MSX-DOS version 2

22nd October 2001

Contents

1 Command specification 9
1.1 Introduction. 9
1.2 Editing command lines oL 9
1.3 Notation o 11

131 d: Lo 11
132 path 12
1.3.3 filename 12
134 filespec 13
1.3.5 compound-filespec 13
136 wvolname i i 13
1.3.7 device 13
1.3.8 mumber 14
1.4 Commands e 14
141 ASSIGN it e e 16
1.4.2 ATDIR o it e e e e e e e 17
1.4.3 ATTRIB it ittt e e e e e 18
144 BASIC o it e 19
14.5 BUFFERS i 19
146 CD e 20
1.4.7 CHDIR i ittt it e e e e e e 20
1.4.8 CHKDSK i i ittt e e e e e e 22
149 CLS e 23
1.4.10 COMMAND2 ittt e 23
1.4.11 CONCAT ittt e e e e e 24
1412 COPY oo e 26
1413 DATE o o e 29
1414 DEL oo e e 30
1415 DIR o ittt e e e 30
1.4.16 DISKCOPYt ittt it 33
1407 ECHO .« . . . oo it e e 34
1418 ERA e 34
1419 ERASE e 34
1420 EXIT 0ottt e e e e e e e 36
1.4.21 FIXDISK o it i e e e e e e e e 36

1.5

1.6
1.7

1.8

CONTENTS

1.4.22 FORMAT e e e e e e e e e e e e e e 37
1.4.23 HELP e e e e e e e e e e 38
1.4.24 MD e e e e 39
1.4.25 MKDIR o i e i e e e e e e e e e e 40
1.4.26 MODE i i 40
1.4.27 MOVE o e e e e e e e e e e e e e e 41
1.4.28 MVDIR i i it e e e e e e e 42
1.429 PATH e e e e e e e e e 43
1.4.30 PAUSE e e 44
1.4.31 RAMDISK i i ittt i 45
1.4.32 RD o e e e e e e 46
1.433 REM e 46
1.4.34 REN e e e e 47
1.4.35 RENAME i it e e e e e e e e e e e e e e 47
1.4.36 RMDIR i i e e e e e e e e e e e e e e e e e 48
1.4.37 RNDIR i i i i e e e e e e e e e e e e e e e e e 49
1.4.38 SET o i e e e e e e e 50
1.4.39 TIME o o e e e e e e e e e e e e e 51
1.440 TYPE e e e e 52
1.4.41 UNDEL o i i i i e i e e e e e e e e e 53
1.4.42 VER e 54
1.4.43 VERIFY e e i et e e 54
1.4.44 VOL e 55
1.4.45 XCOPY i e e 56
1.4.46 XDIR v v i e e e e e e e e e e e e 57
Redirecting and piping L oL 58
1.5.1 Redirection 58
1.5.2 Piping 59
Batchfiles 60
Environment items 63
1.71 ECHO i i 63
1.7.2 PROMPT i i i i e i e i e e e e e e e 63
1.7.3 PATH e e e 63
1.7.4 SHELL i i it e e e e e e e 63
175 TIME o e e e e e e e e e e 64
1.7.6 DATE o e e e e e e e e e 64
1.7.7 HELP o e e e e e e e e e e e 64
1.7.8 APPEND i i i i e e e 64
1.7.9 PROGRAM and PARAMETERS 65
1.7.10 TEMP o e e e e e e 65
1.7.11 UPPER i i i i e e e e e e e e e e 65
1.7.12 REDIR i i i e e e e e e e e e e e e 66
Errors and messages o 66
1.8.1 Diskerrors i 66
1.8.2 Commanderrors 68

1.8.3 Prompt messages 76

CONTENTS

1.9 Command summary,
1.10 DISK-BASIC 2.0t o i ittt e e e e e e e e e e
1.10.1 Overview it
1.10.2 Description of commands
2 Programming environment
2.1 Imtroduction
2.2 Transient program environment
2.2.1 Entry from MSX-DOS,
222 Returnto MSX-DOS.
223 Pagezerousage.
224 BIOSjumptable L.
225 RAMupaging
2.3 MSX-DOS function calls
2.3.1 Calling conventions
2.3.2 Devices and character I/O
233 Filehandles L.
2.3.4 Fileinfoblocks oL
2.3.5 Environment strings
2.3.6 Filecontrol blocks
2.4 Screen controlcodes L
2.5 Mapper support routineso 0o
2.5.1 Mapper initializationo
2.5.2 Mapper variables and routines
2.5.3 Using mapper routines
2.5.4 Allocating and freeing segments
2.5.5 Inter-segment read and write
2.5.6 Inter-segmentcalls
2.5.7 Direct paging routines
2.6 Errors
2.6.1 Diskerrors
2.6.2 MSX-DOS function errors
2.6.3 Program termination errors
2.6.4 Command errors
3 Function specification
3.1 Introduction.
3.2 Listoffunctions
3.3 Function by function definitions
3.3.1 Program terminate (OOh)
3.3.2 Comsole input (01h)
3.3.3 Comsole output (02h)
3.3.4 Auxiliary input (03h)
3.3.5 Auxiliary output (04h)
3.3.6 Printer output (05h)
3.3.7 Direct console I/0 (06h)

7
81
81
81

83
83
83
84
84
85
87
88
88
88
89
90
91
94
95
97
99
99
99
101
102
104
105
106
107
108
110
114
115

3.3.8

3.3.9

3.3.10
3.3.11
3.3.12
3.3.13
3.3.14
3.3.15
3.3.16
3.3.17
3.3.18
3.3.19
3.3.20
3.3.21
3.3.22
3.3.23
3.3.24
3.3.25
3.3.26
3.3.27
3.3.28
3.3.29
3.3.30
3.3.31
3.3.32
3.3.33
3.3.34
3.3.35
3.3.36
3.3.37
3.3.38
3.3.39
3.3.40
3.3.41
3.3.42
3.3.43
3.3.44
3.3.45
3.3.46
3.3.47
3.3.48
3.3.49
3.3.50
3.3.51
3.3.52
3.3.53

CONTENTS

Direct comsole input (O7h) 123
Console input without echo (08h) 123
String output (09h), 124
Buffered line input (OAh) 124
Console status (OBh) 125
Return version number (OCh) 125
Disk reset (ODh) 125
Select disk (OEh) 126
Open file [FCB] (OFh) 126
Close file [FCB] (10h) o v v v v v v v v .. 127
Search for first [FCB] (11h) 127
Search for next [FCB] (12h) 128
Delete file [FCB] (13h) 128
Sequential read [FCB] (14h) 129
Sequential write [FCB] (15h) 129
Create file [FCB] (16h) 130
Rename file [FCB] (17h) 130
Get login vector (18h) 130
Get current drive (19h) 131
Set disk transfer address (1Ah) 131
Get allocation information (1Bh) 131
Random read [FCB] (21h) 132
Random write [FCB] (22h) 132
Get file size [FCB] (23h) 133
Set random record [FCB] (24h) 133
Random block write [FCB] (26h) 133
Random block read [FCB] (27h) 134
Random write with zero fill [FCB] (28h) 135
Get date (2Ah) 135
Set date (2Bh) 135
Get time (2Ch) 136
Set time (2Dh) 136
Set/reset verity flag (2Eh) 137
Absolute sector read (2Fh) 137
Absolute sector write (30nh) 137
Get disk parameters (31h) 138
Find first entry (40h) 139
Find next entry (41h) 140
Find new entry (42h) 140
Open file handle (43h) 141
Create file handle (44h) 142
Close file handle (45h) 143
Ensure file handle (46h) 143
Duplicate file handle (47h) 144
Read from file handle (48h) 144

Write to file handle (49h) 145

CONTENTS

3.3.54
3.3.55
3.3.56
3.3.57
3.3.58
3.3.59
3.3.60
3.3.61
3.3.62
3.3.63
3.3.64
3.3.65
3.3.66
3.3.67
3.3.68
3.3.69
3.3.70
3.3.71
3.3.72
3.3.73
3.3.74
3.3.75
3.3.76
3.3.77
3.3.78
3.3.79
3.3.80
3.3.81
3.3.82
3.3.83
3.3.84
3.3.85
3.3.86
3.3.87
3.3.88
3.3.89
3.3.90
3.3.91
3.3.92

7
Move file handle pointer (4Ah) 146
I/0 control for devices (4Bh) 147
Test file handle (4Ch) 148
Delete file or subdirectory (4Dh) 149
Rename file or subdirectory (4Eh) 150
Move file or subdirectory (4Fh) 150
Get/set file attributes (50h) 151
Get/set file date and time (51h) 152
Delete file handle (52h) 152
Rename file handle (63h) 153
Move file handle (54h) 153
Get/set file handle attributes (55h) 154
Get/set file handle date and time (56h) 154
Get disk transfer address (57h) 155
Get verify flag setting (68h) 155
Get current directory (59h) 155
Change current directory (5Ah) 156
Parse pathname (6Bh) 156
Parse filename (6Ch) 157
Check character (5Dh) 158
Get whole path string (5Eh) 159
Flush disk buffers (BFh) 160
Fork to child process (60h) 160
Rejoin parent process (61h) 161
Terminate with error code (62h) 161
Define abort exit routine (63h) 162
Define disk error handler routine (64h) 163
Get previous error code (65h) 164
Explain error code (66h) 165
Format a disk (67h) 165
Create or destroy RAMDISK (68h) 166
Allocate sector buffers (69nh) 167
Logical drive assignment (6Ah) 168
Get environment item (6Bh) 168
Set environment item (6Ch) 169
Find environment item (6Dh) 169
Get/set disk check status (6Eh) 169
Get MSX-DOS version number (6Fh) 170

Get/set redirection state (70h) 171

CONTENTS

Chapter 1

Command specification

This chapter describes the user interface and commands provided by MSX-DOS
2 version 2.20.

1.1 Introduction

MSX-DOS 2, like its predecessor MSX-DOS 1, is provided in a cartridge and in
some disk files. The disk files are MSXD0S2.SYS, COMMAND2. COM, help files and
transient commands.

MSXD0S2.SYS has the ability to load and execute programs in an enhanced
CP/M-compatible environment. COMMAND2.COM is a special program which,
when loaded and executed, provides the user with many sophisticated com-
mands and features generally compatible with and in many cases better than
those found in MS-DOS and MSX-DOS 1, such as extended memory manage-
ment.

It also has the ability to load and execute specially written MSX-DOS 1
programs and most standard CP/M programs, and can execute batch files with
parameter substitution and other features similar to those found in MS-DOS.

An APPEND facility is provided to increase the ease of use of directories with
CP/M programs which were not written to handle them.

Throughout the rest of this manual the term MSX-DOS is used to mean
MSX-DOS version 2.xx unless otherwise stated.

1.2 Editing command lines

When typing in a command line to MSX-DOS, a simple editing facility is avail-
able for correction of mistakes or the re-entering and editing of previous com-
mands.

Typing ordinary characters at the keyboard cause the characters to appear
on the screen as would be expected. Typing most control characters cause them
to be represented by a '~’ symbol followed by the control letter. Exceptions are

9

10 CHAPTER 1. COMMAND SPECIFICATION

carriage return (RET or CTRL-M), back space (BS or CTRL-H), tab (TAB or CTRL-1I),
insert (INS or CTRL-R), escape (ESC or CTRL-[), home (HOME or CTRL-K), CTRL-C,
CTRL-J, CTRL-N, CTRL-P, CTRL-S, CTRL-U and CTRL-X (SELECT). These perform
the following functions:

CTRL-C This acts as a ’break’ key. A more drastic and preferred ’break’ key is
CTRL-STOP.

CTRL-J Line feed; nothing happens if this was given in the command line.
CTRL-K Home cursor (HOME).
CTRL-N This turns the printer off after being turned on by CTRL-P.

CTRL-P This turns the printer on. When on, all characters printed on the screen
are also printed on the printer.

CTRL-S This suspends all character output until another key is pressed.
CTRL-U This erases the line currently being entered.

CTRL-X This erases the line currently being entered (SELECT).

The line is entered when the *ENTER’ key is pressed.

At any point whilst typing in a command line, the backspace key (marked
BS or BACKSPACE on most MSX machines) can be used to delete the character
immediately to the left of the cursor in the normal way.

The cursor left and right keys will move the cursor left and right along the
line. Typing a character at this point will overwrite the character currently
underneath the cursor.

Pressing the insert key (marked INS on most MSX machines) will toggle
to ’insert mode’, and the cursor will change to an underline cursor to indicate
this. Instead of the characters being typed overwriting the characters under the
cursor, they will instead be inserted before the cursor character, the remaining
characters to the end of the line being moved one position to the right.

The delete key (marked DEL on most MSX machines) will delete the character
under the cursor and move the remaining characters to the end of the line one
position to the left.

The home key (marked *HOME’ on most MSX machines) will move the cursor
to the start of the line.

Pressing ESC, CTRL-U or CTRL-X will clear the line to allow a new one to be
entered.

The command editor also keeps a list of previous commands entered, up to
a limit of 256 characters. Pressing the cursor up key will move up the list and
display the previous command line entered, allowing this old command line to
be edited and re-entered. Pressing the cursor down key will similarly move to
the next old command line that was entered.

If a previous command line is changed, then it will be used as the new
command line and added to the bottom of the list. If it was not changed, then

1.3. NOTATION 11

it will not be added to the list and the current command line will be the next
one which was originally entered. This allows a whole sequence of previous
commands to be entered easily.

The list of previous commands is in fact circular and moving off the top
or bottom will move to the last or first command in the list respectively. The
previous command can be called to be re-entered or edited from this command
history list.

The features described here are in fact available to many programs that
MSX-DOS can execute. In any program that does ’line inputs’, each line can
be edited as described above. Previous lines can be recalled for re-entering
and editing, although the list of previous lines will of course include previous
commands.

1.3 Notation

The syntax of the commands available from MSX-DOS are described in section
1.4 using the following notation:
e Words in upper case
These are keywords and must be entered as shown in any mixture of upper
or lower case.
e ITtems in lower case
These are parameters which must be supplied to the command at this
point in the command line.
e Items in square brackets (’[? and *]?)
These are optional items. The brackets themselves should not be included
in the command line.
e Items separatedby a vertical bar (*?)
This indicates that only one of the items is required. The vertical bar

itself should not be included in the command line.

The following is a list of items which can appear on a command line:

1.3.1 d:

This indicates that a drive name is required (A:, B: etc.).
If d: is shown as optional and is not specified, then the currently logged-on
drive, as indicated by the command prompt, is assumed.

12 CHAPTER 1. COMMAND SPECIFICATION

1.3.2 path

This indicates that a directory path is required, the syntax of which is similar
to MS-DOS. Each directory in the path is separated by a backslash "\’. A
backslash at the start of the path indicates that the path starts at the root
directory, otherwise the path starts at the current directory as indicated by the
CHDIR command. Frequently a filename follows a path, in which case the two
must be separated by a backslash.

Two consecutive dots ’. .’ signify the immediate parent directory in the
path. A single dot .’ signifies the current directory in the path and therefore
usually has no value in a path specification.

On non-English MSX machines, the backslash character ?\’ may be replaced
by some other character. In particular, on Japanese MSX machines the Yen
character is used.

If a path is shown as optional and is not specified, then the current directory
as indicated by the CHDIR command is assumed.

The syntax of the directory names that make up a path name follows that
for filenames given below.

1.3.3 filename

This indicates that the name of a file is required, the syntax of which is similar
to MS-DOS and MSX-DOS 1. An ambiguous filename is one that contains '*’
and ’?’ characters and may match more that one file on disk, whilst one that
does not contain these is an unambiguous filename.

A filename has the following syntax:

mainnamel.suf]

where mainname is a sequence of up to 8 characters and suf is a sequence of up
to 3 characters inclusive. Any characters beyond these fields are ignored. A 2%
in the main name or suffix is equivalent to filling from that character position
to the end of the field with 7. If the suffix is given then it must be separated
from the main part of the filename by a single dot *.°.

The following characters cannot be used in filenames:

e Control codes and SPACE (in the range 0 to 20h, and 7Fh and FFh)
e : ;. ,=+\<>C)I|/"T[]

All characters are converted to upper case where appropriate and therefore
lower and upper case characters have the same meaning. Note that extended
two-character Japanese characters (SHIFT-JIS code) are allowed.

If a filename is shown as optional and is not specified, then a filename of *. *
is assumed.

1.3. NOTATION 13

1.3.4 filespec

This is used to identify a file or several files in the same directory on a disk. It’s
syntax is:

[d:][path] [filename]

where at least one of the three optional items must be given. Where this is used
to specify existing files, /H may be given to allow hidden files to be found.

Generally, d: if not given defaults to the currently logged on drive, path if
not given defaults to the current directory of that drive and filename if not given
defaults to a filename of *. *.

1.3.5 compound-filespec

This is used in many commands to specify the files or directories to which the
command is applied. It’s syntax is:

filespec [+ filespec [+ filespec ...]]

Thus several filespecs (see above) can be given, separated by ’+? symbols, with
spaces etc. allowed either side of the +. The effect of this in commands is exactly
the same as if all the matched files could have been matched by a single filespec.

Where a compound-filespec is used to specify existing files, /H may be given
after each filespec (see above), in which case it will take effect only for the files
matched by that single filespec. If a /H is given before the compound-filespec,
then it will apply over all the filespecs.

1.3.6 volname

This indicates that a volume name is required. A volume name is a sequence
of up to 11 characters, which can include the characters not valid for filenames
with the exception of control codes and ’/?, although leading spaces will be
deleted.

1.3.7 device

This indicates one of the five standard MSX-DOS devices is required. These
and their meaning are:

CON - screen/keyboard I/0

NUL - ’null’ device, does nothing

AUX - auxiliary I/0 (eg. RS232 serial)
LST - printer output

PRN - printer output

14 CHAPTER 1. COMMAND SPECIFICATION

Unlike on some other systems, a colon is not required after the device name.

Device names can generally be used wherever filenames can be used. For
example, the command COPY MYFILE PRN will read the file MYFILE and write it
to the printer.

When using the CON device as an input filename, lines can be typed in and
edited in the same way as command lines (see section 1.2on Editing Command
Lines). To end the operation, CTRL-Z (~Z) must be typed at the start of a line.
For example, a small text file called MYFILE can be created with the command
COPY CON MYFILE:

A>COPY CON MYFILE

A1l work and no play makes Jack a dull boy.
Can you hear me?

~Z

A>

Lines of text can then be typed in, and they will be written to the file MYFILE.
The command will then complete when a line containing a single CTRL-Z is
entered.

If the NUL device is written to by the command COPY CON NUL, then the
characters written are simply ignored. If read from, then an end-of-file condi-
tion is returned straight away (which is equivalent to typing the CTRL-Z in the
example above).

For most commands, it is not sensible to specify a device (the CON device
cannot be deleted using the ERASE command, for example). The commands that
devices are likely to be used with are those that read and write data from and
to files, such as CONCAT, COPY and TYPE.

1.3.8 number

This indicates that a number is required. This may be in the range 0 to 255 or
0 to 65535 depending on the command.

1.4 Commands

This chapter describes in detail all the commands available from the MSX-DOS
CLI'. Each command is described using the notation described in section 1.3.
Where two or more parameters are described using this notation, they must be
separated by separators. Separators consist of zero or more leading spaces, a
separator character, and zero or more trailing spaces. Valid separator characters
are:

e SPACE

e TAB

Command Line Interpreter

1.4. COMMANDS 15

Option letters introduced by ’/’ characters are an exception to this and need
not be preceded by a separator.

A transient MSX-DOS or CP/M-80 program can be loaded and executed
by typing the main name of the filename plus an optional extension of .COM.
Batch files can similarly be executed except that the extension is .BAT. Where
COM and BAT files exist in the same directory and with the same name, the COM
file is found and executed in preference to the BAT file. The exact location on
disk of the command can be specified by including its drive and/or path with
its name.

When looking for a COM or BAT file, the specified directory of the specified
drive is searched. If not found and a drive or path was given with the command,
then an 'unrecognized command’ error results.

If just the filename and optional extension were given, the current directory
is searched first. If not found, then a list of directories is searched. This list can
be specified and changed using the PATH command. If still not found then an
'unrecognized command’ error again results.

No CP/M program will be able to specify directories or path names since
these do not exist in CP/M, only the current directory of the appropriate drive
being accessible from these programs. An APPEND environment item is available
which increases the usability of these programs by allowing an alternative di-
rectory to be searched by the program as well as the current one (see section
1.7 on Environment Items).

Many commands and programs perform input or output using the ’standard
input’ and ’standard output’. The standard input normally refers to the key-
board, and the standard output normally refers to the screen. These can be
changed, however, to refer to other devices or to disk files for the duration of
the command by including the redirection symbols <, > and > > on the command
line, followed by a device or file name. The standard output of one command
can also be sent to the standard input of the next command by including the
piping symbol | on the command line between the two commands. See section
1.5 on Redirection and Piping for more details of these facilities.

When a transient command is executed, that command may overwrite some
of the memory that COMMAND2.COM was using. Thus when the command ter-
minates, COMMAND2. COM may need to re-load itself from disk into memory from
the COMMAND2.COM file that it was originally loaded from. This file is located by
looking at the SHELL environment item (see section 1.7 on Environment Items),
or the root directory of the boot drive if it is not found there. If it is still not
found, then a prompt is issued. For example, if MSX-DOS was booted from
drive A:, then the prompt will be:

Insert COMMAND2.COM disk in drive A:

16 CHAPTER 1. COMMAND SPECIFICATION

Press any key to continue...

After inserting into drive A: a disk containing COMMAND2.COM in the root direc-
tory and pressing a key, COMMAND2.COM will be re-loaded and the system will
continue as normal.

Although not a command as such, the currently logged on drive can be
changed by giving the command:

d:

which causes the drive d: to become the current drive. This should be shown
by the prompt letter.

In the command examples that follow, underlined text is an example re-
sponse to a command, and the other text consists of the example command
given by the user. In most examples a single space is shown as the parameter
separator, although other separator characters can be used as specified above.

1.4.1 ASSIGN

e Format
ASSIGN [d: [d4:1]

e Purpose

Sets up the logical to physical translation of drives.

e Use

If no drives are given, then all current drive assignments are cancelled.

If only one drive is given, then the physical drive to which this refers
is printed.

If both drives are given, then the subsequent access to the first drive

(logical drive) will be done to the second drive (physical drive) by MSX-
DOS.

e Examples
ASSIGN
Un-assigns all previous drive assignments.
ASSIGN A: B:

Assigns drive A: to drive B:, so that all accesses that previously would go
to drive A: go instead to drive B:.

1.4.

COMMANDS 17

ASSIGN A:
A:=B:

Displays the drive to which A: is currently assigned, which in this case is
B:.

1.4.2 ATDIR

e Format

ATDIR +|-H [/H] [/P] compound-filespec

e Purpose

Changes the attributes of directories to make them hidden/not hidden.

Use

The compound-filespec specifies the directories whose attributes are to be
changed.

If +H is given, then the selected directories are marked as hidden, and
will not be affected by other directory commands or shown by a DIR com-
mand unless a /H option is given with those commands. The -H option
marks the selected directories as not hidden, and will not have any effect
unless the /H option is given.

Unlike files, directories cannot be made read only.

When an error occurs, the erroneous directory name is printed followed by
an error message, and the command will continue with the next directory.
If many errors occur, then the /P option can be used to cause the output

to pause at the end of the screen.

The DIR /H command can be used to indicate the current attributes of
directories.

Examples
ATDIR +H DIR1

Marks the directory called DIR1 as hidden.
ATDIR -H DIR1 /H

Marks the hidden directory DIR1 as not hidden.

ATDIR +H DIR?

18

CHAPTER 1. COMMAND SPECIFICATION

Marks all directories matching DIR? as hidden (for example DIR1, DIR2
and DIR3).

ATDIR +H DIR1+DIR2

Marks the DIR1 directory and the DIR2 directory as hidden.

1.4.3 ATTRIB

e Format

ATTRIB +|-R|H [/H] [/P] compound-filespec

e Purpose

Changes the attributes of files to make them hidden/not hidden and read
only /not read only.
Use

The compound-filespec specifies the files whose attributes are to be
changed, and /H allows hidden files to also have their attributes changed.

If +H is given, then the selected files are marked as hidden, and will not
be affected by most commands or be shown by the DIR command unless
a /H option is given with those commands. -H marks the selected files as
not hidden, and will not have any effect unless the files are hidden.

If +R is given, then the selected files are marked as read only. -R marks
the selected files as not read only (read/write). Read only f iles cannot be
written to or changed.

When an error occurs, the erroneous filename is printed followed by an
error message, and the command will continue with the next file. If many
errors occur, then the /P option can be used to cause the output to pause
at the end of the screen.

The DIR command can be used to indicate the current attributes of files.

Examples
ATTRIB +R FILE1

The file FILE1 is marked as read only, and will not subsequently be mod-
ifiable or deletable.

ATTRIB +HB:\DIR1*.COM

Marks all .COM files in the directory B:DIR1 as hidden, and will not be
displayed by the DIR command.

ATTRIB -R -H \DIR1/H/P

1.4. COMMANDS 19

All the files in DIR1 are marked as not read only and not hidden. The
output, if any, will pause at the bottom of the screen.

ATTRIB +R \DIR1 + \DIR2 + FILE1

All files in the directories DIR1 and DIR2 and the file FILE1 are marked
as read only.

1.4.4 BASIC

e Format
BASIC [program]
e Purpose
Transfers control to MSX disk BASIC.

e Use
[program] is the name of a BASIC program on disk.

Control is passed to the built-in MSX BASIC, which will load and execute
the BASIC program if specified. If a RAM disk has been set up, then it
can still be used from BASIC.

The BASIC command CALL SYSTEM("command") can be used to return
to MSX-DOS, and the optional command, which can be any command
executable on MSX-DOS, will be executed. If the command is not given,
then a batch file called REBOOT.BAT will be searched for and executed if
found (see section 1.6 on Batch Files).

e Examples
BASIC
MSX disk BASIC is entered.
BASIC MYPROG.BAS

MSX disk BASIC is entered, and the BASIC program MYPROG.BAS loaded
and run.

1.4.5 BUFFERS

e Format
BUFFERS [number]

e Purpose

Displays or changes the number of disk buffers in the system.

20

CHAPTER 1. COMMAND SPECIFICATION

e Use

If the number is not given, then the number of disk buffers currently
in the system will be displayed, otherwise the number of buffers will be
changed to the specified number, the now unused memory being freed for
other purposes if the new number is less than the previous. If there is
not enough memory for the specified number of buffers, then as many as
possible are created and no error is given.

Increasing the number of disk buffers may speed up some applications,
particularly those that perform random accesses to files. Setting the num-
ber above 10 is unlikely to improve performance much, and unnecessarily
uses up memory.

The memory area used for disk buffers is also used for environment items
and for opening files. Thus keeping buffers set to the maximum possible
may prevent some commands from working, particularly SET, COPY and
CONCAT. If any of these commands give a *not enough memory’ error then
it may help to reduce the number of buffers. Reducing them below about
three however will impair performance considerably.

The default number of buffers in the system is 5, which will be adequate
for most purposes.

Examples
A>BUFFERS
BUFFERS=5
A>
The current number of disk buffers is printed, which in this case is 5.

BUFFERS 10 (or BUFFERS=10)

The number of buffers is increased to as many as possible up to a limit of
10.

BUFFERS=5 (or BUFFERS 5)

The number of buffers is reduced again to 5.

1.4.6 CD
e See CHDIR.
1.4.7 CHDIR

e Format

1.4. COMMANDS 21

CHDIR [d:] [pathl]
or
CD [d:] [path]

e Purpose

Displays or changes the current directory.

e Use

If no path is specified, then the current directory path for the current
or specified drive is printed. This is the directory path from the root
directory to the current directory.

If a path is specified, then the current directory for the current or specified
drive is changed to the directory specified by the path.

Each drive has it’s own current directory. This remains at the directory
specified by the last CHDIR command for that drive (or at the root directory
initially) until another CHDIR command is given or it cannot be found
on the disk when it is accessed (because the disk has been changed, for
example). It is then returned to the root directory.

The CD command is an abbreviated form of the CHDIR command provided
for convenience and MS-DOS compatibility.

Note that the command prompt can be changed to display the current
directory with the command SET PROMPT ON (see section 1.7 on Environ-
ment ITtems).
e Examples
CHDIR \DIR1
The current directory of the current drive is changed to DIR1.
CHDIR A:DIR2

The current directory of drive A: is changed to DIR2.

A>CD
E:\DIR1

The current directory of the current drive is displayed, which in this case
is DIR1.

CHDIR A:
A:\DIR2

The current directory for drive A: is displayed, which is also DIR2.

22

CHAPTER 1. COMMAND SPECIFICATION

1.4.8 CHKDSK

e Format

CHKDSK [d:] [/F]

e Purpose

Checks the integrity of the files on the disk.

Use

The integrity of the data structures on disk in the specified or current
drive is checked and lost disk space is checked for. When errors are found
on the disk, corrective action is taken. If lost clusters are found, a prompt
is issued allowing the lost disk space to be either converted into usable
disk space or into files. If the latter is chosen, then files of the form
FILE0O0O.CHK, FILEOOO1.CHK etc. will be created.

If the /F option is not given, then CHKDSK will not actually write any
corrections it makes to disk, but will behave as though it has. This allows
CHKDSK to be executed to see what would be done to the disk if /F was
given.

Disk space can become lost (ie. lost clusters created) when some pro-
grams are aborted. This applies particularly to CP/M programs. It is
recommended that CHKDSK is used occasionally on all disks.

Note that this is a transient command, and must therefore be loaded off
disk.

Examples
CHKDSK

The disk in the current drive is checked. A ’status report’ will be printed.
Any errors found will not be written to disk.

CHKDSK B:

The disk in drive B: is checked. Any errors found will not be written to
disk.

A>CHKDSK /F
20 lost clusters found in 1 chain
Convert lost chains to files (Y/N) ?

The disk in the current drive was checked, and some lost disk space found.
Since /F was given, the corrections will be written to disk and the lost
space recovered.

1.4. COMMANDS 23

1.4.9 CLS

e Format
CLS

e Purpose

Clears the screen.

e Use

Simply clears the screen and homes the cursor.

e Examples
CLS

The screen is cleared, and another command can be typed.

1.4.10 COMMAND2

e Format
COMMAND2 [command]

e Purpose

Invokes the command interpreter.

e Use

command is any command that can normally be typed at the prompt (such
as the commands in this manual).

COMMAND2 is simply the name of the command interpreter on disk, and can
be executed as a normal transient program. In normal use it gets loaded
and executed once by MSXD0S2.SYS at the boot time, and this provides
the ability to perform all the commands in this manual.

Advanced users may, however, wish to invoke another command inter-
preter for a variety of reasons. The second COMMAND2.COM may, for exam-
ple, be a later version and provide more facilities. If a transient program
has the ability to load and execute programs, as some sophisticated pro-
grams do, then they can load the COMMAND2.COM program and any MSX-
DOS command can then be given. When COMMAND2.COM exits by EXIT
command, the original program will be returned to.

If no command is given as a parameter, then the second COMMAND2.COM
will simply issue the normal prompt (without executing AUTOEXEC.BAT or
REBOOT.BAT) and wait for commands in the normal way. It will termi-
nate and exit back to the original command interpreter or program when
the EXIT command is given (see the EXIT command on page 36). If an

24

CHAPTER 1. COMMAND SPECIFICATION

error code is given to this EXIT command, then the original command
interpreter or program will receive it and, in the case of COMMAND2.COM
and MSXD0S2.8YS, print an appropriate error message (see section 1.8 on
Errors).

If a command is given as a parameter to COMMAND2.COM however, then it
will be executed as though it had been typed in the normal way. The com-
mand may be an internal command or an external COM or BAT command.
After executing the command, COMMAND2.COM will immediately exit back
to the original command interpreter or program.

In this way, invoking a second COMMAND2.COM from the normal command
interpreter with a batch file name as a command can be used to 'nest’
batch files (see section 1.6 on Batch Files), instead of 'chaining’.

When COMMAND2.COM is executed, it saves the whole environment, and
then restores it again when it exits. It only sets up the default environ-
ment items however if they are not already defined. Thus the second
COMMAND2.COM inherits the environment of the first. Any changes made
whilst the second COMMAND2.COM is executing will only last as long it does,
and will be lost when it exits.

Each incarnation of COMMAND2.COM uses up some memory which is freed
again when it exits. This depends partly on the number of environment
items, and is typically about 1.5K.

When COMMAND2 . COM executes a transient program, it may have to re-load
itself off disk since the program is allowed to use the memory occupied by
COMMAND2.COM. In this case, it uses the SHELL environment item to locate
the file that it must use to load itself (see section 1.7 on Environment
Items). When first loaded from the COMMAND2.COM file on disk, SHELL is
set to refer to that file.

Examples

COMMAND2
A>

Another copy of COMMAND? is loaded, and prints it’s normal prompt. EXIT
will exit back to the original prompt.

COMMAND2 FILE.BAT

Normally in a batch file. The file FILE.BAT is executed, and when it ends
the current batch file will be resumed with the command after this one.

1.4.11 CONCAT

e Format

1.4. COMMANDS 25

CONCAT [/H] [/P]1 [/B] [/V] compound-filespec filespec

e Purpose

Concatenates (joins together) files.

e Use

The compound-filespec specifies the files that are to be joined together,
and /H allows hidden files to be joined.

The second parameter is a filespec that must be unambiguous and is
created before the source files are read. Each source file is then read, joined
onto the end of the previous one and written out to the destination.

As each source file is read, its filename is printed. If for some reason
the file cannot be read (eg. it is the file that has been created as the
destination) then the filename is followed by an error message and the
CONCAT operation continues with the next source file. If many files are
being concatenated, then /P will cause the output to pause at the end of
the screen until a key is pressed.

Normally, the concatenation is performed on ASCII files. Source files are
read up to the first end-of-file character (CTRL-Z) and a single end-of-file
character is appended to the destination after all data has been written
out. If, however, /B (binary mode) is given, then no interpretation is given
to the data read and no additional data is added.

It is also possible to give the /B to the destination or to any of the
filespecs in the compound-filespec, and it will then refer only to those
files. /A may also be given to reverse the effect of /B.

The /V option can be given to turn write verification on for the duration
of the CONCAT command (see the VERIFY command). This will ensure that
data is written correctly to disks if the device driver being used has the
feature, but will slow the operation down for the verification.

If CONCAT gives a ’Not enough memory’ error then probably reducing the
number of buffers (see the BUFFERS command) or removing some environ-
ment items (see section 1.7 on Environment Items) will free up sufficient
memory.

e Examples
CONCAT *.DOC ALL.PRN

A new file called ALL.PRN is created, and all files matching *.DOC (for
example FILE1.D0OC, FILE2.DOC and FILE3.DOC) are joined together and
written to the new file in the order that they are found on disk. Any
existing file called ALL.PRN will be overwritten.

26

CHAPTER 1. COMMAND SPECIFICATION

A>CONCAT /H /P *.DOC ALL.DOC

FILE1.DOC

FILE2.DOC

FILE3.DOC

ALL.DOC -- Destination file cannot be concatenated

A new file called ALL.DOC is created, and all files matching * .DOC are joined
together and written to the new file in the order that they are found on
disk. Since the destination file ALL.DOC also matched the source filename
*.D0OC, the message is printed and it is not included in the concatenation.
Since /H was given, hidden files are also concatenated and, since /P was
given, the key input is waited after each screenful output if the number of
the lines of the file list is larger than that of the screen.

CONCAT /B FILE2.DOC + FILE3.DOC + FILE1.DOC ALL.DOC

A new file ALL.DOC is created, and the files FILE2.DOC, FILE3.DOC and
FILE1.DOC and joined together in that order and written to the new file.
They are joined together in binary mode.

1.4.12 COPY

e Format

CoPY [/A]1 [/H] [/T]1 [/v] [/P] [/B] source dest

e Purpose

Copies data from files or devices to other files or devices.

Use

The definition of the source is:
compound-filespec | device

The compound-filespec specifies the files that are to be copied. It may
be the device specification. If /H is given then hidden files may be copied.

The definition of the dest is:
[d:] [path] [filename] | device

Where d: and path default to the current drive and directory respectively.
If any part of the filename is ambiguous then the appropriate character
from the source filename is substituted, thus allowing the files to be re-
named in the process. If the filename is not given, then the entire source
filename is used. If the dest is an unambiguous directory, then the files
are copied into that directory with a filename of *.*.

1.4. COMMANDS 27

COPY will read as many source files as possible into memory before writing
any out. When it can read no more into memory (eg. when it has used all
available memory) it will write out each file in the order that it read them.
When it creates each destination file, it prints the source filename. Then
if it is unable to create the destination file, an error message is printed
and the copy operation continues with the next file. /P can be given to
make the output pause at the end of the screen.

Many reasons exist for COPY to be unable to create the destination, such
as a read-only file already existing with the same name. Sometimes COPY
will refuse to create the destination because the user may have made a
mistake. For example, a file cannot be copied onto itself, or several files
cannot be copied onto one file. A ’Cannot create destination’ error
may be given if the destination of one file would delete a previous source file
or a file already being used for something else (eg. the currently executing
batch file). A ’Cannot overwrite previous destination file’ error
results if an attempt is made to copy many files to one file. This usually
means that the intended destination was a directory, but that the name
has been misspelled.

If /A is specified, then an ASCII copy is performed. This means that
source files will only be read as far as the first end-of-file (EOF) character
(CTRL-Z) and then each destination will have a single end-of-file character
appended to it.

It is also possible to give a /A to the destination or to any of the filespecs
in the compound-filespec separately, in which case it applies only to that
source or dest specification.

The /B option can be given to copy in binary mode, that is, the file being
read will be copied as it is and no data will be added.

The /V option can be given to turn write verification on for the duration
of the COPY command (see the VERIFY command). This will ensure that
data is written correctly to disks if the device driver being used has the
feature, but will slow the operation down.

Normally, the destination files are given the same date and time as the
source files. However, the /T option can be given to cause the destination
files to have the current date and time. The destination files will not be
hidden or read-only, regardless of the attributes of the source files. The
ATTRIB command can be used to change these.

If COPY gives a ’Not enough memory’ error then probably reducing the
number of buffers (see the BUFFERS command) or removing some environ-
ment items (see section 1.7 on Environment Items) will free up sufficient
work area.

Note that the COPY command is simpler than that in MS-DOS and MSX-
DOS 1 because it cannot concatenate (join together) files. To do this, a
CONCAT command is available (see the CONCAT command).

CHAPTER 1. COMMAND SPECIFICATION

e Examples
COPY FILE1 B:

The file FILE1 is copied from the current directory of the current drive to
the current directory of drive B:.

COPY /H MSXD0S2.SYS + COMMAND2.COM B:

The two hidden files MSXD0S2.SYS and COMMAND2.COM are copied to drive
B:, thus making it a booting disk.

COPY A:\DIR1 B:\DIR1 /V

All files in the directory DIR1 from the root of drive A: are copied to a
similar directory on drive B: with verify on to ensure that the files were
written correctly.

COPY B:

All files in the current directory of drive B: are copied to the current
directory of the current drive.

COPY /A AUX CON

Characters are read from the device AUX (which may be used for RS232
serial for example) to the device CON, which is the screen. The copy is done
as far as the first end-of-file character. If /A was not given, then there
may have been no way of stopping the COPY operation without pressing
the CTRL-STOP key.

COPY A:*.DOC B:/T

All files matching * . DOC (for example FILE1.D0C, FILE2.D0C and FILE3.DOC)
are copied to the current directory of drive B: and are given the current
date and time instead of the dates and times of the *.DOC files.

A>COPY *.BAT
AUTOEXEC.BAT -- File cannot be copied onto itself
REBOOT.BAT -- File cannot be copied onto itself

This command told COPY to copy all files matching *.BAT (in this case
AUTOEXEC.BAT and REBOOT.BAT) from the current directory of the current
drive to the same place, and COPY printed the messages to warn of this.
No data in this case was actually copied.

A>COPY *.BAT DIR2
AUTOEXEC.BAT
REBOOT.BAT -- Cannot overwrite previous destination file

1.4. COMMANDS 29

This command told COPY to copy all files matching *.BAT (in this case
AUTOEXEC.BAT and REBOOT.BAT) to a directory called DIR2. DIR2, how-
ever, did not exist so AUTOEXEC.BAT was copied to a file called DIR2, and
then an attempt was made to copy REBOOT.BAT also to a file called DIR2.
The message was printed as a warning that a mistake was probably made
(in this case DIR2 not existing). REBOOT.BAT was not actually copied
anywhere.

1.4.13 DATE

e Format
DATE [date]

e Purpose

Displays or sets the current date.

e Use

If the date is given after the command, then the date is set to this value
(for the format see below). If the date is not given after the command,
then the current day and date is printed and the new date is prompted for
and input. If no input is given (ie. if the *ENTER’ key alone is pressed)
then the current date is not altered. Otherwise the input is assumed to
be a new date, and is interpreted as described below. If the date is invalid
then an error message is displayed and the new date again prompted for
and input.

The date is expected to consist of up to three numbers, separated by one
of the following characters:

SPACETAB , - . / :

with spaces allowed either side of the character. Any missing numbers
will default to the current setting. The year may either be a full century
and year, or may be just the year in which case the century defaults to
19 if the year is greater than 80 or 20 otherwise. The date and the year
specifications may be substituted by ?-’ to be omitted.

The format in which the date is printed and input is flexible and can be
changed. An environment item called DATE is set up by default to a format
that is appropriate for the country of origin of the MSX machine (see
section 1.7 on Environment Items). For example, on Japanese machines
the default setting is YY-MM-DD. The command SET DATE DD-MM-YY will
change the date format to the European format. The format also affects
the dates printed by the DIR command.

If the DATE environment item is defined, then it will be printed by the
DATE command to indicate the format in which the date is required to be
input.

30

CHAPTER 1. COMMAND SPECIFICATION

e Examples

DATE 86-6-18
The current date is set to the 18th June 1986.

A>DATE
Current date is Wed 1986-06-18
Enter new date (yy-mm-dd): - -19

No parameter was given, so the current date of 18th June 1986 was printed
and a new date prompted for. In the reply to the prompt, the date was
updated to the next day by only specifying the 19th. Since the year and
month were not given, they remained the same.

SET DATE = DD/MM/YY
The date format has been changed to the European format.

A>DATE

Current date is Thu 19-06-1986
Enter new date (DD/MM/YY):

A>

No parameter was given, so the current date of 19th June 1986 was printed
in the European format, and the prompt printed. The reply is expected
in the European format.

Formats are:

ISO YY/MM/DD
American MM/DD/YY
European DD/MM/YY

1.4.14 DEL

e See ERASE.

1.4.15 DIR

e Format

DIR [/H] [/Ww] [/P] [compound-filespec]

e Purpose

Displays the names of files on disk.

1.4. COMMANDS 31

e Use

The compound-filespec specifies which files are to be listed. If the /H
option is given, then hidden files will also be listed.

In the DIR command, unlike all other commands, it is permissible to not
give the main filename or the filename extension, and both will default to
*%7. Thus a filename of *FRED’ is equivalent to FRED.*’ and a filename
of ’.COM’ is equivalent to ’*.COM’. Note that if the *.’ at the end of a
main filename is given, then the extension is also assumed to have been
given, so that the filename *FRED. ’ is not equivalent to FRED.*’, unlike
the example above.

There are two formats of the listing. If the /W option is given, then a wide
listing is printed, with several filenames output per line. Sub-directory
names, file attributes, and the date and time each file was created are not
displayed.

If the /W option is not given, then the filenames are printed with one
filename per line, together with the attributes, the file size and the date
and time at which the file was last modified. The attributes are printed
as an ’r’ if the file is read-only and an *h? if the file is hidden (and /H is
given). If the time of a file is zero (ie. the file does not have an associated
time) then the time field will not be printed. If the date of a file is zero,
then neither the date nor the time fields will be printed. The formats in
which the dates and times are printed can be changed (see the DATE and
TIME commands).

The non-/W display is designed to fit within a 40 column screen, but if
fewer columns are available then some fields of the listing will not be
shown so that the display will always fit on one line. The number of files
per line that are printed when /W is specified is also adjusted according
to the screen width. If the width of the display is less than 13 characters
however, then in both cases the filenames will wrap to the next line.

At the top of the list of files, the volume name of the disk and the name of
the directory being listed is displayed. At the bottom, the number of files
listed, the total number of bytes in the files and the amount of remaining
disk space is printed.

When the directory of a sub-directory is printed, the first two items listed
will always be two special sub-directories called >.’ and ’..’. These
are automatically created when a new directory is created, and it is these
that allow >.? and ’..’ to be given in path names to signify the cur-
rent and parent directories respectively (see section 1.3 on Notation for a
description of paths).

When printing a number of bytes, the number is truncated and printed as
the number of kilobytes if 1K or greater.

If the /P option is given, then the output will pause at the bottom of the
screen until a key is pressed.

CHAPTER 1. COMMAND SPECIFICATION

e Examples
DIR

All filenames and directory names in the current directory of the current
drive will be printed. This might be as follows:

Volume in drive A: is MSX-DOS 2
Directory of A:\

MSXD0S2 SYS r 4096 86-06-19 2:45p

COMMAND2 COM r 10496 86-06-19 2:46p

UTILS <dir> 86-06-19 2:50p

HELP <dir> 86-06-19 2:50p
14K in 2 files 222K free

The disk thus contains the two MSX-DOS system files MSXD0S2.SYS and
COMMAND2.COM, which are read only, and two directories called UTILS and
HELP.

DIR B:\HELP /W

A ’wide’ directory format has been requested of the HELP directory on
drive B:. This might be as follows:

Volume in drive B: is MSX-DOS 2
Directory of B:\HELP

BUFFERS .HLP ATTRIB .HLP ASSIGN .HLP
ATDIR .HLP CHDIR .HLP CD .HLP
SYNTAX .HLP ENV .HLP BATCH .HLP
EDITING .HLP

25K in 10 files 222K free

DIR UTILS + HELP /P

This will list all the files in the UTILS directory and all the files in the
HELP directory, and will pause at the end of every screen full.

DIR .COM

No main filename was given, and so defaults to *. Thus this command is
equivalent to the command DIR *.COM.

DIR COMMAND2

No extension was given, so this defaults to .*. Thus this command is
equivalent to the command DIR COMMAND2. *.

1.4. COMMANDS 33

1.4.16 DISKCOPY

e Format
DISKCOPY [d: [d:1] [/X]

e Purpose

Copies one disk to another.

e Use

The first drive is the source drive and the second the destination, which
defaults to the current drive. If no drives are given, then DISKCOPY will
prompt for both the source and the destination.

Before DISKCOPY is used, the destination disk must be formatted with the
same format as the source disk, and an error will be given if this is not
the case.

If /X is given, then various messages printed during the disk copy operation
will be suppressed.

Note that this is a transient command, and must therefore be loaded from
disk.

e Examples

A>DISKCOPY A: B:

Insert source disk in drive A:
Insert target disk in drive B:
Press any key to continue...

The command was given to copy the disk in drive A: to the disk in drive
B:, thus destroying all existing data on the disk in drive B: The prompt
is printed first.

DISKCOPY B:
The disk in drive B: is copied to the disk in the current drive.
A>DISKCOPY

Enter source drive:
Enter target drive:

The DISKCOPY command was given with no parameters, so the source and
destination disks were prompted for. The reply to the prompts consists of
just a single drive letter.

34 CHAPTER 1. COMMAND SPECIFICATION

1.4.17 ECHO

e Format
ECHO [text]

e Purpose

Prints text.

e Use

The text is simply displayed on the screen. If no text is given, then just a
blank line is output.

This command should not be confused with the echo state in batch files,
which is controlled by an environment item called ECHO (see section 1.7 on
Environment Items).

e Examples

A>ECHO AUTOEXEC batch file executed
AUTOEXEC batch file executed

The specified text (?AUTOEXEC batch file executed’) was printed on
the screen.

ECHO

No parameters were given, so just a blank line was printed.

1.4.18 ERA
e See ERASE.

1.4.19 ERASE

e Format

ERASE [/H] [/P] compound-filespec

or
DEL [/H] [/P] compound-filespec
or
ERA [/H] [/P] compound-filespec
e Purpose

Deletes one or more files.

1.4. COMMANDS 35

e Use

The compound-filespec specifies which files are to be deleted. The /H
option allows hidden files to also be deleted.

During the delete operation, if a file cannot be deleted for some reason
(eg. it is set to 'read only?’) then the offending filename is printed along
with an error message, and the delete operation continues with the next
file. If many such errors occur, then the /P option will cause the output
to pause at the end of the screen.

If the filename is *.*, then the prompt:
Erase all files (Y/N) 7

is printed, and a reply is waited for. If the reply is anything other than
’Y? or ’y’, then the file deletion does not take place. This is a safety
feature designed to prevent accidental loss of all files in a directory.

If files are deleted unintentionally on a disk that was formatted under
MSX-DOS 2, then the UNDEL command may be used immediately after-
wards to restore them again.

e Examples
ERASE FILE1.BAK

The file FILE1.BAK is deleted from the current directory of the current
drive.

DEL *.COM/H
All files matching *.COM, both hidden and not hidden, are deleted.
DEL B:\UTIL*.COM + B:\UTIL*.BAT

All files matching *.COM or *.BAT are deleted from the directory called
UTIL on drive B:.

A>DEL B:\UTIL
Erase all files (Y/N) 7

All files in the directory called UTIL on drive B: are deleted. Since so many
files are being deleted, a prompt is printed first to prevent a catastrophe.

A>DEL *.BAT
AUTOEXEC.BAT -- Read omly file
REBOOT.BAT -- Read only file

All files matching * . BAT are deleted except for AUTOEXEC . BAT and REBOOT . BAT
which have been marked as read only.

36

CHAPTER 1. COMMAND SPECIFICATION

1.4.20 EXIT

e Format

EXIT [number]

e Purpose

Exits COMMAND2.COM to the invoking program.

Use

The number is an error code and defaults to 0, which in MSX-DOS indi-
cates no error (see section 1.8 on Errors).

EXIT exits the command interpreter (COMMAND2.COM) and returns the er-
ror code to the program that originally loaded and executed it (see the
COMMAND2 command). This may be another COMMAND2.COM, another pro-
gram or, normally, MSXD0S2.SYS. In the latter case, an appropriate error
message will be printed and COMMAND2 . COM simply reloaded and executed.

COMMAND2.COM when loaded saves the current environment (see section
1.7 on Environment Items), and EXIT restores it. Thus, when EXIT exits
back to MSXD0S2.SYS (that is, EXIT is executed at the primary level), the
environment will be cleared. COMMAND2.COM will then be reloaded and will
set up the default environment again, providing a method of resetting the
environment to its default values.

Examples
EXIT

The command interpreter is exited. What happens next depends on what
loaded it.

A>EXIT 40
x User error 40

The command interpreter is exited with an error code of 40. Since this
does not correspond to an error that is known to the system, the error
message is printed by whatever loaded the command interpreter in the
first place (see section 1.8 on Errors).

1.4.21 FIXDISK

e Format

FIXDISK [d:] [/S]

e Purpose

Updates a disk to the full MSX-DOS 2 format.

1.4. COMMANDS 37

e Use

d: specifies the drive on which FIXDISK is to operate. If d: is not spec-
ified, the current drive will be assumed. /S option causes the disk to be
updated to full MSX-DOS 2 disk.

This command is mainly used to update MSX-DOS 1 disks to full MSX-
DOS 2 compatibility, but may also be useful for updating other disks of a
similar format or reparing incorrect boot sector.

Although the disk format used by MSX-DOS 1 and MSX-DOS 2 is stan-
dardized, MSX-DOS 1 does not use the information stored on certain parts
of the disk (the boot sector) and so this information is not necessarily cor-
rect on MSX-DOS 1 disks. This can cause problems when MSX-DOS 2 is
used with these disks. Additionally, the MSX-DOS 2 UNDEL command will
only work with disks that were formatted using MSX-DOS 2 (ie. disks
that have a ’volume id’ in the boot sector) and so will not work with
MSX-DOS 1 disks or disks formatted on other systems.

The FIXDISK command will update a disk so that it is fully MSX-DOS 2
compatible, and its use will allow full use of MSX-DOS 2 disk features. If
/S option is specified, the boot program will be updated for MSX-DOS 2
so that the features of MSX-DOS 2 disk can fully work. When a disk has
been updated in this way, however, it may no longer be fully compatible
with the original system. For example, if /S option is specified against
the disk of the application which uses non-standard boot program, such
as some games, the application will no longer be booted, although it will
still be able to start MSX-DOS 1 or MSX-DOS 2.

To help prevent accidental updates of boot disks from other systems, a
prompt is issued before updating a disk.

e Examples

FIXDISK B: /S
Disk in drive B: will only be able to boot MSX-DOS 2
Press any key to continue...

Drive B: will be updated to be fully MSX-DOS 2 compatible. Since the
disk may have been a boot disk from another system, a prompt is issued
before the disk is actually updated.

1.4.22 FORMAT

e Format
FORMAT [d:]

e Purpose

Formats (initializes) a disk.

38

CHAPTER 1. COMMAND SPECIFICATION

e Use

The specified or current drive is formatted, and all data on the disk will
be destroyed.

After giving a FORMAT command, an option may be prompted for, allowing
the required format of the disk (such as 1DD or 2DD) to be selected. The
exact nature of these prompts depends on the manufacturer of the MSX
machine, so obey the descriptions of the manual of the machine when you
want to format the disk.

After formatting, there will be no files or directories on the disk, and the
maximum amount of disk space will be free. The disk will not have a
volume name, but can be given one with the VOL command. To turn the
disk into a boot disk so that MSX-DOS can be started up from it, the files
MSXD0S2.SYS and COMMAND2.COM must be copied onto it with the COPY
command.

Examples

A>FORMAT B:

1 - Single sided

2 - Double sided

7?2

A1l data on drive B: will be destroyed
Press any key to continue...

The command was given to format the disk in drive B:. In this case,
the options available were to select either double sided or single sided,
and double sided was selected. The standard warning prompt was then
printed.

FORMAT

This will format the current drive after the prompts given above.

1.4.23 HELP

e Format

HELP [subject]

e Purpose

Provides on-line help for an MSX-DOS feature.

e Use

If no parameter is given, then a list of standard subjects on which help is
available is printed. This includes all the commands and the major system
features.

1.4. COMMANDS 39

If a subject is specified, then help text on this subject is printed on the
screen from a ’help file’. This will pause at the end of every screen until a
key is pressed.

Help files have a filename of:
subject.HLP

and are located by default on the standard MSX-DOS boot disk in a
directory called HELP.

An environment item called HELP is set up initially to refer to the HELP
directory (see section 1.7 on Environment Items). This can be changed
with the SET command to refer to any other directory or disk if required.

Any HELP subject can be added by the user for his own use simply by
adding the appropriate .HLP file in the HELP directory. The help file will
be displayed very much like the TYPE command would display it.

e Examples
HELP

A general help screen is printed. This lists all the subjects on which help
is available, including the standard commands and main features of MSX-
DOS. The user-supplied subjects are not available here.

HELP XCOPY

Help information on the XCOPY command is printed. This includes a de-
scription of how to use the command and what options are available.

A>HELP ME
**x File for HELP not found

This command caused HELP to look for a file called ME.HLP from which to
get the help text, but did not find it so printed the error message. The files
containing the help text are normally found in a directory called \HELP
on the drive from which MSX-DOS was booted, and any other help files
may be added if required. If ME.HLP was added then HELP ME would print
it on the screen.

1.4.24 MD

e See MKDIR.

40 CHAPTER 1. COMMAND SPECIFICATION

1.4.25 MKDIR

e Format
MKDIR [d:] path
or
MD [d:] path

e Purpose

Creates a new sub-directory.

e Use

The last item in the path is the name of the new sub-directory which is
to be created on the current or specified drive. Thus if this is the only
item in the path, the new directory is created in the current directory. If
the new directory is to be hidden, then it must be separately made hidden
with the ATDIR command.

When a new directory is created, it is empty except for two special sub-
directories called >.’ and ’..°. These are automatically created in the
directory and it is these that allow >.? and ?..? to be given in path names
to signify the current and parent directories respectively (see section 1.3
on Notation for a description of paths).

The MD command is an abbreviated form of the MKDIR command provided
for convenience and MS-DOS compatibility.

e Examples

MKDIR UTIL

A directory called UTIL is created in the current directory of the current
drive.

MKDIR A:\UTIL\RAM

A directory called RAM is created in the UTIL directory in the root direc-
tory of drive A:.

1.4.26 MODE

e Format
MODE number

e Purpose

Changes the number of characters/line on the screen.

1.4. COMMANDS 41

e Use

The number must be in the range 1 to 80 inclusive, and the number of
characters per line on the screen will be set to this. The screen will be
cleared and the cursor moved to the top left corner in the process.

e Examples
MODE 80 (or MODE=80)
The screen is set to 80 column mode and is cleared in the process.
MODE 25 (or MODE=25)

The screen is set to 25 columns.

1.4.27 MOVE

e Format
MOVE [/H] [/P] compound-filespec [path]

e Purpose

Moves files from one place to another on a disk.

e Use

The compound-filespec specifies which files are to be moved, and /H
allows hidden files to be included in the move.

The path specifies the directory to which the files are to be moved, the
current directory being used if this is not given. The path must exist on
each drive referenced by the filespecs in the compound-filespec.

If a particular file cannot be moved into the specified or current directory
(eg. if a file of the same name already exists) then the offending filename
is printed along with an error message, and the move operation continues
with the next file. If many errors occur, then the /P option will cause the
output to pause at the bottom of the screen.

e Examples
MOVE FILE1 \

The file FILE1 is moved from the current directory of the current drive to
the root directory of the current drive.

MOVE /H /P E:*.COM \
COMMAND2.COM -- File exists

42

CHAPTER 1. COMMAND SPECIFICATION

All files matching *.COM, both hidden and not hidden, in the current
directory of drive E: are moved to the root directory of that drive. The
file COMMAND2.COM already existed in the root directory, so the error was
printed. Neither of the COMMAND2 . COM files were moved or altered. If many
such errors had occurred then a prompt would have been printed after a
screen full.

MOVE \UTIL*.COM + \UTIL*.BAT

All files matching *.COM or *.BAT in a directory called UTIL on the current
drive are moved to the current directory of that drive.

1.4.28 MVDIR

e Format

MVDIR [/H] [/P] compound-filespec [path]

e Purpose

Moves directories from one place to another on a disk.

Use

The compound-filespec specifies which directories are to be moved, and
/H allows hidden directories to be included in the move.

The second parameter specifies the directory into which the directories
are to be moved, the current directory being used if this is not given.
The path must exist on each drive referenced by the filespecs in the
compound-filepecs.

If a particular directory cannot be moved into the specified or current
directory (eg. if a directory of the same name already exists) then the
offending directory name is printed along with an error message, and the
move operation continues with the next directory. If many errors occur,
then the /P option will cause the output to pause at the bottom of the
screen.

Note that it is not possible to move a directory into one of its own descen-
dant directories, as this would produce an invalid sub-directory tree. An
error is given if this is attempted.

Examples
MVDIR COM UTIL

A directory called COM and all descendant directories and files are moved
into a directory called UTIL, both directories being in the current directory
of the current drive.

1.4. COMMANDS 43

MVDIR \COM + \BAT \UTIL

A directory called COM and a directory called BAT, and both their contents,
are moved into a directory called UTIL.

MVDIR E:DIR?/H/P ALL
DIR2 -- Duplicate filename

All directories in drive E matching DIR? (eg. DIR1, DIR2 and DIR3), which
may be hidden, and the contents of the directories, are moved into a
directory called ALL. A directory called DIR2 already existed in ALL so the
error was printed. Neither of the DIR2 directories were affected at all.

1.4.29 PATH

e Format
PATH [[+|-] [d:]lpath [[d:]path [[d:]path ...]1]]

e Purpose

Displays or sets the COM and BAT command search path

o Use
If no parameters are specified, then the search path currently set will be
displayed, separated by semi-colons (?;?).
If + or - is not given, then the search path will be set to the list of path
names given and any existing search path will be deleted.

If - is given before the list of paths, then each path in the list will be
deleted from the currently set search path, and an error will be given if
any of the given paths do not already exist.

If + is given before the list of paths, then each path specified will first be
deleted from the currently set search path if it exists, and will then be
added onto the end. This allows the order of the paths in the search path
to be changed and allows new paths to be appended to the end of the
current search path. The + syntax can also be used to set a search path
longer than can be given in one command, the maximum length of the
search path being 255 characters and the maximum length of a command
127 characters.

When searching for a COM or BAT file, the paths in the current search path
will be used in order from left to right. It is recommended that the paths
in the search path are specified as full paths starting at the root directory
and with the drive specified. If this is not the case, then the meaning
of the search path could change when the current drive or directory is
changed.

The search path is stored as an environment item (see section 1.7 on
Environment Items), and so can also be accessed with the SET command.

44 CHAPTER 1. COMMAND SPECIFICATION

e Examples
PATH E:\COM E:\BAT

When a COM or BAT command is next searched for, the directories searched
will be the current directory of the current drive, the COM directory in the
root directory of drive E: and the BAT directory in the root directory of
drive E:, in that order.

A>PATH
; E:\COM; E:\BAT

No parameters were given so the current search path was printed.
PATH +A:\COM; A:\BAT

The directories A:\COM and A:\BAT are added to the end of the search
path.

A>PATH
; E:\COM; E:\BAT; A:\COM; A:\BAT

The new search path is printed.
PATH -E:\COM, E:\BAT

The directories E:\COM and E:\BAT are deleted from the current search
path.

A>PATH
; A:\COM; A:\BAT

The new search path is again printed.

1.4.30 PAUSE

e Format
PAUSE [comment]

e Purpose

Prompts and waits for a key press in a batch file.

e Use
The comment consists of an arbitrary sequence of characters.

The comment, if given, is printed followed by the prompt *Press any key
to continue... ? on the next line. The system will then wait for a key

1.4. COMMANDS 45

to be pressed and will echo the key pressed if it is a printable character. If
no comment is given as a parameter, then just the prompt will be printed.

The main use of this command is to issue prompts from within a batch
file.

e Examples

PAUSE
Press any key to continue...

No comment was given, so just the prompt was printed.

PAUSE Insert document disk in drive B:
Insert document disk in drive B:
Press any key to continue...

The comment given was ’Insert document disk in drive B:? so this
was printed followed by the prompt.

1.4.31 RAMDISK

e Format
RAMDISK [number([K]] [/D]

e Purpose
Displays or sets the RAM disk size.

e Use

If no parameters are given, then the current RAMDISK size is displayed as
the number of kilobytes.

The number, if given, specifies the maximum size for the new RAM disk,
and is specified in kilobytes. The range is 0 to 4064. If the number is
0 or only /D is specified, the RAM disk will be deleted. This number
will be rounded up to the nearest multiple of 16K since the RAM disk is
always a multiple of 16K. A RAM disk smaller then the specified maximum
size may be created if there is not enough free memory for the full size,
although a ’not enough memory’ error will be given if there is no memory
at all available for the RAM disk. Note that the number specified is the
maximum amount of RAM to use for the RAM disk, which is not the same
as the maximum amount of free space available on the newly-created RAM
disk since the system needs to use some for FAT or directories.

On MSX machines with 128K RAM, the maximum amount of RAM disk
is 32K.

If a RAM disk already exists before a new one is created, then a ’Destroy
all data on RAM disk (Y/N)?’ prompt is printed to avoid accidental

46

CHAPTER 1. COMMAND SPECIFICATION

loss of data. /D can be given which will automatically delete any existing
RAM disk first, thus suppressing the prompt.

Having created a RAM disk, it can be referred to as drive H:.

The RAMDISK command is normally only used in an AUTOEXEC.BAT batch
file, with a large number specified so that as large a RAMDISK as possible
is created. It is not advisable to keep any data on a RAM disk except for

a short length of time that is not also kept on a floppy disk, since it will
be lost if, for example, the power to the computer fails.

Examples

A>RAMDISK
RAMDISK=160K

No parameters were given, so the current size is printed, in this case 160K.

A>RAMDISK
% RAM disk does not exist

No parameters were given but no RAM disk has been created, so the error
is given.

A>RAMDISK = 300
Destroy all data on RAM disk (Y/N)?7 y

A RAM disk already existed, so the prompt was printed. In this case, the
reply was ’y’ so the current RAM disk was deleted and the new one set
up with a maximum size of 300K.

1.4.32 RD

e See RMDIR.

1.4.33 REM

e Format

REM [comment]

e Purpose

Introduces a comment in a batch file.

e Use

The comment is simply ignored, and the next command executed. The
comment consists of a sequence of any characters up to the maximum
length of a command line (127 characters).

1.4. COMMANDS 47

e Examples
REM This is my AUTOEXEC batch file

This command, either in a batch file or typed in, does nothing at all with
it’s parameters.

1.4.34 REN
e See RENAME.

1.4.35 RENAME

e Format
RENAME [/H] [/P] compound-filespec filename
or
REN [/H] [/P] compound-filespec filename

e Purpose

Renames one or more files.

e Use

The compound-filespec specifies the files that are to be renamed, and
/H allows hidden files to be included in the rename operation.

The second filename specifies the new name for the files. A *?? in the new
name indicates that the corresponding character from the filename being
renamed will be used, thus allowing an ambiguous rename. Thus ’*’ in
the second filename, which is just equivalent to a series of ’?7’s, indicates
that the whole of the filename or extension will remain unchanged.

If for some reason a particular file cannot be renamed (eg. if a file or
directory with the new name already exists or they are read-only) then
the offending filename will be printed along with an error message and the
rename operation will continue with the next file. If many errors occur,
then /P will cause the output to pause at the end of the screen.

e Examples

RENAME FILE1 FILE2

The file FILE1 in the current directory of the current drive is renamed to
FILE2.

REN B:\DIR1*.DOC/H/P *.0LD
FILE2.DOC -- Duplicate filename

48

CHAPTER 1. COMMAND SPECIFICATION

All files matching *.D0OC in the directory called DIR1 in the root directory
of drive B:, including hidden files, are renamed with the same main name
but with an extension of .0LD. The file FILE2.D0OC could not be renamed
because there was already a file called FILE2.0LD in the directory, so the
error was printed. Neither FILE2.DOC nor FILE2.0LD was altered at all.
If many such errors had been printed, then a prompt would have been
printed at the bottom of every screen full, since /P was given.

REN DOC + FILE1 x.0LD

All files in the directory called DOC and the file FILE1, both in the current
directory of the current drive, and renamed with an extension of .0LD.

1.4.36 RMDIR

e Format

RMDIR [/H] [/P] compound-filespec
or
RD [/H] [/P] compound-filespec

Purpose

Removes one or more sub-directories.

Use

The compound-filespec specifies which directories are to be deleted, and
/H allows hidden directories to be included in the delete operation.

In order to delete a directory, it must contain no other files or other di-
rectories except for the special ?.? and ?..? directories which are always
contained in a directory. These are put in a new directory when it is
created and cannot be removed. It is these that allow ’.’ and ’..°
to be used in path names to specify the current and parent directories
respectively (see section 1.3 on Notation for a description of paths).

If a directory cannot be deleted for some reason (eg. it is not empty) then
the name of the offending directory is printed along with an error message,
and the delete operation continues with the next directory. If many errors
occur then /P will cause the output to pause at the end of the screen.

Examples

RMDIR DIR1

The directory called DIR1 in the current directory of the current drive is
removed.

1.4. COMMANDS 49

RD B:\COM + B:\BAT

The directories COM and BAT are removed from the root directory of drive
B:.

RD *.x
UTIL -- Directory not empty

An attempt was made to remove all directories from the root directory of
the current drive, but a directory called UTIL was not empty and so the
error was printed. UTIL and its contents are not affected at all.

1.4.37 RNDIR

e Format
RNDIR [/H] [/P] compound-filespec filename

e Purpose

Renames one or more sub-directories.

e Use

The compound-filespec specifies the directories that are to be renamed,
and /H allows hidden directories to be included in the rename operation.
The contents of the directories remain unchanged.

The second filename specifies the new name for the directories. A *?? in
the new name indicates that the corresponding character from the name
of the directory being renamed will be used, thus allowing an ambiguous
rename. Thus ’*’ in the second filename, which is just equivalent to a
series of ’77’s, indicates that the whole of the filename or extension of the
directory name will remain unchanged.

If for some reason a particular directory cannot be renamed (eg. if a file
or directory of the new name already exists) then the offending directory
name will be printed along with an error message and the rename operation
will continue with the next directory. If many errors occur, then /P will
cause the output to pause at the end of the screen.

e Examples
RNDIR UTIL COM

The directory called UTIL in the current directory of the current drive is
renamed COM.

RNDIR A:*.*/H/P *.0LD
UTIL -- Duplicate filename

50

CHAPTER 1. COMMAND SPECIFICATION

All directories, hidden and not hidden, in the root directory of drive A:
are renamed with an extension of .0LD. The directory UTIL could not
be renamed because a directory called UTIL.OLD already existed, so the
error was printed. If many such errors were printed then /P would cause
a prompt to be printed at the end of every screen full.

RNDIR COM + BAT *.0LD

The directories COM and BAT are renamed to COM.0LD and BAT. OLD respec-
tively.

1.4.38 SET

e Format

SET [name] [separator] [value]

e Purpose

Displays/sets environment items.

Use

If no parameters are given, then all currently defined environment items
and their current values are displayed. Initially there are several items set
up to default values (see section 1.7 on Environment Items).

If just a name is given as the parameter, then the current value of the
specified environment item is printed.

If the name is followed by a separator, then the separator is ignored and
the name is set to the following value. If the value is blank (ie. not given)
then the environment item is deleted from the environment space.

The area of memory used for environment items is also used for disk
buffers. Thus if a >not enough memory’ error occurs when using the SET
command, then it may help to reduce the number of disk buffers (see the
BUFFERS command).

Section 1.7 contains more information about environment items and the
items and values that are set up by default.

e Examples

A>SET

ECHO=0FF

PROMPT=0FF

PATH=;

TIME=12
DATE=yy-mm-dd
HELP=A:\HELP
SHELL=A:\COMMAND2.COM

1.4. COMMANDS 51

No parameters were given, so all the currently set environment items were
printed, in this case typical default values.

SET HELP=A:\HELP
An item called HELP is set to the value A:\HELP.

A>SET HELP
A:\HELP

The current value of HELP is printed.
SET HELP=

The item HELP is set to a null value, thus removing it from the environment
item list.

1.4.39 TIME

e Format
TIME [timel]

e Purpose

Displays or sets the current time.

e Use

If the time is given after the command, then the time is set to this value
(for the format see below). If the time is not given after the command,
then the current time is printed and the new time is prompted for and
input. If no input is given (ie. if the ’enter’ key alone is pressed) then the
current time is not altered. Otherwise the input is assumed to be a new
time, and is interpreted as described below. If the time is invalid then
an error message is displayed and the new time again prompted for and
input.

The time is expected to consist of up to four numbers, separated by one
of the following characters:

SPACE TAB , - . / :

with spaces allowed either side of the character. Any missing numbers will
default to the current setting. The first number is the hour, the second
is the minutes, the third is the seconds and the forth is the centi-seconds.
The centi-seconds are not printed however since it is not very useful to
know the current value, or indeed to enter a new one.

The format in which the time is printed is flexible and can be changed.
An environment item (see section 1.7 on Environment Items) called TIME

52

CHAPTER 1. COMMAND SPECIFICATION

is set up by default to the value 12, which indicates that the time will
be printed in 12 hour format with a following ’a’ or ’p’ for am and pm.
The command SET TIME 24 will cause the time to be printed in 24 hour
mode. The time can be input unambiguously in either format. The time
format also affects the times printed by the DIR command.

Examples
TIME 16:45
The current time is set to 4:45 pm.

A>TIME
Current time is 10:45:00a
Enter new time:

No parameters were given, so the current time is printed (in this case in
12 hour mode) and the new time prompted for.

TIME 10-50-30-23

The time is set to 30.23 seconds after 10:50 am.

1.4.40 TYPE

e Format

TYPE [/H] [/P] [/B] compound-filespec | device

e Purpose

Displays data from a file or device.

Use

The compound-filespec specifies the files that are to be displayed, and /H
allows hidden files to be typed. If the compound-filespec is ambiguous,
then the filename is printed before each one is typed.

If /B is specified, then data is read from each file and displayed without
modification on the screen, until the end of file is reached. This may have
strange effect on the screen if the file contains control characters.

If /Bis not given, then TYPE will look for the end-of-file character (CTRL-Z)
and stop when it finds it. Also control characters except carriage return,
line feed and tab will be converted into characters that can be printed, A
for ~A, W for "W, etc.

If /P is given, then the output will pause at the end of the screen until a
key is pressed.

1.4. COMMANDS 53

e Examples
TYPE FILE1

Data is read from the file and printed on the screen, up to the first end-
of-file character.

TYPE *.BAT /H/P

All batch files, including hidden ones, are read in and displayed. A prompt
is printed at the end of every screen full.

TYPE AUTOEXEC.BAT + REBOOT.BAT
The files AUTOEXEC.BAT and REBOOT.BAT are displayed.
TYPE /B DIR1

All files in the directory DIR1 are printed on the screen and no interpre-
tation is put on the data in the files.

1.4.41 UNDEL

e Format
UNDEL [filespec]

e Purpose

Recovers a previously deleted file.

e Use

The filespec specifies which files are to be undeleted if possible, and
defaults to *.*.

Files can only be undeleted if they have been deleted using MSX-DOS
2 on an MSX-DOS 2 formatted disk and if no disk allocation has taken
place since the file was originally deleted, which usually means that they
have to be undeleted immediately after they have been deleted.

Each deleted file and directory reference that is found in the directory
specified by the filespec will be undeleted if its name is matched by the
filename in the filespec, and if undeletion is possible. UNDEL can there-
fore be used to restore a directory removed with the RD or RMDIR com-
mands; to restore the contents of the directory a further UNDEL command
is required specifying the now undeleted directory.

Note that UNDEL is a transient command, and therefore must be loaded
from disk.

e Examples

54 CHAPTER 1. COMMAND SPECIFICATION

UNDEL B:HELP.MAC

Attempts to undelete the file HELP . MAC from the current directory of drive
B:.

UNDEL A:\DIR1

All undeletable files and directories in DIR1 are undeleted.

1.4.42 VER

e Format
VER

e Purpose

Displays the system’s version numbers.

e Use

The version numbers of the three main components of the MSX-DOS disk
system are displayed. Each version number consists of three digits. The
first digit is the main MSX-DOS version number and for MSX-DOS 2 will
always be 2. The second digit is the version number and will change for
future versions that have, for example, had extra major features added.
The last digit is the release number and will change with different re-
leases of the same version of the system which have had minor changes,
improvements and corrections made.

e Examples

A>VER

MSX-DOS kernel version 2.20
MSXD0S2.SYS version 2.20
COMMAND2.COM version 2.20
Copyright 1988 ASCII Corporation

The version numbers of all the components of the MSX-DOS disk system
are printed out.

1.4.43 VERIFY

e Format
VERIFY [ON | OFF]

e Purpose

Displays/sets the current disk write verify state.

1.4. COMMANDS 55

e Use

If no parameters are given, then the current verify state is displayed on
the screen.

If ON or OFF is given, then the verify state is changed appropriately.

The verify state affects all writes to disk. If OFF, the default state, then
data is simply written. If ON, then after writing the data it is read back
and compared with the original to ensure that it was written correctly.
The extra overhead of this means that writing is slower when verify is on.

This feature depends on the device driver, so this will have no effect if the
driver does not have the feature.

e Examples

A>VERIFY
VERIFY=0FF

No parameters were given, so the current verify state is printed, which in
this case is off.

VERIFY ON

Disk write verification is turned on.

1.4.44 VOL

e Format
VOL [d:] [volname]

e Purpose

Displays or changes the volume name on a disk.

e Use

If no parameters are given, or if only a drive name is given, then the
volume name of the current or specified drive is printed.

If a volname is given, then the volume name of the specified or current
drive is changed to the specified volume name.

e Examples

A>VOL B:
Volume in drive B: has no name

Just a drive was given, so the volume name for the disk in that drive is
printed. In this case there was no volume name defined.

VOL B:BACKUP

The volume name of the disk in drive B: is changed to BACKUP.

56

CHAPTER 1. COMMAND SPECIFICATION

1.4.45 XCOPY

e Format

XCOPY [filespec [filespec]] [options]

e Purpose

Copies files and directories from one disk to another.

Use

The options available are:
(/a1 [/E1 [/H] [/M]1 [/P1 L[/s1 [/T1 [/wl L[/V]

XCOPY is an extended file copying command (compare with the COPY com-
mand) that can selectively copy both files and directories. The first
filespec specifies the source filename, and if /H is given then hidden
files will also be copied. The second filespec is the destination filename.
Thus files can be renamed during the copy (as in the standard COPY com-
mand).

/T (time) will cause the copied files to have the current date and time
rather than the source file’s date and time.

If /A (archive) is specified, then only files with the >archive’ attribute set
are copied. A file has an archive attribute in the same way as a hidden’
attribute and a >read only’ attribute. It is set whenever a file is updated
(written to).

/M is similar to /A, but resets the archive bit after copying the file. Thus,
using this option, files can be regularly copied onto another disk only if
they have been updated, providing a file backup facility.

/S causes XCOPY to copy directories as well as files. Within each directory,
all files are copied and then any matching files within each directory are
copied, with the directory being created on the destination if it does not
already exist. Normally, these directories will not be created if no files are
to be copied into them.

/E can be given to cause the /S option to create all directories, even if
they are empty.

The /P (pause) option will cause XCOPY to pause and prompt before copy-
ing each file, which allows files to be selectively copied.

/W (wait) causes XCOPY to pause and prompt before copying any files, so
that disks can be changed.

/V option can be given to turn write verification on for the duration of the
XCOPY command (see the VERIFY command). This will ensure that data is
written correctly to disks if the device driver being used has the feature,
but will slow the operation down.

Note that XCOPY is a transient command, and so must be loaded off disk.

1.4. COMMANDS 57

e Examples
XCOPY B:\

All files in the root directory of drive B: are copied to the current directory
of the current drive. There is no advantage in this case over using the
standard built-in COPY command.

XCOPY *.* B: /H/S/M

All files, including hidden files, are copied to drive B: only if they have been
modified since a similar command was last given. The archive attributes
are then reset so that the files are marked as unmodified. Not only are
all the files in the current directory copied, but so are directories and all
their descendant directories and files.

1.4.46 XDIR

e Format
XDIR [filespec] [/H]

e Purpose

Lists all files within directories.

e Use

The filespec specifies which files are to be listed, and /H allows hidden
files to be included.

XDIR is similar to the DIR command, but does not print the files’ dates
and times.

After all files in the specified directory have been listed, then files within
descendant directories are also listed, and are shown indented. This allows
a DIR of a complete directory tree or disk to be obtained.

Note that XDIR is a transient command, and so must be loaded off disk.

e Examples

A>XDIR
Volume in drive A: is MSX-DOS 2
X-Directory of A:\

MSXD0S2.SYS r 4480
COMMAND2.COM r 14976
AUTOEXEC.BAT 57

REBOOT.BAT 57

58 CHAPTER 1. COMMAND SPECIFICATION

\UTILS
CHKDSK .COM 7680
DISKCOPY.COM 7168
FIXDISK.COM 768
UNDEL . COM 3968
XCOPY.COM 10112
XDIR.COM 7168
MKSYS.BAT 569
AUTOEXEC.BAT 47
REBOOT.BAT 90

\HELP
ASSIGN.HLP 819
ATDIR.HLP 1527
ATTRIB.HLP 1828

292K in 117 files 530K free

The directory of the entire disk in or descending from the current directory
of the current drive is printed.

XDIR B:\DIR1

All the files and directories and their contents are printed from the direc-
tory DIR1.

XDIR *.COM/H

The names of all files, including hidden files, matching * . COM are displayed.

1.5 Redirecting and piping

COMMAND2. COM offers the redirection and piping features as described below.
They may be bypassed by setting the environment item "REDIR" to "OFF" ("SET
REDIR=0FF"), so the compatibility to MSX-DOS 1 or CP/M can be achieved.

1.5.1 Redirection

Most commands, CP/M programs and MSX-DOS programs output text to the
screen by writing to the ’standard output’, and read from the keyboard by
reading from the ’standard input’. COMMAND2.COM, however, provides facilities
for changing the standard input and standard output for the duration of the
command to refer to other MSX-DOS devices or to files on disk by including one
or more of the redirection symbols <, > and > > on the command line, followed
by a filename.

1.5. REDIRECTING AND PIPING 59

For example, the ECHO command normally just outputs it’s parameters to
the screen by writing the characters to the standard output. It can be made to
output to the printer instead by redirecting it’s output, as follows:

ECHO text >PRN

which changes the standard output to refer to the device PRN for the duration
of the ECHO command. Similarly, the command:

ECHO text >filel

will cause the specified file ("filel") to be created, and the output of the ECHO
command written to the file. To append the output of a command to the end
of an existing file, the > > symbol can be used instead of the > symbol, and the
file will only be created if it does not already exist.

To change the standard input, the < symbol is used in a similar manner to the
> symbol. In this case, the file must already exist, and must contain adequate
input for the command. If the command attempts to read input beyond the
end of the file, then it will be aborted since it cannot continue.

When redirection information is given on the command line, it is used by
COMMAND2.COM to set up the redirection and then removed from the command
line. Thus in the examples above, the ECHO command will not echo the redirec-
tion symbols or the filename.

If the input or output of a batch file is redirected, then that redirection is
applied to all commands within the batch file. Individual commands within the
batch file may still be redirected, however, which will override the batch file
redirection. See section 1.6 on Batch Files for more information on commands
in batch files.

1.5.2 Piping

As well as redirecting the input and output of a command or program to another
device or a disk file, it is possible to redirect or ’pipe’ the standard output of one
command into the standard input of another. Typically the second command
will be a program which reads from it’s standard input, modifies the data, and
writes it to it’s standard output. Such a program is called a ’filter’. For example,
a filter could be produced which read data from it’s standard input, sorted it
into alphabetical order, and wrote it to it’s standard output. Thus the output
of the DIR command could be sorted.

Piping is indicated on the command line by separating the two commands by
the | symbol. The command to the left of the | symbol will be performed first,
and it’s output will be redirected to a temporary file created by COMMAND2 . COM.
Then the second command will be performed, with it’s standard input redirected
from the same temporary file. When the second command ends, the temporary
file will be deleted. The standard output of the second command may of course
have been piped into the standard input of a third command, and so on.

60 CHAPTER 1. COMMAND SPECIFICATION

If any input redirection occurs on a command line involving a pipe, then the
redirection is applied to the first command in the pipe, as all the other commands
receive their standard input from the standard output of the previous command
in the pipe. Similarly, if any output redirection occurs on a command line
involving a pipe, then the redirection will apply to the last command on the
command line.

It is not possible to use pipes on either the input or the output of batch
files directly. It is, however, possible to use piping with batch files if they are
executed with the COMMAND2 command (see section 1.4) since it is then the
COMMAND2 command that is being redirected and not the batch file.

As mentioned above, in order to pipe the output of one command into the
input of another, temporary files will be created and deleted by COMMAND2. COM.
The location of these temporary files is specified by the TEMP environment item
(see section 1.7 on Environment Items), and this may be changed to refer to
any drive and directory (for example piping will be speeded up considerably if
TEMP refers to a directory on a RAM disk). By default, TEMP refers to the root
directory of the boot disk. The filename used for the temporary file is created
by COMMAND2.COM, so TEMP should specify just the drive and directory. The
filename is of the form:

%PIPExxx.$$$

where xxx is a three digit number chosen by COMMAND2.COM to avoid clashes
with any other files in the TEMP directory.

1.6 Batch files

When a command is given to MSX-DOS and it is not one of the internal com-
mands, a file of that name is searched for with an extension of COM or BAT. If
not found in the current directory then the current search path is searched (see
the PATH command). If a COM file is found, then it is loaded and executed. If a
BAT file is found, then MSX-DOS starts execution of the batch file.

A batch file is a text file that contains a list of commands, and these com-
mands are read from the file a line at a time and executed as though they were
typed at the keyboard. Several of the commands described in section 1.4 are in
fact provided mainly for use in batch files, such as ECHO and PAUSE.

As each command is read, normally it is executed immediately. An envi-
ronment item ECHO exists, however, that can be set to ON (with the command
SET ECHO ON) to cause each command line to be printed on the screen before
it is executed (see section 1.7 for Environment Items). The command line is
echoed in this way after % parameter substitution (see below) has taken place.
The command SET ECHO OFF will restore the normal state.

In the command line that invoked the batch file, parameters may follow the
name of the batch file just like any other command or transient program name.
These parameters may be accessed anywhere in the batch file by specifying %0
to %9. %1 is the first parameter specified in the command line, %2 is the second

1.6. BATCH FILES 61

and so on. %0 is the name of the batch file itself. The % number will be replaced
by the parameter on the original command line, and may appear anywhere on
a batch file command line. To actually use a % symbol on a command line a
double % must be given (?%%’) which will then be replaced by a single one.

If the execution of any command in a batch file is terminated prematurely
for some reason (typically the CTRL-STOP or CTRL-C key being pressed) then the
following prompt is issued:

Terminate batch file (Y/N)?

If the response to this is ?Y?, then execution of the whole batch file is stopped. If
the response is ’N’, then batch file execution continues with the next command
in the batch file.

After MSX-DOS has executed a command in batch file, it may need to read
the next command in the batch file off disk. If the correct disk is not in the drive
when it comes to do this, then a prompt is issued. For example, the following
prompt will be issued if the batch file was originally executed from drive A::

Insert disk for batch file in drive A:
Press any key to continue...

When the correct disk has been inserted and a key pressed, batch file execution
will continue normally.
Below is a very simple batch file, which just prints the first few parameters.

ECHO Parameter 0 = %0
ECHO Parameter 1 = %1
ECHO Parameter 2 = %2
ECHO Parameter 3 = %3

If this is called MYBAT.BAT then the command MYBAT a b c will output:

Parameter 0 = MYBAT
Parameter 1 = a
Parameter 2 = b
Parameter 3 = c

When MSX-DOS starts up for the first time, a special batch file called AUTOEXEC.BAT
is looked for and is executed if found. This may contain any MSX-DOS com-
mand, and usually contains once-only initialization commands, such as a RAMDISK
command to set up a RAM disk.

One % parameter is passed to AUTOEXEC.BAT as %1. This the drive that
MSX-DOS booted from and is in the form of a normal drive letter followed by
a colon.

Another special batch file is REBOOT.BAT. This is executed when MSX-DOS
is re-booted after using DISK-BASIC. As with AUTOEXEC.BAT files, the single
%1 parameter passed is the drive from which MSX-DOS was re-booted.

62 CHAPTER 1. COMMAND SPECIFICATION

Usually some commands need to be performed whenever MSX-DOS is booted,
whether for the first time or sometime later, and these are put in the REBOOT
batch file. They can then be executed from the AUTOEXEC batch file by ending
it with the command REBOOT %1. An example of a command that might be put
in the REBOOT batch file is the PATH command to set up the transient command
search path. When setting up the search path using the command, %1 can be
used to set up the path on whatever drive was booted from.

When a command in a batch file is the name of another batch file, then
that second batch file is executed in the normal way. When it ends, control
passes back to the interactive command interpreter, and not to the first batch
file. Batch file commands thus ’chain’ together.

If it is desired to 'nest’ batch files ie. to pass control back to the first batch
file above, then this can be done with the COMMAND2 command (see section 1.4),
passing the name of the second batch file as the parameter. Then when the
second batch file ends, the first one will be continued with the command after
the COMMAND2 command.

A typical AUTOEXEC batch file is as follows:

ECHO AUTOEXEC executing
RAMDISK 100

RAMDISK

COPY COMMAND2.COM H:\
REBOOT %1

A typical REBOOT batch file is as follows:

ECHO REBOOT executing

PATH H:\, %1\UTILS, %1\BATCH
SET SHELL=H:\COMMAND2.COM
SET TEMP=H:\

SET PROMPT ON

H:

When the AUTOEXEC batch file executes, the message "AUTOEXEC executing" is
printed, and then a RAM disk is set up with a maximum size of 100K. Another
RAMDISK command is then given which will print out the actual size of RAM
disk created. The COPY command then copies COMMAND2.COM onto the RAM
disk so that it can load and re-load quickly. Finally the REBOOT batch file is
executed, with the %1 parameter (the boot drive) passed to it.

The REBOOT batch file prints a message and then sets a PATH. The first item
in the path refers to the RAM disk that was created by the AUTOEXEC batch file,
and the other items refer to directories on the disk from which MSX-DOS was
booted (ie. %1). The SHELL environment item is set up so that COMMAND2.COM
can re-load quickly off the RAM disk, and the TEMP environment item is set up
so that temporary piping files are created on the RAM disk. The prompt is set
ON so that the current directory is printed as the prompt and, finally, the RAM
disk is made the default drive.

1.7. ENVIRONMENT ITEMS 63

1.7 Environment items

MSX-DOS maintains a list of ’environment items’ in its work area. An environ-
ment item is a named item that has a value associated with it.

An environment item can have any name chosen by the user, and can con-
sist of the same characters that are valid in a filename. The maximum length
of an environment item name is 255 characters. MSX-DOS provides several
environment items set up by default.

The value of an environment item is simply a string of arbitrary characters
up to a maximum length of 255. No processing is performed on the characters
and so the casing of characters is preserved. Any environment item that does
not exist has a null value (ie. no characters).

An environment item can be changed or set up by the SET command, which
can also display currently set environment items.

The environment items set up by default and the manner in which their
value is interpreted are as follows:

1.7.1 ECHO

This controls the echoing of lines read from a batch file (see section 1.6 on Batch
Files). Any value except 0N’ (lowercase also allowed) is interpreted as ’OFF’.

1.7.2 PROMPT

This controls the displaying of the prompt at command level. Any value except
’0ON’ is interpreted as >0FF’.

When PROMPT is OFF, as it is by default, then the prompt consists of the
current drive followed by ?>’ eg. A>.

When PROMPT is ON, then the prompt consists of the current drive and the
current directory of that drive followed by ’>? eg. A:\COM>. In order to do this,
the current drive must be accessed to read the current directory and so may
take a little longer to appear.

1.7.3 PATH

The current search path by which COMMAND2.COM searches the command given is
maintained as an environment item PATH, and it is this that the PATH command
manipulates.

1.7.4 SHELL

The SHELL environment item indicates where the command interpreter (COMMAND2 . COM)
exists, and is set up by default to where it was loaded from. When the command
interpreter needs to re-load itself from disk (after running a transient command)
it looks at the SHELL environment item and attempts to load itself from the file

64 CHAPTER 1. COMMAND SPECIFICATION

that it specifies. If this gives an error then it attempts to load itself from the
root directory of the drive that it was originally loaded from.

To cause the command interpreter to re-load itself from another drive or
directory, COMMAND2 . COM can be copied there and SHELL set to refer to it. For ex-
ample, it might be copied to the RAMDISK with the command COPY COMMAND2.COM
H:\ and then SHELL set with the command SET SHELL=H:\COMMAND2.COM.

1.7.5 TIME

TIME specifies the format the time is displayed by MSX-DOS. If not ’24’, which
indicates that it is displayed as a 24-hour time, then ’12? is assumed, which
indicates that it is displayed as a 12-hour time with an am. or pm. indication.
The TIME environment item does not apply when the time is input because it
can be input in either format unambiguously.

1.7.6 DATE

DATE specifies the format the date is displayed and input by MSX-DOS. It
defaults to a format appropriate for the country of origin of the MSX machine.
It takes the form of three letters or three letter pairs separated by date/time
separators (see the DATE command). To set the American format, for example,
the command SET DATE=MM/DD/YY could be given.

1.7.7 HELP

When the HELP command is given the name of command for which help is
required, then it reads the information displayed from a file on disk. This file
is in the directory specified by the HELP environment item. It defaults to a
directory called HELP in the root directory of the drive that MSX-DOS was
booted from.

1.7.8 APPEND

APPEND is not actually defined by default, but when set up is an environment
item that has a special meaning to the system. It is used only with standard
CP/M programs.

CP/M programs do not know how to use sub-directories because CP/M
does not have sub-directories, but instead just has the equivalent of the current
directory. When such a program opens a file, it searches for it only within this
single directory and thus only has drives and filenames, not paths.

When a CP/M program is run under MSX-DOS and attempts to open a
file, it only searches for the filename in the current directory of the appropriate
drive. Similarly, when the user types in a filename to a CP/M program it may
only contain a drive and filename, and thus also refers only to files in the current
directory.

1.7. ENVIRONMENT ITEMS 65

When this search is performed through MSX-DOS, if the file is not found
in the current directory, then the APPEND environment item is looked at. If it is
not set up then the file has not been found. If set up, then it is assumed to be
a path name, and specifies a single alternative directory in which the search for
the file continues.

This will only be of use if the CP/M program opens a file and then reads
or writes to it. If it attempts to, for example, delete a file or create a file, then
APPEND will not be used. Indeed, it may have undesirable effects and for this
reason it is recommended that APPEND is used normally only in a batch file which
sets it up, executes the CP/M program, and then unsets it again.

Typical uses for APPEND include specifying the directory in which large pro-
grams (such as word processors and database programs) find overlay or messages
files, and specifying the directory in which compilers, assemblers and linkers find
their source and working files. Typical cases for which APPEND is not suitable
and may have undesirable effects include editing a file with a wordprocessor
when the file to be edited probably cannot be in a directory other than the
current one, even if APPEND is set up.

1.7.9 PROGRAM and PARAMETERS

These special environment items are set up by COMMAND2.COM when a transient
command is executed and removed when it finishes, and should thus be avoided
for general use.

1.7.10 TEMP

When piping is performed (see section 1.5 on Redirection and Piping) it is
necessary for COMMAND2. COM to create one or more temporary files, and the TEMP
environment item indicates the drive and directory in which these temporary
files are to be created. By default, it refers to the root directory of the boot
drive, and typically may be changed to refer to a RAM disk since this increases
the speed of piping.

Although the standard MSX-DOS system only uses TEMP for piping, any
other programs and utilities that need to create temporary files may also use
the TEMP environment item.

1.7.11 UPPER

UPPER controls whether the command line from 80h to be passed to the transient
program be converted to uppercase. Any value except 0N’ is interpreted as
’0FF°.

When UPPER is ’0FF’ (default), no conversion will be done and the values
will be passed to the transient program as they are typed.

When UPPER is >0N’, each character in the command line will be converted
to its associated uppercase character and then passed to the transient program.
This is compatible to CP/M environment.

66 CHAPTER 1. COMMAND SPECIFICATION

1.7.12 REDIR

REDIR controls whether the redirection or piping characters in the command line
be processed by COMMAND2.COM. Any value except 0N’ is interpreted as >0FF’.

When REDIR is ?0FF’, the redirection or piping characters will be passed to
the transient program as they are typed, and the transient program may process
them.

When REDIR is ?0N’ (default), the redirection or piping characters will be
interpreted and executed by COMMAND2.COM, so they will not be passed to the
transient program.

1.8 Errors and messages

1.8.1 Disk errors

Disk errors occur when a command or program is attempting to access a disk
and fails for some reason, such as a disk not being in the drive. When this
happens, message and prompt appears which allows the user the either retry
the operation which may now work (eg. if a disk has been inserted into the
drive), to ignore the operation or to abort the entire command.

An example disk error message and prompt is as follows, and may be given
if the disk was taken out whilst drive A: was being accessed:

Not ready reading drive A:
Abort, Retry or Ignore (A/R/I)?

The ’not ready’ part of the message indicates why the disk operation failed,
and other possibilities exist (see below). reading’ indicates that the command
was trying to read the disk, and may be replaced by ’writing’ if that is what
it was doing. ’drive A:’ is the drive in which the disk was attempted to be
accessed.

The ’Abort, Retry or Ignore’ part indicates the possible actions that
can be taken by the user, and these are selected by pressing the *A’, ’R? or ’I?
key.

If Abort is selected, then the entire command is aborted and the message
’Disk operation aborted’ is printed before another command can be typed.

If Retry is selected then the failed disk operation will simply be retried and
may fail again or may work, particularly if some corrective action has been taken
such as inserting a missing disk.

Ignore causes the failed disk operation to be ignored by the command. In
many cases, ignoring an error may not be recommended and in these cases
the Ignore option will not even be displayed, although it may still be selected.
Doing so may however cause serious system malfunction and could destroy data
on the disk. Even if the Ignore option is displayed, it should be used with
extreme caution, and only when all else fails. Normally Ignore is only used
when the data on a disk has got corrupted and ignoring the disk error offers the
only possibility of recovering all or part of the data.

1.8. ERRORS AND MESSAGES 67

A few serious errors which generally mean the disk has been corrupted be-
yond possible use are automatically aborted, and just the appropriate error
message is printed (eg. ’Bad file allocation table?).

The possible errors that can occur as disk errors and their meanings are, in
alphabetical order, as follows:

Bad file allocation table

The disk contains an invalid file allocation table (FAT). The FAT is an area on
disk in which the system keeps information to tell it where on the disk the data
in each file is stored. Thus if the FAT is invalid, it cannot read any data at all.
This message usually means that the disk has been corrupted beyond possible
use.

Cannot format this drive

An attempt was made to format a disk in a drive that does not support disk
formatting. This probably means that a FORMAT command was given specifying
the RAM disk.

Data error

The data was read or written without error, but the CRC check failed. This
usually means the disk has been corrupted.

Disk error

The data could not be read or written to the disk.

Incompatible disk

An attempt was made to access 2D or 1D disk or a double sided disk in a single
sided drive.

Not a DOS disk

The disk is not a format that MSX-DOS can read. For example, although
MSX-DOS can execute CP/M programs it cannot access CP/M disks.

Not ready

The disk is not in the drive being accessed. The disk should be inserted into
the drive and ’Retry’ selected.

Sector not found

MSX-DOS tried to read or write to a non-existent sector. May indicate that
the disk has been corrupted.

68 CHAPTER 1. COMMAND SPECIFICATION

Seek error

The requested track on the disk could not be found. Could mean a corrupted
disk or faulty disk drive.

Unformatted disk

The disk has not been formatted. Use the FORMAT command on the disk before
accessing it.

Verify error

Only occurs when verify is on, and means that data appeared to be written to
disk successfully but when read back was found to be different to that written.

Write error

Data was not written correctly.

Write protected disk

The disk is write protected and an attempt was made to write data to it. The
disk should be made unprotected and ’Retry’ selected.

Wrong disk and Wrong disk for file

MSX-DOS accessed a disk once and subsequently needed to access it again,
but found that the drive contained a different one. The correct disk should be
inserted and ’Retry’ selected.

1.8.2 Command errors

Command errors occur when a command cannot perform its intended function
for some reason.

If an error occurs in a command and it is unlikely to be able to continue,
then an appropriate error message is printed, and the next command is read at
the prompt.

An example error message is:

*x*x File not found

The three asterisks *** are printed first to indicate that an error has occurred.
The message is then printed, followed by the normal command prompt on the
next line. The possible errors that can occur are listed below.

When a command error occurs in a specific situation, an ’error type’ message
may also be printed. For example, generally when a required file cannot be found
on disk, the ’File not found’ message is printed as in the above example.
However, if the file required is a file specified by the redirection symbol < (see
section 1.5 on Redirection and Piping) then the message printed will be:

1.8. ERRORS AND MESSAGES 69

x Redirection error: File not found

The possible error types are:

Batch file error

An error occurred whilst attempting to read from a batch file, for example
a disk error occurred and ’‘abort’ was selected.

Piping error

The error occurred during a piping operation, probably in connection with
the temporary files that COMMAND2. COM creates (see section 1.5 on Redirec-
tion and Piping). For example, the TEMP environment item did not refer
to a valid drive or directory (see section 1.7 on Environment Items).

Redirection error

The error occurred during a redirection operation. For example, an invalid
filename was specified after a redirection symbol <, > or > >, or the specified
input file was not found (see section 1.5 on Redirection and Piping).

Standard input error

An error occurred on the standard input to a command or program after
redirection or piping has been set up, for example the standard input has
been redirected from a file and the end of the file has been reached.

Standard output error

An error occurred on the standard output of a command or program after
redirection or piping has been set up, for example the standard output
has been redirected to a file and the disk is full.

Many commands operate on files or directories, and if an ambiguous file-
name is given then the command operates on several files or directories
(for example the RENAME command or the COPY command). Often an
error occurs when it is trying to perform the command on one of the files,
but which may be successful on one of the other files. In this case, the
filename is printed followed by the error message and the command then
continues. For example:

COMMAND2.COM -- File cannot be copied onto itself

The possible command errors that can be given are, in alphabetical order, as
follows:

Cannot concatenate destination file

This error is given by CONCAT and means that one of the filenames matched by
the source file specification is the destination file. This is not necessarily wrong
but may indicate a mistake in the command.

70 CHAPTER 1. COMMAND SPECIFICATION

Cannot create destination file

This is given by COPY, and usually means that the destination file for the file it
is copying would, if it was created, overwrite a file that was already in use. This
is likely to be a previously copied source file but may be some other file such as
the currently executing batch file.

Cannot overwrite previous destination file

This is given by COPY, and means that the destination file for the file it is
copying would, if it was created, overwrite the destination file of the file that
was previously copied. This usually means that the intended destination was a
directory but that its name was misspelled.

Cannot transfer above 64K

This should not normally occur from commands.

Command too long

A command that was given is too long. This will not occur when typing com-
mands from the keyboard, but may occur from a batch file. The maximum
length of a command is 127 characters after % parameter substitution.

Ctrl-C pressed

The command was interrupted by pressing CTRL-C.

Ctrl-STOP pressed

The command was interrupted by pressing CTRL-STOP.

Directory exists

A command attempted to create a new file or directory on disk with the same
name as an existing directory.

Directory not empty

The RMDIR (RD) command tried to remove a directory that contains files or other
directories. These must be deleted first with the ERASE and RMDIR commands
since directories must be empty before they can be removed.

Directory not found

A directory command (eg. RNDIR) could not find the specified directory.

1.8. ERRORS AND MESSAGES 71

Disk full

There is no more room on the disk and files will have to be deleted and the
command given again.

Disk operation aborted

A disk error occurred and the ’Abort’ option was chosen, thus aborting the
whole command.

Duplicate filename

RENAME (REN) or RNDIR cannot perform the specified rename because the new
filename is the same as a filename that already exists. Also occurs from MOVE
or MVDIR because a filename already exists in the destination directory with the
same name as the file or directory being moved.

End of file

This should not normally occur from commands.

Environment string too long

This should not normally occur from commands.

Error on standard input

This should not normally occur from commands, and means that an error oc-
curred while a command was attempting to read from the keyboard.

Error on standard output

This should not normally occur from commands, and means that an error oc-
curred while a command was attempting to write to the screen.

File access violation

This should not normally occur from commands.

File allocation error

This should not normally occur from commands.

File cannot be copied onto itself

The destination file when trying to do a COPY is the same file as the source.

72 CHAPTER 1. COMMAND SPECIFICATION

File exists

MKDIR (MD) tried to create a new directory but a file with the same name already
exists in the specified directory.

File for HELP not found

The HELP command looked for a file to get the help text from but could not find
it. Help files are usually kept in a directory called \HELP on the boot disk.
File handle not open

This should not normally occur from commands.

File is already in use

A command tried to modify a file that is already being used for some other
purpose, such as the currently executing batch file.

File not found

A command could not find the specified file or files.

Internal error

This should not normally occur from commands.

Invalid MSX-DOS call

This should not normally occur from commands.

Invalid attributes

Usually means an invalid +/- attribute was specified in ATTRIB or ATDIR.

Invalid date

The date typed into the DATE command is not a valid date or was typed in in
an invalid format.

Invalid device operation

A command cannot perform its function on one of the built-in system devices
eg. a file cannot be renamed CON.

Invalid directory move

MVDIR attempted to move a directory into one of its own descendant directories,
which cannot be done.

1.8. ERRORS AND MESSAGES 73

Invalid drive

A drive that does not exist was specified.

Invalid environment string

The name of an environment item contains invalid characters. Only those char-
acters valid in filenames are valid in environment item names.

Invalid file handle

This should not normally occur from commands.

Invalid filename

A filename contains invalid characters. This may be a filename explicitly given,
or may be the result of attempting to rename a file with an ambiguous new
name.

Invalid number

A number given in a command contained non-digit characters.

Invalid option

An invalid letter was given after a / on a command line.

Invalid . or .. operation

A command cannot perform its function on the special > .2 and ’. .’ directories
that are present at the start of all sub-directories.

Invalid parameter

The parameter to a command is generally not valid for that command in some
way.

Invalid pathname

A path specified on a command line does not exist or is syntactically incorrect.

Invalid process id

This should not normally occur from commands.

Invalid time

The time typed into the TIME command is not a valid time or was typed in in
an invalid format.

74 CHAPTER 1. COMMAND SPECIFICATION

Missing parameter

A command expected a parameter but did not find one.

No spare file handles

Should not normally occur from commands.

Not enough memory

Not enough memory is available for the given command. For example, a large
program to large to fit into memory or not enough memory for a new environ-
ment string.

Not enough memory, system halted

This special error message is printed when MSX-DOS attempts to start up and
finds that there is not enough memory to continue. As the message suggests,
the computer must then be reset. This should normally occur.

Pathname too long

A path is too long. Either the length of the pathname given exceeds 100 char-
acters, or the total length of a path from the root directory to a file is more
than 63 characters.

RAM disk already exists

Should not normally occur from commands.

RAM disk does not exist

The RAMDISK command was used to display the current size of the RAM disk,
but no RAM disk exists.

Read only file

An attempt was made to modify or overwrite a file marked as read only. The
DIR command shows this, and the ATTRIB command can make it not read only.

Root directory full

The fixed maximum number of files in the root directory (often 64 or 112) has
been reached. Directories do not have this limitation.

1.8. ERRORS AND MESSAGES 75

System file exists

An attempt was made to create a file which would, if it was created, overwrite a
file that is marked as a system file. System files are not used in MSX-DOS, and
are not shown by the DIR command or accessible from any other commands,
and so this error should not normally occur with commands.

Too many parameters

All the parameters a command expected were found on a command line, but
there were still more parameters left on the end of the line.

Unrecognized command

A given command was not an internal command or an external COM or BAT
command found along the current search path as set by the PATH command.

Wrong version of command

After executing a program, COMMAND2 . COM tried to re-load itself from the COMMAND2 . COM
file on disk, and found it was not the same version. A prompt is then printed
and COMMAND2.COM will attempt to re-load itself again.

Wrong version of MSX-DOS, system halted

This special error message is printed when MSX-DOS attempts to starts up and
finds that some other part of the MSX-DOS system has a version number earlier
than required. As the message suggests, the computer must then be reset. This
should not normally occur.

Internally, errors are represented as error numbers. The numbers corre-
sponding to the errors above start at 255 and decrease. If an error number is
received for which there is no message, then it is printed. Numbers above 64
are reserved for future version of MSX-DOS and so are called ’system errors’
and numbers below 63 can be used by external commercially available programs
and are called ’user errors’. User errors below 32 never print a message. The
two default error messages (which will not normally occur from commands) are
thus:

System error 64
and
User error 63
where the 64 and 63 are example error numbers. The only command which

uses error numbers is the EXIT command. A list of the actual numbers for the
above messages is available in chapter 2.

76 CHAPTER 1. COMMAND SPECIFICATION

1.8.3 Prompt messages

There are several situations in which user interaction is required before the sys-
tem can continue with what it was doing, typically inserting a disk. Also many
potentially dangerous commands require confirmation prompts to be answered
before they perform their operation. These various system prompts are given
below.

A1l data on drive A: will be destroyed
Press any key to continue...

This prompt is given by the FORMAT command, and is issued to reduce the
risk of accidentally formatting the wrong disk. To abort the FORMAT command,
CTRL-STOP or CTRL-C can be pressed.

Destroy all data on RAM disk (Y/N)?

A RAMDISK command was given to set up a RAM disk, but a RAM disk already
existed. If the response to the prompt is ’Y’, then any files on this existing
RAM disk will be destroyed. A response of N’ or CTRL-STOP or CTRL-C will
abort the command.

Disk in drive A: will omnly be able to boot MSX-DOS
Press any key to continue...

This prompt is given by the FIXDISK command, and is issued to reduce the
risk of accidentally updating a non-MSX-DOS 2 disk. To abort the FIXDISK
command, CTRL-STOP or CTRL-C can be pressed.

Erase all files (Y/N)?

This prompt occurs when a DEL (or ERA or ERASE) command is given specifying
all the files in a directory, and is issued to reduce the risk of accidentally deleting
a lot of files.

Insert COMMAND2.COM disk in drive A:
Press any key to continue...

This may occur after running a program, and requires a disk containing COMMAND2 . COM
in the root directory to be present in the specified drive. After inserting the disk

in the drive (which is the drive from which MSX-DOS was originally booted)

and pressing a key, the system will continue as normal. If COMMAND2.COM has
been copied somewhere else (eg. a RAM disk) then the SHELL environment item

can be set up to make COMMAND2. COM re-load from there instead (see section 1.7

on Environment Items).

Insert batch file disk in drive A:
Press any key to continue...

1.9. COMMAND SUMMARY 7

This may occur during the execution of a batch file, and means that the system
needed to read the next command from the batch file but found that the wrong
disk was in the drive. After inserting the disk in the specified drive (which will
be the drive from which the batch file was originally started) and pressing a key,
execution of the batch file will continue as normal.

Press any key to continue...

This prompt is generally issued when some user interaction is required, and is
normally printed after some other message which describes the action required.
It is also printed by the PAUSE command. To abort the command that issued
the prompt, CTRL-STOP or CTRL-C can be pressed.

Terminate batch file (Y/N)?

When MSX-DOS aborts a command prematurely (such as when the CTRL-STOP
or CTRL-C key is pressed) and the command was executing in a batch file, this
prompt is issued. If the response is ’Y? then the batch file will also be aborted.
If °N’ is the response then the batch file will continue with the command that
follows the aborted command.

1.9 Command summary

The following is a list of all the standard commands available in MSX-DOS,
together with their syntax and purpose.

ASSIGN [d: [d:]1]

Sets up the logical to physical translation of drives.
ATDIR +|-H [/H] [/P] compound-filespec

Changes the attributes of directories to make them hidden/not hidden.
ATTRIB +|- R|H [/H] [/P] compound-filespec

Changes the attributes of files to make them hidden/not hidden and read
only/not read only.

BASIC [program]
Transfers control to MSX disk BASIC.
BUFFERS [number]
Displays or changes the number of disk buffers in the system.

CD [d:] [path]

78 CHAPTER 1. COMMAND SPECIFICATION

Displays or changes the current directory.
CHDIR [d:] [path]
Displays or changes the current directory.
CHKDSK [d:1 [/F]
Checks the integrity of the files on the disk.
CLS
Clears the screen.
COMMAND2 [command]
Invokes the command interpreter.
CONCAT [/H] [/P]1 [/B] [/V] compound-filespec filespec

Concatenates (joins together) files.

COPY [/A] [/H] [/T] [/V] [/P] compound-filespec [filespec]
Copies data from files or devices to other files or devices.
DATE [date]
Displays or sets the current date.
DEL [/H] [/P] compound-filespec
Deletes one or more files.
DIR [/H] [/W] [/P] [compound-filespec]
Displays the names of files on disk.
DISKCOPY [d: [d:11 [/X]
Copies one disk to another.
ECHO [text]
Prints text in a batch file.
ERA [/H] [/P] compound-filespec

Deletes one or more files.

1.9. COMMAND SUMMARY

ERASE [/H] [/P] compound-filespec
Deletes one or more files.
EXIT [number]
Exits COMMAND2.COM to the invoking program.
FIXDISK [d:] [/S]
Updates a disk to the full MSX-DOS 2 format.
FORMAT [d:]
Formats (initializes) a disk.
HELP [subject]
Provides on-line help for an MSX-DOS feature.
MD [d:] path
Creates a new sub-directory.
MKDIR [d:] path
Creates a new sub-directory.
MODE number
Changes the number of characters/line on the screen.
MOVE [/H] [/P] compound-filespec [path]
Moves files from one place to another on a disk.
MVDIR [/H] [/P] compound-filespec [pathl]

Moves directories from one place to another on a disk.

PATH [[+]|-] [d:]lpath [[d:]path [[d:]path ...

Displays or sets the COM and BAT command search path.

PAUSE [comment]
Prompts and waits for a key press in a batch file.
RAMDISK [number[K]] [/D]

Displays or sets the RAM disk size.

79

80 CHAPTER 1. COMMAND SPECIFICATION

RD [/H] [/P] compound-filespec
Removes one or more sub-directories.

REM [comment]
Introduces a comment in a batch file.

REN [/H] [/P] compound-filespec filename
Renames one or more files.

RENAME [/H] [/P] compound-filespec filename
Renames one or more files.

RMDIR [/H] [/P] compound-filespec
Removes one or more sub-directories.

RNDIR [/H] [/P] compound-filespec filename
Renames one or more sub-directories.

SET [name] [separator] [value]
Displays or sets environment items.

TIME [time]
Displays or sets the current time.

TYPE [/H] [/P] [/B] compound-filespec | device
Displays data from a file or device.

UNDEL filespec
Recovers a previously deleted file.

VER
Displays the system’s version numbers.

VERIFY [ON | OFF]
Displays/sets the current disk write verify state.

VOL [d:] [volnamel

Displays or changes the volume name on a disk.

XCOPY [filespec [filespecl] [/AIL[/EI[/HIL/MIL/P1L/S1[/T]1L/V]L/W]

Copies files and directories from one disk to another.
XDIR [filespec] [/H]

Lists all files within directories.

1.10. DISK-BASIC 2.0 81

1.10 DISK-BASIC 2.0

1.10.1 Overview

When the system disk (the one which contains MSXD0S2.SYS and COMMAND2 . COM)
does not exist at the system startup, or when MSX-DOS BASIC command is
executed, DISK-BASIC 2.0 will be started.

DISK-BASIC 2.0 is the extended version of previous DISK-BASIC 1.0. In-
structions to operate with the RAM disk or the directory has been added or
extended.

1.10.2 Description of commands

CALL CHDIR

Format CALL CHDIR("[d:][path]")

Purpose Set or display current directory.

Example CALL CHDIR("WORK")

Description The function is the same as MSX-DOS CHDIR. See CHDIR.

CALL CHDRV

Format CALL CHDRV("[4:1")

Purpose Switch default drive.

Example CALL CHDRV("H:")

Description The same action is taken as when the drive name is given at MSX-
DOS prompt.

CALL MKDIR

Format CALL MKDIR("[d:][pathl")

Purpose Create new subdirectory.

Example CALL MKDIR("WORK")

Description The function is the same as MSX-DOS MKDIR. See MKDIR.

CALL RMDIR

Format CALL RMDIR("[d:][pathl")

Purpose Remove one or more subdirectories.

Example CALL RMDIR("WORK")

Description The function is the same as MSX-DOS RMDIR. See RMDIR.

82 CHAPTER 1. COMMAND SPECIFICATION

CALL RAMDISK
Format CALL RAMDISK[([number][, variable name])]
Purpose Set size of RAM disk or assign it into variable.

Example CALL RAMDISK(32)
CALL RAMDISK(1000, A)

Description The function is the same as MSX-DOS RAMDISK. See RAMDISK.

CALL SYSTEM

Format CALL SYSTEM or CALL SYSTEM[("DOS command name")]
Purpose Pass control back to MSX-DOS.

Example CALL SYSTEM("WORK")

Description CALL SYSTEM passes the control back to MSX-DOS. The command
name may be given to specify the operation to be executed after the
control returns to DOS. If no command name is specified, REBOOT.BAT
in the root directory on the boot drive, if any, will be executed.

FILES

Format FILES["filename"][, L]
Purpose Display names of files and directories on disk.
Example FILES"Wx*.x"

Description The function is the same as MSX-DOS DIR. See DIR. "FILES, L"
displays the names in the long format.

Chapter 2

Programming environment

This chapter describes the interface to transient programs provided by MSX-
DOS version 2.20.

2.1 Introduction

This chapter describes the environment which MSX-DOS 2 provides for tran-
sient programs on MSX 2 computers. It is intended as a guide for writing new
programs to run under MSX-DOS 2 and also to assist in converting existing
CP/M and MSX-DOS 1 programs to take advantage of the advanced features.

MSX-DOS 2 provides many enhancements to the standard CP/M and MSX-
DOS 1 environment, but is largely compatible with existing programs. The main
features include:

e MS-DOS style tree structured directories
e File handles

e Environment strings

e Proper error handling

Many extra DOS calls are implemented, and these are accessed via the DOS
entry jump at address 5 (the 'BDOS’ jump in CP/M). The descriptions of the
individual functions can be found in chapter 3.

Throughout this manual, the term MSX-DOS is used generally to refer to
MSX-DOS 2 unless otherwise stated.

2.2 Transient program environment

This chapter describes the environment in which transient programs are exe-
cuted under MSX-DOS, including entry and exit to the program and memory
usage.

83

84 CHAPTER 2. PROGRAMMING ENVIRONMENT

2.2.1 Entry from MSX-DOS

A transient program will be loaded at address 0100h, the start of the TPA
(Transient Program Area), and is CALLed by MSX-DOS with the stack pointer
set to the end of the TPA. If the stack pointer points to that location, as much
RAM as possible can be used as the stack. If it is undesirable, then the transient
program must set up its own stack in the TPA.

The contents of the Z80 registers when a transient program is entered are
undefined. The first 256 bytes of RAM starting at the address 0 will have been
set up with various parameters and code as described in section 2.2.3.

Interrupts are enabled when a transient program is entered and should gener-
ally be left enabled. MSX-DOS function calls will generally re-enable interrupts
if the transient program has disabled them.

2.2.2 Return to MSX-DOS

A transient program can terminate itself in any of the following four ways:

1. Returning, with the original stack pointer.
2. Jump to location 0000h.
3. MSX-DOS "Program Terminate" function call.

4. MSX-DOS "Terminate with Error Code" function call.

The first two of these methods are identical as far as MSX-DOS is concerned,
and are compatible with CP/M and MSX-DOS 1. The third method is also
compatible with CP/M and MSX-DOS 1 and is equivalent to doing a "Terminate
with Error Code" function call with an error code of zero.

The new "Terminate with Error Code" function allows the program to return
an error code to MSX-DOS, the first three terminating methods always returning
an error code of zero (no error). All specially written programs and converted
CP /M programs should use this new function, even for returning an error code
of zero.

Various other events outside the control of a program can cause it to ter-
minate. For example, typing "CTRL-C" or "CTRL-STOP" at the keyboard, by
the user selecting "Abort" as the response to an "Abort/Retry/Ignore" disk
error message or by an error on the standard I/O channels. In these cases an
appropriate error code will be returned to MSX-DOS.

A transient program can define an "abort routine". This will be called to
treat the abnormal termination of the program appropriately when the program
terminates by a "Program Terminate" or "Terminate with error code" function,
or after an abort error (see above). How to define this routine and for what
may be used is described in the MSX-DOS Function Specification.

2.2. TRANSIENT PROGRAM ENVIRONMENT 85

2.2.3 Page zero usage

On entry, various parameter areas are set up for the transient program in the
first 256 bytes of RAM. The layout of this area is as below and is compati-
ble with MSX-DOS 1 and with CP/M apart from the area used for MSX slot
switching calls.!

Fomm o Fomm o S —— SR S S S S +
0000h | Reboot entry | Reserved | MSX-DOS entry |
Fommo o Fomm o S S —— S p—— S —— S —— S +
0008h | RST 08h not used | RDSLT routine entry point |
Fommmo o Fommm o S S — S S — S —— S — +
0010h | RST 10h not used | WRSLT routine entry point |
Fommmo o Fommm o R S R S S S +
0018h | RST 18h not used | CALSLT routine entry point|
Fommoe o Fomom o Fommm o S Fommm o S oo o S +
0020h | RST 20h not used | ENASLT routine entry point|
Fommoe o Fomom o Fommm o S Fommm o S oo o S +
0028h | RST 28h not used | not used
Fommo o Fommm o R S —— R S —— E— S —— +
0030h | CALLF routine entry point | not used
Fommmo o oo oo o R oo o R oo o R +
0038h | Interrupt vector |
Fommmo o oo oo o + +
0040h | |
+ +
0048n | Used by secondary slot switching code |
+ +
0050h | I
+ Fommmo o Fommmo o S S —— +
0058h | I I
Fommme o Fomom o oo S + +
0060h | Unopened CP/M FCB for first parameter |
+ Fommmom oo S R +
0068h | I I
Fommm o Fommm o S — S + +
0070h | Unopened CP/M FCB for second parameter |
+ Fommmo o Fomm o S — S — +
0078h | [Space for end of FCB |
Fomome o Fommm o R S R S R S +
0080h | I

Default Disk transfer ad

IFigure

dress. Initialized to

86 CHAPTER 2. PROGRAMMING ENVIRONMENT

original command line parameters.
00F8h | I
oo oo S S S S S S +
At address 0000h is a jump instruction which can be used for terminating the
transient program. The destination of this jump can also be used to locate the
BIOS jump vector (see section 2.2.4). The low byte of this jump address will
always be 03h for CP/M compatibility.

The two reserved bytes at addresses 0003h and 0004h are the IOBYTE and
current drive/user in CP/M. Although MSX-DOS keeps the current drive byte
up to date for CP/M compatibility, new programs are not recommended to use
this but instead to use the "Get current drive" MSX-DOS function call. The
user number and IOBYTE are not supported since I/O redirection is not done in
the same way as CP/M and there is no concept of user numbers.

At address 0005h is a jump instruction to the start of the resident part of
MSX-DOS which is used for making MSX-DOS calls. In addition the address
of this jump defines the top of the TPA which the program may use. The size
of the TPA depends on what cartridges are used on the MSX machine and the
number of them, but is typically 53K. The low byte of the destination of this
jump will always be 06h for CP /M compatibility, and the six bytes immediately
preceding it will contain the CP/M version number and a serial number.

Four bytes are reserved for the user at each Z80 restart location (0008h-
0028h), which is sufficient for a jump. The bytes between the restart locations
however are used for the entry points to various MSX slot switching routines.

The whole area from 0038h to 005Bh is used for MSX interrupt and sec-
ondary slot switching code, and must not be modified. Note that most CP/M
debuggers (such as ZSID and DDT) use address 38h as a breakpoint entry, and
these programs will have to be modified to use a different restart. RST 28h is
recommended.

The two FCBs set up at addresses 005Ch and 006Ch are valid unopened FCBs
containing the first two command line parameters interpreted as filenames. If
both filenames are to be used then the second one must be copied to a separate
FCB elsewhere in memory because it will be overwritten when the first one is
opened. See section 2.3.6 for the format of FCBs.

The whole of the command line, with the initial command removed, is stored
in the default disk transfer area at address 0080h, with a length byte first and a
terminating null (neither the null nor the length byte are included in the length).
This string will have been upper-cased (when the environment string UPPER is
ON) and will include any leading spaces typed to ensure CP/M compatibility.

New programs for MSX-DOS should not use the CP/M FCBs, since other
MSX-DOS calls are available which are generally easier to use and which allow
programs to access directories and handle path names (see section 2.3 for details
of these facilities).

Improved methods are also available for accessing the command line. An en-
vironment string called "PARAMETERS" is set up which contains the command line

2.2. TRANSIENT PROGRAM ENVIRONMENT 87

not upper-cased. Another environment string called "PROGRAM" allows programs
to find out the drive, directory and filename from which they were loaded. See
section 2.3.5 for details of these environment strings and of environment strings
in general.

2.2.4 BIOS jump table

The jump at address 0000h will always jump to an address whose low byte is
03h. At this address will be another jump instruction which is the second entry

in a seventeen entry jump table. This corresponds exactly to the BIOS jump
table in CP/M 2.2.

The first eight entries in the table are for rebooting and for character I/0.
These routines are implemented with the same specification as CP/M. The
remaining jumps are low level disk related functions in CP/M and have no
equivalent in MSX-DOS since its filing system is totally different. These routines
simply return without doing anything apart from corrupting the main registers
and returning an error where possible.

MSX-DOS switches to an internal stack while executing a BIOS call and so
only a small amount of space (8 bytes) is required on the user’s stack.

Note that although the jump table is always on a 256 byte page boundary, it
is not the "correct" distance above the top of the TPA (as defined by the contents
of address 0006h) to correspond with CP/M 2.2. This should not matter to well
behaved CP/M programs but it is rumoured that some programs rely on the
size of the BDOS in CP/M 2.2. These programs will need modification.

The entries in the BIOS jump vector are as below:

xx00h - JMP WBOOT ;Warm boot

xx03h - JMP WBOOT ;Warm boot

xx06h - JMP CONST ;Console status

xx09h - JMP CONIN ;Console input

xx0Ch - JMP CONOUT ;Console output

xx0Fh - JMP LIST ;List output

xx12h - JMP PUNCH ;Punch (auxiliary) output
xx15h - JMP READER ;Reader (auxiliary) input
xx18h - JMP RETURN ;Home in CP/M

xx1Bh - JMP RETURN ;Select disk in CP/M
xx1Eh - JMP RETURN ;Set track in CP/M

xx21h - JMP RETURN ;Set sector in CP/M
xx24h - JMP RETURN ;Set DMA address in CP/M
xx27h - JMP RETURN ;Read sector in CP/M
xx2Ah - JMP RETURN ;Write sector in CP/M
xx2Dh - JMP LSTST ;List status

xx30h - JMP RETURN ;Sector translate in CP/M

88 CHAPTER 2. PROGRAMMING ENVIRONMENT

2.2.5 RAM paging

When a transient program is loaded, the mapper RAM slot will be enabled in
all four pages and the four RAM segments which make up the basic 64k will be
paged in. There will be MSX BIOS ROM compatible slot handling entry points
available in page-0 and various mapper support routines available in page-3 (see
section 5 for specifications of these).

A program may do any slot switching and paging which it likes while it is
running and need not restore either the slot selections or the RAM paging before
it exits, since COMMAND2.COM will handle this. A program must of course take
the usual precautions with the interrupt and the slot entry points if it alters
page-0, and must never alter page-3 (nothing is allowed to do that!).

Pages 0, 1 and 2 can contain any slot when doing a function call and will be
preserved. Any parameters can be passed from the slot being selected, except
that environment strings and disk transfer areas must be in the mapper RAM
slot.

Any RAM segments can be selected in pages 0, 1 and 2 when an MSX-DOS
function call or an MSX-DOS BIOS function call is made, and also the stack can
be in any page. The current paging state will be preserved by all function calls
even in error conditions. Any disk transfers will be done to the RAM segments
which are paged in when the function call is made, even if they are not the
original TPA segments.

If a transient program wants to use more RAM than the TPA then it can use
the mapper support routines (described in section 2.5) to obtain more RAM.
Before using any RAM other than the four TPA segments, the program must
ask the mapper routines to allocate a new segment. This ensures that there is
no contention with the program trying to use a segment which is already in use
(by the RAM disk for example). The segments should normally be allocated
as "user segments" since these will automatically be freed when the program
terminates. "system segments" should only be allocated if it is necessary for
them to remain in use after the transient program has terminated.

Having allocated additional segments, the program may page them in and
use any of the mapper support routines to access them. It will normally be
necessary for a transient program to remember the segment numbers of the
TPA segments in order to page them back in when they are required. The
segment numbers will normally be 0, 1, 2 and 3 but this must NOT be assumed
by transient programs, they must use the "GET_Pn" mapper routines to find out
the segment numbers before paging anything else in.

2.3 MSX-DOS function calls

2.3.1 Calling conventions

MSX-DOS function calls are made by putting the function code in register
C with any other parameters required in the other main registers and then

2.3. MSX-DOS FUNCTION CALLS 89

executing a "CALL 5" instruction. The operation will be performed and the
results will be returned in various registers depending on the function.

Generally all the main registers (AF, BC, DE and HL) will be corrupted by
MSX-DOS calls or will return results. The alternate register set (AF’, BC?,
DE’ and HL’) are always preserved, whilst the index registers (IX and IY) are
preserved except in the one or two cases where they return results.

Only a small amount of space (8 bytes) is needed on the transient program’s
stack because MSX-DOS switches to an internal stack when it is called.

For compatibility all functions which have a CP/M counterpart return with
A=L and B=H. Frequently A returns an error flag, with zero indicating success
and 01h or FFh indicating failure.

All of the new MSX-DOS functions (function code above 40h) return with
an error code in A and any other results in the other main registers. An error
code of 0 means no error, whilst any non-zero code means an error occurred,
the exact nature of which can be found by looking at the value. A list of error
codes and messages is given in section 2.6. An "explain" function is provided
which will give an ASCII explanation string for an error code (see chapter 3 for
details).

The actual functions available are documented in chapter 3.

2.3.2 Devices and character I/0

Wherever a filename is given to an MSX-DOS function, a device name may also
be given. These devices are used for character based I/O and allow a program
to access a disk file or a character device in exactly the same way without having
to know which it is using.

The syntax of device names is identical to that of filenames so programs do
not need any special handling to use device names. This applies both to the new
MSX-DOS 2 functions and the CP/M compatible FCB functions. The reserved
filenames used for devices are:

CON - screen output, keyboard input
PRN - printer output

LST - printer output

AUX - auxiliary output/input

NUL - null device

When any of these appear as the main part of a filename, it actually refers to
the device; the extension is ignored. Most function calls that use files can also
use devices. For example, a filename of CON can be successfully given to the
"rename file" function or the "delete file" function. No error will be returned
but the device will be unaffected.

The AUX device mentioned above does not do anything by default, but a
routine may be hooked into it so that it refers for example to a serial driver.
The NUL device does not actually do anything; output characters are ignored
and an end-of-file is always input. The LST and PRN devices are identical.

90 CHAPTER 2. PROGRAMMING ENVIRONMENT

The CON device is used to read from the keyboard or write to the screen.
When reading from the CON device, the system will read a line at a time allowing
the user to use line editing facilities. Only when the user types a CR (carriage
return) will the line be entered. End of input is signified by a CTRL-Z character
at the start of a line.

The system automatically opens several file handles to these standard devices
(see section 2.3.3 for details). These file handles may be used by programs
foraccessing the standard devices. Alternatively a program can do character
I/O by using the traditional CP/M character functions (functions 01h...0Bh).
These two methods are both acceptable but they should not normally be mixed
since they use separate buffering schemes and so characters can get lost in these
buffers.

The redirection is specified at the command line, both of these methods
(standard file handles and character functions) will be redirected. However it is
preferable to use the standard file handles and to read and write in large blocks
because when accessing disk files these will be very much faster than using the
character functions.

Even if the redirection was specified at the command line, programs may
sometimes need to do screen output and keyboard input which will bypass any
redirection. For example disk error handling routines may need to do this.
To facilitate this, there is a function provided which allows redirection of the
character functions to be temporarily cancelled. This is described in chapter 3
(function number 70h).

2.3.3 File handles

File handles are the method by which files are read from and written to using
the new MSX-DOS functions. File handles may also be used to manipulate files
in other ways (e.g. the manipulation of the file attributes).

A file handle is an 8 bit number which refers to a particular open file or
device. A new file handle is allocated when the "open file handle" (function
43H) or "create file handle" (function 44H) function is used. The file handle can
be used to read and write data to the file and remains in existence until the
"close file handle" (function 45H) or "delete file handle" (function 52H) function
is called. Other operations can be done on files using file handles, such as
changing the attributes or renaming the files to which they refer.

Whenever MSX-DOS allocates a new file handle, it will use the lowest num-
ber available. The maximum file handle number in the current version is 63. In
future versions this may be increased but will never be greater than 127, so file
handles can never be negative.

Space for the internal data structures used for file handles is allocated dy-
namically within a 16K RAM segment (the "data segment") so there is no fixed
limit to the number of file handles which can be open at one time. This segment
is kept outside the TPA, so anything stored there does not reduce TPA size.
As well as keeping internal file handle information, the system also keeps disk
buffers and environment strings in the data segment.

2.3. MSX-DOS FUNCTION CALLS 91

Various file handles are pre-defined and are already open when a transient
program is executed. These file handles refer to the standard input and output
devices (see section 2.3.2). The "traditional" CP/M style MSX-DOS character
I/0 functions actually refer to these file handles.

A transient program actually gets a copy of the standard input and output
file handles which the command interpreter was using, rather than the originals.
This means that the program can freely close these file handles and re-open them
to different destinations and need not reset them before terminating.

The default file handles and their destinations are:

0 - Standard input (CON)

- Standard output (CON)

- Standard error input/output (CON)

- Standard auxiliary input/output (AUX)
- Standard printer output (PRN)

B W N =

When the command interpreter is about to execute a command (for example
a transient program), it executes a "fork" function call (function 60H). This
informs the system that a new program is being executed as a "subroutine" and
amongst other things, all of the currently open file handles are duplicated, so
that the new program will be using copies of the original handles, rather than
the command interpreter’s.

If the transient program changes any of the file handles, by closing any
existing ones or opening new ones, it will be the program’s own set of file
handles which are modified, the original set will remain unaltered. After the
program has terminated, the command interpreter executes a "join" function
call (function 61H), passing to it a process id which was returned from the
original "fork". This tells the system that the new program has terminated and
so all its file handles can be thrown away.

Reference counts are kept of how many copies of each handle there are which
enables the system to tidy up any file handles which are no longer needed when
a program terminates. This ensures that the system will not run out of file
handles because of badly behaved programs not closing them.

These "fork" and "join" functions are available for user programs if they find
them useful. In addition to tidying up file handles, "join" will also free up any
user allocated RAM segments which the program has not freed.

2.3.4 File info blocks

All new MSX-DOS functions that act on files on disk can be passed a simple
pointer to a null-terminated string (called an ASCIIZ string), which can contain
a drive, path and unambiguous filename. These are typically the operations
which a transient program will perform, often through a high level language
interface. The Command Specification gives details of these.

To any of these ASCIIZ functions, a File Info Block (FIB) may passed in-
stead. FIBs are used for more complex operations such as the searching of
directories for unknown files or sub-directories.

92 CHAPTER 2. PROGRAMMING ENVIRONMENT

A FIB is a 64 byte area of the user’s memory which contains information
about the directory entry on disk for a particular file or sub-directory. The
information in a FIB is filled in by the new MSX-DOS "find" functions ("find
first entry" (function 40H), "find new entry" (function 42H) and "find next entry"
(function 41H)). The format of a File Info Block is as follows:

0 - Always OFFh
1..13 - Filename as an ASCIIZ string
14 - File attributes byte

15..16 - Time of last modification

17..18 - Date of last modification

19..20 - Start cluster

21..24 - File size

25 - Logical drive

26..63 - Internal information, must not be modified

The OFFh at the start of the fileinfo block must be there to distinguish it from
a pathname string, since some functions can take either type of parameter.

The filename is stored in a suitable format for directly printing, and is in
the form of an ASCIIZ string. Any spaces will have been removed, the filename
extension (if present) will be preceded by a dot and the name will have been
uppercased. If the entry is a volume label then the name will be stored without
the "." separator, with spaces left in and not uppercased.

The file attributes byte is a byte of flags concerning the file. The format of
this byte is:

Bit 0 READ ONLY. If set then the file cannot be written to or deleted,
but can be read, renamed or moved.

Bit 1 HIDDEN FILE. If set then the file will only be found by the "Find
First" function if the "hidden file" bit is set in the search attributes
byte. All the commands implemented by the command interpreter
that access files and directories on disk can take a " /H" option which
allows the command to find hidden files.

Bit 2 SYSTEM FILE. As far as MSX-DOS functions are concerned, this
bit has exactly the same effect as the "HIDDEN FILE" bit except
that the "Find New" and "Create" function calls will not automat-
ically delete a system file. None of the commands implemented by
the command interpreter allow system files to be accessed.

Bit 3 VOLUME NAME. If set then this entry defines the name of the
volume. Can only occur in the root directory, and only once. All
other bits are ignored.

Bit 4 DIRECTORY. If set then the entry is a sub-directory rather than
a file and so cannot be opened for reading and writing. Only the
hidden bit has any meaning for sub-directories.

2.3. MSX-DOS FUNCTION CALLS 93

Bit 5 ARCHIVE BIT. Whenever a file has been written to and closed this
bit is set. This bit can be examined by, for example, the XCOPY
command to determine whether the file has been changed.

Bit 6 Reserved (always 0).

Bit 7 DEVICE BIT. This is set to indicate that the FIB refers to a char-
acter device (eg. "CON") rather than a disk file. All of the other
attributes bits are ignored.

The time of last modification is encoded into two bytes as follows:

Bits 15..11 - HOURS (0..23)
Bits 10...5 - MINUTES (0..59)
Bits 4...0 - SECONDS/2 (0..29)

The date of last modification is encoded into two bytes as follows. If all bits are
zero then there is no valid date set.

Bits 15...9 - YEAR (0..99 corresponding to 1980..2079)
Bits 8...5 - MONTH (1..12 corresponding to Jan..Dec)
Bits 4...0 - DAY (1..31)

The file size is a 32 bit number stored with the lowest byte first, and is zero for
sub-directories.

The logical drive is a single byte drive number, with 1 corresponding to A:,
2 to B: etc. It will never be zero, since if zero was specified in the original
function, this means the default drive and the driven number of the default
drive will be filled in here.

The internal information tells MSX-DOS where on the disk the directory
entry is stored. This enables functions to which the fileinfo block is passed to
operate on the directory entry, for example deleting it, renaming it or opening
it. Data stored here also enables the "find next entry" function (function 41H)
to carry on the search to find the next matching file. The user should not access
or modify the internal information at all.

Fileinfo blocks are filled in by the "find first entry"”, "find new entry" and
"find next entry" MSX-DOS functions. Each of these functions locates a direc-
tory entry and fills in the fileinfo block with the relevant information.

In the case of "find first entry" a directory will be searched for the first
entry which matches a given filename and which has suitable attributes (see
the Function Specification for details). "Find next entry" carries on a search
started by a previous "find first entry" function and updates the fileinfo block
with the next matching entry.

"Find new entry" is just like "find first entry" except that instead of looking
for a matching entry, it will create a new one and then return a fileinfo block
just as if "find first" had found it.

Having created a fileinfo block using one of the "find" functions there are
two ways in which it can be used. The first way is to simply use the information

94 CHAPTER 2. PROGRAMMING ENVIRONMENT

which it contains such as the filename and size. For example the "DIR" command
simply prints out the information on the screen.

The more interesting way of using a fileinfo block is to pass it back to another
MSX-DOS function in order to carry out some operation on the directory entry.
Many of the MSX-DOS functions described in the Function Specification take
a pointer in register DE which can either point to a drive/path/file string or a
fileinfo block. In either case a particular file or directory is being specified for
the function to act on.

The functions which can take such a parameter are "Delete File or Subdi-
rectory" (function 4DH), "Rename file or Subdirectory" (function 4EH), "Move
File or Subdirectory" (function 4FH), "Get/Set File Attributes" (function 50H),
"Get/Set File Date and Time" (function 51H) and "Open File handle" (function
43H). All of these carry out the obvious function on the specified file or directory.

A fileinfo block can also be passed to a "find first" or "find new" function in
place of the drive/path/file string. In this case the fileinfo block must refer to a
directory rather than a file and a filename string must also be passed in register
HL (typically null which is equivalent to "*.*"). The directory specified by the
fileinfo block will be searched for matches with the filename, subject to the
usual attribute checking. This feature is necessary for the command interpreter
so that a command such as "DIR A:UTIL" can have the required action if UTIL
is a directory.

2.3.5 Environment strings

MSX-DOS maintains a list of "environment strings" in it’s data segment. An
environment string is a named item which has a value associated with it. Both
the name and the value are user-defined. Environment strings are accessed at
the function call level via the "Get Environment String" (function 6BH), "Set
Environment String" (function 6CH) and "Find Environment String" (function
6DH) functions.

The name of an environment string is a non-null string consisting of any
characters that are valid in filenames. The name can be up to 255 characters
long. The characters of the name are upper-cased when the string is defined,
although for name comparisons case is not significant.

The value of an environment string consists of a string of non-null characters
and can be up to 255 characters long. If the value of an environment string is set
to a null string, then the name is removed from the list of environment strings.
Similarly, if the value of an environment string that has not been defined is read,
then a null string is returned. The value is not upper-cased and no interpretation
is placed on the characters in the value string.

When a transient program is loaded and executed from COMMAND2.COM, two
special environment strings are set up, which it can read.

An environment string called PARAMETERS is set up to the command line not
including the actual command name. This is similar to the one set up at 80h
for CP/M compatibility, but has not been upper-cased.

2.3. MSX-DOS FUNCTION CALLS 95

Another environment string called PROGRAM is also set up and this is the
whole path used to locate the program on disk. The drive is first, followed
by the path from the root and then the actual filename of the program. The
drive, path and filename can be separated if desired using the "Parse Pathname"
function call (function 5CH).

The PROGRAM environment string has several uses. The main use is that a
program can use it to load overlay files from the same directory as it was loaded
from. The last item in PROGRAM (ie. the actual program filename) is replaced
with the name of the overlay file, and then the new string can be passed to
any of the new MSX-DOS 2 functions that take ASCIIZ strings (such as "Open
File").

Note that some CP /M programs are capable of loading and running transient
programs, and in this case they obviously will not have set up the PROGRAM
and PARAMETERS environment strings, and they will in fact still be set up from
when the CP/M program was loaded. If a program wishes to use PROGRAM and
PARAMETERS and still be loadable from a CP/M program, then it can look at
a variable called "LOAD_FLAG", which is in page 0 at address 0037h. It is set
to zero on every MSX-DOS 2 function call but is set to non-zero immediately
before a transient program is executed by the command interpreter. Similarly,
if a new transient program has the ability to load other transient programs
and it sets up PROGRAM and PARAMETERS, then it should also set LOAD_FLAG to
non-zero.

Another special environment string is one called APPEND. This can be set up
by the user from the command interpreter and is used by the CP/M "Open
File (FCB)" function. When this function call is done and the file is not found,
an alternative directory, specified by APPEND, is searched. It is not anticipated
however that new transient programs will use this function call or the APPEND
environment string.

Several environment strings are set up by the command interpreter when
it starts up and are altered by the user to control various system features and
options, and it may be useful for transient programs to read some of these.
For example, it may be useful to read the PATH environment string or the DATE
and TIME environment strings if the program prints out dates and times. The
Command Specification contains details of these default environment strings.

2.3.6 File control blocks

It is not anticipated that specially written MSX-DOS 2 transient programs or
MSX-DOS 1 or CP/M programs which are modified for MSX-DOS 2 will use
the CP/M-compatible FCB functions, but the format of the FCBs used for these
functions is given here for reference. This format is, of course, very similar to
the FCBs used by CP/M and MSX-DOS 1 but the use of some of the fields
within the FCB are different (though generally compatible).

A basic FCB is 33 bytes long. This type of FCB can be used for file man-
agement operations (delete, rename etc.) and also for sequential reading and
writing. The random read and write functions use an extra 3 bytes on the end

96 CHAPTER 2. PROGRAMMING ENVIRONMENT

of the FCB to store a random record number. The MSX-DOS 1 compatible
block read and write functions also use this additional three (or in some cases
four) bytes - see chapter 3 for details.

The layout of an FCB is given below. A general description of each of the
fields is included here. The individual function description given in the Function
Specification details of how the fields are used for each function where this is
not obvious.

00h Drive number 1...8. 0 => default drive. Must be set up in all FCBs
used, never modified by MSX-DOS function calls (except "Open
File" if APPEND was used).

01h...08h Filename, left justified with trailing blanks. Can contain "?" char-
acters if ambiguous filename is allowed (see chapter 3). When doing
comparisons case will be ignored. When creating new files, name
will be uppercased.

0%h...0Bh Filename extension. Identical to filename. Note that bit-7 of the
filename extension characters are NOT interpreted as flags as they
are in CP/M.

0Ch Extent number (low byte). Must be set (usually to zero) by the
transient program before open or create. It is used and updated by

sequential read and write, and also set by random read and write.
This is compatible with CP/M and MSX-DOS 1.

0Dh File attributes. Set by "open", "create" or "find".

OEh Extent number (high byte) for CP/M functions. Zeroed by open
and create. For sequential read and write it is used and updated
as an extension to the extent number to allow larger files to be ac-
cessed. Although this is different from CP/M it does not interfere
with CP/Ms use of FCBs and is the same as MSX-DOS 1.

Record size (low byte) for MSX-DOS 1 compatible block functions.
Must be set to the required record size before using the block read
or write functions.

OFh Record count for CP/M functions. Set up by open and create and
modified when necessary by sequential and random reads and writes.
This is the same as CP/M and MSX-DOS 1.

Record size (high byte) for MSX-DOS 1 compatible block functions.
Must be set to the required record size before using the block read
and write functions.

10h...13h File size in bytes, lowest byte first. File size is exact, not rounded
up to 128 bytes. This field is set up by open and create and up-
dated when the file is extended by write operations. Should not be

2.4. SCREEN CONTROL CODES 97

modified by the transient program as it is written back to disk by
a close function call. This is the same as MSX-DOS 1 but different
from CP/M which stores allocation information here.

14h...17h Volume-id. This is a four byte number identifying the particular
disk which this FCB is accessing. It is set up by open and create
and is checked on read, write and close calls. Should not be modified
by the program. Note that this is different from MSX-DOS 1 which
stores the date and time of last update here, and from CP/M which
stores allocation information.

18h...1Fh Internal information. These bytes contain information to enable the
file to be located on the disk. Should not be modified at all by the
transient program. The internal information kept here is similar but
not identical to that kept by MSX-DOS 1 and totally different from
CP/M.

20h Current record within extent (0...127). Must be set (normally to
zero) by the transient program before first sequential read or write.
Used and modified by sequential read and write. Also set up by
random read and write. This is compatible with CP/M and MSX-
DOS 1.

21h...24h Random record number, low byte first. This field is optional, it is
only required if random or block reads or writes are used. It must be
set up before doing these operations and is updated by block read
and write but not by random read or write. Also set up by the "set
random record" function.

For the block operations, which are in MSX-DOS 1 but not in CP/M,
all four bytes are used if the record size is less than 64 bytes, and
only the first three bytes are used if the record size is 64 bytes or
more. For random read and write only the first three bytes are used
(implied record size is 128 bytes). This is compatible with CP/M
and with MSX-DOS 1.

2.4 Screen control codes

Below is a list of all control codes and escape sequences which may be used when
doing character output by MSX-DOS character functions, BIOS calls or writing
to the device CON. These are all compatible with MSX-DOS 1 and contain the
VT-52 control codes.

The screen is 24 lines of 2 to 80 characters. When a printing character is
displayed the cursor is moved to the next position and to the start of the next
line at the end of a line. If a character is written in the bottom right position
then the screen will be scrolled to allow the cursor to be positioned at the start
of the next line. The letters in escape sequences must be in the correct case, the

98

CHAPTER 2. PROGRAMMING ENVIRONMENT

spaces are inserted for readability they are not part of the sequence. Numbers
(indicated by <n> or <m>) are included in the sequence as a single byte usually
with an offset of 20h added.

CTRL-G

CTRL-H

CTRL-I

CTRL-J
CTRL-K
CTRL-L
CTRL-M
CTRL- [

CTRL-\

CTRL-]

CTRL-"

CTRL-_

ESC-A
ESC-B
ESC-C
ESC-D
ESC-E
ESC-H
ESC-J
ESC-j

ESC-K

07h = Bell

08h = Cursor left, wraps around to previous line, stop at top left of
screen.

09h = Tab, overwrites with spaces up to next 8th column, wraps
around to start of next line, scrolls at bottom right of screen.

0Ah = Line feed, scrolls if at bottom of screen.
0Bh = Cursor home.

0Ch = Clear screen and home cursor.

O0Dh = Carriage return.

1Bh = ESC - see below for escape sequences.

1Ch = Cursor right, wrap around to next line, stop at bottom right
of screen.

1Dh = Cursor left, wrap around to previous line, stop at top left of
screen.

1Eh = Cursor up, stop at top of screen.

1Fh = Cursor down, stop at bottom of screen.

7Fh = Delete character and move cursor left, wrap around to previ-
ous line, stop at top of screen.

Cursor up, stops at top of screen.

Cursor down, stops at bottom of screen.
Cursor right, stops at end of line.

Cursor left, stops at start of line.

Clear screen and home cursor.

Cursor home.

Erase to end of screen, don’t move cursor.
Clear screen and home cursor.

Erase to end of line, don’t move cursor.

2.5. MAPPER SUPPORT ROUTINES 99

ESC-L Insert a line above cursor line, scroll rest of screen down. Leave
cursor at start of new blank line.

ESC-1 Erase entire line, don’t move cursor.

ESC-M Delete cursor line, scrolling rest of screen up. Leave cursor at start
of next line.

ESC x 4 Select block cursor.
ESC x 5 Cursor off.

ESC Y <n><m> Position cursor at row <n> column <m>. Top left of screen is
n=m=20h (ASCII space).

ESC y 4 Select underscore cursor.

ESC y 5 Cursor on.

2.5 Mapper support routines

MSX-DOS 2 contains routines to provide support for the memory mapper. This
allows MSX application programs or MSX-DOS transient programs to utilize
more than the basic 64k of memory, without conflicting with the RAM disk or
any other system software.

2.5.1 Mapper initialization

When the DOS kernel is initialized it checks that there is the memory mapper
in the system, and that there is at least 128k of RAM available. If the kernel has
found at least one slot which contains 128k of the mapper RAM, it selects the
slot which contains the largest amount of RAM (or the slot with the smallest
slot number, if there are two or more mapper slots which have the same amount
of RAM) and makes that slot usable as the system RAM. When there is not
enough memory on the memory mapper, MSX-DOS 2 won’t start.

Next the kernel builds up a table of all the 16k RAM segments available
to this slot (primary mapper slot). The first four segments (64k) for the user
and the two highest numbered segments are allocated to the system, one for the
DOS kernel code and one for the DOS kernel workspace. All other segments
(at least two) are marked as free initially. Then the kernel builds up the similar
tables for other RAM slots, if any. All of these segments are marked as free
initially.

2.5.2 Mapper variables and routines

The mapper support routines use some variables in the DOS system area. These
tables may be referred and used by the user programs for the various purposes,

100 CHAPTER 2. PROGRAMMING ENVIRONMENT

but must not be altered. The contents of the tables are as follows:

| Address | Function |

+0 Slot address of the mapper slot.
+1 Total number of 16k RAM segments. 1...255 (8...255 for
the primary)
+2 Number of free 16k RAM segments.
+3 Number of 16k RAM segments allocated to the system (at
least 6 for the primay)

+4 Number of 16k RAM segments allocated to the user.
+5..+7 | Unused. Always zero.
+8... | Entries for other mapper slots. If there is none, +8 will be
Z€ro.

A program uses the mapper support code by calling various subroutines.
These are accessed through a jump table which is located in the MSX-DOS
system area. The contents of the jump table are as follows:

| Address | Entry name | Function |

+0H ALL_SEG Allocate a 16k segment.

+3H FRE_SEG Free a 16k segment.

+6H RD_SEG Read byte from address A:HL to A.

+9H WR_SEG Write byte from E to address A:HL.

+CH CAL_SEG Inter-segment call. Address in IYh:IX.

+FH CALLS Inter-segment call. Address in line after the
call instruction.

+12H PUT_PH Put segment into page (HL).

+15H GET_PH Get current segment for page (HL).

+18H PUT_PO Put segment into page 0.

+1BH GET_PO Get current segment for page 0.

+1EH PUT_P1 Put segment into page 1.

+21H GET_P1 Get current segment for page 1.

+24H PUT_P2 Put segment into page 2.

+27H GET_P2 Get current segment for page 2.

+2AH PUT_P3 Not supported since page-3 must never be
changed. Acts like a "NOP" if called.

+2DH GET_P3 Get current segment for page 3.

A program can use the extended BIOS calls for the mapper support to obtain
these addresses. The calls are provided because these addresses may be changed
in the future version, or to use mapper routines other than MSX-DOS mapper
support routines.

To use the extended BIOS, the program should test "HOKVLD" flag at FB20h
in page-3. If bit-0 (LSB) is 0, there is no extended BIOS nor the mapper support.
Otherwise, "EXTBIO" entry (see below) has been set up and it can be called with
various parameters. Note that this test is unnecessary for the applications which

2.5. MAPPER SUPPORT ROUTINES 101

are based on MSX-DOS (such as the program which is loaded from the disk),
and the program may proceed to the next step.

Next, the program sets the device number of the extended BIOS in register
D, the function number in register E, and required parameters in other registers,
and then calls "EXTBIO" at FFCAh in page-3. In this case, the stack pointer must
be in page-3. If there is the extended BIOS for the specified device number, the
contents of the registers AF, BC and HL are modified according to the function;
otherwise, they are preserved. Register DE is always preserved. Note that in
any cases the contents of the alternative registers (AF’, BC’, DE? and HL’) and
the index registers (IX and IY) are corrupted.

The functions available in the mapper support extended BIOS are:

e Get mapper variable table

Parameter: A = 0

D = 4 (device number of mapper support)
E=1
Result: A = slot address of primary mapper

DE = reserved
HL = start address of mapper variable table

e Get mapper support routine address

Parameter: A = 0

D=4
E=2
Result: A = total number of memory mapper segments
B = slot number of primary mapper
C = number of free segments of primary mapper

DE = reserved
HL = start address of jump table

In these mapper support extended BIOS, register A is not required to be zero.
Note that, however, if there is no mapper support routine, the contents of
registers will not be modified, and the value which is not zero will be returned
in A otherwise. Thus, the existence of the mapper support routine can be
determined by setting zero in A at the calling and examining the returned value
of A.

The slot address of the primary mapper returned by the extended BIOS
is the same as the current RAM slot address in page-3, and, in the ordinary
environment (DISK-BASIC and MSX-DOS), the same RAM slot is also selected
in page-2. In MSX-DOS, this is also true in page-0 and page-1.

2.5.3 Using mapper routines

A program can request a 16k RAM segment at any time by calling the "ALL_SEG"
routine. This either returns an error if there are no free segments, or the seg-
ment number of a new segment which the program can use. A program must

102 CHAPTER 2. PROGRAMMING ENVIRONMENT

not use any segment which it has not explicitly allocated, except for the four
segments which make up the basic 64k of RAM.

A segment can be allocated either as a user segment or as a system seg-
ment. User segments will be automatically freed when the program terminates,
whereas system segments are never freed unless the program frees them explic-
itly. Normally, programs should allocate user segments.

RAM segments can be accessed by the "RD_SEG" and "WR_SEG" routines
which read and write bytes to specified segments. The routines "CAL_SEG" and
"CALLS" allow inter-segment calls to be done in much the same way as inter-slot
calls in the current MSX system.

Routines are provided to explicitly page a segment in, or to find out which
segment is in a particular page. There are routines in which the page (0...3) is
specified by the top two bits of an address in HL ("PUT_PH" and "GET_PH"). And
there are also specific routines for accessing each page ("GET_Pn" and "PUT_Pn").
These routines are very fast so a program should not suffer in performance by
using them.

Note that page-3 should never be altered since this contains the mapper
support routines and all the other system variables. Also great care must be
taken if page-0 is altered since this contains the interrupt and the slot switching
entry points. Pages 1 and 2 can be altered in any way.

None of the mapper support routines will disturb the slot selection mecha-
nism at all. For example when "PUT_P1" is called, the specified RAM segment
will only appear at address 4000h...7FFFh if the mapper slot is selected in page-
1. The "RD_SEG" and "WR_SEG" routines will always access the RAM segment,
regardless of the current slot selection in the specified page, but the mapper
RAM slot must be selected in page-2.

2.5.4 Allocating and freeing segments

The following two routines can be called to allocate or free segments. All regis-
ters apart from AF and BC are preserved. An error is indicated by the carry flag
being set on return. The slot selection and RAM paging may be in any state
when these routines are called and both will be preserved. The stack must not
be in page-0 or page-2 when either of these routines are called.

A program must not use any segment (apart from the four which make up
the basic 64k) unless it has specifically allocated it, and must not continue to
use a segment after it has been freed.

A segment may be allocated either as a user or a system segment. The only
difference is that user segments will be automatically freed when the program
terminates whereas system segments will not be. In general a program should
allocate a user segment unless it needs the data in the segment to outlast the
program itself. User segments are always allocated from the lowest numbered
free segment and system segments from the highest numbered one.

An error from "allocate segment" usually indicates that there are no free
segments, although it can also mean that an invalid parameter was passed in

2.5. MAPPER SUPPORT ROUTINES 103

register A and B. An error from "free segment" indicates that the specified
segment number does not exist or is already free.

ALL_SEG

e Parameters

A=0 Allocate user segment

A=1 Allocate system segment

B=0 Allocate primary mapper

B!=0 Allocate FxxxSSPP slot address (primary mapper, if 0)

xxx=000 Allocate specified slot only
xxx=001 Allocate other slots than specified

xxx=010 Try to allocate specified slot and, if it failed, try
another slot (if any)

xxx=011 Try to allocate other slots than specified and, if it
failed, try specified slot

e Results

CARRY set No free segments
CARRY clear Segment allocated

A New segment number
B Slot address of mapper slot (0 if called as B=0)

FRE_SEG

e Parameters

A Segment number to free

B=0 Primary mapper

B!=0 Mapper other than primary
e Results

CARRY set Error
CARRY clear Segment freed OK

104 CHAPTER 2. PROGRAMMING ENVIRONMENT

2.5.5 Inter-segment read and write

The following two routines can be called to read or write a single byte from
any mapper RAM segment. The calling sequence is very similar to the inter-
slot read and write routines provided by the MSX system ROM. All registers
apart from AF are preserved and no checking is done to ensure that the segment
number is valid.

The top two bits of the address are ignored and the data will be always read
or written via page-2, since the segment number specifies a 16k segment which
could appear in any of the four pages. The data will be read or written from
the correct segment regardless of the current paging or slot selection in page-0
or page-1, but note that the mapper RAM slot must be selected in page-2 when
either of these routines are called. This is so that the routines do not have to
do any slot switching and so can be fast. Also the stack must not be in page-2.
These routines will return disabling interrupts.

RD_SEG

e Parameters

A Segment number to read from

HL Address within this segment
e Results

A Value of byte at that address

All other registers preserved

WR_SEG

e Parameters

A Segment number to write to
HL Address within this segment
E Value to write

e Results
A Corrupted

All other registers preserved

2.5. MAPPER SUPPORT ROUTINES 105

2.5.6 Inter-segment calls

Two routines are provided for doing inter-segment calls. These are modelled
very closely on the two inter-slot call routines provided by the MSX system
ROM, and the specification of their usage is very similar.

No check is done that the called segment actually exists so it is the user’s
responsibility to ensure this. The called segment will be paged into the specified
address page, but it is the user’s responsibility to ensure that the mapper slot is
enabled in this page, since neither of these routines will alter the slot selection
at all. This is to ensure that they can be fast.

The routine cannot be used to do an inter-segment call into page-3. If this
is attempted then the specified address in page-3 will simply be called without
any paging, since page-3 must never be altered. Calling into page-0 must be
done with some care because of the interrupt and other entry point. Also care
must be taken that the stack is not paged out by these calls.

These routines, unlike inter-slot calls, do not disable interrupts before passing
control to the called routine. So they return to the caller in the same state as
before, unless the interrupt flag was modified by the called routine.

Parameters cannot be passed in registers IX, IY, AF’, BC’, DE’ or HL’ since
these are used internally in the routine. These registers will be corrupted by
the inter-segment call and may also be corrupted by the called routine. All
other registers (AF, BC, DE and HL) will be passed intact to the called routine
and returned from it to the caller.

CAL_SEG

e Parameters

IY Segment number to be called

IX Address to call

AF, BC, DE, HL passed to called routine

Other registers corrupted

e Results
AF, BC, DE, HL, IX and IY returned from called routine.
All others corrupted.

CALLS
e Parameters
AF, BC, DE, HL passed to called routine..
Other registers corrupted.

Calling sequence:

106 CHAPTER 2. PROGRAMMING ENVIRONMENT

CALL CALLS

DB SEGMENT

DW ADDRESS
e Results

AF, BC, DE, HL, IX and IY returned from called routine.
All others corrupted.

2.5.7 Direct paging routines

The following routines are provided to allow programs to directly manipulate the
current paging state without having to access the hardware. Using these routines
ensures compatibility with any changes to the details of the hardware. The
routines are very fast and so using them will not compromise the performance
of programs.

Routines are provided to directly read or write to any of the four page
registers. No checking of the validity of the segment number is done so this
is the user’s responsibility. Note that the value written in the register is also
written in memory and, if the register value is requested, the value stored in
memory will be returned and the one in the register will never be read directly.
This is done to avoid errors from hardware conflicts when there are two or more
mapper registers in the system. The user should always manipulate the memory
mapper through these routines.

The "GET" routines return values from internal images of the registers with-
out actually reading the registers themselves. This ensures that if a segment is
enabled by, for example, "PUT_P1" then a subsequent "GET_P1" call will return
the actual value. Reading the mapper register may produce a different value
because the top bits of the segment numbers are generally not recorded.

Although a "PUT_P3" routine is provided, it is in fact a dummy routine
and will not alter the page-3 register. This is because the contents of the page-3
register should never be altered. The "GET_P3" routine does behave as expected
to allow the user to determine what segment is in page-3.

Another pair of routines ("GET_PH" and "PUT_PH") is provided which are
identical in function except that the page is specified by the top two bits of
register H. This is useful when register HL contains an address, and these routines
do not corrupt register HL. "PUT_PH" will never alter the page-3 register.

PUT_Pn

e Parameters

n 0,1,2 or 3 to select page
A Segment number
e Results

None. All registers preserved

2.6. ERRORS 107

GET_Pn

e Parameters

n 0,1,2 or 3 to select page
e Results
A Segment number

All other registers preserved

PUT_PH

e Parameters

H High byte of address
A Segment number
e Results

None. All registers preserved

GET_PH

e Parameters

H High byte of address
e Results
A Segment number

All other registers preserved

Before using these direct paging routines to alter the paging state, a program
should first use the "GET_Pn" routines to determine the initial four segments for
when it needs to restore these. No program should assume fixed values for these
initial segments since they are likely to change in future versions of the system.

2.6 Errors

All the new MSX-DOS 2 functions (function codes above 40h) return an "error
code" in A. This is zero if the operation was successful. If non-zero, then the
error code explains the exact nature of the error.

Since MSX-DOS 2 performs an "OR A" instruction immediately before re-
turning from a function call, a "JR NZ" instruction is often used in the transient
program immediately after the "CALL 5" instruction to test whether an error
occurred. Frequently the destination of this error jump just loads the error code

108 CHAPTER 2. PROGRAMMING ENVIRONMENT

into B and does a "Terminate with Error Code" function. This then passes
the error code back to the command interpreter which prints the appropriate
message.

A transient program may also itself get the actual message for any error
returned by an MSX-DOS 2 function call by using the "Explain Error Code"
function. See the chapter 3 for details.

The error codes start at OFFh and descend in value. Values less than 40h are
user errors and will never be used by the system and can be used by transient
programs to return their own errors. User errors below 20h returned to the
command interpreter will not have any message printed.

If the "Explain Error Code" function call (see chapter 3) is asked to explain
an error code for which it does not have a message, then the string returned
will be "System error <n>" or "User error <n>" as appropriate, where <n>
is the error number.

Below is a list of all currently defined error numbers and their messages
and meanings. Also given is the mnemonic, which is often used as a symbol
in a source file and is used throughout the MSX-DOS 2 system to refer to a
particular error.

2.6.1 Disk errors

The errors in this group are those which are usually passed to disk error handling
routines. By default they will be reported as "Abort, Retry" errors. These
errors except the one from "format disk" will be passed to the error handling
routine, so they will not be returned as the return value from BDOS.

Incompatible disk (.NCOMP, OFFh)

The disk cannot be accessed in that drive (eg. a double sided disk in a single
sided drive).

Write error (.WRERR, OFEh)

General error occurred during a disk write.

Disk error (.DISK, OFDh)

General unknown disk error occurred.

Not ready (.NRDY, OFCh)

Disk drive did not respond, usually means there is no disk in the drive.

Verify error (.VERFY, OFBh)

With VERIFY enabled, a sector could not be read correctly after being written.

2.6. ERRORS 109

Data error (.DATA, OFAh)

A disk sector could not be read because the CRC error checking was incorrect,
usually indicating a damaged disk.

Sector not found (.RNF, OF9h)

The required sector could not be found on the disk, usually means a damaged
disk.

Write protected disk (.WPROT, OF8h)

Attempt to write to a disk with the write protect tab on.

Unformatted disk (.UFORM, OF7h)

The disk has not been formatted, or it is a disk using a different recording
technique.

Not a DOS disk (.NDOS, OF6h)

The disk is formatted for another operating system and cannot be accessed by
MSX-DOS.

Wrong disk (.WDISK, OF5h)

The disk has been changed while MSX-DOS was accessing it. Must replace the
correct disk.

Wrong disk for file (.WFILE, OF4h)

The disk has been changed while there is an open file on it. Must replace the
correct disk.

Seek error (.SEEK, OF3h)

The required track of the disk could not be found.

Bad file allocation table (.IFAT, OF2h)

The file allocation table on the disk has got corrupted. CHKDSK may be able to
recover some of the data on the disk.

(.NOUPB, OF1h)

This error has no message because it is always trapped internally in MSX-DOS
as part of the disk change handling.

110 CHAPTER 2. PROGRAMMING ENVIRONMENT

Cannot format this drive (.IFORM, OFOh)

Attempt to format a drive which does not allow formatting. Usually as a result
of trying to format the RAM disk.

2.6.2 MSX-DOS function errors

The following errors are those which are normally returned from MSX-DOS
function calls. See the chapter 3 for details of errors from particular MSX-DOS
functions.

Internal error (.INTER, ODFh)

Should never occur.

Not enough memory (.NORAM, ODEh)

MSX-DOS has run out of memory in its 16k kernel data segment. Try reducing
the number of sector buffers or removing some environment strings. Also occurs
if there are no free segments for creating the RAMdisk.

Invalid MSX-DOS call (.IBDOS, ODCh)

An MSX-DOS call was made with an illegal function number. Most illegal
function calls return no error, but this error may be returned if a "get previous
error code" function call is made.

Invalid drive (.IDRV, ODBh)

A drive number parameter, or a drive letter in a drive/path/file string is one
which does not exist in the current system.

Invalid filename (.IFNM, ODAh)

A filename string is illegal. This is only generated for pure filename strings, not
drive/path /file strings.

Invalid pathname (.IPATH, 0DYh)

Can be returned by any function call which is given an ASCIIZ drive/path/file
string. Indicates that the syntax of the string is incorrect in some way.

Pathname too long (.PLONG, OD8h)

Can be returned by any function call which is given an ASCIIZ drive/path/file
string. Indicates that the complete path being specified (including current di-
rectory if used) is longer than 63 characters.

2.6. ERRORS 111

File not found (.NOFIL, OD7h)

Can be returned by any function which looks for files on a disk if it does not
find one. This error is also returned if a directory was specified but not found.
In other cases, .NODIR error (see below) will be returned.

Directory not found (.NODIR, 0OD6h)

Returned if a directory item in a drive/path/file string could not be found.

Root directory full (.DRFUL, OD5h)

Returned by "create" or "move" if a new entry is required in the root directory
and it is already full. The root directory cannot be extended.

Disk full (.DKFUL, 0OD4h)

Usually results from a write operation if there was insufficient room on the disk
for the amount of data being written. May also result from trying to create or
extend a sub-directory if the disk is completely full.

Duplicate filename (.DUPF, OD3h)

Results from "rename" or "move" if the destination filename already exists in
the destination directory.

Invalid directory move (.DIRE, OD2h)

Results from an attempt to move a sub-directory into one of its own descendants.
This is not allowed as it would create an isolated loop in the directory structure.
Read only file (.FILRO, OD1h)

Attempt to write to or delete a file which has the "read only" attribute bit
set.

Directory not empty (.DIRNE, ODOh)

Attempt to delete a sub-directory which is not empty.

Invalid attributes (.IATTR, OCFh)

Can result from an attempt to change a file’s attributes in an illegal way, or
trying to do an operation on a file which is only possible on a sub-directory.
Also results from illegal use of volume name fileinfo blocks.

112 CHAPTER 2. PROGRAMMING ENVIRONMENT

Invalid . or .. operation (.DOT, OCEh)

Attempt to do an illegal operation on the "." or ".." entries in a sub-directory,
such as rename or move them.

System file exists (.SYSX, OCDh)

Attempt to create a file or sub-directory of the same name as an existing system
file. System files are not automatically deleted.

Directory exists (.DIRX, OCCh)

Attempt to create a file or sub-directory of the same name as an existing sub-
directory. Sub-directories are not automatically deleted.

File exists (.FILEX, OCBh)

Attempt to create a sub-directory of the same name as an existing file. Files
are not automatically deleted when creating sub-directories.

File already in use (.FOPEN, OCAh)

Attempt to delete, rename, move, or change the attributes or date and time of
a file which has a file handle already open to it, other than by using the file
handle itself.

Cannot transfer above 64K (.0V64K, 0C9h)

Disk transfer area would have extended above OFFFFh.

File allocation error (.FILE, 0C8h)

The cluster chain for a file was corrupt. Use CHKDSK to recover as much of the
file as possible.

End of file (.EOF, OC7h)

Attempt to read from a file when the file pointer is already at or beyond the
end of file.

File access violation (.ACCV, 0C6h)

Attempt to read or write to a file handle which was opened with the appropriate
access bit set. Some of the standard file handles are opened in read only or write
only mode.

Invalid process id (.IPROC, OC5h)

Process id number passed to "join" function is invalid.

2.6. ERRORS 113

No spare file handles (.NHAND, 0C4h)

Attempt to open or create a file handle when all file handles are already in use.
There are 64 file handles available in the current version.

Invalid file handle (.IHAND, OC3h)

The specified file handle is greater than the maximum allowed file handle num-
ber.

File handle not open (.NOPEN, 0C2h)

The specified file handle is not currently open.

Invalid device operation (.IDEV, 0C1h)

Attempt to use a device file handle or fileinfo block for an invalid operation such
as searching in it or moving it.

Invalid environment string (.IENV, OCOh)

Environment item name string contains an invalid character.

Environment string too long (.ELONG, OBFh)

Environment item name or value string is either longer than the maximum
allowed length of 255, or is too long for the user’s buffer.

Invalid date (.IDATE, OBEh)

Date parameters passed to "set date' are invalid.

Invalid time (.ITIME, OBDh)

Time parameters passed to "set time" are invalid.

RAM disk (drive H:) already exists (.RAMDX, OBCh)

Returned from the "ramdisk" function if trying to create a RAM disk when
one already exists.

RAM disk does not exist (.NRAMD, OBBh)

Attempt to delete the RAM disk when it does not currently exist. A function
which tries to access a non-existent RAM disk will get a . IDRV error.

114 CHAPTER 2. PROGRAMMING ENVIRONMENT

File handle has been deleted (.HDEAD, OBAh)

The file associate with a file handle has been deleted so the file handle can no
longer be used.

(.EOL, OB9h)

Internal error. Should never occur.

Invalid sub-function number (.ISBFN, OBS8h)

The sub-function number passed to the IOCTL function (function 4Bh) was in-
valid.

2.6.3 Program termination errors

The following errors are those which may be generated internally in the system
and passed to "abort" routines. They will not normally be returned from
function calls. Note that an abort routine can also be passed any error which a
transient program passes to the "terminate with error code" function call.

Ctrl-STOP pressed (.STOP, 09Fh)

The CTRL-STOP key is tested in almost all places in the system including all
character I/0.

Ctrl-C pressed (.CTRLC, 09Eh)

CTRL-C is only tested for on those character functions which specify status
checks.

Disk operation aborted (.ABORT, 09Dh)

This error occurs when any disk error is aborted by the user or automatically
by the system. The original disk error code will be passed to the abort routine
in B as the secondary error code.

Error on standard output (.0UTERR, 09Ch)

Returned if any error occurred on a standard output channel while it was being
accessed through the character functions (functions 01h...0Bh). The original
error code is passed to the abort routine in register B as the secondary error
code. This error will normally only occur if a program has altered the standard
file handles.

2.6. ERRORS 115

Error on standard input (.INERR, 09Bh)

Returned if any error occurred on a standard input channel while it was being
accessed through the character functions (functions 01h...0Bh). The original
error code is passed to the abort routine in register B as the secondary error
code. The most likely error is end of file (.EOF). This error will normally only
occur if a program has altered the standard file handles.

2.6.4 Command errors

The following errors will not be returned from an MSX-DOS function call, but
are used by the command interpreter. They are included here because a tran-
sient program may find it useful to return some of them. Chapter 1 gives more
details of what these errors means from the command interpreter.

Wrong version of COMMAND (.BADCOM, O8Fh)

COMMAND2.COM loaded its transient part from disk but its checksum was not
what was expected.

Unrecognized command (.BADCM, O8Eh)

A given command was not an internal command and a .COM or .BAT file was
not found with the same name.

Command too long (.BUFUL, 08Dh)

The command in a batch file exceeded 127 characters in length.

(.0KCMD, 08Ch)

An internal error used after executing a command passed to COMMAND2.COM on
the command line. (There is no message for this error code.)

Invalid parameter (.IPARM, 08Bh)

The parameter to a command was invalid in some way eg. a number out of
range.

Too many parameters (.INP, 08Ah)

After parsing all the parameters required for a command, there were still more
non-separator characters on the command line.

Missing parameter (.NOPAR, 089h)

Where a parameter was expected the end of line was found.

116 CHAPTER 2. PROGRAMMING ENVIRONMENT

Invalid option (.IOPT, 088h)

The letter given after a / on the command line was invalid for that command.

Invalid number (.BADNO, 087h)

Non-digit characters appeared where a number was expected.

File for HELP not found (.NOHELP, 086h)

The help file was not found or the parameter was not a valid HELP parameter.

Wrong version of MSX-DOS (.BADVER, 085h)

This error is never used by the command interpreter, it has its own internal
message for this error. However it is provided for transient programs which
may find it useful to return this error.

Cannot concatenate destination file (.NOCAT, 084h)

The destination file in CONCAT is matched by the source specification.

Cannot create destination file (.BADEST, 083h)

In COPY, creating the destination file would overwrite one of the source files (or
another file that is already in use).

File cannot be copied onto itself (.COPY, 082h)

In COPY, the destination file if created would overwrite the source file.

Cannot overwrite previous destination file (.OVDEST, 081h)

In COPY, an ambiguous source was specified with a non-ambiguous, non-directory,
non-device destination.

Chapter 3

Function specification

This chapter describes in detail the MSX-DOS function calls provided by MSX-
DOS version 2.20.

3.1 Introduction

This document describes in detail each of the MSX-DOS 2 function calls. It
should be read in conjunction with chapter 2 which describes system features
such as file handles, fileinfo blocks and environment strings in general terms.

There are two ways of doing MSX-DOS function calls, reflecting the two
different environments (MSX-DOS and disk BASIC) in which the system can
run. Transient programs running in the MSX-DOS environment must access the
functions with a "CALL 00005h" instruction. Disk BASIC and other MSX pro-
grams running in the disk BASIC environment (usually executing from ROM)
must access the system via a "CALL OF37Dh" instruction.

There are some limitations when calling the system via OF37Dh, particularly
to do with error handling and abort routines. Also no parameters may be
passed in page-1, unless they are in the master disk ROM (as they will be
for disk BASIC) since the master disk ROM will be paged into page-1 when
such a function call is made. The individual function descriptions mention the
differences for particular functions.

3.2 List of functions

Below there is a complete list of the functions calls. "CPM" indicates that the

function is compatible with the equivalent CP/M 2.2 function, "MSX1" indicates

compatibility with MSX-DOS version 1, and "NEW" indicates a function which

is new to this system. An asterisk ("*") indicates that the function may be

safely called from a user disk error routine (see function 64h and function 70h).
List of MSX-DOS 2 function calls:

117

118 CHAPTER 3. FUNCTION SPECIFICATION

CPM MSX1 00h - Program terminate

CPM MSX1 * 01h - Console input

CPM MSX1 * 02h - Comnsole output

CPM MSX1 * O3h - Auxiliary input

CPM MSX1 * 04h - Auxiliary output

CPM MSX1 * 05h - Printer output

CPM MSX1 * 06h - Direct comsole I/0
MSX1 * O7h - Direct console input
MSX1 * 08h - Console input without echo

CPM MSX1 * 09h - String output

CPM MSX1 * OAh - Buffered line input

CPM MSX1 * OBh - Console status

CPM MSX1 * OCh - Return version number

CPM MSX1 ODh - Disk reset
CPM MSX1 OEh - Select disk
CPM MSX1 OFh - Open file (FCB)
CPM MSX1 10h - Close file (FCB)
CPM MSX1 11h - Search for first entry (FCB)
CPM MSX1 12h - Search for next entry (FCB)
CPM MSX1 13h - Delete file (FCB)
CPM MSX1 14h - Sequential read (FCB)
CPM MSX1 15h - Sequential write (FCB)
CPM MSX1 16h - Create file (FCB)
CPM MSX1 17h - Rename file (FCB)
CPM MSX1 * 18h - Get login vector
CPM MSX1 * 19h - Get current drive
CPM MSX1 1Ah - Set disk transfer address
MSX1 1Bh - Get allocation information
1Ch - Unused
1Dh - Unused
1Eh - Unused
1Fh - Unused
20h - Unused
CPM MSX1 21h - Random read (FCB)
CPM MSX1 22h - Random write(FCB)
CPM MSX1 23h - Get file size (FCB)
CPM MSX1 24h - Set random record (FCB)
25h - Unused
MSX1 26h - Random block write (FCB)
MSX1 27h - Random block read (FCB)
CPM MSX1 28h - Random write with zero fill (FCB)
29h - Unused

MSX1 * 2Ah - Get date
MSX1 * 2Bh - Set date
MSX1 * 2Ch - Get time
MSX1 * 2Dh - Set time

3.2. LIST OF FUNCTIONS

NEW

NEW
NEW
NEW
NEW
NEW
NEW
NEW
NEW
NEW
NEW
NEW
NEW
NEW
NEW
NEW
NEW
NEW
NEW
NEW
NEW
NEW
NEW
NEW
NEW
NEW
NEW
NEW
NEW
NEW
NEW
NEW
NEW
NEW
NEW
NEW
NEW
NEW
NEW

MSX1 * 2Eh
MSX1 * 2Fh
MSX1 * 30h
* 31h

32h

3Fh
40h
41h
42h
43h
44h
45h
46h
47h
48h
49h
4Ah
4Bh
4Ch
4Dh
4Eh
4Fh
50h
51h
52h
53h
54h
55h
56h
* 57h
* 58h
5%9h
5Ah
5Bh
5Ch
* 5Dh
5Eh
5Fh
60h
61h
62h
63h
64h
* 65h

Set/reset verify flag
Absolute sector read
Absolute sector write

Get disk parameters

\

\ Unused

/

/
Find first entry
Find next entry
Find new entry

Open file handle

Create file handle

Close file handle
Ensure file handle
Duplicate file handle
Read from file handle
Write to file handle
Move file handle pointer
I/0 control for devices
Test file handle
Delete file or subdirectory
Rename file or subdirectory
Move file or subdirectory
Get/set file attributes
Get/set file date and time
Delete file handle
Rename file handle
Move file handle

Get/set file handle attributes
Get/set file handle date and time
Get disk transfer address
Get verify flag setting

Get current directory
Change current directory
Parse pathname
Parse filename

Check character

Get whole path string
Flush disk buffers
Fork a child process
Rejoin parent process
Terminate with error code
Define abort exit routine
Define disk error handler routine
Get previous error code

119

120 CHAPTER 3. FUNCTION SPECIFICATION

NEW * 66h - Explain error code

NEW 67h - Format a disk

NEW 68h - Create or destroy RAM disk
NEW 69h - Allocate sector buffers
NEW * 6Ah - Logical drive assignment
NEW * 6Bh - Get environment item

NEW * 6Ch - Set environment item

NEW * 6Dh - Find environment item

NEW * BEh - Get/set disk check status
NEW * 6Fh - Get MSX-DOS version number
NEW * 70h - Get/set redirection status

3.3 Function by function definitions

Below are detailed descriptions of each of the MSX-DOS functions including
both the old and new ones. The names in brackets after the function numbers
are the public labels for the function codes which are defined in "CODES.MAC".
Programs should use these names whenever possible.

Many of the functions below 40h return an error flag rather than an error
code. If the error flag is set then the actual error code indicating the cause of
the error can be obtained by the "get previous error code" function (function
65h). All of the functions above 40h return an error code in register A. Chapter
1 describes the general errors which can be returned from many of the functions.
The individual function specifications here describe the main error conditions
which are specific to particular functions.

Note that many of the function calls which modify the information on a disk
do not automatically flush disk buffers and so the disk is not necessarily correctly
updated immediately after the function call is made. Such calls include all types
of "create", "write", "delete", "rename", "change file attributes" and
"change file date and time" function calls. The only functions which al-
ways flush disk buffers are "flush buffers", "close" and "ensure". After
these operations the disk will always be correctly updated.

3.3.1 Program terminate (0Oh)

e Parameters

C = 00H (_TERMO)
e Results

Does not return

This function terminates program with a zero return code. It is provided for
compatibility with MSX-DOS 1 and CP/M, the preferred method of exiting a
program is to use the "terminate with error code" function call (function 62h),

3.3. FUNCTION BY FUNCTION DEFINITIONS 121

passing a zero error code if that is what is desired. See the description of that
function call, and also chapter 2, for details of what happens when a program
terminates. This function call never returns to the caller.

3.3.2 Console input (01h)

e Parameters
C = 01H (_CONIN)
e Results
L = A = Character from keyboard

A character will be read from the standard input (file handle 0 - usually the key-
board) and echoed to the standard output (file handle 1 - usually the screen).
If no character is ready then this function will wait for one. Various control
characters, as specified for the "console status" function (function OBh), will
be trapped by this function for various control purposes. If one of these charac-
ters is detected then it will be processed and this function will wait for another
character. Thus these characters will never be returned to the user by this
function.

3.3.3 Console output (02h)

e Parameters

C
E

02H (_CONOUT)
Character to be output

e Results

None

The character passed in register E is written to the standard output (file handle 1
- usually the screen). If printer echo is enabled then the character is also written
to the printer. Various control codes and escape sequences are interpreted as
screen control codes. A list of these is included in chapter 2, they are a sub-set
of the standard VT-52 control codes. TABs will be expanded to every eighth
column.

A console input status check is done, and if any of the special control charac-
ters described for the "console status" function (function OBh) is found then
it will be processed as for that function. Any other character will be saved
internally for a later "console input" function call.

122 CHAPTER 3. FUNCTION SPECIFICATION

3.3.4 Auxiliary input (03h)
e Parameters
C = 03H (_AUXIN)
o Results

L = A = Input character

A character is read from the auxiliary input device (file handle 3) and if no
character is ready then it will wait for one. The auxiliary input device must
have been installed before this function may be used. If no such device has
been installed then this function will always return the end of file character
("CTRL-Z").

3.3.5 Auxiliary output (04h)

e Parameters

C
E

04H (_AUXOUT)
Character to be output

e Results

None

The character passed in register E will be written to the auxiliary output device
(file handle 3). The auxiliary output device must have been installed before this
function may be used. If no such device has been installed then this function
will simply throw the character away.

3.3.6 Printer output (05h)

e Parameters

C
E

05H (_LSTOUT)
Character to be output

e Results

None

The character passed in register E will be sent to the standard printer device (file
handle 4 - usually the parallel printer). The same channel is used for console
output which is echoed to the printer. TABs are not expanded by this function,
although they are expanded when screen output is echoed to the printer with
"CTRL-P".

3.3. FUNCTION BY FUNCTION DEFINITIONS 123

3.3.7 Direct console I/0 (06h)

e Parameters

C = 06H (_DIRID)
E = OOH...FEH - character for output
FFH - requests input
e Results

A =L = input - OOH - no character ready
else input character
undefined for output

If E=FFh on entry then the keyboard will be examined for a characterfrom the
standard input (file handle 0) and 00h returned if no character is ready. If a
character is ready then it will be read from the standard input (file handle 0)
and returned in register A without being echoed and with no check for control
characters.

If E'=FFh on entry then the character in register E will be printed directly
to the standard output (file handle 1) with no TAB expansion or printer echo.
Also no console status check is done by this function. Note that although this
function does not expand TABs, the VT-52 control codes include TAB expansion
so the effect on the screen is the same.

3.3.8 Direct console input (07h)

e Parameters
C = 07H (_DIRIN)
e Results
L = A = Input character

This function is identical to the input option of function 06h, except that if no
character is ready it will wait for one. Like function 06h, no echo or control
characters checks will be done. This function is not compatible with CP/M
which uses this function number for "get I/0 byte".

3.3.9 Console input without echo (08h)

e Parameters
C = 08H (_INNOE)
e Results

L = A = Input character

124 CHAPTER 3. FUNCTION SPECIFICATION

This function is identical to function 01h except that the input character will
not be echoed to the standard output. The same control character checks will
be done. This function is not compatible with CP/M which uses this function
number for "set I/0 byte".

3.3.10 String output (09h)

e Parameters

C
DE

09H (_STROUT)
Address of string

e Results

None

The characters of the string pointed to by register DE will be output using the
normal console output routine (function call 02h). The string is terminated
by "$" (ASCII 24h).

3.3.11 Buffered line input (OAh)

e Parameters

C
DE

OAH (_BUFIN)
Address of an input buffer

e Results
None

DE must point to a buffer to be used for input. The first byte of this buffer must
contain the number of characters which the buffer can hold (0...255). A line of
input will be read from the standard input device (file handle 0 - usually the
keyboard) and stored in the buffer. The input will be terminated when a CR is
read from the standard input. The number of characters entered, which does
not include the CR itself, will be stored at (DE+1). If there is room in the buffer
then the CR will be stored after the last character.

When inputting from the keyboard (which will normally be the case), a
simple line editor is provided, and also a 256 byte circular buffer of previous
lines which can be edited and re-entered. The details of these editing facilities
are described in chapter 1, so they are not included here. When the input buffer
becomes full, the console bell will be rung for each character typed which cannot
be put in the buffer. Each character entered will be echoed to the standard
output and also to the printer if printer echo is enabled.

3.3. FUNCTION BY FUNCTION DEFINITIONS 125

3.3.12 Console status (OBh)

e Parameters
C = OBH (_CONST)
e Results

L=A

OOH if no key was pressed
FFH if a key was pressed

A flag is returned in register A to indicate whether a character is ready (that
is, a key was pressed) for input from the keyboard. If a character is ready then
it will be read and tested for certain special control characters. If it is not one
of these then it is stored in an internal single byte buffer and subsequent call
to this function will return "character ready" immediately without checking
the keyboard. If this function says that a character is ready then the character
may be read by function 02h or 08h.

If the character is "CTRL-C" then the program will be terminated with a
" _CTRLC" error via the user’s abort routine if one is defined. If the character
is "CTRL-P" then printer echo will be enabled and it will be disabled if it is
"CTRL-N". If the character is "CTRL-S" then the routine will hang up waiting
for another character to be pressed and then return "no character ready",
thus providing a "wait" facility. The character typed to continue operation will
be ignored, except that of it is "CTRL-C" then the program will be terminated.
These same input checks are also done for functions 01h, 02h, 08h, 09h and OAh.

3.3.13 Return version number (OCh)

e Parameters

C = OCH (_CPMVER)

e Results
L =A=22H
H =B = O0H

This function simply returns the CP/M version number which is being emulated.
This is always version 2.2 in current systems.

3.3.14 Disk reset (ODh)
e Parameters
C = ODH (_DSKRST)

e Results

126 CHAPTER 3. FUNCTION SPECIFICATION

None

Any data which is waiting in internal buffers is written out to disk. It is not
necessary to call this function in order to allow a disk change as is the case with
CP/M. The disk transfer address is also set back to its default value of 80h by
this function.

3.3.15 Select disk (OEh)

e Parameters

C = OEH (_SELDSK)
E = Drive number. 0=A: 1=B: etc.
e Results

L = A = Number of drives (1...8)

This function simply selects the specified drive as the default drive. The current
drive is also stored at address 00004h for CP/M compatibility. The number of
drives available is returned in register A but this will not include the RAM disk.

3.3.16 Open file [FCB] (OFh)

e Parameters

C = OFH (_FOPEN)
DE = Pointer to unopened FCB
e Results
L = A = OFFH if file not found

000h if file is found

The unopened FCB must contain a drive which may be zero to indicate the
current drive and a filename and extension which may be ambiguous. The
current directory of the specified drive will be searched for a matching file and
if found it will be opened. Matching entries which are sub-directories or system
files will be ignored, and if the filename is ambiguous then the first suitable
matching entry will be opened.

Device names may be put in the FCB (without a colon) to allow devices to
be accessed as if they were actually disk files. The standard device names are
defined in chapter 2.

The low byte of the extent number is not altered by this function, and a file
will only be opened if it is big enough to contain the specified extent. Normally
the transient program will set the extent number to zero before calling this
function. The high byte of the extent number will be set to zero to ensure
compatibility with CP/M.

3.3. FUNCTION BY FUNCTION DEFINITIONS 127

The filename and extension in the FCB will be replaced by the actual name
of the file opened from the directory entry. This will normally be the same as
what was there before but may be different if an ambiguous filename or one
with lower case letters in was used.

The record count will be set to the number of 128 byte records in the specified
extent, which is calculated from the file size. The file size field itself, the volume-
id and the 8 reserved bytes will also be set up. The current record and random
record fields will not be altered by this function, it is the application program’s
responsibility to initialize them before using the read or write functions.

If the file cannot be found, then the "APPEND" environment item will be
examined. If this is set then it is interpreted as a drive/path string which
specifies a second directory in which to look for the file. The specified directory
will be searched for the file and if found it will be opened as above. In this case
the drive byte of the FCB will be set to the drive on which the file was found to
ensure correct accessing of the file if the original drive byte was zero (default).

3.3.17 Close file [FCB] (10h)

e Parameters

C = 10H (_FCLOSE)
DE = Pointer to opened FCB

e Results

L = A = OFFH if not successful
= 0 if successful

The FCB must have previously been opened with either an OPEN or a CREATE
function call. If the file has only been read then this function does nothing. If
the file has been written to then any buffered data will be written to disk and
the directory entry updated appropriately. The file may still be accessed after
a close, so the function can be regarded as doing an "ensure" function.

3.3.18 Search for first [FCB] (11ih)

e Parameters

C = 11H (_SFIRST)
DE = Pointer to unopened FCB

e Results

L=A OFFH if file not found

0 if file found

128 CHAPTER 3. FUNCTION SPECIFICATION

This function searches the current directory of the drive specified in the FCB
(default drive if FCB contains zero) for a file which matches the filename and ex-
tension in the FCB. The filename may be ambiguous (containing "?" characters)
in which case the first match will be found. The low byte of the extent field will
be used, and a file will only be found if it is big enough to contain this extent
number. Normally the extent field will be set to zero by the program before
calling this function. System file and sub-directory entries will not be found.

If a suitable match is found (A=0) then the directory entry will be copied to
the DTA address, preceded by the drive number. This can be used directly as an
FCB for an OPEN function call if desired. The extent number will be set to the low
byte of the extent from the search FCB, and the record count will be initialized
appropriately (as for OPEN). The attributes byte from the directory entry will
be stored in the S1 byte position, since its normal position (immediately after
the filename extension field) is used for the extent byte.

If no match is found (A=OFFh) then the DTA will not be altered. In no case
will the FCB pointed to by DE be modified at all. This function remembers
sufficient information internally to allow it to continue the search with a SEARCH
FOR NEXT function, so it is not necessary for the FCB to be preserved if doing a
SEARCH FOR NEXT function.

In CP/M, if the drive number is set to "?" in this function then all directory
entries, allocated or free will be matched. Also if the extent field is set to "?"
then any extent of a file will be matched. Both of these features are normally
only used by special purpose CP/M programs which are generally specific to the
CP/M filing system (such as "STAT"). Neither feature is present in MSX-DOS
1/2.

3.3.19 Search for next [FCB] (12h)
e Parameters
C = 12H (_SNEXT)

e Results

L=A OFFH if file not found

= 0 if file found

It continues the search to look for the next match with the filename. The results
returned from this function are identical to SEARCH FOR FIRST and all the same
comments apply. The information used to continue the search is held internally
within MSX-DOS and so the original FCB used in the SEARCH FOR FIRST need
not still exist.

3.3.20 Delete file [FCB] (13h)

e Parameters

3.3. FUNCTION BY FUNCTION DEFINITIONS 129

C = 13H (_FDEL)
DE = Pointer to unopened FCB

e Results
L = A = OFFH if no files deleted

All files in the current directory of the disk specified by the FCB, and which
match the ambiguous filename in the FCB, are deleted. Sub-directories, system
files, hidden files and read only files are not deleted. If any files at all are
successfully deleted then this function returns with A=0. A return with A=FFh
indicates that no files were deleted.

3.3.21 Sequential read [FCB] (14h)
e Parameters

C = 14H (_RDSEQ)
DE = Pointer to opened FCB

e Results

L=A

01H if error (end of file)
= 0 if read was successful

This function reads the next sequential 128 byte record from the file into the
current disk transfer address. The record is defined by the current extent (high
and low bytes) and the current record. After successfully reading the record,
this function increments the current record and if it reaches 080h, sets it back
to zero and increments the extent number. The record count field is also kept
updated when necessary.

Unlike CP/M it is possible to have partially filled records, since the file size
is not necessarily a multiple of 128 bytes. If this occurs then the partial record is
padded out with zeroes when it is copied to the transient program’s DTA address.

3.3.22 Sequential write [FCB] (15h)
e Parameters

C = 15H (_WRSEQ)
DE = Pointer to opened FCB

e Results

L=A

01H if error (disk full)
0 if write was successful

This function writes the 128 bytes from the current disk transfer address to the
file at the position defined by the current record and extent, which are then
incremented appropriately. The record count byte is kept updated correctly if
the file is extended or if the write moves into a new extent. The file size in the
FCB is also updated if the file is extended.

130 CHAPTER 3. FUNCTION SPECIFICATION

3.3.23 Create file [FCB] (16h)

e Parameters

C = 16H (_FMAKE)
DE = Pointer to unopened FCB

e Results

L=A OFFH if unsuccessful

= 0 if successful

This function creates a new file in the current directory of the specified drive
and opens it ready for reading and writing. The drive, filename and low byte
of the extent number must be set up in the FCB and the filename must not be
ambiguous. Checks will be done to ensure that invalid filenames are not created.

If there is already a file of the required name then the action depends on the
value of the extent number byte. Normally this will be zero and in this case the
old file will be deleted and a new one created. However if the extent number is
non-zero then the existing file will be opened without creating a new file. This
ensures compatibility with early versions of CP/M where each extent had to be
explicitly created.

In all cases the resulting file will be opened with the required extent number
exactly as if an OPEN function call had been done.

3.3.24 Rename file [FCB] (17h)

e Parameters

C = 17H (_FREN)
DE = Pointer to unopened FCB

e Results

L=A

OFFH not if successful
= 0 if successful

The unopened FCB has the normal drive and filename, and also a second filename
starting at (DE+17). Every file in the current directory of the specified drive
which matches the first filename, is changed to the second filename with "?7"
characters in the second filename leaving the appropriate character unchanged.
Checks are done to prevent duplicate or illegal filenames from being created.
Entries for sub-directories, hidden files and system files will not be renamed.

3.3.25 Get login vector (18h)

e Parameters

C = 18H (_LOGIN)

3.3. FUNCTION BY FUNCTION DEFINITIONS 131

e Results
HL = Login vector

This function returns a bit set in HL for each drive which is available, bit-0 of L
corresponding to drive "A:". Up to eight drives ("A:" to "H:") are supported
by the system currently, so register H will usually be zero on return.

3.3.26 Get current drive (19h)
e Parameters
C = 19H (_CURDRYV)
e Results
L = A = Current drive (0=A: etc)

This function just returns the current drive number.

3.3.27 Set disk transfer address (1Ah)

e Parameters

C = 1AH (_SETDTA)
DE = Required Disk Transfer Address

e Results
None

This function simply records the address passed in DE as the disk transfer ad-
dress. This address will be used for all subsequent FCB read and write calls,
for "search for first" and "search for next" calls to store the directory
entry, and for absolute read and write calls. It is not used by the new MSX-DOS
read and write functions. The address is set back to 80h by a DISK RESET call.

3.3.28 Get allocation information (1Bh)
o Parameters

C 1BH (_ALLOC)
E = Drive number (O=current, 1=A: etc)

e Results

A = Sectors per cluster

BC = Sector size (always 512)
DE = Total clusters on disk
HL = Free clusters on disk
IX = Pointer to DPB

Iy

Pointer to first FAT sector

132 CHAPTER 3. FUNCTION SPECIFICATION

This function returns various information about the disk in the specified drive.
It is not compatible with CP/M which uses this function number to return the
address of an allocation vector. Note that unlike MSX-DOS 1, only the first
sector of the FAT may be accessed from the address in IY, and the data there
will only remain valid until the next MSX-DOS call.

3.3.29 Random read [FCB] (21h)

e Parameters

C = 21H (_RDRND)
DE = Pointer to opened FCB

e Results

01H if error (end of file)
= 0 if read was successful

L=A

This function reads a 128 byte record from the file to the current disk transfer
address. The file position is defined by the three byte random record number in
the FCB (bytes 21h...23h). Unlike CP/M all three bytes of the random record
number are used. A partial record at the end of the file will be padded with
zeroes before being copied to the user’s DTA.

The random record number is not altered so successive calls to this function
will read the same record unless the transient program alters the random record
number. A side effect is that the current record and extent are set up to refer
to the same record as the random record number. This means that sequential
reads (or writes) can follow a random read and will start from the same record.
The record count byte is also set up correctly for the extent.

3.3.30 Random write [FCB] (22h)

e Parameters

C = 22H (_WRRND)
DE = Pointer to opened FCB

e Results

L=A

01H if error (disk full)
= 0 if no error

This function writes a 128 byte record from the current disk transfer address to
the file, at the record position specified by the three byte random record number
(bytes 21h...23h). All three bytes of the random record number are used. If the
record position is beyond the current end of file then un-initialized disk space
will be allocated to fill the gap.

The random record number field will not be changed, but the current record
and extent fields will be set up to refer to the same record. The record count
byte will be adjusted as necessary if the file is being extended or if the write
goes into a new extent.

3.3. FUNCTION BY FUNCTION DEFINITIONS 133

3.3.31 Get file size [FCB] (23h)

e Parameters

C = 23H (_FSIZE)
DE = Pointer to unopened FCB

e Results

L=A OFFH if file not found

0 if file found OK

This function searches for the first match with the filename in the FCB, exactly
the same as OPEN FILE (function OFH). The size of the located file is rounded
up to the nearest 128 bytes and the number of records determined. The three
byte random record field of the FCB is set to the number of records, so it is the
number of the first record which does not exist. The fourth byte of the random
record number is not altered.

3.3.32 Set random record [FCB] (24h)

e Parameters

C = 24H (_SETRND)
DE = Pointer to opened FCB

e Results
None

This function simply sets the three byte random record field in the FCB to the
record determined by the current record and extent number. The fourth byte
of the random record number is not altered. No check is done as to whether the
record actually exists in the file.

3.3.33 Random block write [FCB] (26h)

e Parameters

C = 26H (_WRBLK)
DE = Pointer to opened FCB
HL = Number of records to write

e Results

A

01H if error
0 if no error

134 CHAPTER 3. FUNCTION SPECIFICATION

Data is written from the current disk transfer address to the position in the
file defined by the random record number. The record size is determined by
the record size field in the FCB (bytes OEh and OFh) which must be set by the
user after opening the file and before calling this function. If the record size is
less than 64 bytes then all four bytes of the random record number are used,
otherwise only the first three are used.

The number of records to be written is specified by HL, and together with
the record size this determines the amount of data to be written. An error will
be returned if the size exceeds 64k, thus limiting the maximum size of a transfer.

After writing the data, the random record field is adjusted to the next record
number in the file (ie. HL is added on to it). The current record and extent
fields are not used or altered. The file size field is updated if the file has been
extended.

The record size can be any value from 1...0FFFFh. Small record sizes are no
less efficient that large record sizes so if desired the record size can be set to
one and the record count then becomes a byte count. It is desirable to write as
much as possible with one function call since one large transfer will be quicker
than several small ones.

If the number of records to write (HL) is zero then no data will be written,
but the size of the file will be altered to the value specified by the random record
field. This may be either longer or shorter than the file’s current size and disk
space will be allocated or freed as required. Additional disk space allocated in
this way will not be initialized to any particular value.

3.3.34 Random block read [FCB] (27h)

e Parameters

C = 27H (_RDBLK)
DE = Pointer to opened FCB
HL = Number of records to read

e Results

A = 01H if error (usually caused by end-of-file)
= 0 if no error
HL = Number of records actually read

This function is the complement of the BLOCK WRITE function described above
and most of the same comments apply as regards its use. Again if large blocks
are read then it will be much faster than the normal CP/M operation.

For example if it is desired to read 20k from a file, it is better to read the
20k with one function call rather than 20 separate function calls of 1k each.
However it makes no difference whether the 20k read is done with a record size
of 1 and a record count of 20k, with a record size of 20k and a record count of
1, or any intermediate combination.

3.3. FUNCTION BY FUNCTION DEFINITIONS 135

The number of records actually read is returned in HL. This may be smaller
than the number of records requested if the end of the file was encountered. In
this case any partial record will be padded out with zeroes before being copied
to the users DTA. The random record field is adjusted to the first record not
read, ie. the value returned in HL is added on to it.

3.3.35 Random write with zero fill [FCB] (28h)

e Parameters

C = 28H (_WRZER)
DE = Pointer to opened FCB

e Results

L=A 01H if error

OOH if no error

This function is identical to RANDOM WRITE (function 22h) except that if the file
has to be extended, any extra allocated disk clusters will be filled with zeroes
before writing the data.

3.3.36 Get date (2Ah)
e Parameters
C = 2AH (_GDATE)
e Results

HL = Year 1980...2079

Month (1=Jan...12=Dec)
Date (1...31)

Day of week (0=Sumn...6=Sat)

= o
[

This function simply returns the current value of the internal calender in the
format shown.

3.3.37 Set date (2Bh)

e Parameters

C = 2BH (_SDATE)

HL = Year 1980...2079

D = Month (1=Jan...12=Dec)
E = Date (1...31)

e Results

136 CHAPTER 3. FUNCTION SPECIFICATION

=
|

= O0OH if date was valid
FFH if date was invalid

The supplied date is checked for validity and if it is valid then it is stored as
the new date. The validity checks include full checking for the number of days
in each month and leap years. If the date is invalid then the current date will
be left unaltered. The date is stored in the real time clock chip so it will be
remembered when the machine is turned off.

3.3.38 Get time (2Ch)

e Parameters

C = 2CH (_GTIME)

e Results
H = Hours (0...23)
L = Minutes (0...59)
D = Seconds (0...59)
E = Centiseconds (always zero)

This function returns the current value of the system clock in the format shown.

3.3.39 Set time (2Dh)

e Parameters

C = 2DH (_STIME)

H = Hours (0...23)

L = Minutes (0...59)

D = Seconds (0...59)

E = Centiseconds (ignored)
e Results

A = O0OH if time was valid

FFH if time was invalid

This function sets the internal system clock to the specified time value. If the
time is invalid then register A will be returned as OFFh to indicate an error and
the current time will be left unaltered. The time is stored in the real time clock
chip and so it will be remembered and kept correct when the machine is turned
off.

3.3. FUNCTION BY FUNCTION DEFINITIONS 137

3.3.40 Set/reset verity flag (2Eh)

e Parameters

C
E

2EH (_VERIFY)
0 to disable verify
= 0 to enable verify

e Results
None

This function simply enables or disables automatic verification of all writes. It
defaults to off when MSX-DOS is started up. Enabling verify improves system
reliability but also slows down write operations. Note that this function depends
on the disk driver and the verification will not be done if the driver does not
support it.

3.3.41 Absolute sector read (2Fh)

e Parameters

C = 2FH (_RDABS)

DE = Sector number

L = Drive number (0=A: etc.)
H = Number of sectors to read

e Results
A = Error code (0=> no error)

This function reads sectors directly from the disk without interpreting them as
files. The disk must be a valid DOS disk in order for the sector number to be
translated into a physical position on the disk. The sectors will be read to the
current disk transfer address. Any disk error will be reported by the system in
the usual way.

3.3.42 Absolute sector write (30h)

e Parameters

C = 30H (_WRABS)
DE = Sector number

L = Drive number (0=A: etc.)
H = Number of sectors to write
e Results

A = Error code

138 CHAPTER 3. FUNCTION SPECIFICATION

This function writes sectors directly to the disk without interpreting them as
files. The disk must be a valid DOS disk in order for the sector number to be
translated into a physical position on the disk. The sectors will be written from
the current disk transfer address. Any disk errors are reported by the system
in the usual way.

3.3.43 Get disk parameters (31h)

e Parameters

C = 31H (_DPARM)
DE = Pointer to 32 byte buffer
L = Drive number (0O=default, 1=A: etc.)

e Results

A = Error code
DE = Preserved

This functions returns a series of parameters relating to the format of the disk
in the specified drive, to the buffer allocated within the user’s program. It is
useful for programs which are going to do absolute sector reads and writes,
in order for them to be able to interpret the absolute sector numbers. The
parameters returned contain some redundant information in order to provide
parameters which are most useful to transient programs. The format of the
returned parameter block is:

DE+0 Physical drive number (1=A: etc)
DE+1,2 Sector size (always 512 currently)

DE+3 Sectors per cluster (non-zero power of 2)
DE+4,5 Number of reserved sectors (usually 1)
DE+6 Number of copies of the FAT (usually 2)
DE+7,8 Number of root directory entries
DE+9,10 Total number of logical sectors

DE+11 Media descriptor byte

DE+12 Number of sectors per FAT

DE+13. .14 First root directory sector number
DE+15. .16 First data sector number

DE+17. .18 Maximum cluster number

3.3. FUNCTION BY FUNCTION DEFINITIONS 139

DE+19 Dirty disk flag
DE+20. .23 Volume id. (-1 => no volume id.)
DE+24. .31 Reserved (currently always zero)

The dirty disk flag indicates whether in the disk there is a file which can be
recovered by UNDEL command. It is reset when the file allocation is done.

3.3.44 Find first entry (40h)
e Parameters

C = 40H (_FFIRST)
DE = Drive/path/file ASCIIZ string
or fileinfo block pointer
HL = filename ASCIIZ string (only if DE = fileinfo pointer)
B = Search attributes
IX = Pointer to new fileinfo block

e Results

A = Error
(IX) = Filled in with matching entry

The "drive/path" portion of the string, or the fileinfo block, specifies a direc-
tory which is to be searched. A ".IATTR" error will be returned if a fileinfo
block which specifies a file is passed. The "file" portion of the string, or the
filename ASCIIZ string in HL, determines what filenames will be matched. If no
match is found then a ".NOFIL" error is returned, otherwise the fileinfo block
pointed to by IX is filled in with the details of the matching entry.

The filename may contain ambiguous filename characters ("?" or "x") in
which case the first matching entry will be returned. If the filename is null
(either the ASCIIZ string pointed to by DE is null or ends in a "\" or the
filename string pointed to by HL is null), then this function will behave exactly
as if the filename was "*.*" so any name will match.

The attributes byte in register B specifies what type of entry will be matched.
If it is zero then only non-hidden, non-system files will be found. If the directory,
hidden or system bits in register B are set then entries with these attributes will
be matched as well as ordinary files. The read only and archive bits of register
B are ignored.

If the volume name bit of register B is set then the search is exclusive, only
the volume label entry will be found. In this case also the fileinfo block and
filename or the drive/path/file string are ignored apart from specifying the drive.
This means that the volume name will always be found in the root directory if
it exists whether or not it matches the filename given.

If DE points to a fileinfo block, then if desired, IX can point to the same
fileinfo block. In this case when a match is found the new fileinfo block will
overwrite the old one.

140 CHAPTER 3. FUNCTION SPECIFICATION

3.3.45 Find next entry (41h)

e Parameters

C = 41H (_FNEXT)
IX = Pointer to fileinfo block from previous find first function

e Results

A = Error
(IX) = Filled in with next matching entry

This function should only be used after a "find first entry" function call.
It searches the directory for the next match to the (presumably ambiguous)
filename which was given to the "find first entry" function call. If there
are no more matching entries then a " .NOFIL" error is returned, otherwise the
fileinfo block is filled in with the information about the new matching entry.

3.3.46 Find new entry (42h)

e Parameters

C = 42H (_FNEW)

DE = Drive/path/file ASCIIZ string
or fileinfo block pointer
HL = filename ASCIIZ string (only if DE = fileinfo pointer)

B = b0..b6 = Required attributes
b7 = Create new flag
IX = Pointer to new fileinfo block containing template filename

e Results

A = Error
(IX) = Filled in with new entry

This function is very similar to the "find first entry" function described
above. The parameters in HL and DE are used in exactly the same way to
specify a directory entry. However instead of searching the selected directory
for an entry which matches the specified name, a new entry will be created with
this name. The fileinfo block pointed to by IX will be filled in with information
about the new entry just as if it had been found with a "find first entry"
call.

If there are any ambiguous characters ("?" or "*") in the filename, then they
will be replaced by the appropriate character from a "template filename" in
the filename position of the new fileinfo block pointed to by IX. If the result is
still ambiguous, or otherwise illegal, then a " .IFNM" error is returned. This is
useful for copy operations which do an automatic rename.

3.3. FUNCTION BY FUNCTION DEFINITIONS 141

Like "find first entry", if the filename is null, then it will be treated
exactly as if it was "*.*". For this function that means that the template
filename will be used as the new filename to create.

A " .DRFUL" error will be returned if there is no room in the root directory,
and a ".DKFUL" if a sub-directory must be extended and the disk is already full.

The attribute byte passed in register B is the attribute which the new entry
will be given. If the volume name bit is set then a volume name will be created
in the root directory. If the directory bit is set then the entry created will be
for a sub-directory, otherwise it will be for a file. The system, hidden and read
only bits may be set for a file, and the hidden bit for a sub-directory. A file will
always be created with the archive attribute bit set.

A file will be created as zero length with the current date and time. A sub-
directory will have a single cluster allocated to it and the "." and ".." entries
will be initialized appropriately.

If there is already an entry with the specified name in the directory then the
action depends on the "create new" flag (bit-7 of register B) and also on the
type of the entry. If the "create new" flag is set then a ".FILEX" error will
always be returned. Setting this flag thereforeensures that an existing file will
not be deleted.

If an entry already exists and the "create new" flag is not set then the
type of the existing entry is examined to see whether it can be deleted to make
room for the new file. An error will be returned if the entry is a read only
file (" .FILRO" error), a system file (".SYSX" error) or a sub-directory (".DIRX"
error) or there is a file handle already open to this file (" .FOPEN" error). If we
are trying to create a sub-directory then even an ordinary file will not be deleted
(".FILEX" error).

For all of these error codes (".FILEX", " .FILR0O", ".SYSX", ".DIRX", " .FOPEN"),
the fileinfo block will be filed in with the details of the already existing entry
and this fileinfo block may be used exactly as if it had been returned from a
"find first" function.

3.3.47 Open file handle (43h)

e Parameters

C = 43H (_OPEN)
DE = Drive/path/file ASCIIZ string
or fileinfo block pointer
A = Open mode. bO set => no write
bl set => no read
b2 set => inheritable
b3..b7 - must be clear

e Results

=
1]

Error
New file handle

(o]
I

142 CHAPTER 3. FUNCTION SPECIFICATION

The drive/path/file string or the fileinfo block should normally refer to a
file rather than a sub-directory or volume name. If it is a volume name then a
" . IATTR" error will be returned. If it is a sub-directory then " .DIRX" error will
be returned.

Assuming that a file is specified then it will be opened ready for reading
and/or writing (depending on the open mode in A) and a new file handle for it
will be returned in register B. The lowest available file handle number will be
used and an error will result if there are no spare file handles (" .NHAND" error),
or insufficient memory (".NORAM" error).

If the "no read" bit of register A is set then reads from the file handle will
be rejected and if the "no write" bit is set then writes will be rejected, in both
cases with an ".ACCV" error. Writes will also be rejected if the file is read only
(".FILRO" error). If the "inheritable" bit of register A is set then the file
handle will be inherited by a new process created by the "fork" function call
(see function 60h).

If a device file handle is opened by giving a filename which matches one
of the built in devices (for example "CON" or "NUL"), then it will always be
opened initially in ASCII mode. The IOCTL function (function 4Bh) can be used
to change this to binary mode but great care must be taken in reading from
devices in binary mode because there is no end of file condition.

3.3.48 Create file handle (44h)

e Parameters

C = 44H (_CREATE)

DE = Drive/path/file ASCIIZ string

A = Open mode. bO set => no write
bl set => no read
b2 set => inheritable
b3..b7 - must be clear

B = b0..b6 = Required attributes

b7 = Create new flag

e Results
A = Error
B = New file handle

A file or sub-directory, as specified by the attributes in register B, will be created
with the name and in the directory specified by the drive/path/file string.
A " _IATTR" error is returned if register B specifies a volume name.

An error will be returned if the file or sub-directory cannot be created. The
error conditions in this case are the same as for the "find new entry" function
(function 42h) with the main error codes being " .FILEX", ".DIRX", ".SYSX",
" FILRO", ".FOPEN", " .DRFUL" and ".DKFUL". Like the "find new" function,

3.3. FUNCTION BY FUNCTION DEFINITIONS 143

if the "create new" flag (bit-7 of register B) is set then an existing file will not
be deleted and will always return a " .FILEX" error.

If the attributes byte specifies a sub-directory then the hidden bit may also
be set to create a hidden sub-directory. For a file, the hidden, system or read
only bits may be set to create a file with the appropriate attributes. An invalid
attributes bits will simply be ignored. A file will always be created with the
archive attribute bit set.

A file will automatically be opened just as for the "open" function described
above, and a file handle returned in register B. The "open mode" parameter is
interpreted in the same way as for the "open" function. A sub-directory will
not be opened (because this is meaningless) so register B will be returned as
OFFh which can never be a valid file handle.

3.3.49 Close file handle (45h)

e Parameters

C = 45H (_CLOSE)
B = File handle
e Results

A = Error

This function releases the specified file handle for re-use. If the associated file
has been written to then its directory entry will be updated with a new date
and time, the archive attributes bit will be set, and any buffered data will be
flushed to disk. Any subsequent attempt to use this file handle will return an
error. If there are any other copies of this file handle, created by "duplicate
file handle" or "fork", then these other copies may still be used.

3.3.50 Ensure file handle (46h)

e Parameters

C = 46H (_ENSURE)
B = File handle
e Results

A = Error

If the file associated with the file handle has been written to then its directory
entry will be updated with a new date and time, the archive attributes bit will
be set, and any buffered data will be flushed to disk. The file handle is not
released and so it can still be used for accessing the file, and the current file
pointer setting will not be altered.

144 CHAPTER 3. FUNCTION SPECIFICATION

3.3.51 Duplicate file handle (47h)

e Parameters

C = 47H (_DUP)
B = File handle
e Results

A = Error
B New file handle

This function creates a copy of the specified file handle. The lowest available file
handle number will always be used and a " .NHAND" error returned if there are
none available. The new file handle will refer to the same file as the original and
either one may be used. If the file pointer of one handle is moved, the other one
will also be moved. If either handle is closed the other one may still be used.

Note that because duplicate file handles created by this function are not
separately opened, they do not count as separate file handles for the purposes
of generating ".FOPEN" errors. So for example a "DUP"ed file handle may be
renamed (function 53h) or have its attributes changed (function 55h) and the
effect will apply to both file handles. Note in particular that if one copy of a
"DUP"ed file handle is deleted (function 54h) then the file really will be deleted
and the other file handle, although still open, can no longer be used safely. If
it is used (other than being closed, ensured or deleted) then an ".FDEL" error
will be returned.

3.3.52 Read from file handle (48h)

e Parameters

C = 48H (_READ)
B = File handle
DE = Buffer address

HL = Number of bytes to read
o Results

A = Error
HL = Number of bytes actually read

The specified number of bytes are read from the file at the current file pointer
position and copied to the buffer address specified in register DE. The file pointer
is then updated to the next sequential byte. A ".ACCV" error will be returned
if the file handle was opened with the "no read" access bit set.

The number of bytes read may be less than the number requested for various
reasons, and the number read will be returned in register HL if there is no error.
In general if less is read than requested then this should not be treated as an

3.3. FUNCTION BY FUNCTION DEFINITIONS 145

error condition but another read should be done to read the next portion, until
a " .EOF" error is returned. An ".EOF" error will never be returned for a partial
read, only for a read which reads zero bytes. Reading files in this way ensures
that device file handles will work correctly (see below).

For disk files the number of bytes read will only be less than the number
requested if the end of the file is reached and in this case the next read operation
will read zero bytes and will return an ".EOF" error. When reading from a
device file handle (for example the standard file handles 0 to 4), the behaviour
depends on the particular device, and on whether it is being read in ASCII or
binary mode (see function 4Bh below). The "CON" device will be described as an
example because it is the most commonly used device, but other devices behave
similarly.

When reading from the "CON" device in binary mode, characters will be read
from the keyboard, without any interpretation and without being echoed to the
screen or printer. The exact number of characters requested will always be read
and there is no end of file condition. Because of the lack of any end of file
indication, great care must be taken when reading from devices in binary mode.

A read function call to the "CON" device in ASCII mode (the default mode
and that which normally applies to the standard input channel), will only read
one line of input. The input line will be read from the keyboard with the normal
line editing facilities available to the user, and the character typed will be echoed
to the screen and to the printer if CTRL-P is enabled. Special control characters
"CTRL-P", "CTRL-N", "CTRL-S" and "CTRL-C" will be tested for and will be
treated exactly as for the console status function 0Bh.

When the user types a carriage return the line will be copied to the read
buffer, terminated with a CR-LF sequence and the read function will return with
an appropriate byte count. The next read will start another buffered line input
operation. If the number of bytes requested in the read was less than the length
of the line input then as many character as requested will be returned, and the
next read function call will return immediately with the next portion of the line
until it has all been read.

If the user types a line which starts with a "CTRL-Z" character then this will
be interpreted as indicating end of file. The line will be discarded and the read
function call will read zero bytes and return an ".EOF" error. A subsequent
read after this will be back to normal and will start another line input. The end
of file condition is thus not permanent.

3.3.53 Write to file handle (49h)
e Parameters

C = 49H (_WRITE)

B = File handle

DE = Buffer address

HL = Number of bytes to write

e Results

146 CHAPTER 3. FUNCTION SPECIFICATION

A = Error
HL = Number of bytes actually written

This function is very similar to the "read" function above (function 48h). The
number of bytes specified will be written to the current file pointer position
in the file, and the file pointer will be adjusted to point to just after the last
byte written. If the file was opened with the "no write" access bit set then
a ".ACCV" error will be returned, and if the file is read only then a ".FILRO"
error will be returned.

If the write goes beyond the current end of file then the file will be extended
as necessary. If the file pointer is already beyond the end of the file then disk
space will be allocated to fill the gap and will not be initialized. If there is
insufficient disk space then a " .DKFUL" error will be returned and no data will
be written, even if there was room for some of the data.

The number of bytes written can usually be ignored since it will either be
zero if an error is returned or it will be equal to the number requested if the
write was successful. It is very much more efficient to write files in a few large
blocks rather than many small ones, so programs should always try to write in
as large blocks as possible.

This function sets a "modified" bit for the file handle which ensures that
when the file handle is closed or ensured, either explicitly or implicitly, the direc-
tory entry will be updated with the new date, time and allocation information.
Also the archive bit will be set to indicate that this file has been modified since
it was last archived.

Writing to device file handles is not a complicated as reading from them
because there are no end of file conditions or line input to worry about. There
are some differences between ASCII and binary mode when writing to the "CON"
device, in that a console status check is done in ASCII mode only. Also printer
echo if enabled will only be done in ASCIT mode.

3.3.54 Move file handle pointer (4Ah)

e Parameters

C = 4AH (_SEEK)
B = File handle
A = Method code

DE:HL = Signed offset
e Results

A = Error
DE:HL = New file pointer

The file pointer associated with the specified file handle will be altered according
to the method code and offset, and the new pointer value returned in DE:HL.
The method code specifies where the signed offset is relative to as follows:

3.3. FUNCTION BY FUNCTION DEFINITIONS 147

0 Relative to the beginning of the file
=1 Relative to the current position
2 Relative to the end of the file

Note that an offset of zero with an method code of 1 will simply return the
current pointer value, and with a method code of 2 will return the size of the
file. No end of file check is done so it is quite possible (and sometimes useful) to
set the file pointer beyond the end of the file. If there are any copies of this file
handle created by the "duplicate file handle" function (function 47h) or
the "fork" function (function 60h) then their file pointer will also be changed.
The file pointer only has any real meaning on disk files since random access
is possible. On device files the file pointer is updated appropriately when any
read or write is done, and can be examined or altered by this function. However
changing will have no effect and examining it is very unlikely to be useful.

3.3.55 1I/0 control for devices (4Bh)

e Parameters

C = 4BH (_IOCTL)
B = File handle
A = Sub-function code

O0H -> get file handle status
01H -> set ASCII/binary mode
02H -> test input ready
03H -> test output ready
04H -> find screen size

DE = Other parameters

e Results

A = Error
DE = Other results

This function allows various aspects of file handles to be examined and altered.
In particular it can be used to determine whether a file handle refers to a disk
file or a device. This is useful for programs which want to behave differently for
disk files and device I/0.

This function is passed the file handle in register B and a sub-function code
in register A which specifies one of various different operations. Any other
parameters required by the particular sub-function are passed in register DE
and results are returned in register DE. If the sub-function code is invalid then
a ".ISBFN" error will be returned.

If A=0 then the operation is "get file handle status". This returns a
word of flags which give various information about the file handle. The format
of this word is different for device file handles and disk file handles, and bit-7
specifies which it is. The format of the word is as follows:

For devices:

148 CHAPTER 3. FUNCTION SPECIFICATION

DE:
b0 set -> console input device
bl set -> console output device
b2..b4 reserved
b5 set -> ASCII mode

clear -> binary mode
b6 set -> end of file
b7 always set (-> device)
b8..b15 reserved

For disk files:

DE:

b0..b5 drive number (0=A: etc)
b6 set -> end of file

b7 always clear (-> disk file)
b8..b15 reserved

Note that the end of file flag is the same for devices as for disk files. For devices
it will be set if the previous attempt to read from the device produced a " .EOF"
error and will be cleared by the next read. For disk files it is worked out by
comparing the file pointer with the file size.

If A=1 then the operation is a "set ASCII/binary mode". This operation
is only allowed for device file handles. An ASCII/binary flag must be passed in
bit-5 of register E (exactly where it is returned by "get file handle status").
This is set for ASCIT mode and clear for binary mode. All other bits of register
DE are ignored.

If A=2 or 3 then the operation is "test input ready" or "test output
ready" respectively. In both cases a flag is returned in register E which is FFh
if the file handle is ready for a character and 00h if not. The exact meaning of
"ready for a character" depends on the device. Disk file handles are always
ready for output, and are always ready for input unless the file pointer is at the
end of file. The "CON" device checks the keyboard status to determine whether
it is ready for input or not.

If A=4 the the operation is "get screen size". This returns the logical
screen size for the file handle with the number of rows in register D and the
number of columns in register E. For devices with no screen size (such as disk
files) both D and E will be zero. Zero for either result should therefore be
interpreted as "unlimited". For example this function is used by the "DIR /W"
command to decide how many files to print per line, and a value of zero for
register E is defaulted to 80.

3.3.56 Test file handle (4Ch)

e Parameters

C = 4CH (_HTEST)

3.3. FUNCTION BY FUNCTION DEFINITIONS 149

B = File handle
DE = Drive/path/file ASCIIZ string
or fileinfo block pointer

e Results
A = Error
B = OOH -> not the same file

FFH -> same file

This rather specialist function is passed a file handle and either a drive/path/file
string or a fileinfo block which identifies a file. It determines if the two files are
actually the same file and returns a flag indicating the result. Note that if
the file handle is for a device rather than a disk file then it will always return
"B=00h" to indicate "not the same file"

This function allows the "COPY" command to detect certain error conditions
such as copying file onto themselves and give the user informative error messages.
It may also be useful for other programs which need to do similar tests.

3.3.57 Delete file or subdirectory (4Dh)

e Parameters

C = 4DH (_DELETE)
DE = Drive/path/file ASCIIZ string
or fileinfo block pointer

e Results
A = Error

This function deletes the object (file or sub-directory) specified by the drive/path/file
string or the fileinfo block. Global filename characters are not allowed so only

one file or sub-directory can be deleted with this function. A sub-directory can

only be deleted if it is empty or an error (" .DIRNE") occurs if not). The "." and

".." entries in a sub-directory cannot be deleted (" .DOT" error) and neither can

the root directory. A file cannot be deleted if there is a file handle open to it
(.FOPEN error) or if it is read only (.FILRO error).

If it is a file then any disk space which was allocated to it will be freed. If
the disk is an MSX-DOS 2 disk then enough information is retained on the disk
to allow the "UNDEL" utility program do undelete the file. This information is
only retain ed until the next disk space allocation (usually a write to a file) is
done on this disk. After making this function call, if a fileinfo block was passed
then it must not be used again (other than passing it to a "find next entry"
function) since the file to which it refers no longer exists.

If a device name such as "CON" is specified then no error will be returned
but the device will not actually be deleted.

150 CHAPTER 3. FUNCTION SPECIFICATION

3.3.58 Rename file or subdirectory (4Eh)

e Parameters

C = 4EH (_RENAME)

DE = Drive/path/file ASCIIZ string
or fileinfo block pointer

HL = New filename ASCIIZ string

e Results

A = Error

This function renames the object (file or sub-directory) specified by the drive/path /file
string or the fileinfo block, with the new name in the string pointed to by HL. The

new filename string must not contain a drive letter or directory path (".IFNM"
error if it does). If a device name such as "CON" is specified then no error will

be returned but the device will not actually be renamed.

Global filename characters are not allowed in the drive/path/file string,
so only one object can be renamed by this function. However global filename
characters are allowed in the new filename passed in HL and where they occur
the existing filename character will be left unaltered. Checks are done to avoid
creating an illegal filename, for example a file called "XYZ" cannot be renamed
with a new filename string of "?777A" because the new filename would be "XYZ
A" which is illegal. In this case a ".IFNM" error will be returned.

If there is already an entry with the new filename then an error (".DUPF")
is returned to avoid creating duplicate filenames. The "." and ".." entries in
a sub-directory cannot be renamed (".IDOT" error) and neither can the root
directory (it has noname). A file cannot be renamed if there is a file handle
open to it (".FOPEN" error) although a read only file can be renamed.

Note that if DE pointed to a fileinfo block, this is not updated with the new
name of the file. Therefore care must be taken in using the fileinfo block after
making this function call.

3.3.59 Move file or subdirectory (4Fh)

e Parameters

C = 4FH (_MOVE)

DE = Drive/path/file ASCIIZ string
or fileinfo block pointer
HL = New path ASCIIZ string
e Results

A = Error

3.3. FUNCTION BY FUNCTION DEFINITIONS 151

This function moves the object (file or sub-directory) specified by the drive/path/file
string or the fileinfo block, to the directory specified by the new path string
pointed to by HL. There must not be a drive name in the new path string. If a
device name such as "CON" is specified then no error will be returned but the
device will not actually be moved.

Global filename characters are not allowed in any of the strings so only one
object (file or sub-directory) can be moved by this function, although if a sub-
directory is moved, all its descendants will be moved with it. If there is already
an entry of the required name in the target directory then a ".DUPF" error is
returned to prevent creating duplicate filenames. The "." and ".." entries in
a sub-directory cannot be moved (".DOT" error) and also a directory cannot be
moved into one of its own descendants (".DIRE" error) since this would create
an isolated loop in the filing system. A file cannot be moved if there is a file
handle open to it (".FOPEN" error).

Note that if a fileinfo block is passed to this function, the internal information
in the fileinfo block is not updated to reflect the new location of the file. This is
necessary because otherwise the fileinfo block could not be used for a subsequent
"find next" function call. However it does mean that the fileinfo block no
longer refers to the moved file and so must not be used for any operations on it
such as "rename" or "open'".

3.3.60 Get/set file attributes (50h)

e Parameters

C = 50H (_ATTR)
DE = Drive/path/file ASCIIZ string
or fileinfo block pointer

A = 0 => get attributes
1 => set attributes
L = New attributes byte (only if A=1)
e Results

A = Error
L = Current attributes byte

This function is normally used to change the attributes of a file or sub-directory.
It can also be used to find out the current attributes but this is more usually done
with the "find first entry" function (function 40h). If A=0 then the current
attributes byte for the file or sub-directory will just be returned in register L.

If A=1 then the attributes byte will be set to the new value specified in
register L, and this new value will also be returned in register L. Only the
system, hidden, read only and archive bits may be altered for a file, and only
the hidden bit for a sub-directory. An ".IATTR" error will be returned if an
attempt is made to alter any other attribute bits. If a fileinfo block is passed
then the attributes byte in it will not be updated with the new setting.

152 CHAPTER 3. FUNCTION SPECIFICATION

Global filename characters are not allowed so only one object (file or sub-
directory) can have its attributes set by this function. The attributes of the
root directory cannot be changed because it does not have any. The attributes
of a file cannot be changed if there is a file handle open to it (".FOPEN" error).
The attributes of the "." and ".." directory entries however can be changed.
If a device name such as "CON" is specified then no error will be returned but
the device’s attributes will not actually be changed (since it does not have any).

3.3.61 Get/set file date and time (51h)

e Parameters

C = 51H (_FTIME)

DE = Drive/path/file ASCIIZ string
or fileinfo block pointer

A = 0 => get date and time
1 => set date and time

IX = New time value (only if A=1)
HL = New date value (only if A=1)
o Results

A = Error
DE = Current file time value
HL = Current file date value

If A=1 then this function sets the date and time of last modification of the file or
sub-directory specified by the drive/path/file string or fileinfo block. Global
filename characters are not allowed in any part of the string so only one file
can have its date and time modified by this function. If a device name such as
"CON" is specified then no error will be returned but the device’s date and time
will not actually be changed.

The date and time format are exactly as contained in the directory entry
and fileinfo blocks (see chapter 2). No checks are done for sensible dates or
times, the values are simply stored. Note that if a fileinfo block is passed then
the date and time stored in it will not be updated by this function.

If A=0 then the current values are just returned. Note that although the
time value is passed in IX, it is returned in DE. The date and time of a file
cannot be altered (although it can be read) if there is a file handle open to the
file (" .FOPEN" error).

3.3.62 Delete file handle (52h)

e Parameters

C
B

52H (_HDELETE)
File handle

3.3. FUNCTION BY FUNCTION DEFINITIONS 153

e Results
A = Error

This function deletes the file handle associated with the specified file and closes
the file handle. A file handle cannot be deleted if there are any other separately
opened file handles open to the same file (".FOPEN" error). If there are any
duplicates of the file handle (created by a "duplicate file handle" or "fork"
function), then these duplicates will be marked as invalid and any attempt to
use them will produce an " .HDEAD" error.

The error conditions for this function are the same as for the "delete file
or sub-directory" function (function 4Dh). The file handle will always be
closed, even if there is an error condition such as ".FILRO" or ".FOPEN".

3.3.63 Rename file handle (53h)

e Parameters

C = 53H (_HRENAME)
B = File handle
HL = New filename ASCIIZ string

e Results
A = Error

This function renames the file associated with the specified file handle with the
new name in the string pointed to by HL. Apart from the fact that the file is
specified by a file handle rather than an ASCIIZ string or a fileinfo block, this
function is identical to the "rename file or subdirectory" function (func-
tion 4Eh), and has the same error conditions.

A file handle cannot be renamed if there are any other separately opened file
handles for this file (".FOPEN" error), although it can be renamed if there are
copies of this file handle, and in this case the copies will be renamed. Renaming
a file handle will not alter the file pointer but it will do an implicit "ensure"
operation.

3.3.64 Move file handle (54h)

e Parameters

C = 54H (_HMOVE)
B = File handle
HL = New path ASCIIZ string

e Results

A = Error

154 CHAPTER 3. FUNCTION SPECIFICATION

This function moves the file associated with the specified file handle to the
directory specified by the new path string pointed to by HL. Apart from the
fact that the file is specified by a file handle rather than an ASCIIZ string or a
fileinfo block, this function is identical to the "move file or subdirectory"
function (function 4Fh), and has the same error conditions.

A file handle cannot be moved if there are any other separately opened file
handles for this file (".FOPEN" error), although it can be moved if there are
copies of this file handle, and in this case the copies will also be moved. Moving
a file handle will not alter the file pointer but it will do an implicit "ensure"
operation.

3.3.65 Get/set file handle attributes (55h)

e Parameters

C = 55H (_HATTR)
B = File handle
A = 0 => get attributes
1 => set attributes
L = New attributes byte (only if A=1)
e Results

A = Error
L = Current attributes byte

This function gets or sets the attributes byte of the file associated with the
specified file handle. Apart from the fact that the file is specified by a file
handle rather than an ASCIIZ string or a fileinfo block, this function is identical
to the "get/set file attributes" function (function 50h), and has the same
error conditions.

A file handle cannot have its attributes changed (although they can be read)
if there are any other separately opened file handles for this file (".FOPEN"
error). The file pointer will not be altered but an implicit "ensure" operation
will be done.

3.3.66 Get/set file handle date and time (56h)

e Parameters

C = 56H (_HFTIME)
B = File handle
A = 0 => get date and time

1 => set date and time
IX = New time value (only if A=1)
HL = New date value (only if A=1)

e Results

3.3. FUNCTION BY FUNCTION DEFINITIONS 155

A = Error
DE = Current file time value
HL = Current file date value

This function gets or sets the date and time of the file associated with the
specified file handle. Apart from the fact that the file is specified by a file
handle rather than an ASCIIZ string or a fileinfo block, this function is identical
to the "get/set file date and time" function (function 51h), and has the
same error conditions.

A file handle cannot have its date and time changed (although they can be
read) if there are any other separately opened file handles for this file (" . FOPEN"
error). The file pointer will not be altered but an implicit "ensure" operation
will be done.

3.3.67 Get disk transfer address (57h)

e Parameters
C = 57H (_GETDTA)
e Results
DE = Current disk transfer address

This function returns the current disk transfer address. This address is only
used for the traditional CP/M style FCB functions and the absolute sector read
and write functions.

3.3.68 Get verify flag setting (58h)
e Parameters
C = 58H (_GETVFY)
o Results

B = 00H => verify disabled
FFH => verify enabled

This function simply returns the current state of the verify flag which can be

set with MSX-DOS function 2Eh.

3.3.69 Get current directory (59h)

e Parameters

C = 59H (_GETCD)
B = Drive number (O=current, 1=A: etc)
DE = Pointer to 64 byte buffer

156 CHAPTER 3. FUNCTION SPECIFICATION

e Results

A = Error
DE = Filled in with current path

This function simply gets an ASCIIZ string representing the current directory of
the specified drive into the buffer pointed to by DE. The string will not include
a drive name or a leading or trailing "\" character, so the root directory is
represented by a null string. The drive will be accessed to make sure that the
current directory actually exists on the current disk, and if not then the current
directory will be set back to the root and a null string returned.

3.3.70 Change current directory (5Ah)

e Parameters

C = 5AH (_CHDIR)
DE = Drive/path/file ASCIIZ string

e Results
A = Error

The drive/path/file string must specify a directory rather than a file. The
current directory of the drive will be changed to be this directory. If the spec-
ified directory does not exist then the current setting will be unaltered and a
" .NODIR" error returned.

3.3.71 Parse pathname (5Bh)

e Parameters

C = 5BH (_PARSE)
B = Volume name flag (bit 4)
DE = ASCIIZ string for parsing

e Results

A = Error

DE = Pointer to termination character
HL = Pointer to start of last item

B = Parse flags

C = Logical drive number (1=A: etc)

This function is purely a string manipulation function, it will not access the
disks at all and it will not modify the user’s string at all. It is intended to help
transient programs in parsing command lines.

3.3. FUNCTION BY FUNCTION DEFINITIONS 157

The volume name flag (bit 4 of register B; it is in the same bit position as
the volume name bit in an attributes byte) determines whether the string will be
parsed as a "drive/path/file" string (if the bit is cleared) or a "drive/volume"
string (if the bit is set).

The pointer returned in DE will point to the first character which is not
valid in a pathname string, and may be the NULL at the end of the string. See
chapter 1 for details of the syntax of pathname strings and also for a list of valid
characters.

The pointer returned in HL will point to the first character of the last item
of a string (filename portion). For example, when a string "A:\XYZ\P.Q /F"
was passed, DE will point to the white space character before "/F" and HL will
point to "P". If the parsed string ends with a character "\" or is null (apart
from drive name), then there will be no "last item", thus HL and DE will point
to the same character. In this case, some special procedures will be needed to
all the programs which use this function.

The drive number returned in register C is the logical drive specified in the
string. If the string did not start with a drive letter then register C will contain
the default drive number, since the default drive has been implicitly specified.
Register C will never be zero.

The parse flags returned in register B indicate various useful things about
the string. For a volume name bits 1, 4, 5, 6 and 7 will always be clear. For
a filename, bits 3 to 7 relate to the last item on the string (the "filename"
component). The bit assignments are as follows:

b0 Set if any characters parsed other than drive name
bl Set if any directory path specified

b2 Set if drive name specified

b3 Set if main filename specified in last item

b4 Set if filename extension specified in last item

b5 Set if last item is ambiguous

b6 Set if last item is "." or ".."

b7 Set if last item is ".."

3.3.72 Parse filename (5Ch)

e Parameters

C = 5CH (_PFILE)
DE = ASCIIZ string for parsing
HL = Pointer to 11 byte buffer

e Results

158 CHAPTER 3. FUNCTION SPECIFICATION

A = Error (always zero)

DE = Pointer to termination character
HL = Preserved, buffer filled in

B = Parse flags

This function is purely a string manipulation function, it will not access disks at
all and will not modify the string at all. It is intended mainly to help transient
programs in printing out filenames in a formatted way. The ASCIIZ string will
be parsed as a single filename item, and the filename will be stored in the user’s
11 byte buffer in expanded form, with both the filename and the extension
padded out with spaces.

The parse flags returned in register B are identical to those for the "parse
pathname" function above (function 5Bh), except that bits 0, 1 and 2 will always
be clear. The user’s buffer will always be filled in, even if there is no valid
filename in the string, in which case the buffer will be filled with spaces. "x"
characters will be expanded to the appropriate number of "?"s. If either the
filename or the filename extension is too long then the excess characters will be
ignored.

The pointer returned in register DE will point to the first character in the
string which was not part of the filename, which may be the null at the end of
the string. This character will never be a valid filename character (see chapter
1 for details of valid filename characters).

3.3.73 Check character (5Dh)

e Parameters

C = 5DH (_CHKCHR)
D = Character flags
E = Character to be checked
e Results
A = 0 (never returns an error)
D = Updated character flags
E = Checked (upper cased) character

This function allow language independent upper casing of characters and also
helps with handling 16-bit characters and manipulation of filenames. The bit
assignments in the character flags are as follows:

b0 Set to suppress upper casing
b1 Set if first byte of 16-bit character
b2 Set if second byte of 16-bit character

b3 Set => volume name (rather than filename)

3.3. FUNCTION BY FUNCTION DEFINITIONS 159

b4 Set => not a valid file/volume name character
b5...b7 Reserved (always clear)

Bit 0 is used to control upper casing. If it is clear then the character will be
upper cased according to the language setting of the machine. If this bit is set
then the returned character will always be the same as the character passed.

The two 16-bit character flags (bits 1 and 2) can both be clear when the first
character of a string is checked and the settings returned can be passed straight
back to this function for each subsequent character. Care must be taken with
these flags when moving backwards through strings which may contain 16-bit
characters.

Bit 4 is set on return if the character is one of the set of filename or volume
name terminator characters. Bit 3 is simply used to determine whether to
test for filename or volume name characters since the sets are different. 16-bit
characters (either byte) are never considered as volume or filename terminators.

3.3.74 Get whole path string (5Eh)

e Parameters

C = BEH (_WPATH)
DE = Pointer to 64 byte buffer

e Results

A = Error
DE = Filled in with whole path string
HL = Pointer to start of last item

This function simply copies an ASCIIZ path string from an internal buffer into
the user’s buffer. The string represents the whole path and filename, from the
root directory, of a file or sub-directory located by a previous "find first
entry" or "find new entry" function. The returned string will not include a
drive, or an initial "\" character. Register HL will point at the first character of
the last item on the string, exactly as for the "parse path" function (function
5Bh).

If a "find first entry" or "find new entry" function call is done with
DE pointing to an ASCIIZ string then a subsequent "get whole path" function
call will return a string representing the sub-directory or file corresponding to
the fileinfo block returned by the "find" function. If this is a sub-directory
then the fileinfo block may be passed back in register DE to another "find
first entry" function call, which will locate a file within this sub-directory.
In this case the newly located file will be added onto the already existing whole
path string internally, and so a subsequent "get whole path string" function
call will return a correct whole path string for the located file.

Great care must be taken in using this function because the internal whole
path string is modified by many of the function calls, and in many cases can be

160 CHAPTER 3. FUNCTION SPECIFICATION

invalid. The "get whole path" function call should be done immediately after
the "find first entry" or "find new entry" function to which it relates.

3.3.75 Flush disk buffers (5Fh)

e Parameters

C = 5FH (_FLUSH)
B = Drive number (O=current, FFH=all)
D = O0H -> Flush only
= FFH -> Flush and invalidate
e Results

A = Error

This function flushes any dirty disk buffers for the specified drive, or for all
drives if B=FFh. If register D is FFh then all buffers for that drive will also be
invalidated.

3.3.76 Fork to child process (60h)
e Parameters
C = 60H (_FORK)
e Results

A = Error
B = Process id of parent process

This function informs the system that a child process is about to be started.
Typically this is a new program or sub-command being executed. For example
COMMAND2.COM does a "fork" function call before executing any command or
transient program.

A new set of file handles is created, and any current file handles which
were opened with the "inheritable" access mode bit set (see the "open file
handle" function - function 43h), are copied into the new set of file handles.
Any file handles which were opened with the "inheritable" bit clear will not
be copied and so will not be available to the child process. The standard file
handles (00h...05h) are inheritable and so these will be copied.

A new process id is allocated for the child process and the process id. of the
parent process is returned so that a later "join" function call can switch back
to the parent process. A ".NORAM" error can be produced by this function if
there is insufficient memory to duplicate the file handles.

Because the child process now has a copy of the previous file handles rather
than the originals, if one of them is closed then the original will remain open.
So for example if the child process closes the standard output file handle (file
handle number 1) an re-opens it to a new file, then when a "join" function is
done to return to the parent process the original standard output channel will
still be there.

3.3. FUNCTION BY FUNCTION DEFINITIONS 161

3.3.77 Rejoin parent process (61h)

e Parameters

C = 61H (_JOIN)
B = Process id of parent, or zero

e Results
A = Error
B = Primary error code from child

C

Secondary error code from child

This function switches back to the specified parent process and returns the error
code which the child process terminated with in register B, and a secondary error
code from the child in register C. Although the relationship between parent and
childprocesses is strictly one-to-one, this function can jump back several levels
by giving it a suitable process id. A ".IPROC" error will be returned if the
process id is invalid.

The child process’s set of file handles are automatically closed and the parent
process’s set of file handles becomes active again. Also any user RAM segments
which the child process had allocated will be freed.

If the process id passed to this function is zero then a partial system re-
initialization is done. All file handles are closed and the standard input and
output handles re-opened and all user segments are freed. This should not
normally be done by a user program if it intends to return to the command
interpreter since the command interpreter will not be in a consistent state after
this.

This function takes great care that the freeing of memory and adjusting
of process id is done before actually closing any file handles and thus before
accessing the disk. This ensures that if a disk error occurs and is aborted, the
join operation will have been done successfully. However if a "join 0" produces
a disk error which is aborted, then the re-initialization of default file handles
will not have been done. In this case another "join 0" function call should
be done and this will not attempt access disk (because all the files have been
closed) and so will be successful.

Note that if this function call is made via OF37Dh then registers B and C
will not return the error codes. This is because program termination and abort
handling must be done by the application program. The error code will have
been passed to the abort vector and code there must remember the error code
if it needs to. See the "terminate with error code" function (function 62h)
for the meaning of the primary and secondary error code.

3.3.78 Terminate with error code (62h)

e Parameters

162 CHAPTER 3. FUNCTION SPECIFICATION

C = 62H (_TERM)
B = Error code for termination
e Results

Does not return

This function terminates the program with the specified error code, which may
be zero indicating no error. This function call will never return to the caller
(unless a user abort routine executes forces it to - see function 63h). The
operation of this function is different depending on whether it was called from
the MSX-DOS environment via 00005h or from the disk BASIC environment
via OF37Dh.

If called via 00005h then if a user abort routine has been defined by function
63h it will be called with the specified error code (and a zero secondary error
code). Assuming that this routine returns, or if there was no user abort routine
defined, then control will be passed back to whatever loaded the transient pro-
gram via a jump at location 00000h. This will almost always be the command
interpreter, but in some cases it may be another transient program. The error
code will be remembered by the system and the next "join" function (function
61h) which is done will return this error code. The command interpreter will
print an error message for any code in the range 20h...FFh, but will not print a
message for errors below this.

If this function is called from the disk BASIC environment via 0F37Dh then
control will be passed to the abort vector at location "BREAKVECT". In this
environment there is no separately defined user abort routine and the error
code must be remembered by the code at "BREAKVECT" because "join" will not
return the error code.

3.3.79 Define abort exit routine (63h)

e Parameters

C = 63H (_DEFAB)
DE = Address of abort exit routine
0000H to un-define routine

o Results
A = 0 (never generates errors)

This function is only available when called via location 00005h in the MSX-
DOS environment. It cannot be called at location 0F37Dh from the disk BASIC
environment.

If register DE is zero then a previously defined abort routine will be undefined,
otherwise a new one will be defined. The abort routine will be called by the
system whenever the transient program is about to terminate for any reason

3.3. FUNCTION BY FUNCTION DEFINITIONS 163

other than a direct jump to location 0000h. Programs written for MSX-DOS
2 should exit with a "terminate with error code" function call (function
061h) rather than a jump to location 0000h.

The user abort routine will be entered with the user stack active, with IX,
IY and the alternate register set as it was when the function call was made and
with the whole TPA paged in. The termination error code will be passed to the
routine in register A with a secondary error code in register B and if the routine
executes a "RET" then the values returned in registers A and B will be stored
as the error codes to be returned by the "join" function, and normally printed
out by the command interpreter. Alternatively the routine may jump to some
warm start code in the transient program rather than returning. The system
will be in a perfectly stable state able to accept any function calls.

The primary error code passed to the routine in register A will be the code
which the program itself passed to the "terminate with error code" function
(which may be zero) if this is the reason for the termination. The routine will
also be called if a CTRL-C or CTRL-STOP is detected (" .CTRLC" or " .STOP" error),
if a disk error is aborted (".ABORT" error), or if an error occurred on one of the
standard input or output channels being accessed through MSX-DOS function
calls 01h...0Bh (" .INERR" or ".0OUTERR").

The errors " . ABORT", " . INERR" and " .0UTERR" are generated by the system
as a result of some other error. For example a ".ABORT" can result from a
" .NRDY" error, or a ".INERR" can result from a ".EOF" error. In these cases
the original error code (".NRDY" or ".EQF") is passed to the abort routine in
register B as the secondary error code. For all other errors there is no secondary
error code and register B will be zero.

If the abort routine executes "POP HL : RET" (or equivalent) rather than a
simple return, then control will pass to the instruction immediately following
the MSX-DOS call or BIOS call in which the error occurred. This may be useful
in conjunction with a disk error handler routine (see function 64h) to allow an
option to abort the current MSX-DOS call when a disk error occurs.

3.3.80 Define disk error handler routine (64h)

e Parameters

C = 64H (_DEFER)
DE = Address of disk error routine
0000H to un-define routine

e Results
A = 0 (never generates errors)

This function specifies the address of a user routine which will be called if a disk
error occurs. The routine will be entered with the full TPA paged in, but with
the system stack in page-3 active and none of the registers will be preserved
from when the MSX-DOS function call was made.

164 CHAPTER 3. FUNCTION SPECIFICATION

The error routine can make MSX-DOS calls but must be very careful to avoid
recursion. The list of function calls in section 3.2 of this document indicates
which function calls can be safely made from a user error routine. This routine
is called with the redirection status being temporarily invalidated in case the
standard I/O channels have been redirected. See the "get/set redirection
state" function (function 70h) for details of this.

The specification of parameters and results for the routine itself is as below.
All registers including IX, IY and the alternate register set may be destroyed
but the paging and stack must be preserved. The routine must return to the
system, it must not jump away to continue the transient program. If it wants to
do this then it should return A=1 ("abort") and a user abort routine will then
get control and this may do whatever it wants to.

e Parameters

A = Error code which caused error

B = Physical drive

C = b0 - set if writing
bl - set if ignore not recommended
b2 - set if auto-abort suggested
b3 - set if sector number is valid

DE = Sector number (if b3 of C is set)

e Results

A = 0 -> Call system error routine
1 -> Abort
2 -> Retry
3 -> Ignore
3.3.81 Get previous error code (65h)

e Parameters

C = 65H (_ERROR)

e Results
A=0
B = Error code from previous function

This function allows a user program to find out the error code which caused
the previous MSX-DOS function call to fail. It is intended for use with the old
CP/M compatible functions which do not return an error code. For example
if a "create file FCB" function returns A=0FFh there could be many reasons
for the failure and doing this function call will return the appropriate on, for
example " .DRFUL" or ".SYSX".

3.3. FUNCTION BY FUNCTION DEFINITIONS 165

3.3.82 Explain error code (66h)

e Parameters

C = 66H (_EXPLAIN)
B = Error code to be explained
DE = Pointer to 64 byte string buffer

e Results
A=0
B = 0 or unchanged

DE = Filled in with error message

This function allows a user program to get an ASCIIZ explanation string for a
particular error code returned by any of the MSX-DOS functions. If an error
comes from one of the old functions then "get previous error code" must
be called first to get the real error code and then this function can be called to
get an explanation string.

Chapter 2 contains a list of all the currently defined error codes and the
messages for them. Foreign language versions of the system will of course have
different messages. If the error code does have a built in explanation string
then this string will be returned and register B will be set to zero. If there is
no explanation string then a string of the form: "System error 194" or "User
error 45" will be returned, and register B will be unchanged. (System errors
are those in the range 40h...FFh and user errors are 00h...3Fh.)

3.3.83 Format a disk (67h)

e Parameters

C = 67TH (_FORMAT)
B = Drive number (O=current, 1=A:)
A = 00H -> return choice string
01H...09H -> format this choice
OAH...FDH -> illegal
FEH, FFH -> new boot sector
HL = Pointer to buffer (if A=1...9)
DE = Size of buffer (if A=1...9)

o Results
A = Error
B = Slot of choice string (only if A=0 on entry)

HL = Address of choice string (only if A=0 on entry)

This function is used to format disks and is really only provided for the "FORMAT"
command although other programs may use it (with care) if they find it useful.

166 CHAPTER 3. FUNCTION SPECIFICATION

It has three different options which are selected by the code passed in register
A.

If A=0 then registers B and HL return the slot number and address respectively
of an ASCIIZ string which specifies the choice of formats which is available. A
" IFORM" error will be returned if this disk cannot be formatted (for example
the RAM disk). Normally the string will be read using the "RDSLT" routine and
displayed on the screen followed by a "?" prompt. The user then specifies a
choice "1"..."9" and this choice is passed back to the "format" function, after
a suitable warning prompt, to actually format the disk. If A=0, in some cases
zero is returned in HL. This means that there is only one kind of the format
and no prompt is required. There is no way of knowing what disk format a
particular choice refers to since this is dependant on the particular disk driver.

If A=01h...09h then this is interpreted as a format choice and a disk will
be formatted in the specified drive with no further prompting. Register HL and
DE must specify a buffer area to be used by the disk driver. There is no way of
knowing how big this buffer should be so it is best to make it as big as possible.
If the buffer crosses page boundaries then this function will select the largest
portion of it which is in one page for passing to the disk driver. Many disk
drivers do not use this buffer at all.

If A=FFh then the disk will not actually be formatted, but it will be given a
new boot sector to make the disk a true MSX-DOS 2 disk. This is designed to
update old MSX-DOS 1.0 disks to have a volume id and thus allow the full disk
checking and undeletion which MSX-DOS 2 allows. The case A=FEh is the same
as A=FFh except that only the disk parameters are updated correctly and the
volume id does not overwrite the boot program. Also there are some MSX-DOS
1.0 implementations which put an incorrect boot sector on the disk and these
disks cannot be used by MSX-DOS 2 until they have been corrected by this
function.

The "new boot sector" function is mainly intended for the "FIXDISK" util-
ity program, but may be used by other programs if they find it useful. If it is
used then a "get format choice" function call (A=0) should be done first and if
this returns an error (typically ".IFORM") then the operation should be aborted
because this is a drive which does not like to be formatted and the disk could
be damaged by this function.

3.3.84 Create or destroy RAMDISK (68h)

e Parameters

C = 68H (_RAMD)

B = O0OH -> destroy RAM disk
1...FEH -> create new RAM disk
FFH -> return RAM disk size

e Results

A = Error

3.3. FUNCTION BY FUNCTION DEFINITIONS 167
B = RAM disk size

If register B=OFFh then this routine just returns the number of 16k RAM seg-
ments which are allocated to the RAM disk currently. A value of zero indicates
that there is no RAM disk currently defined. If B=0 then the current RAM
disk will be destroyed, loosing all data which it contained and no error will be
returned if there was no RAM disk.

Otherwise, if B is in the range 01h...FEh then this function will attempt to
create a new RAM disk using the number of 16k segments specified in register B.
An error will be returned if there is already a RAM disk (" .RAMDX") or if there
is not even one segment free (".NORAM"). If there are insufficient free RAM
segments to make a RAM disk of the specified size then the largest one possible
will be created. No error is returned in this case.

In all cases the size of the RAM disk will be returned in register B as a
number of segments. Note that some of the RAM is used for the file allocation
tables and the root directory so the size of the RAM disk as indicated by "DIR"
or "CHKDSK" will be somewhat smaller than the total amount of RAM used. The
RAM will always be assigned the drive letter "H: " regardless of the number of
drives in the system.

3.3.85 Allocate sector buffers (69h)

e Parameters

C = 69H (_BUFFER)
B = 0 -> return number of buffers
else number of buffers required
e Results
A = Error
B = Current number of buffers

If B=0 then this function just returns the number of sector buffers which are
currently allocated. If B!=0 then this function will attempt to use this number
of sector buffers (must always be at least 2). If it cannot allocate as many as
requested then it will allocate as many as possible and return the number in
register B but will not return an error. The number of sector buffers can be
reduced as well as increased.

The sector buffers are allocated in a 16k RAM segment outside the normal
64k so the number of buffers does not detract from the size of the TPA. However
the number of buffers does affect efficiency since with more buffers allow more
FAT and directory sectors to be kept resident. The maximum number of buffers
will be about 20.

168 CHAPTER 3. FUNCTION SPECIFICATION

3.3.86 Logical drive assignment (6Ah)

e Parameters

C = 6AH (_ASSIGN)
B = Logical drive number (1=A: etc)
D = Physical drive number (1=A: etc)

e Results

A = Error
D

Physical drive number (1=A: etc)

This function controls the logical to physical drive assignment facility. It is
primarily intended for the "ASSIGN" command although user programs may
want to use it to translate logical drive numbers to physical drive numbers.

If both B and D are non-zero then a new assignment will be set up. If
register B is non-zero and register D is zero then any assignment for the logical
drive specified by B will be cancelled. If both register B and D are zero then all
assignments will be cancelled. If register B is non-zero and register D is FFh then
the current assignment for the logical drive specified by register B will simply
be returned in register D.

All drives used in the various function calls, including drive names in strings
and drive numbers as parameters to function calls, are logical drives. However
the drive number passed to disk error routines is a physical drive so if "ASSIGN"
has been used these may be different from the corresponding logical drive.

3.3.87 Get environment item (6Bh)

e Parameters

C = 6BH (_GENV)
HL = ASCIIZ name string
DE = Pointer to buffer for value
B = Size of buffer
e Results
A = Error

DE = Preserved, buffer filled in if A=0

This function gets the current value of the environment item whose name is
passed in register HL. A ".IENV" error is returned if the name string is invalid.
If there is no environment item of that name then a null string will be returned
in the buffer. If there is an item of that name then its value string will be copied
to the buffer. If the buffer is too small then the value string will be truncated
with no terminating null and a " .ELONG" error will be returned. A buffer 255
bytes will always be large enough since value strings cannot be longer than this
(including the terminating NULL).

3.3. FUNCTION BY FUNCTION DEFINITIONS 169

3.3.88 Set environment item (6Ch)

e Parameters

C = 6CH (_SENV)

HL = ASCIIZ name string

DE = ASCIIZ value string
e Results

A = Error

This function sets a new environment item. If the name string is invalid then a
".IENV" error is returned, otherwise the value string is checked and a " .ELONG"
error returned if it is longer than 255 characters, or a " .NORAM" error if there is
insufficient memory to store the new item. If all is well then any old item of this
name is deleted and the new item is added to the beginning of the environment
list. If the value string is null then the environment item will be removed.

3.3.89 Find environment item (6Dh)

e Parameters

C = 6DH (_FENV)

DE = Environment item number

HL = Pointer to buffer for name string
e Results

A = Error

HL = Preserved, buffer filled in

This function is used to find out what environment items are currently set. The
item number in register DE identifies which item in the list is to be found (the
first item corresponds to DE=1). If there is an item number <DE> then the name
string of this item will be copied into the buffer pointed to by HL. If the buffer
is too small then the name will be truncated with no terminating null, and a
" ELONG" error returned. A 255 byte buffer will never be too small. If there
is no item number <DE> then a null string will be returned, since an item can
never have a null name string.

3.3.90 Get/set disk check status (6Eh)

e Parameters

C = 6EH (_DSKCHK)

A = O0H -> get disk check status
01H -> set disk check status

B = 00H -> enable (only if A = 01H)
FFH -> disable (only if A = Q01H)

170 CHAPTER 3. FUNCTION SPECIFICATION

e Results
A = Error
B = Current disk check setting

If A=0 then the current value of the disk check variable is returned in register
B. If A=01h then the variable is set to the value in register B. A value of 00h
means that disk checking is enabled and a non-zero means that it is disabled.
The default state is enabled.

The disk check variable controls whether the system will re-check the boot
sector of a disk to see whether it has changed, each time a file handle, fileinfo
block or FCB is accessed. If it is enabled then it will be impossible to acciden-
tally access the wrong disk by changing a disk in the middle of an operation,
otherwise this will be possible and may result in a corrupted disk. Depending
on the type of disk interface, there may be some additional overhead in hav-
ing this feature enabled although with many types of disk (those with explicit
disk change detection hardware) it will make no difference and the additional
security is well worth having.

3.3.91 Get MSX-DOS version number (6Fh)

e Parameters

C = 6FH (_DOSVER)

e Results
A = Error (always zero)
BC = MSX-DOS kernel version

DE

MSXD0S2.SYS version number

This function allows a program to determine which version of MSX-DOS it is
running under. Two version numbers are returned, one in BC for the MSX-DOS
kernel in ROM and the other is DE for the MSXD0S2.SYS system file. Both of
these version numbers are BCD values with the major version number in the high
byte and the two digit version number in the low byte. For example if there
were a version 2.34 of the system, it would be represented as 0234h.

For compatibility with MSX-DOS 1.0, the following procedure should always
be followed in using this function. Firstly if there is any error (A!'=0) then it
is not MSX-DOS at all. Next look at register B. If this is less than 2 then the
system is earlier than 2.00 and registers C and DE are undefined. If register B
is 2 or greater then registers BC and DE can be used as described above. In
general the version number which should be checked (after this procedure) is
the MSXD0S2. SYS version in register DE.

3.3. FUNCTION BY FUNCTION DEFINITIONS 171

3.3.92 Get/set redirection state (70h)

e Parameters

C = 7TOH (_REDIR)
A = O0H - get redirection state
01H - set redirection state
B = New state: bO - standard input
bl - standard output
e Results
A = Error
B = Redirection state before command:

b0 set - input is redirected
bl set - output is redirected

This function is provided primarily for disk error routines and other character
I/O which must always go to the console regardless of any redirection. When
the CP/M character functions (functions 01h...0Bh) are used, they normally
refer to the console. However if the standard input or output file handles (file
handles 0 and 1) have been closed and reopened to a disk file, then the CP/M
character functions will also go to the disk file. However certain output such as
disk error output must always go to the screen regardless.

This function allows any such redirection to be temporarily cancelled by
calling this function with A=1 and B=0. This will ensure that any subsequent
CP /M console I/O will go to the console, and will also return the previous setting
so that this can be restored afterwards. The system is a somewhat unstable state
when the redirection state has been altered like this and there are many function
calls which will reset the redirection to its real state over-riding this function.
In general any function call which manipulates file handles, such as "open",
"close", "duplicate" and so on, will reset the redirection state. The effect of
this function is therefore purely temporary.

