢ ¢ 8394 <153> XOR.
© o« . .. 61 66 <150>
PR_ES'ET « « . . 6179 <150>
Printing . . = .70
PSET 6170 79 <150>
PUT 5678 <149>
Random generator 29
READ 1237 <130>
Rectangles . : .63 73
Register . 6 98
Register .7 102
REM . . <130>
RENUM <141>
RETURN <126>
RIGHT$ <136>
RND . <130>
RUN . <142>
Scaling factor 7). 85
Screen colours .52 79
Screen locations . 302
SCREEN modes . . . <146>
Screen sizes 15 46 61
Screen text . . @il
SGN(n) 1. . - <121>
Sharps and flats . .85
SINED) « » o © « « &« <I22¥
SOUND 94 <153>
SOUND demonstration . 88 104
Sound on and off . 18 114
SOUNDOFF . <142>
SOUNDON <142>
SPACES <136>
SPCin) - <131>
Special effects 107
Sprite collisions . . 45
Sprite creation . . 35 40
Sprite demonstration . SERAL ¥ 4
SPRITES <146>
Sprites . ¢ « 98
SQR(n) . <122>
STEP. . <124>

166

<1315
4
<1375
<1375
<131>
<132>
<1225
;1 83

<1265

. 97

<1425

<142>
<137>
<132>
<132>

. 30 79 <150>

A NEW COMPUTER
AND A

POWERFUL
OPERATING SYSTEM

---that's the Spectravideo range, with MSX BASIC.

But, because they are so new, you'll need a book to explain how to get the most from them.

The first part of this book deals with editing and debugging of programs -- a subject hardly
dealt with in the manual. After that, you'll quickly find how to write programs for education
or entertainment, writing text, graphics, sprites and sound.

A novel feature of this book is that each new idea is presented as a problem to be solved. The
program which solves the problem is then explained in detail but, you can of course, write
your own program first and see how it compares!

Several appendices are included, which cover the three screen modes, sprites and sound.

With this book you'll quickly see how to produce interesting and entertaining programs in
the shortest possible time.

Sigma Press have one of the
largest ranges of books for
all computer users. Write for
a catalogue -- or tell us
about the book you'd like to
write.

Sigma Press .
5 Aiton Road Price £7.95

Wilmslow
Cheshire

SK9 50Y ISBN 0 905104 89 7

L EE O S W O T (L e s e

