

Introduction

Thank vou for purchasing the Yamaha FM Music Macro (YRM—184). This unit is an expanded BASIC system
allowing the operations of the FM Music Synthesizer to be controlled by BASIC. BASIC programs can be
created for M sound generated performance and special effects as well as for the creation of graphics.
Features

* Up to four voices can be specified for simultaneous playback.

% Playback of eight parts.

* Functions as a rhythm box for the creation of individual rhythm patterns

* Volume and pitch can be changed during performances. This permits the creation of various special sound
effects.

* The playback data can be output through MIDI terminals for playing other MIDI compatible instruments
such as the Yamaha DX Synthesizers.

Use of this manual

This instruction manual is divided into four sections: basics, applications, reference, and appendices.

The sample programs in the manual use MSX BASIC commands. Refer to the MSX BASIC manual for further
details on this form of BASIC. Alsoe refer to the instruction manual of the CXSM.

Basics This section describes the operating procedure of the FM Music Macro and precautions. It alse
deals with the procedure for playback using the FM Music Macro and the basics of voice
synthesizing.

Applications

This section describes the way to get maximum enjoyment from your FM Music Macro.

Syntax This section describes the commands used with the FM Music Macro. They are arranged in
alphabetic order.

Appendices

The table of commands is arranged for easy reference. In addition to this command table and
the memory map, the use of data memory cartridges and special commands are explained here.

m is a trademark of Microsoft Corporation

index

Introduction e

I-1 Overview of the FM Music Macro ._.......coovneenendd

System requirements

Starting the FM Music Macro
Before inputting of programs
T—=2 Playback proCedUER i st |
Simple playback
Various forms of playback
1-3 “Use:of thythi s st 12

T4 ERSEMDBLE coovooeooeeecee s s enssessnssss s d O

T ApPUEEHONS - gy mes s s ssassalD
II-1 Long PLAYDACK eeciesicsveeeseesees s visssesesssness s nmsnmssnsor LD

Use of the _WAIT command

Use of the _ON EVENT (n) GOSUB command

Events
2 MAarks:....commo s ssmspsenmemmiGaisimsmng 20
THL SRR, ..o, S R A A B T D
IV ADDENEIN ..o im0
IV—1 Table of commands ... 68
V=2 Melor Y R P s i svisssiisssiisississss 10
IV—3 Use of data memory cartridgeswimerisnissinneen 71
IV—4 Special COMMANAScomnremeememimsrinssssmssessensesssssesss 1

IV=5 Sample ProOBTaMScovveeessomrssmeemseerssmessessssssssssanssosns 13

3]

|

I Basics

-1 Overview of the FM Music Macro

r System Requirements

The following equipment is needed for use of the FM Music Macro:

% CX5M Music Computer (32 K RAM capacity) or MSX personal computer

% Video Monitor or Color TV

% Yamaha FM Sound Synthssizer Unit (SFG—81 built into CX5M, or SFK-01) =

Optional equipment:
* Yamaha Music Keyboard (YK—81 or YK—-1@)
% Printer (use a compatible printer)

* Cassette recorder

* Yamaha Data Memory Cartridge (UDC-01>

Television FM Music Macro (YRM—-184)
Fig. 1 System Configuration
II ITTITYITVNIT E
I MSX unit {}

—

[Single cartridge adaptor

3 . 2 '
Music Keyboard (YK—91 or YK—18D : E : CA=0D
El . :
5 @ =
Cassette recorder Printer Data Memory Cartridge
(UDC~01

Etarting the FM Musimécrow

1> Confirm that all of the equipment is correctly connected.

2) Check that the power is off.

3 Insert the ROM cartridge into the computer’s cartridge slot.

4) Turn the power on and the FM Music Macro will automatically start,

% The "MUSIC MACRO" message will appear as shown in Fig. 2. Then, the BASIC screen is normally displayed

with the message "19727 Bytes ™. If the program does not start as expected, turn the power of the CX5M
unit off and check that the ROM cartridge is inserted correctly.

Fig. 2 Power—on Screen Messages

MUSIC MACRO Version 1.0

Copyright 1984 by YAMAHA

MSX Basic wersion 1.0
Copyright 1983 by Microsoft
12431 Bytes free

0K

B

Before inputting programs

There is a special control program (MUSIC BIOS) incorporated into the FM Sound Synthesizer. The

FM Music Macro uses an expanded form of MSX BASIC which allows easy programming of FM sound generation
functions in BASIC. This system operates in the MUSIC BIOS system. The commands for the FM Music Macro
are called from MSX BASIC through the use of the CALL command. This means that "CALL" or its abbreviated
form "_" (underline) must be attached to the beginning of FM Music Macro commands. The abbreviated form

of "_" (underline) is used throughout this manual. The FM Music Macro commands are only effective for the
first four characters. Anything after that can be omitted.

(example)
CALL USERHYTHM

_USERHYTHM

_USER

Precautions when using the FM Music Macro

When FM sound generation is used, the processing for sound generation control is added to the normal
processing of the computer. Consequently, the processing speed for BASIC operations such as keyboard
scan are slowed down. Alse, the pitch time is set for a VDP interrupt every 1/6@ second
(1/50 second in a PAL system) and the values are updated at this time. However, during FM sound
generation control there may be times when the interrupt cannot be received and thus timing will be
slowed down. Certain precautions must be followed when commands for time are used. The FM Music Macro has
its own built—in timer which should be used. The PLAY command in MSX Basic uses the interrupts generated
by the VDP to calculate the length of sound generation, and care must be taken when using this command.

% Machine language programs should be input below CFFFH as the work area of the FM Music Macro is between
DOBOH and F380H. When the upper limit of the memory is specified by the CLEAR command, the work area of
the FM Music Macro will be damaged if an address higher than DB@@H is specified. Use the area higher than
C@OO@H for the stack area.

[-2 Playback procedure

Simple playback

Input the following program.

1@ _INIT

20 _INST(1)

30 _PHRASE(1,"cdefg™)
40 _PLAY(1,1)

Enter the RUN command. You should hear the sound of BRASS 1. If you don't, check the connection and the
volume of the television (amplifier).

Here is an explanation of the above program:

STEP 1 Line 10 is a command for resetting the FM Music Macro to its initial "power on” state. It is used
to prevent new programs from being affected by previously executed programs.

STEP 2 This line is used to specify which of the four FM Music Macro instruments to be played. This is
done here by the _INST command. Instrument 1 is selected in this example.

STEP 3 After the above preparations, playback starts. When sounds generated in the CX5M are played, the
playback contents are specified by the PLAY command. However, with the FM Music Macro this is
divided into two steps: specifying the playback contents and then actual playback. Line 30
specifies the playback contents. This command writes the playback data into the memory for this
data. This memory is refered to as a track. Like the tracks of a tape recorder, a total of eight
tracks can be used. The number of tracks to be used is usually specified by the _TRACK command
but this can be omitted in this program as there is only one track being used. Specification of
the playback contents is done by first specifying the track onto which data is to be written, i
followed by specification of the playback data.

PHRASE (1, "cdefg™)
1 T
track specification playback contents (playback list)

The playback contents are specified by a character string (pplayback list). "cdefg” stands for the
following scale. Various forms of playback are possible with the use of these symbols.

Symbols ¢ d e £f g a b |
Scale do re mi fa so la ti

STEP 4 Playback can take place after the data is written onto the track. The _PLAY command in line 4@
starts playback. This command specifies the instrument and the track containing the data to be

played. Both of these are 1 as this program uses only one instrument and one track.

_PLAY(1,1)

L track specification
instrument specification

— Summary of the playback procedure

(1) Tnitialization of system (_INIT command)

® Preparation of instruments (_INST command)

® Writing of playback contents (_PHRASE command)
(@) Beginning of playback (_PLAY command)

(2) _INST command

' Instrument }—‘ (4) _PLAY command
5 Playback

(3) _PHRASE
Track

Playback contents canmhand
(memory for playback datad

b e

Various forms of playback l

You should have a good idea by now of the basic playback procedure. Next, change the length of notes and
attach sharps (#) and flats (b).

1. Length of notes

Substitute the following for line 3@ and run the program again,

3@ _PHRASE(Ll,"cld2e4f8glo™)

The length of the notes should become progressively shorter. The numbers after the letters ¢ — g change
the length of notes. 4 stands for a quarter note and 8 is used to indicate an eighth note. The notes
become shorter as the value becomes larger. If continuous notes are going to be the same length,
specifying numbers after each one is redundant, so the "L symbol is used for this. Substitute the
following for line 3@ and run the program again.

3@ _PHRASE(1,"l4cdel8fg™)

The length of the note is determined by the number following the letter which indicates the scale of the
note. However, if there is no number, the number following the "L" symbol determines the length. Check
this by entering the following for line 3@.

30 _PHRASE(1, "l4cde2l8fg™)

Specification of the "L" symbol is effective until another value is specified for L. L. is 4 when the
power is turned on or when the unit is initialized by the _INIT command. Dotted notes will be explained
next. Dotted notes are indicated by a " (period) after the letter which specifies the scale of the

note.

_PHRASE(1,"cd.e8.")

If there is a number following the letters, "a” — "g"”, dots must be located after the numbers.

2. #(Sharp) and b(Flat) Notation

The following notations are used to specify sharps and flats:

(sharp): the "#" symbol or the "+" symbol is input immediately after the note.

b (flat): the "= symbol is input immediately after the note.

For example, to specify a C sharp with a length of 4, either of the following may be input:
_PHRASE (1, "c#4™)

_PHRASE(1, " L4c#™)

If the length of the note is specified for the individual note, the "#", ™+"or ™" symbol is entered
between the note specifier and the note length specifier.

3. Setting octaves

All notes up to now have been confined within a single octave. The "0O” symbol is used for the output of
higher and lower octaves. Substitute the following for line 30.

_PHRASE(1, "o2cego3cegobdcego5e™)

The number after the "0” symbol sets the octave. This number can be between @ and 8. 08 can only output a C
note.

Specification of the "O" symbol is effective until the symbol is specified again. The value is 03 when
the power is turned on or when the unit is initialized by the _INIT command.

The "<" and ">" symbols are used to raise and lower the octave by one. The "<” symbol raises the present
octave value by one and ">" lowers it by one.

_PHRASE(1, "o2ceg<ceg<ceg<c™)

Next, lets use the above commands to create a song.

1@ _INIT
20 _INST(LD
3@ READ A%

4@ IF A$="end"” THEN 70

5@ _PHRASE(1,A%)

6B GOTO 30

TG PLAY(1,1)

8@ DATA LB8e.glbgbse.dlbchd.eldg.eldd?
9@ DATA L8e.glbg4e.dlbchded.clbe2
1@ DATA end

_—____——_—————_—_-__-_-_—___.———————_

4. Setting tempo

The tempo of the playback data can be changed by the _TEMPO command. Add the following line to slow down
the tempo of the program.

25 TEMPO(6@)

The tempo should have become slower. The tempo is set by the value contained in parentheses (). The
number is equivalent to the number of quarter notes per minute. The tempo will slow down as the value
becomes larger. Change the tempo value in the above _TEMFO command and listen to the difference in tempo.
The initial value set is _TEMPO {12@).

The tempo of the playback contents of the character string (playback list) can also be set. This is
useful for changing the tempo during playback. Change lines 25 and 98 of the above program to the
following.

10 _INIT

20 _INST(1)
25 _TEMPO(60)
30 READ A%

4@ IF A%S="end" THEN 70

5@ _PHRASE(1,AS$)

6@ GOTO 3B

7@ _PLAY(1,L)

80 DATA LBe.gléghe.dlbchd.elog.elod?

0@ DATA t150L8e.gléghe.dlécktblded., clbc?
1@ DATA end

The tempo set by the _TEMPO command can be changed by the use of the "T” symbol. The value after the "T"
symbol specifies the percentage by which the tempo changes. In this example, the tempo will change by

150% (1.5 times) and by 58% (1/2). The tempo specification will be returned to 100% (1 time) of the tempo

set by _TEMPO command after the playback of the character string set by the "T” symbol.

5. Changing the voice
The following procedure is used to change the voice. Add the following line to the program.

22 _MODIC(1,4)

Run the program after the line has been input. Up to now, playback has used the BRASS 1 tone. This has
now become STRING 1. The _MODINST command is used in this way to change the voice. This command changes
not only the voice but also changes data for the instrument. Refer to the syntax section for details.

Line 22 has the values 1 and 4 in parentheses. The first value, "1" is the instrument number which is
specified to change the instrument data. The second value, "4" is the voice number. The voice number is
set in the range of 1 — 56. 1 — 48 are preset in the FM Sound Synthesizer unit. 49 — 56 are used for
tones created using the FM Voicing Program (YRM-102). If voices A9 — 56 are to be used, the voice data
must be loaded from the cassette recorder beforehand (refer to pg. 24 and pg. 32).There are a number of
other things which can be set for the playback list. Refer to the section on the PHRASE command in the
syntax section for further details.

(—A Summary —
! Length of note character for scale + number ...__________. only effective for that note

! "Lrpumbart ool effective until new specification
Setting ## and b "#": note +"#"or ™+”

“B": note + =7
Setting octave "0O” + number

Setting tempo _TEMPO(<tempo value>): <tempo value> is @ (stop) — 200 (fastest)

Setting voice _MODINST (<instrument number>,<voice number>) <voice number> is 1 — 56

-3 Use of rhythm

The FM Music Macro can add a rhythm instrument in addition to the four basic instruments. This allows for
the easy addition of rhythm. Input the following program.

1@ _INIT
20 _USERHYTHM
30 _SELP(1)

40 _RHYTHM(16)

Run the program and the playback should be 4 bars of 16 beats. Here is an explanation of the above
program.

STEP 1 Line 1@ is the _INIT command which resets the FM Music Macro.

STEP 2 Line 20 is the command for specifying the use of the rhythm instrument. This command must be
input prior to the use of rhythm related commands. The number of tracks which can be used
simultaneously drops from a maximum of eight to six.

STEP 3 The rhythm pattern is selected after the rhythm instrument is set. There are six preset rhythm
patterns and iwo original patterns can also be defined. The following numbers are used to specify
the pattern. Line 30 in this example selects a 16 beat rhythm with _SELP().

1 — 6 (Preset patterns)
1: 16 beat
2: slow rock
3: waltz
4: rock
5: disco
6: swing
7, 8: definable patterns

The procedure for defining patterns is given on page 38.

STEP 4 The above steps complete the preparations. The _RHYTHM command in line 48 is the rhythm command.

This command specifies the number of times that the rhythm is to be repeated. The value specifies
the quarter note part. For example, if for one bar the rhythm is to be 4/4, _RHYTHM (4) is
specified. If it is 374, _RHYTHM (3) is specified. Here _RHYTHM (16 is entered for playback of
four bars.

——— Summary of the rhythm playback procedure

(1) Initialization of the system (_INIT command?
(2) Preparation of the rhythm instrument (_USERHYTHM command)
(3) Select for rhythm patterns (_SELP command)

(4) Beginning of playback (_RHYTHM command)

—

[-4 Ensemble

A simple expression of the preceeding concepts will allow you to play two or more instruments
simultaneously.

10 INIT

20 _TRACK(2)

30 _TEMPO(135)

40 _INST(1)

5@ _INST(2)

6@ MODI(1,16)

7@ MODI(2,19)

8 READ A%.BS

90 IF A$="end" THEN 130

1@ PHRASE(1,A$)

11@ PHRASE(Z2,BS$)

120 GOTO 8®

130 _STANDBY

140 _PLAY(1,1)

150 _PLAY(2,2)

166 START

17® DATA c2eg>b.llé<cdc?
180 DATA LBcgegcgegdgfgcgeg
190 DATA aZlig<c=gl24fgflléefe’
200 DATA LBcafacgeg>b<gdgcgeg
21@ DATA end,""

This program uses two tracks, which are designated in line 2@. The number of track is specified by the

value in parentheses. There are new commands in line 1308 and 160, used to synchronize playback of the two
instruments. The _STANDBY command temporarily stops playback. This means that playback will not start
although there are _PLAY command following this command. The command can be compared to the function of
the pause button on a tape recorder. The _START command releases the temporary suspension of playback
operations. This allows playback of instrument 1 and instrument 2 to begin simultaneously. The following
program includes the rhythm instrument.

1® _INIT

20 TRACK((2)

30 TEMPO{135)

40 _USERHYTHM

58 INST(1»>

6@ _INST(2)

7@ _MODIC1,16)

80 MODI(2,19)

9@ READ A$,B%$

100 IF A$="end" THEN 140
11® PHRASE(1,A%)

120 _PHRASE(2,B%$)

133 GOTO 96

14@ _STANDBY

156 PLAY{(1,1)

160 _PLAY(2,2)

17@ _SELP({1)

188 _RHYTHM{16)

19@ _START

200 DATA cleg>b.ll6<cdce
21@ DATA LBcgegcgegdgfacgeg
220 DATA a2lig<c>gl24fafllbefe?
230 DATA |LB8cafacgeg>b<gdgcgeg
240 DATA end,""

13

[-4 Ensemble

A simple expression of the preceeding concepts will allow you to play two or more instruments
simultaneously.

1@ INIT

20 _TRACK(2)

38 TEMPO(135)

4@ _INST(1LD

5@ _INST(2)

60 MODI(1,16)

7@ _MODI(2,19)

ah READ A%,BS

90 IF A$="end" THEN 130

120 _PHRASE(1,A$)

11@ PHRASE(Z2,B$)

120 GOTO 8®

130 STANDBY

140 PLAY (1,1

150 _PLAY(2,2)

160 _START

17® DATA cZeg>b.ll6<cdc?
18@ DATA |Bcgegcgegdgfgcgeg
19@ DATA alliég<c>gl24fgflléefer’
20® DATA LBcafacgeg>b<gdgcgeg
21® DATA end,""

This program uses two tracks, which are designated in line 2@. The number of track is specified by the

value in parentheses. There are new commands in line 13@ and 160, used to synchronize playback of the two
instruments. The _STANDBY command temporarily stops playback. This means that playback will not start
although there are _PLAY command following this command. The command can be compared to the function of
the pause button on a tape recorder. The _START command releases the temporary suspension of playback
operations. This allows playback of instrument 1 and instrument 2 to begin simultaneously. The following
program includes the rhythm instrument.

1@ _INIT

20 _TRACK(2)

30 TEMPO(135)

40 _USERHYTHM

5@ _INST(1L)

6@ _INST(2)

7@ MODI(1,16)

80 _MODI(Z2,19)

9@ READ A%$,B$

120 IF A$="end” THEN 140
11® _PHRASE(1,A%)

120 _PHRASE(2,B$)

13@ GOTO 96

14® _STANDBY

150 PLAY (1,1

16@ PLAY(2,2)

17@ _SELP(1)

180 _RHYTHM(16)

190 START

2080 DATA cZeag>b.llb<cdc2
21@ DATA LBcgegcgegdgfgcgeg
220 DATA alliag<c>gl24fgflléefel
230 DATA L8cafacgeg>b<gdgcgeg
240 DATA end,""

13

—_—_—

~——— Summary of ensemble playback
(1) Temporary suspension of playback (_STANDBY command)
(2) Beginning of playback for each instrument (_PLAY and _RHYTHM commands)

(3) Release of temporary suspension and start of actual playback (_START command)

14

I Applications

I-1 Long Playback

The maximum size for tracks is 4Kb/TRACK. This is equivalent to playback data of approximately 50@ notes.
Thus with long programs, loading all the playback data inte a track, as shown on pg. 9 , will exceed the

memory capacity and make playback impossible. In this case, the contents of a track must be rewritten several
times. The problem with simply dividing the program is the time lag while loading a new section after playing a
previous one. This is prevented by reserving two tracks for one instrument. While one track is playing, playback
data is being loaded into the other track.

Fig. 3 TRACK 1 TRACK 2

_PHRASE (1, <playback list>) |Load (_PHRASE command)

_PLAY (, Playback start (_PLAY command)| P1ayback
_PHRASE (2, <playback list>) Load (_PHRASE command>
_PLAY (1,2 é Playback wait (_PLAY command)
=
i :
n s
Playback start
_PHRASE (1, <playback list>> |Load (_PHRASE command)
_PLAY (1,1 Playback wait (_PLAY command)
Pléyback start
_PHRASE (2, <playback list>> Load (_PHRASE command)
_PLAY (1,2 Playback wait (_PLAY command)
Playback start
_PHRASE ({, <playback list>) |Load (_PHRASE command) =
_PLAY O, Playback wait (_PLAY command) ks
' k]
s

When the _PLAY command is executed, playback will enter the wait mode for the specified instrument
if the same instrument is being played. Playback will start at the instant current playback of the
instrument is completed. This technique allows the use of the entire BASIC program area and alleviates
worries about the size of the tracks.

New data cannot be loaded into a track while that track is being played. Also, the _PLAY command cannot
be used to start playback of instruments already in the playback wait mode. This means that the loading
of playback data can only begin after the previous playback operations are completed. There are two ways
of confirming the completion of playback of one section. One way is with the use of the _WAIT command, and
the other is with the _ON EVENT (> GOSUB command. The following explains the use of both procedures.

16

Use of the _WAIT command

The _WAIT command is a command which suspends execution of a program until completion of playback of a
specified instrument or rhythm. This command allows for easy confirmation of playback completion. In
Figure 3, the _WAIT command can be inserted before the _PHRASE command after the third repetition. The
following is an example of an actual program.

1@ _INIT
2@ _TRACK(2)
30 _INST(1)

4@ _TEMPO(140)

S@ MODI(1,18)

60 T=N AND 1:T=T+1

70 N=N+1

80 READ AS

99 IF A$="end" THEN END

100 _ERASEC(T)

11@ PRINT"TRACK™;T;"TO WRITE IN"

120 _PHRASE(T,A$)

128 _PLAY(1.T)

140 IF N>1 THEN PRINTZWATTING": WAIT(1)

150 GOTO 68

160 DATA K218br8<erlédlécgf>b<edc>b<dbcrs

170 DATA k2L8br8<erléodlocgfbgfedcd>bgl1lbdd

180 DATA kZ2llé6o4cddd>b<dgbbe! ffaadagfcfee>b<ed>b<d>a<d>agdd
199 DATA k2llé6cdddcdfggde !gacgfe!>b<e!dd>a<dccd>b<cribobtfff
200 DATA kZll6obed-c>ba<ff<fed-c>bafffed-c>ba<ff<ffed-c>bafff
21® DATA k2os4ll6cfffd-a-g-g-dgggea—a-a-e!afbfib!g<c>gli<c>a<d>b<ecf
230 DATA K2L8brl<erlédlébcgf>beede>bdbcr8

240 DATA k2LBbrB<erlédlécgfbgfedcd>b<rd

250 DATA end

The command in line 180 clears the track. The variable T is the track number. The value of T alternates
between 1 and 2.

Use of the _ON EVENT (n) GOSUB command

The FM Music Macro is capable of generating interrupts upon the completion of playback etc. The _ON EVENT
¢) COSUB command allows the execution of a subroutine when the program is interrupted. A program for
rewriting playback data can be contained in the subroutine. With the _WAIT command, other processing can
take place while the execution of the program is being interrupted. This can be, for example, the drawing

of pictures on the screen during playback.

Sample Program

1@ _INIT
20 _ON EVENT(1) GOSUB 180
39 _EVENT(1) ON
40 _TRACK(2)
50 INST(1)
68 _TEMPO(140)
7@ MODI(1,16)
80 FOR I=1 TQ 2
2@ READ AS
180 _PHRASE(I,AS$)
116 PLAYC(1, I}
120 NEXT I
13@ PRINT"——FM MUSIC MACRO-- "
135 IF X=1 THEN END
140 GOTO 130
L]

150

160 "-- trap routine —--—-—

170 ° :
180 T=N AND 1:T=T+1:N=N+1 {
190 READ A% 3

200 IF A$="end" THEN X=1:RETURN
21@ _ERASE(T) |
220 _PHRASE(T,A$) i
230 _PLAY(1,T)

240 RETURN

2508 '

260 °

270 DATA t127K218br8<erlédlbcgf>beede>bedbcrd

280 DATA k218br8<erlédiécgfbgfedecd>b<l1bdd

290 DATA k2l1604cddd>b<dgbbe ! f#aadagfcfee>b<ed>b<d>a<d>agdd

300 DATA k2ll16cdddcdfggde 'ggcgfe!>b<e!dd>a<dccd>b<crléostfff

310 DATA k2lLlbosed-c>»ba<ff<fed-c>bafffed-c>ba<ff<ffed-c>bafff

320 DATA kZo4l1l6cfffd-g-g-g-dgagea-a-a-e!afbfitb!g<c>gii<cl#f>a<d>b<ecf
330 DATA KZ2L8br8<erlédlobcgf>becede>bgdbcr8d

340 DATA k2l8br8<erlédlécgfbgfedcd>b<r8

358 DATA end

360

This program divides the piece into four sections. There is no need for playback completion to be

checked up to the second phrase (refer to Fig. 3). The _PHRASE and _PLAY commands are repeated twice in a
manner similar to the _WAIT command (lines 8@ — 120). The next line begins an infinite loop which

prevents further progression. This does not rewrite playback data but looks instead at lines 2@ and 3@.
These two commands cause the program to jump to the subroutine in lines 180—248 when playback is
completed. This subroutine rewrites playback data.

The RETURN command at the end of the subroutine returns the program to the original routine which is to
repeat the display. This program continues playback until there is no more playback data. Then, the
program is ended by lines 135—200.

The parentheses in the _ON EVENT () GOSUR in line 2@ contain 1. This value determines the instrument
whose playback completion generates an interrupt. In this program there is only one instrument and
therefore 1 is the value in the command. The _EVENT ON command in line 3@ permits the generation of an
interrupt. The execution of this command generates interrupts at the completion of playback and for the
program to go to the subroutine specified in the _ON EVENT (n) GOSUB command. The value in parenthesis,
in this case 1, is the same instrument number that was specified in the _ON EVENT (n> GOSUB.

i Evenis
L - = |

The _WAIT command and _ON EVENT (n)> GOSUB commands allow you to advance the program to the next line or
interrupt the program when certain special conditions occur. These certain special conditions are

referred to in this manual as "events”. The following events are specified by their respective numbers.

1. Playback completion of instrument 1

2. Playback completion of instrument 2

3. Playback completion of instrument 3

4. Playback completion of instrument 4

5. Completion of rhythm playback

6. The time set in the internal timer of the FM Music Macro

LT

-2 Marks

Normally, playback of the playback data loaded into tracks is started from the beginning of the track.
However, the track can be divided into sections and these sections can be played in any order desired.

This is done by attaching numbers to the data (called marks) when it is loaded into the track by the _PHRASE
command. Input the following program. When the program is run, the INPUT command will ask for a number.

If 1 is input a CEG chord will be output; if 2 the chord will be CFA; and 3 will cause the output of a

BDG chord.

1@ _INIT

20 _INST(1,3)

30 READ M,AS

4@ IF M=@ THEN 7@

5@ _PHRASE(1,AS$,M)

6@ GOTO 30

7@ X$=INKEY$:IF X$="" THEN 70
80 X=VAL (X$)

99 IF X>3 OR X<l THEN 7@

100 PLAY(1,1,X)

110 _WAIT(DL)

120 GOTO 70

130 DATA 1,l8[cegl,2,l8[cfal,3,8Lo2b<dgl,@,""

This program loads the three chords (CEG, CFA, and BDG) into one track. Playback is by the specification
of one of these. The letter (variable M) after the playback list in the _PHRASE command of line 5@ is the
mark. In this example the numbers are as follows: 1 is (ceg), 2 is (cfa), and 3 is (bdg). These numbers

need not be consecutive order. They can be chosen from between 1 and 254.

The way the tracks are divided by the marks is shown in the following diagram.

Mark 1 Mark 2 Mark 3

ceg) [efa) [o2b<_dg)

In line 180, the _PLAY command specifies which part is to be played by writing a mark number (variable XD
after the instrument number and the track number.

If the mark number is omitted, 2 mark number equal in value to the track number will be automatically
read.

In this section, all the commands for the FM Music Macro program are presented in alphabetical order in

the following format:

Function a brief description of the function of the command

Format the format of the command. The following rules apply when commands are input.

Example

*® Only the first four characters of the commands are interpreted.

% CALL or its abbreviation *_" (underline) is attached to the beginning of all commands.

(example

CALL INIT
_INIT

* Items expressed in upper case letters are input as such. They can be input as lower or
upper case letters.

* Ttems enclosed in < > are specified by the user.

* Items enclosed in () can be omitted. If they are omitted, the initial value or the value
set before that is used.

* The following format is used for omitting parameters when the command has multiple
parameters delimited by commas (*,").

_INST(<instrument number>(,<voiced number>J,<MIDI>),<MIDI channel>))

The parameters enclosed in () can be omitted. If the rest of the parameters following the
omitted parameter are also omitted, the commas need not be input. However, if subsequent
parameters are specified, they must be preceeded by all of the commas. For example, if
only <voiced number> is omitted from the above command, the new format will be:

—INST(Q,,2,3

A _INIT command or similar command having no specified items must be followed by a colon
(2 when used directly before the "ELSE” of a MSX BASIC IF — THEN — ELSE command.

For example: 100 IF X=1 THEN _INIT:ELSE X=1

an actual example of the use of the command

Explanation use of the command, detailed functions, and precautions

Sample Program a short program using the command

22

il

3 CANCEL

Function cancels an instrument
E J Format _CANCel ((<instrument number>2)

Example _CANC(D

8 Explanation This command releases the sound generator from the instrument allocated to it by the _INST
1 i command. There can be a maximum number of eight voices for the instruments of the FM Music
Macro. Instrument 2 cannot be defined if eight voices have already been defined for

- Instrument 1. In this case, the _CANCEL command is used to release the sound generator from

- instrument 1, permitting the veices to be re—allocated.

) The <instrument number> is between 1 and 4. If it is @ or omitted, the command
applies to all instruments. The instruments will then be initialized to the following:

B Tone: BRASS 1
Transpose: none
- Volume 108 (maximum)
I . Portamento: finger pertamento

Portamento speed: portamento off

N Sustain: off

Trigger mode: multi

Refer to INST

CLDVOICE

Function loads voice data into the memory

Format

Example

_CLDVoicel{(<option>X,<switch>))]

_CLDV(D

Explanation This command loads voice data created with the FM Voicing Program, from cassette tape or from

Refer to

a data memory cartridge.

The <option> is used for specifying whether or not the file name or voice name will be displayed when the
voice data is loaded. The value will be 0 if omitted.

@: {file name or voice name is not displayed
1: file name or voice name is displayed

This command will load the first voice data it finds when it is executed. If loaded data is to be used,
the _SELVOICE command must be used to regitster the voice.

The <switch> is to select whether data is going to be loaded from a cassette recorder or
data memory cartridge. The cassette recorder is selected if this value is omitted.

2 cassette recorder
1: data memory cariridge
The _MCKS command is used to save data onto data memory cartridges (refer to page 72).

SELVOICE

24

—

SRS (-

ERASE

Function clears the contents of the specified track
Format _ERASe(<track number>)

Example _ERAS(2)

Explanation This command clears the contents of the track specified by the <track number>. The _ERASE
command is used to erase the old contents of a track when that track is to be rewritten.

If the specified track is being played, the _ERASE command will not be executed and a
“"Device 10 error” will occur. Execute this command only when the specified track is not

being played.

The <track number> can be set from 1 to the number specified by the _TRACK command.

Sample program

1® " _ERASE sample

20

30 CLS

4@ INIT

50 _INST(1»

G0 PRINT"WRITE IN cdefg and PLAY":PRINT
7@ _PHRASE(1,"cdeTg™)

80 _PLAY(1,1)

9@ WAIT(1)

123 PRINT"WRITE IN gfedc and PLAY":PRINT
11® _PHRASE(1,"gfedc™)

120 _PLAY(1,1)

130 _WAIT(L)

143 PRINT"AFTER ERASE"

158 PRINT"WRITE IN gfedc and PLAY™

1680 ERASE(1)

17@ PHRASE(1,"gfedc™)

1806 PLAY (1,1

25

T

T

sy DML

EVENT (n) ON/OFF/STOP

Function permits, prohibits, and holds the generation of interrupts in the program

Format

Example

~EVENt((<event number>) ON
_EVENt((<event number>)) OFF
_EVENt{(<event number>)) STOP

—_EVEN(D ON

Explanation This command permits, prohibits, or holds the interrupt specified in the _ON EVENT(n>

Refer to

GOSUB.
The following are the types of <event numbers>.

1-4: interrupt upon the completion of playback started by the _PLAY command. 1 — 4 are the
values corresponding to the instrument numbers.

5: interrupt upon completion of rhythm playback

6: interrupt based upon the timer of the FM Sound Synthesizer unit

If the <event number> is omitted, the command applies to all events.

(example) _EVENT () ON

_EVEN (n) ON permits the generation of interrupts. The input of this command permits the
generation of an interrupt upon the execution of the specified event. The program will be

interrupted during exscution and will go to the subroutine specified by the _ON EVENT (n)
GOSUB command.

_EVENT (n) OFF prohibits the generation of interrupts. The input of the command prevenis
interrupt upon the execution of the specified event.

_EVENT (n) STOP holds interrupt operations. The execution of this command holds the

generation of the interrupt until the execution of the _EVENT (n) ON command. The execution

of the _EVENT (n) ON command causes the program to jump immediately to the subroutine
specified by the _ON EVENT (n) GOSUB command. The _EVENT (n) STOP command is only executed
during the _EVENT (n) ON command mode.

ON EVENT (n) GOSUB

26

INIT

Function initializes the FM Music Macro
Format _INIT
Example _INIT

Explanation This is the condition when the power of the FM Music Macro is turned on. The following
setiings are the initial values:

Track number: 1 (contents cleared)

Tempo: 120

Registered tone data: cleared

Transpose: none
Tune: 14}
Tone: 109

Registered rhythm pattern: cleared

Rhythm pattern: 1

(Contents of the instruments)

Transpose: none
Volume: 100 (maximum)

|

|

\

|

\

{

|

‘ Tone: BRASS 1
|

|

|

\

1 Portamento: fingered portamento
‘ Portamento speed: portamente off

|

Sustain: off

Trigger mode: multi

INMKEY

M

Function checks if the keys on the Music Keyhoard are being pressed
Format _INMKey (<variable>)
Example _INMKC(AD

Explanation The value of the specified variable is @ when the keys of the Music Keyboard are not being
pressed. The value of the variable corresponds to the key codes when the keys are pressed.
The program does not stop at places where there is a _INMKEY command. The following example is used
to allow key input.

(example)
189 _TNMK (A): IF A=@ THEN 100

The codes corresponding to the keys are the following.
YK-B1 lowest note F--—-41

highest note C---84

G

|
YK-1@ lowest note C--36

|

C

highest note C--84

Sample program

1@ ' INMKEY sample

20

3@ DIM N$(il)

40 INIT

56 CLS

6@ FOR I=0 TO 11

7@ READ N$(I)

80 NEXT I

9@ _INST(1)

100 _PLAY (1,9

110 INMK (A)

120 Q$=INKEY$:IF Q%<>"" THEN 160
130 IF A= THEN 110

14@ PRINT N$(A MOD 123;

150 GOTO 110

160 STOP{(1):END

170 DATE DOH, DUH#, RE, RE#, MI, FAH, FAH#, SOH, SOHE, LAH, LaH#, 71

28

ia

INST

Function defines the instruments to be used by the FM Music Macro

Format _INST(<instrument number>(,<number of voices>),<MIDI>X,<MIDI channel>))

| Example _INST (1,42

l Explanation Up to four instruments can be freely used by the FM Music Macro. The _INST statement
specifies the output and number of voices of each instrument. The instruments must be
defined to be used.

‘T <instrument number> Input a number between 1 and 4.

<numbsr of voices> This specifies the maximum number of voices between 1 and 8 which can be played
| back simultaneously. An error will occur if the total number of voices exceeds 8 when more than
| one instrument is used. The value is 1 if specifier is omitted.
<MIDI> This sets whether or not data will be output to the MIDI channel.
1 MIDI OFF (when omitted)

2 MIDI ON

<MIDI channel> This sets the MIDI transmission channel for playback data. The setting range
is 1 — 16. The value is 1 if specification is omitted.

|15

LENGTH

Function checks the length of the playback data in the track

Format _LENGth((<variable 1>),<variable 2>X,<variable 3)...(,<variable 8>

Example _LENG(TL T2, T3, T4

Explanation The _PHRASE command checks the length of the playback data loaded into the track. <variable
1> — <variable 8> correspond to tracks 1 through 8. The variables return the total length of
the phrases loaded into the tracks as numeric values. The units of the numeric values are
equivalent to 17192 of a full note. For example, if the numeric value is 48, the length of

the phrase will be 174 (48 X (1/192)) or the length of a quarter note.

This _LENGTH command is used for such applications as checking that the length of the
various phrases which are being played simultaneously are the same during extended playback
which changes between tracks.

The variable determined in the _LENGTH command is reset by the execution of the _INIT and
_ERASE commands and by changing the mark numbers in a track.

Refer to PHRASE
Sample program

1@ * LENGTH sample

20

30 CLS

4@ _INIT

50 _INST(1)

6@ _PHRASE(1,"cdefgab<c™)
70 _LENGTH(A)

80 PRINT (Ax1/192);: "BAR"
99 PLAY(1,1)

30

LFO

Function changes the LFO data
Format _LFO(<waveform number>{,<speed>),<tremolo>) (,<vibrato>)D
Example _LFO (3, 58, 60, 28

Explanation The LFO (Low Frequency Oscillator) is an extremely low frequency oscillator used for the
production of tremole and vibrato effects.

There are a number of parameters which are set for each tone. These are changed by the
_LFO command.

pitch Volume

1 Saw tooth waves o

2 Square waves 0

3 Triangular waves o

4 Sample & Hold

(=]

- o

Sample & Hold outputs random values.

The <waveform number> specifies the waveform output by the LFO (by altering pitch and
volume). The range of this parameter is 1 — 4. The corresponding waveforms are shown in the
above diagrams.

The <speed> specifies the speed (frequency) of the LFO in relation to the volume. The
setting range is @ — 100. The larger the number specified, the higher the frequency and
thus, the faster the speed.

The <tremolo> is the setting of the modulation in relation to volume. The setting range is @ —
10@. The larger the number specified, the more the volume will change.

The <vibrato> is the setting of the modulation in relation to pitch. The setting range is @ —
10@. The larger the number specified, the more the pitch changes.

In addition to the <tremolo> and <vibrato>, the sensitivity of the LFO can also

be set for each tone. There are some tones which are not affected by the LFO. The _MODI
command can be used to set the sensitivity.

* If an instrument is selected after the LFO is set, the LFO data of the newly
specified tone will apply. There will be no change with the SFG—81 or SFK-@1 is voices having the
following preset voice numbers are selected.

Voice numbers 31, 37 — 40, 42 — 46, 8@

Refer to MODINST

31

L

Sample program

10
20
30
41D
50
60
0
ts10]
o6
100
110
120
130
14@
15@
160
172
180
198
200
210
220
230
240
250
260
270
280

' LFO sample

GLS

_INIT

CINST(1)

_PHRASE(1, "L2cdefgab<c™?
_PLAY(1,1)

_WAITCL)
_MODICLl,,:sss55,100,100)

READ A$,M,P

IF A%3="end"” THEN END
PRINT A$

LFO(, ,M,P)
“PLAY(1,1)

TWATT(1)

PRINT

GOTO 110

DATA"MAKE VIBRATO LOUD"™
DATA ©,100
DATA"ELIMINATE VIBRATO"
DATA @,0

DATA"MAKE TREMOLO LOUD"
DATA 100,00
DATA"ELIMINATE TREMOLO"
DATA 0,0

DATA "end",d.,0

32

LOOK

Function checks the playback state of the instruments
Format _LOOK((<variable 1>X,<variable 2>X,<variable 3>X,<variable 4>0)
Example _LOOK(A,B,C,D)

Explanation This command checks the playback status of the various instruments and assigns these to the
variable.

The final played mark number is assigned upon completion of playback. 1808 marks are added to the
mark number being played.

@ is assigned to instruments not defined by the _INST command.

<variable 1> — <variable 4> correspond to instruments 1 through 4.

Sample program

1@ " _LOOK sample

20

30 CL=

4@ INLT

50 _INST(1>

6@ _PHRASE(1l, "cdefgab<c™,2)

7@ _PLAY(1,1,2)

30 PRINTTINSTRUMENT 1";TAB(20); "INSTRUMENT 2

9@ GOSUB 18@ _

136G PRINT "PLAYING b MARK 27:TAB(2B) ;"L UNDEFINEDL"
118 _WATIT(1)

120 PRINT

130 GOSUE 1806

148 PRINT"END - MARK Z":TAB(Z@) ;" L UNDEF INED"

1580 END

le@d

7@ "

18@ 1 OOK{(A,B):PRINT A:TAB(Z20) B

190 RETURN

HTTHTHTITIP S

MODINST

Function changes the contents of the instruments
Format _MODInst (<instrument number>(,<voice number>),<transposing>),<volume>),<portamento>)
(,<portamento speed>) (,<sustain>)(<trigger mode>),<LFO sync>) (,<tremolo sensitivity>)
(,<vibrato>D
Example _MODI(, 16,, 82>
Explanation The instruments are set by the _INST and _CANCEL statements to the following values. The
_MODINST command is used to change these values. It has no effect on MIDL
Tone: BRASS 1
Transposing: none
Volume: 160 (maximumd
Portamento: fingered portamento
Portamento speed: portamento off
Sustain: off
Trigger mode: multi
LFO sync: off
Tremolo sensitivity: set value of BRASS 1
Vibrato sensitivity: set value of BRASS 1
The <instrument number> specifies the tone of the instrument defined by the _INST command.
The <voice number> specifies the tone of the instrument. The setting range is 1 — 56.

1 — 48: The tone is contained in the FM Sound Synthesizer unit (47 and 48 are reserved for future
applications. There will be no sound output if they are selected).

49 — 56: Tones registered by the _SEL command.

<tranposing> allows the various instruments to be transposed separately, unlike the _TRANS
command. The setting range is —12 to + 12 in half steps.

The <volume> is not affected by the V symbols of the playback list (refer to the _PHRASE
command). This sets the volume balance for each instrument. The setting range is & — 108.
18@ specifies the maximum volume.

<portamento> selects the portamento mode,

2: finger portamento (portamento only during legato playback)

1: full portamento (portamento at all times)

The <portamento speed> sets the rate at which the portamento changes. The setting range is
— 10@. 100 is the slowest setting. @ has the same effect as when the portamento is off.

<sustain> sets the length of sustain after the key is released.
@: the length determined for each tone

1: twice the length determined for each tone.

34

e

<trigger mode> determines whether or not there will be attack when the keys of the
kevboard are depressed.

@: multi trigger (attack when the keys are depressed)
1: single trigger (no attack during legato playback)

<LFO sync> specifies whether or not there will be synchronization of the LFO at the instant
when the keys are depressed.

B: off (no synchronization)

1:on (LFO starts from the beginning of the waveform every time a key is depressed)

<tremolo> specifies the amount of tremolo for each instrument. The setting range is 0 to

100. The larger the value is, the greater the degree of sensitivity although there are

actually four stages of alteration.

<vyibrato> specifies the amount of vibrato for each instrument. The setting range is @ to

10@. The larger the value is, the greater the degree of sensitivity although there are

actually eight stages of alteration.

% If the tone of the instrument is changed after the <LLFO sync>, <tremolo sensitivity>, or
<vibrato sensitivity> is specified, the values will be determined according to the newly

set tone.

* <portamento>, <portamento speed>, and <trigger mode> are only effective for single notes.

Sample program 1 Sample program 2

1@ '_MODI sample 1® "_MODI sample?

20 7 20 7

30 CLS 3@ _INIT

40 _INIT 4B INST(1)

50 INST(L) 5@ _mMODI(1,,,,1,4B)

60 _PHRASE(1,"cdefgab<c™) 60 PHRASE(L, "c<c<c<c™)
7B _PLAY(1,1) B _PLAY(1,1)

80 _WAIT(1)

90 PRINT "CHANGE VOICE":PRINT
1086 _MODI(1,4)

118 _PLAY(1,1)

120 _WAIT(1)

130 PRINT "CHANGE WOLUME”:PRINT
146 _mMODICL,,,B8@>

158 _PLAY(1,1)

ON EVENT (n) GOSUB

Function defines the subroutine that the program goes to upon the event

Format _ON EVENt((<event number>)) GOSUB <line number>

Example _ON EVEN (6> GOSUB 1882

Explanation This command defines the first line of the subroutine that the program jumps to when the an
interrupt is generated upon the execution of an event. An interrupt is generated upon the
execution of the specified event and the pregram executes the subroutine when the program is

in the _EVENT (n) ON mode.

The interrupt subroutines can be defined according to each event. The <event number>
specifies the type of event.

1=4: interrupt upon the completion of playback started by the _PLAY command. 1 = 4 are the
values corresponding to the instrument numbers.

5: interrupt upon completion of rhythm playback

6: interrupt based upen the timer of the FM Sound Synthesizer unit

If the <event number> is omitted, the command applies to all events.

(example) _EVENT () GOSUB

The <line number> is the beginning line of the subroutine that the program jumps to upon
generation of the interrupt, Return from the interrupt subroutine in the same way as
subroutines are called by the GOSUB command; the RETURN command is used. If a line number is
not specified by the RETURN command, the program suspended by the interrupt will be returned

to. Specification of a line number will cause execution to begin from that line.

The program will go to the EVENT STOP mode while the interrupt subroutine is being executed
and return to the EVENT ON mode with the execution of the RETURN command.

Note: This command only defines interrupts. Execution of this command does not cause an interrupt
to be generated.

The priority of interrupts is as follows:

1. BASIC interrupt

2. Instrument 1

3. Instrument 2

4, Instrument 3

5. Instrument 4

6. Rhythm

7. Timer

Processing begins from again from high priority interrupts if there are interrupts on hold
when the processing of one interrupt is completed.

36

i

Sample program

1@ "_ON EVENT(n) GOSUE sample
20

3@ CLS

40 _INIT

50 TRACK((Z)

60 _ON EVENT(1l) GOSUB 190

7B _ON EVENT(2) GOSUB 230

80 _EVENT() ON

9B _INST(1):_INST(2)

16@ _MODI(Z2,4)

110 _PHRASE(1,"cdefgab<c™)
120 _PHRASE(2,"efg™)

136 _STANDBY

14@ _PLAY(L,1)

150 _PLAY(2,2)

16@ _START

17@ IF X=2 THEN END

180 GOTO 170

190 '

200 PRINT "END INSTRUMENT 17
210 X=X+1

220 RETURN

230

240 PRINT "END INSTRUMENT 27
250 X=X+1
26@ RETURN

PATTERN

-

—

Function defines rhythm patterns
Format _PATTern (<pattern number>,<variable(@)>)
Example _PATT(7, A3(O»

Explanation This command defines the various rhythm patterns. It allows the creation of rhythm patterns
other than the patterns which are contained in the unit.

The procedure for the creation of rhythm patterns is as follows:
(1) The rhythm pattern is given as array variables.

The name of the variable is PT$ in this case.

PT% (@) gives the length of the patiern.

"3" quarter notes X 3

"4™ quarter notes X 4

"g" quarter notes X 8

PT&(D — PT$(5) gives a character string of ones and zeros for the rhythm pattern of the
various percussion instruments.

PT$ (1); high—hat close
PT3% (2 high—hat open
PT$ (3): bass drum
PT$ (4): high tomtom
PT¢ () low tomtom

High—hat open and high—hat clese cannot be sounded simultaneously. Only high—hat open will
be sounded if both are designated to play simultaneously.

The specification of the pattern is in the units of 1712 of a quarter note. One is written

in the on position (when sound is output). The sound will continue as long as the ones
continue. Thus, if "11" is written there will be only one sound not two.

T T

The above rhythm pattern is set as follows:

PTS{ 3)="100000000000100000000¢60001000000000001 00000000000"

The length of the character string must correspond to the length of the pattern.
PT$(@) ="3" 36 characters

PT2@) ="4" 48 characters

PT$(@ ="8" 96 characters

38

B

(2) Register the rhythm pattern using the _PATTERN statement.

The pattern is registered by the _PATTERN statement after PT$(@) — PT% (5) have been
specified by the above procedure.

The <pattern number> is 7 or 8. Two patterns can be set.

<variable(@)> specifies the character variable into which the pattern data is written. The
subscript is (@) in this example. If the subscript is considered to be (m), the pattern {
length, PT% (m) can be PT$ (mt+1) — PT$ (m+5) for the writing of the pattern data. }

Sample program

1@ * _PATTERN sample

20 T

3@ _INIT

40 _USERHYTHM
50

6@ AS(BI="T4"

7@ FOR I=1 TO 5
8@ READ AS$(I)

90 NEXT I
186 _PATT(7,AS(®))
118

120 _'SELPCF)

130 _RHYTHM (16D

140 DATA 100100100100100100100100100120100100100100101016
150 DATA DRPRVROVRVRPRDIRDRRRERRDBRDRRIBRRRDRERDBRBRRRDR
160 DATA 190000000000000000000100B100BRVNAR1PRRDPRRRORRD1OR
170 DATA D0DERROBRRRR1VAVVORNA1PIBRAR1PRRRR1E010PDDEODRRR0
130 DATA DROPROVRPDRVIDPYVIRPD1ERERR1RRARR1A01PARVRCRRBRD

PHRASE

Function writes the playback data onto the specified track
Format _PHRAse(<track number>,<playback list>(,<mark number>))
Example _PHRA (1, "CDEFGABGAC™

Explanation This command writes the playback data expressed in the character string onto the designated
track and prepares it for playback.

The <track number> specifies the track onto which playback data is written. This value can
be selected from track 1 up to the number of tracks specified by the _PLAY command. Writing
onto tracks is not possible while they are being played. This will cause the generation of

a Device 170 error.

The <playback list> is a character string which expresses the playback contents. It consists
of one or more symbols. The playback list can be composed of character constants, character
variables or a combination of the two. Letters used in the playback list can be either upper
or lower case.

(Example)

_PHRASE(1, "cde"
_PHRASE(1,AS)
_PHRASE(1, "o04"+A%)

The <playback list> can be written as <character expression 1 >,<character expression 2>,
... < character expression n >. This will result in simultaneous playback of the character
expressions. This procedure allows the playback of multiple parts for the same instrument.
The maximum number of parts must be specified in the _INST command prior to the use of this
procedure.

(Example)
_PHRASE(1,"cdefg","efgab") or _PHRASE{(1l,"cdefg,efgab™)

* The pitch of notes

A-G[#/+/—1]
The pitch of notes is expressed by their scale (Do, Re, Mi, Fa, So. La, T).C -G
correspond to Do — Ti of C major while A and B correspend to L.a and Ti. Raising by a
semitone can be expressed by attaching () or the plus (+) sign after A — G. Attaching a
minus (—) sign after the note will lower it by a semitone. Notes which have had their key
changed by the S or K command can be returned to their original value by attaching an
exclamation mark (1) to them.
These temporary designations only apply to the scale of the note directly preceeding them.

(Example)

_PHRASE(1,"def#")

O <numeric value>
The range of the scale explained above is @ — 8, The initial value is 03 which is a scale
beginning with C and continuing to include one octave. od is one octave above 03, and o2 is
one octave below 03,

(Example)

_PHRASE (1, "o2cegoicegodcegobe™)

40

_———s
—_—ee— e R ——

The octave can also be raised and lowered through the use of the "<" and ">" marks. The "<"
mark raises the octave by one and the ">" mark lowers it by one.

‘ (Example)
J _PHRASE (1, "n6Bn62nbs ")

* The octave range played is dependent upon the selected tone. Automatic adjustment up or
down in one octave units occurs if the range is exceeded during playback.

<4

N <numeric value>
This expresses the pitch of the note in the range of 25 to 128. N25 is equivalent to CH#f in
the 0@ range. The note will raise in half—note step , such as N26, N27, etc. N120 is equivalent
to C in the o8 range. N@ has the same function as R (rest).

(Example)

_PHRASE (1, "o2ceg<ceg<ceg<c™)

o5 of o7 o8
I g
ol o 40 &
20 o1 o2 o3 === ==
A 1 17 0 ne —— —— i
=4 P) T
& : |
o® - i
0
0
= == i
= — | ‘ 1
- o©° ! 1
=T ; 5
) : !
2B — e e e e e NB) e e e e 120

* Some types of voice data designate the absolute pitch of notes, and raise or lower
the pitch by one or two octaves relative to other tones. The latter kind of tones have a
direct effect upon the the designated pitch of the notes in the playback list. The actual
pitch of the notes as perceived by the ear is the sum of the designated pitch of the
notes, transposing and the absolute pitch of the tone data.

= Length of note
L <numeric value> The length of the notes is note/<numeric value>.
L1 Full note L8 Eighth note

L2 Half note

-

L3 Third note

L4 Quarter note

1
Lb4 Sixtyfourth note
The initial value is I.4 (quarter note). Specifying the note length will cause all the
following notes on the same track to be the same length. This is effective until another
value is specified for the note length. The length of only one note can be changed by
attaching the <numeric value> expressing the note length after the scale name. For example,
L16C and C16 are the same.
(Example)

_PHRASE(1,"L8cel4gal8ge™)

41

. <period >

This is attached after scale symbol, in the same way as dotted notes, to multiply the
present length of the note by 1.5 times. The multiplication factor will be 874 if two dots
are attached and 27/8 if three dots are attached.

(Example?

_PHRASE(1, "cde. L8c™)

R <numeric value>
This expresses the rests. The specification syntax for the <numeric value> is the same as
the command. The length specified by the L or W command applies when the <numeric value> is

omitted.

W <numeric value>
This expresses the length of the note in a numeric value between 1 and 96. W1 is equivalent

t0 1796 of a full note (1724 of a quarter note). W2 is 2/96 of a full note and W3 is 3/96 of
a quarter note. The length is determined the portion of a full note equal to 196 multiplied
by the <numeric value>.
(Example)
_PHRASE (1, "wl2cew24gawllge™)

x Tempo

“T < numeric value>"
This specifies the tempo. The <numeric value> sets the percentage of the tempo specified by
the _TEMPO command. The setting range is 1 — 200. T5@, for example, sets the tempo at 58% of
the tempo specified by the _TEMPO command. The initial value is T180.

(Example)

_PHRASE (1, "cdet’?2BBcde™)
* Dynamics
“V < numeric value>"
This sets the dynamics of the note.
The range of the <numeric value> is 1 — 180,
The greater the value, the stronger the note.
The setting is effective until the next setting of dynamics. The initial value is V59.
(Example)

_PHRASE (1, "v3@cv50dviBevodf")

% There are some tones such as PORGAN 1 and 2, etc. which are not affected by the V
command. The V command alters the velocity of the notes. The degree to which the velocity
will be altered is determined by the Velocity Sensitivity setting for tones are created
by the FM Voicing Program.

* Tie

11 ‘&,’
Placing the command between two notes having the same pitch will extend the length of the
notes to the equivalent of two notes. When the notes on both sides of the & command have a
different pitch, only the note in front will be played for 180% of its value. The "&" symbol
is only valid for characters in one character string.
(Example) PHRASE(1,"cd&de&f")

* Time

M <numeric value>

Sets the time at a value equivalent to <numeric value>,/4. The numeric value may be between 3 and 8.
(4 quarter time).

/character string/

* Key

The character string enclosed in the slash marks is considered to be one bar. The length of
one bar is specified by the M command. If the total length of the notes of the character
string is less than the length of one bar, the remaining portion is considered to be rests.
An error will occur if the total length of the notes exceeds the length of one bar.

(Example) _PHRASE(1,"m4/cdescfa™)

S <numeric value>

K <numeric value>

* Execution

% < numeric value>

This specifies the key. The <numeric value> is equivalent to the number of sharps (. For
example, if S2 is specified the key will be D major (B minor) and there will be no need to
attach sharps or plus signs to any C or F that follow.

(Example) _PHRASE (1, "s2defgab<cd™)

This specifies the key. The <numeric value> is equivalent to the number of flats (b). For
example, if Kl is specified, the key will be F major (D minor) and there will be no need to
attach flats or minus signs to notes which follow.

(Example) _PHRASE(1,"k3cdefgab<c™)

This is used to express staccato and tenuto. The <numeric value> expresses the proportion of
the voiced section (from key on to key off) to the total length of the note. The setting

range is 1 to 100. When the value is 109, the voiced section will be the entire length of

the note.

The beginning of the _PHRASE command sets the value at 90%, making the "%" symbol valid only
for notes in the same character string.

le——] ength of note—=|
(Example) _PHRASE(1, "cdeX%2@cde™)

e Voiced

section

Key on Key off.

43

R

————————— — — — ———— ————

*Chords
[<character string>]

The procedure for the output of a chord for one instrument is to either divide the

playback list with commas (",”) or to use square brackets (0. The notes enclosed in

brackets will be output simultaneously. When the length of notes differ, rests are written
after the shorter length of notes. This will result in the next note being played after the
short rest has been played. Use the _INST command to specify the maximum number of voices

when chords are to be used.
e

The above score is entered as follows: _PHRASE (1, "(c2L4gJa"), or the following:

_PHRASE(L,"L4ga","L2c™ or _PHRASE(,"L4ga,l.2c™

x Notes surabondantes
(< character string>) <numeric values>

The L command can be used to play to divide a note of a specific length into X number of
notes, for example, triplets, quintuplets and other notes surabondantes, However, they can
be input much more easily by the use of {} brackets. For example, the input of "{CDE}" will
be the same as L12CDE, This is expressed on the following score. g 3

=
In other words, the note divided by <numeric value> are divided into equal parts according to the number

of the symbols in the { } brackets. If the <numeric value> is omitted,
the length set by the L or W command will apply.

(Example) _PHRASE(1, "cde{gag L)

% The setting of the "@%, "<", ">", "L", "W", "V", "S", "K" and "M" symbols will apply to all the
notes of the same track until they are reset.

% All of the set values will be initialized upon execution of the _INST or _ERASE commands.

% All of the <numeric values> described above can be either character constants or numeric variables. In
this case, "=<name of variable>" is substituted for <numeric value>.

(Exampled 1@ INIT 4B PHRASE(L,"n=i;")
20 _INST(1,,2) 5@ NEXT I
3@ FOR I=48 TO 96 6@ _PLAY(1,1)

% (Jand { }can not be mixed as ({..D or {2}

<mark numbers >

The <mark numbers> can be freely used within the range of 1 to 254. If the <mark number> is omitted, the
<mark number> will be considered to be equal to the <track number>.

Refer to PLAY, TRACK

44

PLAY

Function plays music

Format

Example

_PLAY(<instrument number> <track number> (,<mark number>))

_PLAY(Q, 1, D

Explanation This command plays the designated marked section of the designated track. Playback data must

Refer to

be written into the track beforehand by the _PHRASE command.

The <instrument number> selects the instrument from the instruments defined by the _INST
command.

The <track number> specifies the track to be played back. Playback using the Music Keyboard
is possible by specifying the the <track number> as 9.

If the <track number> is 9, scanning of the Music Keyboard will not be automatically
suspended when the program is suspended. The _STOP command is used to suspend the Music
Keyboard.

The number of tracks must be set by the _TRACK command when tracks 2 — 8 are used.

The <mark number> sets the mark number for playback. If the <mark number> is omitted, the
<mark number> is considered to be the same as the <track number>, Specifying the <mark
number> as 255 will result in playback of the section after the last played section. When
playback is suspended by the _STOP command, the beginning of the track is played back.

When the designated instrument is playing, new playback of the same instrument is performed
upon playback completion (playback wait).

This playback wait mode uses only one _PLAY command. Setting of the playback wait mode by
the _PLAY command will result in a Device 17O error when another _PLAY command is executed.

Playback of two or more instruments on the same track or Music Keyboard cannot be played by the
_PLAY command.

STOP

RCANCEL

Function cancels the rhythm instrument
Format _RCANcel
Example _RCAN

Explanation This command release the sound generation allocated to the rhythm instrument. Using this,
the total number of instrument voices will increase from 6 to 8.

Refer to USERHYTHM

REPORT

Function returns the system variables
Format —REPOrt ((<variable 1>) (,<variable 2>X,<variable 3>)
Example _REPO (A,B)

Explanation This command returns the updated value of the mark number, number of rhythm repeats, etc.
which were last played.

<variable 1> gives the value of the error flag. Errors are normally displayed as "Syntax
error” or a similar message. However, there are cases when playback does not start from the
playback wait mode by the _PLAY command and the error is not indicated. Here, the point
where the error occured is not known and thus a BASIC Syntax error is not generated.
However, the FM Music Macro sets an error flag. There are 5 varieties of errors which
register in bits @ — 4.

D % ok ok ok sk

!— The buffer of the Music Keyboard has overflowed.
A MIDI 1/0 error

The track/music keyboard is being played.

The contents of the track are incorrect.

An interrupt request is generated by a certain event while processing of

an interrupt which was generated by the same event is in progress.

Occurs when pitch processing time is longer than the interrupt pitch.
The error flags are reset by the _INIT command when _PLAY is executed.

<variable 2> gives the mark number of the last played section.

<variable 3> gives the remaining number of times the rhythm is to be repeated.

47

Sl a0 s

RS0

Sample program 1

10
20
30
40
=10
60
70
80
o0
160
110
120
130
140

' _REPORT sample 1
CLS
_INIT
_TEMPO(6@)
_USER
_SELP(1)
_RHYT (16)
_REPORT(, ,D)
IF D=D2 THEN 90
D2=D
PRINT"AFTER™ ;D; "VALUE"
IF D=@ THEN END
GOTO 90

Sample program 2

1@

20

30

40

568

60

70

30

o0

100
1108
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330

* _REPORT sample 2

CLS

_INIT

_ON EVENT(1) GOSUB 260

_ON EVENT(2) GOSUB 300
_EVENT () ON
_TRACK(3)
_INST(D)
_INST(2)
_MODIC(2,1@)
_PHRASE (1, "1 2cdefgab<c™)
_PHRASE (2, "L2efg™)
_PLAY(1,1): _PLAY(2,2)
_PLAY(1,3): PLAY(2,1)
GOSUB 220

FOR I=1 TO 3@@Q:NEXT I
PRINT"_INITIALIZE"
_INIT

GOSUB 220

END

_REPORT(A)
PRINT"-REPORT— ";BINS$(A) :PRINT
RETURN

PRINT"PLAY instl-track3”
GOSUB 220
RETURN

PRINT"PLAY inst2-trackl"”
GOSUB 220
RETURN

il

RHYTHM

Function used for rhythm playback

Format _RHYThm (<number of repetitions>, (<mark number>)

Example _RHYT(40,2)

iy
Y

Explanation This command plays back the rhythm patterns selected by the _SELP command.

i The <number of repetitions> specifies the number of repetitions for the rhythm. It is set in number of
E the quarter note. If 120 is specified, 3@ bars of 4.4 time are repeated, or 40

. T bars of 3/4 time are repeated.
: ‘ﬁ The <mark number> can be set to any value between 1 and 254, 18 is specified if the <mark
- number> is omitted.

= Sample program

1@ "_RHYTHM sample

20

3@ CLS

4B INIT

50 _USERHYTHM
6@ _SELP(1)

70 INPUT"NUMBER OF REPETITIONS™;A
80 _RHYTHM(A>

I

—4

Al

RHYTHM

Function used for rhythm playback
Format _RHYThm (<number of repetitions>, (<mark number>)

Example _RHYT(40,2)
Explanation This command plays back the rhythm patterns selected by the _SELP command.

The <number of repetitions> specifies the number of repetitions for the rhythm. It is set in number of
the quarter note. If 120 is specified, 3@ bars of 4/4 time are repeated, or 48
bars of 3/4 time are repeated.

The <mark number> can be set to any value between 1 and 254. 18 js specified if the <mark
number> is omitted.

Sample program

1@ "_RHYTHM sample

20

30 CLS

4@ _INIT

5@ _USERHYTHM

60 _SELP(1)

7@ INPUT"NUMBER OF REPETITIONST:A
8@ _RHYTHM(A)

RSTOP

Function stops rhythm playback

Format _RSTOp

Example _RSTO

Explanation Rhythm playback is stopped when the _RSTOP command is executed.

Sample program

18 *_RSTOP sample

28 T

3@ CLS

4@ _INIT

50 _USERHYTHM
60 _SELP(1)

70 _RHYTHM(16)

8@ FOR I=1 TO 7O@:NEXT I
9@ PRINT"STOP RHYTHM"
100 RSTOP

SELPATTERN

Function selects the rhythm pattern.
Format _SEI Pattern (<pattern number>)
Example _SEIL.P (3

Explanation This command selects two rhythm patterns for playback data. These rhythm patterns can be
either the six pre—recorded patterns or user defined patterns.

The <pattern number> is from 1 to 8. 1 to 6 are the patterns contained in the unit, and 7
and 8 are patterns defined by the _PATTERN command. The patterns contained in the unit are
as follows:

1: 16 beats

2: slow rock

3: waltz

4: rock

5: disco

B: swing
Refer to PATTERN

Sample program

1® " _SELPATTERN sample
20 T

30 INIT

4@ CLS

50 USERHYTHM

6@ INPUT"RHYTHM PATTERN NUMBER(1-6)":A
7@ IF A<® OR A»6 THEMN 30
80 IF A=0 THEN END

90 _SELP(A)

100 _RHYTHM(8)

118 _WAIT(5)

120 GOTO 6@

51

SELVOICE

Function registers the loaded voice data to be used.

Format _SFI Voice ((<voice number 1>),<voice number 2>)...,<voice number 8>

Example _SELV (6, 8, 25, 33

Explanation Selects 8 voices from the voice data loaded by the _CLDVOICE command and renders it usable.
The <voice number> is the voice number when the voice was created using the FM Voicing Program.
When the voice of the instruments is specified by the _.MODINST command, the numbers of the voices
registered by the _SELVOICE command, are 49 to 56. If the voice number is omitted, the

previously set number applies.

Refer to CLDVOICE

52

SOUND

Function directly controls instruments.

Format _SOUNd (<instrument number>,<control mode>
(,<key number>),<fine>X,<velocity>X,<level>))

Example —SOUNCG, 1, 60,, 7@

Explanation This command allows the sound output of instruments to be directly controlled without using
tracks or the Music Keyboard. The use of this command is a little more difficult than the
use of the _PLLAY command, but it allows the pitch and volume of the sound cutput to be

changed during playback, and thus, is useful for the production of special effects sound. It
cannot be used with MIDI.

The <instrument number> selects the instrument from those defined by the _INST command.
The <control mode> specifies the mode of operation.

@: no key on/off (used for changing the pitch and volume while the note is being sounded)
1: key on (note is sounded)

2: key off (note is not sounded)

The <key number> specifies the pitch. The procedure is the same as the N command in the
playback list. (Refer to the _PHRASE command.)

When the value is 25, the note is a C# in octave 0.

The note is raised a half step for each increment, and thus 120 is equivalent to a C in
octave 8.

The <fine> changes the pitch to less than a half step. The setting range is @ to 18@. The
pitch will be approximately a half step higher than the pitch set by the <key number>.

The <level> specifies the volume level. The setting range is @ to 188. The volume will
increase as the value increases. [f the value is omitted, the volume will be equivalent to

10@.

Sample program

1@ *"_SOUND sample 120 NEXT J

20 7 1386 FOR J=1 TO 38

3@ _INIT 14® FOR I=3@ TO 50 STEP 4
4@ _INST(L) 150 _SOUND(1,83,1)

50 _MODI(1,12) 160 NEXT I

60 _SOUND(1,1,40) 1760 NEXT J

7@ FOR J=.4 TD 4 STEP .2 180 _SOUND(1,2)
8@ _SOUND(1,1,40)

90 FOR I=3@ TO 5@ STEP J

180 _SOUND(1,8,I)

11@ NEXT I

STANDBY

Function temporarily suspends playback.
Format _STANdby

Example _STAN

Explanation Execution of this command temporarily suspends playback. This means that playback will not
start even if a _PLAY command is executed. When more than one instrument (including rhythm
instrument) are started at the same time, the _STANDBY command is used to temporarily
suspend playback. The _PLAY command is then executed. Simultaneous playback of all
instruments will begin upon execution of the _START command.

Refer to START

Sample program

18 *_STANDBY sample

20

30 CLS

40 _INIT

50 _INST(1)

6@ _PHRA(1l, "cdefgab<c™)
7@ _STANDBY

A0 PRINT" _PLAY™

B _PLAY(1,1)

1p® FPRINT"_DO NOT START PERFORMANCE FROM STANDEY™
11® FOR I=1 TO 5@@:NEXT I

128 PRINT" _START™

138 _START

54

it S

START

Function releases the temporary playback suspension mode.
Format _STARt ((<option>))
Example _STAR

- Explanation This command releases the temporary suspension mode engaged by the _STANDBY command and
starts playback.

When the <option> is 1, the temporary suspension mode is released when the synchronization
i il signal (written by the _SYNCOUT command) is read from the cassette recorder. In this case,
the motor of the cassette recorder is automatically turned on by the execution of this
command.

When the <option> is @ or when omitted, the temporary suspension mode is unconditionally
released.

Refer to STANDBY

STOP

Function suspends playback
Format _STOP (<instrument number>)
Example _STOP (&

Explanation This command suspends playback of the designated instrument. Scanning of the Music Keyboard
is also suspended if it is assigned instead of a track.

When the Music Keyboard is assigned to an instrument by the _PLAY command, scanning of the
Music Keyboard will not be suspended when the program is suspended. This can result in

slower BASIC processing. Scanning can be suspended by either the _STOP command or the _INIT
command

Refer to PLAY

SYNCOUT

Function outputs a playback synchronization signal to a cassete recorder.

Format _SYNCout

Example _SYNC

Explanation The FM Music Macro and the cassette recorder must be synchronized to start at the beginning
of the desired selection when making stereo recording with a multi—track tape recorder. The

_SYNCOUT command outputs a synchronization signal to the tape recorder, which finds the
beginning of a certain selection.

Refer to START

TEMPO

Function specifies the playback tempo
Format _TEMPo (<tempo value>)
Example —TEMP

Explanation This command sets the playback tempo. The setting range is @ — 200. The value is the number
of quarter notes which are sounded in one minute. For example, if the value is 6@, the tempo
will be equivalent to a quarter note every second. Playback will be suspended if the tempo
value is @.

The tempo set in the playback list by the T command will be reset to 18@% on execution of
the _TEMPO command.

Refer to PHRASE

Sample program

1@ * _TEMPO sample

20 "

3@ _INIT

4B T=120

5@ _ON EVENT() GOSUB 200

60 _EVENT{() ON

7@ _INST(1)

80 _PHRA(1,"l8cgegcgegdgfacgegcafacgeg>b<gdgcgeg™)
90 PRINT"_TEMPO(120)

166 _PLAY(1,1)

110 AS=INKEY$:IF A%$="" THEN 110

120 TIF A$=CHR$(3@) AND T<2@® THEN T=T+5:G0T0 160
130 IF A$=CHR$(31) AND T>0 THEN T=T-5:GOTO 160
140 IF A$=CHR$(27) THEN _INIT:END

150 GOTO 110

160 PRINT™ _TEMPO(";T;")";

17@ IF T=0 THEN PRINT"-PAUSE"™ ELSE PRINT

180 _TEMPO(T)

1990 GOTO 116

200 _PLAY(1,L)

21@ RETURN

Pressing the (7] key while this program is running will increase the tempo while pressing
the (4) key will reduce the tempo. The program can be suspended by depressing the (ESC) key.

TIMER

; Function starts and sets the pitch (time) of the timer
= Format _TIME (<pitch>(,<mark number>))
Example _TIME (100, 1

- Explanation Although there is a timer in MSX BASIC, the separate timing feature of the FM Macro may
be used when a timer is needed.

The _TIMER command sets the pitch between the generation of interrupts, and simultaneously
4 starts the timer. If this is set by the EVENT ON command, an interrupt is generated after

i the elapse of the <pitch>, and the program will execute the subroutine specified in the _ON
3 EVENT (n) GOSUB command.

The <pitch> is set in 1/10@th sec units. The setting range is 1 to 24,000.

a The <mark number> can be set anywhere between 1 and 254, 11 will be selected if the <mark
number> is omitted.

Refer to TSTOP

Sample program

1@ " _TIME sample

20

3@ CLS

4G INIT

50 _INST (1>

60 N=18

7@ _TIME(10@)

80 PRINTUSING"##";N
9@ N=N-1

= 180 IF N=-1 THEN 130
1180 WAIT(S)

128 GOTO 8@

130 _TSTOP

- 140 PRINT"END"

TRACK

Function defines the number of tracks to be used.
Format _TRACk (<number of tracks>)

Example _TRAC (3

Explanation This command defines the number of tracks to be used with the _.PHRASE or _PLAY command. This
allows simultaneous playback of the number of tracks defined.

The setting range of the <number of tracks> is 1 to 8 If the number of tracks is omitted, 1
will be selected. Playback data is written on each track by the _PHRASE command, and

playback is started by the _PLAY command.

_PHRASE command

Playback list _ Track

_PLAY command

— Playback

The size of each track will decrease as the number of tracks increases.

60

TRANSPOSE

Function transpeses all instruments.
Format _TRANspose (<numeric value>)
Example _TRAN (4

Explanation This command simultaneously transposes all instruments. The <numeric value> can be set in
half tone increments, and the instruments can be transposed up or down a maximum of one octave.
The setting range is —12 to 12.

Sample program

1@ ' _TRANSPOSE sample

20 "

3B CLS

4@ _INIT

S@ _INST(1»

6@ PHRASE(1,"cegec™)

7O _PLAY(1,1)

80 _WAIT(1)

Q@ INPUT"TRANSPOSE TO WHICH? (-12712)";K
160 IF K=99 THEN END

118 IF K<-12 OR K>12 THEN 90
120 _TRANS (KD

130 _PLAY(1,1)

148 GOTO 80

Run the program and listen to the range of transposing by the input of a numeric value
between —12 and 12. The program can be suspended of the input of 99.

61

i
1

TSTOP

Function stops the timer.

Format _TSTOp

Example _TSTO

Explanation This command stops the timer of the FM Music Macro. If the program used with the FM Music
Macro is suspended, the timer does not automatically stop. The timer can be stopped with the _TSTOP or
_INIT command.

Refer to TIMER

62

TUNE
===
Function tunes the FM Tone Generation system

Format _TUNE (<numeric value>)

Example _TUNE (58>

Explanation This command is used to tune the FM Music Macro to other instruments. The setting range is —
180 to 1@@. The value can be set to a maximum of 12 tone (one semitone) up or down.

Sample program

10 "_TUNE sample

20
3@ CLS
4@ _INIT

50 _INST{1>»

60 _MODI(1,12)

7® PRINT"_TUNE(B)"

80 _SOUND(1,1,6@)

90 AS=TNKEY$:IF A$=CHR$(27) THEN 160

1866 IF A$=CHR$(3@) AND K<1@0® THEN K=K+5:GOTO 130
118 IF A$=CHR$(31) AND K>-18@ THEN K=K-5:GOTO 13@
12@ GOTO 90

13@ PRINT"_TUNE(";K;")"

140 _TUNE (KD

156 GOTO 9@

168 _SOUND(1,2)

Pressing the (1) key while this program is running will increase the tempo while pressing the
(1) key will reduce the tempo. The program can be suspended by depressing the (ESC) key.

63

USERHY THM

Function defines the rhythm instrument.

Format _USERhythm

Example _USER

Explanation This command is used to define the rhythm instrument. If use of the rhythm instrument is
attempted when it has not been defined by the _USERHYTHM command, an error will be

generated.

The rhythm instrument use two voices. Thus, when the _USERHYTHM command is used, the total
number of instrument voices is decreased from 8 to 6.

Refer to PATTERN, RHYTHM, SELPATTERN, RSTOP and RCANCEL

64

VLIST

Function
Format VLISt
Example _VLIS

Explanation This command displays a table of all tones, including the tones contained in the FM

displays the tone table on the screen.

synthesizer unit and the tones registered by the _SELVOICE command.

Display of the tone names by _VLIST.

v
1
2z
e
(7]
=
<
b=J
=
5
8

B E

%]
@
(%)
1
T
T
1
=
=
=
31

S

CLARINE
XYL OPHN

cLav

HARP
STEFL DR
aMBUL AN
RM.BRAS
RM - HORN
SNAREDR
PERC =

BRASS 2
STRIMNG2
ERPTAMNOS
EBASS 2
PORGANL
PTCCOLO
GLOCKEN
KOTO
HARPSIC
BEL “BRA5
TIiMPANTI
TWEET
RM_FLUT
R1 .BASS
COWBELL
cCsM

TRUMFPET
EFTITANOL
GUITAR
EORGAMNL
PORGANZ
OBOE
VIBRPHMN
ZITAR
BELL
HARMONT
TR&STN
RAINDRP
RM_GUTIT
RZ2 _BASS
PERC 1

65

L A

WAIT

Function suspends program interruption during playback.
Format _WAIT (<event number>)
Example _WAIT (2

Explanation Execution of the _WAIT command will suspend program execution until playback of the
designated instrument or rhythm has been completed. Designation is by the <event number>,

The <event number> is the same as the _ON EVENT (n) GOSUB command and is a numeric valuc
beiween 1 and 6.

1 — 4: The program is suspended until the playback which was started by the _PLAY command
has been completed (corresponds to the numbers of the various instruments).

b The program is suspended until completion of rhythm playback.

6: The program is suspended when the time set with the _TIMER command has elapsed
(timer of FM Music Macro).

% The program may be suspended for a long period of time if the event set with the _WAIT
command has not been executed or has already been completed. Pressing the CTRL key and
the STOP key will release the _WAIT command.

Sample program

18 " WAIT sample

20

30 _INIT

400 TRACK({2)

50 _TEMPO{(8@)

6@ CLS:COLOR 10,1

7B N=1

80 _INST(1)

9B READ A%$: PHRASE(1,A$): PLAY(1,1)
180 READ A$

11 T=N AND 1:T=T+1:N=N+1

120 IF A$="end” THEN END

130 ERASE(T)

140 PHRASE(T,AS)

150 PLAY(1,T)

160 X=INT(RND(1)%31):Y=INT(RND(1)%22)
17@ LOCATE X,Y

180 PRINT"x"

190 _WAIT(1)

200 GOTO 10@

210 DATA g,f,.b-,04c8,04T8,04d,04c8,04T8,04d.b—,04c,q, f
220 DATA g,f,b-,04c8,0418,04d,b—,0b4e—,04C,b—
230 DATA end

66

IV Appendix

IV-1 Table of FM Music macro Commands

Category Command Function Page
Initializes s .
R Matrn: | — INIT Initializes FM Music Macro. 27
Defines _CANCel Releases instrument 23
netnuments INST Defines instrument 29
_ RCANcel Releases rhythm instrument 46
_ USERhythan | Defines rhythm instrument 64
Defines tracks | _ TRACK Defines numb;r of tracks to beiused. 6_@ ;
Playback data | — PHRAse) Writes playback data on trac;: - 40
_ LENGth Checks length of playback data on track. 30
Playback _ Ei}gA_be Clears contents of track. DR = 25_
_PLAY Starts playback. 45
_STOP Stops playback. 56
Changing and | — LOOK - Checks playback conditior;s._ 33
checking _ MODInst Changes instrument content. 34
parameters
— REPOrt Gives values of system variables. 47
_TEMPo Sets playback tempo. 58
_TRANspose | Transposes all instruments. 61
_TUNE Tunes FM tone generation system. 63
r _ WAIT Suspends program execution until completion of event. 66
Rhythm —PATTern | Defines rhythm patter}ns. = a8
—RHYThm ! Starts rhythm playback. 49
_ RSTOp Suspends rhythm playback. 50
_SELPattern Selects rhythm pattern. 51
LFO _LFO Changes LFO data. 3 |
Direct accessing | _ INMKey Checks whether keys of Mus; Ké;ﬁoard are depressed. 28_
Zf_ 21;%:31 _ SOUNd Directly controls instrument. 53
. TIMEr | Starts and sets interval (time) of timer. 59
_TSTOp Stops timer. 62

68

= —————————— ———
—_— 0 0 D - ———————————

Category Command Function Page
Control - %k}gggk‘[ﬂ’l‘(_)l’ Permits/prohibits/holds generation of interrupt. 26
*LM)\(JICI)?LFH“ () Defines interrupt sub—routine. 36

‘; _STANdby Temporarily suspends playback. 54

_STARt Releases temporary suspension of playback. 55

_SYNCout Outputs playback synchronization signal. 57

Special commands| _ MCKS T2
Expanded IO | LOAD"DC: " Loads program from data memory cartridge. 71
commands for OPEN"DC: " Opens file on data memory cartridge. T
NEEEARIC SAVE'DC:” Saves program onto data memory cartridge. 71

69

IV-2 Memory map

Hexadecimal addresses

0000

8000

Coo00

Dooo

F380

FFFF

MSX
BASIC

MUSIC
BIOS

FM

MUSIC
MACRO

FM MUSIC MACRO

work area

BASIC work area

Contained in FM sound synthesizer unit

User area

(Program area, variable area, array variable area, stack
area, character string area and file control block)

Locate the stack area after CO®8 H.

— Area used by FM Music Macro

Area used by MSX BASIC

ST T

IV-3 Use of data memory cartridges
%

Yamaha data memory cartridges (UDC~@1) can be substituted for a cassette recorder. This allows rapid and
simple READ/WRITE operation.

: =

l_SAVE/LOAD of programsJ

Programs are saved/loaded by the SAVE/LOAD commands in BASIC.

The device name is specified by "DC:™.

Saving programs
SAVE "DC:”
Loading programs
LOAD "DC:"
If L.OAD "DC:", R is entered, the program will be executed immediately after being loaded.

* The maximum size of programs that can be saved/loaded is 4Kb.

| Files
L

Files can be created on the data memory cartridge by specifying the device name by OPEN "DC:” in BASIC.

This allows the use of file related commands in BASIC. For the use of these commands, refer to the MSX
BASIC reference manual.

Refer to the following BASIC commands:
OPEN

CLOSE

INPUTH

LINEINPUT#

PRINT#

EOR

7

IV-4 Special commands

The following commands allow the FM Music Macro to perform the following functions not supported by MSX
BASIC.

_MCKS (7, 1, 16)

This command writes voice data onto a data memory cartridge. It must be executed immediately
after voice data is read from cassette tape by the _CLDV command.

—MCKS (47, 3, 18, @, <level>

This command controls the volume of the rhythm instrument. The <level> is a numeric value between @
and 255. When it is 255, the volume is at its maximum level. The initial value is 255.

—MCKS a1, @

This command suspends sound output of all instruments. It outputs a MIDI all—note off signal. However,
there are certain instances where the synthesizer ignores the all—note off signal.

With the above commands, which directly call a kernel of the FM Music Macro, if values other than these
specified above are input, the unit will function improperly.

IV-5 Sample programs

Rhythm box

Rhythm box

This is a simple rhythm box using marks. After inputting the RUN command, the number of rhythm
repetitions (number of bars) is entered. Next, the code is entered for one bar. The code is selected from
¢, d, f, g or a, and is entered as a lower case character. These codes correspond to the following

chords. :

c: ceg f: cfa
d: cfa g: eag
e: egh a: ace

T 7 skookoK oK 3K 35 3K 3K 3K ROR O K K KKK K K K oK K
20 "x
30
40
50
50
D ek ok ok ok K oK K 5K K K K K K KK K K K K K K

8o

%@ ¢

100 CLS

11@ _INIT

120 _TRACK (2)

139 INPUT "NUMEBER OF REPETITIONS": ¥
140 IF X<=@ THEN 100

150 DIM AS$X)

160 _INST(1): INST(2,3)

17@ _MODI(1,11):_MODI(2,9)

180 _USERHYTHM

190 _SELP(4)

200 _TEMPO(15@)

210
220
239 READ M,A$,B%

240 IF M=@ THEN 290

25@ _PHRASE(1,A%,M)

260 _PHRASE(2,BS%,M)

278 GOTO 238

280

298 PRINT "INPUT CODE"

300 PRINT"(c.d.e.f.g.a)"

310 FOR I=1 TO X

320 PRINTUSING"###":1::INPUT AS(I)

330 IF AS(I)="b" OR AS(I}>"h" OR A$(I)<"a" THEN PRINT CHR$(7):GO0TO 320
34@ NEXT I

350 _STANDBY

360 RHYTHM(Xx4)

370 FOR I=1 TO X

380 M=ASC(AS(I))-Ye6

39@ _PLAY(1,1,M): PLAY(2,2,M)

400 IF I=1 THEN _START:ELSE _WAIT(1)

410 NEXT [

L2@ '

430 '

L4@ 7

450 DATA 1,l802aa<a>ar8a<a>a,%2@r4l8lo2a<celr4l>a<celrs

460 DATA 3,1803cec<c>cr8c<e>c ,%20r418lceglralceglrs

470 DATA 4,1803dd<d>dr8d<d>d,%20r48[dfalr4aldfalrs

48@ DATA 5, LlBo3ee<e>er8e<e>e,%2@r4 1 8legblrilegblr4

490 DATA 6,803 ff<t>tr8f<f>f,%20r480cfalr4alcfalrs

S@@ DATA 7, lBo2ga<g>agr8g<g>g,%20r48[o2b<dglr4l>b<dglri

51@ DATA B, """, ""

SAMPLE

* ¥ ¥ ¥

*
*
*
BACKING MUSIC BOX
X
*

13

T,

B s e ———————]
_———— ——— — — — — — ——— ——

Special effects

The fullowin'g is an example of special effects of two instruments using the _SOUND command. The cursor
will appear in the middle of the screen when the program is run. Moving the cursor with the cursor keys

will cause the sound to change.

Cursor keys Change | Instrumentl | Instrument 2
T HICH LOW
Pitch
1 LOW HIGH
== Increase Decrease
Volume

«— Decrease Increase

L@ 7 okooioom sk K 5K K 3K K K K 3K KK KK K KKK KK

20 "x *

3B "x SAMPLE _SOUND *

40 'x * i

SO 7 ok ok ok ok 3K K K 3K K K K 5K 3K 3 K 5K 3k o K K K

e '

8@ _INIT

9@ INST(L)

19@ INST(2)

11@ _MODI(1,2,..,,,,,0,100)

128 _MODI(2,5,,,4,,5,.0,100)

130 _LFO(1,88,,50)

140

150 FOR I=1 TO 8

16@ READ S$

170 A$=A%$+CHRS(VAL("&B"+5%))

180 NEXT I

190 SPRITES$(@)=A%

200 "

210 KC=2@:FR=@:VE=28:MD=1

22@ SCREEN 2

23@ LINE(11,12)-(243,180),,8

24@ LINE(100,96)-(154,96),3

250 LINE(127,74)-(127,118),3

260 '

278 PUTSPRITE®, (VEX4+12,172-KC%4) ,8 3
280 _SOUND(1,MD,KC+40,,100,VE+44) r
290 _SOUND(2,MD,100-KC, , 100, 100-VE) :
300 MD=0 :
310

330 AS=INKEYS:IF AS="" THEN 330 3
340 IF A$<CHRS(27) OR AS>CHR$(31) THEN 330 :
350 ON ASC(AS)-26 GOTO 390,44@,490,540,600

360 :
399 _INIT :
40 END :
410 ' .

44@ VE=VE+1:IF VE>56 THEN VE=56
450 GOTO 260

46Q '

49@ VE=VE-1:IF VE<® THEN VE=0
508 GOTO 260

510 '

540 KC=KC+1

55@ IF KC>4@ THEN KC=4@

560 GOTO 260

578 '

600 KC=KC-1

610 IF KC<® THEN KC=8

620 GOTO 260

630 "' =
660 DATA 00Q10002.20010000,00111000,11111110,00111000,00010020, 20210220, 22000000 s

74

ETHITE o e

= —_—_
e — o

Music & graphics

This final program displays graphics while the music is playing. The tune is Mussorgsky’s Pictures at an
Exhibition. This program is a little longer than the others, because of the complicated nature of the
screen display.

The program uses a machine language routine for changing the background color.

T 7 siokoksk ook oK KK KK 5K K KK K oK HOK K

20 "x *

30 'x MUSIC PLAY SAMPLE =

40 "x *

50 "x PROMENADE *

6@ " &

T 7 5K o o4 R OKOK K K oK K KKK K K KK

8@ "

90 '-—-machine routine set—---——
160

110 CLEAR 200, &HCEFF

120 AD=52992

130 READ A$:A=VAL ("&h"+4%)

140 IF AS="" THEN 180

150 POKE AD,A

160 AD=AD+1

17D GOTO 130

18@ DEF USR 1-=&HCFOB

190 '

200 '

21@ DATA 23,23,50.21,@@.2&,@1.@@,1@.f3,?d,d3,99.7c,eé.31,fo.&@,dB,Q?.?a.dB,Q&,fb
,23,0b,79,b0,20,eb,c9

22@ DATA "r

230

24@ '-—-sprite initial-- --- e

250

260 COLOR,1

27@ SCREEN 2,2

280 FOR J=B TO 2

290 xg=""

300 FORI=1T0O32

310 READ Sss3

320 X$=X$+CHRS (VAL ("&h"+S$))

330 NEXT 1

34@ SPRITE®(J)=X%

350 NEXT J

360

370 '"=——music initigl-—=—sommemaon

380

390 _INIT

408 _TRACK(8): _TEMPD(9S)

41@ _INST(1): INST(Z2,2)

420 _INST(3,3): INST(4,2)

430 _MODIC1,1): MODIC(2,1,12)

440 _MODI(3,1): _MODI(4,4,12)

450 -

460 _ON EVENT (4) GOSUB 880

47® _EVENT (4) ON

490
500
518

520 FOR T=1 T0 2:72=T+42:T3=T+4:T4=T+6
530 READ A%,B%$,.CS

540 PHRASE(T,A%$): PHRASE(TZ,B$%, ">"+B%)
550 _PHRASE(T3,C$): PHRASE(TL,A%)

560 IF T=1 THEN STANDBY

570 _PLAY(1,T): PLAY(2,T2)

58@ PLAY(3,T3): PLAY(4,T4)

599 IF T=1 THEN START

6@@ NEXT T

——-music start---—-———--———-

75

|
!

610

620 "---main routine -------
630

640 COLOR ,1

650 FOR 1=27T0 230 STEP 2
660 A=Tx20-2432

670 IF X<@ THEN ¥=191-127#(-1%X) /(I -X):LINE(IL,64)-(B,Y),53:60T0700
680 IF X>255 THEN Y=191-1274(X-255%)/(X-1):LINE(I,b64)-(255,Y),3:6010700
690 LINE(I,64)-(%,191),3
TO@ NEXT I

710 FOR I=2 TO 5 STEP .2
720 Y=EXP(I)+57

730 LINE(@,Y)-(255,Y),3

T4@ NEXT I

75@ X=INT(RND(1)x256)

T6@ Y=INT(RND(1)x63)

77O PSET (X,¥),10

T8@ IF N<6 THEN 750

790 FORI=0 TO 8

800 IF F=1 THEN 1210

810 X=INT(RND(1)x246+5)

820 Y=INT(RND(1)%181+5)

B3@ C=INT(RND(1)%15+1)

840 PUT SPRITEL, (X,Y),L,INTLS5)
850 NEXT I

860 GOTO 790

87@ '

880 "---trap routine-

890

9P@ T=N AND 1:T=T+1:N=N+1:12=T+2:T3=T+4:T4=T+0
91@ IF 3<N AND N<7 THEN CL%=3%16+(N+1):Z2=USR1(CL%)
920 READ A%$,B%$,C%

930 IF A%="end" THEN CL%=53:Z2=USR1(CL%):F=1:RETURN
940 _ERASE(T): _ERASE(T2)

950 _ERASE(T3):_ERASE(T4)

96@ _PHRASE(T,A$): _PHRASE(TZ2,B8%,">"+B%)

97T@® _PHRASE(T3,C$):_PHRASE(T4,A%)

980 _PLAY(1,T): PLAY(2,T2)

990 _PLAY(3,T3):_PLAY(4,T4)

10@® RETURN

1010 *)

1820 "---end--———-=--———-———-

1830 *

1040 _EVENT() OFF

1050 Q$=INKEYS$:IF Q@%="" THEN 1050

1060 COLOR 15,4,7

1@7@ END

1080 °

109@ '---sprite data-----——- G

1180 °

1110 DATA 0,0,0,0,0,0,0,0

1120 DATA 0,0,0,0,3,7,f,e

113@ DATA 80,c0,e0,b0,90,90,%90,%0

114@ DATA 20,80,80,80,80,80,0,0

115@ DATA B,0,7.7,4,4,7,7

116@ DATA 4,4,4,4,4,1c,3c,c8
117@ DATA 7,7f,f9,81,7,7f,f9,81
1180 DATA 1,1,1,7,f,e,0,0

119@ DATA 7,7,4,4,7,7,4,4

120@ DATA 4,1c¢,3c¢,38,0,0,0,0
121@ DATA @,e®,fc,1f,3,el,fd,1f
1220 DATA 1,1,1,1,1,7,f,e

76

A

=
e e e —]

1230 °
1240 °
1250 '
1260 DATA
1270 DATA
1280 DATA
1290 '
1300 °
131@ DATA
1320 DATA
1330 DATA
1340
1350 -
1360 DATA
137@ DATA
1388 DATA
1390
1400
141@ DATA
1420 DATA
——1430 DATA
1440
1450
1460 DATA
147@ DATA
1480 DATA

---music data

k2gfb<8vo@cva@fvS@davedLB8cvaBf L4vSOd>bvS8<c>vSBgvs ST
rlr4drlre
k2gfb<L8v6@cv4®fv5@d4v6®lchA@fL6v5®d>bv58<c>v5@gv45f_

k29fb<vaowcvéﬁfvﬁﬁdévéwchvmel&v5®d>bv58<c>v599v45r
kZ>gfgfdfbgce!t
k2lnZb<dllc>allbad]llcallafllcallbillgdlle!gllc>glla<c]

k2tgdl8fgcbgalat<fdlB8c>bfa
kZ2rlr4r4ra>fbgf
k2fgdl8fgcbgalsfffft

k2tfogdlB8fge4db<c>l4a-<a-flBed->a-4
k2rlr4rZsa-<d->ba -
k2fgdl 8fgebdb<c>lia-a-a-a3-3-

k2vj®afba-l5vA®b<cv5®e>ba—Avo@L8<dAev7®ra'g—Teg—fd—eA
kew3@ler>g-LatvabBg vSBa-<g-vodL8feviBlbd— Beflba—ba-
k2v3@l2le.>l4a-1ba-v4BLl2[<e, [8>bl<ce>blba-voBLB8L<d-fa-1lea-<cIviBL4L>f

a-<d-1l8Lle>bg-1[ta-<d-1l4[c>ea-1[fb<d—1[>ea-<c]

1490 °
1500 °*
—-1510 DATA
—= 152@ DATA
153@ DATA

1540
1550 *
1560 DATA
157@ DATA
1580 DATA

s
k2v3@a-ba-L8b<ce>bv7@<l4cdcl8vT4dfviTadvBlcs

k2v3@L2>>g9- L4 fg-18<g-rBv7BLl2>bl4avi4tbvTTbv80<b
k2v3®L2[e.L4>a—]ba—<[eL8>b]<ce>bv?@t2[<g.L&cldcv??L2[g.LBd]fgdLLc

k2v750418fgvBRa<cv7?5>bagbafg4vS@l8ae ! L4fadvaBad
k2v75L8>agv80L4fv7518gali<cdevS@>abfovadfg
k2v?5L8[fa<cJEe!c>g]v5@LA[a<chv?5L8Egd>b][a<cf][l4e!c>g][a<de[e!c>g]

vS@lLa<clld>fIla<cIl>be! Jv4@la<cIL>be!]

1590 *
1600 °
1610 DATA
1620 DATA
v 1630 DATA
1640 °
1650
[1660 DATA
1670 DATA
1680 DATA
1690 '
1700 *
171@ DATA
1720 DATA
173@ DATA
1740 '
1750 *
176@ DATA
- 1770 DATA
7 1780 DATA
~=-1790 '
- 1800 °
181@ DATA
1820 DATA
1830 DATA
1840 *
1850 "
1860 DATA
1870 DATA

g

g

kZ2l8o4tcladfdlBfed4lbéc>abac>al Bbed
k2>dadgdgcfgcfg
k2[af}[beLaf]Efb][afJ[bf][gLBe]e!EL&cf]Edf][gLBe]e!L4[cf][df]

k2obc>a<cflBedc>bla<cdfL8gblafg
k2>cfc>fglBabl4abagfg
k2[ge!][fdc][ge!Jf[egb]L8[cfa][df]LA[ch[df][fa][gb]fg

k2o4flBedc>b<lbcdilBgblafgfogf
k2>>fgl8abl4abagfgf<gf
k2f[egb]LBch][df]LA[chEdf][fa<c][>gb<e]>fgfgf

kZ2lBo4gblsfgf>gfb<lBcfdacfladsb
k2>c>fgf<efdc>bag<g
k2lgb<e!l>fgfle>blla<cll>b<fIlcfalldfbllcfalldfbllfd>b]l

k204c>gfvibgfbl8<tO5¢ct9BFftBSL4dtBA>bt75<et7@ct35
k2>ce! fv7@>bagfb<gcf
k2[ceg][e‘c>g][a<c]v?®[d>g][a<c][d>b][<cfa]Edfb][dg>b][<eg<c][>cfa]

k2t35v7Sb,k2v/S>b,k2viSldf]

end, i

7

- €3 YAMAHA

NIPPON GAKKI CO., LTO. HAMAMATSU, JAPAN

e

OMD-102] 84102 @ Printed in Japan

2,

