f'
>
.

CENTURY

COMMUNICATIONS

B0
|

d J

AN INTRODUCTION

/

Jonathan Pearce and Graham Bland -+ —

N AP Py

MSX
an introduction

GRAHAM BLAND ano JONATHAN PEARCE

CENTURY COMMUNICATIONS
LONDON

Copyright © Reflex Communications Limited 1984
All rights reserved

First published in Great Britain in 1984
by Century Communications Ltd,
12—13 Greek Street,

London W1V SLE

ISBN 0 7126 0538 X
Printed in Great Britain by

Hazell, Watson & Viney Limited, Member of the BPCC Group,
Aylesbury, Bucks

Contents

Acknowledgements iv
Foreword A%
Introduction viii
Introducing MSX 1
Programming in MSX-BASIC 20
Working with numbers 63
Interacting with your programs 93
MSX music and sound 107
Graphics using MSX-BASIC 119
Appendices

MSX-BASIC functions 153
Error codes and messages 157
Full screen editor control keys 161

Differences between SV-BASIC and MSX-BASIC 163

Acknowledgements

Jon would like to thank Jamie, for accepting that there was no such
thing as Christmas 1983, nor were there pubs, nightclubs or friends
throughout January and early February of 1984. He’d also like to
thank his Mum and Dad for doing the things that Mums and Dads
are generally good at; Jamie’s dog Heidi, for continually resting
her head on the keyboard of his typewriter, thereby making writing
impossible; and Spectravideo, for ‘‘Frantic Freddie’’ and for
making a computer that is so close to the MSX specification as
makes no odds — except when you’ve got to write a book about it!

Graham would like to thank Janet Morrison for her scepticism
and useful diversions; Algernon, the corporate frog for total
devotion to elasticity at times of stress; numerous people for their
enthusiasm and interesting discussions re. MSX, notably Toby
Wolpe, Meiron Jones, Jim Lennox, Ben Woolley, Tony
Hetherington and Basil Lane (for his advice on monitors). Finally,
he would like to thank his parents for innumerable things, and
Angus Annan and Arlen Michaels of the Microprocessor Group
(University of Stirling) who taught him a lot about micros in a very
short time.

Tom would like to thank Jane.

And finally, the authors would all like to thank Craig, Sue,
Barbara, Tina and Karen for their support.

We are especially grateful to all at Microsoft in the U.K. who
allowed us access to some of the very first MSX machines in this
country.

Acknowledgements

Jon would like to thank Jamie, for accepting that there was no such
thing as Christmas 1983, nor were there pubs, nightclubs or friends
throughout January and early February of 1984. He’d also like to
thank his Mum and Dad for doing the things that Mums and Dads
are generally good at; Jamie’s dog Heidi, for continually resting
her head on the keyboard of his typewriter, thereby making writing
impossible; and Spectravideo, for ‘Frantic Freddie’’ and for
making a computer that is so close to the MSX specification as
makes no odds — except when you’ve got to write a book about it!

Graham would like to thank Janet Morrison for her scepticism
and useful diversions; Algernon, the corporate frog for total
devotion to elasticity at times of stress; numerous people for their
enthusiasm and interesting discussions re. MSX, notably Toby
Wolpe, Meiron Jones, Jim Lennox, Ben Woolley, Tony
Hetherington and Basil Lane (for his advice on monitors). Finally,
he would like to thank his parents for innumerable things, and
Angus Annan and Arlen Michaels of the Microprocessor Group
(University of Stirling) who taught him a lot about micros in a very
short time.

Tom would like to thank Jane.

And finally, the authors would all like to thank Craig, Sue,
Barbara, Tina and Karen for their support.

We are especially grateful to all at Microsoft in the U.K. who
allowed us access to some of the very first MSX machines in this
country.

»v O

== = 0Q Qe

Foreword

The introduction of the MSX standard is unquestionably the most
important event in the history of home computing. Indeed, its
implications reach far beyond those of individual machines —even
such outstandingly popular ones as the Sinclair ZX Spectrum.

Until now, the home computer market has been highly
fragmented, made up of a number of largely or completely
incompatible machines. Games and other software packages
written for use on one machine will not run on another. Similarly,
joysticks and other accessories designed for one machine cannot be
connected to another. For the user, this means unnecessary
difficulty and expense all the way. Although a mass of software
exists for home micros, it is spread more or less evenly across the
whole range of machines, so that only a fraction of available
packages will run on each one. Even with the most popular
machines, the user is not necessarily able to purchase a package
perfectly suited to his or her specific needs.

MSX marks an end to problems like these, because it defines a
common hardware specification which must be included in all MSX
machines, and a common language — MSX-BASIC —in which
applications and games packages can be written. The purchaser is
therefore guaranteed that whichever MSX machine he chooses,
absolutely any MSX software package will run on it — perfectly.
This makes life a lot easier for software writers in one go, rather
than rewriting and repackaging their software repeatedly for each
of dozens of similar but incompatible machines. Even greater
benefits arise for the user, who has access to an unparalleled range
of software packages, which should be relatively inexpensive on
account of the economies of scale involved.

The theory behind MSX is therefore a sound one, and one which
will be of huge benefit to computer users. Indeed, it’s no
exaggeration to say that the arrival of the MSX standard will come
to be recognised as a milestone on the way to universal computer
literacy.

v

Interesting also is the motivation behind MSX, and the
companies that have backed it. Unlike the home computer market
in the UK and America, the Japanese market has so far been
relatively undeveloped. In the spring of 1983, NEC and Matsushita
approached Microsoft, one of the world’s largest independent
suppliers of microcomputer software, with the specification for a
personal computer they were jointly developing. They wanted
Microsoft to write a version of their industry-standard BASIC for
the machine, with a view to developing sales in the Japanese
domestic market. By June, a further 12 manufacturers, including
one American company, had asked Microsoft for much the same
thing.

To avoid the necessity of writing 14 different versions of BASIC
and thus perpetuating the compatibility problems of the home
micro market still further, Microsoft came up with the idea of the
MSX standard. This includes commonly available processor chips
and, of course, an optimised and extended version of Microsoft’s
BASIC interpreter. On June 16th 1983, Microsoft announced
MSX, along with its support by Canon, Fujitsu, General, Hitachi,
JVC, Kyocera, Matsushita, Mitsubishi, NEC, Pioneer, Sanyo,
Sony, Spectravideo (US), Toshiba and Yamaha — all of them large,
established companies in the consumer electronics markets.

What the announcement meant was that the entire Japanese
computer and domestic electronics industry had committed itself to
producing home computers built to a single specification. The first
fruits of this appeared at the Japan Electronics Exhibition at Osaka
in October 1983, when the ability to swap games cartridges between
MSX machines from Hitachi, JVC, Matsushita, Mitsubishi,
National, NEC, Sanyo, Sony and Toshiba caused a minor
sensation.

The sheer strength with which the Japanese market their
products, and the volumes in which they are able to produce them
(initial production for MSX machines was 53,000 units per month),
is imposing standardisation on the low-end of the computer
industry in much the same way as cassette tapes revolutionised the
home audio market in the early ’70s.

Given the enormous rate at which MSX is growing, predictions
as to what might happen next are obviously very difficult to make.
However, the project has included a couple of milestones which

permit a certain amount of speculation.
vi

Firstly, on 5th October 1983, Microsoft announced MSX-DOS,
sn 8-bit operating system designed specifically for the MSX
machines. Briefly, MSX-DOS not only allows MSX machines to
support disk storage (thereby vastly increasing the amount of data
they can hold), it also makes them upwards-compatible with the
MS-DOS and XENIX operating systems, the operating systems
used by many larger micros and minis.

In simple terms, this means that it will be possible for a user to
run applications such as spreadsheet or word processing on his
office micro and, at the end of the day, remove the floppy disk
containing all of the data and take it home for completion on an
MSX machine — an end to both duplication of work and late nights
a1t the office!

Secondly, the BASIC supplied with MSX can be extended to
control an almost unlimited range of add-ons. These include
standard devices such as cassette recorders, printers, joysticks,
games paddles and touch pads, as well as advanced devices such as
voice synthesisers, FM-tuners and video disks. Machines that have
already appeared support composite video and graphics, video
cameras and recorders, light pens and robot arms. An early
Yamaha machine has been designed to teach its user to play a
synthesiser, and so comes complete with a full-range synthesiser
keyboard. The first Sanyo machines incorporate a facility known
as ‘frame grabbing’, which allows you to store a TV or video
picture and subsequently alter it at will by adding your own
graphics. There is even rumoured to be an MSX super hi-fi. and in
principle there’s no reason why every piece of domestic electronic
equipment shouldn’t be made MSX-compatible and controlled by a
central MSX computer. MSX therefore opens up the way to the use
of home computers in applications that have never been touched by
computers before. It is worth bearing this in mind as you read this
book, because the programming techniques we’re introducing in
the following pages will soon enable you to do much more than
work out the compound interest on your building society account,
or how economical your car is!

vii

Introduction

MSX — An Introduction is the introductory book for new MSX
users. We believe it’ll teach you everything you need to know in
order to write both enjoyable and useful programs in MSX-BASIC.
That is not to say that you’ll never want another book on
MSX —everybody buys books with program listings to do specific
things, and as you get more advanced, you may be interested in
learning about MSX machine code, the MSX disk operating
system, and so on.

The book has been structured to take you right the way from the
very basics of programs—the names of the commands used in
MSX-BASIC and their precise meanings and capabilities — through
the concepts underlying program structure, right up to the
complexities of advanced BASIC programming. We’ve also
included chapters dedicated specifically to graphics and music.
Both of these functions have separate, easily understood languages
dedicated to them, which can be accessed from within MSX-
BASIC, and which enable you to write your own games programs
and tunes.

We shall begin the book, however, by introducing you to
computers in general, and MSX computers in particular. From the
preface to the book, you’ll recognise that MSX marks something of
a departure from existing home and personal computers. In the
chapter which follows, we shall introduce you to the terminology
that we’ll be using to describe the computers, and introducing the
rudiments of hardware, peripherals, and software.

We hope that you enjoy reading the book as much as we did
writing it, and that you find the time spent worthwhile.

Jonathan Pearce

Graham Bland

Mark Adams

Tom Lewis

Reflex Communications Ltd

January 1984

Introducing MSX

Whatever your level of interest in home computers, the chances are
that you already know a bit about how they work, or at the very
lzast have heard some of the jargon associated with them. Our
mtention in this chapter is therefore to introduce you to the most
commonly-used buzz words, and along the way explain exactly
what differentiates your MSX computer from previous generations
of home computers. We’ll start off by looking at the different types
of computers and the applications in which they’re most commonly
used, and then move on to the elements that go to make up all
computer systems —the computer hardware itself, the peripherals
that can be attached, and the software that runs on it.

Micros, minis and mainframes

Beyond any shadow of a doubt, it has been the advent of the
microcomputer that has done more than anything else to promote
the mass acceptance of computers. Inded, their impact has been so
great that it is a widely held belief that to be ‘computer literate’ is
one of the basic requirements of modern life, and that if someone
can’t grasp even the basics of computers they might as well give up!

Whilst the first home computers were really little more than
extended calculators, they have now reached a high level of
sophistication and a price that nearly everybody can afford.
Indeed, they are now being put to real use, rather than just being
played with, by millions of people in every corner of the earth. The
very first MSX computers, for example, allow you not only to play
games and peform ordinary calculations, but include specialist
facilities to teach you how to play a synthesiser keyboard, or ‘grab’
a picture from your TV and add your own graphics-generated
pictures to it. Capabilities such as these would have been
unthinkable on home computers even a year ago, so it’s easy to see
what a quantum leap MSX represents (with no disrespect to Sir
Clive Sinclair).

We must not forget, however, that home computers are no more
than a small part of the microcomputer industry. Microcomputers
are also making their presence felt in the business world, where they
commonly handle tasks such as word processing, financial
planning, accounts and stock control.

Moving one step up from micros, we come to minicomputers.
These were very popular in the late 70s and early 80s, when they
were seen as giving a practical alternative to mainframes.
Mainframes are the enormous computers used mainly by large
undertakings such as the Inland Revenue for storing massive
amounts of information. Minicomputers, on the other hand, lie
between micros and mainframes. They grew rapidly in popularity
by allowing users to store information on a number of systems
linked together by telephone lines, rather than obliging them to rely
on a single enormous mainframe installation. In addition, the
power of minicomputers was rapidly approaching that of
mainframes, thereby permitting a truly decentralised base for
information storage.

More recently, however, the increase in the power of the larger
microcomputers has done to minicomputers what they did to
mainframes a few years earlier. In other words, microcomputers
have become progressively more powerful while their cost and
physical size have fallen.

A manufacturer called Hewlett-Packard, for example, has even
introduced what it calls ‘A mainframe on a desk’. With the
traditional boundaries between the different computers becoming
increasingly blurred, micros are becoming a much more important
part of the industry, to the extent that if you can learn how to use a
micro, it’s often unnecessary to go any further.

Finally, we ought to mention the so-called supercomputers.
These are the sorts of computers you see in films like 200/ A Space
Odyssey, or War Games. Before the advent of the home micro, it
was computers such as these that epitomised the public’s view of
computers —massive, threatening, and totally incomprehensible.
As you progress through this book, we hope you’ll come ot share
our view of computers — that they’re generally small, friendly, and
actually very easy to use!

Having looked very briefly at the different types of computers
and their various uses, we’ll now move on to consider the parts that

2

zo to make them up. In terms of its layout and the way its
components function together, your MSX computer is similar to
machines many times its size. Whilst other computers might do
things in slightly different ways, the essentials of what’s inside
them, and the way they operate, are identical. We’ll therefore use
MSX as our basis for introducing the ideas to you, and we’ll begin
with the actual box you buy — the hardware.

Hardware

It’s hard to conceive of anyone reading this book who has not
heard of microchips. They appear to be cropping up everywhere
vou look, from toasters and microwave ovens to TVs and videos.
They’ve even been built into cars to enable them to pass comment
on their drivers! Indeed, it’s difficult to think of a single electro-
mechanical device that won’t soon include a microchip.

Your MSX computer has three main microchips or
microprocessors, each of which has a specific function to perform.
The first, and most important of these is the central processing
unit, or CPU, which in MSX machines is a Zilog Z80A
(undoubtedly the most commonly used processor chip in home
micros at the moment). The central processor is, if you like, the
engine that drives the computer. It carries out all the mathematical
functions and calculations necessary for the computer to function,
and even has its own language in which it receives its instructions.
This language is called machine code. No matter what language you
use to talk to the computer — BASIC, LOGO, Assembly Language
or whatever — it ultimately gets translated into the CPU’s machine
code. Languages like BASIC need a lot of translating and this takes
time. Other languages, like Assembler, need little translation and
can therefore run faster than BASIC. They are, however, very
difficult and cumbersome to program with. Any games or
sophisticated programs you might buy for your computer will
probably be written in machine code.

The second major chip is the Texas Instruments TMS 9918A
graphics processor. This is used by the computer to look after
everything that appears on your TV screen. Many home computers
have only one processor which has to do everything. With MSX
computers, the central Z80 is used for processing and monitoring
the keyboard only (so that it knows when you want it to do

3

something). The graphics processor and the General Instruments
AY-3-8910 sound chip control the rest. This is why MSX computers
have such excellent graphics and music capabilities, as we’ll be
demonstrating later. There are numerous programs in the sections
on the Graphics and Music Macro Languages which show exactly
how these capabilities can be put to use.

Memory

Moving on from your computer’s processing power, you will have
seen from the instruction book tht it also includes a minimum of
32K of RAM and 32K of ROM. But what do 32K, RAM and ROM
actually mean?

In order for the processors in your MSX computer to function,
they have to receive information from somewhere. They can’t
actually store it themselves, they can only process it. To allow the
computer to store information, it has to be equipped with a
memory, and this is where RAM and ROM come in.

Computers need to ‘remember’ two different types of
information. The first type is the instructions which the CPU will
go through to do work. These instructions are grouped together as
programs to make the computer perform specific tasks, such as
playing games or word processing. The second type of information
the computer needs to remember is data. These are numbers or
words used by programs — such as the score in a game, or the text of
a word processing document.

Before the CPU can do any work, it must be told what to do (say
multiply two numbers), and what to do it with (in this case, the two
numbers we mentioned). The instructions and the data are both
supplied to the CPU from the Random-Access Memory, or RAM.
Whenever the CPU executes a program you have either written or
bought for your computer, it goes to RAM to find the instructions
and the data required by the program (this is called reading from
RAM). If a program is supplied on a floppy disk or a cassette tape,
it must first be placed in RAM before the CPU can use it.

When the computer performs a calculation, it places the answer
back in RAM (called writing back to RAM). From there it may be
displayed on the screen, or may be written onto a disk or tape.

There is one special kind of memory, which the CPU can read
but not write into. This is called a Read-Only Memory, or ROM.

4

¥y Wi 2

-

The difference between the two memories is that when the power to
the computer is turned off, the data or the programs stored in the
RAM are lost (as with pocket calculators). If you want to re-run a
program after the power has been turned off, you will either have
to reload it into RAM from the keyboard, or else retrieve it from
disk or tape. ROM, on the other hand, will always retain its
contents, even when the computer is switched off.

ROM’s ability to do this is extremely useful. When the computer
is switched on, for example, it immediately begins executing
instructions stored in ROM. The first of these tell the computer to
check its components. Because these instructions are stored in
ROM, they do not need to be loaded each time the computer is
switched on.

Another important use for ROM is to store the instructions
which make the MSX-BASIC language operate. In this way, each
time the computer is switched on and checks itself, it displays a
welcoming message and ‘OK’ on the screen to show that MSX-
BASIC is ready for use.

So much for RAM and ROM then, but what does 32K mean?

Bits and bytes

32K is a measure of the amount of memory that is present in the
computer. In order to understand what this means in practice, we
have to look briefly at how data is stored and used by the
computer.

The computer transmits and stores information in the form of a
code. This code is necessary because information can only be sent
electrically, and it would be impractical for every piece of
information that is transmitted, to be sent at a different voltage.
The computer therefore only sends information using two
voltages — 0 volts and around 5 volts. Because there are only two
voltages, they have to be combined into groups to represent
characters, such as the letters of the alphabet. These votages, or
pulses, are termed bits. When we describe a bit, we say it is either a
‘1’, to mean a SV or ‘on’ signal, or a ‘0’, to mean a 0V or ‘off’
signal.

For example, if three bits (either 5V or OV signals) were sent at a
time it would be possible to represent eight different characters as
shown below.

Character First Second Third
Number Bit Bit Bit
1

00O 1O\ L AW

S ——_—0 oo
O = = OO ==
O O e &

You can probably see from this that if two computers agreed to
send each other information in parcels each containing three
pulses, they could communicate using eight different characters. In
practice, being able to send only eight characters is pretty useless.
In computer terminology, each group of bits is called a ‘word’. The
code above would be said to use a 3-bit word. It is important that
you distinguish in your own mind that a computer word
corresponds to a single character of our language.

By extending the code to four bits, the number of characters the
computer can send is increased to 16. You can prove this for
yourself by listing all the different codes. it would be possible to
send! One way of imagining how this increases the number of
characters is to add a 0 in front of all the numbers listed above
(giving you eight 4-bit numbers which all start with 0) and then
replace this 0 with a 1 (giving you eight more 4-bit numbers, all of
which start with a 1). Adding these together, gives you 16 different
characters, each using four bits.

Because we need to send numbers and letters, punctuation
marks, and odd characters like *, £ and >, the computer needs
considerably more than four bit per character. In fact, computer
designers and users have agreed to use 7 bits for a character. The
agreed code, which virtually all microcomputers use, is called the
American Standard Code for Information Interchange (ASCII).
The full ASCII code is shown in Figure 1.

- o O

ta e~ (D o

il b B = e 2

ASCl ASClL ASCl

Code Character Code Character Code Character
000 NUL 043 + 086 A%
001 SOH 044 087 W
002 STX 045 - 088 X
003 ETX 046 : 089 Y
004 EOT 047 / 090 Z
005 ENQ 048 0 091 [
006 ACK 049 1 092 \
007 BEL 050 2 093]
008 BS 051 3 094 A
009 HT 052 4 095 <
010 LF 053 5 096 ’
011 VT 054 6 097 a
012 FF 055 7 098 b
013 CR 056 8 099 (&
014 SO 057 9 100 d
015 SI 058 2 101 e
016 DLE 059 g 102 f
017 DCl1 060 > 103 g
018 DC2 061 = 104 h
019 DC3 062 > 105 i
020 DC4 063 ? 106 j
021 NAK 064 @ 107 k
022 SYN 065 A 108 1
023 ETB 066 B 109 m
024 CAN 067 C 110 n
025 EM 068 D 111 o
026 SUB 069 E 112 p
027 ESCAPE 070 F 113 q
028 FS 071 G 114 r
029 GS 072 H 115 s
030 RS 073 I 116 t
031 uUsS 074 J 117 u
032 SPACE 075 K 118 v
033 ! 076 L 119 w
034 & 077 M 120 X
035 078 N 121 y
036 $ 079 (0] 122 z
037 % 080 P 123 {
038 & 081 Q 124 |
039 4 082 R 125 }
040 (083 S 126 ~
041) 084 T 127 DEL
042 * 085 U

ASCII codes are in decimal.

LF=Line Feed, FF=Form Feed, CR = Carriage Return, DEL = Rubout

and are examples of the control codes numbers 1 to 32.

Figure 1 ASCII codes

8-bit width

n

6

16-bits

-’- a stored charge + no charge stored

Figure 2 Diagrammatical representation of memory cells.

‘On’ bits, or Is are represented by dark disks on intersecting

wires. Bytes are referenced by their ‘location on the grid. The
binary word 10111001 is stored at memory location 8.

8

Although the ASCII code is a 7-bit code, information is sent in
words of 8-bits, as it is possible to use the extra bit to make sure
Zzia is sent correctly.

As well as transmitting data, the computer also stores characters
= %-bit words. When referring to storage however, the word byte is
ws=d. The difference between a word and a byte is that a byte is
zlways 8-bits, but a word can be of any length (as we demonstrated
with our 3-bit words). In the case of an 8-bit word, a word is the
same as a byte and the two can be used interchangeably.

Imagine the computer memory as a grid of wires. There are eight
wires going down and 16 going across. At each point where wires
cross, there is a means for storing a charge (like a small capacitor)
(Figure 2).

In order to store the byte 10110011 (this is 51 in decimal, and you
can look up what this character is in the ASCII table) the first,
third, fourth, seventh and eighth intersections will be occupied.

As you will see from this diagram, the total capacity of our
memory is 128 bits or 16 bytes. The memory is arranged as 8 x 16
bits.

By normal computer standards, this is an incredibly small
amount of memory as it will store only sixteen letters (the word
‘PROGRAMMABILITY.’ for example, could be stored). A few
vears ago, 4096 bytes was considered a reasonable amount of
memory for a small micro.

Rather than write 4096 bytes, the computer industry uses the
letter ‘K’ to represent 1024 bytes, (as we use k to represent 1000 as
in 1 km), and so 4096 would be written as 4K. The origins of the
rather obscure number 1024 lie in the fact that 8-bit words are quite
common in computers. If you keep adding one bit to the word
length, you double the number of different words — just as you did
earlier in moving from a 3-bit word to a 4-bit word. If you keep
doubling 8, you will eventually get to 1024, and as every memory
will be a multiple or a fraction of 1024, it makes sense to use this
figure rather than 1000.

As we’ve said, a memory of 4K was common on older micros.
Today though, the types of programs that are written often require
more memory in order to be stored and run, and memory capacities
of 8K and 16K are now common. On large business
microcomputers, 64K and 128K are most common (note that 128K

9

MSX-B

is double 64K). They can often be extended up to 256K, 512K or
even 1024K. At this point, the letter K is superseded by the letter M,
standing for Megabytes, where 1 Megabyte is 1024 Kilobytes.
Figure 3 summarises the nomenclature discussed above.

1 bit= 0V or 5V electrical signal

1 word= a number of bits (the
number depends on the
computer but will
usually be 8 or 16)

1 byte= 8 bits

1 Kilobyte (K)= 1024 bytes
1 Megabyte (M)= 1024 Kilobytes

Figure 3 Nomenclature summarised

Your MSX computer is based on a microprocessor that uses 8-bit
words and will come with a ROM memory of 32K, and a RAM of
between 32K and 64K.

One important point that must be considered is that the larger
and more complex the program you wish to run on the computer,
the more memory the computer needs to accommodate it. All MSX
computers have the capability of adding more RAM and ROM,
and this is something that you may have to bear in mind when you
come to write large programs. Also worth considering is the fact
that although your computer includes a minimum of 32K of RAM,
16K of this is used for storing information used by the screen, so
that there is only 16K left (if you have 32K to start with) for you to
use. Having said this, all the programs in this book are well inside
this capacity — which should give you an idea of just how much you
can do, even with a limited amount of memory.

ROM cartridges

Short though the life of the home computer industry is, the
traditional way of getting large amounts of information into and
out of the computer has been through the use of a cassette recorder.
We’ll take a closer look at this in a second, but it has been a method
which has been dogged by problems. The ROM cartridge, by
comparison, is simplicity itself.

10

. or

es.

it
of

si=ctively replaces the built-in ROM. Instead of being given access
%2 MSX-BASIC therefore, you’ll be presented on the screen with a
game. or home management program, or whatever else you’ve
Sowsht the ROM cartridge for. Not only does this provide a very
wmply way of getting programs into the computer, but it also
=e=zns that the program size is not limited by the amount of RAM
wou have in the computer. There is no reason why you shouldn’t be
200= 10 load a 64K ROM cartridge even if you’ve only got 32K of
S AN in your computer.

The other major benefit is that you don’t have to sit around for
=e=rminable lengths of time waiting for a program to load from
s=ssette, only to find that something’s gone wrong and you’ve got
10 start again.

The keyboard
To complete our look at hardware, we’ll turn finally to the
kevboard. There are many good reasons for including the keyboard
in the section on peripherals, as you’ll see when you read it. The
r=ason that we’ve included the keyboard here is that it includes a
feature found on many better home computers, — programmable
function keys. As you can see when you switch on the computer,
there are five keys which, when used in conjunction with the
SHIFT key, can perform ten special functions. If you’re interested
in how you can change the purpose of the function keys, take a
look at the KEY command in the next chapter on page 000.
Having reviewed what your computer can do and how it achieves
its results, we’ll now explain how it communicates with the outside
world through its peripherals.

Peripherals

A peripheral is, quite simply, anything that you can attach to a
computer. Given such a definition, the term covers an enormous
range of devices, including those which allow you to get
information into and out of the computer, store information, or
perform specialist tasks. We shall look at these different types in
order.

Input and output

The most obvious way of getting information into the computer is
via the keyboard, so you can se¢ our reluctance to include it under
hardware. BEcause it allows you to put in information, it is called
an input device. The MSX specification does not include a standard
keyboard layout, however, all the MSX computers have the same
number of function keys we described in the previous section
which, although at a superficial level appear only to save you a bit
of typing, can be put to a variety of uses, as we’ll be demonstrating
in later chapters.

Before we look at other input devices, let’s look briefly at the
standard output device—the TV screen. Almost all the home
computers currently available use the TV as the primary means of
displaying information since, like the cassette recorder, anyone
who buys a home computer will almost certainly already own one.

Given the increasing pressure on the home TV set from sources
such as videos, teletext, and so on, colour monitors can provide a
cheap solution for users who find themselves banished from the
lounge. Not only are monitors cheaper than a second TV, the
screen and colour quality are also higher, thus making MSX
graphics even more impressive than they otherwise would be.

For those of you who have little use for MSX’s colour facilities, a
simple black-and-white portable (or monitor) will provide the
cheapest solution of all. Even without colour, the MSX graphics
are still stunning (as we found whilst writing this book).

Having described, if somewhat briefly, the standard devices for
input and output, the remainder are really just alternatives to be
used for specific applications. Alternatives to the keyboard, for
example, are joysticks (which give much faster response than the
keyboard ever could for playing a computer game), light pens
(whose most obvious application is in conjunction with a drawing
package), and touch pads (best used when the computer displays a
range of options on the screen which correspond to the keys on the
touch pad. Touch pads essentially provide an extension to the
function keys). By the time you read this book, there will probably
also be a number of alternative devices that we don’t even know
about yet, each tailored to a specific function, and each with
numerous adverts extolling its virtues in the popular computer
magazines!

12

Printers

To turn to alternative output devices, the most obvious of these are
ponters, which allow you to keep a hard copy (a copy on paper) of
wour work. There are three major types of printer, described below.

Dot matrix printers are currently the cheapest form of printer
wou can get. Characters are formed by a matrix of dots which is
mvpically seven dots vertically by five dots horizontally, although
2 « 7 matrices are also common. The dots on the paper result from
pins being pressed either against a standard print ribbon, or by
heated pins being pressed against heat sensitive paper. This allows
them to print standard characters and, in some cases, a limited
range of graphics characters.

Daisywheel printers, on the other hand, incorporate a more
complicated mechanism and are comparable in their operation to a
zolfball typewriter. Each letter or symbol in the character-set sits
on a ‘petal’ of the daisywheel. The daisywheel spins round at high
speed and a hammer strikes the petal for a particular character,
pressing it against a ribbon onto the paper. Because daisywheels are
made from plastic or metal, a very high print quality (letter quality)
can be obtained. Also, daisywheels can be changed quickly and
easily, allowing different founts, languages, and so on to be
printed. Daisywheel printers are generally less flexible than dot
matrix printers; they cannot, for example, print out graphics and
do screen dumps. They are also slower (due to the way they work)
and more expensive. Their main advantage over dot matrix printers
is that they produce a much higher quality of print, although they
do tend to be much slower.

Finally, plotters are available to produce hard copy output of
any graphics generated on the system. These work by using a pen,
or different coloured pens in the case of colour plotters, to draw
out precisely the image that appears on the screen. Plotters are
much more complex machines than printers, and cannot be driven
by your MSX micro in its raw state. They require a special piece of
software called a device driver which translates wht appears on the
screen into commands to make the plotter plot. Device drivers
require an operating system (MSX-DOS), and floppy disks, all of
which we’ll be talking about later. Suffice it to say that this makes
them much more expensive than the other output devices, and
really only applicable to users who want to be able to produce a lot

13

of complex graphics work, for example engineering drawings,
printed circuit board designs, and so on.

Having said all this, the MSX standard is certain to produce a
whole new range of MSX-compatible printers and plotters which,
hopefully, will send prices tumbling and bring them within the
reach of most users.

Storage devices

Moving on from the peripherals that allow you to get information
into and out of your computer, we come to those that allow you to
store information. We’ve already looked at the computer’s ROM
and RAM. The problem with RAM, as we said, is that when you’ve
spent hours typing in a program and you want to stop and switch
the machine off, you lose the program. What is needed is a
memory, or storage device, which can store data even when the
power is disconnected.

There are essentially two types of storage device that can be used
with home micros — cassette recorders and floppy disks. Each of
these has its advantages and disadvantages. We’ve already looked
at some of the problems that can be encountered when cassettes are
used for data storage, but they do provide a very cheap, if slow
method of storing information. Floppy disks, on the other hand,
can store much larger quantities of information (from 100K up to
400K or 800K on a single disk). They’re fast, but they are also
relatively expensive. Having said that, if you’re going to use the
computer for serious business purposes rather than just as a hobby,
floppy disks are essential.

Robots and speech synthesis

The final sort of peripheral we have to look at, and which we can
expect to see in ever expanding numbers, are those designed to
perform specific functions. In their own way peripherals such as
joysticks, light pens and touch pads fall into this category. In
addition, there are devices such as voice synthsisers, speech
recognition devices, robots, and virtually anything else which at
present might sound like science fiction, but which will very soon
become everyday reality. As we mentioned in the foreword to the
book, your MSX computer is capable of talking to virtually any
device you can think of. All that is needed is someone to provide

14

w=ple domestic devices with the capability to be interfaced (or
somnected) to an MSX computer.

On that cheerful note, and in order to prepare you for the next
chapter, we’'ll now turn to the subject of computer software.

Software

W="ve now introduced you to the basics of the MSX computer
sardware, and to the peripherals that you can add to the computer
= order to get information into and out of it — but how do you get
this mass of technology to do the things you want it to do? The
znswer is that you tell it wht to do through the use of programs or
software.

As we said in the section on hardware, the language understood
by the central processor is machine code. It’s highly unlikely that
wyou've ever written anything in this language as it’s incredibly
difficult to understand and takes a lot of time to learn. Obviously,
i would be a lot easier if you could simply tell the computer in
English what you want it to do. Unfortunately, English being what
it is, there’s too much ambiguity in the language to allow you to do
this. The BASIC programming language, however, is about as
close to programming in English as you’re likely to get.

Microsoft BASIC is the industry-standard implementation of the
language, both in terms of its sophistication and its popularity. It
has currently been installed on well over 2 million microcomputers
worldwide. MSX-BASIC has been developed from Microsoft
BASIC, and incorporates many special commands to take full
advantage of the MSX hardware. What MSX-BASIC essentially
does, therefore, is to take instructions written in a language that
people can understand and translate them into the language that
the machine can understand.

We’ll be looking in increasing detail over the coming chapters at
wht the instructions in MSX-BASIC are and what they do. Any
computer language is made up of commands, functions and
statements and these can be used either on their own or in
combination with each other, in which case they constitute a
program.

Piecing all the MSX-BASIC instructions together to form a
program requires an organised approach to problem solving. To
assist in cultivating this approach, computer programmers use wht

15

is called a flowchart to break a problem down in to its constituent
parts.

When a problem has been defined in this way, it is easy to
translate the various parts into instructions that MSX-BASIC will
understand. When all these are pieced together, they are a
program. All it needs is a little imagination to see how the problem
you want to solve can be turned into a flowchart.

MSX-BASIC provides the programmer with commands,
functions and statements, and it’s useful at this stage to look at
each.

Commands

Commands tell the computer to do something like RUN or LIST.
Commands work the moment they are typed in and don’t need to
be part of a program.

Statements

Statements are the numbered instructions that go to make up a
program. LET X =5 is an example of a statement. It sets X to the
value 5.

Functions

MSX-BASIC offers a number of mathematical functions such as
sine, cosine and tangent. Functions are always followed by a
number, variable or expression in brackets. An example of a
function is SIN (the sine function). PRINT SIN (P1/2) will give the
sine of 90° in radians, as you’ll possibly remember from your
schooldays!

This essentially, is how the language works. We’ve covered a lot
of jargon in this section, so it’s perhaps appropriate to end by
giving you an example of a ‘typical’ programming program.

Programming principles

Having said at the beginning that we were going to try to avoid
problems with bank accounts and compound interest, these are
issues that are close to everyone’s heart, and also provide a
convenient method of demonstrating the ideas we’ve been talking
about. Have no fear though — the rest of the examples we present
will be a lot more interesting.

16

He-2's the problem. I have £100 invested in a building society
wocount. Assuming that this gains 10% interest per year, and that
= nierest rate remains constant, how much will I have in my
wccount in 10 years’ time?

The first phase of analysing the problem is to break it down into
wma ler components.

The task is comprised of three main stages. Firstly, the computer
===ds 1o be told the initial value of the money deposited in the
s-count. Then the first year’s interest needs to be calculated. This
=ust then be repeated ten times. Expanding these steps into a flow
&zgzram, can end up with one similar to Figure 4.

1. Perform the interest calculation.

)

2. Has it been performed ten times?

]

3. If it hasn’t, then go back to step 1 and do it again.

v

4. If it has, then finish.

Figure 4 Simple flowchart

These steps are also shown in Figure 5 where we have also shown
how BASIC variables are used, and how the computer might
perform functions like ‘repeat ten times’.

17

is called a flowchart to break a problem down in to its constituent
parts.

When a problem has been defined in this way, it is easy to
translate the various parts into instructions that MSX-BASIC will
understand. When all these are pieced together, they are a
program. All it needs is a little imagination to see how the problem
you want to solve can be turned into a flowchart.

MSX-BASIC provides the programmer with commands,
functions and statements, and it’s useful at this stage to look at
each.

Commands

Commands tell the computer to do something like RUN or LIST.
Commands work the moment they are typed in and don’t need to
be part of a program.

Statements

Statements are the numbered instructions that go to make up a
program. LET X =5 is an example of a statement. It sets X to the
value 5.

Functions

MSX-BASIC offers a number of mathematical functions such as
sine, cosine and tangent. Functions are always followed by a
number, variable or expression in brackets. An example of a
function is SIN (the sine function). PRINT SIN (P1/2) will give the
sine of 90° in radians, as you’ll possibly remember from your
schooldays!

This essentially, is how the language works. We’ve covered a lot
of jargon in this section, sO it’s perhaps appropriate to end by

giving you an example of a ‘typical’ programming program.

Programming principles

Having said at the beginning that we were going to try to avoid
problems with bank accounts and compound interest, these are
issues that are close to everyone’s heart, and also provide a
convenient method of demonstrating the ideas we’ve been talking
about. Have no fear though — the rest of the examples we present
will be a lot more interesting.

16

Here's the problem. I have £100 invested in a building society
sccount. Assuming that this gains 10% interest per year, and that
== interest rate remains constant, how much will I have in my
account in 10 years’ time?

The first phase of analysing the problem is to break it down into
wmaller components.

The task is comprised of three main stages. Firstly, the computer
===ds 10 be told the initial value of the money deposited in the
sccount. Then the first year’s interest needs to be calculated. This
=—ust then be repeated ten times. Expanding these steps into a flow
&zgram, can end up with one similar to Figure 4.

1. Perform the interest calculation.

y

2. Has it been performed ten times?

v

3. If it hasn’t, then go back to step 1 and do it again.

v

4. If it has, then finish.

Figure 4 Simple flowchart

These steps are also shown in Figure 5 where we have also shown
how BASIC variables are used, and how the computer might
perform functions like ‘repeat ten times’.

17

Flowchart BASIC elements

Money = £100 ‘Money’ is a variable

Year=0 ‘Year’ is a variable

Money = Money X 1.1 Money = Money X 1.1 adds 10%
to the value of ‘Money’

v

Year = Year + 1 No Year = Year + | increments the
l value of ‘Year’ by |

Year =10? Sics Year = 10? tests to see whether

¢ ten years have gone by
Money = Money after 10 years gives you the result.

Figure 5 Flowchart for building society program

A variable is a ‘box’ which the computer uses to store
information that is going to change. In the example above, we
know that the amount of money in the account, and the number of
years over which the investment is made, are going to have to
change in order to find the solution to the problem. The variables
“Year’, which will grow from 0 to 10, and ‘Money’, which will grow
from £100 at a compound rate of 10% per year, are therefore
declared at the start of the flowchart. The Year variable is then
tested each time the loop is completed to see if it has reached the
value of 10. If it hasn’t, then the loop is performed again. When it
does, the value for Money has grown to the amount in the account
after 10 years, and the program, which essentially is what this is,
stops.

If you can understand this, you’ll have no trouble at all with the
following chapters. What we’re going to do is to introduce you to

18

~=ructions that are available and what they do, and then show
=ow they can be connected to form increasingly complex

v, we hope that this introduction to computers in general,
in particular, has proved useful. You’ve now come to the
the preliminary part of the book, and the time has come for
zudience participation, so plug in your computer and exercise
digits. It’s time to try out some commands!

19

Programming in MSX-BASIC

Interpreted commands

When you turn on your MSX computer, the screen displays the
prompt ‘“OK”’ which tells you that it is ready to receive and process
BASIC instructions. You can get it to do this in one of two ways.
The first is to enter the instructions directly, in which case the
computer interprets and acts on them immediately (this is known as
direct mode). The second is to precede the instructions by line
numbers, in which case they are treated as a program, and are
executed in the order in which they appear in the program. A
program is executed in indirect mode, and only begins when you
type the command RUN directly. By far the simplest way of
understanding what a command is and what it does is to type it in
and see how the computer interprets it. As an example, try typing
the following:

PLAY “04CDEFGABO05C”

and press the RETURN key. PLAY tells the computer that it is
being asked to play something. «04CDEFGABO05C”’ tells the
computer exactly what it has to play. As you can hear, the result of
typing this is that the computer plays a complete scale. Later on,
you’ll see exactly how this is achieved.

Most instructions in MSX-BASIC, and any other BASIC for that
matter, are composed of the name of the instruction and an
expression defining how it is used. It is vital that when an
instruction is used, the syntax of the notation that follows it is
correct, which is another good reason for looking at direct-mode
first. Having said this, some of the instructions that we’ll introduce
in this section have to be put into a program in order to have any
meaning. Wherever this is the case, we’ve kept the programs as
short as possible, while still demonstrating fully how the instruction
can be used. Whenever you have to run a program to see how the
instruction works, please do the following:

20

W

et

Tvpe in the program exactly as it is printed in the book.

Either type RUN without a line number preceding it (i.e. in direct
mode), or press function key 5 on your keyboard.

Most programs that you write for yourself will end with the
MSX-BASIC ““OK”’ prompt reappearing on the screen. In the
programs that follow, you must press the CONTROL and STOP
keys at the same time to stop the program and bring back the
“OK’ prompt. You can then type LIST to list the program if it is
:0 be altered, or NEW to get rid of the program and allow you to
snter a new one.

One of the features of MSX-BASIC is that you can edit
statements on the screen. In the example above using PLAY, you
could move the cursor up and change any of the letters. Pressing
the ENTER or carriage return key will enter the modified line,
just as if you had typed the whole line from scratch.

This applies to any line on the screen. If you typed in a line and
it’s still on the screen, you can go back, edit that line and press
the ENTER key to save the line. If you forget to press the
ENTER key, the line will remain as it was before you made
changes.

This facility is very useful in MSX-BASIC programs, where
you may have long and complicated lines which contain an error.
By listing the line on the screen, you can correct it without
retyping the whole line. In many of the example programs in this
book, we stress the need to experiment for yourself with the
programs. Once you have typed our programs in, you should use
the edit facility to experiment with various alterations.

The full features of the MSX-BASIC Editor, as it is called, are
listed in Appendix C. It is well worth familiarising yourself with
how it works before proceeding.

If everything goes to plan, by the end of this section and the one

which follows on graphics, you should have achieved two things.
First and foremost, you will understand the most commonly used
BASIC instructions — both what they do and how they do it.
Secondly, from the simple programs we have included in this
section, you will already have an idea of what a BASIC program is
and how it works and will be well prepared for the last section of

21

the chapter on how to write more complex, and hence more useful,
programs.

Incidentally, it might be approprite here to introduce the
notation we’ll be using to describe each of the instructions. As
you’ll see from the AUTO command (below), the syntax includes
the [] and <> symbols, and later statements also include (). These
have the following meanings:

<> Anything which appears inside these brackets must be used
with the instruction, otherwise the computer won’t
understand it.

[] Things in square brackets are optional —it’s up to you
whether or not you include them. If you don’t, the
computer will simply assume that you’re happy with the
default condition (for example with AUTO, if you don’t
specify the start line or increment, numbering will start at
line 10, with an increment of 10).

() These are the only brackets you have to type in as they are
actually part of the syntax. You’ll see exactly how they are
used when you get on to an instruction which uses them.

To begin with, then, we’ll have a look at the commands in detail.

Good luck!

AUTO [<start line>] [,<increment>]

All the lines in a program must be numbered. The computer then
carries out the instructions contained in the lines in numerical
order. The AUTO command automatically numbers lines as they
are entered into the computer, thereby saving you from an
unnecessarily time-consuming task. AUTO is used only when a
program is to be typed in. As examples, AUTO 100,10 would
number lines in increments of 10 starting with line 100; AUTO
100,20 would give a 20 line increment, and so on. If you use AUTO
with a partly written program, then if AUTO generates a line
number which already exists, an asterisk will appear at the end of
the line to warn you that this new line will replace the existing one.
To turn AUTO off, press the CONTROL and STOP keys at the
same time.

22

BEEP

Type in BEEP and a beep sound is generated. This is the most
basic of the sound generating commands. For some more
exhilarating ones, see the description of the SOUND command
itself, or. have a look at the music chapter.

CLEAR [<string space>] [,<highest location>]

The CLEAR command will clear the computer’s memory of all
variables, without erasing the program currently stored in RAM.
After a program has run, the variables it used remain assigned in
RAM. To put it simply, what CLEAR does is to clear any rubbish
out of memory that you don’t particularly want any more.

CLs

CLS quite simply clears the screen of anything that was
previously on it.

COLOR [<foreground colour>] [,<background colour>]
[,<border colour>]

The COLOR command (with apologies for the Americanism) is
used to set the screen colours. As can be seen from the syntax, it is
quite flexible, permitting control over the foreground, background
and border colours through a single command line. The COLOR
command is used by the computer when it is first switched on to set
the colours that you see on the screen. The computer has a default
value for COLOR of 15,5,4, with the numbers corresponding to
white, dark blue and light blue respectively. The default is what an
instruction does if no other comments or text are added.

NB: It is important to note here that according to the
characteristics of your television set, you will not necessarily be
able to see the border colour all of the time. It will appear however
when you run a program, (always assuming you specify it, of
course). We have attempted to avoid the use of programs in this
section for the sake of simplicity. In this case, however, a short
program is unavoidable just to prove that all three screen areas do
exist, so try typing:

23

S S S Y .

e R

1@ SCREEN 2

2@ COLOR 14,2,9:CLS

3@ CIRCLE (125,100),50

4@ GOTO 4@

What should appear is a grey circle on a green background,
surrounded by a pink border.

You can use the COLOR to set the screen colours you find easiest
to look at. For example, typing COLOR 12,15 will produce green
characters on a white background, and it may be worth
experimenting to find the combination best suited to you. For
reference, the various colours and their numbers are as follows:

Number Colour
0 Transparent
1 Black
2 Medium Green
3 Light Green
4 Dark Blue
5 Light Blue
6 Dark Red
7 Cyan
8 Medium Red
9 Light Red
10 Dark Yellow
11 Light Yellow
2 Dark Green
13 Magenta
14 Grey
15 White

CONT

The CONTinue command is used in a BASIC program, or
directly, to instruct the computer to continue program execution
after it has been halted; for example, after the program has
executed a STOP or BREAK command.

DELETE [<start line number>] [—<finish line number>]
As its name suggests, the DELETE command removes unwanted

24

“==s from a program. All that must be specified are the first and
L=< lines to be deleted. For example, DELETE 20—40 would delete
2 the lines from 20 to 40 inclusive from a program, DELETE 20
would delete line 20 only, and so on. A simpler way of deleting
wnzle lines is simply to type in the line number followed by
ENTER. The computer will then store a blank line rather than what
was previously there.

KEY <key number>,"<command>"’

The MSX computers include 5 programmable function keys
which, in conjunction with the SHIFT key, permit 10 pre-
srogrammed functions to be stored. To obtain a list of the default
functions type KEY LIST. Any of the pre-programmed functions
z2n be changed using the KEY command. As an example type:

KEY 3, ““COLOR 12,15”

I function key 3 is now pressed, the screen will change to display
green text on a white background. Any function key can be
programmed to produce any programming instruction, thus
providing a considerable saving in time and effort when typing
often-used commands. Key labels are displayed on the screen (as
you can see!), and this display can be turned off using KEY OFF,
or back on again using KEY ON. To make a command instantly
=xecutable it is normally necessary for it to incorporate a carriage
return (or ENTER). This can be achieved by adding ‘“‘CHR$(13)”’
0 the key designation so that, for example:

KEY 1, “TRON” + CHR$(13)
will switch on the trace command (TRON) by pressing function key
1 only.
LIST [<line number>] - [<line number>]

The LIST command can be used in a number of ways to list a
program. When typed on its own, LIST will display on the screen
the entire contents of the program currently stored in the
computer’s memory. Alternatively, line numbers can be added to
the LIST command, for example:

= 25

i

LIST 20—40 would list line numbers 20—40 inclusive of the
current program '

LIST 20 lists line 20 only

LIST 20 lists all lines from line 20 onwards

LIST 40 lists all lines up to and including line 40

Listing can be suspended by pressing the STOP key. Pressing
STOP again will resume the listing. Pressing the CONTROL and
STOP keys at the same time terminates the listing.

LLIST [<line number>]—[<line number>]

LLIST works in exactly the same way as LIST, the only
difference between the two commands being that rather than
displaying the program on the screen, LLIST sends it to a
printer —always assuming that there is one connected to the
computer!

MAXFILES =<expression>

As we’ve mentioned, whenever a BASIC program is run, the
computer sets up a number of files in its memory to handle the
work it has to do at any one time. The MAXFILES command
allows you to limit the number of files that the computer can open
during program execution, for example MAXFILES =10 would
allow the computer to open 10 files. Any number of files in the
range 0 to 15 can be set. When MAXFILES =0 is used, only SAVE
and LOAD functions can be performed.

MOTOR [ON] [OFF]

The MOTOR command is used when you use a dedicated
cassette recorder with your MSX computer, and is used to turn the
recorder’s motor on and off. This can be very useful, for example,
when a long program has been written, only parts of which are
desired to be stored to tape. MOTOR ON/OFF commands can
then be inserted into the program at the appropriate points.

NEW
Whenever you have finished working with a program, there are

26

two ways that you can get rid of it. The first is to switch the
computer off and then on again which is, to say the least, crude.
The other is to type NEW, which will immediately delete the
current program and any files or variables associated with it from
the computer, thereby enabling you to load in or type a new
program from scratch.

RENUM [<new number>] [,<old number>] [,<increment>]

The RENUMber command is used to renumber lines in a BASIC
program, for example when the program has become overcrowded
through the addition of new lines. The command can be used in a
number of ways. By itself, RENUM will number all lines in the
program in multiples of 10, starting (naturally enough) with line 10.
For example, a program with line numbers 10,13,15,20,30 would
be renumbered 10,20,30,40,50. Using the new and old number
parts of the syntax, this can be changed. For example RENUM
15,10 used on a program with lines 10,20,30,40,50 would produce
the result 15,25,35,45,55 —line 10 is renumbered to 15 and all lines
following line 15 are incremented by 10. If the computer encounters
a line number that already exists, a new number is created. Finally,
the line increment can be changed so that for example RENUM,,20
would change program lines 10,20,30 to 10,30,50. Whenever line
numbers are included in a command line, for example in a GOTO
statement, then these will also be renumbered, so that the structure
of the program remains unchanged.

RUN [<line number>]

The RUN command is used to instruct the computer to execute a
program once it has been typed in. The use of RUN by itself will
cause the computer to execute the whole of the current
program — that is, all the lines that have been typed in. If a line
number is specified, the computer will execute the program from
that point onwards. For example, with a program containing lines
numbered 10,20,30,40,50, RUN would cause all lines to be
executed, whilst RUN 30 would result in lines 30,40 and 50 only
being executed.

27

SOUND

The SOUND command can be used to make the sound chip in
your computer do truly wondrous things. You’ll be amazed at the
huge variety of sounds that your computer is capable of making,
shown in the music chapter, but for now, you may be interested in
running the following program:

1@ SOUND 8,5

2@ FOR I=1 TO 255 STEP 2
3@ SOUND @,1

4@ NEXT I

5@ GOTro 20

(This could come in very handy if your house ever catches fire!)

TRON

It is unusual, to say the least, for anyone to get the program they
are writing to perform exactly how they want the first time it is
typed in. Indeed, with anything but the smallest programs, a
considerable amount of time has to be spent in ‘debugging’ — that
is, ironing out the bugs (or errors) in the program. To help with this
procedure, MSX-BASIC includes the TRACE command, which is
activated by typing TRON (TRACE ON). What TRACE does is to
follow the progrm by printing on the screen the program line
numbers as they are executed. This allows you to see the way the
program is working as it is running. TROFF is the opposite of
TRON, in that it turns TRACE off again. These commands would
rarely be used in a program. Rather, they would be entered in direct
mode before and after the program is run.

TROFF

See above.

WIDTH <width of screen in text mode>

The WIDTH command sets the line length, in characters, that
can be displayed on the screen in text mode. When the 40x24
Screen 0 has been selected, the value given for the screen width can
be any value up to and including 40. In 32 x 24 Screen mode 1, the

28

1

screen width can be any number up to and including 32.

The WIDTH command concludes our summary of the basic
BASIC commands. WE shall now look briefly at the special
graphics commands included in MSX-BASIC (a detailed
description is included in the chapter devoted to the subject),
before moving on to look at how these commands can be combined
together into programs which do useful things.

Graphics commands

Up until now, we’ve only shown you part of your computer’s
capabilities —its ability to display 23 lines of text, each of 40
characters, along with the function key line.

In computer terms, we say this screen has a resolution of 920
(23 x40). We could make up a picture using ordinary ASCII
characters. This could not depict anything in great detail, but could
draw simple pictures and bar charts, for example.

Certain characters, called graphics characters, are incorporated
into MSX-BASIC which allow you to draw more elaborate pictures
than you could using just letters of the alphabet or punctuation
marks. Your MSX microcomputer may or may not have these
characters shown on the keyboard, but a good way of seeing what
characters are available is to run the program below. What this
program does is to print out the entire character set on the screen:

1@ FOR I=1 TO 255

20 PRINT I,CHR$(I1)

3@ A$=INKEY#: IF A%="" THEN 30
40 NEXT I

The program prints a character symbol alongside a number.
Press any key to get another number and character printed on the
screen. Look at each number and note its corresponding character.
If you want to incorporate any character into a program, ‘PRINT
CHRS$(170)’ (or whatever the number is) will print the character on
the screen. Character graphics use what MSX-BASIC calls Screen
0.

In order to draw more complicated pictures, we need a higher
resolution screen, where we can control elements which are smaller
than whole characters. This would allow us to draw pictures which

29

contained a lot more detail than pictures made up of ASCII
characters.

As well as Screen 0, MSX-BASIC gives us access to three other
screens — numbers 1, 2 and 3. Screen 1 is used as an alternative to
the text screen and Screens 2 and 3 for high and low resolution
graphics.

In order to use the graphics commands, you must first instruct
the computer that you wish to use one of the two graphics screens.
If you try to use a graphics command with the standard character
screen, the computer will produce an error message. In order to see
the differences between the two screens, therefore, try typing in the
following program:

1@ SCREEN 2
2@ CIRCLE (125,100),50
3@ GOTO 3@

What you ought to see on the screen is a reasonable
approximation of a white circle on a dark blue background,
surrounded by a light blue border. Now run the program again, but
this time replace SCREEN 2 with SCREEN 3. This time, not only is
the circle drawn with a much thicker line than it was before, but it
also looks a lot less like a circle than did the previous one. The
reason for this difference is the screen resolution.

Screen 2 is rather like a piece of graph paper with 256 squares
horizontally and 192 vertically (thus giving it a resolution of 49152
squares). Because a television screen is fairly compact, the squares,
or pixels, are very small. It is possible to address, or change the
colour of, any pixel on the screen, and it is this facility which allows
you to draw circles, lines, and all the other shapes we’ll be talking
about later on. You can change the colour of a given pixel using the
PSET command. All you have to specify is the pixel on the screen
that you want to change, using its X,y coordinate (the point 100
pixels from the left of the screen and 50 pixels down it has
coordinate 100,50). To demonstrate how this works, type in the
following program:

1@ SCREEN 2
20 PSET (120,20)
3@ PSET(121,3@)

30

i

41 PSET (122,40)
5@ PSET(123,50)
60 PSET (124,60)
70 PSET(125,7@)
B® PSET (126,80)
9@ PSET(127,9@)
1800 PSET (128, 100)
118 GOTO 110

As you can see, the program has changed the colour of a series of
pixels, starting at the point 120,20 and ending at 128,100. Now
replace SCREEN 2 with SCREEN 3, run the program again and see
what happens.

The most obvious difference, as you saw when the computer
drew a circle, is that pixels are drawn rather differently on Screen 3
than on Screen 2. Rather than changing the colour of a single pixel,
PSET causes a 4 x 4 block of pixels to change colour. As you can
see, a horizontal coordinate of 120, 121, 122 or 123 makes no
difference to the horizontal position at which the block is drawn.
When 124 is reached, the block is plotted at the next horizontal
position, and again, this does not change until 128.

Like Screen 2, Screen 3 has 256 x 192 addressable pixels, but it
can only plot to 64 x 48 4-pixel blocks (thus giving it a resolution of
3072 blocks). It is important to bear this in mind when using Screen
3, otherwise it’s easy to end up with some very confusing results.

CIRCLE (Kx coordinate>,<y coordinate>)<radius>[,<colour>]
[.<start angle>] [,<end angle>] [,<aspect ratio>]

The CIRCLE command has by far the most complex syntax of
any we’'ve come across so far, so we’ll take a little time to explain
exactly wht all of its elements do. As you can see from the above
program, we quite happily drew a circle using only the first three
elements of the syntax. The first two of these define where the
centre of the circle is to be (how far across the screen, and how far
down). The third element defines the radius of the circle. If you
simply change the values in the above program, you’ll soon see how
the circle can be moved around the screen and changed in size.
Moving on to the fourth element of the syntax, the colour that the
circle is drawn in can also be changed, so that, for example:

31

—

-

I

CIRCLE (125,100),50,10

will produce a yellow circle rather than a white one (see the
COLOR command for a full list of available colours). Should you
wish to draw only part of a circle, then the next two parts of the
syntax are definitely for you. Both elements can be defined in the
range — 2xPI to +2xPI—PI is the ratio of the circumference of a
circle to its radius (as we all learnt at school!) and is roughly equal
to 3.142, hence the range of values accepted by the computer is
—6.284 to + 6.284. Rather than trying to explain in detail what the
effects of varying these two elements of the syntax are, we suggest
you play about with them yourself to see exactly what happens.
When you think you’ve seen enough, try running this program,
which is derived from the one we first used to introduce CIRCLE:

1@ SCREEN 2

20 LET X=@:LET Y=-.1

3@ CIRCLE(125,10@),9@,7,Y,X
40 LET X=X+.1:LET Y=Y-.1

S@ IF X<6.2 THEN GOTO 30
6@ GOTO 60

Now run the program again but change X=0 in line 20 to
X=0.1.

The reason that we’ve included the program is to demonstrate
how quickly the flexibility and usefulness of a command can be
built up simply by specifying further elements of its syntax or
adding a couple of extra command lines. We do not expect you to
be able to understand the program at this point — more important is
to see just how flexible CIRCLE actually is. Finally, let’s look at
the aspect ratio. This is the ratio of the verticl height of the circle to
its horizontal width, and allows you to draw a variety of ellipses.
Again, no further explanation is really necessary here—it’s much
better for you to try changing the numbers around for yourself.
Having said that, it may be of interest to add a further X to the
above program making line 30 into:

30 CIRCLE (125,100),90,7,Y,X,X

Silly, isn’t it?

32

aiaded

Jjifif

COLOR [<foreground colour>],[<background
colour>],[<border colour>]
See previous section, ‘Interpreted Commands’, page 23.

DRAW <string expression>
DRAW, like PLAY (which you’ll meet later) uses a powerful

macro language, the Graphics Macro Language. DRAW allows
you to draw lines on the screen by colouring in points on the screen
(pixels). The Graphics Macro Language uses a shorthand for
directing which pixels are coloured in — U for up, D for down, L for
left and R for right. For example, you can draw a box using a
command that colours in 100 pixels to the right, then moves down
100 pixels, then left 100 pixels and then up again 100 pixels. The

program to do this is as follows:

1@ SCREEN 2

20 DRAW "R10OD10COL100U1GO"
3@ GOTO 3@

This is pretty well the simplest thing that you can do with the

Graphics Macro Language. You can see exactly how flexible the
language is by looking at the full description of it given in Chapter

6.
LINE (<x1,y1>)—(<x2,y2>[,<colour>][,<B/BF]

The LINE command draws a line between the two points

specified. As an example, try typing:

18 SCREEN 2 ,
20 LINE(20,10)-(240,180)

3@ GOTO 3@
As you can see, you get a straight line between the points 20,10
and 240,180. The line can be changed in colour by adding a number
in the range 0 to 15, for example changing line 20 to:
20 LINE (20,10) — (240,180),10

will produce a yellow line.
LINE can also be used to draw a rectangle which has the line as

33

its axis (add,B to line 20), which can also optionally be filled with
colour (change the B in line 20 to BF), hence:

20 LINE (20,10) — (240,180),10,BF

will change the line into a yellow rectangle.

LOCATE <x,y>

The locate command can be used with both the graphics screens
and the character screens to locate the position at which drawing or
printing will commence. As an example, type in the following
program:

1@ SCREEN @
2@ LOCATE 20,10
3@ PRINT "Hello"

When you run the program the computer prints the word
“Hello” on line 10, starting at position 20. The same will happen
with Screen 1. To show what happens with the graphics screens, a
couple of lines have to be added to the program, so that it looks
like:

1@ OPEN "GRP:" FOR OUTFUT AS #1
2@ SCREEN 2

3@ LOCATE 20,10

4@ PRINT#1,"HELLO"

50 G010 S50

(The extra lines are needed to allow you to print on the graphics
screens.) Now run the program again. Again, the computer prints
«Hello’’ starting at position 20,10 which since the screen cn define
256 x 192 positions rather than the 40x 23 positions of Screen 0
shifts “Hello’’ upwards and to the left. Note also that the size of
the characters has changed since the high resolution grphics screen
defines its characters in a different way to Screen 0. As a further
demonstration of this, change SCREEN 2 in line 20 to SCREEN 3.
It’s a bit different, isn’t it?

PAINT (<x,y>) [.<paint colour>] [,<border colour>]
The PAINT command is used to fill an arbitrary graphics figure
34

with the specified fill colour. We shall look more fully at how the
command is used in the following chapter, but essentially what
PAINT does is to fill whatever shape you have drawn on the screen
with the colour you choose, starting at a specified point within that
shape. To demonstrate the command, we’ve been forced to resort
to a slightly longer program than usual, but the results are quite
colourful and it is worth the typing effort!

1@ SCREEN 2

20 LET C=2

380 FOR 1=1088 TO 1 STEP -10
4@ CIRCLE (125,10@),1,C

5@ CIRCLE (125,100) ,C

6@ LET C=C+1

78 NEXT I

80 GOTO 8@

As you can see, what the program is doing is drawing decreasing
circles and filling each one with colour starting at the centre. You
may be able to see from the program why this is happening, but
once again, if you can’t, don’t worry about it — by the end of the
next section you will!

POINT (<x,y>)

The POINT command allows you to determine the colour of a
particular pixel on the screen. POINT is only really necessary for
advanced graphics programming, so we won’t confuse you by
attempting to describe it in any greater detail here.

PSET (<x,y>)[.<colour>]

Whilst the PAINT command allows you to colour in a complete
block or shape, the PSET command allows you to specify the
colour of an individual pixel. For example, if you run the following
program:

1@ SCREEN 2
20 PSET (100,100)
30 GOTO 3@

35

then you can see that the pixel at position 100,000 has been changed
to the foreground colour. If you change line 20 to read

20 PSET (100,100),10

then the dot will change to yellow. In common with the other
graphics commands, changing Screen 2 to Screen 3 will produce a
yellow box, and so on.

PRESET (<x,y>).<array name>[,<option>]

PRESET is the exact opposite of PSET in that if the colour is not
specified then PRESET will draw the pixel or pixels in the
background colour, rather than in the foreground colour as is the
case with PSET. If the colour is specified, then PSET and PRESET
both work in exactly the same way.

PUT SPRITE <sprite plane>[,<,x,y>1[,<colour>] [,<n>]

A sprite is a graphics character which can be moved quickly
across the screen. Sprites will be familiar to anyone who has ever
played Space Invaders, or any other video game for that matter,
since it is through the use of sprites that the invaders, and most
other things that move across the screen, are drawn.

You are used by now to the fact that the graphic screen is made
up of 256 x 192 pixels. Sprites are defined in the program, and can
be any shape or size, made from one to 32 x 32 pixels in size. You
can have up to 256 of them in a program, of which up to 32 can be
on the screen at once, on up to 32 separate planes — enough for even
the most enthusiastic game designer!

The shape of the sprite is defined using the SPRITES variable,
and the sprite’s attributes are defined using the PUT SPRITE
command. The syntax of this command gives the plane on the
screen on which the sprite is to be drawn, which can be in the range
0 to 31; where the sprite is to appear (X coordinates can be in the
range — 32 to +255, y from —32to + 191, for general use); and a
pattern number for the sprite (this must be less than 256 when the
sprite is made up of 8 x 8 pixels, and less than 64 when it is made up
of 32 x 32 pixels). For example:

PUT SPRITE 0,(100,100),7,17

36

e

would mean put a cyan coloured sprite of pattern number 17 on
plane zero at position 100,100. (This assumes, of course, that sprite
17 has previously been defined.)

NB: The PUT SPRITE command makes use of the following: If
the x and y coordinates are specified as STEP (x,y) rather than
simply as x and y on their own, then the sprite will move the x and y
distances relative to where it last appeared, ie STEP (100,50) means
put the sprite 100 pixels to the right of and 50 pixels down from
where it last was, rather than putting it at position 100,50. If the y
coordinate is specified as 208, then all planes behind the one on
which the sprite appears will disappear until y is changed to
something other than 208. If the y coordinate is specified as 209,
then the sprite will disappear from the screen.

SCREEN [<mode>][,<sprite size>][,<key click>] [,<cassette
baud rate>][,<printer option>]

The SCREEN command is one with which you should now be
familiar, to say the least! It does however include a number of
features which we haven’t had cause to touch on so far. As we’re
sure you’re only too well aware, the mode option is used to define
the screen type that you want to use, with the alternatives being as
follows:

0 40x 24 text mode

1 32x24 text mode

2 256 x 192 high resolution graphics mode
3 multicolour low resolution graphics mode

Sprite size can be selected as follows:

0 8x 8 unmagnified

1 8x 8 magnified

2 16 x 16 unmagnified
3 16 x 16 magnified

If you don’t like the keys on your MSX computer clicking, then
switch the key click option to 0. 1 will switch the key click back on
again.

The last two elements of the syntax should help out with any
problems you might have with a cassette recorder or printer, if you

37

have one connected. The first allows you to set the baud rate at
which programs are sent to the cassette recorder, and can be either
1 for 1200 baud or 2 for 2400 baud. The final element is used if
your printer does not conform to the MSX standard, and will be
non-zero if this is the case.

SPRITE$ (<Kn>)=<string expression>

SPRITES isn’t actually a command, it’s a variable. (See Chapter
3 on variables and constants)

We'll be looking at how to define sprites and write programs
which make full use of them in the next chapter. All you need know
at the moment is that to define one, all you have to do is to give the
sprite a name and then sy what you want it to look like. There are
several ways of doing this which will be detailed later. For now, if
you’re interested in the sorts of things you can do with sprites, take
a little time to type in the following program:

i SUREEN 2,0,0

20 FOR 1I=1 10U 8

30 READ B#

4 SE=S5F+UHRE (VAL ("&BE"+B¥))

S50 NEX!1 |

60 SFRIIER () =5% .

70 X%=INI (RND (1) %256) s YZ=INT (RND (1) ¥192)
80 FUI SPRITE @, (X%,Y%).15,0: BEEF
2@ FOR J=1 10 300:NEXT J

100 GOIO 7@

118 DATA VOO11000

120 DAIA BO11110@

1320 DAIA 01100110

140 DAlA 11011011

150 DAlA 11011011

160 DAIA B110011Q

170 DAlA B0111100

180 DAlA BOA11100

Notice how the shape of the sprite is defined by the Is in the data
statements.

38

VPEEK (<video RAM address>)

The VPEEK command allows you to see exactly what is in a
particular part of the computer’s video memory. Peeking, and
poking (which follows) are the domain of the expert programmer
and well beyond the capabilities of the novice. At this stage it’s not
worth saying any more than that, so we won’t!

VPOKE (<video RAM address>),<byte>

VPOKE allows you to insert a byte of information directly into
the computer’s memory, the address being between 0 and 16383.
Unless you know exactly what you’re doing, we would strongly
recommend you NOT to try out this command (unlike virtually any
other command in the language!) If you do try poking and the
computer crashes, you can’t get any more sense out of it. Switching
it off and back on again should solve the problem — we do advise
against it though.

In this section we’ve attempted to demonstrate in detail the most
useful, and hence the most widely-used commands available in
MSX-BASIC, and we hope that you’ve found the experience of
trying them out an interesting one. Impressive though the
commands are in themselves, they don’t realise their full potential
until they’re combined together into programs. We hope that this is
obvious from the programs that we’ve included for explanatory
purposes. Although our intention, as we stated at the beginning of
the chapter, was to use programs as little as possible, where we have
had to use them we hope it’s been apparent that the addition of a
couple of extra lines to a program can dramatically change the
image that appears on the screen.

Well, it’s time to take that step from simply using the commands
as they’re provided, and imposing your own will on the computer,
through the art of computer programming!

Starting to program

After looking at so many of the commands and statements
available in MSX-BASIC, it’s time to look at how we can put them
into programs to do useful things. As a break with the tradition

39

that seems to be a vital part of every book on BASIC
programming, we’re not going to be asking you to write programs
to work out the interest on your bank account (we’ll let you off
with the example in the introduction), make you guess random
numbers for no reason, and so on. Instead we decided to make as
full use as possible of the excellent graphics capabilities of the MSX
computers, to show how programs can be built up to make the
images you see increasingly complex, and so introduce structured
programming in a rather more interesting way than is usually the
case. We’ll then go on to see how the ideas that you learn in this
section can be put to more practical use.

Loading and saving programs

But first, some more mundane matters—you’ve got a few more
commands to lern. We’ve saved these until now as they’re needed
to get progrms into and out of the computer. As your programs get
longer and longer it’s frustrating to have to type them in every
single time you want to use them, or to have to write them out every
time they’ve been run successfully. If you’ve got a cassette recorder
or disk drive attached to your computer, then the following
commands get you round this problem:

SAVE ‘“’<device descriptor>.[<file name>]"

The SAVE command saves the BASIC program currently held in
memory to the device specified by the device descriptor, e.g. CAS
or DISC. For example, SAVE “CAS:JON”’ would save a file to
cassette, and name it JON.

LOAD <““device descriptor:[<filename>]"">[,R]

This command is used to load a BASIC program from cassette.
LOAD deletes the current program from memory. If the R option
is specified then the loaded program starts to run automatically. If
the program name is omitted, then the next program which is
encountered on the cassette is loaded.

MERGE ““[device descriptor:<filename>]"

The MERGE command allows programs to be merged together.

40

It is important that the programs do not contain conflicting line
numbers (for example, two programs both with line number 20),
since only the line which is being merged into memory will be
saved. The command works by merging a BASIC program on
cassette (cassette is the default means of storing programs) into the
program currently held in memory, for example MERGE
“CAS:JON”’ would merge a program called JON, stored on
cassette, into the one currently being held on the computer. If the
program name is omitted, the next program encountered is merged.

BSAVE ‘‘<device descriptor>:[<filename>]"’ [,start address]
[,end address] [,execution address]

As you become more proficient in programming you may move
away from BASIC programming and on to more complex machine
level programming.

BSAVE is used to save a machine code program. It differs from
SAVE (which is used to save BASIC programs) in that it can write
anything stored in memory (including data), onto cassette. The B in
BSAVE stands for ‘‘binary’’, since it is binary data read directly
from RAM that is being saved. Its use, though, is really outside the
scope of this book.

BLOAD “<device descriptor>:[<filename>]"'[,R] [,<offset>]

The BLOAD command loads a machine language program
directly into memory and again it is really outside the scope of this
book. For completeness, however, [,R] causes the program to run
as soon as it has been loaded.

Constructing programs

Having sorted out how to store and retrieve programs, it’s now
time to look at how the programs themselves are built up. We’ll
start off by looking at how you can structure the programs to make
them more efficient and, coincidentally, save yourself a huge
amount of typing! -

MSX-D 4 1

g

FOR...NEXT

You’re already familiar with short programs such as the
following:

1@ SCREEN 2
2 CIRCLE (125,100),100
3@ G6Oro 3o

This draws a circle with a radius of 100 pixels centred on the
point 125,100. But what if you want to draw a series of decreasing
circles? Well, one way (although whatever you do don’t type this
one in!) would be to write the following program:

10 SCREEN 2

20 CIRCLE (125,100),100
3@ CIRCLE (125,100),90@

49 CIRCLE (125,100),80

5@ CIRCLE (125,100),70

60 CIRCLE (125,100),60

7@ CIRCLE (125,10@),50@

8@ CIRCLE (125,100),40

9@ CIRCLE (125,100),30

10@ CIRCLE (125,100),20
118 CIRCLE (125,100),10
120 GUIO 120

As you can see, what this does is to ask the computer first to
draw a circle 100 pixels in radius, then one with a radius of 90
pixels, then 80, and so onuntil line 110 where a circle 10 pixels in
radius is drawn. The last line of the program includes the GOTO
statement which you’ve seen in all the programs so far, and which
we shall look at in greater detail later. In this particular case,
GOTO quite simply tells the computer to keep going to line 120
rather than running off the end of the program. If the GOTO
statement hadn’t been specified, then the circles would disappear
from the screen and the computer would return to the character
screen as soon as the last circle had been drawn.

Now, typing in all of the above is an extremely tedious thing to
do (it was worse for me to type in that it was for you to read!) and is
unnecessary since all that you have to do to achieve the same result

42

is to put a FOR. . .NEXT loop into your program. We’ll be talking
about loops quite a lot in the following pages, and essentially what
they do is to get the computer to perform the same action a number
of times, either in exactly the same, or in a slightly different
manner. To demonstrte a FOR. . .NEXT loop, type in the
following:

1@ SCREEN 2

20 FOR N=10 T0 100
30 CIRCLE (125,100) ,N
4@ NEXT N

5@ GOTO SO

What the computer has done has been to draw a series of circles,
starting with a radius of 10 and ending with a radius of 100, centred
on the point 125,100. How has it done this? Well, the first time it
looks at line 20 the FOR statement tells it to assign the value of 10
to a variable known as N. Whenit executes line 30, therefore, it
knows that it has to draw a circle with a radius of 10 pixels. Line 40
tells the computer to take the next value of N. It goes back to line
20 and, since N has been specified as being from 10 to 100, it adds 1
to the existing value, and in line 30 draws a circle with a radius of 11
pixels. This continues until N reaches 100, at which point the
computer reads line 50, which tells it to stay where it is.

To return to our original problem, what we wanted was a series
of circles, 10 pixels apart. This can be achieved by changing line 20
to read

20 FOR N=10 TO 100 STEP 10

By introducing STEP into the command, we have told the
computer to increment N not by 1, but by a value which we have
specified, in this case 10. Thus, the computer now draws circles
with radii of 10, 20, 30, 100 pixels, the end result being what
we wanted the original program to produce.

The way the circles are drawn, however, is still not right. In our
original long-winded program, we asked the computer to draw
circles with a radius starting at 100 pixels and ending up at 10. The
current program does the exact opposite. We can solve the problem
by changing line 20 again to the following:

43

20 FOR N=100 TO 10 STEP —10

The circles are now drawn using three program lines insted of the
ten we originally looked like needing. If you now look back to the
program we used to demonstrate the PAINT command, you should
be able to see exactly how the circles get filled with their respective
colours. The program we used then was as follows:

1@ SCREEN 2

20 LET C=2

30 FOR N=10@ TO @ STEP -10
4@ CIRCLE (125,10@),N,C

s@ CIRCLE (125,1@0@) ,C

6@ LET C=C+1

7@ NEXT N

8@ GOTO 8@

The structure of the program is the same as the one that we ended
up with above, the exception being that the PAINT command has
been added in such a way that it also makes use of the
FOR. . .NEXT loop. As you can see, the paint colour has been
made variable (C). The colour is initially set to 2 (in line 20), and
each time the FOR. . .NEXT loop is executed, the colour number
is incremented by 1 (line 60). This is achieved using the LET
statement. You will also notice that the colour in which the circle is
drawn is the same as the colour in which it is about to be filled.
Let’s return to our circle drawing problem and add a couple more
lines to it:

1@ SCREEN 2

1S5 FOR M=6@ 10 180 STEP 40
2@ FOR N=1@0@ TO 1@ STEP -10@
3@ CIRCLE (M,10@),N

4@ NEXT N

45 NEXT M

5@ GOTO 5@

All we’ve done here is to add another variable into our CIRCLE
and, using another FOR. . .NEXT loop, ask the computer to move
the x coordinate for the centre of the circles 40 pixels to the right

44

bdi

each time it plots them. Note that the two loops must not cross each
other—the FOR M. ..NEXT M loop encloses the FOR
N. . .NEXT N loop. Whenever you write a program, this should
always be the case — otherwise the computer will respond with an
error message.

Let’s add this second FOR. . .NEXT loop to our program for
drawing circles and then colouring them in. We haven’t asked you
to do anything for yourselves so far, so try adding in the second
loop yourself before looking at the next program.

18 SCREEN 2.

28 LET C=2

30 FOR M=60 10 18@ STEP 4@
4@ FOR N=1@@ TO 1@ STEF -10@
58 CIRCLE (M,1@0),N,C

6@ PAINT (M,10@) ,C

78 LET C=C+1

8@ NEXT N

9@ NEXT M

1800 GOTO 100

You should have got a program that looks something like the
above (we RENUMbered it on the way to stop things getting too
crowded). If you did, then congratulations, you should be pleased
with yourself. If you didn’t, don’t worry about it too much —it’s
just a matter of practice! Now let’s run the program and see what
happens — the result should be quite colourful after all!

What went wrong? As you can see, the computer got halfway
through the second set of circles, stopped, and produced the error
message:

Illegal function call in 50

Have a look at line 50 and see if you can sort out what happened.
The answer is that the computer ran out of colours with which to
fill in the circles. Colour numbers are only available in the range 0
to 15. At the start of the program we asked the computer to start
with colour 2. Fourteen circles later, therefore, it reached colour
15. When line 70 is reached, this is increased to 16, so that when the

45

computer reaches line 50 again, it is asked to draw a circle in a
colour that it does not understand, hence the error message.
So how can we get the program to complete its pattern of circles?

IF...THEN

The reason that we got our error and our program ‘‘crashed’’
was that we allowed the colour number to get outside its permitted
range, and therefore asked the computer to do something it didn’t
understand — draw a circle using colour 16, which doesn’t exist.
The answer, therefore, is to stop the colour number going beyond
its limit by checking thenumber and telling the computer what to do
when the limit is reached. Adding the following line to the program
will achieve precisely this:

75 IF C=16 THEN C=2

This checks to see if C is 16 and if it is, resets it to 2. If it isn’t 16,
it continues to line 80.

If you run the program again with this line included, you’ll see
that this time everything goes to plan. The program runs as it did
before, the difference being that this time when line 70 causes the
value of C to reach 16, line 75 intercepts it and causes the value of C
to return to 2, thereby allowing the process to start all over again.
The same thing happens every time C reaches 16, until all the circles
have been drawn and filled. \

In the above example we used IF. . .THEN to get us out of a
problem we’d got ourselves into. There are many uses that IF can
be put to, however —it’s really up to your imagination how and
when you use it. You have two options in terms of what you can
ask the computer to do IF something happens.

IF...THEN. . .ELSE

To return to our circle drawing program, all that we were
interested in testing was whether C was equal to 16 and if it was, to
change it back to the value 2. If the condition is ‘“‘true’’ then the
line is executed, if it is ‘‘false’’ (i.e. C is not equal to 16) then the
computer moves on to the next line. With larger programs than this
one, it may well be more convenient, if the condition is false, to
move to a line other than the next one in the program, and this is

46

one way in which IF. . .THEN. . .ELSE can be used. For example:
IF C=16 THEN C=2 ELSE 80

is an alternative way of writing line 75. The nett result of the line
being executed is the same, but insted of letting the computer
execute line 80 simply because it is the next line in the program, you
have instructed it exactly what to do if the condition is false.
N.B. Line numbers and programming instructions are equally valid
things to write after THEN or ELSE, as demonstrated by the above
change to line 75.

IF...GOTO

You have already seen the GOTO statement in all the programs
we have asked you to type in. So far, all we have used GOTO for is
to ensure that the result of running a program remains on the
screen, by making the last line of the program loop back onto itself
until you stop it using the CONTROL and STOP keys. What
GOTO does, quite simply, is to cause the program to jump to the
line number which follows it.

To demonstrate how GOTO works, type in the following
program and run it. Before you read the explanation of what’s
going on, have a look at the program and see if you can work it out
for yourself. It’s the most complicated program we’ve asked you to
type in, so don’t worry if it’s a bit difficult. The program is
essentially the same as the circle drawing program; we’ve just
added a few lines to get the computer to ask you if you want it to
run or not. When you run the program, answer yes or no as it asks,
but try replying with why? or any other such word as well, and see
what happens then.

1@ CLS
280 PRINT "Do vou wnat me to draw some
circles?"
3@ PRINT "Please answer yes or no"
4@ INPUT A%
50 IF A$="yes" GOTO 90
60 IF A$="no" GOTO 170
7@ PRINT "Sorry, I don‘'t understand.
Try again”
47

80 G010 40

9@ SCREEN 2

10@ LET C=2

118 FOR N=10@ 10 1@ STEP -10
12@ CIRCLE (125,108),N,C

13@ CIRCLE (125,1@00),C

140 LET C=C+1

15@ NEXT N

160 GOIO 160

17@ END

Let’s look at what the program does, line by line.

Line 10 clears the screen

Line 20 tells the computer to print on the screen the question
“Do you want me to draw some circles?”’

Line 30 asks you to respond by typing either ‘“‘yes’ or ‘‘no”’

Line 40 makes the computer wait for you to give it a word. It
assigns a variable called A$ into which your reply will be put and
causes the computer to print a ? on the screen to let you know that
it is expecting some sort of response.

Line 50 tells the computer that if your answer was “‘yes’’ then it
must jump stright to line 90, ignoring lines 60, 70 and 80. It then
runs through our familiar circle drawing program. If your response
wasn’t ‘“‘yes”” then the GOTO in line 50 isn’t executed so the
computer moves on to line 60.

Line 60 tells the computer that if you reply was “no”’ then it
must go to line 170, where the END statement causes the program
to cease execution and return the OK prompt to the screen.

Line 70 tells the computer to print on the screen ‘‘Sorry, I don’t
understand. Try again.’’ just in case you didn’t reply either ‘‘yes”’
or ‘‘no’’ in line 40. =

Line 80 tells the computer to go to line 40 again, where it waits
for you to type in an answer that it does understand.

We hope that from this explanation you see how flexible
IF. . .GOTO statements can be, and how much typing they can
save by allowing you to use the same part of the program over and
over again, in much the same way as FOR. . .NEXT loops.

48

IF...GOTO.. .ELSE

IF. . .GOTO. . .ELSE statements work in exactly the same way
as IF. . .THEN. . .ELSE, although GOTO restricts the action
after IF to a jump to a different line.

Finally, it is perfectly permissible for you to have a command
line combining a number of these conditional tests, such as:

IF. . .THEN IF. . .AND. . .GOTO. . .ELSE
or even
IF...OR IF...AND IF...THEN. . .ELSE

Programs can be as complex as you want to make them. We
won’t attempt to demonstrte a program with these types of
statements at this point. It’s much more sensible for us to say
simply that as your skill in programming increases, and the
programs you are able to write become more complex, you’ll very
quickly start thinking them up for yourself!

As you will have noticed, we sneaked some new commands into
the last program, namely PRINT, INPUT, and END, which you
hadn’t seen before. As we mentioned at the start of the chapter,
some instructions only really have meaning when they’re used in
programs, and these, along with FOR and IF, are just that sort. It’s
appropriate at this point, now that you’ve been introduced to the
basic elements of program construction, to look at these statements
in detail.

Program statements

The statements in this section don’t have a syntax as such. Rather,
they are followed by a set of information which the statement needs
to do its job.

DATA <list of constants>

In all the programs we’ve looked at so far, we’ve asked the
computer to process things that it already knows about, such as a
change in colour or the width of a circle. What do we do though if
we want to get some outside information into the computer? For
example, how do we tell it the number of miles a car went on a

49

given amount of petrol in a program to work out the average
consumption? One answer is to use a DATA statement. DATA
statements don’t actually do anything, they simply tell the
computer that the numbers or words which follow are data which is
to be accessed by a READ command (which we’ll look at later).
Examples of data statements are:

DATA 1,2,3,4,5,6,7,8,9,10
DATA January, February, March, April, May, June

A DATA statement can contain as many numbers or words as
. can be fitted onto the line, each separated by a comma, and any
number of DATA statements can be used in a program —data is
accessed as though it were one long list, so it doesn’t matter where
the DATA lines are in a program as long as they’re in the right
order. Any types of numbers are allowed, except for numeric
expressions, such as 2+3. If a string constant is included which
includes a comma, colon or space, such as 3rd January, then it
must be surrounded by ‘“ >’ marks. (A string is a collection of
characters such as a name, a telephone number, or a word.)

Finally, the data included in the DATA statement must be the
same type as that expected by the READ statement which must
access it.

DIM <list of subscripted variables>

The DIM statement brings us on to the subject of arrays, as it is
used to specify the size of an array in memory. An array is a special
type of variable allowing a number of related variables to be stored
and accessed easily.

The simplest type of array consists of a series of variables,
grouped together under a single array name, say “A’’. At the
beginning of a program you must define how many variables you
wish to store in A. This is called DIMensioning. A can be set to
store ten variables using the command DIM A (10).

Each variable is given its own number within the array and can
be accessed by giving the array name and the number of the
variable. For example, A(3) is the third variable and A(7) the
seventh.

Arrays allow numbers to be used for variable names where it

50

would be difficult to create new variable names. If we wanted to
store and print the first ten squared numbers, we could have ten
statements of the type LET A=1*1, LET B=2*2 and so on. This is
impractical in the extreme. An easier way of doing this is to use a
FOR. . .NEXT loop and an array, with a program like this:

1@ DIM A(1@)

20 FOR I=1 TO 1@
30 A(I)=1I*]

4@ PRINI 1,A(1)
S0 NEXT I

If you follow the program through, beginning with I = 1, the first
statement sets A(1)=1*1. The next statement sets A(2)=2*2, and
so on up to 10. Array variables can now be manipulated as we
want — we could divide each one by 10, for example, by adding the
line:

35 A()=A1)/10

END

The END statement quite simply tells the computer that it has
reached the end of the program, and instructs it to stop program
execution, close any files which the program has asked it to create,
and return to command level, thereby causing the OK prompt to be
displayed on the screen.

ERROR <integer expression>

MSX-BASIC contains a number of pre-defined error messages,
some of which we’ve already encountered. A full list of these is
given in Appendix B. Each error message has a number associated
with it, which may be in the range 0 to 255. As you can see, if you
look at the appendix, numbers 0 to 60 have already been set aside,
which leaves you numbers 61 to 255 to write your own messages.
It’s best to write your messages starting at 255 and move
downwards, so as to ensure compatibility should the error messages
contained in MSX-BASIC be expanded. An example of how you
might include your own error codes in a program is as follows:

51

1@ ON ERROR GOTO 1000

108 IF A$="No" THEN ERROR 250

1800 IF ERROR=25@ THEN PRINT "Are you
absolutely sure?"

FOR
See page 42.

GOSUB <line number>

We have already seen how the GOTO statement causes the
computer to jump to a specified line number. The GOSUB
statement is an advanced sort of GOTO in that it tells the computer
to go to a subroutine. This is a part of the program which has been
written for a specific purpose and may be called a number of times
from within the main program. As an example, if we extended the
circle drawing program to include the question ‘‘Shall I draw some
squares?’’ then this could be used s a response if the answer to the
question ‘‘Shall I draw some circles?”’ was ‘‘no”’. Add another
option ‘“‘Shall I play a tune?’’ and you can see that the program
would start to get a bit complicated. To simplify matters, if the
answer ‘‘yes’’ was given to any of the questions, then a GOSUB
statement causing the computer to move to a subroutine which
either drew circles, or drew squares, or played a tune would be
advisable.

At the end of a subroutine a RETURN statement must be
included. This instructs the computer to return to the line
immediately after the GOSUB statement which caused the
subroutine to be executed.

Without writing out all of the program lines, the structure of our
super-extended circle drawing program, using subroutines, would
be as follows:

18 SHALL I DRAW SOME CIRCLES
20 IF "yes" GOIO 100

30 SHALL I DRAW SUOME BOXES
4@ IF "yes" GOIO 12@

50 SHALL 1 FPLAY A TUNE

6@ IF "yes" GOTO 140

52

70 1F "no" GOIOD SB@
80 PRINI "Sorry 1 don't understand.

Try

again."

7@ GOT0 1@

100
110
120
130
140
15@
200

299
3008

399
400

499
S00

GOSUB 200

GOT0 1@

GOSUB 300

GOTO 1@

GOSUB 400

GOTO 1@

REM Subroutine to draw some circles

RETURN
REM Subroutine to draw some squares

RETURN
REM Subroutine to play a tune

RE TURN
END

We shall be looking at REM on page 59.

N.B. It is always advisable to put subroutines at the end of the
program, and to enter them via a GOTO command, as this avoids
them being entered inadvertently during normal execution of the
program. It is necessary, however, to stop the program so that it
does not run into the GOSUB routine, but give the message

53

Reiifl Wiliout UUDUD 4 "3 CHUOUUDCEEL e amsi= =t =
command and finds that it has nowhere to return to. In the last
example we used GOTO 10 to stop the program running into line
200.

GOTO <line number>
See page 47.

IF <expression> THEN <expression> ELSE <expression>

See page 46.
INPUT [“<prompt>";I<list of variables>

As you hopefully saw with the program which asked you if you
wanted the computer to draw some circles, the INPUT statement is
used to instruct the computer that some input from the keyboard is
required before execution of the program can continue (in the
program this was either ‘‘yes’” or ‘‘no’’). So that you know that the
computer is expecting a reply, it displays a question mark on the
screen which, if a prompt has been included in the statement, can
be preceded by it. The last program showed how to use a primpt
with INPUT. In the program, the response was put into the
variable called A$ and the computer was told that A$ had to be
“yes” or ‘‘no’’, otherwise it should respond that it did not
understand what you had typed in and ask you to start again.
Whenever an INPUT statement asks for information, your reply
must be in the form that the computer is expecting, otherwise the
computer will respond with an error message until the input it
receives is acceptable.

The error messages associated with incorrect input are as
follows.

Responding with the wrong type of data, for example a letter
instead of a number will cause the computer to print:

?Redo from start

Responding to input with too many data items, for example 1,2,3
when the computer only expected two numbers will produce:

7Extra ignored
54

and finally responding to INPUT with too few data items will result
in:

2?
and the computer will wait for the outstanding data items.
You can get out of INPUT by pressing the CONTROL and

STOP keys simultaneously. Typing CONT will cause execution to
resume at the INPUT statement.

LINE INPUT [“<prompt>"’;I<string variable>
LINE INPUT works in the same way as INPUT, the exception

being that it allows you to assign an entire line of up to 254 -

characters to a string variable without the use of the normal quote
marks. No question mark will appear on the screen unless you
specify one in the prompt. Anything you type in following the
prompt will be assigned to the string variable. Exit from and re-
entry to LINE INPUT is the same as for INPUT.

[LET] <variable>=<expression>

The LET statement assigns the value of an expression to a
variable, eg LET C=2, LET A$="‘yes” etc. Note that LET is
optional —all that you need is the =sign, so that C=2 or
A$ =“‘yes’’ would be equally valid.

LPRINT [<list of expressions>]
LPRINT USING <string expression>;<list of expressions>

These are used to print data on a line printer. For details of how
they work see PRINT and PRINT USING.

MID$ (<string expression 1>,n[,m])=<string expression 2>

MIDS$ allows you to replace a portion of one string with another.
Characters in string 1 are replaced by those in string 2, starting at
position n in string 1. m can be used to specify the number of
characters from string 2 that are used in the replacement. It is
impossible to replace more characters than there are in string 1. As
an example,

55

18 LET A%$="Sunrise"
20 LET B#$="sets up"”
380 MID#(A%,4,4)=B%
4@ PRINT A%

would change A$ from Sunrise to Sunsets.

NEXT <variable>
See page 42.

ON ERROR GOTO

You saw how the ON ERROR GOTO statement worked when
we looked at ERROR. ON ERROR GOTO tells the computer what
to do if an error occurs. If you do not tell the computer what to do
from within the program, or if you include the line ON ERROR
GOTO 0, then the computer will halt execution of the program and
type the error message on the screen. This allows the programmer
more control over any errors which might occur in a program, and
even allows him to recover from errors which would normally have
cuased a program to stop. It’s best to put this statement right at the
beginning of your program.

ON <expression> GOTO <list of line numbers>

ON ERROR GOTO is just one example of the ON. . .GOTO
statement. It can be more generally used to provide a set of
optional GOTOs, the one being chosen depending on the value of
the expression. For example, if the value of the expression is 3, then
the program will jump to the third line number in thelist following
GOTO.

If the value of the expression is zero, or greater than the number
of the items in the list, but less than or equal to 255, then the GOTO
will be ignored and the next statement executed.

The positions at which items are printed will depend on the
punctuation used to separate items in the list, as follows:

, Print lines are divided into zones of 14 spaces each. A comma
causes the item following it to be printed at the beginning of
the next available zone.

56

. A semicolon causes the next item to be printed immediately
after the one preceding it. Typing one or more spaces between
items will have the same effect.

If a comma or semicolon is typed at the end of the <list of
expressions>, the next PRINT statement will begin printing on the
same line, spaced accordingly. If a comma or semicolon isn’t
included, the next PRINT statement will start printing on the next
line down.

Printed numbers are always followed by a space. Positive
numbers are also preceded by a space, while negative numbers are
preceded by a —sign.

To save you from having continually to type the word PRINT,
you can, if you wish, replace it with a question mark, since MSX-
BASIC recognises the two as meaning the same thing in PRINT
statements.

To demonstrate the above characteristics of the PRINT
statement, and in the finest tradition of computer books, why not
try the following: ;

ON<expression> GOSUBX<list of line numbers>

ON. . .GOSUB works in the same way as ON. . .GOTO with
each number in the list of line numbers being the first line in the
subroutine to be moved to.

POKE<address in memory>, <integer expression>

POKE is used in the same way as the VPOKE command we
introduced in the section on graphics commands, and should be
used with just as much caution. It is used to put a certain value into
a specific memory location.

<address in memory> is the address of the memory location to
be poked,-and must be in the range — 32768 to +65535. If the value
is negative, it is taken as being subtracted from 65536, so that, for
example, —1=65535.

<integer expression> is the data to be poked, and must be in the
range 0 to 255. From our introduction, you’ll see that the
maximum amount of RAM that can be poked to is 64K
(64K = 64 x 1024 = 65536 bytes).

MSX-E 57

PRINT [“<list of expressions>"’]

The PRINT statement is used to print information onto the TV
screen, as we saw several times in the final version of the circle
drawing program. If PRINT is used without a following list of
expressions, then a blank line is printed. If an expression is
included, then this will be printed, eg PRINT “‘Hello’’ will cause
the word ‘‘Hello”’ to appear on the screen.

1@ CLS

20 PRINT "Hello"

3@ PRINT "Hello","Hello"
4@ PRINT "What ‘s";"going"
5@ PRINT "on"

68 PRINT "here"

7@ PRINT "then";

88 PRINT "?"

Pretty mind-bending stuff, really, isn’t it?!

If you try running this program on either of the graphics screens,
you will see that nothing happens. In order to get around this
problem, a program of the following type is needed (as you saw
when we looked at LOCATE).

18 UPEN “"GRP:" FOR OUTPUT AS #1

28 SCREEN 2

380 PRINT #1,"Whatever yvou want the
computer to print”

48 GOTO 40

PRINT USING <string expression>;<list of expressions>

Compared to the ease of use of the PRINT statement, PRINT
USING is something of a handful. To save confusing you, it has
been banished to a later chapter.

READ <list of variables>

We introduced READ earlier on when we spoke about the
DATA statement, and said then that the two are always used in
conjunction with each other. Take another look at what we said

58

about DATA, and then run the following program:

1@ PRINT "The sum of the numbers in"j3
20 PRINT " the DATA"j;

3@ PRINT " statements is";

4@ READ A,B,C,D,E,F

S50 G=A+B+C+D+E+F

6@ PRINT G

70 DATA 1,2,3

8@ DATA 4,5,6

Incidentally, we’ve delibertely made this program a bit longer
than it had to be to demonstrate a few of the things we’ve told you
about the PRINT and DATA statements, ie, the use of semicolons,
the space that precedes numbers when they’re printed, and the fact
that data is read sequentially wherever it happens to be. If you
didn’t spot these, you obviously haven’t been paying attention!
Note also that although data can appear anywhere in the program,
we’ve put it at the end so that it doesn’t get confused with the rest
of the program.

Not only can a READ statement access more than one DATA
statement, a number of READ statements can access the same
data. We shall demonstrate this when we look at the RESTORE
command, so don’t delete the program!

REM <remark>

REM is used quite simply to allow you to enter explanatory
remarks into the program to say what particular parts of the
program are doing. We used REM in the super-extended circle
drawing program to show which subroutine was doing what. REM
statements are not executed by the computer but, as you can see
from the way the program was structured, they can be used as entry
points to subroutines via GOSUBs, or from a GOTO statement.
You can add remarks to the end of a line using * or :REM, but it is
advisable to dedicate a full line to a remark since this makes the
program structure easier to follow.

59

RESTORE [<line number>]

As we noted with the READ statement, for data to be reread, it
must be restored. If you kept the program you typed in under
READ, then convert it to the following and you’ll see what we
mean:

18 PRINT "The sum of the numbers in":
20 PRINT " the DATA";

3@ PRINT " statements is";

4@ READ A,B,C,D,E,F

5@ G=A+B+C+D+E+F

6@ PRINT G

78 RESTORE

88 PRINT "The product of the numbers
ig" :

?@¢ READ A,B,C,D,E,F

100 H=A*BX*C*D*E*F

118 PRINT H

120 DATA 1,2,3

13@ DATA 4,5,6

If you try to run the program without the RESTORE statement,
the error message ‘‘Out of DATA in 90’ will appear. Note also
that is is possible to assign a line number to RESTORE, thereby
allowing only data which follows that line number to be reread;
RESTORE 120 will also allow the above program to run, whilst
RESTORE 130 will not.

N.B. You will notice that lines 70 and 90 in the program above
are unnecessary. Having assigned values to A,B,C,D,E and F,
there’s no need to read the data again (line 90). The reason that the
program is written this way is to show as simply as possible how
RESTORE works. You'll find it embedded in more complex
programs later in the book, where it is necessary.

RESUME

The RESUME statement tells the computer what to do after an
error recovery has been performed. Any one of four formats can be
used for RESUME, depending on where it is that you want
execution of the program to resume:

60

RESUME or RESUME O causes execution to resume at the
statement which caused the error

RESUME NEXT causes execution to resume at the
statement immediately following
the one which caused the error

RESUME <line number> causes execution to resume at the
specified line number

RETURN
See GOSUB

STOP

The STOP statement can be used anywhere in a program to
terminate execution and return to command level. When a STOP is
encountered, the message:

Break in xxxx

(where xxxx is the line number containing the STOP statement) is
displayed on the_screen. Execution can be resumed by issuing a
CONT command. You can demonstrate this for yourself by
adding:

75 STOP

to the program listed under RESTORE. Unlike the END statement,
the STOP statement does not close files.

SWAP <variable>,<variable>

SWAP exchanges the values of any two variables, so that if
A=10and B=35, then SWAP A,B will make A=5 and B=10. Any
type of variable may be SWAPped, as long as the one it is swapped
with is of the same type.

Summary

Congratulations! You’ve survived what should be the most
difficult chapter of the book! We hope that it hasn’t been too
painful for you. On the way, you’ve learnt more than seventy of

61

MSX-BASIC’s most important commands and statements, along
with the essentials of how they’re strung together into programs.
We hope that we’ve introduced you to the basic concepts of
programming in a way that is both visually stimulating and
interesting. You should be able to use this section of the book as a
reference guide as you read on through the remaining chapters, and
the programs that we cover become more and more advanced.

In the next chapter we’ll be building on the basis of what you’ve
just learnt, by introducing programs with more complex structures,
and describing the few remaining commands, statements and
functions that we felt were inappropriate for this chapter. We’ll
also be looking in a lot more detail at data types, and covering the
more useful arithmetic functions contained in MSX-BASIC. Once
you’ve mastered all of these, you should have sufficient knowledge
of your computer and its language to be able to write a program to
perform virtually any task you can think of. We’ve included in the
following chapters a number of skeleton programs to provide the
basis of exam grading applications, games and music applications,
leving you to adapt them so as best to serve your particular needs or
interests. In the last two chapters we’ll be looking at the more
esoteric side of programming using the Graphics and Music Macro
Languages themselves.

62

Working with numbers

By now, you are almost certainly aware that computers require
some form of data to be supplied to them before they are able to do
any useful work. In this chapter we will be looking at the types of
data that a computer can use, and which type of data is used when.

MSX-BASIC supports a number of different data types. There
are a total of seven types available, namely integer, fixed point,
floating point, hexadecimal, octal, binary and character. We’ll deal
with these a little later on.

Data may be incorporated in programs in one of two ways: as a
constant or as a variable. A constant doesn’t change its value when
a program is run. A variable can vary during a program’s
execution — that is, its value can alter if you want it to.

Constants

Firstly, how do you declare constants for each of the different data
types? Well, we’ll now introduce each of the data types and show
how it’s done.

An integer is simply another word for a whole number — those
numbers which don’t contain a decimal point anywhere. These
have to be within the range of — 32768 to 32767. To put these into
programs, you just type in the number within an MSX-BASIC
statement. For example, if we want to add 10 to 5, the following
program will do it.

10 PRINT 10+5

No matter how many times you run this little program, the end
result will always be that the value printed is 10+ 5 (15). Once part
of a program, you’re stuck with a constant’s value, for better or for
WOrse.

Now let’s look at the subject of fixed point constants. These are
positive or negtive real numbers and can contain a fractional part.
If they do have a fractional part, it also goes without sying that they

63

have a decimal point. The combination of a single decimal point
and a series of numbers will declare a fixed point constant in a
program.

Acceptable constant values of this type are: —3.645, 123.87,
0.013, —0.56746, .78 and so forth.

Another type of constant which can have a decimal point in it is a
floating point constant. These are positive or negative numbers,
and can be declared in the following ways. One method is to use
what is sometimes called scientific notation. The numbers are
represented by three components — the mantissa, the letter E or D,
and an exponent. This is best explained by example. The number
753000 would be represented as 7.53E5. The mantissa in this case is
7.53, and the exponent is 5. What the statement is saying is that the
number can be expressed as 7.53 multiplied by 10 to the power 5, or
in more simple terms, it is the equivalent of moving the decimal
point S places to the right. If the exponent is negative, then the
decimal point would be moved to the left. The exponent can only
be an integer value in the range of —64 to 63.

Substituting a D for an E means that a number will be stored to
14 decimal places of accuracy, as opposed to 6 when E is used.
Valid examples of floating point numbers are as follows:

Actual Value Floating Point Representation
12400 12.4E3

0.00683 6.83E-3

—0.00004077032 —4.077032D-5

534500210 5.3450021D8

All the numeric types of data can be stored to different levels of
accuracy. Single precision numbers are accurate up to 6 decimal
places; double precision numbers are accurate to up to 14 decimal
places. You can determine how accurate you want a number to be
by using E or D for floating point constants, or the symbols # or !
for all other types of numbers. You’ve already seen how to declare
single precision and double precision for floating point numbers.
Single precision for integers and real numbers is obtained by
placing an exclamation mark at the end of a list of digits, for
example 145! or 89.6!

Double precision is available using the letter D in floating point

64

numbers, and by placing an optional # symbol at the end of a
fixed point number or integer. The # is optional because as soon as
the MSX computer is switched on, MSX-BASIC will assume that
all numbers will be double precision, unless of course, you tell the
computer otherwise. Double precision is the default precision in
MSX-BASIC. So 5600 is a double precision value, as are 4573.56,
12.93#, —89.9#, and 12314.

Hexadecimal constants are perhaps totally new to you.
Hexadecimal values are numbers represented in base 16. Instead of
units, tens, hundreds and so on of the usual system, hexadecimal
has units, sixteens, two-hundred-and-fifty-sixths (16 X 16) and so
on. To make this a little clearer, here’s how you count up to 16 in
hexadecimal:

Decimal value :012345678910 11 12 13 14 15 16
Hexadecimal value : 0123456789 A B C D E F 10

Note that above 9 and up to 16, numbers become letters in
hexadecimal. It is possible to have a number like ‘‘FFFF’’, or
“BCDD”’ in hexadecimal code (or Hex as it’s abbreviated). Hex
numbers are often used to program machine code so you don’t
need to worry about it too much. This is the only place you’ll find a
reference to them in the book, so this is how you declare them.
Quite simply, the prefix, &H is placed in front of the number.
Examples of Hex numbers are: &H3FA, &H1650, &H2FE.

Octal constants are another oddity left over from the golden days
of computing. Just as hexadecimal uses 16 as its base number, and
decimal uses base 10, so octal uses base 8. Some people still use
octal numbers, but you’re not likely to want to use them. If you
should, however, here’s how you count up to 16 in octal:

Decimal value : 01234567 8 9 101112131415 16
Octal :01234567 10 111213141516 17 20

A prefix is again used to declare an octal constant. Instead of
&H, for hexadecimal, we use &0O. Examples of valid octal
constants are &012, &05643, &0129.

Binary constants are denoted by the prefix &B. Binary is the
number base two, as described in Chapter 1. We will be using these
constants a little later on. As explained earlier, communicating with

65

a computer in 1’s and 0’s is just about as basic as you can get.
Examples of binary constants are: &B11110000, &B00101110,
&B11001101. You can represent any number from 0 to 255 using
one byte.

The final type of data available is the character string. A
character string is anything enclosed in double quotation marks.
The letters A to Z, a to z, 0 to 9 and any other elements of the
MSX-BASIC character set are character strings when put in double
quotes.

These strings can be up to 255 characters in length. Here are a
few examples:

“fred”’, ““1234°°, ““$%"***, “‘I am a string!”’, ‘“345.687".

These are commonly used when using the PRINT statement, for
example, when printing out a message in a program:

18 PRINT "Hello, I am a constant
string"

2@ PRINT "I cannot be changed while
running a program.”

Now that the string constant has had its say, we’ve covered all
the constants available. In the next section, we’ll look at variables,
how to declare them, and how to use them.

Variables

Variables are names that you can use to represent values in a
program. They can be altered during the execution of the program.
Like constants, they can be of different types—a total of four in
fact.

- To begin with, we’ll look at how to set up variables. As with
everything else in programming, there are some basic rules to learn
first. The variable name can be any length you like, providing that
you don’t exhaust all the available memory! The start of a variable
name must be a letter.

There are no spaces allowed in the variable name. You can’t give
the variable a name which is a BASIC reserved word or which
contains a BASIC reserved word. As the words are reserved for

66

MSX-BASIC, the language doesn’t take kindly to a programmer
pinching them! All these rules may seem a little restricting, but
you’ll very soon get used to them. For the time being, you can’t go
far wrong using just the single letters from A through to Z.

Variables may be declared as a particular data type by using a
variable declaration character. These are put at the end of the
variable name and are as follows:

% Integer variable

! Single precision variable
Double precision variable
$ Character string

Below is a sample of valid and invalid variable names:

Valid : Range% A$ MSX! Trajectory Namel10$ Pl1%
Invalid : 15X NAMELISTS$ 2PAYROLL DIM%

An alternative means of declaring variable type is to use the DEF
statement. This has the general form:

DEF<variable type> [<expression>],[expression],. . .

The variable type may be declared by one of INT, SNG, DBL,
and STR, which are the respective specifiers for integers, single
precision, double precision, and string data types. The expression
used in the statement is a letter, or range of letters. For example, if
the statement DEFINT A is executed, all variable names beginning
with the letter A will be integers. If the statement DEFSTR A — Z is
executed, all variables in the program will be assumed to be
character strings. To change the data type of any particular
variable after a DEF statement has been used, all that needs to be
done is to use the variable declaration characters. The example
below illustrates the DEF statement.

18 DEFSTR A-Z:REM DECLARE ALL VARIABLES
AS CHARACTER STRING

20 S="FRED ":R="BLOGGS"

38 PRINT S+R

4@ PRINT A

67

o0 AZ%Z=100a
6@ PRINT A%Z*10

Note that the strings S and R do not require the $ character
declaration character. When the variable A is printed out in line 40
it is an empty string, becoming an integer in line 50.

The last type of variable is the array subscript we met earlier.
We’ll discuss arrays in more detail on page 000.

Once you’ve decided on your variable names, you can then put
them into programs and start giving them values. The process of
giving a value to a variable is known as variable assignment. Try
running the following program:

10 REM Variable Assignment
20 PRINT NUMBER%Z

30 INPUT NUMBERZ

4@ LET NUMBERY%=NUMBERZ+1
S@ PRINT NUMBERY

The only variable in this program is NUMBER%, an integer
variable. When printing the value out in line 20, NUMBER% is 0.
This is because when MSX-BASIC encounters a new variable name
in a program, it initially assumes that its value is zero. In line 30, we
have an INPUT statement which asks you to assign a value to
NUMBER%. In line 40, the LET statement adds 1 to this value,
and this is printed out in line 50.

If you tried typing in a letter or word to the ? prompt, the BASIC
would have come up with the message — ‘?redo from start’. The
reason for this (as you should remember) is that you’d told the
computer to expect an integer to be typed in. So it’ll keep waiting
until you give it an integer to work with. Very patient things,
computers . . .!

As you should also remember, the LET part of line 30 is
optional. The statement “NUMBER% =NUMBER% + 1" would
have done just as well. You can assign any variable in this way.

Now try changing the % signs to $ signs, making NUMBER into
a string variable. If you run the program now, you’ll get another
message from MSX-BASIC. This one will be accompanied by a

68

beep and won’t be nearly so pleasant. In fact, what you will have
encountered is the error message ‘Type mismatch in 30’ (dramatic
music, please). You will come into contact with many of these
infuriating little messages as you program —a full list is included in
Appendix A. The reason that the message was printed was because
the computer tried to add 1 to whatever word you typed in, and got
very confused. It’s rather like trying to add apples and oranges
together — they are two different sorts of object and cannot be
treated in the same way. If you remove the offending line (40), then
everything in the garden will be rosy again: whatever word you
typed in will be printed out, and the computer will not have to try
and add “‘apples and oranges’’ together. But try this before going
on. Change line 40 to:

LET NUMBERS$ =NUMBERS + ““1”’
Putting quotes round the 1 has turned it into a string and the

computer is quite happy to add strings together.

It’s useful to know how much memory the computer will require
for the values of variables. The table below shows how much space
each type of variable will need, including array variables.

VARIABLES:

Data Type No. Of Bytes Required

Integer 2

Single Precision 4

Double Precision 8

Strings 1 per character +3 e.g. the string
“FRED”’ would require 7 bytes in all

ARRAYS:

Data Type No. Of Bytes Required

Integer 2 per element

Single Precision 4

Double Precision 8

Having introduced all the different types, we’ll now look a little
more at the programming side of things, and introduce some simple
maths onto the scene.

69

Mathematical Expressions

Mathematics is not the most popular of subjects. Unfortunately,
computers are quite good at maths, so we can’t really overlook it.
Starting with the very simple stuff first, just type in:

PRINT 10*10

The computer will reply with ‘100’.

This is the computer behaving as a simple calculator. What you
just asked it to do was print out 10 multiplied by 10. As there is no
multiply symbol (x) available, the computer uses an asterisk
instead. Try the following three as well:

PRINT 10+ 10
PRINT 10-5
PRINT 10/2

They were addition, subtraction and division operations—
everything you need for simple arithmetic. Now let’s go about
putting these into programs. The following program simply carries
out all four arithmetic operations on any two numbers you supply:

1@ INPUT "Two numbers, please";A,B
28 PRINT "A + B = ";A+B
3@ PRINT "A - B = ":A-B
4@ PRINT "A *# B = ";A%*B
5@ PRINT "A / B = "3;A/B

Not a staggeringly complex program, but it works! We’ll move
onto a more ambitious program now. The aim of this program is to
accept words and numbers from the user and then carry out some
simple arithmetic. What has to be input is the name of a maths
operation, in capitals, and two numbers. For example, a user could
type: MULTIPLY,5,4 and the result would be 20. There are a few
new things to learn before you can do this.

The program ‘‘knows’’ about the four words associated with
arithmetic operations. They are represented as constants in the
program. What the program has to do is compare the word
supplied by the user with its own constant words. The way MSX-

70

BASIC compares two character strings is using the equals sign, just
as it would compare two numbers.

So the statement which the program uses to decide whether or
not it should multiply, divide, add or subtract is the IF statement
introduced earlier. If the word EXIT is typed in instead of the name
of a maths operation, then the program prints out a cheery
goodbye message, and finishes. Otherwise it compares the word
input against the four arithmetic terms. If there is no match at all,
then the computer tells the user that it doesn’t have a clue what to
do, and asks for new information to be put in. The program looks
like this:

1@ REM SIMPLE CALCULATOR

28 REM PRINT INSTRAUCTION PAGE

30 CLS

4@ PRINT "CALCULATOR PROGRAM":PRINT "——-—
5@ PRINT "Type in the name of the mathem
atical "3

68 PRINT "operation followed by two numb
ers. ":PRINT

7@ PRINT "The instruction and two number
s should "3

8@ PRINT "be separated by commas, for
example:"

9?8 PRINT "MULTIPLY,S5,4"

128 PRINT "Type °‘EXIT,0,0° when you're f
inished. ":PRINT

110 PRINT: INPUT "Input data : ";A$,X,Y
120 IF A$="EXIT" THEN GOTO 18@

130 IF A$="ADD" THEN SUM=X+Y:PRINT "The
sum of "3;X3" and "3Y3" is "3;SUM:GOTO 110
1480 IF A$="SUBTRACT" THEN SUM=Y-X:PRINT
“The result of "3;X3" from "3;Y;" is "3;SUM
:60TO 110

150 IF A$="MULTIPLY" THEN SUM=X#Y:PRINT
"The product of "3;X;"multiplied by ";Y;3"
is ";SUM:6G0TO 110

168 IF A$="DIVIDE" THEN SUM=X/Y:PRINT "T

71

As you can see, the values are totally different for what seems a
totally straightforward statement. In fact, MSX-BASIC would
come up with the number 26. This is because it has been instructed
that all multiplication should be done before addition. Hence the
term ‘‘precedence’’.

Multiplication has precedence over addition. The order of
precedence is summarised for all arithmetic operators thus:

Symbol Operation Example
& Exponentiation A"B
— Negation —-A
sl Multiplication and floating
point division A*B
A/B
¥ Integer division A¥B
MOD Modulo arithmetic A MOD B
+,— Addition and subtraction A+B
A-B

This order can be altered by the use of parentheses. With the
example shown above, if we want to carry out addition before
multiplication, we would have to write the expression thus:

A=(B+C)*D

The operation in the brackets is always evaluated first. If B is 2,
C is 4 and D is 6 then the result would be 36.

Exponentiation is simply the process of raising a number by a
power. For example, if you type:

PRINT 10"2

the result 100 will be printed out. In other words, the statement you
typed in is the same as saying ‘‘raise 10 to the power of two’’. The
notation used by MSX-BASIC in this case is equivalent to the
following: 102. Other examples and their results are printed below:

Statement Result Equivalent Notation
PRINT 1074 10000 104

PRINT 2”8 256 28

PRINT 90725 76843.347142016 902.5

PRINT 1.37740 294321.9730757 1.3740

MSX-F 73

he result of "3;Y:" divided by "3X3" is
» 3SUM:GOTO 11@

178 PRINT "Sorry, I don’'t understand."”
A $3" Try again”":60T7T0 110

180 PRINT "Goodbye then!"

19@ END

Note the use of the REMark statements. These are quite useful if
you leave a program on tape for a while, and can’t remember quite
what it does. It also enables you to follow the logic (or rather what
you thought was logic!) of the program if you want to alter it at a
later date. Follow the program through—it’s relatively easy to
understand.

Addition, subtraction, multiplication and division are not the
only mathematical operations possible with MSX-BASIC. The
others available are exponentiation, negation, integer division, and
modulus arithmetic. All arithmetic operators obey what is known
as the precedence rule. When the MSX-BASIC interpreter looks at
a line full of these arithmetic operators, it needs to decide which
operation to carry out first. Given the example statement:

A=B+C*D

it is difficult for MSX-BASIC to decide whether you want to add B
to C first then multiply the result by D, or multiply C and D
together first and add B to the result. If you substitute numbers for
the letters in the above equation you’ll see where the difficulties
arise.

Assuming that B is 2, C is 4, and D is 6, then for the first case,
add B to C then multiply by D, the steps will look something like
this:

First add 2 to 4=6
Multiply 6 by 6
Therefore A =36

And for the second case, where C*D is carried out first, followed
by the result being added to B:

First multiply 4 by 6 =24
Add 24 to 2
Therefore A =26

72

As you can see, the values are totally different for what seems a
totally straightforward statement. In fact, MSX-BASIC would
come up with the number 26. This is because it has been instructed
that all multiplication should be done before addition. Hence the
term ‘‘precedence’’.

Multiplication has precedence over addition. The order of
precedence is summarised for all arithmetic operators thus:

Symbol Operation Example
E Exponentiation A"B
- Negation -A
= Multiplication and floating
point division A*B
A/B
¥ Integer division A¥B
MOD Modulo arithmetic A MOD B
+,— Addition and subtraction A+B
A-B

This order can be altered by the use of parentheses. With the
example shown above, if we want to carry out addition before
multiplication, we would have to write the expression thus:

A=B+C)*D

The operation in the brackets is always evaluated first. If B is 2,
C is 4 and D is 6 then the result would be 36.

Exponentiation is simply the process of raising a number by a
power. For example, if you type:

PRINT 10”2

the result 100 will be printed out. In other words, the statement you
typed in is the same as saying ‘‘raise 10 to the power of two’’. The
notation used by MSX-BASIC in this case is equivalent to the
following: 102. Other examples and their results are printed below:

Statement Result Equivalent Notation
PRINT 1074 10000 104

PRINT 278 256 28

PRINT 90" 2.5 76843.347142016 902.5

PRINT 1.37740 294321.9730757 1.3740

MSX-F 73

Integer division differs from the normal floating point division in
the following way. The operands are truncated to integer values,
the division takes place, then the result is truncated to an integer.
Truncating a number means ‘‘cutting off”’ everything after the
decimal point. After truncation, 2.57 would become 2, 9.999999
would become 9 etc. The symbol to denote integer division is
perhaps unfamiliar to you. It is the Japanese equivalent of our
pound sign and normally represents the YEN, the currency of
Japan. If we break the process of integer division up into steps.
you’ll be able to see exactly how it works. As an example, let’s
divide 345.978 by 12.866 using integer division. The steps the
BASIC uses are outlined as follows:

Statement: PRINT 345.978¥12.866

1 Truncate : 345.978 to 345
2 Truncate : 12.866 to 12
3 Divide : 345 by 12
4 Result =285

5 Truncate : 28.74 to 28

6 Result =528

If we had used normal division (using the / symbol) the final
result would have been quite different (26.890875174879 in fact).

Finally, we come to modulo arithmetic. This is denoted by the
MOD operator. What this does is to give you the integer remainder
from a division. If you type in ‘PRINT 7.86 MOD 2’. The result
printed out would be 1. The way that MSX-BASIC arrives at this
figure is to truncate 7.86 to 7, divide 7 by 2, thus leaving a
remainder of one. Again we have a list of examples for you to look
at:

Statement Result
1234.4321 MOD 11.31 2 (1234/11=112 with remainder 2)
100 MOD 10 0 (100/10 = 10 with remainder 0)
76 MOD 13 11 (76/13 = 5 with remainder 11)
99.99 MOD 31 6 (99/31 = 3 with remainder 6)

An important point to bear in mind with any type of division is:
Don’t divide anything by zero! The computer will always generate
an error message if you try to divide any number by 0. You have to

74

be especially careful with the MOD operator and integer division.
If you have a statement such as 7 MOD 0.45, or 7¥0.45, both these
operators will truncate 0.45 to 0, resulting in an error message.
Also watch out for it when using variables. You may try and divide
a number using a variable which has not been assigned a value.

That’s an end to the arithmetic operators (so you can breathe a
sigh of relief!), but these are not the only type of operators
available. There are two more sets to look at in the next section.
Before you throw your hands up in despair, they’re very useful and
above all, very easy to understand.

Logical and Relational Operators

These types of operators will frequently be used in longer programs
and you’ll probably use relational operators more than even the
arithmetic operators, so it’s worthwhile getting to know them.

All that relational operators do is to compare things. It’s as
simple as that. They can see if two things are the same, if one is less
or greater than the other, or if they’re totally unalike.

Yet another table should be enough to summarise the relational
operators. They are very simple to use. There are six of them, and
here they are along with what they compare:

Operator Function Example
= Tests for one thing equal to

another X=Y
<> Tests for inequality X<>Y
< Less than xX<Y
> Greater than xX>Y
<= Less than or equal to xX<=Y
>= Greater than or equal to xX>=Y

These operators are particularly useful in IF...THEN
statements. For example, if we have a set of class examination
marks then we would probably want to work out what grade each
student should receive. We’ll put this into practice in a full-blown
program below. Students’ names, their subject and their
examination marks for each of three subjects are entered into the
program. The program checks or validates the data on input so that
impossible to enter exam marks such as —34% or 230%. The final

75

-

output from the program is the student’s name, the grade for each
exam, and the average grade over all subjects. After each student
has been processed the program ask if any more information is to
be supplied.

A new function INT is also introduced. What INT does is to
round down, or truncate a number. (Refer to Appendix A for a full
list of other MSX-BASIC functions). A subroutine is also used to
validate the numerical data. As there are three different exam
scores to be tested with just one subroutine, before jumping to the
subroutine, a variable called TEMP! is assigned to the value of a
score. Each time a subject score is tested, the value of TEMP!
changes. A subroutine is also used to assign grades to the scores,
with the variable TEMP! used in the same manner again.

The steps of the program can be summarised in words. This
method of planning a program is known as an algorithm (which is
essentially the same as the flowchart we introduced earlier on). The
algorithm for the program is:

START Input the Student’s Name
Input Biology, Chemistry, and Physics marks
Check the data is correct
Convert each of the marks into corresponding grades
Average the three marks and round down the result
Print out name, Biology, Chemistry and Physics grades,
plus the examination average.
Ask if there is more data to be processed, if there is then
‘go to the START again, otherwise stop.

76

[INPUT NAME |}

| INPUT BIOLOGY MARKS |

| CHECK BIOLOGY MARKS |

[INPUT CHEMISTRY MARKS]|

[CHECK CHEMISTRY MARKS]

[INPUT PHYSICS MARKS]

| CHECK PHYSICS MARKS |

y
IEONVERT INTO GRADES - VARIABLE GRADESJ

[T:IND AVERAGE - SUM AND DIVIDE BY THREE'

{

[FORMAT AND PRINT OUT DATA |

| CHECK FOR MORE INPUT |
1
NO

YES

END

Figure 6 Flow diagram for grade calculation program.

This is shown in the flow diagram in Figure 6. The final program
is listed below. It is well commented to show you how each step of

the algorithm has been translated to MSX-BASIC.

10 REM PROGRAM EXAM SCORES
20 REM CLEAR SCREEN AND INPUT DATA
30 CLS

77

480 FRIN1 "Type in student 's name ": INPU
1 S%

S@ PRINI "Type in Biology score ": INPUT
B1aoL!

6@ VTEMP'=BIOL':G0SUB 37@8:BIO0OL!=TEMF':REM
CHECK SCURE

70 PRINT "lype i1in Chemistry score ":INPU

T CHEM!

80 TEMP'=CHEM':G0SUB 37@0:CHEM!'=TEMP!':REM
CHECK SCORE

9@ FRINT "Type in the Physics score ":IN

PUT PHYS!

10@ TEMP'=PHYS':60SUB 37@:PHYS'!'=TEMF!':RE

M CHECK SCORE

110 REM ASSIGN GRADES TO THE SCORES

120 TEMP'=BIO0L':G0SUB 430:G1%=GRADE#

130 TEMF'=CHEM':G0SUB 430:G2%=GRADE®$

140 TEMP!=PHYS':G0SUB 430:G3%=GRADE#

150 REM CALCULATE EXAM AVERAGE FOR ALL T

HREE COURSES

160 AVERY%=INT ((B10OL ' +CHEM!'!+PHYS!) /3)

170 REM PRINT OUT ALL THE DATA

1880 CLS:PRINT "STUDENT RESULTS":PRINT “-
et e s e it et i o et s e e O H PRIN l

198 PRINT "STUDENI NAME : ":S$

200 FPRINI "GRADES: ":PRINI

21@ PRINT "BIDLOGY : "3;G1$:PRINT"CHEMIS
IRY: "3;G2%: PRINT "PHYSICS : ":;G3%

228 FRINT

230 PRINT "EXAMINATION AVERAGE : ":AVERZ
240 PRINT:PRINT

258 REM SEE IF THE USER WANTS 70 CARRY O
N OR NOT

260 PRIN1 "ANY MORE STUDENT DATA" : INPU
T "TO PROCESS (Y OR N)":;REPLYS$

270 REM 1F THE USER TYPES "Y" THEN CARRY
ON ELSE FINISH

280 IF REPLY$="Y" THEN GOTO 30

290 IF REFLY#="N" THEN GOTO 330@

78

300 REM THE REPLY WAS NOT RECOGNISED - T
RY AGAIN!

310 PRINT "PLEASE ANSWER WITH A ‘Y '": PR
INT "OR ‘N°":60T0 260

320 REM DEAL WITH THE ‘N° CASE - PRINT O
UT A GOODBYE MESSAGE

330 PRINT "END OF DATA INPUT"

34@ END

350 REM#**x#%%SUBROUT INES*% %% %%

36@ REMxSUBRUOUI INE ~ VERIFY THE INPUT SC
ORES

370 IF TEMP'!<=100 AND TEMF'>=0 THEN RETU
RN: REM DATA 18 Ok

380 REM ALLOUW THE USER TO CORRECT H1IS MI
STAKE

390 PRINT "THAT VALUE WAS NOT IN" : PRIN
I "THE RANGE OF EXAM SCORES"

400 FRINI "1RY ENTERING A VALID VALUE ":
INFPUT TEMP!

41@ GOTO 370

420 REM*SUBROUTINE -~ WORK OUT THE GRADES
43@ IF TEMP!>=65 THEN GRADE$="A":RETURN

44@ IF 1EMF!>=55 IHEN GRADE$="B":RETURN

45@ 1IF TEMP!>=45 THEN GRADE$="C":RETURN

468 IF TEMP!>=35 THEN GRADE$="D":RETURN

47@ IF TEMF!>=25 THEN GRADE$="E":RETURN

488 IF TEMP!<25 THEN GRADE$="FAIL":RETUR
N

The relational operators are used for three main things in this
program: to test whether the numbers input are valid, to decide on
the grade assigned, and finally to examine the user’s reply to the
question ““ANY MORE STUDENTS TO PROCESS?”’. In the case
of assigning grades, all that the program does is to ask some
questions. If the exam mark is GREATER THAN OR EQUAL TO
the grade corresponding to 65, which is where the boundary for an
A grade starts, then the GRADES variable’s value becomes “A”,
and so on for all the possible grades.

You may have noticed something odd about the statement which

79

e

=t ==

= = -

checks if the numbers input are in range—line 370. That line
contains the word AND which is a logical operator. This is the final
class of operator we’ll discuss in MSX-BASIC.

Logical operators are most often used in IF...THEN
operations. They perform logical or Boolean operations. They are
NOT, AND, OR, XOR, and EQV. Taking the AND condition
which we used in the previous program:

370 IF TEMP!< =100 AND TEMP!>=0 THEN RETURN

What that line was testing for was both conditions being true. If
both were true THEN some sort of action would be taken, in this
case a return from the subroutine.

In computer logic ‘true’ means ‘yes’ and ‘false’ means ‘no’. As
an example, consider the variable X, where X is equal to 10. The
following expressions show how true and false are applied to
logical operations:

X<20 True
X=10 True
X>10 False

We could extend this with a variable called Y, where Y =50. We
can now see how an expression like:

(X=10) AND (Y =40)

can be evaluated. In this case the answer would be false, because
one of the conditions has not been met. It is not true to say that
X =10 and Y =40, because both expressions must be true. On the
other hand, an expression like:

IF X=10 OR Y =40

Will give a true answer because one of the two expressions is true.

Conditional testing is one of the ways in which a computer
appears to ‘‘think’’. It can compare two values and seem to make a
decision about what to do next based on its comparison. All this
uses is the computer’s ability to evaluate simple mathematical
expressions and conditions.

You can represent the way a logical operator works by using a
truth table. In this type of table, the two states of the conditions
being tested are represented as T (or 1) if the condition is true, and

80

F (or 0) if it is false. The outcome of the logical operation will
depend on what the state of the two conditions were. The table
below summarises the logical operators. They are listed in order of

precedence.
NOT is TRUE only when a condition is false. It will also be

FALSE when a condition is true. For example:

10 X7%=0
20 X7%=NOT (X%)

X% will become — 1. Another use is demonstrated below

10 X%=-1
20 1F NOT X% THEN BEEP

The program will generate a beep as NOT X% is false (zero)
The truth table for NOT is:

X NOT X
T F
F E

AND is TRUE only when both conditions are true. For example:

10 X=58:Y=100
20 1F (X=5@) AND (Y=108) 1HEN BEEP

As both conditions are true, a beep sound will be generated.
The truth table for AND is:

X Y X AND Y

R E F

T F F

F T F

F F F

OR is TRUE when one or both of the conditions are true, for
example:

18 X=10:Y=40
20 IF (X<1@8) OR (Y>4@) THEN BEEP

81

The test is true because the value of X matched one of the

conditions.
The truth table for OR is
X Y XORY
T T T
T F T
F T T
F F F

XOR (exclusive OR) is TRUE only when one condition is true
and the other is false, for example:

10 X=10:Y=40
20 1IF (X<1@@) XOR (X>4@) THEN BEEP

The outcome is true. If Y was 100 though, the test would have

i failed.
' The truth table for XOR is:
4 X Y XXORY
T T F
1 T F T
F T T
F F F

1| EQYV is TRUE when both conditions have the same state; that is
; they are either both false or both true.

Examples, where in both cases the conditional statement is true,
are:

18 X=10:Y=10
20 1F X=18 EQV Y=10 THEN BEEP

or

18 X=108:Y=10
20 IF X<>18 EQV Y<>1@ THEN BEEP

82

The truth table for EQV is:

X Y XEQVY
¥ - T
T F F
F T F
F F -

IMP (Implication) — A strange one this. The condition is FALSE
only if the first condition tested is true and the second is false. For
example:

10 X=10:Y=50
20 IF X=1@8 IMP Y=1@8 THEN BEEP

The above program will not beep, as X =10 is true and Y =10 is
false.
The truth table for IMP is:

X Y XIMPY
i3 T T
T PIEEN
F T T
F F T

This completes our guided tour through numbers and operators
that MSX-BASIC can work with. From now on we’ll be doing a
little more programming.

Using Arrays
In this section, we’ll look at the array data structure in much more
detail giving examples of its use. As you will already know, arrays
are defined using the DIM statement. Using the DIM statement,
you give the array a name and then the dimensions of the array,
that is how many elements it is to contain.

The array name will also define the data type of the elements to
be stored in the array. For example, if an array is defined thus:

DIM AS$(5)
the array will be able to store a maximum of 5 elements which will

83

be characters. You can’t mix the data types in any one array. The
single type of data allowed in an array is known as the array base
type.

Each element of an array is to be given a unique number, or
indexed, for easy reference. The number used to index an array is
termed the array subscript. The following short program is used as
an aid to remembering the colours a particular number refers to in
MSX-BASIC.

18 DIM A% (16)

28 FOR I=0 TO 15

38 READ CL#

48 A$(1)=CL%

98 NEXT I

6@ CLS

70 INPUT "COLOUR NUMBER, PLEASE "j3;N7%
8@ IF NZ<@ OR N%Z>15 THEN BEEP:GOTO 4@
7@ PRINI

1800 PRINT "COLOUR "3iNZ%Z:" 1S "3;A$(N%)
11@ REM COLOUR INFORMATION

12@ DATA TRANSPARENT ,BLACK,MEDIUM GREEN
130 DATA LIGHT GREEN,DARK BLUE

140 DATA LIGHT BLUE,DARK RED,CYAN

15@ DATA MEDIUM RED, LIGHT RED,DARK
‘YELL OW

160 DATA LIGHT YELLOW, DARK GREEN,
MAGENTA,GREY ,WHITE

178 END

84

The table below shows the way the array A$ is laid out. When
you type in a number, it first checked to see if it is in the range of
acceptable numbers. If it is correct, then the number typed in is
used to ‘look-up’ the name of the colour in the array AS$.

Array Index Contents

0 “TRANSPARENT”’
1 “BLACK”

2 ‘“MEDIUM GREEN”’
3 “LIGHT GREEN”’

4 “DARK BLUE”’

5 ‘“LIGHT BLUE”

6 ‘“DARK RED”’

7 “CYAN”

8 ‘“MEDIUM RED”

9 “LIGHT RED”’
10 “DARK YELLOW”’
11 “LIGHT YELLOW”’
12 ‘“DARK GREEN”’
13 “MAGENTA”
14 ‘“GREY”’
15 ‘“WHITE”

The array data structure can be viewed as a table. The advantages
of using arrays is their speed. Try writing the above program using
IF. .THEN statements, and you’ll see what we mean:

88 1F N%=8 THEN PRINT "COLOUR 1 IS
TRANS PARENT "
98 IF N%=1 THEN PRINT "COLOURZ IS BLACK"

etc. ..

The array used in the above example was a one-dimensional
array. You may also have arrays in two or even three dimensions.
The program below uses a two dimensional array to store three
students’ grades for three subjects, as seen in the earlier
examination score program. The array ST is dimensioned 3

85

elements by 3 elements. (The figures in brackets represent the
student number and grade.)

Biology Chemistry Physics
ST(1,1) ST(2,1) ST(@3,1)
ST(2,1) ST(2,2) ST(2,3)
ST(@3,1) ST(3,2) ST(@3,3)

Two separate arrays, N$ and SB$ are used to store the students’
names, and the subject names. The program stores the students’
grades and names, and outputs all the data to the screen as a table.

18 DIM ST(3,3) ,N$(3) ,SB$(3)

20 FOR N=1 TO 3

3@ READ A%

4@ SB$ (N)=A$:REM SET UP SUBJECT NAME
S5@ NEXT N

6@ DATA BIOLOGY,CHEMISTRY,PHYSICS
7@ FOR I=1 TO 3:REM INPUT DATA
88 CLS

7@ INPUT "STUDENT NAME ":S$

100 N#(I1)=S$%

118 FOR J=1 TO 3

120 PRINT SB$(J);" SCORE ";:INPUT SC
13@ ST(1,J)=8C

14@ NEXT J

15@ NEXT I

160 CLS

178 REM OUTPUT INFO. AS A TABLE
180 FOR I=1 10 3

190 PRINT "NAME ":N$(I)

200 PRINT

210 FOR J= 1 TO 3

22@ PRIN1 SB#$(J),ST(1,J)

238 NEXT J

24@ PRINT

250 NEXT I

26@ END

86

Gettin

g things in order

The tedious process of sorting data is just one of those boring tasks

which

computers have the speed (and patience!) to accomplish well.

Sorting is a subject which has been investigated by mathematicians
and computer scientists for many years. Here we’ll present a very

simple

sorting routine without confusing you with too much

theory. We’ll use arrays to store the data to be sorted in these
examples.

There is a very well known method of sorting known as
bubblesort. First, the program for the sort, followed by an

explanation.

1@ CLS

20 INPUT "NUMBER OF ITEMS TO BE SORTED"
sN

L]

38 DIM ARRAY (N)

4@ FOR I=1 TO N

58 INPUT "NUMBER PLEASE "3X

&@ ARRAY(I)=X

70 NEXT I

8@ CLS

9@ PRINT "ORIGINAL SERUENCE OF NUMBERS":
PRINT

180 FOR I=1 TO N:PRINT ARRAY(I):NEXT I
118 REM SORT THE DATA

1208 FOR I=2 10 N_

130 FOR J=N TO 1 STEP -1

140 IF ARRAY (J-1) >ARRAY (J) THEN SWAP
ARRAY (J-1) ,ARRAY (J)

158 NEXT J

160 NEXT 1

1780 REM PRINT OUT SORTED DATA

180 PRINT:PRINT "SORTED DATA":PRINT
198 FOR I=1 TO N:PRINT ARRAY(I):NEXT I

200

END

87

This version of bubblesort sorts the data input in ascending
order. To sort data in descending order, the greater-than sign (>) is
replaced with a less-than sign (<).

Bubblesort scans the elements from the ‘highest’ end of the array
to the second value from the ‘bottom’, comparing the current value
with the one immediately below it. If the value below the current
value is higher than the current value, then the two values exhcange
places. After scanning through the data once, the lowest element of
the array is disregarded, and the process begins again from the
highest element. Consider the following set of unsorted data:

100 7 9 1 514

The intermediate stages of the sorting process are shown in the
table below:

Value of 1 Value of J Data Order
2 5 110079514
3 5 171009 514
4 5 179100514
5 5 179100514

You can see how the value 100 moves its way ‘up’ the sequence of
numbers. Bubblesort is an example of an exchange sort, quite
simply because the values in the array are swapped to get them into
their correct position. This sorting routine may also be used to sort
names, addresses or any character strings— just change the data
types of the array used and appropriate variables.

This sorting does have its drawbacks though. Assume you have a
list of numbers such as 1 21 3 5 4. Just one scan along this list will
put it into order — just exchange the positions of 5 and 4. But the
program will keep scanning through the data, even though it is
already in order. This method falls down when the numbers are
nearly in sequence.

So how do you tell the program that everything is in order? We
can tell that everything is in the right sequence when no more values
need to exchange places. What can be done is to set a variable from
0 to 1 if any exchanges took place when the program last scanned
through the list of numbers. If the value of the variable is one after
a pass, the program knows that it still has to keep sifting through

88

e m—

the numbers until they are in order. The variable used in this case is
commonly known as a flag—it signals that an event has taken
place. A program would test the value of the flag to see if an
exchange had taken place.

To alter the program above to make it more efficient, add the
following lines:

115 F=0
155 IF F=0 THEN GOTO 170

and alter line 140 to read:

140 IF ARRAY(J — 1)>ARRAY(J) THEN SWAP
ARRAY(J — 1),ARRAY(J) :F=1

Sorting programs could be used for all kinds of things. Although
bubblesort is not super-efficient, you should find it adequate to
start with.

Mathematical Functions

MSX-BASIC supplies a number of functions specifically for maths
operations. It’s not worth looking at all of them, so we’ll just take a
look at the most commonly used ones. A function is supplied with a
value and returns a value. The ones we’ll look at are the
trigonometry functions SIN, COS and TAN, and one that
calculates square roots, SQR.

A function needs to be supplied with what is known as an
argument. An argument for a function is the value you give the
function to process. The argument always follows the function
name in brackets.

The SIN function means calculate a sine function for angles (it’s
not one of the seven deadly SINs!). SIN takes an angle in radians
and produces the sine of that angle. If you don’t understand
radians, and would rather use degrees, then use the following
equation to convert a number from degrees to radians:

Radians = degrees * P1/180

PI is approximately equal to 3.141593. So to find out the sine of
45 degrees, we convert the value to radians and use the SIN
function:

MSX-G 89

1@ A=45
20 R=A%*(3.141593%#/180@)
3@ PRINT SIN(R)

The result of running this program will be the number 0.7071
appearing on your screen. The functions COS and TAN also work
on adians in much the same way, and return values for the cosine
and tangent of an angle respectively.

The SQR function returns the square root of a number. It will do
this so long as you don’t give it a negative number or zero to work
with. Computers can do a lot of things, but finding out impossible
square roots is not one of them. Try the following program:

1@ PRINT S@R(100)
20 PRINT SGR(4)
3@ PRINT S@R(16)

The values 10, 2, and 4 will be printed out. Appendix A details all
the functions, mathematical and otherwise, available with MSX-
BASIC.

User-defined Functions

If you can’t find precisely the mathematical function you need
from the range available in MSX-BASIC, there is a facility to
create your own. This is the DEF FN statement, which allows you
to set up a series of instructions and give them a name for later
reference. For example, assuming tht you wanted to produce the
square of a number from a function (assuming you didn’t have the
ability to use X 2). The declaration for such a function would be as
follows:

10 DEF FNA(X)=X*X
The DEF FN instruction is given by the following syntax:

DEF FN<function name>(<variable>,<variable>,. .)
=<expression>

For our example, the function name is A, and the expression is
X*X. The value in the brackets is known as a dummy variable for

90

the function. Dummy variables are replaced by actual values when
you use, or call the function. Try running the following simple
program:

1@ DEF FNA(X)=X*X
20 INPUT S
3@ PRINT FNA(S)

The program will produce the square of any number you type in.
In this case, X is the dummy variable in the function, and it is
replaced by the value of S in line 30. You are not limited to having a
single argument for the function. If you simply wanted to multiply
two arbitrary values together, then this could be achieved using the
following:

1@ DEF FNA(X,Y)=X*Y
20 INPUT S,T
3@ PRINT FNA(S,T)

User-defined functions are used in just the same way as the
functions supplied by MSX-BASIC.

Remember Pythagoras’ Theorem? For those of you who don’t,
here goes. If you have a right-angled triangle, then the square of the
hypotenuse is equal to the sum of the squares of the other two
sides. So, if we want to find the length of the hypotenuse (c) of a
right-angled triangle with sides (a) and (b), then we would use the
following equation:

c=Val+b?

A suitable function to calculate the length in this case is
contained in the following program:

1@ DEF FNA(A,B)=SQR((A"2)+(B"2))

2@ INPUT "LENGTH OF SIDE A "3X

3@ INPUT "LENGTH OF SIDE B "3Y

4@ PRINI "THE LENGTH OF SIDE C 1S "j
FNA(X,Y)

5@ END

91

We’ll be using a variation of this function in a later graphics
program. There are numerous advantages in using functions. If
you’re juggling equations to split the atom, then typing out those
long equations is going to get very tedious.

Functions are very concise and simple to use once you’ve defined
them. Also they are faster than using the same mathematical
expression over and over again. The BASIC interpreter doesn’t
have to re-process what is essentially the same equation with
different variables. Using functions will also save you memory
space. Finally, it may make your programs easier to understand,
either by yourself a few weeks after you’ve written them, or y some
innocent bystander who marvels at your latest program and asks
(always casually!), ‘“Well, how does it do it then?. . .”

92

Interacting with your programs

In this section, we’ll work through a few useful programs and
expand more on data validation and how to produce pretty outputs
with your programs.

Data Input

First we’ll look at a few ways of producing easy-to-use input
routines, introducing the LOCATE command, and the INKEY$
variable in the practical examples of creating menu-driven
programs.

A menu driven system when applied to computer programs is
exactly the same as you would find in a restaurant, in that you use
the menu to select the items that you want. Before you ask yourself
what food has got to do with computers, let’s explain. In a
restaurant, you pick out what you want to eat from the menu, and
the waiter goes away and gets it for you. With the computer, you
can display the options on the screen, pick out the one you want,
and get the computer to go away and perform your chosen task.
The easy way of doing this is to print a number on the screen next
to an option, and get the user to pick the number of the option
desired. This simple program displays a list of items on the screen
and prompts the user to pick an option number.

1@ REM SIMPLE MENU SYSTEM

20 REM PRINT OUT LIST OF OPTIONS

3@ CLS:PRINT "1. PRINT OUT A MESSAGE"
4@ PRINT "2. PLAY SOME NOTES"

5@ PRINT "3. DRAW A CIRCLE"

6@ PRINT "4. EXIT"

7@ LOCATE 1,20

8@ PRINT "SELECT OPTION NUMBER ":

9@ A$=INKEY#: IF A$="" THEN 9@ ELSE PRINT

A%

93

100 OPTZ=ASC (A%)-48

110 IF (OPT%<1) OR (OPTZ%Z>4) THEN BEEP:
LOCATE 22,20:60T0 90

120 REM SELECT ACTION TO BE TAKEN
130 ON OPT%Z GOSUB S@0,4600, 700,800
S0@ CLS:PRINT "HELLO. A AM AN MSX
COMPUTER!'"

9108 FOR I=1 TO B@@:NEXT I

520 RETURN 30

608 REM PLAY SOME NOTES

610 PLAY "CDEFG"

620 FOR I=1 7O B@@:NEXT I

630 RETURN 30

708 REM DRAW CIRCLE

71@ SCREEN 2

720 CIRCLE (128,92),70,1

730 PAINT (128,92),1

740 FOR I=1 TO 800

75@ SCREEN 1:RETURN 30

800 CLS:END:REM FINISH PROGRAM

Line 90 introduces the special variable INKEYS. This variable
stores the name of a key when one is pressed. The statement on line
90 assigns the current contents of INKEYS to the variable A$. If A$
is empty (IF A$=""), then no key press has taken place, so the
program jumps back to the start of the line and keeps looking at
INKEYS$ until it has a value. Repeatedly looking to see if an event
has occurred is known as polling. Line 90 polls the keyboard.

When a key has been pressed, A$ stores the name of that key.
What needs to be done next is to check if the key pressed weas one
of 1’7, “2”, ““3”, or ““4’. Note that we’re treating everything
coming in from the keyboard as a character. We could have just
used an ordinary input statement, but this leaves the program open
to abuse.

You could type in G, for example, which would make the BASIC
interpreter produce an error message. Programs should check for
errors in input data themselves — the BASIC shouldn’t need to do
it.

94

Wha the program does is to convert the character to an integer,
and then test to see if it is acceptable data. A BASIC function,
ASC, converts characters into integers. All characters in MSX-
BASIC have a code number, known as its ASCII code (see Chapter
1). The ASC function produces this code from a character, or
character string. The ASCII codes for 1, 2, 3 and 4 are 49, 50, 51
and 52 respectively. So line 100 converts the letter input to an
ASCII code, and subtracts 48 from the code number. So if the 1
key is pressed, line 100 will convert 1 to produce the code number
49, subtract 48 which leaves us with what we want — the number 1.

The program is then free to check if the value input is acceptable,
i.e. not less than one or greater than 4. If the value was incorrect
then a beep is heard, and we see another new feature of the BASIC.
The cursor is moved from wherever it was last to a new position
given by the LOCATE command. In this case, the cursor is put at
the end of the ““SELECT OPTION NUMBER?”’ line, ready for the
corrected data to be put in. LOCATE 22,20 means ‘‘put the cursor
at the 22nd character position on the 20th line. In text mode 0, the
highest character position can be 40, as this is the maximum width
of the screen, in text mode 1, it can only be a maximum of 36. You
can locate the cursor in high resolution graphics mode too, the
main difference here being that the screen is treated as being 256
characters wide and having a maximum number of 192 lines.

Eventually the correct data will be entered, and the program will
then have to decide what the user wants. This is where the
ON. . .GOSUB comes in. This is like having a whole string of
IF. . .THEN statements all in one line. The BASIC looks at the
condition specified, in this case the option the user chose, and
jumps to another section of the program, the one being jumped to
depending on whether the condition is 1, 2, 3 or 4. Instead of using
line 130, the following piece of code could have been used equally
well:

130 IF OPT%Z=1 THEN GOSUB 500
132 IF OPT%=2 THEN GOSUB &0@@
134 IF OPT%=3 THEN GOSUEB 700
138 IF OPT%=4 THEN GOSUB 8@

95

After the computer has done what the user wants, it waits for a
key to be pressed, before setting up the main menu again. This is
done by polling the keyboard using INKEY$. When INKEYS has a
value, the program returns to the beginning again, and the process
can continue over until the user selects option number 4, which
ends the program.

Using a Joystick

An alternative way to use a menu-driven program is to use a
joystick to move the cursor around the screen to point to an option.
When an option has been pointed to, the space bar is pressed,
selecting that option. A simple program can be devised which just
prints up a list of words on the screen, allows the user to move the
cursor around the screen, place the cursor next to the option
desired, and do something when the space bar is pressed. There are
two new functions, a special variable and a new statement
introduced here, all of them quite useful. To find out how they
work, type in this new menu-driven program:

10 REM MENU SYSTEM 2

20 REM SET UP SCREEN MODE

38 SCREEN 1:KEY OFF

48 REM INITIALISE X AND Y

o8 X=1:Y=1

6@ REM PRINT OUT MENU

7@ LOCATE 18,12:PRINT "EXIT"

8@ LOCATE 18,16

9@ PRINT "TUNE"

10@ REM ACTIVATE SPACE BAR DETECTION
1183 STRIG(@) ON

120 REM PUT CURSOR AT LOCATION DETERMI
NED BY X AND Y

130 LOCATE X,Y,1

135 REM PRINT "“Xx"

140 ON STRIG GOSUB 3@@:REM SEE IF SPACE
BAR PRESSED

150 REM WORK OUT THE DIRECTION OF JOYS
TICK'S POINTING (IF STICK(@)=3 THEN 200,
ETC.)

96

160 A=STICK (@)

170 ON A GOTO 198,195,200,205,210,215,22

2,225

180 GOTO 160

190 Y=y-1 :60TO 24@:REM UP

195 X=X+1:Y=Y-1:GOTO 24@:REM UP AND RIGH

:

200 X=X+1 :60TO 24@:REM RIGHT

205 X=X+1:Y=Y+1:GOTO 24@:REM DOWN AND RI

GHT

210 Y=Y+1 :60TO 24@:REM DOWN

215 X=X-1:Y=Y+1:G0TO 24@:REM DOWN AND LE

FT

220 X=X-1 :60TO 24@:REM LEFT

225 X=X-1:Y=Y-1:G0TO 24@8:REM UP AND LEFT

240 REM CHECK THE COORDINATES ARE VALID.
IF THEY ARE NOT, RESET THEIR VALUE TO A

N ACCEPTABLE NUMBER

250 IF X>4@ THEN X=40

26@ IF X<1 THEN X=1

278 IF Y>24 THEN Y=24

280 IF Y<1 THEN Y=1

29@ GOTO 13@:REM LOCATE CURSOR AT NEW PO

SITION

300 REM SUBROUTINE — VALIDATES OPTIONS A

ND CARRIES THEM OUT

31@ IF CSRLIN=12 THEN BOTO 500

320 IF CSRLIN=1&6 THEN PLAY "CDEFGGFEDC":

RETURN

330 REM SIGNAL ERROR WITH A BEP

340 BEEP: RETURN

S5@@ CLS:PRINT "END":END

The statement STRIG(0) ON tells the computer to look out for
joystick trigger button (0), being pressed. If there is no joystick
attached, the space bar is treated as the trigger button. The later
statement, ON STRIG GOSUB, tells the computer what to do
when the space bar or trigger button is pressed. When the
subroutine has dealt with what you wanted it to do when a trigger

97

button was pressed, it executes another STRIG(0) ON all by itslef,
on return from the subroutine. You can also use the statements
STRIG(0) OFF and STRIG(0) STOP. The former statement tells
the computer that there’s no need to look out for a button being
pressed, the latter statement tells the computer to take note of the
fact that a button has been pressed but not to do anything. The
computer will immediately jump to the subroutine which knows
what to do when triggers are pressed when a STRIG(0) ON
statement is executed if a trigger had been pressed earlier.

The STICK function looks to see in which direction the joystick
is being moved. If the value returned by STICK(0) is O then the
joystick isn’t being moved at all. If you don’t have a joystick
attached to your computer, then the cursor keys may be used. To
get the directions of diagonally up and right for example, the Up
and Right cursor keys are pressed simultaneously, and so forth.
STICK(0) defaults to the cursor keys, unless you plug a joystick
into the computer.

POS is a function which returns a number indicating the cursor’s
current horizontal (column) position on the screen. You can supply
this function with any argument at all. As the argument has no
bearing on what information you receive back from the function, it
is known as a dummy argument. CSRLIN is a special variable
which keeps track of the cursor’s current vertical (row) position on
the screen.

Using Interrupts

Interrupts are a class of very useful instructions that are far and few
between in most dialects of BASIC. An interrupt, as its name
suggests, is a break in the normal flow of a program which is
caused by some event. An interrupt is used to trap an event — note
the occurrence of some event and then do something about it.

This method differs from polling, which we used earlier to see if
a key had been pressed. To illustrate the differences, here are two
programs, both of which are designed to play a note when the
spacebar is pressed.

12 REM POLLING METHOD
20 PRINT "POLLING"

98

3@ GOSuUB 9@

4@ PRINT "IS LESS"

5@ GOSUEB 90

68 PRINT "EFFICIENT"

7@ GOSUB 7@

80 GOTO 2@

9@ REM LOOK TO SEE IF SPACEBAR HAS BEEN
PRESSED

100 A$=INKEY#

118 IF A$=CHR$(32) THEN PLAY "C":RETURN
120 RETURN

Now the same problem solved using interrupts:

1@ REM INTERRUPT METHOD
20 STRIG(@) ON

3@ ON STRIG GOSUE 8@

4@ PRINT "INTERRUPTS"
5@ PRINT "ARE MORE"

60 PRINT "EFFICIENT"

7@ GOTO 40

8@ PLAY "CDEFG":RETURN

With the polling method, a section of code that checks to see if
the spacebar has been pressed has to be written. In the second
program, the STRIG(O) ON command tells the computer to look
out for the spacebar being pressed, and the ON STRIG GOSUB
statement determines which line number the program should
branch to when the spacebar has been pressed.

In order to explain the differences between polling and interrupt
systems, consider the following little scenario. Imagine that you are
cooking a cake in the oven, and at the same time, writing a letter to
a friend. If you were behaving like a polling system, you would go
over to the cooker every five or ten minutes or so to see if the cake
were ready yet, then return to writing the letter. An interrupt
system would be provided if your cooker had a timer and alarm
bell. You could continue writing your letter without worrying
about how the cake was getting along, until the cooker alarm bell
sounded, telling you to take the cake out of the oven.

99

In MSX-BASIC, there are a wide range of interrupts available.
They trap events like function key depression, pressing of the
STOP key, errors, sprite collision, and so on. To enable the
interrupts, there are two commands — <interrupt> ON (that we’ve
just seen) and <interrupt> STOP. What <interrupt> STOP will do
is remember the occurrence of an event, but disable a later ON
<interrupt> GOSUB statement. This allows you to turn off the
event trapping for a time, without missing out on dealing with an
event if it has occurred. Executing a <interval> ON command will
cause a program to branch if an interrupt has been remembered.

A word of caution about using these interrupt commands. When
an ON ERROR statement has been executed, a// other interrupts
are disabled. So if you use the ON ERROR statement with other
interrupts, bear in mind that you will have to turn on all the other
interrupts again in the interrupt handling routine.

Using these interrupt instructions allows you to write more
concise code. Their main disadvantage is that they may make
programs slightly more difficult to trace and debug, so their use
must be well commented.

Data Output

In previous chapters we looked at the PRINT command and how it
can be used wth colons and semicolons to format printouts on the
screen. One command we then said we’d cover in more detail was
the PRINT USING command.

PRINT USING is an altogether different kettle of fish to
PRINT. With this statement you can specify an output to be
formatted in a certain way. To do this, there are a set of special
formatting characters involved. For outputting character data there
are three formatting characters, !, &, and a. First the exclamation
mark. See what happens when you run the following program:

1@ INPUT A%
20 PRINT USING "'!'";A%$

Only the first character of the string is printed out. This would be

particularly useful, for example, when printing out a list of names.
The above program could be used to cut first names down to

100

initials. The following program takes names as input and produces
the formatted output of initial and surname:

1@ INPUT "FIRST NAME ":C$
2@ INPUT "SURNAME ";S%
3@ PRINT USING "'!'":C$;

4@ PRINT ". “;S%

o8 GOTO 1@

If the following data were entered: ‘“GRAHAM BLAND’’,
“FRED BLOGGS”, “ERIC SPROTE”, the output from the
program would be:

G. BLAND
F. BLOGGS
E. SPROTE

The second formatting character for strings is the & sign. You
specify this formatter rather differently, thus:

18 PRINI USING "&&";"FRED"3"ERIC" ~
2@ PRINI USING "& &"3“FRED"; "ERIC"

The output will appear like this:

FRED
FRED ERIC

The rule for this formatter is that it prints out at least two
characters from a string, plus as many characters as there are
spaces between the two &s. So in the first example, only the first
two characters were produced from both “FRED’’ and “‘ERIC”’
resulting in ““FRER’. In-the second example, there were three
spaces between the &s resulting in the other two characters from
“ERIC” and “FRED”’ being printed plus one space. If we had
specified the following format:

20 PRINT USING ““& &”;*‘FRED’’;*‘ERIC”’

We see that the string “FREERI” is produced. The final
character formatter is the a symbol. This specified that a character
string should be printed out exactly as it is. For example, the

101

following program takes a name as input, and puts it inot a
message which is printed out:

1@ INPUT "WHAT IS YOUR NAME ";N¥
20 PRINT USING "HELLO @, HOW DO YOU DO":
N$

As a result, if you type in “FRED BLOGGS”’, the computer will
respond with:

‘“HELLO FRED BLOGGS HOW DO YOU DO”.

There are also special formatters for numbers. These are #, +,
—, ** ¥¥ **¥ and”"""". Some of these are of little use,
especially the one which will print out the Yen signs. However,
here’s a brief look at what some of them can do.

The # symbol denotes a number. If you want to print out a
series of numbers in a very neat manner, you would use this
formatting character. As an example, type in the following:

10 PRINT USING “‘# # # . # #°;1.646,134.5,.45,6.91

The program will produce the following output:
1.65 134.50 0.45 6.91

The numbers are rounded up if necessary with this formatting
character. If a decimal point is specified, and the number is a
fraction, a 0 will always be put in front of the decimal point. Note
also that spaces are inserted in front of the number if it is shorter
than that given by the PRINT USING statement.

The plus and minus signs will cause a + or — symbol to be
placed before or after the number:

1@ PRINT USING "+###.##";12.86,-12.86
20 PRINT USING "###.##+";12.86,-12.86
3@ PRINT USING "###.##-":12.86,-12.86

The output produced will look like this:
+12.86 —12.86

102

12.86 12.86 —
12.86 12.86—

The ““***° formatter fills in the leading spaces of a number with
asterisks:

10 PRINT USING "#*##.##"5;12.86
2@ PRINT USING “s**#._ ##";1.83
30 PRINT USING "#*#. ##";123.67

The output for the above program will look like this:

*12.86
**1.83
123.67

The final formatting characters insert the Japanese Yen symbol
in front of a number. Unless you deal with a lot of Japanese
currency, it’s not likely you’ll want to use these formatters.

There are versions of PRINT USING and PRINT available for
use with a printer. Called LPRINT USING, and LPRINT, they are
used in exactly the same way, but the output goes to a printer (if
attached to your system) instead of appearing on the screen.

Input and Output with Files

A file is basically collection of data. MSX-BASIC provides a
number of special instructions and variables especially for use with
files. There are four types of device which may be used. Only one
of these devices may be used for both the storage and retrieval of
files, namely the cassette recorder. The other three devices are
output only. The table below outlines the devices available, the way
that MSX-BASIC names them (their descriptor) and the way they
may be used:

Device Name Device Descriptor Input/Output
Cassette Recorder CAS: Input and output
Line Printer LPT: Output only
TV/Monitor CRT: Output only
Graphics Screen GRP: Output only

The main device we’ll consider is the cassette recorder, as it is

103

essential for saving programs, and you probably have one in the
house anyway.

To use a file in MSX-BASIC, you first have to open the file. The
following program simply requests three words from the user and
stores them to tape:

1@ OPEN "CAS:FRED" FOR OUTPUT AS #1
2@ INPUT A$

3@ INPUT B#

4@ INPUT C#

S8 PRINT #1,A$

6@ PRINT #1,B%$

78 PRINT #1,C$

8@ CLOSE #1

Line 10 actually opens a cassette-based file called ‘“FRED’’ and
declares that it is to be used as an output file by the program. The
number with the # sign in front of it is the file number. The file
number # 1 is used to refer to the file ““FRED”’ throughout the
program. After line 10 has been executed, you will be prompted to
press play and record on the tape recorder.

The output to the file is carried out by the statement in line 30.
The PRINT # statement simply writes the character strings you
input to tape. This statement is in fact just about the same as a
normal PRINT statement. In addition, there is also a PRINT #
USING statement available in MSX-BASIC. The last statement of
the program closes the file. If you don’t specify a file number, then
all open files will be closed. The END statement also has this effect.
What the program does when it closes a file, is to write a character
to the tape which marks the end of the file. This character
corresponds to typing the CTRL and Z keys simultaneously.

Now you’ve saved your character strings to tape, you may wish
to retrieve them at a later date. The following program will input
character strings from the tape file “FRED”’.

10 OPEN "CAS:FRED" FOR INFUI AS #1
2@ IF EOF (1) THEN GO10 100

30 INFPUT #1,A$

4@ PRIN1 A%

104

58 GO0 20
6@ CLOSE

The OPEN statement is altered so that data will be input this
time. EOF is a special variable in MSX-BASIC. When a file is being
read from tape, the presence of the CTRL-Z character is
monitored. When the CTRL-Z character is encountered, then the
value of the variable EOF becomes —1. EOF is the End-Of-File
variable. If a program doesn’t check for the value of EOF changing
to —1, then an ‘Input Past End’ error will be encountered.

The simple cases we have shown above use two of the three
possible file modes. Aside from INPUT and OUTPUT modes,
APPEND mode is also available. If you open a file in APPEND
mode, then the file will be read from tape until the CTRL-Z
character is encountered, then new information may be added onto
the end of the file.

The very simple program below is designed to set up a cassette
file for names and telephone numbers, and retrieve the phone
number for a particular name.

1@ CLS

20 PRINT "1. SET UP FILE"

3@ PRINT "2. REIRIEVE INFORMATION"

40 PRINT:PRINT

5@ INPUT "SELECT OPTION (1 OR 2)":A¥

S5 PRINT "ENTER TAPE COUNTER NO.": INPUT
"NO & " : C

6@ IF A$="1" THEN GOTO 100

7@ IF A$="2" THEN GOTO 240

80 BEEP:GOTO 50

9@ REM SET UF/UFDATE FILE

188 OPEN "CAS: TEL" FOR OUTPUT AS #1

11@ CLS

128 PRINT "FILE SET UP"

1S -PRINI "=——=re—co-— v

148 FOR I=1 TO 8@0@:NEXT I

15@ CLS

16@ PRINT "TO EXIT TYPE * INSTEAD OF NAM
Ell

MSX-H 105

17@ PRINT

180 INPUT "TYPE IN NAME : ";N$

190 IF N$="#" THEN PRINT "SETUP FINISHED

": PRINT"REWIND TAPE TO ";C:GOTO 340

208 INPUT "TYPE IN NO. : ";7%

21@ PRINT: INPUT "IS THIS OK? (Y/N) "3R$

220 IF R$="Y" THEN PRINT #1,N%,T%

230 G010 158

240 REM INFO RETRIEVAL

250 OPEN "CAS: TEL" FOR INPUT AS #1

260 CLS:PRINT "START TAPE Al "3C

278 INPUT "TYPE IN NAME: ":N$

28@ PRINT "SEARCHING FOR ";N#$:" ‘S NO."

29@ IF EOF (1) THEN 330

3@ INPUT #1,A$,B$

385 FPRINT A$,Bs$

310 IF N$=A% THEN FRINT "THE NUMBER IS "
i1B$:F=1

320 GOTO 290

330 IF F=0 THEN PRINT "NO LISTED N@. FOR
u;Ns

340 CLOSE

35@ END

The problem with using cassette based filing systems is that they
work incredibly S-L-O-W-L-Y and are fairly inflexible. MSX-DOS
provides much faster and much more useful file handling options in
the BASIC, taking full advantage of the speed and capacity of
floppy disks.

Please refer to Appendix A for other formatting functions such
as SPACES and TAB.

In the next chapter, we’ll look at the more dynamic aspects of
programming, how to exploit the musical capabilities of an MSX
computer (or how to become very unpopular with your family and
friends very quickly).

106

MSX music and sound

Sound from a computer can be generated in different ways. Years
ago, programmers working on mainframes and minicomputers
used to generate music from their line printers in a very devious
way. By sending certain character sequences to the printer, they
found that they could produce slight changes in pitch which could
loosely be called musical notes. Some inventive, if not altogether
pleasant tunes, could be played in this unorthodox manner.

With the much later arrival of the home micro, musical notes
could be played by sending electrical pulses to a speaker. If the
pulses are sent fast enough, then a tone will be produced. In most
cases, this can be controlled by BASIC using POKE. This puts
numbers into a memory location, which is then used by an
assembly language routine to pulse a speaker very quickly and
produce recognisable tones.

MSX micros have a more sophisticated means of producing their
sounds. There is a chip dedicated to this purpose, which you can
access through two statements and one command: SOUND,
PLAY, and BEEP. The chip is capable of producing three different
sounds simultaneously, with a variety of sounds ranging from the
pings, crashes and screeches familiar to those who play arcade
games, to musical chords and notes.

You’ve already met the BEEP command before. Just to remind
yourself what it sounds like, try typing BEEP. Thrilling, isn’t it? If
Beethoven had been stuck with the BEEP command, we’d be sadly
lacking in symphonies. The really useful statements are SOUND
and PLAY.

The SOUND statement is the harder of the two to learn to use,
but it does give you more flexibility in the types of sound you can
produce. What the sound statement does is to send numbers
directly to the sound chip. This chip has 13 registers, all of which
you can get at. Each register stores a number which controls a
specific function of the chip. These are shown in the table overleaf.

107

So, depending on which register you send a number to, and the
value of that number, certain things will happen. Confused? Well,
to help make everything a little clearer, please welcome the
programming model of the MSX sound chip, the General
Instruments’ AY-3-8910 (thunderous round of applause please).

REGISTER NO. FUNCTION

0 Controls the fine pitch tuning for sound
channel A. All 8 bits are used so that any
number between 0 to 255 can be placed in this
register.

1 Controls the course pitch tuning of channel A.

There are only four bits used here, so the

maximum value you can put into this register is

15.

Fine pitch tuning for channel B.

Coarse tuning for channel B.

Fine pitch tuning for channel C.

Coarse pitch tuning for channel C.

This modulates the noise channel. 5 bits are

used here, so the values that can be placed here

range from 0 to 63.

7 This register can change the output from a
sound channel from a tone to a noise rather like
hissing. Values up to 7 will enable a tone to be
produced from the channels. Values above 7
will create noise from the three channels.

OB WN

8 Sets the volume of channel A.
9 Sets the volume of channel B.
10 Sets the volume of channel C.
| 1" 8-bit fine tune.
i 12 8-bit coarse tune.
13 Envelope controller.

Sound registers

The programming model of a piece of hardware shows the
programmer what each register of the chip controls. This is
demonstrated in the program below.

108

1@ REM SOUND DEMO

20 REM INI1T1ALISE SUUND CHANNEL A. SET C
OARSE TUNE U 1 AND FINE TUNE 10 @

3@ SOUND B,1

4@ REM STAR1 UP 1HE SOUND FOR CHANNEL A
5@ SOUND 8,5

6@ END

If you run the program, you’ll notice two things happen. One is
an awful whine coming from the loudspeaker of your television set,
and the other is that the ‘“OK’’ prompt is seen, indicating that your
program has finished running. “Ah!’”’, I hear you ask, “Why
didn’t that awful whine stop when the program did?”’. The reason
it is still driving you potty is because the sound chip has been told to
produce that whine by the program, but it hasn’t been told to stop
making a noise. There are two ways you can get rid of this awful
noise. One is to type BEEP — as BEEP uses the sound chip, it resets
everything, and turns off the sound.

The other way of removing this potential headache is by typing
SOUND 8,0. This turns the volume of channel A down to zero.
Now, how did the program produce that horrible sound? By
putting the values of 0 and 1 into register 0 and 1 of the sound chip,
the program was setting the pitch of sound channel A. By putting
the value of 5 into register 8, the program was turning the volume
of channel A up. Try the following program and see what happens:

1@ SOUND ©@,1:SOUND 8,5

2@ FOR I=1 TO 14:FOR J=1 TO 1@@:NEXT J
3@ SOUND 1,1

4@ NEXT 1

5@ SOUND 8,0

6@ END

This program produces 14 different pitches. You’ll notice that
we turned off the sound at the end of the program.

Let’s get more adventurous and turn on all the sound channels at
once. This will produce a chord:

109

1@ SOUND @,1:S0UND 1.1
20 SOUND 2,1:S0OUND 3,3
3@ SOUND 4,1:S0UND 5,6

| 4@ FOR I=8 10 1@

5@ SOUND 1,5

680 NEXT 1

These are the basic ways of producing musical tones. What is
more exciting about SOUND is that you can produce lots of
unusual sounds. The simplest way of doing this is by using the fine
tune registers.

ii Sample SOUND Programs

The best way to get to grips with the sound chip is through practice,
so we’ve given you a number of different programs to try. We
strongly advise you to make changes to the programs for yourself,
to see what effects they have.

This section of the book lapses into strange noises. Warn
everybody beforehand. . .

1@ REM WEIRD NOISES

20 INPUT N

3@ SOUND @,1:SOUND 1,1:S0UND 8,5
4@ FOR 1=255 70 @ STEFP-N

5@ SOUND @,1

6@ NEXT 1

706 GO10 40

Try values for N like 5, 15, .5 etc and see what you get.

The noise channel has immense possibilities. Register 7 is used to
start the noise channel up. Here are two programs, both of which
purport to sound like helicopters.

1@ SOUND 7,5

2@ SOUND 8,7

30 FOR I=63 TO 1 STEP-1
4@ SOUND 6,1

S0 NEXT I

60 GOTO 30

110

And now another helicopter noise complete with the whine of the
engine! A
Value of S Envelope produced

01,239

45,6,7,15 /l

8

10

n

12

13

14

10
20
30
4@
1",
60

AANANAN
VVVANA

\

MV
p

NNNN

Sound envelopes available from the ‘S’ command

SOUND @,2@0:S0UND 1,0:S0OUND 2,308
SOUND 3,@:SOUND 4,@:S0UND 5,9
SOUND 6,0:50UND 7,48:S0OUND 8,16
SOUND 9,4:S0UND 1@,6:SOUND 11,100
SOUND 12,2:S0UND 13,12

GOro 3@

This little program uses the envelope capability of the sound
generator. An envelope determines the shape of the waveform of
the sound generated. There are 8 different envelopes that can be
produced. The diagram below shows these waveforms and the
value you need to put into register 13 to produce them.

SOUND is one of those statements you have to play with for a
while to get used to it. If it’s music you’re after, the laborious

111

methods involved with SOUND are too time-consuming, and
require you to think in terms of numbers rather than notes.
Wouldn’t it be easier to ask the computer to play a note such as C
or E?

The Music Macro Language

The PLAY command allows you to do just that and quite a bit
more. You can specify notes to be played, their lengths, waveforms
and volume. All the instructions to the sound chip are presented as
character strings. As a simple example, the following statement will
produce a chord.

PLAY (‘C”’ ‘GA”, t‘E,Y

Channel A will play the note C, channel B will play A, and
channel C will play E. The pitch of the notes produced can range
over 8 octaves from C to C. The character strings contain
instructions which are recognised by the PLAY command. This
constitutes a small language within BASIC, and is known as the
Music Macro Language. The instructions for the Music Macro
Language (or MML) are summarised below.

MML Command Function

Ato G Plays the indicated note in the current
octave. The options #, + and — are also
allowed, where # or + indicates a sharp,
and — indicates a flat. These options are
only allowed, however, when they cor-
respond to a black key on the piano. B " is
therefore an invalid note.

o<n> Sets the current octave, where n can be from
1 to 8. EAch octave goes from C to B, and
octave 4 is the octave that the MML will use
unless you use the O instruction.

N<n> Provides an alternative to specifying notes
and octaves. n can be between 0 and 96,
where 0 means rest, 1 means the note C of
the lowest octave, and so on.

112

L<n>

R<n>

T<n>

v<n>
M<n>
S<n>

X<string variable>

Sets the length of the notes which follow it,
where the length of the note is 1/n, thus:

L1 whole note

L2 half note

L3 one of a triplet of three half notes (1/3
of a four beat measure)

L4 quarter note

L5 one of a quintuplet (1/5 of a measure)

L6 one of a quarter note triplet

L64 sixty-fourth note

The length may also follow a note if you

only want the one note changed. For

example L2A and A2 mean the same thing.

A length of 4 is the default.

Sets the length of a pause (or rest) where n

can be between 1 and 64, and works in

exactly the same way as for L. The default is

4.

A . after a note causes it to be played as a

dotted note, i.e. 3/2 times its normal length.

More than one dot can appear after the

note, and the length will be adjusted

accordingly so that, for example, A. . . will

play for 27/8 as long as usual. Dots may

also appear after a pause to adjust its length

in a similar fashion.

Sets the tempo for the tune by specifying the

number of quarter notes to be played in a

minute, where n can range between 32 and

255. The default is 120.

Sets the volume, where n may be in the

range 0 to 15, with default 8.

Sets the period of envelope, with n ranging

from 1 to 65535 and a default of 255.

Sets the shape of envelope. n may range

between 1 and 15, with a default of 1.

executes a specified string of notes, pauses

etc.

113

In MML commands, the value of n can be a constant or a
variable. If you use variables, you have to assign them in the string
of commands. For example try the following short program:

1@ INPUT X
20 PLAY "o=X:C"
3@ GOTO 1@

Note the semi-colon after the variable name. If you forget to put
this in, the basic will give you an “ILLEGAL FUNCTION CALL”’
error message. The program will play the note C in the octave you
supply.

Here is a little melodic piece to twiddle your thumbs to:

10 PLAY "L40S5AECO4","L403AEBA", "LBAECO3A
04AECO3A"

28 PLAY "L405BECO4G+" , "L402G+" , "L803G+04
CEBBECO3G+"

3@ PLAY "L406COSECO4G","L402G", "L80D4GOSC
EQ&4&CCOSECO4G"

4@ PLAY "L40SF+DO4AD","L403D","LB80OSF+D04
ADOSF +DO4AD"

S8 GO0 12

As you can see, all three voices are brought into play (forgive the
pun). The length of the notes are also varied. The following
program generates pseudo random notes using the RND function.

18 REM PSEUDO-RANDOM NOTE GENERATOR

2@ PITCH=INT (RND(10) *10@)

3@ 1IF (PITCH>?6) THEN GOTO 1@ ELSE PLAY
"S8M15@0L24N=PITCH; ": GOTO 2@

The RND function is like a wheel of fortune. When you use the
function, some value between 0 and 1 is produced. I say the
program is pseudo-random, because it will produce the same
sequence of random numbers each time the program is run. This
time, the S and M instructions are used in the PLAY string. S

114

specifies the type of sound envelope produced, and M specifies how
long the envelope will shape the notes played.

The next program uses all three voices to produce random
chords. The joystick is used to increase the speed at which the notes
play by increasing or decreasing the note length.

186 REM FPSEUDO-RANDOM NOTE GENERATOR WITH
THREE VYOICES AND SPEED CONTROL

20 REM DEFAULT NOTE LENGTH

30 L=12

42 REM FOLL JOYSIICK

5@ IF S1ICK(@)=1 [HEN L=L+1:1F L>64 THEN
L=64

68 1IF SIICK @) =5 THEN L=L-1:1F L<1 THEN

=1

78 REM CALCULAIE RANDUM NUMBERS AND OFFS

EIS FOR VUICES WO AND IHKREE

80 FI11=INT(RND(1@)*1@@): IF (PIT1>86) OR
(FIT1<11) [IHEN GOIO 8@ ELSE FIT2=PIT1-1

B:FP1lIZ=P111+10

9@ REM FLAY RANDOM CHORD

128 FLAY "SB8MI1SOOL=L_;N=PlT1;","SBM150@L=

LiN=FIT3:"

118 G010 SO

The final program in this section uses the X instruction. You’ll
notice that there are three string variables declared at the beginning
of the program. These strings are eventually executed using the X
instruction.

The X instruction allows music strings to be executed within a
PLAY statement. So, if you have sequences of notes which are used
repetitively in a piece of music, there is no need to write out the
note sequence each time it occurs. For example, assuming that you
wish to repeat the following sequence of notes: “O4BGBO5SCEG’’,
you would declare assign this string value to a variable, such as AS$,
and call the name of this string using the X instruction in later
PLAY statements. The following short program shows how the X
instruction is used.

115

10
20
30

A$="04BGOSCEG"
PLAY "XA$:"
END

Note that a semi-colon is required after the string variable name.

10

20

30
40
S50
(=Y'4)
70
80
0
100
110
120
130
140
v
150
160
g 1]
170
Sf "

A$="1.2405bgbobcegnSbgbobcegoSbgbobeceg
B$="1.2404bgboScegod4bgboScego4bgboSceqg
C$="L2403bgboScego4bgboScego4bebodceg

FOR I=1 TO 4

PLAY "“vA4XA%:","vAXB%:","v4XCs$:"

NEXT |

FOrR 1=1 10O 2

PLAY "v10L103d","voL24XA$;","v1i0OL102a

PLAY "o3D",A$,"o2g"

PLAY "o3C",A%,"o2e"

PLAY "o3c",A$,"o2a"

NEXT 1

FOR I=1 TO 2

FPLAY "v12L1203daco2go3ga","v1012o04c"”
101 205c"”

PLAY "1404dg","o3b","oSg"

PLAY "L2404cdefgbaScdefgb”,"03g","aS

PLAY "o4bgboScego4bgboSceg","o3f","o

180 PLAY "sm15@@o3ccccccoSccccecc”,"o4c”,
MOSC "

190 PLAY "14o04dg","o3b","1205d"

20@ PLAY "l112cdefgb","l18o0&dcaoSat","oSg"

210 PLAY "o4bgboSceg”,'"smliSB0012407ccccg
gggdddd " 2 ",f "

220 NEX1 I

230 PLAY "L24o04cdefgboScdefgb”

240 PLAY "L2403cdefgbod4cdefgb”

250 PLAY "L24o02cdefgbo3cdefgb"

116

260 PLAY "v1011203g","v1011204b","v10@112

o4d"

278 PLAY "o03a","o4e","oSc"

288 END

The following program plays our attempt at the introduction to

the ‘“Hallelujah Chorus”’. In some note sequences (lines 120—190),

you w

1@
20
30
40
1"
60
70
80
@
100
110
120
130
140
150
160
17@
180

The

ill be able to hear an echo.

AF = "RB8LAATZ5SDR24DRZ4T120LBER24D
B$ = "T128R18L12DR24ER24D"

C$ = "RSBLALO3GR18AR18B0O4L&CR2403G04C"

PLAY "T120L&G.","T120L66G.","T120L66. "
PLAY B$,"R18XB$;","R16XB$;"
PLAY A$,"R1BXA$;:",A$
PLAY A$,"R18XA$:",A%
PLAY "R&","R&","R&"
PLAY "T120L6G.","T120L&G.","T120L6G. "
PLAY B$,"R18XB$;","R16XB$;"
PLAY A$,"R18XA$:",A$
PLAY A$,"R18XA$;",AS
PLAY C$,"R18XC$;:",C$
PLAY A$,"R1BXA$;",A$
PLAY A%$,"R18XA$;",A$
PLAY C$,"R1BXC$;",C$
PLAY A$,"R18XA$:",AS
PLAY A$,"R1BXA$:",A$

following music piece is a simple 12-bar blues chord

sequence based on the key of C:

10
20
30
40
1"
&0
70
80
90

FOR I=1 TO 4

PLAY “L1203D","04F+","04A"
PLAY "O3D","0D4G","04B"
PLAY "O3D","04A","0A4C"
PLAY "0O3D","04G","04B"
NEXT 1

FOR I=1 TO 2

PLAY "0O3G","04B","0SD"
PLAY “O3G","0SC","OSE"

117

180
110
120
138
140
158
1460
178
180
190
200
210
220
230
240
250
260
270
280
270
300

PLAY
PLAY
NEXT

n 036 " » n OSD L1 ’ n OSF n
11 DSG n = L1 DSC n = n DSE n
I

FOR I=1 TO 2

PLAY
PLAY
PLAY
PLAY
NEXT

"030“ . "D4F+" = IID4A“
DIDSD" % IDD4G" - MD4B"
IID3D" = IOD4A" ’ IID4CII
"03D" v "048" 9 II04BII
I

FOR I=1 TO 2
FOR J=1 TO 4

PLAY
NEXT

"L1205EC+04A" ,"06E" , "0OSC+"
Jd

FOR J=1 TO 4

PLAY
NEXT
NEXT
PLAY
PLAY
PLAY
PLAY

"0Sbo4BG" , "0O&D", "OSB"
J

1

"030" = lID4F+II - IID4AID
”030 n v "046" » "O4Bll
”030" ~ llD4All - IID4CII
IIDSDII . IIO4GII » "048"

The appeal of the MML lies in its similarity to normal musical
notation. Those of you who have a musical training will get to grips
with the language very quickly, and those of you who don’t will
find music making comes to you very easily.

118

Graphics using MSX-BASIC

One of the more attractive qualities of a computer is its ability to
draw pictures. One picture drawing method beloved of
programmers everywhere is to produce a file containing text laid
out so that it resembles a picture. Many pictures of Snoopy the dog
have been produced in computer installations throughout the
world. Using the printer to overprint, different shadings can be
produced. The most famous example of this form of computer art
must be the version of Leonardo Da Vinci’s Mona Lisa. If you have
a printer you can experiment with this form of computer drawing.
It does have the disadvantage of wearing out your printer though!
There is a much simpler way of producing pictures.

All MSX computers have a chip dedicated to producing graphics
images on the screen. This can be accessed in a number of ways.
One method is to send data directly to the video display processor
using VPOKE (see Chapter 2). Generally this is a time-consuming
process and definitely not for the weak at heart. A much more
amenable way to produce pictures on the screen is by using MSX-
BASIC’s built-in graphics commands.

As you’ll already know, there are two graphics modes: low and
high resolution. The one we’ll be using most in this chapter is the
high resolution screen: Screen 2. This screen is made up of a total
of 49152 tiny points called pixels. These are arranged to form a grid
256 pixels across by 192 down. Initially, all the pixels are set to one
colour (the background colour) when you enter the high resolution
screen mode.

Graphics Using PSET and PRESET

The simplest graphics commands are PSET and PRESET. PSET
turns a pixel on, PRESET turns a pixel off. You can specify the
colour of the pixel by using the colour option of the PSET and
PRESET commands. The short program listed below turns all the
pixels on.

119

10 SUREEN 2

20 FOR =0 10 2564
30 FUR J=0 10 192
4@ PSE1(1,4,J),15
S@ NEXI J

6@ NEXIT 1

Each pixel’s colour will be white (colour 15). You’ll notice that a
pixel’s position on the screen is given by two coordinates. Using
PSET and PRESET, we can select individual coordinates to turn
on, and in so doing draw lines and shapes as we want. An easy way
to select which pixels we want to turn on, is by using the joystick.
The program below demonstrates how individual pixels may be
switched on, using the joystick in effect, as a pencil on the screen.

1@ REM DOODLE PROGRAM

20 SCREEN 2

30 REM SE1 INITIAL COORINATES

4@ X=128 : Y = 94

50 SIRIG(B) ON

6@ D =1: E =0

70 ON STRIG GOSUB 200

80 IF D = 1 IHEN PSET (X,Y),15 ELSE LOCA
TE X,Y

7@ REM POLL JOYSTICK

10@ IF STICK(@)= 1 THEN Y=Y-1

185 REM 6-1358

11@ IF STICK(@)=2 THEN Y=Y-1:X=X+1
120 IF STICK(@)=3 THEN X=X+1

130 IF STICK(@)=4 THEN X=X+1:Y=Y+1
14@ IF STICK(@)=3 THEN Y=Y+1

15@ IF STICK(@)=6 THEN Y=Y+1:X=X-1
16@ IF STICK(@)=7 THEN X=X-1

170 IF STICK(@)=8 THEN X=X-1:Y=Y-1
180 GOTO 8@

200 REM REVERSE VALUE OF D

21@ SWAP D,E : RETURN

120

The variable D allows the program user to move about the screen
without drawing anything. When the space bar is pressed the value
of D is changed from either 0 to 1 or 1 to 0, using the SWAP
statement. If the current value of D is 1 then pixels are lit up; if it is
0 no pixels are lit up but the cursor position is moved.

Having demonstrated PSET and PRESET, we are now in a
position to construct our first ‘animation’ program. We will briefly
look at how motion can be simulated on the screen using these
commands.

The principle behind all animation is to show a picture, change it
in some way and show the new picture—all so fast that the eye
believes it is seeing movement. Using PSET and PRESET we can
simulate movement in the same way.

Firstly, a point on the screen is set (say PSET (10,10)). Then an
adjacent point is set in the same way, while the original point is
turned off (using PRESET). What happens in a program therefore,
is that the process of turning a point on and turning its partner off,
is repeated for as long as movement is required. The continuation
of movement is supplied through a FOR. . .NEXT loop.

1@ SCREEN 2

20 FOR I=10 10 250

Z@ FRESET (I-1.100)

4@ FSE1 (1,100)

S@ NEXT 1

60 FOR [=230 10 10 SIEP -1
7@ PRESE! (1+1,100)

80 FSET (1,100)

9@ NEXT I

1080 GOIO 20

This will send a point across your screen from left to right and
back again. Notice how the left and right motions are described in
different FOR. . .NEXT loops. Look also at the PRESET syntax.
In moving from left to right, it is the point behind the PSET point
that needs to be turned off —hence PRESET is for I-1,100.

As with all programs, try experimenting. For example, try and
make the computer beep when the point changes direction. Try and
make the point move onto a different line each time it changes

MSX-1 l 2 l

direction (you may have to introduce a new variable here!)

LINE is another useful graphics statement. With LINE, you
specify a pair of start coordinates and a pair of destination
coordinates, and a line will be drawn to link the two together, for
example:

1@ SCREEN 2
2@ LINE(50,5@)-(100,5@) ,15
30 LINE(100,50)-(100,100) ,15
49 LINE (100,10@)-(50,100),15
S@ LINE(S50,100)-(50,50) ,15
60 GOTO 6@

The above program will draw a white box. There is an easier way
of drawing a box using LINE which only requires one LINE
statement. As you saw before, if you specify the top left-hand
coordinate of the box as the start coordinate, and the bottom right-
hand corner of the box as the destination coordinate, you would
expect a diagonal line to be drawn. This is normally true, unless
you use the B option on the LINE statement (see Chapter 2). Type
in and run this program:

10 SUREEN 2
20 LINE (20,20 40,49Q),,B
M sulu 30

The B at the end of the LINE statement indicates that you want a
box to be drawn instead of a straight line. LINE will also allow you
to colour the box in once it is drawn. Instead of using B at the end
of a LINE statement, use BF. This instructs the computer to draw
the box then ‘‘paint’’ the box.

The listing below is a program which draws boxes of random
sizes and paints them in random colours.

1@ SCREEN 2

20 DEFINT A-Z

30 V=INT(RND (1) *256) : W=INT(RND (1) %192)
4@ X=INT(RND(1)*192):Y=INT(RND (1) *192)
50 C=INT(RND(1)#13)

122

&0 LINE(V,W)-(X,Y),C,BF
70 GOTO 30

So much for box-like objects. We can also draw circles, as you
saw earlier. Here are some programs which draw some interesting
patterns using the CIRCLE statement.

1@ REM WALLPAPER

20 REM INPUT VALUES

3@ INPUT "X SPACING ":X
4@ INPUT "Y SPACING "3Y
S@ INPUT "RADIUS DECREMENT "3Z
55 SCREEN 2

6@ FOR I=1 10 256 STEP X
7@ FOR J=1 10 192 STEP Y
80 FOR k=108 TO 5 S1EP -Z
90 CIRCLE(1,J),kK,15

10@ NEXT K

11@ NEXT J

120 NEXT 1

130 GOTO 130

For starters, try inputting 50, 30 and 10. You’ll get some nice
wallpaper effects with the program. Here’s another doodle:

1@ REM CIRCLE DOODLE
20 SCREEN 2

3@ FOR I=1 TO 192

49 CIRCLE(128,1),1,15
5@ NEXT I

6@ GOTO 68

You’re not limited to circles of course. You can specify an ellipse
using the aspect ratio option of CIRCLE (again as you saw before).
You specify the ratio of the circle’s height to its width. If for
example, you choose the number 1/3, the result will be a flattened
ellipse, and if you choose a value of 3/2 the ellipse will be taller
than it is wide. The program below demonstrates CIRCLE being
used with different aspect ratios:

123

1@ SCREEN 2

20 FOR I=1 TO 32

3@ CIRCLE(128,946),70,15,,,1/8
4@ NEXT 1

50 GOTO S0

The final thing you can do with CIRCLE is draw an arc. What
you need to give the CIRCLE statement is a start angle and an end
angle in radians for the arc. Try out this program:

1@ SCREEN 2
20 CIRCLE(128,92),70,15,5,4
3@ CIRCLE(128,92),50,15,4,3
4p CIRCLE(128,96),40,15,3,2
5@ GOTO S0

What you’ll see are three incomplete circles. You’ll notice that
they’re incomplete in different places, so to speak. This is because
the start and end angles were different in each case.

When you’ve drawn a circle, ellipse, or box, you can colour it in
using the PAINT statement. The only rule here is that in high
resolution mode, when painting a shape, the colour used must be
the same colour that was used to draw the shape in the first place.
This program draws a circle and paints it black.

1@ SCREEN 2

20 CIRCLE(128,96),70,1
30 PAINT(128,96),1

4@ GOTO 4@

5@ GOTO S@

Try painting the circle in white instead of black. You should see
the whole screen being obliterated by white. This is because the
computer expected to stop painting when it reached a white
boundary. In low resolution mode, PAINT will paint in any shape,
regardless of what colour its border is.

On the subject of colour, you can find out what colour a specific
pixel is on the screen by use of the POINT function. This function
returns the colour number of a pixel given by screen coordinates.

124

POINT is useful when programming simple games. For example,
you could use it to see if a missile had landed on a target. All the
targets could be painted in a unique colour, black for example.
When the missile’s coordinates matched those of a black pixel, then
the missile has hit a target. Here’s a simple demonstration of
POINT in action:

1@ SCREEN 2

20 CIRCLE(S5@,50),25,15

30 CIRCLE(100,100) ,25,8

4@ CIRCLE(15@,15@) ,25,1

50 PAINT (50,50) ,15:REM WHITE
6@ PAINT (100,100) ,8: REM RED
7@ PAINT (15@,15@),1:REM BLACK
80 FOR I=1 TO S@0@@:NEXT I1:REM DELAY FOR
A WHILE

98 X=POINT (50,5@)

108 Y=POINT (10@,100)

11@ Z=POINT (15@,15@)

120 SCREEN 1

1380 PRINT X,Y,Z

The numbers 15, 8, and 1 will be displayed on the screen.

Sprites

Sprites are impish little graphics shapes which you can define and
move about on the two graphics screens. They seem to exist totally
independently of all other shapes on the screen drawn by the likes
of CIRCLE, LINE, PSET, etc. Sprites, for reasons that will be
explained shortly, lend themselves to applications in games
programs, where they may define missiles, bombs, spaceships, and
all the other curious shapes which are to be found lurking in many
arcade games.

First, some sprite-related terminology to get used to. You can
view the graphics screens as a tabletop where you can arrange your
pictures using the normal graphics commands. The graphics screen
can be viewed as a plane or surface where you can draw pictures.
This plane is known as plane zero. Now imagine that the graphics
tabletop has tiers above it — more planes where graphics shapes may

125

be drawn. The extra planes are available for sprites to use. In
effect, if you put a sprite on plane zero, and one on plane one, the
sprite on plane one will appear to be above the sprite on plane zero.
Clever eh! But what do sprites look like and how do you define
them?

Sprites are made up of 8 binary numbers, a set of 64 1s or 0s. If
you arrange these numbers as an 8x 8 grid, you have your basic
sketch pad, as shown in Figure 7, with which to draw sprites.

Now, if you were to put a ‘1’ in one of the grid boxes, this would
set that part of the sprite to on, i.e. that element of the sprite would
appear on the screen. If you put a zero in the box, then that
particular element of the sprite will not appear on the screen. Let’s
look at this a little more closely with a worked example. The
following short program will put a square box into the centre of the
high resolution screen. The sprite will appear as a solid box as all
the values in the data statements are one — each of the 64 elements
that make up the sprite will be ‘lit up’.

Figure 7 Sprite definition grid

1@ SCREEN 2,0,0

2@ FOR 1=1 TO 8

30 READ B¥

48 SHAPE$=SHAFE$+CHR$ (VAL ("&B"+B%))
9@ NEXT 1

6@ SPRITE#(@)=SHAFES$

7@ PUT SPRITE @,(128,96),15,0

88 GOTO 80

9@ DATA 11111111

100 DATA 11111111

126

11@ DATA 11111111
120 DATA 11111111
130 DATA 11111111
140 DATA 11111111
15@ DATA 11111111
168 DATA 11111111

SPRITES in line 60 is a very special MSX-BASIC variable. It is
expressly used to define sprites. What the FOR loop is doing, is
taking the line of numbers one at a time from the DATA
statements, and adding them to the string variable. As you have
probably noticed, there is quite a lot of conversion going on in line
40. The VAL function encountered here converts characters
representing numbers into their numeric equivalent, for example
PRINT VAL(‘“1232’’) would yield the result 1232 which would be a
single precision number.

What line 30 does is to read in the numbers in each DATA
statement as a character string, then line 40 adds the &B binary
number prefix, converts this string to a true binary value, then
converts the entire binary number to a character string using the
CHRS$() function. When the value of the string variable named
SHAPES has been built up in the FOR statement, it is ready to be
assigned to the special SPRITES variable. You have to give the
sprite a number at this stage. You have 32 options open to you, the
numbers 0 to 31. The sprite number is used to reference that
particular sprite from that point on. What line 60 does is to assign
the reference number 0 to the sprite shape that has just been built
up.

Once you’ve defined your sprite, you’ll want to put it on the
graphics screen. This is done using the PUT SPRITE statement.
Not only does this determine where the sprite will appear on the
screen, it also defines which sprite will be put on the screen, its
colour, and on which plane of the screen the sprite will exist. For
the example above, we have said that sprite 0 will be put at the
centre of the screen on plane zero, and it will be coloured white. In
words, the PUT SPRITE statement may be described thus:

PUT a SPRITE on PLANE NUMBER XX at position (X,Y) with a
COLOUR YY, and the sprite used will be SPRITE NUMBER ZZ.

127

The top left hand corner of a sprite is used to reference where the
sprite will appear on the screen. It is this corner of the box which is
placed at the centre of the screen, and not the centre of the sprite,
This is a fairly useful thing to remember!

An interesting thing happens when you try to put two sprites on
the same plane at once. The two sprites will flicker on and off. This
is because only one sprite can exist on a plane at any one time.
What the video chip does is to put one sprite on a specified plane. If
it encounters another sprite that wants to appear on that plane, it
erases the original sprite, and replaces it with the new one. The next
step is to try to move a sprite around the screen.

VVeﬂlusethejoysﬁckrouﬁneasbeﬂnetoxnovethesprhe.There
is one stationary sprite on the screen at the centre of plane 1. You’ll
see the black cross appear to move over the white cross. If you put
the black cross on plane 1, and the white cross on plane 0, you will
be able to move the black cross under the white one.

If you look at the data statements in the program in just the right
light, and in a very blurry manner you’ll be able to see the pattern
of ones appear as a cross. Now to the program:

2@ SCREEN 2,0,0

3@ FOR I=1 TO 8

4@ READ B¥%

5@ SHAPE$=SHAPE$+CHR$ (VAL ("&B" +B$))
6@ NEXT 1

780 SPFRITE® (Q)=SHAPES$

80 SPRITE®(1)=SHAPES

9@ PUT SPRITE @,(128,96),15,0

100 X=128:Y=92

11@ DIR=STICK(@):IF DIR=0 THEN 110
120 GOSUB 15@

130 PUT SPRITE 1,(X,Y),1,0

140 GOTO 110

15@ IF DIR=1 THEN Y=Y-1

16@ IF DIR=2 THEN Y=Y-1:X=X+1

17@ IF DIR=3 THEN X=X+1

180 IF DIR=4 THEN X=X+1:Y=Y+1

170 1F DIR=S THEN Y=Y+1

200 1F DIR=6 THEN Y=Y+1:X=X-1

128

210 IF DIR=7 THEN X=X-1
220 IF DIR=8 THEN X=X-1:Y=Y-1
238 IF X>256 THEN X=2356
240 1F X<1 THEN X=1

250 IF Y>192 THEN Y=192
26@ IF Y<1 THEN Y=1

27@ RETURN

280 DATA 10000001

290 DATA 01000010

300 DATA 00100100

310 DATA 20011000

320 DATA 00011000

330 DATA 20100100

340 DATA 01000010

350 DATA 10000001

By setting an option in the SCREEN command, you can enlarge
sprites to 16 x 16 pixels. Replace line 10 in the above program to
read SCREEN 2,1,0. This will enlarge or magnify the crosses in the
program.

You can actually define your own 16 x 16 sprites without having
to magnify 8 x 8 sprites. First, you have to select a screen mode that
will allow you to use 16 x 16 sprites. The statement that will do the
trick is SCREEN 2,2,0. If you’re wondering why the keyclick is
turned off each time SCREEN is used, it’s because you’ll probably
find that the constant clicking produced when using a joystick
extensively will irritate you beyond belief!

To define 16 x 16 sprites, you need 32 DATA statements. The
first 16 DATA statements define the shape of the left half of the
sprite, the remaining 16 define the right half.

Otherwise, the setup procedure is handled in much the same way
as for 8 x 8 sprites. You can also magnify these sprites so that they
are dimensioned to 32 x 32 pixels by using the SCREEN command:
SCREEN 2,3,0.

Here are some very primitive games to give you some ideas. The
first of these uses a 16 x 16 sprite to represent a spaceship, an 8 X 8
sprite is used as a missile, and the targets are rows of red boxes. The
game will go on until you’ve hit the targets five times. It’s very
simple, and provides a reasonable basis to expand on ideas for

129

games of your own. Some odd little features are included in the
} program. When the joystick is not being moved in any direction,

the spaceship will move about in random directions on its own.

1@ REM DEMO GAME

2@ DEFINI A-2

25 SCREEN 2,2:COLOR 15,15,15:CLS
3@ REM INITI1ALISE VARIABLE

35 ON STRIG GUSUB B6@:REM HANDLE MISSILE
DROF'

40 SC=0:REM NUMBER OUF TARGET HITS

5@ X=128:Y=10:RKEM INI!1IAL SPACESHIP COOR
DINATES

6@ REM DRAW BUXES

79 LINE (40, 180) - (5@,19Q) ,4,BF

80 L INE(80,180)- (9@,19@) ,4,BF

9@ LINE(120,180) - (13@,190) ,4,BF
100 LINE(16@,180)- (17@,19@) ,4,BF
110 LINE(200,180)-(210,198) ,4,BF
115 LINE (@,96)- (256,96} ,1

120 REM SE| UP SPALESHIP SPRITE
130 FOR I=1 IO 32

140 READ A$

150 S$=S$+LCHRE (VAL ("&B" +A$))

160 NEX1 1

170 SPRITES$ (@) =S$

180 REM SET1 UF MISSILE SPRITE

190 REM RESTORE 1260

200 FOR k=1 10 8

210 READ B$

220 T$=T$+CHR$ (VAL (("&B") +B$))

230 NEXT K

r 240 SPRITE$(1)=T$

25@ REM SET UFP SFACE BAR FOLLNG

260 STRIG(B) ON

27@ REM FPLACE SPACESHIP FOSITION

280 FUl SPRITE @,(X,Y),1,0

3@@ REM SEE IF STICK HAS MOVED

31@ REM IF 11 HAS NOT, CALCULATE RANDOM

DIRECT 1ON

130

320 N=STICK(@):1F N=0 ITHEN N=INT (RND(1)*
8)

330 REM CALCULATE OFFSETS

4@ IF N=0 [HEN GUTO 280

350 ON N GBUSUB 760,77@,780,790,800,810,8
20,830

36@ REM CHECE IHE YALUES OF X AND Y ARE
LEGAL

37@ IF X3256 THEN X=256

/@ IF X<1 IHEN X=1

39@ IF Y>104 THEN Y=104

400 IF Y<1 THEN Y=1

410 GOTO 280

420 REM SUBROUTINE TO WORK OUT OFFSETS
76@ Y=Y-1:RETURN

77@ Y=Y-1:X=X+1:RETURN

78@ X=X+1:RETURN

79@ X=X+1:Y=Y+1:RETURN

800 Y=Y+1:RETURN

81@ Y=Y+1:X=X-1:RETURN

820 X=X-1:RETURN

B30 X=X-1:Y=Y-1:RETURN

840 KREM SHBRNITINF 10 HANDIE TRIGRER BUI
[UN DEFKESS 1UN

85@ REM DROF BOMB AND SEE IF LI HITS TAR
GE1

B6@ V=Y+1

870 PUT SPRITE 1, (X+4,V),1,1

880 IF FOINI((X+12), (V+8))=4 THEN PLAY"S
M15@0L2406CDEFG" : SC=SC+1: IF SC>4 THEN SC
REEN 1:COLOR 1%,4,7:CLS:END ELSE :RETURN
898 IF V=192 IHEN PLAY "“C","F+","B":RETU
RN

908 V=V+1:5010 870

91@ REM SPRITE DEFINITION DA1A STATEMENT
5

920 REM 1. SPACESHIF

93@ DATA 11110000

940 DATA 11110000

95@ DATA 11000000

131

260 DATA 01000010
970 DATA 01000111
780 DATA 01001010
9@ DATA @1111111

1200
1210
1020
1030
1040
1250
1060
1870
1080
107
1100
1110
1120
113@
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DAlA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

21101011
01101010
P1111111
01001010
21008111
21000000
11000000
11110000
11110000
o00a1111
PVed1111
ulnlnlnlul b @l
10000010
1110001@
01012010
11111110
21012110
21010110
11111110
21010010
11100010
10002212
00000011
200a1111
vooA1111

REM 2. SPRITE

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

20011000
11111111
11111111
12000001
21000010
20100100
20111100
00111100

DEFINITION OF BOMB

132

The next games program is a moon-lander game where the object
is to keep landing on three white landing pads. Pressing the
spacebar will slow down your descent, but will gradually deplete
your fuel. There are hazards, of course. You have to avoid
stationary and moving ‘‘blobs’’. If you hit one of these you’ll blow
up. Likewise, if you crash into the rocks, or run out of fuel, you
will destroy your ship. When you do land safely, a little man jumps
into a box at the bottom of the screen. The program makes use of
another ON. . .GOSUB command similar to the ON STRIG
GOSUB statement we’ve already seen. This one allows you to
watch out for sprites colliding with each other, in this case, blob
sprites colliding with the rocket ship. The command SPRITE ON
has to be given before the BASIC is able to detect a sprite collision.
SPRITE OFF and SPRITE STOP are like the respective STRIG()
ON and STRIG OFF commands. The outline of how to use these
statements in a program are given below:

1@ SPRITE ON:REM START COLLISION DETECTI
ON

78 ON SPRITE GOSUB 10@:REM SEE IF SPRITE
S HAVE COLLIDED

120 REM COLLISION HANDLING SUBROUTINE
118 SPRITE OFF:REM TURN OFF COLLISION DE
TECIION

18@ SPRITE ON:REM TURN COLLISION DETECTI
ON BACK ON
190 RETURN

Here’s the program as promised:

10 REM LANMDER GAME

20 REM

3@ SCREEN 2,0,0

40 CLEAR

5@ FLAG=1

60 COL=15

70 DIR=4:K=63

80 STRIG(@) ON

90 ON STRI16G GOSUB 1500

100 INC=1

110 FUEL=100

120 FFLAG=0

130 K=100

140 F=0

150 ACC=3

160 X=128:Y=10

178 COLOR 15,4,1

180 REM SET UP SPRITES

190 N=0

200 GOSUB 820

210 N=1:RESTORE 1050:0BJ#$="":G0SUB 820
22@ N=2:RESTORE 1140@:0BJ#%="":G0SUB 820
2380 GOSUB 350

240 X=128:Y=10:PUT SPRITE @, (X,Y),8,1:TL
=@:SPRITE ON

2580 ON SPRITE GOSUB 1570

260 REM poll joystick

27@ SOUND 6,k:S=STICK(@):IF S=0 OR S=1 0O
R S=8 IHEN S=DIR

280 GOSUB 880

290 GOsSuB 1230

300 GOSUB 1270

310 GOSUB 1440

320 REM

330 GOTO 270

340 REM DRAW LANDSCAPE

350 LINE(QA,160)-(24,184),1

360 LINE(24,184)-(32,144),1

134

370 LINE(32,144)-(40@,160),1
380 LINE(40@,160)-(48,152),1
39@ LINE(48,152)-(56,168),1
40@ LINE (56,168)-(64,152),1
410 LINE(64,152)-(56,144),1
42@ LINE(56,144)-(80,144),1
430 LINE(80,144)-(72,152),1
440 LINE(72,152)-(88,160),1
45@ LINE(88,160)-(96,104),1
460 LINE(96,104)-(104,128),1
47@ LINE(104,128)-(120,128),1
480 LINE(120,128)-(112,144),1
490 LINE(112,144)-(128,168),1
500 LINE(128,168)-(136,152),1
510 LINE(136,152)-(144,168),1
S20 LINE(144,168)~(160,136),1
530 LINE(160,136)-(16@,160) ,1
S40 LINE(160,160)-(176,120),1
550 LINE(176,120)-(184,144),1
560 LINE(184,144)-(200,128),1
S57@ LINE (200,128)-(216,128),1
580 LINE(216,128)-(232,144),1
59@ LINE(232,144)-(236,128),1
608 LINE (236,128)-(208,96) ,1
61@ LINE(208,96)-(224,80),1
620 L INE(224,80)-(256,136),1
63@ LINE(56,142)-(80,142) ,15
640 LINE (104,126)-(120,126),15
650 LINE (200,128)-(216,126),15
660 REM PLACE STATIONARY BOULDERS
67@ PUT SPRITE 10,(32,5&),3,2
688 PUT SPRITE 12;(4@,92),3,2
69@ PUT SPRITE 13,(148,54),3,2
700 PUT SPRITE 14,(104,50),3,2
71@ PUT SPRITE 15, (208,5@),3,2
72@ PUT SPRITE 16,(112,92),3,2
73@ PUT SPRITE 17,(184,9@),3,2
74@ PUT SPRITE 18, (160,20),3,2
750 CIRCLE (@,@),7@,8:PAINT (1,1),8
76@ PAINT (128,191),1

135

77@
780
790
8006
810
820
830
840
850
860
87@
880
890
900
710
720
930
740
950
60
970
780
990
1008
1010
1020
103@
1040
1850
1060
1070
1280
1090
1100
1110
1120
1130
1140
1150
1160

LINE(200,184)-(224,192) ,15,B
LINE (208,184)-(208,192) ,15
LINE(216,184)-(216,192),15
RETURN

REM SPRIIE SETUFP ROUTINE

FOR 1I=1 10 8

READ A%
OBJ$=0BJ#+CHR# (VAL ("&B"+A%))
NEXT 1
SPRITE#$ (N)=0BJ%: RETURN

REM JOYSTICK OFFSET CALCULATION
IF S=4 THEN <900

DIR = 8

1F §=3 THEN X=X+2:RETURN

1IF S=4 THEN X=X+1:Y=Y+ACC:RETURN
IF 5=5 THEN Y=Y+ACC:RETURN

IF S=& THEN Y=Y+ACC:X=X=1:RETURN
IF S=7 THEN X=X-1:Y=Y+1:RETURN
REM SPACESHIF PATTERN
DATA 00011000
DATA 20011000
DATA 20111100

DATA 00111100

DATA 00111100

DATA 11111111

DATA 10000001

DATA 10000001

REM MAN PATTERN

DATA 00020200

DATA 00011000

DATA 00011000

DATA 01111110

DATA 00011000

DATA P0111100

DATA 00111100

DATA 00000000

REM BLOB PATTERN

DATA 20111000

DATA 01111101

DATA 00111110

136

117@
1180
119@
1200
1210
1220

DAT
DAT
DAT
DAT
DAT

ACESHIP

1230
1240
1250
1260
1270
1280
1296
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
3
1410
1420
1430
1440

) 415,

IF

IF

IF

IF

REM
PUT
PUT
PUT
PUT
PUT
rn
FUl
FUI
IF

I}
PUI
PU1

A 01111111

A 11111111

A 01111100

A BD111110

A BBB11111

REM RANGE CHECKING AND PLACIN OF SP
AND BLOBS

X<@ THEN X=@:RETURN

Y<@ THEN Y=@:RETURN
X>256 THEN X=256:RETURN
Y>192 THEN Y=192: RETURN
PLACE MOVING BLOBS

SPRITE
SFRITE
SPRITE
SPRITE
SPRITE
SFRIIE
SFKILIE
SPRLIE
FLAG=1

0 1400

SFRIIE
SPRIIE

@,(Xx,Y),8,0
2,(F,B@) ,3,2:F=F+1
3, (F+100,100) ,3,2
4,(F+10,40) ,3,2

5, (F+60,128) ,3,2
6 AF1112,116) 3,2
/,(F*ZZ4,IZ4),J,Z
B, (F+72,72),3,2

THEN RE1URN

1,(X,Y+4) ,15,1
1,(X,Y+4) ,0,1

FUEL=FUEL-2:K=K-4:1F K<@ THEN kK = &

IF
REM

FUEL=0
RETURN

'HEN GOTO 157@

REM SEE IF THE SHIP HAS LANDED YET
(FOINT(X,Y+9)=15) AND POINT (X+9,
Y+9)=15 THEN BEEP:PLAY"L200&4CDEFG": X=128
:Y=10:FFLAG=0@: FLAG=1: FUEL=100: SC=SC+1

1450 IF SC=1 THEN PUT SPRITE 23, (200,184

IF

1

1460 IF SC=2 THEN FUT SPRITE 23, (208,182

) ,15,

1

1478 IF SC=3 THEN PUT SPRITE 23, (216,184
),15,1:5C=0
148@ IF POINT(X,Y+?)=1 OR POINT (X+9,Y+9)
=1 THEN GOTO 1570

MSX-J

137

1490 RETURN 330

150@ SWAP FLAG,FFLAG:SOUND 7,5:SOUND 8,7
151@ ACC=1:1F FFLAG=0 THEN PUT SFRITE 1,
(0,2),0,1

1520 IF FFLAG=@ THEN ACC=3:SOUND 8,0
153@ RETURN

1548 END

1550 REM COLLISION ROUTINE

156@ TL=1

157@ BEEP

158@ FOR 1=1 TO 4

1598 PUT SPRITE @, (X,Y),1,0

160@ PUT SPRITE @,(X,Y),15,0

161@ FOR J=1 TO 255 STEP S:SOUND 8,9:S0U
ND @,J:SOUND 8,@:NEX1 J

1620 NEXT

1630 IF TL=1 THEN GOTO 240

164@ X=128:Y=10: FUEL=100:FLAG=1:FFLAG=0
1658 RETURN

Draw

The DRAW command is used to draw figures using the Graphics
Macro Language (or GML). This works in the same way as the
MML we saw in the previous chapter. Drawing instructions are
presented as character strings containing GML commands.

Try the following example:

10 SCREEN 2
20 DRAW "R1OvD1Q0L 120U1A0"
30 6010 30

As you can see, this program drives a box on the screen. Where
the box is positioned depends upon whether or not you have used
any of the graphics modes before. If you enter this program just
after turning on the machine, the box will be drawn at the top left-
hand corner of the screen. However, if you have used any of the
graphics screens before, then the top, left hand corner of the box
will be positioned at the last pixel addressed.

What the computer has done in the DRAW command is to draw

138

a series of lines; first right 100 pixels then down 100 pixels and then
back 100 pixels, thereby ending up back where the line started and
producing the box —it’s really as simple as that! Now try replacing
line 20 with:

20 DRAW "D10OF 100E100H1I2VG100"

This first draws a vertical line down 100 dots, and then
diagonally down-and-right, up-and-right, up-and-left, and finally
down-and-left, using four more elements of the GML notation,
namely F,E,H and G. The full list is as follows:

U<n> Move up

D<n> Move down

L<n> Move left

R<n> Move right

E<n> Move diagonally up and right
F<n> Move diagonally down and right
G<n> Move diagonally down and left
H<n> Move diagonally up and left

In each of the above commands, movement begins at the last
point that was referenced. This means that movement starts at the
top left-hand corner of the screen, and thereafter from the point at
which the previous command stopped drawing. <n> indicates the
distance to be moved, so that R100 means move right 100 pixels,
F100 means move down 100 pixels and right 100 pixels, and so on.

One way of starting to draw at a point other than the top left-
hand corner is by using:

M<x,y>
where x is a horizontal movement and y is a vertical movement. Try
changing line 20 in the program again to read:

20 DRAW "M100,10R12GD10BL120U100"

As you can see, the point at which drawing starts has been moved
100 pixels across the screen and 10 pixels down it.
Any of the above commands can be prefixed with either B or N.

139

B moves but doesn’t plot any points, N moves but returns to the
point that it started from when it has finished. The other
commands available are as follows:
A<n> allows you to set the angle at which a line
is to be drawn. n can be between 0 and 3,
where 0 is 0 degrees, 1 is 90, 2 is 180, and 3
is 270 degrees.

C<n> sets the colour of the line to be drawn, and
in line with the COLOR command can be
in the range 0 to 15.

S<n> sets a scale factor which may be used to
modify the distance moved using the
U,D,L,R,E,F,G,H and M commands.

X<string variable> allows you to execute a draw command
from within another DRAW command.
This can be very useful in that, for
example, you can define part of the object
that you’re drawing as being separate
from its whole, or can execute DRAW
commands that are more than 255
characters long.

The Paintbox program

The next program is named paintbox and it is a simple general
purpose drawing program. The graphics screen is split up into two
areas: a drawing area and a colour selection area. A joystick (or the
cursor keys) is used to control a cursor.

The colour selection area contains the paintbox which gives the
program its name. It is a palette of fourteen colours, any one of
which may be selected by positioning the cursor over the desired
colour and pressing the spacebar. The colours not available from
the palette are colours 0 — transparent, and 15— white.

The drawing instruments you may use are a paintbrush, a

140

straight edge (to draw lines), a pair of compasses (to draw circles), a

box shape (to draw boxes) and an eraser. There are also four,

textured ‘fillers’ to choose from —an aerosol can, vertical lines,

horizontal lines and a stipple pattern, as well as the standard

PAINT option. The cursor will change to the shape of the selected

drawing instrument (or texture pattern) when it is moved within the

boundaries of the drawing area. As a point of interest, a term for
these various cursor shapes is an icon — the cursor shape represents

the currently selected function.

Various drawing functions (20 in all) are selected at the
keyboard. The full range of command letters is given below (note
that they are all upper case). Wherever possible, a command letter
has been chosen to match the command’s function — although after
a while we ran out of letters!

Using the paintbrush

D selects the paintbrush and puts it ‘down’. Moving the down
cursor then draws a painted line. Initially, the paintbrush will
draw a very narrow line. Pressing D once more will allow
painting across the whole width of the paintbrush.

U picks ‘up’ the paintbrush so that you can move it without
leaving a paint trail.

Using the aerosol
A selects the aerosol can (spray paint!)
SPACE BAR makes the aerosol spray paint.

Using the compass to draw a circle

C selects the compass and defines the centre of a circle to be
drawn at current cursor position.

R defines the radius of the circle as the line from where the cursor
was when you pressed C to the current cursor position — the
circle is then drawn.

Using the straight edge to draw a line

L selects the straight edge and defines the current cursor position
as the starting point for a line.

141

E defines the end point for a line —and draws the line.

Using the box to draw a box

B selects the box and defines the current cursor position as the
start point for one corner of a box to be drawn.

X defines the diagonally opposite corner of the box, and draws
the box.

Painting a box or other enclosed area

P paints the whole of the enclosed area within which the cursor
has been put. Note that if there is no enclosed area the whole
screen will be painted in the current colour.

Local shading using squares of texture/pattern

Pressing one of these commands selects a small square textured
box. Pressing the space bar draws the box at the current cursor
position in the selected texture/pattern.

V vertical lines — selects vertical line fill-in pattern.

Y selects horizontal line fill-in pattern.

K selects stipple texture fill-in pattern.

Using the eraser

W selects eraser. Moving the cursor then erases (by painting in
white pixels).

Other commands

Q selects colour white (while in drawing area).

T toggles cursor — switches the cursor colour from white to black
or vice versa.

H home — jumps to colour selection area of the screen.

S screen—jumps to the centre of the drawing section of the
screen.

Z zero option! —erases the drawing area of the screen to white.
To avoid inadvertently destroying your masterpiece, the Z
command has to be used twice before it has any effect.

142

F exits from the program. Like the Z command, this also has to
be used twice before the program is ended.

This program makes full use of sprites to define various cursor
shapes, a total of ten in all. In all cases, the reference point for all
the cursor shapes is the top left-hand corner — the start point for a
box will be defined from where the top left-hand corner of the
cursor is positioned.

One user-defined function is used to calculate the radius of a
circle using Pythagoras’ Theorem.

When the cursor is moved into the colour selection area, it
changes into an arrow. When it is moved back into the drawing
area, the cursor shape changes back into the shape of the most
recently used drawing instrument. The default drawing instrument
is the paintbrush.

Quite a bit of testing is done in the program to ensure that
objects are only drawn within the drawing area of the screen. In
most cases, command letters are only accepted while the cursor is
within the drawing area boundary.

When painting-in an area of the screen, if the cursor is lying on
top of even a single pixel of the same colour as the paint colour,
then you won’t see anything being painted. So, before painting-in,
lift the cursor, and move it to pixels of a different colour.

When filling an area, the program will only recognise lines that
are in the current colour as boundaries. Therefore you have to be
sure that the boundary of the shape to be painted is the same colour
as the currently selected colour. To avoid the program filling
beyond the drawing area, the drawing boundary is automatically
redrawn in the current colour before painting any area. Using
(P)aint before drawing anything will change the whole drawing
area to your chosen colour, so allowing colours other than white to
be used as your ‘canvas’.

1@ REM PAINIBOX

20 DEFINI A-2

3@ REM SE1 UP JOYSTICK OFFSETS
4@ DIM 2¢(8,2)

5@ FOR I= 1 |0 8B

6@ FOR J= 1 10 2

143

-

7@ READ A:Z(I,J)=A

80 NEXI J

9@ NEX1 I

190 pATA @,-1,1,-1,1,0,1,1,0,1,-1,1,-1,0
s -1,-1

110 SCREEN 2.,0,0

120

COLOR15,15,15:CLS

1320 SIRIG(@) ON

14@ REM DEFINE FYTHAGURUS FUNCTION
15@ DEFFNC(M,N,0,P)=SER((ABS((M-0)~2)) +(
ABS ((N-FP)2)))

160 F=1:M=2:N=1:0=1:FP1=0:P2=1

170 ON SIRIG GOSUE 1400

1880 X=40:Y=172

190 GOSUB 320:REM SEI UF SCREEN

200 GUSUB 410:REM SE1 UF ALL THE SPRITES
218 W=15

220 REM FLACE CURSOR

230 CS=1

240 PUI SPRITE 1,(X,Y),Q,N

25@ IF N=3 [HEN PSEIl (X,Y),15

260 IF X>57 AND FLG=1 AND N=2 THEN GOSUB
2090

270 1F SIICK(@)=0 THEN GOTO 290

280 GOSUB 1470

290 B#=INKEY#$:IF B%= "" THEN GOTO 240
300 GOSUB 1560

385 GOTO 240

310 REM SCREEN DRAWING ROUTINE

320 C=1

330 FOR I=8 T0O 32 STEF 24

34@ FOR J=8 10 152 STEF 24

350 LINE (I,Jd)-(I+16,J+16),C,BF:C=C+1
36@ NEXT J

378 NEX1 1

280 LINE (56,8)-(248,184),1,8B

39@ RETURN

400 REM SPRITE SEIl UFP ROUTINE

410 FOR I=! 10 1@

420 S$=""

144

430 FOR I=1 10 8

448 KEAD A%:S$=S$+CHRSF (VAL ("&B" +A%))
450 NEX! 1

460 SFRITE$(1)=8%

47@ NEXI1 1

430 RE1URN

49@ REM ARROW SFRIIE

SP2 DAlA 11110000

510 DATA 11000000

520 DATA 10100000

S3@ DATA 10010000

540 DATA 20001000

35@ DATA 00000100

S6@ DATA DDBO0O10

S7@ DATA 20RA00A1

980 REM PAINT BRUSH SPRITE
39@ DATA 11110000

608 DATA 11110000

618 DATA 11110000

620 DATA DBDOVOOO

630 DATA 11110000

648 DATA V1100000

650 DATA 01100000 :
668 DATA 01100000 |
67@ REM ERASER SPRITE

688 DATA 11110000

490 DAIA 10011000

708 DATA 10010100

718 DAlA 11110010

7280 DATA D1000001

730 DATA 00100001

740 DATA 00010001

75@ DATA 00201111

760 REM COMPASS SPRITE

770 DATA 11000000

788 DATA 00100000

79@ DATA 00210010

800 DATA 00001111

81@ DATA Q0001111

820 DATA 02010010

145

83a
840
850
860
870
880
89a@
900
710
920
30
740
50
60
970
780
990
1000
1012
1020
10830
1240
1050
1860
1070
1080
1292
1100
1110
1120
1130
1140
1150
1160
117@
1180
1190
1200
121@
1220

DATA 20100000
DATA 110200000
REM AEROSOL CAN
DATA 11100000
DATA 20111110
DATA 00100010
DATA 11111010
DATA 10001000
DATA 10001000
DATA 10001000
DATA 11111000
REM LINE SPRITE
DATA 10200000
DATA 10000000
DATA 10000000
DATA 10000000
DAlA 10020000
DATA 12000000
DATA 12000000
DATA 10008000
REM BOX SFPRITE
DATA 11111111
DATA 10000001
DATA 10000001
DATA 10000001
DATA 10000001
DATA 12000001
DATA 10000001
DATA 11111111
REM HORIZONTAL BAR
DATA 00000000
DATA 11111111
DATA 20000000
DATA 11111111
DATA 20000000
DATA 11111111
DATA 200000002
DATA 11111111
REM VERTICAL BAR
DATA 10101010

146

1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1348
1350
1360
1370
1380
13790
1400
URN

1410

DATA 10101010

DATA 10101010

DATA 10101010

DATA 10101010

DATA 10101010

DATA 10101010

DATA 10101010

REM STIPPLE CURSOR

DATA 10101010

DATA 01010101

DATA 10101010

LDAIA V1V1V1V]

DATA 10101010

DATA 21010101

DATA 10101010

DATA 01010101

REM SPACEBAR INTERRUPT ROUTINE
IF X>57 AND N=5 THEN GOSUB 193@:RET

IF X>57 AND N=8 THEN V1=1:V2=2:605U

B 2000: RETURN

1420

IF X>57 AND N=9 THEN V1=2:V2=1:60SU

B 2000: RETURN
1430 IF X>57 AND N=1@ THEN V1=2:V2=2:60S
UB 2000: RETURN '

1440
1450

IF X>57 THEN RETURN
IF POINT(X,Y)=15 THEN PLAY "L1402C"

:RETURN

1460
RN

1470
14804
1490
1500
1510
1520
1538
1540
1550
1560

CS=FPOINT (X,Y):PLAY "L2405C0O6C":RETU

X=X+Z(STICEK (@) ,1):Y=Y+Z(STICK (@) ,2)
1F X>2446 THEN X=24¢4

1F Y>183 THEN Y=183

IF ¥<9 THEN Y=9

IF X<9 THEN X=9

IF X<5& THEN N=1

IF X>56 THEN N=M:F=0

RETURN

REM COMMAND LETTER ROUTINE

IF (ASC(B%)<465) THEN RETURN

147

157@ IF B$="F" THEN BEEP:E1=E1+1:IF E1=2
THEN SCREEN 1:COLOR 15,5,4:END

1580 IF X<56&6 AND B$="S" THEN X=152:Y=96:

N=M: RETURN

159@ IF B$="T" THEN SWAP @,W:RETURN

160@ IF X<S5& THEN RETURN

161@ CL=CW

1620 IF B$="G" THEN CS5=15:RETURN

163@ IF B$="U" THEN FLG=0:N=2:M=2:SWAF P
1,P2: RETURN

1648 IF B$="D" THEN FLG=1:N=2:M=2:SWAP P
1,P2:RETURN

165@ IF B$="H" THEN X=4@:Y=176:N=1:RETUR

N

166@ IF B$="R" AND F2=1 THEN GOSUB 181@:
F2=0: RE TURN

167@ IF B$="P" THEN LINE(56,8)-(248,184)
,C5,B:PAINT (X,Y),CS:RETURN

1680 IF B$="Z" THEN BEEP:Z=Z+1i:IF Z>1 TH

EN LINE(5&,8)-(248,184),15,BF:LINE (56,8
)-(248,184) ,1,B: 2=0: RETURN

169@ IF B$="C" THEN C1=X:C2=Y:M=4:N=4:F2
=1:RETURN

1700 IF B$="Y" THEN M=8:N=8:RETURN

171@ IF B$="V" THEN M=9:N=9:RETURN

1720 IF B$="K" THEN M=1@:N=10:RETURN
173@ IF B$="W" THEN N=3:M=3:CW=CL:CL=15:
FLG=1:RETURN

174@ IF B$="L" THEN L=1:L1=X:L2=Y:N=6:M=
63 RETURN

175@ IF B$="B" THEN B=1:B1=X:B2=Y:N=7:M=
7:RETURN

1760 IF B$="X" AND B=1 THEN LINE(B1,B2)-
(X,Y) ,C5,B: B=0: RETURN

1778 IF B$="E" AND L=1 THEN LINE(L1,L2)-
(X,Y) ,C5:L=0:RETURN

1780 IF B$="A" THEN N=5:M=5

179@ RETURN

1800 REM RADIUS CALCULATION

1818 R = FNC(X,Y,C1,C2)

148

1820 D1=C1:D2=C2

1830 GOSUB 1860

184@ CIRCLE (C1,C2),R,CS,,,8/7

18508 RE |URN

1860 REM CIRCLE RANGE CALCULATION

1870 1F D1+R>24&4 THEN BEEP:RETURN

188@ IF D1-R<S57 THEN BEEP:RETURN

189@ 1F D2+R>183 THEN BEEP:RETURN

1908 IF D2-R<9 THEN BEEP:RETURN

191@ RETURN 185@

1920 REM AEROSOL DRAWING ROUTINE

193@ IF (X-8<57)0R(Y-8<9) THEN RETURN
194@ RV=S*RND(1): IF RV<2 THEN 1940

195@ FOR I=1 TO RV

196@ PSET (X—(B#RND (1)) ,Y—(B%RND(1))) ,CS
197@ NEXT 1

1980 RETURN

199@ REM HORX. VERT. AND STIPPLE ROUTINE
2000 IF (X+8)>246 OR (Y+8) >183 THEN BEEF
: RETURN

201@ FOR I=X TO X+7 STEP V1

202@ FOR J=Y+1 TO Y+7 STEP V2

2030 PSET(I,J),CS

204@ NEXT J

205@ NEXT 1

206@ RETURN

207@ KEM PAINTBRUSH PAINTING

208@ IF P1=1 THEN FSET(X,Y),CS:RETURN
2090 WL=3

2100 IF X+WL>246 THEN WL=WL-1:G0TO 2120
211@ FOR 1=0 10 WL

2128 PSET(X+I,Y),C5

213@ NEXT 1

214@ RETURN

Suggested Improvements to Paintbox

Using the (C)ircle command, only complete circles within the
drawing area are permitted. A crude, but effective way of clipping
circles at the edge of the drawing boundary is to redraw everything

149

outside the boundary after a circle is drawn. The following
subroutine and other simple alterations will achieve this:

@02 REM MASEING ROUTINE

3010 LINE (B,0)-(56,1722),15,BF
3028 LINE (56,0)-(256,8),15,BF
3030 LINE (56,184)-(256,192),15,BF
3040 LINE (248,0)-(256,192),15,BF
3050 USUB 320

3@6@ REIURN

The circle range checking routine (lines 1860—9000) should be
altered thus:

1860 REM CIRCLE RANGE CALCULATION
187@ IF D1+R>246 THEN FC=1:RETURN
1888 IF D1-R<57 THEN FC=1:RETURN
189@ 1IF D2+R>183 THEN FC=1:RETURN
1908 IF D2-R<? THEN FC=1:RETURN

Line 1910 should be deleted. The final alteration includes the
addition of line 1845 which calls the subroutine:

1845 IF FC=1 THEN GOSUB 3000 : FC=0

Although quite a lot of graphics work is being done to carry out
the screen redrawing, the subroutine still works very quickly.

Another improvement could be in error checking —instead of
merely ‘beeping’, the program could indicate what you had done
wrong in some visual way. A range of error sprites could be defined
for each error. An appropriate sprite could then be displayed in the
bottom left-hand corner of the screen when you had made a
mistake. For example, when trying to paint in an area of the screen
while positioned over a point of matching colour, a right-pointing
arrow symbol could be shown, indicating that the cursor should be
moved.

A more advanced painting option could be introduced allowed
circles and boxes to be painted in, using vertical or horizontal lines
or stipples. Whilst this is quite easy for the case of filling in bozes,

150

circles present greater difficulties. Here is a suggested method for
filling in boxes. First alter line 1760:

1760 IF B$ =X’ AND B=1 THEN LINE (B1,B2) - (X,Y),C5,B:
B=0: GOSUB 4000: RETURN

4000 CF=INKEY#: IF C#="" THEN 4000

4018 1F ASC(C#$)<48 OR ASC(C#) >S1 THEN BE
EF: RE1URN

4220 IF C$ = "@" THEN RETURN:REM NO TEXT
URING WANIED

4030 1F C$% = "1" THEN V1=1:V2=2:G605UB 50
@9: RETURN
4040 1F C#
290: RE TURN
4050 1F C#
Q0: RETURN
4060 REITURN

"2" THEN V1=2:Vv2=1:G0SUB 5@

"3" THEN V1=2:V2=2:60SUB 50

520@ IF B1l:>X THEN Vi=-V1
5018 IF B2>Y [IHEN V2=-V2
5020 FOR I= Bl 10 X STEP Vi
S8030 FOR J= B2 TO Y STEP V2
5@4@ PSET (¢1,3),C5

5050 NEX1 J

506@ NEXT 1

S870 RETURN

After the X command has been given, the program will wait for a
number between 0 and 3 to be typed in. These correspond to:

0 Don’t paint box.

1 fill in box with horizontal lines.
2 fill in box with vertical lines.

3 fill in box with stipple texture.

The subroutine lines numbered 5020—5070 are virtually the same
as another routine in the program (lines 2010-2060). To avoid
duplicating these lines, try altering lines which call the subroutine

151

(lines 1410, 1420 and 1430) and the subroutine starting at line 4000.
You will have to keep lines 5000 and 5010 of the new subroutine
though.

Filling-in circles in this manner causes immense problems. There
are some quite hefty maths involved, so if you feel daring
enough — start working at it!

As you will no doubt have noticed, it is possible to expand this
program a great deal. We hope there is enough here for you to start
with. As this is the final (and longest!) program in the book, it
seems apt to end at this point.

152

Appendix A

MSX-BASIC functions

ABS(X)

Returns the absolute value of the expression X.

ASC(X$)

Returns a value that is the ASCII code of the first character of the
string X$. If X$ is an empty string, an ‘‘Illegal function call’’ error
is returned.

ATN(X)

Returns the arctangent of X in radians. The result is in the range
—pi/2 to pi/2. The expression X may be any numeric type. This
function is always performed in double precision.

BINS$(X)

Returns a string which is the binary value of a decimal number. X
must be a numeric expression in the range — 32768 to 65535. If n is
negative, a two’s complement form is used — BIN$(— n) is the same
as BIN$!(65536 — X).

CDBL(X)

Converts X to a double precision number.

CHRS$(X)

Returns a string which represents the ASCII code for X.

CINT(X)

Converts X to an integer number. An ‘‘Overflow’’ error occurs if X
is outside the range — 32768 to 32767.

COS(X)

Returns the cosine of X in radians. It is calculated to double
precision.

CSNG(X)

Converts X to a single precision number.

MSX-K 1 53

CSRLIN

Returns the vertical (column) coordinate of the cursor.

ERL/ERR

Error variables. When an error is trapped, ERR has the value of the
error code, and ERL contains the line number of the line in which
the error was trapped. If the statement that caused the error ws a
direct mode statement, ERL will be 65535.

EXP(X)

Returns e to the power of X.

FIX(X)

Returns the integer part of X (fraction truncated).

FRE(*")

This returns the number of free bytes in memory which can be used
for BASIC programs, variables etc.

HEX$(X)

Returns a string which represents the hex value of X. X must be a
number in the range — 32768 to 65535.

INKEY$

Returns either a single character read from the keyboard or an
empty string.

INPUTS$(X)

Returns a string X characters long read from the keyboard.
INSTRI[X,]A$,B$)

Searches for the first occurrence of string B$ in A$ and returns the
position in A$ at which a match is found. The offset X may be used
to set the starting position for the search. X must be in the range 0
to 255.

INT(X)

Returns the largest integer <= X.

LEFT$(A$,X)

Returns a string composed of the leftmost X characters of the
string A$. X must be in the range 0 to 255.

LEN(X$)

Returns the number of characters in X$. All non-printable
character and spaces are counted.

154

LOG(X)

Returns the natural logarithm of X. X must be greater than zero.
LPOS(X)

Returns the current position of the line printer print head within the
printer buffer. However, this function does not necessarily give the
actual position of the print head. X is a dummy argument.

MID$(A$,X[,Y])
Returns a string Y characters long from X$ beginning from the Xth
character character position. Both X and Y must be in the range 1
to 255. If Y is omitted or if there are less than Y characters to the
right of the Xth character, all rightmost characters returned.
OCTS$(X)
Returns a string representing the octal value of the decimal
argument X. X must be a numeric expression in the range — 32768
to 65535.

PEEK(X)
Returns a byte (an integer in the range 0 to 255) read from memory
location X. X must be in the range — 32768 to 65535.
POS(X)
Returns the current horizontal position of the cursor. The leftmost
position is 0. X is a dummy argument.
RIGHT$(A$.X)
Returns the rightmost X characters of string X$. This function is
used like LEFTS.
RND(X)
Returns a random number between 0 and 1. The same sequence of
random number will be generated each time a program is run.
SGN(X)
Returns 1 (for X>0), 0 (for X=0), —1 (for X<0).
SIN(X)
Returns the sine of X in radians. SIN(X) is calculated to double
precision.
SPACES(X)
Returns the string of spaces of length X. X must be in the range 0 to
2553

155

[

SPC(X)

Prints X blanks on the screen. SPC may only be used with PRINT
and LPRINT statements. X must be in the range 0 to 255.
SQR(X)

Returns the square root of X. X must be >=0.

STR$(X)

Returns a string representation of the value of X.

STRINGS$(X,Y) and STRINGS$(X,A$)

Returns a string X characters long that all have ASCII code Y or
the first character of the string X8$.

TAB(X)

Prints Spaces to position X on the console. If the current print
position is already beyond position X, TAB does nothing. X must
be in the range 0 to 255. TAB may only be used with PRINT and
LPRINT statements.

TAN(X)

Returns the tangent of X in radians. TAN(X) is calculated to
double precision.

USRI[<digit>] (X)

Calls the user’s assembly language subroutine with the argument X.
<digit> is in the range 0 to 9 and corresponds to the digit supplied
with an earlier DEFUSR statement for that routine. If <digit> is
omitted, then USR(0) is assumed.

VAL(X$)

Returns the numerical value of a string X$. The VAL function also
strips leading blanks, tabs, and linefeeds from the string X8$.

VARPTR (<variable name>) and VARPTR (£<file number>)
Returns the address of the first byte of data identified with
<variable name>. A value must be assigned to <variable name>
before execution of VARPTR, else an ‘‘illegal function call’’ error
results. The value returned will be an integer in the range — 32768
to 32767. If a negative address is returned, adding this value to
65536 will give the actual address.

156

Appendix B

Error codes and messages

1 NEXT without FOR

You omitted to start a FOR. . .NEXT loop with a FOR. A variable
in a NEXT statement does not correspond to any previously
executed, unmatched FOR statement variable.

2 Syntax error

A line in encountered that contains some incorrect sequence of
characters (such as unmatched parenthesis, a misspelled command
or statement, incorrect punctuation, etc.)

3 RETURN without GOSUB

A RETURN statement is encountered for which there is no
previous, unmtched GOSUB statement.

4 Out of DATA

A READ statement is executed when there are no DATA
statements with unread data remaining in the program.

5 lllegal function call

A parameter that is out of the range is passed to a math or string
function. An FC error may also occur as the result of:

1. a negative or unreasonably large subscript.

2. a negative or zero argument with LOG.

3. a negative argument to SQR.

4. an improper argument to MID$, LEFT$, RIGHTS, INP, OUT,
PEEK, POKE, TAB, SPC, STRINGS, SPACES$, INSTRS, or
ON. . .GOTO.

6 Overflow

The result of a calculation is too large to be represented in BASIC’s
number format.

7 Out of memory

A program is too large, has too many files, has too many FOR

157

|

loops or GOSUBS, too many variables, or expressions that are too
complicated.

8 Undefined line number
A line reference in a GOTO, GOSUB, IF. . .THEN. . .ELSE is to
a nonexistent line.

9 Subscript out of range
An array element is referenced either with a subscript that is outside
the dimensions of the array, or with the wrong number subscripts.

10 Redimensioned array

Two DIM statements are given for the same array or DIM
statement is given for an array after the default dimension of 10 has
been established for that array.

11 Division by zero

A division by zero is encountered in an expression, or you
attempted to raise zero to a negative power.

12 lllegal direct

A statement that is illegal in direct mode is entered as a direct mode
command.

13 Type mismatch

A string variable name is assigned a numeric value or vice versa; a
function that expects a numeric argument is. given a string
argument or vice versa.

14 Out of string space

String variables have caused MSX-BASIC to exceed the amount of
free memory remaining. MSX-BASIC will allocate string space
dynamically, until it runs out of memory.

15 String too long

An attempt is made to create a string more than 255 characters
long.

16 String formula too complex

A string expression is too long or too complex. The expression
should be broken into smaller expressions.

17 Can’t continue

An attempt is made to continue a program that:

1. has halted due to an error,

2. has been modified during a break in execution or

3. does not exist.

158

18 Undefined user function

FN function is called before defining it with the DEF FN statement.
19 Device 1/O error

An input/output error occurred on a cassette, printer, or CRT
operation. It is a fatal error, i.e., BASIC cannot recover from the
error.

20 Verify error

The current program is different from the program saved on the
cassette.

21 No RESUME

An error trapping routine is entered but contains no RESUME
statement.

22 RESUME without error

A RESUME statement is encountered before an error trapping
routine is entered.

23 Unprintable error

An error message is not available for the error condition which
exists. This is usually caused by an ERROR with an undefined error
code.

24 Missing operand

An expression contained an operator with no operand following it.
25 Line buffer overflow

An entered line has too many characters.

26—49 Unprintable Errors

These codes have no definitions. Should be reserved for future
expansion in BASIC.

50 FIELD overflow

A FIELD statement is attempting to allocate more bytes than were
specified for the record length of a random file in the OPEN
statement. Or the end of the FIELD buffer is encountered while
doing sequential I/O (PRINT #, INPUT #) to a random file.

51 Internal error

An internal malfunction has occurred —the chances are your
machine needs looking at by a specialist.

52 Bad file number

A statement or command references a file with a file number that is
not OPEN or is out of the range of file numbers specified by the
MAXFILE statement. 159

53 File not found

A LOAD, KILL, or OPEN statement references a file that does not
exist in the memory.

54 File already open

A sequential output mode OPEN is issued for a file that is already
open; or a KILL is given for a file that is open.

55 Input past end

An INPUT statement is executed after all the data in the file has
been INPUT, or for null (empty) file. To avoid this error, use the
EOF function to detect the end of file.

56 Bad file name

An illegal form is used for the file name with LOAD, SAVE, KILL,
NAME, etc.

57 Direct statement in file

A direct statement is encountered while LOADing an ASCII
format file. The LOAD is terminated.

58 Sequential 1/0 only

A statement to random access is issued for a sequential file.

59 File not OPEN

the file specified in a PRINT#, INPUT#, etc hasn’t been
OPENed.

60—255 Unprintable Errors

These codes have no definitions. Users may place their own error
code definitions at the high end of this range.

160

Appendix C

Full screen editor control keys

CONTROL SPECIAL FUNCTION
KEY KEY
A Ignored
*B Move cursor to start of previous word
*C Break when MSX BASIC is waiting
for input
*D Ignored
*E Truncate line (clear text to end of
logical line)
*F Move cursor to start of next word
*G Beep
H Back space Backspace, deleting characters passed
over
| Tab Tab (moves to next TAB stop)
*J Line feed
*K Home Move cursor to home position
] I= CLS Clear screen
*M Return Carriage return (enter current logical
line)
*N Append to end of line
*0 Ignored
o Ignored
*Q Ignored
*R INS Toggle insert/typeover mode
*S Ignored
*F Ignored
*U Clear logical line ‘
*V Ignored l
*W Ignored “
*X Select Ignored 1“
161 i

Y Ignored

*Z Ignored
[ESC Ignored
*Y Right arrow Cursor right (Y is Yen sign)
5 Left arrow Cursor left
a4 Up arrow Cursor up
*— Down arrow Cursor down
*DEL DEL Delete character at cursor

All keys marked with asterisk (*) cancel insert mode when editor is
in insert mode.

162

Appendix D

Differences between SV-BASIC and MSX-BASIC

The Spectravideo SV318 and SV328 computers include a language
specification that is very close to that of MSX-BASIC. Indeed,
there are only eight differences between the two. SV-BASIC
handles screen modes, screen width, function keys, the sound
channel, key click and printing slightly differently, and includes
two graphics commands not included in MSX-BASIC, namely
GET and PUT. We shall look at these in order:

SCREEN <mode>[,<option>]

Whilst MSX-BASIC allows four different screen modes, SV-
BASIC only allows three. These are specified as follows:

SV-BASIC MSZ-BASIC Mode

SCREEN 0 SCREEN 0 40 x 24 Text mode
SCREEN 1 SCREEN 2 High resolution graphics mode
SCREEN 2 SCREEN 3 Low resolution graphics mode

As you can see, there is only one option available for the
SCREEN command in SV-BASIC, as compared with the range of
options in MSX-BASIC. This option varies according to which
screen mode is in use.

In text mode, if the option is set to zero, then the function key
display will disappear. If it is made non-zero, then the function key
will reappear. The latter (surprise, surprise!) is the default.

In either of the graphics modes, the option is used to select the
sizes of sprites to be displayed.

0 selects 8 x 8 unmagnified sprites

1 selects 8 x 8 magnified sprites

2 selects 16 x 16 unmagnified sprites
3 selects 16 x 16 magnified sprites

163

The precise meanings of sprites, 8 x 8, 16 x 16, magnified and
unmagnified are all given in the chapter on graphics.

WIDTH [39][40]

In MSX-BASIC, any screen width between one and forty
characters is permitted for the text screens. In SV-BASIC, width is
limited to either thirty-nine or forty characters.

KEY [ON][OFF]

In MSX-BASIC, the KEY command is used to switch the function
key display at the bottom of the screen on and off. In SV-BASIC,
the screen option described above is used.

SOUND [ON][OFF]

The SOUND channel can be turned on and off in SV-BASIC,
though this is not possible in MSX-BASIC. In the latter, SOUND is
limited to making weird and wonderful noises!

CLICK [ON][OFF]

In MSX-BASIC, turning the key click on and off is one of the
options available with the SCREEN command. In SV-BASIC, key
click has its own command — CLICK ON makes the keys click and
CLICK OFF makes them silent.

PRINT

In SV-BASIC, you can quite happily print things on any of the
screens, simply by using the PRINT statement. In MSX-BASIC,
PRINT works on the text screens, but on the graphics screens it
does not, and a rather more convoluted method is required (see the
description of the PRINT statement in Chapter 2 for a full
description).

GET <x1,y1>)-(<x2,y2>)<array name>

In SV-BASIC, when you have drawn a picture on the graphics
screen, the GET command allows you to save part of the picture
into an array. When used in conjunction with PUT, you can then

164

put the piece of the picture that you’ve stored back onto the screen,
anywhere you like. By far the easiest way of demonstrating this is
with a short program:

10 SCREEN 1

20 DIM A(1000)

30 FDR X = 10 10 10@ STEP 10
4@ CIRCLE (X,X) X

5@ NEXT X

60 GE1 (10,10)~-(100,100) ,A
7@ PUl (125,10@) ,A,PRESET

80 GO0 80

Line 10 selects the high resolution graphics screen. Line 20
dimensions an array called A to be big enough to store the portion
of the screen that is to be ‘got’. Lines 30 to 50 instruct the computer
to draw a series of circles starting with a radius of 10 pixels and
centred on the point (10,10); then with a radius of 20 pixels centred
on (20,20); and so on up to a circle of radius 100 pixels centred on
(100,100). Line 60 asks it to GET a portion of the picture starting at
the point 10,10 and ending at the point 100,100 and to store it in A.
Then, in line 70 it takes A and PUTs it back onto the screen with its
top left-hand corner at position (125,100). PSET is one of the
options that can be used with PUT to alter the way that the pattern
you’ve saved is re-drawn onto the screen.

PUT (<x,y>,<array name>[,<option>]

And so to the PUT command which copies the part of the picture
specified by GET, to another position on the screen. The syntax for
PUT is fairly simple—x and y specify the point on the screen to
which the top left-hand corner of the pattern is to be copied, and
the array name is the name that was given to the pattern to enable
GET to be used. The options that may be specified when the
pattern is drawn back onto the screen are as follows:

PSET

Causes the pattern to be put back onto the screen in exactly the
same way as it was saved into the array.

165

PRESET

Causes the pattern to be drawn in the same way as by PSET, but
with the foreground and background colour reversed.

AND

Combines the pattern colour with the screen colour, in such a way
that the pattern that is being superimposed onto the screen is only
drawn when the two coincide.

OR

The pattern that is being superimposed overlaps the pattern that is
already on the screen, so that both patterns can be seen.

XOR

If a pixel from the pattern that is being superimposed onto the
screen matches the one that is already there, then it is displayed in
the background colour. XOR is the default option.

Whilst this explains in words what the different options do, the
best way of understanding them is to try them out for yourself. The
easiest way of doing this is to turn back to the program we used to
demonstrate GET, and replace the PSET in line 70 with each of the
other options in turn.

166

MSX is the first standard for home computers. /
Software written for one MSX computer will run :
on every other — they all understand the same

MSX BASIC.

This book takes you from the simplest concepts of
MSX BASIC to the complex techniques of using its
stunning graphics and music capabilities; the MSX
Macro languages. With drawing and painting
programs, sprites, tunes to play, easy reference
‘guides to key words and many useful hints and tips,
this book is perfect for both beginners and advanced
. programmers wishing to find out more about the
revolutionary MSX.

MSX was developed by Microsoft, the company responsible for the .
industry-standard MS-BASIC and MS-DOS operating system. MSX has a5
been adopted by all the major Japanese electronics manufacturers,

including Sanyo, JVC, Sony, Canon, Hitachi, NEC, Pioneer, Yamaha,

Toshiba, Mitsubishi and Matsushita and Spectravideo in America.

